
A Unified Approach for Maximizing Continuous
DR-submodular Functions

Mohammad Pedramfar
Purdue University

mpedramf@purdue.edu

Christopher John Quinn
Iowa State University

cjquinn@iastate.edu

Vaneet Aggarwal
Purdue University

vaneet@purdue.edu

Abstract

This paper presents a unified approach for maximizing continuous DR-
submodular functions that encompasses a range of settings and oracle access
types. Our approach includes a Frank-Wolfe type offline algorithm for both mono-
tone and non-monotone functions, with different restrictions on the general convex
set. We consider settings where the oracle provides access to either the gradient of
the function or only the function value, and where the oracle access is either deter-
ministic or stochastic. We determine the number of required oracle accesses in all
cases. Our approach gives new/improved results for nine out of the sixteen con-
sidered cases, avoids computationally expensive projections in three cases, with
the proposed framework matching performance of state-of-the-art approaches in
the remaining four cases. Notably, our approach for the stochastic function value-
based oracle enables the first regret bounds with bandit feedback for stochastic
DR-submodular functions.

1 Introduction

The problem of optimizing DR-submodular functions over a convex set has attracted considerable
interest in both the machine learning and theoretical computer science communities [2, 5, 16, 26].
This is due to its many practical applications in modeling real-world problems, such as influ-
ence/revenue maximization, facility location, and non-convex/non-concave quadratic programming
[3, 9, 18, 15, 20]. as well as more recently identified applications like serving heterogeneous learners
under networking constraints [20] and joint optimization of routing and caching in networks [21].

Numerous studies investigated developing approximation algorithms for constrained DR-
submodular maximization, utilizing a variety of algorithms and proof analysis techniques. These
studies have addressed both monotone and non-monotone functions and considered various types
of constraints on the feasible region. The studies have also considered different types of oracles—
gradient oracles and value oracles, where the oracles could be exact (deterministic) or stochastic.
Lastly, for some of the aforementioned offline problem settings, some studies have also considered
analogous online optimization problem settings as well, where performance is measured in regret
over a horizon. This paper aims to unify the disparate offline problems under a single framework
by providing a comprehensive algorithm and analysis approach that covers a broad range of setups.
By providing a unified framework, this paper presents novel results for several cases where previous
research was either limited or non-existent, both for offline optimization problems and extensions to
related stochastic online optimization problems.

This paper presents a Frank-Wolfe based meta-algorithm for (offline) constrained DR-submodular
maximization where we could only query within the constraint set, with sixteen variants for sixteen
problem settings. The algorithm is designed to handle settings where (i) the function is monotone
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Table 1: Offline DR-submodular optimization results.

F Set Oracle Setting Reference Appx. Complexity

M
on

ot
on

e 0
∈
K ∇F

det. [4], (*) 1− 1/e O(1/ϵ)

stoch. [23], (*) 1− 1/e O(1/ϵ3)
[32] ‡ 1− 1/e O(1/ϵ2)

F
det. This paper 1− 1/e O(1/ϵ3)

stoch. This paper 1− 1/e O(1/ϵ5)

ge
ne

ra
l† ∇F

det. [16] ‡ 1/2 O(1/ϵ)

This paper 1/2 Õ(1/ϵ)

stoch. [16]‡ 1/2 O(1/ϵ2)

This paper 1/2 Õ(1/ϵ3)

F
det. This paper 1/2 Õ(1/ϵ3)

stoch. This paper 1/2 Õ(1/ϵ5)

N
on

-M
on

ot
on

e d.
c.

∇F
det. [3], (*) 1/e O(1/ϵ)

stoch. [23], (*) 1/e O(1/ϵ3)

F
det. This paper 1/e O(1/ϵ3)

stoch. This paper 1/e O(1/ϵ5)

ge
ne

ra
l ∇F

det.
[12] 1−h

3
√
3

O(e
√

dL/ϵ)

[11] 1−h
4

O(e
√

dL/ϵ)
[10], (*) 1−h

4
O(1/ϵ)

stoch. This paper 1−h
4

O(1/ϵ3)

F
det. This paper 1−h

4
O(1/ϵ3)

stoch. This paper 1−h
4

O(1/ϵ5)

This table compares the different results for the number of oracle calls (complexity) within the feasible set
for DR-submodular maximization. Shaded rows indicate problem settings for which our work has the first
guarantees or beats the SOTA. The rows marked with a blue star (*) correspond to cases where Algorithm 2
generalizes the corresponding algorithm and therefore has the same performance. The different columns
enumerate properties of the function, the convex feasible region (downward-closed, includes the origin, or gen-
eral), and the oracle, as well as the approximation ratios and oracle complexity (the number of queries needed
to achieve the stated approximation ratio with at most ϵ > 0 additive error). We have h := minx∈K ∥x∥∞.
(See Appendix B regarding [23] and [32]). † when the oracle can be queried for any points in [0, 1]d (even
outside the feasible region K), the problem of optimizing monotone DR-submodular functions over a general
convex set simplifies — [4] and [23] achieve the same ratios and complexity bounds as listed above for 0 ∈ K;
[8] can achieve an approximation ratio of 1 − 1/e with the O(1/ϵ3) and O(1/ϵ5) complexity for exact and
stochastic value oracles respectively. ‡ [16] and [32] use gradient ascent, requiring potentially computationally
expensive projections.

or non-monotone, (ii) the feasible region is a downward-closed (d.c.) set (extended to include 0
for monotone functions) or a general convex set, (iii) gradient or value oracle access is available,
and (iv) the oracle is exact or stochastic. Table 1 enumerates the cases and corresponding results
on oracle complexity (further details are provided in Appendix A). We derive the first oracle com-
plexity guarantees for nine cases, derive the oracle complexity in three cases where previous result
had a computationally expensive projection step [32, 16] (and we obtain matching complexity in
one of these), and obtain matching guarantees in the remaining four cases. In addition to proving
approximation ratios and oracle complexities for several (challenging) settings that are the first or
improvements over the state of the art, the technical novelties of our approach include:

(i) A new construction procedure of a shrunk constraint set that allows us to work with lower
dimensional feasible sets when given a value oracle, resulting in the first results on general
lower dimensional feasible sets given a value oracle.

(ii) The first Frank-Wolfe type algorithm for analyzing monotone functions over a general con-
vex set for any type of oracle, where only feasible points can be queried.

(iii) Shedding light on a previously unexplained gap in approximation guarantees for monotone
DR-submodular maximization. Specifically, by considering the notion of query sets and
assuming that the oracles can only be queries within the constraint set, we divide the class of
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monotone submodular maximization into monotone submodular maximization over convex
sets containing the origin and monotone submodular maximization over general convex
sets. Moreover, we conjecture that the 1/2 approximation coefficient, which has been
considered sub-optimal in the literature, is optimal when oracle queries can only be made
within the constraint set. (See Appendix B for more details.)

Furthermore, we also consider online stochastic DR-submodular optimization with bandit feedback,
where an agent sequentially picks actions (from a convex feasible region), receives stochastic re-
wards (in expectation a DR-submodular function) but no additional information, and seeks to max-
imize the expected cumulative reward. Performance is measured against the best action in expec-
tation (or a near-optimal baseline when the offline problem is NP-hard but can be approximated
to within α in polynomial time), the difference denoted as expected α-regret. For such problems,
when only bandit feedback is available (it is typically a strong assumption that semi-bandit or full-
information feedback is available), the agent must be able to learn from stochastic value oracle
queries over the feasible actions action. By designing offline algorithms that only query feasible
points, we made it possible to convert those offline algorithms into online algorithms. In fact,
because of how we designed the offline algorithms, we are able to access them in a black-box
fashion for online problems when only bandit feedback is available. Note that previous works on
DR-submodular maximization with bandit feedback in monotone settings (e.g. [31], [25] and [30])
explicitly assume that the convex set contains the origin.

For each of the offline setups, we extend the offline algorithm (the respective variants for stochastic
value oracle) and oracle query guarantees to provide algorithms and α-regret bounds in the bandit
feedback scenario. Table 2 enumerates the problem settings and expected regret bounds with bandit
and semi-bandit feedback. The key contributions of this work can be summarized as follows:

1. This paper proposes a unified approach for maximizing continuous DR-submodular functions
in a range of settings with different oracle access types, feasible region properties, and function
properties. A Frank-Wolfe based algorithm is introduced, which compared to SOTA methods for
each of the sixteen settings, achieves the best-known approximation coefficients for each case while
providing (i) the first guarantees in nine cases, (ii) reduced computational complexity by avoiding
projections in three cases, and (iii) matching guarantees in remaining four cases.

2. In particular, this paper gives the first results on offline DR-submodular maximization (for both
monotone and non-monotone functions) over general convex sets and even for downward-closed
convex sets, when only a value oracle is available over the feasible set. Most prior works on offline
DR-submodular maximization require access to a gradient oracle.

Table 2: Online stochastic DR-submodular optimization.

F Set Feedback Reference Coef. α α-Regret

M
on

ot
on

e 0 ∈ K ∇F
[6]†, 1/e O(T 2/3)

This paper 1− 1/e O(T 3/4)
F This paper 1− 1/e O(T 5/6)

general ∇F [16] ‡ 1/2 O(T 1/2)
This paper 1/2 Õ(T 3/4)

F This paper 1/2 Õ(T 5/6)

N
on

-m
on

o. d.c. ∇F This paper 1/e O(T 3/4)
F This paper 1/e O(T 5/6)

general ∇F This paper 1−h
4 O(T 3/4)

F This paper 1−h
4 O(T 5/6)

This table compares the different results for the expected α-regret for on-
line stochastic DR-submodular maximization for the under bandit and semi-
bandit feedback. Shaded rows indicate problem settings for which our work
has the first guarantees or beats the SOTA. We have h := minx∈K ∥x∥∞.
† the analysis in [6] has an error (see the supplementary material for details).
‡ [16] uses gradient ascent, requiring potentially computationally expensive
projections.

3. The results, summa-
rized in Table 2, are pre-
sented with two feedback
models—bandit feedback
where only the (stochastic)
reward value is available
and semi-bandit feedback
where a single stochastic
sample of the gradient at
the location is provided.
This paper presents the first
regret analysis with bandit
feedback for stochastic DR-
submodular maximization
for both monotone and non-
monotone functions. For
semi-bandit feedback case,
we provide the first result in
one case, improve the state
of the art result in two cases,
and gives the result without
computationally intensive
projections in one case.
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Related Work: The key related works are summarized in Tables 1 and 2. We briefly discuss
some key works here; see the supplementary materials for more discussion. For online DR-
submodular optimization with bandit feedback, there has been some prior works in the adversarial
setup [31, 33, 25, 30] which are not included in Table 2 as we consider the stochastic setup. [31]
considered monotone DR-submodular functions over downward-closed convex sets and achieved
(1 − 1/e)-regret of O(T 8/9) in adversarial setting. This was later improved by [25] to O(T 5/6).
[30] further improved the regret bound to O(T 3/4). However, it should be noted that they use a con-
vex optimization subroutine at each iteration which could be even more computationally expensive
than projection. [33] considered non-monotone DR-submodular functions over downward-closed
convex sets and achieved 1/e-regret of O(T 8/9) in adversarial setting.

2 Background and Notation

We introduce some basic notions, concepts and assumptions which will be used throughout the
paper. For any vector x ∈ Rd, [x]i is the i-th entry of x. We consider the partial order on Rd where
x ≤ y if and only if [x]i ≤ [y]i for all 1 ≤ i ≤ d. For two vectors x,y ∈ Rd, the join of x and y,
denoted by x ∨ y and the meet of x and y, denoted by x ∧ y, are defined by

x ∨ y := (max{[x]i, [y]i})di=1 and x ∧ y := (min{[x]i, [y]i})di=1, (1)

respectively. Clearly, we have x ∧ y ≤ x ≤ x ∨ y. We use ∥ · ∥ to denote the Euclidean norm, and
∥ · ∥∞ to denote the supremum norm. In the paper, we consider a bounded convex domain K and
w.l.o.g. assume that K ⊆ [0, 1]d. We say that K is down-closed (d.c.) if there is a point u ∈ K such
that for all z ∈ K, we have {x | u ≤ x ≤ z} ⊆ K. The diameter D of the convex domain K is
defined as D := supx,y∈K∥x− y∥. We use Br(x) to denote the open ball of radius r centered at x.
More generally, for a subset X ⊆ Rd, we define Br(X) :=

⋃︁
x∈X Br(x). If A is an affine subspace

of Rd, then we define BA
r (X) := A ∩ Br(X). For a function F : D → R and a set L, we use F |L

to denote the restriction of F to the set D ∩ L. For a linear space L0 ⊆ Rd, we use PL0
: Rd → L0

to denote the projection onto L0. We will use Rd
+ to denote the set {x ∈ Rd|x ≥ 0}. For any

set X ⊆ Rd, the affine hull of X , denoted by aff(X), is defined to be the intersection of all affine
subsets of Rd that contain X . The relative interior of a set X is defined by

relint(X) := {x ∈ X | ∃ε > 0,Baff(X)
ε (x) ⊆ X}.

It is well known that for any non-empty convex set K, the set relint(K) is always non-empty. We
will always assume that the feasible set contains at least two points and therefore dim(aff(K)) ≥ 1,
otherwise the optimization problem is trivial and there is nothing to solve.

A set function f : {0, 1}d → R+ is called submodular if for all x,y ∈ {0, 1}d with x ≥ y, we have

f(x ∨ a)− f(x) ≤ f(y ∨ a)− f(y), ∀a ∈ {0, 1}d. (2)

Submodular functions can be generalized over continuous domains. A function F : [0, 1]d →
R+ is called DR-submodular if for all vectors x,y ∈ [0, 1]d with x ≤ y, any basis vector ei =
(0, · · · , 0, 1, 0, · · · , 0) and any constant c > 0 such that x + cei ∈ [0, 1]d and y + cei ∈ [0, 1]d, it
holds that

F (x+ cei)− F (x) ≥ F (y + cei)− F (y). (3)

Note that if function F is differentiable then the diminishing-return (DR) property (3) is equivalent
to ∇F (x) ≥ ∇F (y) for x ≤ y with x,y ∈ [0, 1]d. A function F : D → R+ is G-Lipschitz
continuous if for all x,y ∈ D, ∥F (x)−F (y)∥ ≤ G∥x−y∥. A differentiable function F : D → R+

is L-smooth if for all x,y ∈ D, ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥.
A (possibly randomized) offline algorithm is said to be an α-approximation algorithm (for constant
α ∈ (0, 1]) with ϵ ≥ 0 additive error for a class of maximization problems over non-negative func-
tions if, for any problem instance maxz∈K F (z), the algorithm output x that satisfies the following
relation with the optimal solution z∗

αF (z∗)− E[F (x)] ≤ ϵ, (4)

where the expectation is with respect to the (possible) randomness of the algorithm. Further, we
assume an oracle that can query the value F (x) or the gradient ∇F (x). The number of calls to the
oracle to achieve the error in (4) is called the evaluation complexity.
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3 Offline Algorithms and Guarantees

In this section, we consider the problem of maximizing a DR-submodular function over a general
convex set in sixteen different cases, enumerated in Table 1. After setting up the problem in Sec-
tion 3.1, we then explain two key elements of our proposed algorithm when we only have access to
a value oracle, (i) the Black Box Gradient Estimate (BBGE) procedure (Algorithm 1) to balance
bias and variance in estimating gradients (Section 3.2) and (ii) the construction of a shrunken fea-
sible region to avoid infeasible value oracle queries during the BBGE procedure (Section 3.3). Our
main algorithm is proposed in Section 3.4 and analyzed in Section 3.5.

3.1 Problem Setup

We consider a general non-oblivious constrained stochastic optimization problem
max
z∈K

F (z) := max
z∈K

Ex∼p(x;z)[F̂ (z,x)], (5)

where F is a DR-submodular function, and F̂ : K×X→ R is determined by z and the random vari-
able x which is independently sampled according to x ∼ p(x; z). We say the oracle has variance σ2

if supz∈K varx∼p(x;z)[F̂ (z,x)] = σ2. In particular, when σ = 0, then we say we have access to an
exact (deterministic) value oracle. We will use F̂ (z) to denote the random variables F̂ (z,x) where x
is a random variable with distribution p(;̇ z). Similarly, we say we have access to a stochastic gradi-
ent oracle if we can sample from function Ĝ : K×Y→ R such that∇F (z) = Ey∼q(y;z)[Ĝ(z,y)],

and Ĝ is determined by z and the random variable y which is sampled according to y ∼ q(y; z).
Note that oracles are only defined on the feasible set. We will use Ĝ(z) to denote the random
variables Ĝ(z,y) where y is a random variable with distribution q(;̇ z).
Assumption 1. We assume that F : [0, 1]d → R is DR-submodular, first-order differentiable, non-
negative, G-Lipschitz for some G < ∞, and L-smooth for some L < ∞. We also assume the
feasible region K is a closed convex domain in [0, 1]d with at least two points. Moreover, we also
assume that we either have access to a value oracle with variance σ2

0 ≥ 0 or a gradient oracle with
variance σ2

1 ≥ 0.
Remark 1. The proposed algorithm does not need to know the values of L, G, σ0 or σ1. However,
these constants appear in the final expressions of the number of oracle calls and the regret bounds.

3.2 Black Box Gradient Estimate

Without access to a gradient oracle (i.e., first-order information), we estimate gradient information
using samples from a value oracle. We will use a variation of the “smoothing trick” technique
[14, 17, 1, 27, 31, 8, 33], which involves averaging through spherical sampling around a given point.
Definition 1 (Smoothing Trick). For a function F : D → R defined on D ⊆ Rd, its δ-smoothed
version F̃ δ is given as

F̃ δ(x) := E
z∼Baff(D)

δ (x)
[F (z)] = E

v∼Baff(D)−x
1 (0)

[F (x+ δv)], (6)

where v is chosen uniformly at random from the dim(aff(D))-dimensional ball Baff(D)−x
1 (0). Thus,

the function value F̃ δ(x) is obtained by “averaging” F over a sliced ball of radius δ around x.

When the value of δ is clear from the context, we may drop the subscript and simply use F̃ to
denote the smoothed version of F . It can be easily seen that if F is DR-submodular, G-Lipschitz
continuous, and L-smooth, then so is F̃ and ∥F̃ (x) − F (x)∥ ≤ δG, for any point in the domain
of both functions. Moreover, if F is monotone, then so is F̃ (Lemma 3). Therefore F̃ δ is an
approximation of the function F . A maximizer of F̃ δ also maximizes F approximately.

Our definition of smoothing trick differs from the standard usage by accounting for the affine hull
containingD. This will be of particular importance when the feasible region is of (affine) dimension
less than d, such as when there are equality constraints. When aff(D) = Rd, our definition reduces
to the standard definition of the smoothing trick. In this case, it is well-known that the gradient of the
smoothed function F̃ δ admits an unbiased one-point estimator [14, 17]. Using a two-point estimator
instead of the one-point estimator results in smaller variance [1, 27]. In Algorithm 1, we adapt the
two-point estimator to the general setting.
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3.3 Construction of Kδ

Algorithm 1 Black Box Gradient Estimate (BBGE)
1: Input: Point z, sampling radius δ, constraint lin-

ear space L0, k = dim(L0), batch size B
2: Sample u1, · · · ,uB i.i.d. from Sd−1 ∩ L0

3: For i = 1 toB, let y+
i ← z+δui, y

−
i ← z−δui,

and evaluate F̂ (y+
i ), F̂ (y

−
i )

4: g← 1
B

∑︁B
i=1

k
2δ

[︂
F̂ (y+

i )− F̂ (y
−
i )
]︂
ui

5: Output g

We want to run Algorithm 1 as a subroutine
within the main algorithm to estimate the
gradient. However, in order to run Algo-
rithm 1, we need to be able to query the or-
acle within the set Baff(K)

δ (x). Since the or-
acle can only be queried at points within the
feasible set, we need to restrict our attention
to a set Kδ such that Baff(K)

δ (Kδ) ⊆ K. On
the other hand, we want the optimal point
of F within Kδ to be close to the optimal
point of F within K. One way to ensure
that is to have Kδ not be too small. More formally, we want that Baff(K)

δ′ (Kδ) ⊇ K, for some value
of δ′ ≥ δ that is not too large. The constraint boundary could have a complex geometry, and simply
maintaining a δ sized margin away from the boundary can result in big gaps between the boundary
of K and Kδ . For example, in two dimensions, if K is polyhedral and has an acute angle, maintain-
ing a δ margin away from both edges adjacent to the acute angle means the closest point in the Kδ

to the corner may be much more than δ. For this construction, we choose a c ∈ relint(K) and a real
number r > 0 such that Baff(K)

r (c) ⊆ K. For any δ < r, we define

Kc,r
δ := (1− δ

r
)K +

δ

r
c. (7)

Clearly if K is downward-closed, then so is Kc,r
δ . Lemma 7 shows that for any such choice of c and

r > 0, we have δ′

δ ≤
D
r . See Appendix G for more details about the choice of c and r. We will drop

the superscripts in the rest of the paper when there is no ambiguity.
Remark 2. This construction is similar to the one carried out in [31] which was for d-dimensional
downward-closed sets. Here we impose no restrictions on K beyond Assumption 1. A simpler
construction of shrunken constraint set was proposed in [8]. However, as we discuss in Appendix D,
they require to be able to query outside of the constraint set.

3.4 Generalized DR-Submodular Frank-Wolfe

Algorithm 2 Generalized DR-Submodular Frank-
Wolfe

1: Input: Constraint set K, iteration limit N ≥ 4,
sampling radius δ, gradient step-size {ρn}Nn=1

2: Construct Kδ

3: Pick any z1 ∈ argminz∈Kδ
∥z∥∞

4: ḡ0 ← 0
5: for n = 1 to N do
6: gn ← estimate-grad(zn, δ,L0 = aff(K)−z1)

7: ḡn ← (1− ρn)ḡn−1 + ρngn

8: vn ← optimal-direction(ḡn, zn)
9: zn+1 ← update(zn,vn, ε)

10: end for
11: Output zN+1

The pseudocode of our proposed offline
algorithm, Generalized DR-Submodular
Frank-Wolfe, is shown in Algorithm 2. At
a high-level, it follows the basic template of
Frank-Wolfe type methods, where over the
course of a pre-specified number of itera-
tions, the gradient (or a surrogate thereof)
is calculated, an optimization sub-routine
with a linear objective is solved to find a
feasible point whose difference (with re-
spect to the current solution) has the largest
inner product with respect to the gradient,
and then the current solution is updated to
move in the direction of that feasible point.

However, there are a number of important
modifications to handle properties of the
objective function, constraint set, and ora-
cle type. For the oracle type, for instance, standard Frank-Wolfe methods assume access to a deter-
ministic gradient oracle. Frank-Wolfe methods are known to be sensitive to errors in estimates of
the gradient (e.g., see [16]). Thus, when only a stochastic gradient oracle or even more challeng-
ing, only a stochastic value oracle is available, the gradient estimators must be carefully designed to
balance query complexity on the one hand and output error on the other. The Black Box Gradient
Estimate (BBGE) sub-routine, presented in Algorithm 1, utilizes spherical sampling to produce an
unbiased gradient estimate. This estimate is then combined with past estimates using momentum,
as seen in [23], to control and reduce variance.
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Our algorithm design is influenced by state-of-the-art methods that have been developed for specific
settings. One of the most closely related works is [8], which also dealt with using value oracle access
for optimizing monotone functions. They used momentum and spherical sampling techniques that
are similar to the ones we used in our Algorithm 1. However, we modified the sampling procedure
and the solution update step. In their work, [8] also considered a shrunken feasible region to avoid
sampling close to the boundary. However, they assumed that the value oracle could be queried
outside the feasible set (see Appendix D for details).

In Algorithm 3, we consider the following cases for the function and the feasible set.

(A) If F is monotone DR-submodular and 0 ∈ K, we choose

optimal-direction(ḡn, zn) = argmaxv∈Kδ−z1
⟨v, ḡn⟩, update(zn,vn, ε) = zn + εvn,

and ε = 1/N . We start at a point near the origin and always move to points that are bigger
with respect to the partial order on Rd. In this case, since the function is monotone, the optimal
direction is a maximal point with respect to the partial order. The choice of ε = 1/N guarantees
that after N steps, we arrive at a convex combination of points in the feasible set and therefore
the final point is also in the feasible set. The fact that the origin is also in the feasible set shows
that the intermediate points also belong to the feasible set.

(B) If F is non-monotone DR-submodular andK is a downward closed set containing 0, we choose

optimal-direction(ḡn, zn) = argmaxv∈Kδ−z1
v≤1−zn

⟨v, ḡn⟩, update(zn,vn, ε) = zn + εvn,

and ε = 1/N . This case is similar to (A). However, since F is not monotone, we need to
choose the optimal direction more conservatively.

(C) If F is monotone DR-submodular and K is a general convex set, we choose

optimal-direction(ḡn, zn) = argmaxv∈Kδ
⟨v, ḡn⟩, update(zn,vn, ε) = (1− ε)zn + εvn,

and ε = log(N)/2N . In this case, if we update like in cases (A) and (B), we do not have any
guarantees of ending up in the feasible set, so we choose the update function to be a convex
combination. Unlike (B), we do not need to limit ourselves in choosing the optimal direction
and we simply choose ε to obtain the best approximation coefficient.

(D) If F is non-monotone DR-submodular and K is a general convex set, we choose

optimal-direction(ḡn, zn) = argmaxv∈Kδ
⟨v, ḡn⟩, update(zn,vn, ε) = (1− ε)zn + εvn,

and ε = log(2)/N . This case is similar to (C) and we choose ε to obtain the best approximation
coefficient.

The choice of subroutine estimate-grad and ρn depend on the oracle. If we have access to a gra-
dient oracle Ĝ, we set estimate-grad(z, δ,L0) to be the average of B evaluations of PL0(Ĝ(z)).
Otherwise, we run Algorithm 1 with input z, δ, L0. If we have access to a deterministic gradient
oracle, then there is no need to use any momentum and we set ρn = 1. In other cases, we choose
ρn = 2

(n+3)2/3
.

3.5 Approximation Guarantees for the Proposed Offline Algorithm

Theorem 1. Suppose Assumption 1 holds. Let N ≥ 4, B ≥ 1 and choose c ∈ K and r > 0
according to Section 3.3. If we have access to a gradient oracle, we choose δ = 0, otherwise we
choose δ ∈ (0, r/2). Then the following results hold for the output zN+1 of Algorithm 2.

(A) If F is monotone DR-submodular and 0 ∈ K, then

(1− e−1)F (z∗)− E[F (zN+1)] ≤
3DQ1/2

N1/3
+
LD2

2N
+ δG(2 +

√
d+D

r
). (8)

(B) If F is non-monotone DR-submodular and K is a downward closed set containing 0, then

e−1F (z∗)− E[F (zN+1)] ≤
3DQ1/2

N1/3
+
LD2

2N
+ δG(2 +

√
d+ 2D

r
). (9)
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(C) If F is monotone DR-submodular and K is a general convex set, then

1

2
F (z∗)− E[F (zN+1)] ≤

3DQ1/2 log(N)

2N1/3
+

4DG+ LD2 log(N)2

8N
+ δG(2 +

D

r
). (10)

(D) If F is non-monotone DR-submodular and K is a general convex set, then

1

4
(1− ∥z1∥∞)F (z∗)− E[F (zN+1)] ≤

3DQ1/2

N1/3
+
DG+ 2LD2

4N
+ δG(2 +

D

r
). (11)

In all these cases, we have

Q =

⎧⎪⎪⎨⎪⎪⎩
0 det. grad. oracle,

max{42/3G2, 6L2D2 +
4σ2

1

B } stoch. grad. oracle with variance σ2
1 > 0,

max{42/3G2, 6L2D2 +
4CkG2+2k2σ2

0/δ
2

B } value oracle with variance σ2
0 ≥ 0,

C is a constant, k = dim(K), D = diam(K), and z∗ is the global maximizer of F on K.

Theorem 1 characterizes the worst-case approximation ratio α and additive error bounds for different
properties of the function and feasible region, where the additive error bounds depend on selected
parameters N for the number of iterations, batch size B, and sampling radius δ.

The proof of Parts (A)-(D) is provided in Appendix I-L, respectively.

The proof of parts (A), (B) and (D), when we have access to an exact gradient oracle is similar
to the proofs presented in [4, 3, 24], respectively. Part (C) is the first analysis of a Frank-Wolfe
type algorithm over general convex sets when the oracle can only be queried within the feasible set.
When we have access to a stochastic gradient oracle, directly using a gradient sample can result in
arbitrary bad performance as shown in Appendix B of [16]. The momentum technique, first used in
continuous submodular maximization in [23], is used when we have access to a stochastic gradient
oracle. The control on the estimate of the gradient is deferred to Lemma 9. Since the momentum
technique is robust to noise in the gradient, when we only have access to a value oracle, we can use
Algorithm 1, similar to [8], to obtain an unbiased estimate of the gradient and complete the proof.

Theorem 2 converts those bounds to characterize the oracle complexity for a user-specified additive
error tolerance ϵ based on oracle properties (deterministic/stochastic gradient/value). The 16 combi-
nations of the problem settings listed in Table 1 are enumerated by four cases (A)–(D) in Theorem 1
of function and feasible region properties (resulting in different approximation ratios) and the four
cases 1–4 enumerated in Theorem 2 below of oracle properties. For the oracle properties, we con-
sider the four cases as (Case 1): deterministic gradient oracle, (Case 2): stochastic gradient oracle,
(Case 3): deterministic value oracle, and (Case 4): stochastic value oracle.

Theorem 2. The number of oracle calls for different oracles to achieve an α-approximation error
of smaller than ϵ using Algorithm 1 is

Case 1: Õ(1/ϵ), Cases 2, 3: Õ(1/ϵ3), Case 4: Õ(1/ϵ5).

Moreover, in all of the cases above, if F is non-monotone or 0 ∈ K, we may replace Õ with O.

See Appendix M for proof.

4 Online DR-submodular optimization under bandit or semi-bandit
feedback

In this section, we first describe the Black-box Explore-Then-Commit algorithm that uses the offline
algorithm for exploration, and uses the solution of the offline algorithm for exploitation. This is
followed by the regret analysis of the proposed algorithm. This is the first algorithm for stochastic
continuous DR-submodular maximization under bandit feedback and obtains state-of-the-art for
semi-bandit feedback.
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4.1 Problem Setup

There are typically two settings considered in online optimization with bandit feedback. The first is
the adversarial setting, where the environment chooses a sequence of functions F1, · · · , FN and in
each iteration n, the agent chooses a point zn in the feasible setK, observes Fn(zn) and receives the
reward Fn(zn). The goal is to choose the sequence of actions that minimize the following notion of
expected α-regret.

Radv := αmax
z∈K

N∑︂
n=1

Fn(z)− E

⎡⎣ N∑︂
n=1

Fn(zn)

⎤⎦ . (12)

In other words, the agent’s cumulative reward is being compared to α times the reward of the best
constant action in hindsight. Note that, in this case, the randomness is over the actions of the policy.

The second is the stochastic setting, where the environment chooses a function F : K → R and a
stochastic value oracle F̂ . In each iteration n, the agent chooses a point zn in the feasible set K,
receives the reward (F̂ (zn))n by querying the oracle at zn and observes this reward. Here the outer
subscript n indicates that the result of querying the oracle at time n, since the oracle is stochastic.
The goal is to choose the sequence of actions that minimize the following notion of expected α-
regret.

Rstoch := αN max
z∈K

F (z)− E

⎡⎣ N∑︂
n=1

(F̂ (zn))n

⎤⎦ = αN max
z∈K

F (z)− E

⎡⎣ N∑︂
n=1

F (zn)

⎤⎦ (13)

Further, two feedback models are considered – bandit and semi-bandit feedback. In the bandit
feedback setting, the agent only observes the value of the function Fn at the point zn. In the semi-
bandit setting, the agent has access to a gradient oracle instead of a value oracle and observes Ĝ(zn)
at the point zn, where Ĝ is an unbiased estimator of∇F .

In unstructured multi-armed bandit problems, any regret bound for the adversarial setup could be
translated into bounds for the stochastic setup. However, having a non-trivial correlation between
the actions of different arms complicates the relation between the stochastic and adversarial settings.
Even in linear bandits, the relation between adversarial linear bandits and stochastic linear bandits is
not trivial. (e.g. see Section 29 in [19]) While it is intuitively reasonable to assume that the optimal
regret bounds for the stochastic case are better than that of the adversarial case, such a result is
not yet proven for DR-submodular functions. Thus, while the cases of bandit feedback has been
studied in the adversarial setup, the results do not reduce to stochastic setup. We also note that in
the cases where there are adversarial setup results, this paper finds that the results in the stochastic
setup achieve improved regret bounds (See Table 3 in Supplementary for the comparison).

4.2 Algorithm for DR-submodular maximization with Bandit Feedback

Algorithm 3 DR-Submodular Explore-
Then-Commit

1: Input: Horizon T , inner time horizon
T0

2: Run Algorithm 2 for T0, with according
to parameters described in Theorem 2.

3: for remaining time do
4: Repeat the last action of Algorithm 2.
5: end for

The proposed algorithm is described in Algorithm 3.
In Algorithm 3, if there is semi-bandit feedback in
the form of a stochastic gradient sample for each ac-
tion zn, we run the offline algorithm (Algorithm 2)
with parameters from the proof of case 2 of The-
orem 2 for T0 = ⌈T 3/4⌉ total queries. If only
the stochastic reward for each action zn is available
(bandit feedback), we run the offline algorithm (Al-
gorithm 2) with parameters from the proof of case 4
of Theorem 2 for T0 = ⌈T 5/6⌉ total queries. Then,
for the remaining time (exploitation phase), we run
the last action in the exploration phase.

4.3 Regret Analysis for DR-submodular maximization with Bandit Feedback

In this section, we provide the regret analysis for the proposed algorithm. We note that by The-
orem 2, Algorithm 2 requires a sample complexity of Õ(1/ϵ5) with a stochastic value oracle for
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offline problems (any of (A)–(D) in Theorem 1). Thus, the parameters and the results with bandit
feedback are the same for all the four setups (A)–(D). Likewise, when a stochastic gradient oracle is
available, Algorithm 2 requires a sample complexity of Õ(1/ϵ3). Based on these sample complexi-
ties, the overall regret of online DR-submodular maximization problem is given as follows.
Theorem 3. For an online constrained DR-submodular maximization problem over a horizon T ,
where the expected reward function F , feasible region typeK, and approximation ratio α correspond
to any of the four cases (A)–(D) in Theorem 1, Algorithm 3 achieves α-regret (13) that is upper-
bounded as:

Semi-bandit Feedback (Case 2): Õ(T 3/4), Bandit Feedback (Case 4): Õ(T 5/6).

Moreover, in either type of feedback, if F is non-monotone or 0 ∈ K, we may replace Õ with O.

See Appendix N for the proof.

5 Conclusion

This work provides a novel and unified approach for maximizing continuous DR-submodular func-
tions across various assumptions on function, constraint set, and oracle access types. The pro-
posed Frank-Wolfe based algorithm improves upon existing results for nine out of the sixteen cases
considered, and presents new results for offline DR-submodular maximization with only a value
oracle. Moreover, this work presents the first regret analysis with bandit feedback for stochastic
DR-submodular maximization, covering both monotone and non-monotone functions. These contri-
butions significantly advance the field of DR-submodular optimization (with multiple applications)
and open up new avenues for future research in this area.

Limitations: While the number of function evaluations in the different setups considered in the
paper are state of the art, lower bounds have not been investigated.
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A Details of Related Works

A.1 Offline DR-submodular maximization

The authors of [4] considered the problem of maximizing a monotone DR-submodular function over
a downward-closed convex set given a deterministic gradient oracle. They showed that a variant of
the Frank-Wolfe algorithm guarantees an optimal (1 − 1

e )-approximation for this problem. While
they only claimed their result for downward-closed convex sets, their result holds under a more
general setting where the convex set contains the origin. In [3], a non-monotone variant of the
algorithm for downward-closed convex sets with 1

e -approximation was proposed.

The authors of [16] used gradient ascent to obtain 1
2 -guarantees for the maximization of a mono-

tone DR-submodular function over a general convex set given a gradient oracle which could be
stochastic. They proved that gradient ascent cannot guarantee better than a 1

2 -approximation by
constructing a convex set K and a function F : K → R such that F has a local maximum that is
a 1

2 -approximation of its optimal value on K. They also showed that a Frank-Wolfe type algorithm
similar to [4] cannot be directly used when we only have access to a stochastic gradient oracle. [32]
extended projected gradient ascent using a line integral method, referred to as boosting, to obtain
(1 − 1/e)-approximation for convex sets containing the origin. Later, [23] resolved the issue of
stochastic gradient oracles with a momentum technique and obtained (1− 1

e )-approximation in the
case of monotone functions over sets that contain the origin, and 1

e -approximation in the case of
non-monotone functions over downward closed sets. In [32] and the first case in [23], while they
consider monotone DR-submodular functions over general convex setsK, they query the oracle over
the convex hull of K ∪ {0} (See Appendix B).

For non-monotone maps over general convex sets, no constant approximation ratio can be guaran-
teed in sub-exponential time due to a hardness result by [29]. However, [12] bypassed this issue by
finding an approximation guarantee that depends on the geometry of the convex set. Specifically,
they showed that given a deterministic gradient oracle for a non-monotone function over a general
convex set K ⊆ [0, 1]d, their proposed algorithm obtains 1

3
√
3
(1− h)-approximation of the optimal

value where h := minz∈K ∥z∥∞. An improved sub-exponential algorithm was proposed by [11]
that obtained a 1

4 (1− h)-approximation guarantees, which is optimal. Later, [10] provided the first
polynomial time algorithm for this setting with the same approximation coefficient.
Remark 3. In the special case of maximizing a non-monotone continuous DR-submodular over a
box, i.e. [0, 1]d, one could discretize the problem and use discrete algorithms to solve the continuous
version. The technique has been employed in [3] to obtain a 1

3 -approximation and in [5, 26] to obtain
1
2 -approximations for the optimal value. We have not included these results in Table 1 since using
discretization has only been successfully applied to the case where the convex set is a box and can
not be directly used in more general settings.

A.2 Online DR-submodular maximization with bandit feedback

There has been growing interest in online DR-submodular maximization in the recent years [7],
[6], [31], [28], [25], [33], [13],[24]. Most of these results are focused on adversarial online full-
information feedback. In the adversarial setting, the environment chooses a sequence of functions
F1, · · · , FN and in each iteration n, the agent chooses a point zn in the feasible set K, observes Fn

and receives the reward Fn(zn). For the regret bound, the agents reward is being compared to α
times the reward of the best constant action in hindsight. With full-information feedback, if at each
iteration when the agent observes Fn, it may be allowed to query the value of ∇Fn or maybe Fn at
any number of arbitrary points within the feasible set. Further, we consider stochastic setting, where
the environment chooses a function F : K → R and a sequence of independent noise functions
ηn : K → R with zero mean. In each iteration n, the agent chooses a point zn in the feasible set K,
receives the reward (F + ηn)(zn) and observes the reward. For the regret bound, the agents reward
is being compared to α times the reward of the best action. Detailed formulation of adversarial
and stochastic setups and why adversarial results cannot be reduced to stochastic results is given
in Section 4.1. In this paper, we consider two feedback models – bandit feedback where only the
(stochastic) reward value is available and semi-bandit feedback where a single stochastic sample of
the gradient at the location is provided.
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Function Set Setting Reference Appx. Regret

Monotone
0 ∈ K

stoch. This paper 1− 1/e O(T 5/6)

adv.
[31] 1− 1/e O(T 8/9)
[25] 1− 1/e O(T 5/6)
[30]† 1− 1/e O(T 3/4)

general stoch. This paper 1/2 Õ(T 5/6)
adv. -

Non-monotone
d.c. stoch. This paper 1/e O(T 5/6)

adv. [33] 1/e O(T 8/9)

general stoch. This paper 1−h
4 O(T 5/6)

adv. -

Table 3: This table presents the different results for the regret for DR-submodular maximization
under bandit feedback, and gives the related works and regret bounds in the adversarial case. Note
that the result marked by † uses a convex optimization subroutine at each iteration which could be
even more computationally expensive than projection. As before, we have h := minx∈K ∥x∥∞.

Bandit Feedback: We note that this paper is the first work for bandit feedback for stochastic on-
line DR-submodular maximization. The prior works on this topic has been in the adversarial setup
[31, 33, 25, 30], and the results in this work is compared with their results in Table 3. In [31], the
adversarial online setting with bandit feedback has been studied for monotone DR-submodular func-
tions over downward-closed convex sets. Later [33] extended this framework to the setting with non-
monotone DR-submodular functions over downward-closed convex sets. [25] described a frame-
work for converting certain greedy-type offline algorithms with robustness guarantees into adversar-
ial online algorithms for both full-information and bandit feedback. They apply their framework to
obtain algorithms for non-monotone functions over a box, with 1

2 -regret of Õ(T 4/5), and monotone
function over downward-closed convex sets. The offline algorithm they use for downward-closed
convex sets is the one described in [4] which only requires the convex set to contain the origin.
They also use the construction of the shrunk constraint set described in [31]. By replacing that con-
struction with ours, the result of [25] could be extended to monotone functions over all convex sets
containing the origin. [30] improved the regret bound for monotone functions over convex sets con-
taining the origin to O(T 3/4). However, they use a convex optimization subroutine at each iteration
which could be even more computationally expensive than projection.

Semi-bandit Feedback: In semi-bandit feedback, a single stochastic sample of the gradient is avail-
able. The problem has been considered in [6], while the results have an error (See Appendix D).
Further, they only obtain 1

e -regret for the monotone case. One could consider a generalization of the
adversarial and stochastic setting in the following manner. The environment chooses a sequence of
functions Fn and a sequence of value oracles F̂n such that F̂n estimates Fn. In each iteration n,
the agent chooses a point zn in the feasible set K, receives the reward (F̂n(zn))n by querying the
oracle at zn and observes this reward. The goal is to choose the sequence of actions that minimize
the following notion of expected α-regret.

Rstoch-adv := αmax
z∈K

N∑︂
n=1

Fn(z)− E

⎡⎣ N∑︂
n=1

(F̂n(zn))n

⎤⎦
= αmax

z∈K

N∑︂
n=1

Fn(z)− E

⎡⎣ N∑︂
n=1

Fn(zn)

⎤⎦ (14)

Algorithm 3 in [7] solves this problem in semi-bandit feedback setting with a deterministic value
oracle and stochastic gradient oracles. Any bound for a problem in this setting implies bounds for
stochastic semi-bandit and adversarial semi-bandit settings. The same is true for Mono-Frank-Wolfe
Algorithms in [31, 33]. We have included these results in Table 2 as benchmark to compare with
results in stochastic setting.
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B Constraint Set and Query Set

In this work, we made the assumption that the query set is identical to the constraint set, i.e. oracles
can only be queried within the constraint set. To the best of our knowledge, except in the context of
online optimization with (semi-)bandit feedback, this is the first work on DR-submodular maximiza-
tion that explicitly considers this assumption. Previous works assumed that we may query the oracle
at any point within the unit box [0, 1]d. Algorithms designed for non-monotone functions in prior
works already satisfied the assumption we consider, so no changes in algorithms, proofs, or results
are needed. However, the situation is different when the function is monotone. This assumption
allows us to explain a previously unexplained gap in approximation guarantees for monotone DR-
submodular maximization. Specifically, some prior works (enumerated below) studying monotone
DR-submodular maximization over general convex sets obtained approximation guarantees of 1/2
while others obtained 1− 1/e.

First we describe how some of previous results in literature with no apparent restriction on the
query set may be reformulated as problems where the query set is equal to the constraint set. Let
K ⊆ [0, 1]d be a convex set, and defineK∗ as the convex hull ofK∪{0}. For a problem in the setting
of monotone functions over a general set K, we can consider the same problem on K∗. Since the
function is monotone, the optimal solution in K∗ is the same as the optimal solution in K. However,
solving this problem in K∗ may require evaluating the function in the larger set K∗, which may
not always be possible. In fact, the result of [23] and [32] mentioned in Table 1 are for monotone
functions over general convex sets K, but their algorithms require evaluating the function on K∗.
This is why we have classified their results as algorithms for convex sets that contain the origin.
The problem of offline DR-submodular maximization with only a value oracle was first considered
by [8] for monotone maps over convex sets that contain the origin. However, their result requires
querying in a neighborhood of K∗ which violates our requirement to only query the oracle within
the feasible set (see Appendix D).

In [16], a 1/2 approximation guarantee was obtained by a projected gradient ascent method and this
was shown by proving that the algorithm tends to a stationary point and proving that any stationary
point is at least 1/2 as good as the optimal point. Moreover, they construct examples with stationary
points that are no better that 1/2 of the optimal point.

The 1 − 1/e approximation guarantee was first reported for Frank-Wolfe methods, which (superfi-
cially) suggests that the gap may be due to algorithm or analysis differences. Later, [32] developed a
projected gradient ascent based method that obtains a 1− 1/e approximation guarantee where they
consider general constraint set but their query set contains the origin.

However, the gap is not attributable to algorithm or analysis differences, but instead due to the fact
that the query sets are different. In other words, the results that obtain a 1 − 1/e approximation
guarantee are solving a different problem than the ones obtaining a 1/2 approximation guarantee. A
key ingredient to obtain 1 − 1/e is the ability to query the (gradient) oracle within the convex hull
of K∪{0}. For monotone submodular maximization over general convex sets (not necessarily con-
taining the origin), we can only guarantee a coefficient of 1/2, both for Frank-Wolfe type methods
(our work) and projection based methods (i.e. [16]). Therefore, the 1/2 approximation could very
well be optimal in its own setting.

To the best of our knowledge, in every paper where the 1/2 approximation coefficient and 1 − 1/e
approximation coefficient in the monotone setting are compared, the comparison was (unwittingly)
between problems that are inherently mathematically different: [16] and [7] in experiments and main
text; [6] and [8] in experiments; [33, 24], and [12] in related work section, [23] in the introduction
and Table 2, [32] and [13] in the main claims.

Conjecture The problem of maximizing a monotone DR-submodular continuous function subject
to a general convex constraint, where oracle queries are limited to the feasible region, is NP-hard.
For any ϵ > 0, it cannot be approximated in polynomial time to within a ratio of 1/2 + ϵ (up to
low-order terms), unless RP = NP .

15



C Brief discussion on oracle models in applications

For many problems, the ability to evaluate gradients directly requires strong assumptions about
problem-specific parameters. Influence maximization and profit maximization form a family of
problems that model choosing advertising resource allocations to maximize the expected number
of customers, where there is an underlying diffusion model for how advertising resources spent
(stochastically) activate customers over a social network. For common diffusion models, the objec-
tive function is known to be DR-submodular (see for instance [3] or [15]). The revenue (expected
number of activated customers) is a monotone objective function; total profit (revenue from acti-
vated customers minus advertising costs) is a non-monotone objective. One significant challenge
with these problems is that the objective function (and the gradients) cannot be analytically evalu-
ated for general (non-bipartite) networks, even if all the underlying diffusion model parameters are
known exactly. The mildest assumptions on knowledge/observability of the network diffusions for
offline variants (respectively actions for online variants), especially fitting for user privacy and/or
third-party access, leads to instantiations of queries as the agent selecting an advertising allocation
within the budget (i.e., feasible point) and observing a (stochastic) count of activated customers. This
corresponds to stochastic value oracle queries over the feasible region (respectively bandit feedback
for online variants).

D Comments on previous results in literature

Construction of K′ and error estimate in [8] In [8], the set K′ + δ1 plays a role similar to
the set Kδ defined in this paper. Algorithm 2, in the case with access to value oracle for monotone
DR-submodular function with the constraint set K, such that aff(K) = Rd and 0 ∈ K, reduced to
BBCG algorithm in [8] if we replace Kδ with their construction of K′ + δ1. In their paper, K′ is
defined by

K′ := (K − δ1) ∩ [0, 1− 2δ]d. (15)
There are a few issues with this construction and the subsequent analysis that requires more care.

1. The BBCG algorithm almost always needs to be able to query the value oracle outside the
feasible set.
We have

K′ + δ1 = K ∩ [δ, 1− δ]d.
The BBCG algorithm starts at δ1 and behaves similar to Algorithm 2 in the monotone
0 ∈ K case. It follows that the set of points that BBCG requires to be able to query is

Qδ := Bδ(convex-hull((K′ + δ1) ∪ {δ1})) = Bδ(convex-hull(K ∪ {δ1}) ∩ [δ, 1− δ]d).
If 1 ∈ K, then the problem becomes trivial since F is monotone. If K is contained in the
boundary of [0, 1]d, then we need to restrict ourselves to the affine subspace containing K
and solve the problem in a lower dimension in order to be able to use BBCG algorithm as
K′ will be empty otherwise. We want to show that in all other cases, Qδ \ K ≠ ∅. If K′ is
non-empty and 1 /∈ K, then let xδ be a maximizer of ∥·∥∞ overK′+δ1. If xδ ̸= (1−δ)1,
then there is a point y ∈ Bδ(xδ) ∩ [δ, 1 − δ]d ⊆ Qδ such that y > x which implies that
y /∈ K. Therefore, we only need to prove the statement when (1− δ)1 ∈ K∩ [δ, 1− δ]d for
all small δ. In this case, since K is closed, we see that (1− δ)1→ 1 ∈ K. In other words,
except in trivial cases, BBCG always requires being able to query outside the feasible set.

2. The exact error bound could be arbitrarily far away from the correct error bound depending
on the geometry of the constraint set.
In Equation (69) in the appendix of [8], it is mentioned that

F̃ (x∗
δ) ≥ F̃ (x∗)− δG

√
d, (16)

where x∗ is the optimal solution and x∗
δ is the optimal solution within K′+ δ1 and G is the

Lipschitz constant. Next we construct an example where this inequality does not hold.
Consider the set K = {(x, y) ∈ [0, 1]2 | x + λy ≤ 1} for some value of λ to be specified
and let F ((x, y)) = Gx. Clearly we have x∗ = (1, 0). Thus, for any δ > 0, we have

K′ + δ1 = {(x, y) ∈ [δ, 1− δ]2 | x+ λy ≤ 1}.
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It follows that when λ ≤ 1
δ − 1, then K′ is non-empty and x∗

δ = (1− λδ, δ). Then we have

F̃ (x∗
δ)− F̃ (x∗) = −λδG.

Therefore, (16) is correct if and only if λ ≤
√
d =
√
2. Since this does not hold in general

as λ depends on the geometry of the convex set, this equation is not true in general making
the overall proof incorrect. The issue here is that λ, which depends on the geometry of
the convex set K, should appear in (16). Without restricting ourselves to convex sets with
“controlled” geometry and without including a term, such as 1

r in Theorem 1, we would not
be able to use this method to obtain an error bound. We note that while their analysis has an
issue, the algorithm is still fine. Using a proof technique similar to ours, their proof can be
fixed, more precisely, we can modify (16) in a manner similar to (24) and (31), depending
on the case, and that will help fix their proofs.

One-Shot Frank-Wolfe algorithm in [6] In [6], the authors claim their proposed algorithm, One-
Shot Frank-Wolfe (OSFW), achieves a (1− 1

e )-regret for monotone DR-submodular maximization
under semi-bandit feedback for general convex set with oracle access to the entire domain of F ,
i.e. [0, 1]d. In their regret analysis in the last page of the supplementary material, the inequality
(1 − 1/T )t ≤ 1/e is used for all 0 ≤ t ≤ T − 1. Such an inequality holds for t = T but as t
decreases, the value of (1− 1/T )t becomes closer to 1 and the inequality fails. If we do not use this
inequality and continue with the proof, we end up with the following approximation coefficient.

1− 1

T

T−1∑︂
t=0

(1− 1/T )t = 1− 1

T
· 1− (1− 1/T )T

1− (1− 1/T )
= 1− (1− (1− 1/T )T ) = (1− 1/T )T ∼ 1

e
.

E Useful lemmas

Here we state some lemmas from the literature that we will need in our analysis of DR-submodular
functions.
Lemma 1 (Lemma 2.2 of [24]). For any two vectors x,y ∈ [0, 1]d and any continuously differen-
tiable non-negative DR-submodular function F we have

F (x ∨ y) ≥ (1− ∥x∥∞)F (y).

The following lemma can be traced back to [16] (see Inequality 7.5 in the arXiv version), and is also
explicitly stated and proved in [12].
Lemma 2 (Lemma 1 of [12]). For every two vectors x,y ∈ [0, 1]d and any continuously differen-
tiable non-negative DR-submodular function F we have

⟨∇F (x),y − x⟩ ≥ F (x ∨ y) + F (x ∧ y)− 2F (x).

F Smoothing trick

The following Lemma is well-known when aff(D) = Rd (e.g., Lemma 1 in [8], Lemma 7 in [31]).
The proof in the general case is similar to the special case aff(D) = Rd.
Lemma 3. If F : D → R is DR-submodular, G-Lipschitz continuous, and L-smooth, then so is F̃ δ

and for any x ∈ D such that Baff(D)
δ (x) ⊆ D, we have

∥F̃ δ(x)− F (x)∥ ≤ δG.
Moreover, if F is monotone, then so is F̃ δ .

Proof. Let A := aff(D) and A0 := aff(D) − x for some x ∈ D. Using the assumption that F is
G-Lipschitz continuous, we have

|F̃ (x)− F̃ (y)| =
⃓⃓⃓
E
v∼BA0

1 (0)
[F (x+ δv)− F (y + δv)]

⃓⃓⃓
≤ E

v∼BA0
1 (0)

[|F (x+ δv)− F (y + δv)|]

≤ E
v∼BA0

1 (0)
[G∥(x+ δv)− (y + δv)∥]

= G∥x− y∥,
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and

|F̃ (x)− F (x)| = |E
v∼BA0

1 (0)
[F (x+ δv)− F (x)]|

≤ E
v∼BA0

1 (0)
[|F (x+ δv)− F (x)|]

≤ E
v∼BA0

1 (0)
[Gδ∥v∥]

≤ δG.
If F isG-Lipschitz continuous and continuous DR-submodular, then F is differentiable and we have
∇F (x) ≥ ∇F (y) for ∀x ≤ y. By definition of F̃ , we see that F̃ is also differentiable and

∇F̃ (x)−∇F̃ (y) = ∇E
v∼BA0

1 (0)
[F (x+ δv)]−∇E

v∼BA0
1 (0)

[F (y + δv)]

= E
v∼BA0

1 (0)
[∇F (x+ δv)−∇F (y + δv)]

≥ E
v∼BA0

1 (0)
[0] = 0,

for all x ≤ y.

If F is L-smooth, then we have ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥, for all x,y ∈ D. Therefore, we
have

∥∇F̃ (x)−∇F̃ (y)∥ = ∥∇E
v∼BA0

1 (0)
[F (x+ δv)]−∇E

v∼BA0
1 (0)

[F (y + δv)]∥

= ∥E
v∼BA0

1 (0)
[∇F (x+ δv)]− E

v∼BA0
1 (0)

[∇F (y + δv)]∥

≤ E
v∼BA0

1 (0)
[∥∇F (x+ δv)−∇F (y + δv)∥]

≤ E
v∼BA0

1 (0)
[L∥x− y∥] = L∥x− y∥,

for all x ≤ y.

If F is monotone, then we have F (x) ≤ F (y) for all x ≤ y. Therefore

F̃ (x)− F̃ (y) = E
v∼BA0

1 (0)
[F (x+ δv)]− E

v∼BA0
1 (0)

[F (y + δv)]

= E
v∼BA0

1 (0)
[F (x+ δv)− F (y + δv)]

≤ E
v∼BA0

1 (0)
[0] = 0,

for all x ≤ y. Hence F̃ is also monotone.

Lemma 4 (Lemma 10 of [27]). Let D ⊆ Rd such that aff(D) = Rd. Assume F : D → R is
a G-Lipschitz continuous function and let F̃ be its δ-smoothed version. For any z ∈ D such that
Bδ(z) ⊆ D, we have

Eu∼Sd−1

[︃
d

2δ
(F (z+ δu)− F (z− δu))u

]︃
= ∇F̃ (z),

Eu∼Sd−1

[︃
∥ d
2δ

(F (z+ δu)− F (z− δu))u−∇F̃ (z)∥2
]︃
≤ CdG2,

where C is a constant.

When the convex feasible region K lies in an affine subspace, we cannot employ the standard spher-
ical sampling method. We extend Lemma 4 to that case.
Lemma 5. LetD ⊆ Rd andA := aff(D). Also letA0 be the translation ofA that contains 0 and let
k = dim(A). Assume F : D → R is a G-Lipschitz continuous function and let F̃ be its δ-smoothed
version. For any z ∈ D such that BA

δ (z) ⊆ D, we have

Eu∼Sd−1∩A0

[︃
k

2δ
(F (z+ δu)− F (z− δu))u

]︃
= ∇F̃ (z),

Eu∼Sd−1∩A0

[︃
∥ k
2δ

(F (z+ δu)− F (z− δu))u−∇F̃ (z)∥2
]︃
≤ CkG2,

where C is the constant in Lemma 4.
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Proof. First consider the case where A = Rk× (0, · · · , 0). In this case, we restrict ourselves to first
k coordinates and see that the problem reduces to Lemma 4.

For the general case, let O be an orthonormal transformation that maps Rk × (0, · · · , 0) into A0.
Now define D′ = O−1(D − z) and F ′ : D′ → R : x ↦→ F (O(x) + z). Let F̃

′
be the δ-smoothed

version of F ′. Note that O
(︂
∇F̃ ′

(0)
)︂
= ∇F̃ (z). On the other hand, we have

aff(D′) = O−1(A− z) = O−1(A0) = Rk × (0, · · · , 0).

Therefore

Eu∼Sd−1∩(Rk×(0,··· ,0))

[︃
k

2δ
(F ′(δu)− F ′(−δu))u

]︃
= ∇F̃ ′

(0),

and

Eu∼Sd−1∩(Rk×(0,··· ,0)

[︃
∥ k
2δ

(F ′(δu)− F ′(−δu))u−∇F̃ ′
(0)∥2

]︃
≤ CkG2.

Hence, if we set v = O−1(u), we have

Eu∼Sd−1∩A0

[︃
k

2δ
(F (z+ δu)− F (z− δu))u

]︃
= Ev∼Sd−1∩(Rk×(0,··· ,0))

[︃
k

2δ
(F ′(δv)− F ′(−δv))O(v)

]︃
= O

(︄
Ev∼Sd−1∩(Rk×(0,··· ,0))

[︃
k

2δ
(F ′(δv)− F ′(−δv))v

]︃)︄
= O

(︂
∇F̃ ′

(0)
)︂

= ∇F̃ (z).

Similarly

Eu∼Sd−1∩A0

[︃
∥ k
2δ

(F (z+ δu)− F (z− δu))u−∇F̃ (z)∥2
]︃

= Ev∼Sd−1∩(Rk×(0,··· ,0))

[︃
∥ k
2δ

(F ′(δv)− F ′(−δv))O(v)−O
(︂
∇F̃ ′

(0)
)︂
∥2
]︃

= Ev∼Sd−1∩(Rk×(0,··· ,0))

[︄
∥O
(︃
k

2δ
(F ′(δv)− F ′(−δv))v −∇F̃ ′

(0)

)︃
∥2
]︄

= Ev∼Sd−1∩(Rk×(0,··· ,0))

[︃
∥ k
2δ

(F ′(δv)− F ′(−δv))v −∇F̃ ′
(0)∥2

]︃
≤ CkG2.

Remark 4. Note that the same argument may be applied to obtain the one-point gradient estimator:

Eu∼Sd−1∩A0

[︃
k

δ
F (z+ δu)u

]︃
= ∇F̃ (z).

G Construction of Kδ

Lemma 6. Let K ⊆ [0, 1]d be a convex set containing the origin. Then for any choice of c and r
with Baff(K)

r (c) ⊆ K, we have

argmin
z∈Kδ

∥z∥∞ =
δ

r
c and min

z∈Kδ

∥z∥∞ ≤
δ

r
.

Proof. The claim follows immediately from the definition and the fact that ∥c∥∞ ≤ 1.
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Lemma 7. Let K be an arbitrary convex set, D := Diam(K) and δ′ := δD
r . We have

Baff(K)
δ (Kδ) ⊆ K ⊆ Baff(K)

δ′ (Kδ).

Proof. Define ψ : K → Kδ := x ↦→ (1− δ
r )x+ δ

rc. Let y ∈ Kδ and x = ψ−1(y). Then

Baff(K)
δ (y) = Baff(K)

δ (ψ(x)) = Baff(K)
δ ((1− δ

r
)x+

δ

r
c)

= (1− δ

r
)x+ Baff(K)

δ (
δ

r
c) = (1− δ

r
)x+

δ

r
Baff(K)
r (c) ⊆ K,

where the last inclusion follows from the fact that K is convex and contains both x and Baff(K)
r (c).

On the other hand, for any x ∈ K ⊆ aff(K), we have

∥ψ(x)− x∥ = δ

r
∥x− c∥ < δ

r
D = δ′.

Therefore
x ∈ Bδ′(ψ(x)) ∩ aff(K) = Baff(K)

δ′ (ψ(x)) ⊆ Baff(K)
δ′ (Kδ).

Choice of c and r While the results hold for any choice of c ∈ K and r with Baff
r (c) ⊆ K, as can

be seen in Theorem 2, the approximation errors depends linearly on 1/r. Therefore, it is natural to
choose the point c that maximizes the value of r, the Chebyshev center of K.

Analytic Constraint Model — Polytope When the feasible region K is characterized by a set of
q linear constraints Ax ≤ b with a known coefficient matrix A ∈ Rq×d and vector b ∈ Rq , thus K
is a polytope, by the linearity of the transformation (7), the shrunken feasible region Kδ is similarly
characterized by a (translated) set of q linear constraints Ax ≤ (1− δ

r )b+ δ
rAc.

H Variance reduction via momentum

In order to prove main regret bounds, we need the following variance reduction lemma, which is
crucial in characterizing how much the variance of the gradient estimator can be reduced by using
momentum. This lemma appears in [6] and it is a slight improvement of Lemma 2 in [22] and
Lemma 5 in [23].
Lemma 8 (Theorem 3 of [6]). Let {an}Nn=0 be a sequence of points in Rd such that ∥an−an−1∥ ≤
G0/(n+ s) for all 1 ≤ n ≤ N with fixed constants G0 ≥ 0 and s ≥ 3. Let {ãn}Nn=1 be a sequence
of random variables such that E[ãn|Fn−1] = an and E[∥ãn − an∥2|Fn−1] ≤ σ2 for every n ≥ 0,
whereFn−1 is the σ-field generated by {ãi}ni=1 andF0 = ∅. Let {dn}Nn=0 be a sequence of random
variables where d0 is fixed and subsequent dn are obtained by the recurrence

dn = (1− ρn)dn−1 + ρnãn (17)

with ρn = 2
(n+s)2/3

. Then, we have

E[∥an − dn∥2] ≤
Q

(n+ s+ 1)2/3
, (18)

where Q := max{∥a0 − d0∥2(s+ 1)2/3, 4σ2 + 3G2
0/2}.

We now analyze the variance of our gradient estimator, which, in the case when we only have access
zeroth-order information, uses batched spherical sampling and momentum for gradient estimation.
Calculations similar to the proof of the following Lemma, in the value oracle case, appear in the
proof of Theorem 2 in [8]. The main difference is that here we consider a more general smoothing
trick and therefore we estimate the gradient along the affine hull of K.
Lemma 9. Under the assumptions of Theorem 1, in Algorithm 2, we have

E
[︂
∥∇(F̃ |L)(zn)− ḡn∥2

]︂
≤ Q

(n+ 4)2/3
,
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for all 1 ≤ n ≤ N where L = aff(K),

Q =

⎧⎪⎪⎨⎪⎪⎩
0 det. grad. oracle,

max{42/3G2, 6L2D2 +
4σ2

1

B } stoch. grad. oracle with variance σ2
1 > 0,

max{42/3G2, 6L2D2 +
4CkG2+2k2σ2

0/δ
2

B } value oracle with variance σ2
0 ≥ 0,

C is a constant and D = diam(K).

Remark 5. As we will see in the proof of Theorem 1, except for the case with deterministic gradient
oracle, the dominating term in the approximation error is a constant multiple of

1

N

N∑︂
n=1

E
[︂
∥∇(F̃ |L)(zn)− ḡn∥2

]︂
.

Therefore, any improvement in Lemma 9 will result in direct improvement of the approximation
error.

Proof. If we have access to a deterministic gradient oracle, then the claim is trivial. Let F1 := ∅
and Fn be the σ-field generated by {ḡ1, . . . , ḡn−1} and let

σ2 =

⎧⎨⎩σ2
1

B stoch. grad. oracle with variance σ2
1 > 0,

CkG2+k2σ2
0/2δ

2

B value oracle with variance σ2
0 ≥ 0.

Let L0 denote the linear space L − x for some x ∈ L. If we have access to a stochastic gradient
oracle, then gn is computed by taking the average of B gradient samples of PL0

(Ĝ(z)), i.e. the
projection of Ĝ(z) onto the linear space L0. Since PL0

is a 1-Lipscitz linear map, we see that

E[PL0
(Ĝ(z))] = PL0

(∇F̃ (z)) = ∇(F̃ |L)(z)

and

E
[︃⃦⃦⃦
PL0

(Ĝ(z))−∇(F̃ |L)(z)
⃦⃦⃦2]︃

= E
[︃⃦⃦⃦
PL0

(Ĝ(z))− PL0
(∇F̃ (z))

⃦⃦⃦2]︃
≤ E

[︃⃦⃦⃦
Ĝ(z)−∇F̃ (z)

⃦⃦⃦2]︃
≤ σ2

1 .

Note that, in cases where we have access to a gradient oracle, we have δ = 0 and F̃ = F . Therefore

E
[︁
gn|Fn−1

]︁
= ∇(F̃ |L)(zn) and E

[︂
∥gn −∇(F̃ |L)(zn)∥2|Fn−1

]︂
≤ σ2

1

B
= σ2.

Next we assume that we have access to a value oracle. By the unbiasedness of F̂ and Lemma 5, we
have

E
[︃
k

2δ
(F̂ (y+

n,i)− F̂ (y
−
n,i))un,i|Fn−1

]︃
=E

[︄
E
[︃
k

2δ
(F̂ (y+

n,i)− F̂ (y
−
n,i))un,i|Fn−1,un,i

]︃
|Fn−1

]︄

=E
[︃
k

2δ
(F (y+

n,i)− F (y
−
n,i))un,i|Fn−1

]︃
=∇(F̃ |L)(zn),
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and

E

[︄⃦⃦⃦⃦
k

2δ
(F̂ (y+

n,i)− F̂ (y
−
n,i))un,i −∇(F̃ |L)(zn)

⃦⃦⃦⃦2
|Fn−1

]︄

= E

⎡⎣E[︄⃦⃦⃦⃦ k
2δ

(F (y+
n,i)− F (y

−
n,i))un,i −∇(F̃ |L)(zn)

+
k

2δ
(F̂ (y+

n,i)− F (y
+
n,i))un,i

− k

2δ
(F̂ (y−

n,i)− F (y
−
n,i))un,i

⃦⃦⃦⃦2
|Fn−1,un,i

]︄
|Fn−1

⎤⎦
≤ E

⎡⎣E[︄⃦⃦⃦⃦ k
2δ

(F (y+
n,i)− F (y

−
n,i))un,i −∇(F̃ |L)(zn)

⃦⃦⃦⃦2
|Fn−1,un,i

]︄
|Fn−1

⎤⎦
+ E

⎡⎣E[︄⃦⃦⃦⃦ k
2δ

(F̂ (y+
n,i)− F (y

+
n,i))un,i

⃦⃦⃦⃦2
|Fn−1,un,i

]︄
|Fn−1

⎤⎦
+ E

⎡⎣E[︄⃦⃦⃦⃦ k
2δ

(F̂ (y−
n,i)− F (y

−
n,i))un,i

⃦⃦⃦⃦2
|Fn−1,un,i

]︄
|Fn−1

⎤⎦
≤ E

[︄⃦⃦⃦⃦
k

2δ
(F (y+

n,i)− F (y
−
n,i))un,i −∇(F̃ |L)(zn)

⃦⃦⃦⃦2
|Fn−1

]︄

+
k2

4δ2
E
[︃
E
[︂
|F̂ (y+

n,i)− F (y
+
n,i)|

2 · ∥un,i∥2|Fn−1,un,i

]︂
|Fn−1

]︃
+

k2

4δ2
E
[︃
E
[︂
|F̂ (y−

n,i)− F (y
−
n,i)|

2 · ∥un,i∥2|Fn−1,un,i

]︂
|Fn−1

]︃
≤ CkG2 +

k2

4δ2
σ2
0 +

k2

4δ2
σ2
0

= CkG2 +
k2

2δ2
σ2
0 .

So we have

E
[︁
gn|Fn−1

]︁
= E

⎡⎣ 1

B

B∑︂
i=1

k

2δ
(F̂ (y+

n,i)− F̂ (y
−
n,i))un,i|Fn−1

⎤⎦ = ∇(F̃ |L)(zn),

and

E
[︃⃦⃦⃦

gn −∇(F̃ |L)(zn)
⃦⃦⃦2
|Fn−1

]︃
=

1

B2

B∑︂
i=1

E

[︄⃦⃦⃦⃦
k

2δ
(F̂ (y+

n,i)− F̂ (y
−
n,i))un,i −∇(F̃ |L)(zn)

⃦⃦⃦⃦2
|Fn−1

]︄

≤
CkG2 + k2

2δ2σ
2
0

B
= σ2.

Using Lemma 8 with dn = ḡn, ãn = gn,an = ∇(F̃ |L)(zn) for all n ≥ 1, a0 = ∇(F̃ |L)(z1),
G0 = 2LD and s = 3, we have

E[∥∇(F̃ |L)(zn)− ḡn∥2] ≤
Q′

(n+ 4)2/3
, (19)

where Q′ = max{∥∇(F̃ |L)(z1)∥242/3, 6L2D2 + 4σ2}. Note that by Lemma 3, we have
∥∇(F̃ |L)(x)∥ ≤ G, thus we have Q′ ≤ Q.
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I Proof of Theorem 1 for monotone maps over convex sets containing zero

Proof. By the definition of zn, we have zn = z1 +
∑︁n−1

i=1
vi

N . Therefore zn − z1 is a convex
combination of vn’s and 0 which belong to Kδ − z1 and therefore zn − z1 ∈ Kδ − z1. Hence we
have zn ∈ Kδ ⊆ K for all 1 ≤ n ≤ N + 1.

Let L := aff(K). According to Lemma 3, the function F̃ is L-smooth. So we have

F̃ (zn+1)− F̃ (zn) ≥ ⟨∇(F̃ |L)(zn), zn+1 − zn⟩ −
L

2
∥zn+1 − zn∥2

= ε⟨∇(F̃ |L)(zn),vn⟩ −
ε2L

2
∥vn∥2

≥ ε⟨∇(F̃ |L)(zn),vn⟩ −
ε2L

2
D2

= ε
(︂
⟨ḡn,vn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩

)︂
− ε2LD2

2
.

(20)

Let z∗δ := argmaxz∈Kδ−z1
F̃ (z). We have z∗δ ∈ Kδ − z1, which implies that ⟨ḡn,vn⟩ ≥ ⟨ḡn, z

∗
δ⟩.

Therefore

⟨ḡn,vn⟩ ≥ ⟨ḡn, z
∗
δ⟩ = ⟨∇(F̃ |L)(zn), z∗δ⟩+ ⟨ḡn −∇(F̃ |L)(zn), z∗δ⟩

Hence we obtain

⟨ḡn,vn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩ ≥ ⟨∇(F̃ |L)(zn), z∗δ⟩ − ⟨∇(F̃ |L)(zn)− ḡn, z
∗
δ − vn⟩

Using the Cauchy-Schwartz inequality, we have

⟨∇(F̃ |L)(zn)− ḡn), z
∗
δ − vn⟩ ≤ ∥∇(F̃ |L)(zn)− ḡn∥∥z∗δ − vn∥ ≤ D∥∇(F̃ |L)(zn)− ḡn∥

Therefore

⟨ḡn,vn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩ ≥ ⟨∇(F̃ |L)(zn), z∗δ⟩ −D∥∇(F̃ |L)(zn)− ḡn∥.

Plugging this into 20, we see that

F̃ (zn+1)− F̃ (zn) ≥ ε⟨∇(F̃ |L)(zn), z∗δ⟩ − εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
. (21)

On the other hand, we have z∗δ ≥ (z∗δ − zn) ∨ 0. Since F is monotone continuous DR-submodular,
by Lemma 3, so is F̃ . Moreover monotonicity of F̃ implies that∇(F̃ |L) is non-negative in positive
directions. Therefore we have

⟨∇(F̃ |L)(zn), z∗δ⟩ ≥ ⟨∇(F̃ |L)(zn), (z∗δ − zn) ∨ 0⟩ (monotonicity)

≥ F̃ (zn + ((z∗δ − zn) ∨ 0))− F̃ (zn) (DR-submodularity)

= F̃ (z∗δ ∨ zn)− F̃ (zn)
≥ F̃ (z∗δ)− F̃ (zn)

After plugging this into (21) and re-arranging terms, we obtain

hn+1 ≤ (1− ε)hn + εD∥∇(F̃ |L)(zn)− ḡn∥+
ε2LD2

2

where hn := F̃ (z∗δ)− F̃ (zn). After taking the expectation and using Lemma 9, we see that

E(hn+1) ≤ (1− ε)E(hn) +
εDQ1/2

(n+ 4)1/3
+
ε2LD2

2
.

Using the above inequality recursively and 1− ε ≤ 1, we have

E[hN+1] ≤ (1− ε)NE[h1] +
N∑︂

n=1

εDQ1/2

(n+ 4)1/3
+
Nε2LD2

2
.
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Note that we have ε = 1/N . Using the fact that (1− 1
N )N ≤ e−1 and

N∑︂
n=1

DQ1/2

(n+ 4)1/3
≤ DQ1/2

∫︂ N

0

dx

(x+ 4)1/3
≤ DQ1/2

(︃
3

2
(N + 4)2/3

)︃
≤ DQ1/2

(︃
3

2
(2N)2/3

)︃
≤ 3DQ1/2N2/3,

(22)

we see that

E[hN+1] ≤ e−1E[h1] +
3DQ1/2

N1/3
+
LD2

2N
.

By re-arranging the terms and using the fact that F̃ is non-negative, we conclude

(1− e−1)F̃ (z∗δ)− E[F̃ (zN+1)] ≤ −e−1F̃ (z1) +
3DQ1/2

N1/3
+
LD2

2N

≤ 3DQ1/2

N1/3
+
LD2

2N
.

(23)

According to Lemma 3, we have F̃ (zN+1) ≤ F (zN+1) + δG. Moreover, using Lemma 7, we see
that z∗ ∈ Bδ′(Kδ) where δ′ = δD/r. Therefore, there is a point y∗ ∈ Kδ such that ∥y∗− z∗∥ ≤ δ′.

F̃ (z∗δ) ≥ F̃ (y∗ − z1) ≥ F̃ (y∗)−G∥z1∥

≥ F (y∗)− (∥z1∥+ δ)G ≥ F (z∗)− (∥z1∥+ δ +
δD

r
)G.

According to Lemma 6, we have ∥z1∥ ≤
√
d∥z1∥∞ ≤ δ

√
d/r.

F̃ (z∗δ) ≥ F (z∗)− (1 +

√
d+D

r
)δG. (24)

After plugging these into 23, we see that

(1− e−1)F (z∗)− E[F (zN+1)]

≤ 3DQ1/2

N1/3
+
LD2

2N
+ δG(2 +

√
d+D

r
).

J Proof of Theorem 1 for non-monotone maps over downward-closed
convex sets

Proof. Similar to Appendix I, we see that zn ∈ Kδ for all 1 ≤ n ≤ N + 1 and

F̃ (zn+1)− F̃ (zn) ≥ ε
(︂
⟨ḡn,vn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩

)︂
− ε2LD2

2
. (25)

Let z∗δ := argmaxz∈Kδ−z1
F̃ (z). We have z∗δ ∨zn−zn = (z∗δ −zn)∨0 ≤ z∗δ . Therefore, since Kδ

is downward-closed, we have z∗δ ∨ zn − zn ∈ Kδ − z1. On the other hand, z∗δ ∨ zn − zn ≤ 1− zn.
Therefore, we have ⟨ḡn,vn⟩ ≥ ⟨ḡn, z

∗
δ ∨ zn − zn⟩, which implies that

⟨ḡn, z
∗
δ ∨ zn − zn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩
= ⟨∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩+ ⟨ḡn −∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩

+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩
= ⟨∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩ − ⟨∇(F̃ |L)(zn)− ḡn,−vn + z∗δ ∨ zn − zn⟩

Using the Cauchy-Shwarz inequality, we see that

⟨∇(F̃ |L)(zn)− ḡn,−vn + z∗δ ∨ zn − zn⟩ ≤ ∥∇(F̃ |L)(zn)− ḡn∥∥(z∗δ ∨ zn − zn)− vn∥
≤ D∥∇(F̃ |L)(zn)− ḡn∥.
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where the last inequality follows from the fact that both vn and z∗δ∨zn−zn belong toKδ . Therefore

⟨ḡn, z
∗
δ ∨ zn − zn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn⟩

≥ ⟨∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩ −D∥∇(F̃ |L)(zn)− ḡn∥.

Plugging this into Equation (25), we get

F̃ (zn+1)− F̃ (zn)

≥ ε⟨∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩ − εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
.

(26)

Next we show that

1− ∥zn∥∞ ≥ (1− ε)n−1(1− δ

r
), (27)

for all 1 ≤ n ≤ N + 1. We use induction on n to show that for each coordinate 1 ≤ i ≤ d, we have
1− [zn]i ≥ (1− ε)n−1. For n = 1, the claim follows from Lemma 6. Assuming that the inequality
is true for n, using the fact that vn ≤ 1− zn, we have

1− [zn+1]i = 1− [zn]i − ε[vn]i ≥ 1− [zn]i − ε(1− [zn]i)

= (1− ε)(1− [zn]i) ≥ (1− ε)n(1− δ

r
),

which completes the proof by induction.

Since F̃ is DR-submodular, it is concave along non-negative directions. Therefore, using Lemma 1
and Equation (27), we have

⟨∇(F̃ |L)(zn), z∗δ ∨ zn − zn⟩ ≥ F̃ (z∗δ ∨ zn)− F̃ (zn)
≥ (1− ∥zn∥∞)F̃ (z∗δ)− F̃ (zn)

≥ (1− ε)n−1(1− δ

r
)F̃ (z∗δ)− F̃ (zn).

Plugging this into Equation (26), we get

F̃ (zn+1)− F̃ (zn)

≥ ε
(︃
(1− ε)n−1(1− δ

r
)F̃ (z∗δ)− F̃ (zn)

)︃
− εD∥∇(F̃ |L)(zn)− ḡn∥ −

ε2LD2

2
.

Taking expectations of both sides and using Lemma 9, we see that

E(F̃ (zn+1)) ≥ (1− ε)E(F̃ (zn)) + ε(1− ε)n−1(1− δ

r
)F̃ (z∗δ)−

εDQ1/2

(n+ 4)1/3
− ε2LD2

2
.

Using this inequality recursively and Equation (22), we get

E(F̃ (zN+1)) ≥ (1− ε)NE(F̃ (z1)) +Nε(1− ε)N−1(1− δ

r
)F̃ (z∗δ)

−
N∑︂

n=1

εDQ1/2

(n+ 4)1/3
− Nε2LD2

2

≥ (1− ε)NE(F̃ (z1)) +Nε(1− ε)N−1(1− δ

r
)F̃ (z∗δ)

− 3εDQ1/2N2/3 − Nε2LD2

2
.

Since δ < r
2 and ε = 1/N , we have

(1− ε)N = (1− 1

N
)(1− ε)N−1 ≥ 1

2
(1− ε)N−1 ≥ δ

r
(1− ε)N−1 ≥ δ

r
(1− ε)N−1.
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Since F̃ is non-negative and G-Lipschitz, this implies that

E(F̃ (zN+1)) ≥
δ

r
(1− ε)N−1E(F̃ (z1)) + (1− ε)N−1(1− δ

r
)F̃ (z∗δ)

− 3εDQ1/2N2/3 − Nε2LD2

2

= (1− ε)N−1F̃ (z∗δ) +
δ

r
(1− ε)N−1(E(F̃ (z1))− F̃ (z∗δ))

− 3εDQ1/2N2/3 − Nε2LD2

2

≥ (1− ε)N−1F̃ (z∗δ)−
δ

r
(1− ε)N−1GD − 3εDQ1/2N2/3 − Nε2LD2

2
.

After setting ε = 1/N and using (1− 1/N)N−1 ≥ e−1, we see that

e−1F̃ (z∗δ)− E(F̃ (zN+1)) ≤
3DQ1/2

N1/3
+
LD2

2N
+
δ

r
(1− ε)N−1GD

≤ 3DQ1/2

N1/3
+
LD2

2N
+
δ

r
GD.

Using the argument presented in Appendix I, i.e. Lemma 3 and Equation 24, we conclude that

e−1F (z∗)− E[F (zN+1)] ≤
3DQ1/2

N1/3
+
LD2

2N
+ δG(2 +

√
d+ 2D

r
).

K Proof of Theorem 1 for monotone maps over general convex sets

Proof. Using the fact that F̃ is L-smooth, we have

F̃ (zn+1)− F̃ (zn) ≥ ⟨∇(F̃ |L)(zn), zn+1 − zn⟩ −
L

2
∥zn+1 − zn∥2

= ε⟨∇(F̃ |L)(zn),vn − zn⟩ −
ε2L

2
∥vn − zn∥2

≥ ε⟨∇(F̃ |L)(zn),vn − zn⟩ −
ε2LD2

2

= ε
(︂
⟨ḡn,vn − zn⟩+ ⟨∇(F̃ |L)(zn) + ḡn,vn − zn⟩

)︂
− ε2LD2

2
.

(28)

Let z∗δ := argmaxz∈Kδ
F̃ (z). Using the fact that ⟨ḡn,vn⟩ ≥ ⟨ḡn, z

∗
δ⟩ , we have

⟨ḡn,vn − zn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn − zn⟩
≥ ⟨ḡn, z

∗
δ − zn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn − zn⟩

= ⟨∇(F̃ |L)(zn), z∗δ − zn⟩ − ⟨∇(F̃ |L)(zn)− ḡn, z
∗
δ − vn⟩.

Using the Cauchy-Schwarz inequality, we see that

⟨∇(F̃ |L)(zn)− ḡn, z
∗
δ − vn⟩ ≤ ∥∇(F̃ |L)(zn)− ḡn∥∥z∗δ − vn∥ ≤ D∥∇(F̃ |L)(zn)− ḡn∥.

Therefore

⟨ḡn,vn − zn⟩+ ⟨∇(F̃ |L)(zn)− ḡn,vn − zn⟩
≥ ⟨∇(F̃ |L)(zn), z∗δ − zn⟩ −D∥∇(F̃ |L)(zn)− ḡn∥.

Plugging this into 28, we get

F̃ (zn+1)− F̃ (zn) ≥ ε⟨∇(F̃ |L)(zn), z∗δ − zn⟩ − εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
. (29)
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Using Lemma 2 and the fact that F̃ is monotone, we see that

⟨∇(F̃ |L)(zn), z∗δ − zn⟩ ≥ F̃ (z∗δ ∨ zn) + F̃ (z∗δ ∧ zn)− 2F̃ (zn)

≥ F̃ (z∗δ) + F̃ (z∗δ ∧ zn)− 2F̃ (zn)

≥ F̃ (z∗δ)− 2F̃ (zn).

After plugging this into (29), we get

F̃ (zn+1)− F̃ (zn) ≥ εF̃ (z∗δ)− 2εF̃ (zn)− εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
.

After taking the expectation, using Lemma 9 and re-arranging the terms, we see that

E[F̃ (zn+1)] ≥ (1− 2ε)E[F̃ (zn)] + εF̃ (z∗δ)−
εDQ1/2

(n+ 4)1/3
− ε2LD2

2
.

Using this inequality recursively together with Equation (22) and the fact that F̃ is non-negative, we
get

E[F̃ (zN+1)] ≥ (1− 2ε)NE[F̃ (z1)] + εF̃ (z∗δ)

N∑︂
n=1

(1− 2ε)N−n

−
N∑︂

n=1

εDQ1/2

(n+ 4)1/3
− Nε2LD2

2
.

≥ 1

2
(1− 2ε)NE[F̃ (z1)] + εF̃ (z∗δ)

N∑︂
n=1

(1− 2ε)N−n

− 3εDQ1/2N2/3 − Nε2LD2

2

=
1

2
(1− 2ε)NE[F̃ (z1)] +

1

2
(1− (1− 2ε)N )E[F̃ (z∗δ)]

− 3εDQ1/2N2/3 − Nε2LD2

2

=
1

2
F̃ (z∗δ)−

1

2
(1− 2ε)N (F̃ (z∗δ)− E[F̃ (z1)])

− 3εDQ1/2N2/3 − Nε2LD2

2

≥ 1

2
F̃ (z∗δ)−

1

2
(1− 2ε)NDG− 3εDQ1/2N2/3 − Nε2LD2

2
.

Note that (1− log(N)/N)N ≤ e− log(N) = 1/N . Therefore, since ε = log(N)/2N , we have

E[F̃ (zN+1)] ≥
1

2
F̃ (z∗δ)−

DG

2N
− 3DQ1/2 log(N)

2N1/3
− LD2 log(N)2

8N
. (30)

According to Lemma 3, we have F̃ (zN+1) ≤ F (zN+1) + δG. Moreover, using Lemma 7, we see
that z∗ ∈ Bδ′(Kδ) where δ′ = δD/r. Therefore, there is a point y∗ ∈ Kδ such that ∥y∗− z∗∥ ≤ δ′.

F̃ (z∗δ) ≥ F̃ (y∗) ≥ F̃ (y∗) ≥ F (y∗)− δG ≥ F (z∗)− (δ +
δD

r
)G. (31)

After plugging these into (30), we see that

1

2
F̃ (z∗)− E[F̃ (zN+1)]

≤ 3DQ1/2 log(N)

2N1/3
+

4DG+ LD2 log(N)2

8N
+ δG(2 +

D

r
).

which completes the proof.
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L Proof of Theorem 1 for non-monotone maps over general convex sets

Proof. First we show that

1− ∥zn∥∞ ≥ (1− ε)n−1(1− ∥z1∥∞), (32)

for all 1 ≤ n ≤ N + 1. We use induction on n to show that for each coordinate 1 ≤ i ≤ d, we have
1− [zn]i ≥ (1− ε)n−1(1− [z1]i). The claim is obvious for n = 1. Assuming that the inequality is
true for n, we have

1− [zn+1]i = 1− (1− ε)[zn]i − ε[vn]i ≥ 1− (1− ε)[zn]i − ε
= (1− ε)(1− [zn]i) ≥ (1− ε)n(1− [z1]i),

which completes the proof by induction.

Let z∗δ := argmaxz∈Kδ
F̃ (z). Using the same arguments as in Appendix K, we see that

F̃ (zn+1)− F̃ (zn) ≥ ε⟨∇(F̃ |L)(zn), z∗δ − zn⟩ − εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
.

Using Lemmas 2 and 1 and Equation (32), we have

⟨∇(F̃ |L)(zn), z∗δ − zn⟩ ≥ F̃ (z∗δ ∨ zn) + F̃ (z∗δ ∧ zn)− 2F̃ (zn)

≥ (1− ∥zn∥∞)F̃ (z∗δ) + F̃ (z∗δ ∧ zn)− 2F̃ (zn)

≥ (1− ε)n−1(1− ∥z1∥∞)F̃ (z∗δ) + F̃ (z∗δ ∧ zn)− 2F̃ (zn)

≥ (1− ε)n−1(1− ∥z1∥∞)F̃ (z∗δ)− 2F̃ (zn).

Therefore

F̃ (zn+1)− F̃ (zn) ≥ ε(1− ε)n−1(1− ∥z1∥∞)F̃ (z∗δ)− 2εF̃ (zn)

−εD∥∇(F̃ |L)(zn)− ḡn∥ −
ε2LD2

2
.

After taking the expectation, using Lemma 9 and re-arranging the terms, we see that

E[F̃ (zn+1)] ≥ (1− 2ε)E[F̃ (zn)] + ε(1− ε)n−1(1− ∥z1∥∞)F̃ (z∗δ)

− εDQ1/2

(n+ 4)1/3
− ε2LD2

2
. (33)

Using this inequality recursively together with Equation (22), we see that

E[F̃ (zN+1)] ≥ ε(1− ∥z1∥∞)F̃ (z∗δ)

N∑︂
n=1

(1− ε)n−1(1− 2ε)N−n

+ (1− 2ε)NE[F̃ (z1)]−
N∑︂

n=1

εDQ1/2

(n+ 4)1/3
− Nε2LD2

2
.

(34)

Elementary calculations show that (1 − c
N )N−1 ≥ e−c for 0 ≤ c ≤ 2 and N ≥ 4. 1 Therefore,

since ε = log(2)/N , we have

(1− 2ε)N ≥ e−2 log(2)(1− 2ε) =
1

4

(︃
1− 2 log(2)

N

)︃
≥ 1

4N
. (35)

On the other hand

ε

N∑︂
n=1

(1− 2ε)N−n(1− ε)n−1 = ε(1− 2ε)N−1
N∑︂

n=1

(︃
1− ε
1− 2ε

)︃n−1

≥ ε(1− 2ε)N−1
N∑︂

n=1

(1 + ε)n−1

= (1− 2ε)N−1((1 + ε)N − 1).

1For 0 ≤ x ≤ 1
2

, we have log(1 − x) ≥ −x − x2

2
− x3. Therefore, for 0 ≤ c ≤ 2 and N ≥ 4, we have

log(1− c
N
) ≥ − c

N
− c2

2N2 − c3

N3 ≥ − c
N−1

.
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We have (1 + c
N )N ≥ ec(1− c2

2N ) for c ≥ 0 and N ≥ 1. 2 Therefore

ε

N∑︂
n=1

(1− 2ε)N−n(1− ε)n−1 = (1− 2ε)N−1
(︂
(1 + ε)

N − 1
)︂

≥ e−2 log(2)

(︄(︃
1 +

log(2)

N

)︃N

− 1

)︄

≥ e−2 log(2)

⎛⎝elog 2

(︄
1− log(2)2

2N

)︄
− 1

⎞⎠
=

1

4

(︄
1− log(2)2

N

)︄

≥ 1

4
− 1

4N
.

Plugging this and 35 into 34 and using the fact that F̃ (z1) is non-negative, we get

E[F̃ (zN+1)] ≥
(︃
1

4
− 1

4N

)︃
(1− ∥z1∥∞)F̃ (z∗δ) +

1

4N
E[F̃ (z1)]−

3DQ1/2

N1/3
− LD2

2N

≥ 1

4
(1− ∥z1∥∞)F̃ (z∗δ) +

1

4N

(︂
E[F̃ (z1)]− F̃ (z∗δ)

)︂
− 3DQ1/2

N1/3
− LD2

2N

≥ 1

4
(1− ∥z1∥∞)F̃ (z∗δ)−

3DQ1/2

N1/3
− DG+ 2LD2

4N
.

Using the same argument as in Appendix K, we obtain

1

4
(1− ∥z1∥∞)F (z∗)− E[F (zN+1)] ≤

3DQ1/2

N1/3
+
DG+ 2LD2

4N
+ δG(2 +

D

r
).

M Proof of Theorem 2

Proof. Let T = O(BN) denote the number of evaluations3 and let Eα := αF (z∗) − E[F (zN+1)]
denote the α-approximation error. We prove Cases 1-4 separately. Note that F being non-monotone
or 0 ∈ K correspond to cases (A), (B) and (D) of Theorem 1 where log(N) does not appear in the
approximation error bound, which is why Õ can be replaced with O.

Case 1 (deterministic gradient oracle): In this case, we have Q = δ = 0. According to Theo-
rem 1, in cases (A), (B) and (D), the approximation error is bounded by DG+2LD2

4N = O(N−1), and
thus we choose T = N = Θ(1/ϵ) to get Eα = O(ϵ). Similarly, in case (C), we have

Eα ≤
4DG+ LD2 log(N)2

8N
= O(N−1 log(N)2).

We choose T = N = Θ(log2(ϵ)/ϵ) to bound α-approximation error by O(ϵ).

Case 2 (stochastic gradient oracle): In this case, we have Q = Θ(1) and δ = 0. According to
Theorem 1, in cases (A), (B) and (D), the approximation error is bounded by

3DQ1/2

N1/3
+
DG+ 2LD2

4N
= O(N−1/3 +N−1) = O(N−1/3),

so we choose N = Θ(1/ϵ3), B = 1 and T = Θ(1/ϵ3) to get Eα = O(ϵ). Similarly, in case (C), we
have

Eα ≤
3DQ1/2 log(N)

2N1/3
+

4DG+ LD2 log(N)2

8N
= O(N−1/3 log(N) +N−1 log(N)2)

2For x ≥ 0, we have log(1 + x) ≥ x − x2

2
and −x ≥ log(1 − x). Therefore N log(1 + c

N
) ≥

N( c
N

− c2

2N2 ) = c− c2

2N
≥ c+ log(1− c2

2N
).

3We have T = BN when we have access to a gradient oracle and T = 2BN otherwise.
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Since Eα ≤ O(N−1/3 log(N)2), we choose N = Θ(log6(ϵ)/ϵ3), B = 1 and T = Θ(log6(ϵ)/ϵ3)
to bound α-approximation error by O(ϵ).

Case 3 (deterministic value oracle): In this case, we have Q = Θ(1) and δ ̸= 0. According to
Theorem 1, in cases (A), (B) and (D), the approximation error is bounded by

3DQ1/2

N1/3
+
DG+ 2LD2

4N
+O(δ) = O(N−1/3 + δ),

so we choose δ = Θ(ϵ), N = Θ(1/ϵ3), B = 1 and T = Θ(1/ϵ3) to get Eα = O(ϵ). Similarly, in
case (C), we have

Eα ≤
3DQ1/2 log(N)

2N1/3
+

4DG+ LD2 log(N)2

8N
+O(δ) = O(N−1/3 log(N)2 + δ).

We choose δ = Θ(ϵ), N = Θ(log6(ϵ)/ϵ3), B = 1 and T = Θ(log6(ϵ)/ϵ3) to bound α-
approximation error by O(ϵ).

Case 4 (stochastic value oracle): In this case, we haveQ = O(1)+O( 1
δ2B ) and δ ̸= 0. According

to Theorem 1, in cases (A), (B) and (D), the approximation error is bounded by

3DQ1/2

N1/3
+
DG+ 2LD2

4N
+O(δ) = O(Q1/2N−1/3 +N−1 + δ)

= O(N−1/3 + δ−1B−1/2N−1/3 + δ),

so we choose δ = Θ(ϵ), N = Θ(1/ϵ3), B = Θ(1/ϵ2) and T = Θ(1/ϵ5) to get Eα = O(ϵ).
Similarly, in case (C), we have

Eα ≤
3DQ1/2 log(N)

2N1/3
+

4DG+ LD2 log(N)2

8N
+O(δ)

= O(Q1/2N−1/3 log(N) +N−1 log(N)2 + δ)

= O(N−1/3 log(N)2 + δ−1B−1/2N−1/3 log(N)2 + δ).

We choose δ = Θ(ϵ), N = Θ(log6(ϵ)/ϵ3), B = Θ(1/ϵ2), and T = Θ(log6(ϵ)/ϵ5) to bound
α-approximation error by O(ϵ).

N Proof of Theorem 3

Proof. Since the parameters of Algorithm 2 are chosen according to Theorem 2, we see that the
α-approximation error is bounded by Õ(T−β

0 ) where β = 1/3 in case 2 (stochastic gradient oracle)
and β = 1/5 in case 4 (stochastic value oracle).

Recall that F is G-Lipschitz and the feasible region K has diameter D. Thus, during the first T0
time-steps, the α-regret can be bounded by

sup
z,z′∈K

αF (z)− F (z′) ≤ sup
z,z′∈K

F (z)− F (z′) ≤ DG.

Therefore the total α-regret is bounded by

T0DG+ (T − T0)Õ(T−β
0 ) ≤ T0DG+ TÕ(T−β

0 ).

Since we have T0 = Θ(T
1

β+1 ), we see that

T0DG+ TÕ(T−β
0 ) = Õ(T

1
β+1 ) =

{︄
Õ(T

3
4 ) Case 2,

Õ(T
5
6 ) Case 4.

If F is non-monotone or 0 ∈ K, the exact same argument applies with Õ replaced by O.
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