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Abstract. This paper studies the design of optimal proper scoring rules
when a principal has partial knowledge of an agent’s signal distribution.
Recent work [23] characterizes the proper scoring rules that maximize
the increase of an agent’s payoff when the agent chooses to access a
costly signal to refine a posterior belief from his prior prediction, under
the assumption that the agent’s signal distribution is fully known to the
principal. In our setting, the principal only knows about a set of distri-
butions where the agent’s signal distribution belongs. We formulate the
scoring rule design problem as a max-min optimization that maximizes
the worst-case increase in payoff across the set of distributions.

We propose an efficient algorithm to compute an optimal scoring rule
when the set of distributions is finite, and devise a fully polynomial-
time approximation scheme that accommodates various infinite sets of
distributions. We further remark that widely used scoring rules, such
as the quadratic and log rules, as well as previously identified optimal
scoring rules under full knowledge [23], can be far from optimal in our
partial knowledge settings.

Keywords: Proper scoring rule - Crowdsourcing - Optimization.

1 Introduction

Proper scoring rules are scoring functions that incentivize truthful information
elicitation: an agent with a subjective belief about an uncertain event maximizes
his expected score by making a prediction according to his belief. If the agent can
acquire a costly signal to refine his belief, which proper scoring rules maximally
incentivize the agent’s information acquisition? Recent work [23]| explores this
question under the assumption that the principal has full knowledge about the
agent’s information structure. In contrast, we investigate this optimal scoring
rule design question when the principal has only partial knowledge about the
agent’s information structure, only knowing the set of information structures
that the agent’s belongs to.

Incentivizing information acquisition is crucial in many real-world applica-
tions. For example, in conference reviewing, a reviewer could spend little to



2 Chen and Yu

no effort and form his prior assessment about a paper primarily based on the
length of the paper, the amount of grammatical errors in the introduction, or
the references cited. But a conference chair would aspire for a high-effort review
where the reviewer carefully reads the paper and then forms his, more informed,
posterior assessment. As another example, in crowdsourced prediction for the
reproducibility of scientific studies [27,24], an expert could form a prediction
on the replication outcome of a study based on his general knowledge about
the study’s topic, the reputation of the publication venue, and the authors’ af-
filiations. But a more valuable and accurate prediction requires the expert to
examine the study’s methodology and evaluation procedures carefully. In these
applications, the principal ideally hopes to devise a proper scoring rule that max-
imizes the expected increase in score if the agent acquires the information, to
maximally incentivize information acquisition. The principal however only has
limited knowledge about the agent’s information structure.

More formally, an agent’s information structure consists of two parts: the
agent’s prior belief about the random variable of interest (the prior) and the
distribution of the agent’s signal conditioned on every realization of the random
variable (an experiment). We formulate the optimal scoring rule design problem
as a max-min optimization that maximizes the agent’s worst-case increase in
score across the set of possible information structures. We explore the problem
for four settings of principal’s knowledge, ranging from the special full-knowledge
case to varying degree of partial knowledge:

1. The principal knows both the prior and the experiment and hence the set
of information structures is a singleton. We reprove [23]’s results and show
that the optimal scoring rules are v-shaped in proposition 1. In addition,
proposition 1 also provides a close-form expression for an optimal scoring
rule.

2. The principal knows the prior but is uncertain about the experiment. The set
of information structures shares the same prior, as introduced in example 2.
Interestingly, we show in theorem 2 that the same v-shaped scoring rule in
proposition 1 is also optimal.

3. The principal knows the experiment but is uncertain about the agent’s prior.
The set of information structures shares the same experiment, as introduced
in example 1. We present a fully polynomial time approximation scheme
(FPTAS) that outputs approximately optimal piece-wise linear scoring rules
in theorem 4.

4. The principal is uncertain about both the prior and the experiment. In the-
orem 3, we propose an efficient algorithm to compute an optimal scoring
rule when the set of distributions is finite. Additionally, for p-correlated in-
formation structures defined in example 3, we develop an FPTAS to find
approximately optimal scoring rules in theorem 4. p-correlated information
structures have interesting connections to Beta-Bernoulli model [28] and
noise operator in Boolean function analysis [31].

We then run simulations to evaluate the performance of two frequently used
proper scoring rules (quadratic scoring rule and log scoring rule), the v-shaped
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scoring rule (which is optimal in the first two settings) and the piece-wise linear
scoring rules obtained by our FPTAS for the p-correlated information struc-
tures. The simulations show that our algorithm’s piecewise linear scoring rules
perform well, and provide the most uniform incentive when the signal and the
state have a large correlation. However, when the correlation is small, log scoring
rule outperforms our piecewise linear scoring rules and other scoring rules. In
particular, as the correlation decreases, we observe that the piecewise scoring rule
approaches the log scoring rule which may suggest an interesting connection be-
tween p-correlated information structure and the log scoring rule. The v-shaped
scoring rule empirically performs worst in our partial knowledge setting.

Organization and contribution of technical results Using Savage’s representation
of proper scoring rules [25,36,18], we convert variable space of our max-min
optimization problem from scoring rules to convex functions where the increase in
payoff becomes the Jensen’s gap of the associated convex function as problem 1.

In section 3.1, we derive a geometric interpretation of the optimization prob-
lem. Lemma 1 shows that the information gain amounts to how curved the
associated convex function is at the prior of the information structure. This in-
terpretation is critical as it leads to theorem 2 that shows v-shaped scoring rule
is optimal for known prior setting (example 2).

In sections 3.2 and 3.3, we delve into the scenario of unknown prior settings.
We first use linear program to find an optimal piecewise linear scoring rule when
the collection of information structures is finite in section 3.2. Then we venture
into the domain of infinite information, and provide an FPTAS (theorem 4) for
various infinite sets (examples 1 and 3). Informally, our FPTAS runs the linear
program on a finite subset of the infinite set of information structures, and
provides approximation guarantees as long as the finite subset is an e-covering
of the original set under earth mover’s distance. To this end, we relate the earth
mover’s distance to our optimization problem in lemma 3. Additionally, we design
a novel coupling that can bound the earth mover’s distance of two posterior
predictions by the total variation distance of their joint distributions on signal
and state in lemma 4. This coupling argument may be of independent interest for
designing approximation algorithms for information aggregation and elicitation.

Related work Our problem can be seen as purchasing prediction from strategic
people. The work on this topic can be roughly divided into two categories ac-
cording to whether agents can misreport their signal or prediction. Below we
focus on the relationship of our work to the most relevant technical scholarship.

In the first category, to ensure agents reporting their signals or predictions
truthfully, there are two settings according to whether money is used for incentive
alignment. In the first setting, the analyst uses monetary payments to incentivize
agents to reveal their data truthfully. The challenge is to ensure truth-telling gets
the highest payments. Existing works verify agents’ reports by using either an
observable ground truth (proper scoring rules) or peers’ reports (peer prediction).
For the second setting, individuals’ utilities directly depend on an inference or
learning outcome (e.g. they want a regression line to be as close to their own data
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point as possible) and hence they have incentives to manipulate their reported
data to influence the outcome. [11,26, 34,22, §]

Our setting generalizes [23|’s. Our max-min optimization formulation cap-
tures the principal’s partial knowledge about agents’ information structure, while
theirs focuses more on known information structure. We consider both ex-ante
and ex-post setting which allow us to compare our result to the log scoring rule
which is arguably one of the most important proper scoring rules but cannot
be ex-post bounded. They show the optimal scoring rule is v-shaped when the
information structure is known. We generalize the result to known prior setting
in theorem 2.

[29] also study optimal scoring rule design problem, but is more related to
sequential method [17]. Instead of imposing bounded payment conditions, their
objective comprises both payment and accuracy. They consider a special case
of Beta-Bernoulli information structures where the prior is uninformative and
design scoring rule for an agent to sequentially acquire samples from a Bernoulli
distribution.

Finally, [33] study an information acquisition problem: When the information
structure and the cost of information are known, the principal chooses a proper
scoring rule (menu of contracts) to incentivize information acquisition as cheaply
as possible subject to limited liability. Informally, their formulation can be seen
as the dual of our problem. Instead of maximizing information gain subjected
to bounded payment conditions, they want to minimize payment with a lower
bound on the information gain. Their optimal scoring rules are also v-shaped
and similar to our known information structure setting.

In the second category, agents cannot misreport their signal or prediction.
The problem of purchasing data from people has been investigated with differ-
ent focuses, e.g. privacy concerns [16, 12,15, 30, 10, 37|, effort and cost of data
providers [35,5,1,7,38,9], and reward allocation [14, 2].

More generally, our problem is also related to contract theory [19]. Recent
work also studies optimal contracts where the principal does not fully know the
agent’s cost. [21, 3] Moreover, [4] study delegation problem that tries to optimize
the efforts of others. However, the critical difference that sets ours apart from
these works is the principal’s preference. Most of the work in contract theory
aims to maximize the principal’s utility, but ours treats the principal’s preference
as a budget constraint and optimize the efforts of the agents. Our formulation
may be more suitable for complicated problems, e.g., peer grading or conference
review, that consists of multiple sub-problems, and the principal’s utility can not
be easily decomposed according to sub-problems. For the modelling choice, [13]
studies auction design where the unknown value distribution is from a known
collection, without assuming a prior over the collection.

2 Model and Preliminaries

In section 2.1, we first introduce proper scoring rules and two boundedness no-
tions. Then we define information structures that formalize the relationship be-
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tween the costly signal and the event of interest, and we specify the principal’s
partial knowledge and introduce three motivating examples. Finally, we define
the value of information and our scoring rule design problem. We further simplify
our problem by connecting scoring to convex function in section 2.2.

2.1 Optimal Scoring Rule for Costly Information

This paper studies the design of scoring rules for binary state® which maps an
agent’s reported prediction x and the realized ground state w € {0,1} to a score
for the agents, PS(w, ). As a principal designs a scoring rule for the agent, one
desirable scoring rule should elicit truthful predictions.

Definition 1. A scoring rule is proper if for all predictions z,z’ € [0, 1],
Epmz[PS(w, )] > Eyms[PS(w,x')].

In other words, if an agent’s prediction for w = 1 is x, he cannot gain a
higher score by misreporting x'. Here w ~ x denote random variable w = 1 with
probability x, and 0 otherwise.

Another desirable property of a scoring rule is boundedness as the principal
has a finite budget for the reward. Here we consider the following two notions.

Definition 2. A scoring rule PS is ex-post bounded by B > 0 if for all w €
{0,1} and x € [0,1], PS(w, z) € [0, B]. Alternatively, PS is ex-ante bounded by
B if for all z € [0,1] Eyp[PS(w, )] € [0, B].

In addition to properness and boundedness, the principal often wants to design
proper scoring rules that incentivize effort. Specifically, when the agent can refine
his prediction by exerting a binary effort for a costly signal, how can the principal
design a scoring rule that maximizes the agent’s perceived gain from exerting
effort without complete knowledge of the prior and posterior distributions?

Prior, posterior, and information structures The agent can access a costly sig-
nal S € S with a finite support that improves his prediction of the unknown
binary state of the world W € {0,1}. Specifically, the agent has an informa-
tion structure P which is a joint distribution on the state and signal. An
information structure P consists of a prior w € [0,1] of the state and an exper-
iment o : {0,1} — A(S) which is a conditional distribution of the signal given
the state, so that for all state w € {2 and signal s € S,

7=P(W=1)and o(sjw) = P(S=s| W =w).

We will refer P by the pair of prior and experiment (7, ).

Given P with (m,0), if the agent ignores the signal, his truthful prediction
of the state is the prior, P(W = 1) = 7. If the agent accesses the signal and
sees S = s, his truthful prediction becomes the posterior P(W =1| S = s) =

3 We discuss the d-dimensional setting in the appendix.
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1 . . . .
7r0'(s|1)7ff((18|772)0'(s\0)’ The posterior prediction X(s) :== P(W =1| S =s)isa
random variable over the randomness of signal. We will omit s and write the
random variable of posterior prediction as X. For instance, the expectation of

posterior equals prior E X = 7 by Bayes’ rule.

Partial knowledge of information structures In our partial knowledge setting, the
principal only knows a collection of information structures P that the agent’s
information structure falls into. Below are three examples of collections of in-
formation structures that model the principal’s partial knowledge. We will use
these as running examples throughout the paper.

First the principal may know the signal distribution given ground state (ex-
periment) but does not know the agent’s background (prior). Intuitively, this
captures online crowdsourcing setting, e.g., image annotation, where the back-
ground of the agent is unknown, but quality of signal can be controlled. Note
that the priors are bounded away from zero and one by & > 0, because if the
prior is zero or one, the posterior is identical to the prior.

Ezample 1. Given an experiment o and 0 < 6 < 1/2, a collection of information
structures with homogeneous experiment is P, = {(w,0) : w € [§,1 — 4]}.

To another extreme, the principal may know agent’s prior but does not know
the agent’s experiment. This can model peer grading in classroom where the
student’s prior is known but the quality of his work is uncertain.

Example 2. Given a prior w € (0,1) and a set of experiments o; where i € Z, a
collection of information structures with homogeneous prior is {(m,0;) : i € Z}.

The first example has the same experiment for all information structures,
and the second has the same prior. We provide an example where the prior and
experiment both vary.

Ezample 3. Given p € [0,1], 0 < § < 1/2 and a binary signal space S = {0, 1},
a p-correlated experiment produces signal that equals the ground state with
probability p and samples from prior independently otherwise. A collection of
p-correlated information structures P, is

{(my0) :m€[0,1=0],0(1|1) = p+ (1 — p)m,o(1]0) = (1 — p)7}.

Note that the value p controls the correlation between the signal and the ground
state. In particular, if p = 0, the signal is independent of the ground state, and
if p = 1, the signal perfectly agrees with the ground state. Similar to example 1,
the priors are bounded away from zero and one.

There are several interesting interpretations of p-correlated experiments. First,
the information structure is the posterior predictive distribution of Beta-Bernoulli
model [28] given an additional sample, and p captures the strength of prior. Sec-
ond, the distribution of the signal and the state is also known as p-correlated pair
in Boolean function analysis [31]. We formalize this connection in the appendix.
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Information gain and maz-min optimization problem Now we formalize the
agent’s perceived gain from exerting effort under a proper scoring rule PS. Let
PS(z) := Eynz PS(w,x) be the expected score of truthful reporting a predic-
tion z. Given PS and P with (m,0), the expected score of the agent truthfully
reporting his initial prediction is PS(w). Alternatively, if the agent accesses the
costly signal S = s, he gets score PS(X(s)). Thus, his expected score of access-
ing the costly signal before seeing it is E PS(X) over the randomness of X . Since
E X = 7, the agent’s gain from exerting effort is

E PS(X) — PS(x) =EPS(X) — PS(EX).

We call the above information gain on P under the proper scoring rule PS.
Because the information gain is fully determined by the posterior distribution
random variable, we can use P and X interchangeably. Additionally, we let X
be the collection of random variables of prediction induced from information
structures P in P.

To maximize the agent’s gain from exerting effort for any possible information
structure in X, the principal finds a bounded proper scoring rule PS : {0,1} x
[0,1] — R which maximizes the worst-case information gain

max min E PS(X) — PS(E X).
PS XeX

We will simplify our optimization in section 2.2 as problem 1.

2.2 Savage’s Representation of Proper Scoring Rules

We characterize the space of bounded proper scoring rules. First, Savage’s rep-
resentation of proper scoring rules connects proper scoring rules and convex
functions.

Theorem 1 (|25,36]). When the state space 2 = {0,1} is binary, for every
proper scoring rule PSS, there exists a convex function H : [0,1] — R so that for
all z € [0,1] and w € {0,1}

PS(w,z) = H(zx)+0H(z)-(1—2) whenw=1,
H(x)—0H(z) -« when w =0
where OH (x) is a subgradient of H at x.
Conversely, for every convex function H : [0,1] — R, there exists a proper
scoring rule such that the above condition hold.

With above characterization, we can specify proper scoring rules by their
associated convex functions. For instance, a quadratic scoring rule has a convex
function 2(2%+(1—x)?)—1, and a log scoring rule has a convex function z log, 2+
(1 —z)logy(1 — z) + 1. We will study piecewise-linear scoring rules whose
associated convex function is piecewise linear max{ fi(x),..., fm(x)} with affine
functions f;, i = 1,..., m. Finally, v-shaped scoring rules in [23] are special
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cases of piecewise linear scoring rules, whose corresponding convex function is
v-shaped with parameter (a,b,c,zo) so that H,p c 2,)(2) = max{a(r — x¢) +
¢,b(x — xg) + ¢} with the vertex at x. fig. 3a shows examples of quadratic and
log scoring rules, fig. 1 is for v-shaped scoring rules, and fig. 2 is for piecewise
scoring rules.

Now we reformulate our optimization problem in terms of convex functions
with the following lemmas by simple applications of theorem 1. The first lemma
converts the information gain as the gap of Jensen’s inequality of the associated
convez function. The second lemma shows the bounded conditions can be checked
by the value and sub-gradient of the convex function. The proofs are in the
appendix.

Lemma 1. For any proper scoring rule PS with convex function H, the ex-
pected score of truthfully reporting x is PS(x) = H(x), and the information
gain of information structure X under the proper scoring rule PS is E PS(X) —
PS(EX)=E[H(X)]— HEX).

We will define the information gain of information structure X under the proper
scoring rule with H as

Ix(H) :=E[H(X)] - H(E X). (1)

Lemma 2. Given B > 0, for any proper scoring rule PS with convex function
H, PS is ex-post bounded by B if and only if H(x)+ 0H (z)(1 — z) and H(z) —
OH (z)x are in [0, B] for all x € [0,1].

PS' is ex-ante bounded by B if and only if H(z) € [0, B] for all z € [0,1].

Let Bexpost denote the set of ex-post bounded convex functions and Bexante for
ex-ante bounded convex function as lemma 2. By lemma 2, Bexpost © Bexante-
We now derive the simplified program for our max min optimization problem
over the space of convex functions.

Problem 1. Given a set of information structures X and a set of convex func-
tions B, find a convex function H : [0,1] — R which maximizes the worst-case
information gain
i H).
e iy Ix(H)
We will focus on B being Bexpost in ex-post bounded setting and Bexante i €x-
ante setting.

3 Main Results

In section 3.1, we explore the setting of known information structure and show v-
shaped scoring rules are optimal in proposition 1. We further show that the same
v-shaped scoring rule is also optimal in the setting of known prior but uncertain
about the experiment in theorem 2. We shift our focus to the unknown prior
setting. We consider finite collections of information structures in section 3.2,
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and devise an efficient algorithm that solves for the optimal scoring rules in
theorem 3. Finally, we design an FPTAS in theorem 4 for infinite collections of
information structures, examples 1 and 3.

We provide outlines of proofs and intuitions, while complete proofs are de-
ferred to the appendix.

3.1 Singleton and Homogeneous Prior Information Structures

As a warm-up, let’s consider the principal exactly knows the agent’s information
structure so that X = {X} is a singleton. We show that the optimal H can be
v-shaped (defined in section 2.2) with the vertex at the prior in both ex-ante
and ex-post bounded settings.

1.0 1

0.8 A

0.6

041 ex ante w/0.7
—— ex ante w/0.5

0.2 | — ex ante w/0.2
---  ex post w/0.7
--- ex post w/0.5

0.0 - -=- ex post w/0.2

0.1 0.3 0.5 0.7 0.9

Fig. 1: The optimal scoring rules for the homogeneous prior setting. With the-
orem 2, the dashed lines are the optimal v-shaped convex functions for three
different priors (0.7,0.5, and 0.2) in the ex-post setting, and the solid ones are
in the ex-ante setting.

Proposition 1 (singleton). If X = {X} is singleton in ex-post or ex-ante
bounded settings, there exists an optimal scoring rule associated with a v-shaped
convez function for problem 1.

1. A v-shaped convex function with xg = m, a = %,b = % and ¢ = 0 is
optimal in ex-ante bounded setting with B.
2. A v-shaped convex function with o =7, a = 2max€ﬂ =5} b= 2max{fjr =}

and ¢ = % s optimal in ezx-post bounded setting with B.
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While the above result is already proved in [23], we provide an explicit closed-
form expression of the optimal solution and present an alternative proof in the
appendix. We generalize the proof and show that v-shaped scoring rule is opti-
mal for any collection of information structure when they share the same prior
(defined in example 2).

Theorem 2 (homogeneous prior). Given any collection of information struc-
tures with homogeneous prior m (example 2), there exists an optimal scoring rule
associated with a v-shaped convex function with the vertex at m in both ex-ante
and ex-post bounded settings respectively.

The proof follows from the fact that the optimal v-shaped scoring rules only
depend on the prior. When multiple information structures have the same prior,
the same v-shaped scoring rule is still optimal.

1.0

—— lin ex ante
lin ex post

0.8

0.6

0.4 1

0.2 A

00 01 02 03 04 05 06 07 08 09
Fig. 2: The optimal piecewise linear functions for a finite collection of information
structures P, v = {(m,0) € P, : Nm € N} with p = 0.1 and N = 10 (section 4).
In both ex-post and ex-ante setting, the vertex of the function is at the prior
of the collection of information structures which is aligned with our intuition in
section 3.3 which suggests maximizing curvature at the prior.

These results suggest that the principal should choose H that is “curved” at
the prior in order to incentivize the agent to derive the signal and move away
from the prior as fig. 1.

3.2 Finite Collections of Information Structures

If the collection of information structures is finite so that |X| < oo, we give an
efficient algorithm to compute an optimal piecewise linear scoring rule. Finite
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collections of information structures are natural when there are finite types of
agents, and is useful to approximate some infinite collections of information
structures as shown in the next section.

Theorem 3. If X is finite, for both bounded settings, there exists an optimal
proper scoring rule that is piecewise linear and can be derived by solving a linear
program in time polynomial in |X| - |S|.

The main idea is that when X is finite Jx (H) in eq. (1) only depends on
the evaluations of H on the support of X Supp(X) := Uxex (supp(X)U{E X}).
Thus, instead of searching all possible bounded convex functions, we can reduce
the dimension of problem 1 and use a linear program whose variables contain the
evaluations of H in supp(X) and linear constraints ensure that the evaluations
can be extended to a convex piecewise linear function. Figure 2 presents an
example of piece-wise linear convex function outputted by our linear program.
This observation allows us to solve the problem in weakly polynomial time in
[supp(X)| < |X| - |S|. We present the formal proof in the appendix.

3.3 Infinite Collections of Information Structures

For a non-finite collection of information structures, solving problem 1 exactly is
generally infeasible, because even evaluating the objective value minxex Jx (H)
may depend on evaluating all X € &X', which could require unbounded time. In
particular, this limitation also applies to examples 1 and 3. Below, we extend
our algorithms for finite collections of information structures to more general
collections. We demonstrate the idea by approximately solving the optimal scor-
ing rule for examples 1 and 3 in theorem 4. Remark 1 discusses the potential
and limitation of our method for abstract collections of information structures.

Theorem 4. Given any € > 0,6 > 0 and B > 0, in ezx-post bounded setting
B = Begpost (or ex-ante setting B = Begante), there exists an efficient algo-
rithm that outputs an e-optimal scoring rule H on information structures with
a homogeneous experiment (in example 1) so that,

min Jx (H) > max min Jx(H') — ¢,

Xex H'eBXeX
with running time polynomial in B and 1/e (or B, 1/e and 1/§ respectively).
The same results hold for p-correlated information structures in example 3.

Our FPTAS computes a finite collection of information structures, and runs
our linear program in theorem 3. Recall that P, is the collection of information
structures with homogeneous experiment (in example 1), our algorithm picks a
finite set information structures

Pon ={(m,0) € P, : N7 € N}

with N = |B/(2¢)] and outputs an optimal piecewise linear scoring rule H, y
for P, n using theorem 3. Similarly, for p-correlated information structures, let



12 Chen and Yu

Pon = {(m,0) € P, : Nm € N}. Our algorithm outputs an optimal piecewise
linear scoring rule H, n for P,.

The main challenge is to show the approximation guarantees. We observe
that given a pair of information structures, the difference between informa-
tion gains should be small if their posterior distribution is close. Formally,
given two posteriors X and X’ induced by two information structures P and
P’ respectively, the earth mover’s distance (EMD) [6] between posteriors is
dem (X, X') = supy sy, <1 ELf(X)] — E[f(X")] where ||f[[L;p is the Lipschitz
constant of f. The following lemma relates the earth mover’s distance to our
optimization problem.

Lemma 3. Consider two posteriors X and X', and B > 0. For any H €
Beapost; |Ix(H)—JIx(H)| < 2B-dgp (X, X'). Similarly, if supp(X) and supp(X’)
are contained in [1/L,1 —1/L] for some L > 0, for any H € Beyante, |3x (H) —
Ix/(H)| <2LB -dpm(X, X').

To use the above results, we need to show P, y is a good covering for P, so
that for all information structures in P, there exists one in P, y that has a small
earth mover’s distance on the posteriors. Here, we design a novel coupling that
can bound the earth mover’s distance of two posterior predictions by the total
variation distance on signal and state space. Given two information structures
P and P’ on 2 x S, the total variation distance (TVD) [6] between these
information structures is dpy (P, P') = %Zws |P(w,s) — P'(w,s)|.

Lemma 4. Given two information structures P and P’ with induced posterior
predictions X and X', dpp (X, X') < dpv (P, P’).

Lemma 4 upper bound the EMD of posterior predictions by the TVD of infor-
mation structures. The proof use the maximal coupling of P and P’to couple X
and X’ using the maximal coupling of P and P’. Then we show the expected
difference of X and X’ in our coupling can be converted to the total variation
distance. Note that the EMD between two random variables is always smaller
than the TVD between them, but lemma 4 uses the TVD of the information
structures, which can be much smaller than the TVD of posterior.*

Lemma 5. Given § > 0, N, and o, for all P € P,, there exists P' € P, n
so that dry (P, P') < . Similarly, given p > 0, for all P € P,, there ewists
P" € P, N so that dpy (P, P") < 2%. supp(Po,n) = O(N|S]), and supp(P,,n) =
O(N).

Lemma 5 shows P, y and P,y are good coverings for P, and P, in TVD
respectively, by direct computation.

Proof (Proof of theorem 4). Given d,¢ > 0, and P, = {(7,0) : 7 € [§,1 — 4]} in
example 1, we run our algorithm in theorem 3 on a finite collection of information

4 For instance, the TVD of posterior distribution between two p-correlated informa-
tion structures with prior 7 and 7’ respectively is 1, but the TVD of information
structures is less than 2|7 — 7’| as shown in lemma 5.
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structures P, n = {(m,0) : m € [0,1 — 0], Nw € N} with an integer N = [2B/€].
Because [P, n| = O(B/¢), the running time is polynomial in B/e and |S|. For the
approximation guarantee, given any ex-post bounded H' € Hegpost and X € Py,
there exists X' € P, n so that

dpy (X, X') < <

by lemmas 4 and 5. Moreover, by lemma 3 and N > 2B/e
Ix(H) —3JIx/(H)| <2B-dpgm(X,X') <e.
Therefore, the optimal H for P, n satisfies that

in yx(H') < min Jx(H') +¢ < min Jx(H
S IX UL = g Ix () = i Ix () o ¢
which completes the proof for the ex-post bounded case. The proof for ex-ante
bounded case is similar to the above.

Remark 1. Our FPTAS runs the linear program on a finite subset of an infinite
set of information structures and provides approximation guarantees as long as
the finite subset is an e-covering of the original set under earth mover’s distance
by lemma 3. The approach easily extends to any set with efficiently computable
small coverings.® Furthermore, the optimization problem 1 can be seen as zero-
sum games between a designer choosing a scoring rule and the nature picking an
information structure. [20] Hence, if a best response oracle on © or an e-covering
is available, various no-regret and best response algorithms can be employed to
solve it.

However, the main challenge of solving problem 1 lies in understanding the
set @. Unlike standard optimization problems, © is often non-convex, includ-
ing examples 1 and 3. Consequently, a general efficient algorithm assuming the
existence of efficiently computable small coverings or best response oracle may
appear vacuous. Instead, we believe our method of finding and proving the small
covering property could be a valuable tool for future research in analyzing their
own 6.

4 Simulations

We compare the performance of common scoring rules (section 2.2) within the
context of problem 1. We will focus on p-correlated information structures (ex-
ample 3) in the ex-ante setting. This collection of information structures offers a
platform to evaluate these scoring rules under the uncertainty of prior (and the
experiment to less extent). The other combinations (homogeneous experiment,
or ex-post setting) yield comparable outcomes and are deferred to the appendix.

We consider the correlation of signal and the state is either small p = 0.025
or large p = 0.25, and the prior 7 is in [0.01,0.99]. For proper scoring rules, we

® By [32, Theorem 2.2.11], there always exists an e-covering with size O(1/e).
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use 1) a quadratic scoring rule, 2) a log scoring rule, 3) a v-shaped scoring rule
with (a, b, ¢, zg) = (—2,2,0,0.5) which is optimal when prior is 0.5 as theorem 2,
and 4) the piecewise linear scoring rule H, y for P, x derived by our algorithm
in theorem 4 with N = 50. Figure 3a shows the associated convex functions
for these five proper scoring rules. We include these scoring rules to investigate
three questions: How good are classic scoring rules in our setting (the quadratic
and log scoring rules)? How does misspecified prior harm the optimal scoring
rule in the known prior setting (v-shaped scoring rule)? How does our FPTAS
generalizes (piecewise linear scoring rules)?

—— optlinforp = 0.25 0.25 —— optlinfor p = 0.25 0.00200

—— opt in for p = 0.025 — log —— optlinforp = 0.025
08 — log — quad
— aquad

0.00175

— v_shaped

— vshape 0.00150
0.00125
0.00100
0.00075
0.00050

N | oooos

0.00000
o.

0.0 02 0.4 0.6 038 10

(a) Associated convex func- (b) Information gain with (c¢) Information gain with
tions p =0.25. p = 0.025.

Fig. 3: Figure 3a shows the five associated convex functions in in section 4. By
lemma 2 all scoring rules are ex-ante bounded by B = 1. Figures 3b and 3c
present the information gain on each p-correlated information structures. x axis
is the prior and y axis is the information gain.

To begin with, we evaluate all our scoring rules with the information gain
on each information structure in P,y with IV "= 1000 > N that serves as a
proxy of the infinite collection P, and is a superset of P, . Figures 3b and 3c
present the outcomes where the y-axis represents the information gain, while the
z-axis denotes the position of the prior. Note that our piecewise linear scoring
rules are optimal for P, , but only e-optimal for P, n+ with € < 2%” < 0.04 by
theorem 4. The difference of information gains between P, y and P, y’ measure
how well our method generalizes.

Figure 3b shows the information gain on p-correlated information structures
with large correlation p = 0.25. The piecewise linear scoring rule for P, y has
the worst-case information gain 0.0341 on the original set P, n, and generalizes
well on the superset P, y- with the worst-case information gain 0.0149. Com-
paratively, log scoring rule gets 0.0094, the quadratic scoring rule gets 0.0024,
and the v-shaped scoring rule gets 0 worst-case information gain on P, n/. The
v-shaped scoring rule performs varies significantly: It achieves the highest infor-
mation gain on information structures with prior centered around 0.5 aligning
with the implications of theorem 2, but also gets zero information gain when
prior is above 0.7 or below 0.3. This is because when the prior is far away from
the vertex (0.5), information structure can have a support contained in a flat
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area (0,0.5) or (0.5,1) and leading to zero information gain because the Jensen’s
inequality is tight on affine functions.

Figure 3c shows the information gains when the correlation is small p = 0.025.
The piecewise linear scoring rule has the worst-case information gain 5.77-107°
compared to 2.76-10* under the log scoring rule, 2.48-10° on quadratic scoring
rule, and 0 under the v-shaped scoring rule. First, the information gains are much
small in the small correlation setting, because the posterior is barely move away
from prior.% Second, information gains under the piecewise linear scoring rule
on P, n: has several periodic peaks each peak. Note that the piecewise linear
can be seen as several small v-shaped scoring rules. If an information structure’s
prior is at a vertex, the information gain is large. However, if the support of
the information structure is contained in a flat area, the information gain is
near zero. Noteworthy, the number of vertices of our optimal scoring rule equal
N + 1 =51 by theorem 3 which is also the number of peaks in the information
gains. On the other hand, the log and quadratic scoring rule are strictly convex
which do not have any sharp transition between flat area and vertex, so the
information gains change smoothly as the priors change. Finally, observe that

0.02 -
0.00
—0.02 -
—0.04
—0.06 A
opt lin for p = 0.25
—0.08 1 opt lin for p = 0.125
—— opt lin for p = 0.0625
—0.10 A )
—— opt lin for p = 0.03125
—0.12 1 — opt lin for p = 0.015625

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4: The difference between log scoring rule and the piecewise optimal scoring
rules for p-correlated information structures P, n as p ranging from 1/4 to 1/64.

the piecewise linear scoring rules are surprisingly close to the log scoring rule in
fig. 3a. In fig. 4, we conduct an additional simulations and observe that difference
between the piecewise scoring rule for P, y and the log scoring rule uniformly

5 Indeed, we can show that a correlated signal is Blackwell dominated by a correlated
signal with larger correlation, and thus has a smaller information gain under any
proper scoring rules.
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decreases as p decreases. This results suggest an interesting potential connection
between p-correlated information structure and the log scoring rule.

5 Conclusion

We propose the problem of optimal proper scoring rules design when the prin-
cipal has partial knowledge of an agent’s signal distribution. As shown in our
simulations, this approach may serve as a benchmark for various scoring rules.
We devise efficient algorithms for four principal knowledge settings, and design
a novel coupling to bound the earth mover’s distance of posterior by the total
variation distance of the signal and state space.

Acknowledgments. We thank Grant Schoenebeck and anonymous reviewers for their
valuable feedback on restructuring the paper. This work is supported by NSF under
award No. 11S-2147187.
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