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Aswin Sivaraman

RESOURCE-EFFICIENT MODEL ADAPTATION METHODS

FOR PERSONALIZED SPEECH ENHANCEMENT SYSTEMS

This dissertation introduces several machine learning algorithms for developing personal-

ized speech enhancement (PSE) systems. In particular, we investigate the data-e!ciency

of the proposed methods. Here, we define personalization as a model adapting towards a

particular user’s speech characteristics and/or their acoustic environment. By consciously

minimizing their computational overhead, we make these algorithms more suitable for edge

computing applications—e.g., smartphones, smart speakers, or headphones.

These use cases can all benefit from employing PSE systems on at least two dimensions.

Firstly, PSE can lead to better performance—this is because single-user speech enhancement

may be viewed as a subset of the originally complex problem (i.e., speaker-agnostic or

general-purpose speech enhancement). Secondly, PSE can reduce model complexity; given

the reduced problem space, a personalized model with fewer parameters su!ces to perform

equally as well as a non-personalized model trained with many more parameters. To

that end, we argue that PSE is a novel paradigm for lossless model compression without

loss of performance. However, PSE can be challenging from an optimization perspective.

When framed as a fully supervised machine learning problem, the availability of labeled

speaker-specific data is scarce, and attempting to collect user data may be unreliable and

privacy-compromising.

To that end, this dissertation proposes data-e!cient PSE methods that can tackle two

potential scenarios. In the first case, the PSE system may have access to abundant unlabeled

noisy speech data but only a small amount (up to 30 seconds) of clean speech data from
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the target user. In the second case, the PSE system may have no access to any personally

identifiable data. Therefore, our methods may be classified as few-shot or zero-shot machine

learning approaches.

In order to best utilize the scarce clean data in the few-shot context, we put forward

self-supervised learning methods for PSE that repurpose the more accessible unlabeled

speech data. More specifically, we develop frameworks that incorporate noisy target training

and contrastive learning. Furthermore, to achieve zero-shot personalization, we employ the

model selection paradigm for finding a predefined latent cluster best-suited for the unseen

test time user’s noisy speech.

Our extensive experiments show that both self-supervised learning and the model selection

paradigm achieve our goals for model adaptation. This research promotes the development

of more e!cient speech enhancement systems with reduced training data requirements and

broader accessibility for more people.
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Chapter 1

Introduction

Every human voice is as unique as a fingerprint, filled with subtle nuances that comprise

a portion of one’s identity. While the physiological process of producing speech is the

same for everyone, the resulting auditory signal contains numerous discerning features. A

person’s vocal range, their accent, and their speaking cadence can potentially be mapped to

their locale, their age, or even their ethnic background. Because speech is such a deeply

personal and invaluable biometric, it is quite unsurprising that humans have a complicated

relationship with machine learning (ML)-based speech processing systems.

For the most part, people expect their devices to hear them in any noisy environment.

Typically, voice controlled devices (VCDs) employ a general-purpose speech enhancement

(SE) algorithm that improves the quality and intelligibility of the incoming speech signal.

Currently, deep neural networks (DNNs) have become the de facto building blocks for modern

SE algorithms. At the same time, it is well-known that generalizable DNN performance

strongly correlates to increased model size and massive labeled datasets. In other words,

developing a DNN for SE requires accruing vast amounts of training data (thousands of

isolated speech or noise recordings) in order to cover the potential breadth of noisy speech

signals that may be encountered at test-time [1]. Since every human voice is distinct, the SE

model, by definition, will have never encountered the target speaker’s voice during training,

even though it is expected to be performant in this cold-start scenario. As a result, most

SE models may be considered as “generalists” that assume no knowledge of the test-time

environment. These generalists operate irrespective of the deployment context, intended to

be universally applicable.
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There are some notable downsides to models that targets large-scale generalized perfor-

mance. For example, studies have shown that generalist DNNs possess redundant connections

and under-utilized parameters [2]. With many models, performance and accuracy scales

logarithmically with model capacity, potentially saturating after a point [3]. A lot of popular

and emerging DNN architectures have started to exceed millions (or even billions) of model

parameters, leading to skyrocketing hardware costs and exponentially high carbon footprints

[4]. Furthermore, ML models trained on big data tend to exhibit sociodemographic biases

[5, 6]—a phenomenon present in ML-based speech processing systems, too [7, 8]. Essentially,

while generalist models may be well-performing, they incur a variety of resource ine!ciencies

along with the potential to fail for under-recognized people.

In an ideal setting, rather than attempting to generalize to every possible case, VCDs

could instead utilize a personalized speech enhancement (PSE) model, adapted to enhance

only the target speaker’s voice optimally. Prior evidence has shown that the speech denoising

problem can be decomposed into discrete non-overlapping sub-problems [9]. More specifically,

the learning objective of a personalized specialist model (designed to enhance only a single

voice) is simpler than that of a generalist model (which must enhance every possible voice),

therefore a specialist may be better performing. One näıve method of adapting an SE

model into a PSE model would be to fine-tune the model parameters using speaker-specific

labeled data. Realistically, this data is often obtained through an “enrollment” procedure,

where the target speaker records themselves saying a few prescribed sentences in a noise-free

environment [10, 11, 12]. Once an SE model becomes specialized for a particular speaker

or environment, the enhancement performance is expectedly improved, leading to a more

robust on-device automatic speech recognition (ASR).

However, acquiring speaker-specific clean speech data is fraught with complications.

Firstly, the average VCD user might not have access to very quiet echo-free environments
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or nice recording equipment; as a result, the user-provided data may not be considered

to be reference quality. Secondly, typical ML models are trained on hundreds of hours of

audio data, and recording any single speaker for that long would be unrealistic. At best, the

burdensome enrollment procedure may yield a few seconds of usable data at most. Lastly, by

and large, people are wary of AI-powered systems collecting too much of their personal data

and breaching their privacy [13, 14, 15, 16]. It is understandable why people are reluctant

to share their voice data given that vocal forgery is a legitimate concern. Recent research on

speech synthesis models has shown that only 5 sec of enrollment data is needed to condition

models into mimicking a particular voice [17]. As a result, minimizing the use of target

speaker-specific data is a practical optimization constraint when developing a PSE model.

Therefore, the goal of this dissertation’s proposed research is to reformulate ML algo-

rithms for SE such that personalization can be achieved using little to none of the target

speaker’s personal data. Subsequently, we investigate how personalization not only improves

performance for the target speaker but can also enable more e!cient inference. More broadly,

we posit that model adaptation (the idea of developing specialist models over generalist

models) brings with it the added bonus of resource e!ciency.

1.1 Problem Setup

The real-world deployment of a PSE model is subject to the aforementioned challenges of

collecting target speaker specific data. Therefore, with this dissertation, we consider three

possible scenarios pertaining to the availability of training data.

• PSE Scenario 1 (Enrollment): The target speaker provides some amount of clean

speech in order to optimize their experience. This set is commonly referred to as

“enrollment data” and may be as little as 5 sec or at most 30 sec in total duration.
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• PSE Scenario 2 (Unlabeled): Here, the PSE system only has access to a few

unlabeled observations of the target speaker. These “in-the-wild” recordings give the

model some knowledge of the target speaker, but they are likely contaminated by

unknown noises.

• PSE Scenario 3 (Cold-Start): In this case, the target speaker provides no personal

data of any kind. This is e”ectively a “cold start” problem.

We treat the first scenario as a few-shot learning (FSL) problem because it is about

leveraging the scarcely labeled data without overfitting; accordingly, the last two scenarios

may be treated as zero-shot learning (ZSL) problems due to the lack of enrollment data. For

PSE Scenario 2, we hypothesize that the more abundant noisy data may be serviceable

using a self-supervised learning (SSL) technique known as noisy-target training (NTT).

Models pre-trained using the NTT methods can be fine-tuned over any available clean speech

data, thereby covering PSE Scenario 1. To address PSE Scenario 3 (or any instance of

model adaptation without knowledge of the target domain), we propose the idea of “model

adaptation by selection”. Over all our experiments, we assess how the proposed algorithms

achieve our adaptation goals of improving performance while enabling reductions in model

complexity (either through quicker inference or fewer total parameters).

1.2 Broader Impact

This dissertation o”ers a preliminary exploration of two broad-impact areas of AI-based

research. Our proposed methods to personalize an SE model meet the ever-growing need

for ethical AI models that are more inclusive and responsible. The state-of-the-art machine

learning models have gravitated towards those trained on the largest possible amount of data,

often neglecting the representativeness of that data. Especially in SE research, the standard

practice is either to record as many data samples as possible and then hire human annotators
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to label them, or to combine various publicly available datasets. Because data preparation

and annotation are likely to incur the most significant costs when developing an AI system,

researchers have overlooked their social impacts until recently. For example, one study

showed that the accuracy of two ASR systems (on YouTube and Bing) was notably worse

among non-American non-white female speakers [18]. Similar representation disparities,

inherently caused by empirical risk minimization, have been surveyed in numerous machine

learning tasks, including face recognition and language identification [19]. In most cases, the

racial or gender inequities stemmed from the underlying biases in the large training datasets

used. This dissertation addresses this ethics issue directly by developing speaker-specific

specialist models that outperform speaker-agnostic generalist models. More broadly, we

argue that specialist AI models can better serve socially under-represented groups.

In addition, our methods for PSE bring broader attention to the need for privacy-

preserving AI systems. If a negligent party targets personalization solely as a means for

increasing the accuracy of their AI systems, a breach of privacy is an imminent concern. The

most apparent case is when an always-on VCD accidentally listens to a conversation due

to mishearing the wake word [20]. Human employees might need to additionally annotate

these utterances that caused the VCD to misfire, further diminishing the user’s privacy.

While privacy preservation has been investigated in other machine learning tasks (e.g.,

classification), it has been less studied with speech enhancement due to the need for clean

speech from the test-time users. The experiments in this dissertation explicitly minimize

the models’ exposure to the target speakers’ voices and their private environment. We hope

that our investigations encourage further e”orts by SE researchers to incorporate similar

privacy constraints.
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1.3 Relevant Publications

We acknowledge that certain portions of this dissertation consist of previously published

material, presented at various conferences and journal articles. Table 1.1 summarizes the

publication history of our prior works, indicating which sections use them. Additionally, we

provide online access to source code and demos for the reader’s reference.

Table 1.1: Archival links to the relevant prior publications, source code, and demos.

Year Publication
Venue

Article
Type Citation External Links Relevant

Sections

2020 Interspeech Conference [21]  ! ! " Section 4.1
2020 NeurIPS Workshop [22]  ! ! Section 3.2.2
2021 Interspeech Conference [23]  ! ! Section 3.2.3
2021 WASPAA Workshop [24]  ! Section 4.2
2022 JSTSP Journal [25]  ! Chapter 3
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https://doi.org/10.21437/Interspeech.2020-2989
https://github.com/IU-SAIGE/sparse_mle
http://www.interspeech2020.org/index.php?m=content&c=index&a=show&catid=412&id=1229
https://minjekim.com/research-projects/sparse-mle/
https://arxiv.org/abs/2011.03426
https://github.com/IU-SAIGE/contrastive_mixtures
https://neurips.cc/virtual/2020/20314
https://doi.org/10.21437/Interspeech.2021-1868
https://github.com/IU-SAIGE/pse-snr-informed
https://iu.mediaspace.kaltura.com/media/t/1_f8fxu8sx
https://doi.org/10.1109/WASPAA52581.2021.9632752
https://github.com/IU-SAIGE/pse-speaker-informed
https://doi.org/10.1109/JSTSP.2022.3181782
https://github.com/IU-SAIGE/pse


Chapter 2

Literature Review

Although the human auditory system is exceptionally good at selective hearing [26, 27],

no foolproof algorithm exists for perfectly emulating this ability computationally. In order

to make machines capable of selective hearing, researchers either tackle the broader task

of source separation (SS)—where the objective is to isolate individual sound sources from

a mixture of sounds, or the narrower subproblem speech enhancement (SE)—where the

objective is only to restore the speech source. Due to the ongoing deep learning renaissance,

neural networks have surpassed traditional signal processing or machine learning methods,

achieving state-of-the-art performance with both SS and SE tasks. In this chapter, we

discuss the relevant prerequisite information for understanding the current lay of the land

with SE research; additionally, we note the di”erences of the proposed methods from this

dissertation with other influential works.

2.1 Datasets & Benchmarks

Currently, there is not one single benchmarking dataset for every SE model in existence,

although there have been some public challenges attempting to bring standardization to

the field [28, 29]. As a result, many researchers manually prepare noisy speech datasets

(for training and for testing) by mixing utterances from public speech datasets1 with

sounds from public noise datasets2. Manually mixing utterances is a legitimate option as

it enables fully-supervised training, with the caveat that researchers must apply a variety

of signal-to-noise ratios (SNRs) in order to simulate varying degrees of noisiness. SNR
1Popular choices for English clean speech datasets include Librispeech [30] or Voice Bank [31].
2Popular choices for noise datasets include MUSAN [32] or DEMAND [33] or FSD50K [34].
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is a measure of the ratio of speech power to noise power, often expressed in decibels; an

SNR greater than 0 dB indicates the presence of more speech than noise. Some datasets

are generated using a deterministic (fixed) mixing strategy to ensure reproducibility and

standardization—for example, WSJ0-2Mix [35], LibriMix [36], and Voice Bank + DEMAND

[37]. Our experiments in this dissertation make use of the open-source Librispeech, MUSAN,

DEMAND, and LibriMix corpuses. Additional details about these datasets will be shared in

the later sections.

2.2 Evaluation Metrics & Loss Functions

There are a number of evaluation metrics used when testing a SE model. Most metrics

require access to the ground-truth (reference) clean speech, but a few are reference-less (i.e.,

blind quality estimators). Also, some metrics are considered signal level whereas others are

perception level. In this dissertation, we will use metrics that do rely on the reference signal,

i.e., in order to report objective improvements.

At the signal level, the most common metric is SNR—calculating the delta between

the output (enhanced speech) SNR and input (noisy speech) SNR gives an indication of

enhancement performance. Other prominent signal level metrics are modified versions of

SNR, including signal-to-distortion ratio (SDR), signal-to-artifact ratio (SAR), and signal-

to-interference ratio (SIR) [38]. Notably, SDR becomes equivalent to SNR when we only

consider additive noise, ignoring interferences and algorithmic artifacts. More recently, a

more robust modification of SDR known as scale-invariant signal-to-distortion ratio (SISDR)

was proposed; it introduces a scaling factor to ensure that the residual vector—between

the estimated and reference signals—maintains orthogonality to the reference [39]. In this

dissertation, we will notate the reference (clean speech) signal as s and the model estimate

(enhanced speech) signal as y; the subscript t denotes the indexing of time-domain samples.
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Subsequently, the metrics SDR and SISDR are computed in decibels as follows:

SDR (y, s) = 10 log10

[ ∑
t
st

2
∑

t
(st → yt)2

]

(2.1)

SISDR (y, s) = 10 log10

[ ∑
t
(ωst)2

∑
t
(ωst → yt)2

]

(2.2)

Note that Eq. (2.1) is equivalent to setting ω = 1 in Eq. (2.2); however, as shown in [39],

the robustness of SISDR comes from setting ω =
(
y→s

)
/

(
s→s

)
. All of these signal level

metrics can, in fact, be used as optimization criteria for updating model parameters. When

formulated as neural network loss functions (optimized for minimizing error), using the

negative metric su!ces [40]—in other words, a SISDR-based loss function would look like:

LSISDR (y, s) = → SISDR (y, s) = →10 log10

[ ∑
t
(ωst)2

∑
t
(ωst → yt)2

]

(2.3)

On the perceptual level, the metric STOI [41] (short-time objective intelligibility) mea-

sures speech intelligibility by calculating correlations between short-term temporal envelopes

of the reference signal and of the enhanced signal; STOI values range between 0 and 1, where

1 would be most intelligible. Another metric, PESQ [42] (perceptual evaluation of speech

quality), was introduced by the International Telecommunication Union (ITU)—PESQ also

requires the reference signal, generating a score between →0.5 and 4.5 corresponding to a

predicted perceptual MOS (mean opinion score). Both of these perceptual metrics can again

be used as evaluation criteria but also as optimization criteria—i.e., as a neural network

training loss function [43].
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Lastly, while it does not necessarily guarantee high speech quality or intelligibility, another

straightforward choice for neural network loss function is mean-squared error (MSE).

LMSE (y, s) =
∑

t

(st → yt)2 (2.4)

The models in this dissertation employ some of these discussed loss functions, namely LMSE

and LSISDR. In the later sections, where we introduce a classification sub-module, the

conventional choice of loss function is the averaged cross entropy (log loss). For binary

classification over N observations, given an array of ground-truth class labels k and an array

of model-estimated labels k̂, the cross entropy (CE) optimization criterion is defined as:

LCE
(
k̂, k

)
= → 1

N

N∑

j=1

[
kj log(k̂j) + (1 → kj) log(1 → k̂j)

]
(2.5)

2.3 Training Targets

Most deep learning SE models proposed over the years can be broadly categorized in terms

of their training targets, either as a masking-based or a mapping-based model [44]. Masking-

based SE models operate on a two-dimensional time-frequency (TF) representation of audio;

they learn to predict a binary masking matrix by processing the magnitude spectrum of a

noisy speech signal [45, 46, 47, 48]. The magnitude spectrum is commonly obtained using the

short-time Fourier transform (STFT). The masking matrix accentuates TF bins dominated

by speech and filters out TF bins dominated by noise. In contrast, mapping-based models

[49, 50] directly estimate a one-dimensional signal, the clean speech waveform. Fig. 2.1

shows a high-level comparison of the two training targets. For mapping-based models, x is

the input mixture signal and y is the output estimated clean speech. If a time-frequency

transform is used (e.g., the STFT), then the model input is the noisy speech magnitude
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Figure 2.1: Comparison between mapping-based and masking-based SE models.

spectrogram X and the model output is a binary masking matrix M . The operator ↑

denotes element-wise multiplication (also known as the Hadamard product). The clean

speech spectrogram is estimated by applying the mask, i.e., Y = X ↑ M . An inverse

transform is needed to convert time-frequency spectrograms back to time-domain waveforms.

In a fully-supervised learning setup, the model’s final estimate y is compared against the

ground-truth clean speech s. With our experiments in this dissertation, we employ both

masking-based and mapping-based models, emphasizing that our proposed methods are

agnostic to the choice of training target.

2.4 Resource E!ciency

The highly performant state-of-the-art models for SE are, in fact, double-edged. Because of

the data-hungry nature of fully-supervised deep learning, many models for SE are likely to be

over-parameterized, making them cumbersome both for training and for deployment on real-

world devices. As stated before, a specialist model may be more resource-e!cient compared

to a generalist model given that it is solving a smaller sub-problem. In this dissertation,

we address “resource e!ciency” from multiple angles. For instance, we hypothesize that a

personalized model may achieve equivalent performance to a generalist model using fewer

model parameters. In that regard, personalization may be seen as a form of lossless model

compression. By using fewer model parameters, we say that the PSE model has reduced
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space complexity, i.e., its storage requirements are lessened. Whenever it is not possible to

reduce the space complexity, we demonstrate that some personalized models can run fewer

computations during inference compared to generalists. In other words, personalization can

also reduce run-time complexity, improving latency or model throughput. Lastly, because

a personalized model need only be optimized for one speaker (as opposed to thousands of

speakers), we hypothesize that training data reduction is also possible. Storing massive

datasets, synthesizing noisy speech, and updating the model parameters based on hundreds

of hours of audio data is a very costly process. Particularly in Chapter 3, our proposed

noisy-target training for personalization enables a specialist to use only 25 min of data in

contrast to a generalist which uses 440 h of data, resulting in a massive 99.9 % savings. All

of these benefits make PSE models more suitable for real-world deployment.

In relation to the previously mentioned public datasets, some of the reported best-

performing deep learning models for generalist SE include ConvTasNet [49], dual-path

RNN [51], SuDoRMRF [52], SepFormer [53], SCP-GAN [54], and MFNet [55]. We note

that overall model complexity can be profiled using two measurements: for example, the

total number of model parameters relates to space complexity, whereas the total number of

multiply-accumulate operations (MACs) is indicative of run-time complexity. In Table 2.1,

we list the number of total parameters and MACs for some top-performing models. Note

that the number of MACs relates to the size of the model input—assuming that all audio

recordings have a sampling rate of 16 kHz, we report the number of MACs for processing a

single second of audio.

These state-of-the-art models achieve noteworthy improvements on enhanced speech SISDR3,

yet their space and run-time complexity are on the order of millions and billions, respectively.

In particular, SepFormer is a massive neural architecture due to its use of transformer
3A leaderboard for speech separation performance on the WSJ0-2mix dataset [35] can be found at

https://paperswithcode.com/sota/speech-separation-on-wsj0-2mix.
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Table 2.1: Space and run-time complexities for various state-of-the-art SE models.

Model Name (# MACs)/sec. # Params. SISDR Imp. [↓]

ConvTasNet [49] 9.82 G 4.92 M 15.3 dB
DPRNN [51] 15.24 G 3.63 M 18.8 dB
SuDoRMRF [52] 4.16 G 2.45 M 19.5 dB
SepFormer [53] 77.33 G 17.25 M 22.3 dB

layers [56]. As we discussed before, larger models require more expensive GPU hardware

and incur a greater carbon footprint [57]. The investigations of this dissertation apply to

models that operate below 1 M parameters, which are much more amenable to low-resource

environments and real-world embedded systems. For that reason, the performance of the

models discussed in this dissertation do not compete with and are not directly comparable to

the state-of-the-art results shown in Table 2.1. Specifically in Chapter 3, we introduce and

evaluate much smaller variants of ConvTasNet. Later on, we discuss how model adaptation

(personalization) allows for equivalent performance to be achieved using smaller models.

2.5 Model Compression

Although model compression is an active area in deep learning research, many standardized

methods, such as quantization or pruning [58], do not consider the context of the model

after deployment. Decreasing the total number of model parameters without reformulating

the model objective is an option, but this may result in discernible performance trade-o”s

[3]. Particularly with regards to SE or SS, more recent research has focused on novel model

compression methods, including bitwise operations [59, 60, 61, 62] or group communication in

intermediate neural network layers [63]. These works successfully minimize the performance

trade-o” but miss the opportunity to exploit the model’s deployment environment. With

personalization, because the sub-problem is easier to solve, a compressed specialist model

13



su!ces to perform on par with a more complex generalist model. This dissertation introduces

a novel paradigm for lossless compression by means of personalization. For example, in

Chapter 4, we demonstrate gender-based speaker adaptation via model selection, and our

experiment results show that a specialist composed with 512 hidden units enhanced the

target speaker’s voice comparably to a generalist model composed with 1024 hidden units.

This is e”ectively a “lossless” 50 % reduction in run-time computational complexity.

2.6 Target Speaker Extraction

Within the last few years, more and more SE research is being done on personalization, i.e.,

single-speaker model adaptation. However, the primary goal of most researchers is to show

improved performance on the target speaker; the additional benefits of model compression,

data e!ciency, and privacy preservation are less explored. In the other literature, the

PSE task is framed as target speaker extraction (TSE): e”ectively a combination of source

separation (SS) with a conditional noise suppression (SE). This perspective of PSE is viable

when there is some data from the target speaker available, i.e., enrollment data. Multiple

models—such as SpeakerBeam [64], VoiceFilter [65], and pDCCRN [66]—explicitly utilize

an encoder module that produces a noise-robust discriminative speaker embedding. As

shown in Fig. 2.2, after the mixture sources are separated, the embedding cues the model

to enhance only the desired source, i.e., the target speaker. Recent iterations of the public

Deep Noise Suppression challenge [29] have included a ‘personalized speech enhancement’

track providing enrollment data, which e”ectively encourages participants to devise TSE

solutions.

In contrast to these approaches which rely on computing a discriminative speaker

embedding, our methods for PSE do the adaptation implicitly. That is, we do not uniquely

ID the target speaker by way of a personally identifiable embedding—we intentionally do this

14



Source 1 (target spkr.)

Source 2 (interference)

Source 3 (interference)

Source 1 Enrollment Speech

+
Speech Separation + 
Conditional Noise 
Suppression Model

Encoder Noise-Robust
Speaker Embedding

Figure 2.2: Formulation of PSE as target speaker extraction (TSE).

to preserve the target speaker’s privacy. Rather, we show that personalized enhancement can

be achieved in a data-driven manner by using self-supervised learning (SSL) over the more-

abundant in-the-wild observations of the target speaker, described in Chapter 3. Moreover,

if no observations of the target speaker are available, we show that it is also possible to

perform a coarse clustering on the test-time data, in order to enhance the target speaker’s

voice as it relates to a predefined group; this process of model adaptation by selection is

described in Chapter 4.

2.7 Self-Supervised Learning

In the self-supervised learning (SSL) paradigm, a ML model is trained to solve a pretext task,

learning useful features that will help when addressing the intended downstream task. The

purpose is to overcome scenarios where there is only unlabeled data available (i.e., no input +

expected output pairs). SSL has gained significant traction in recent years for advancing the

state-of-the-art over numerous research domains, including speech representation learning

[67, 68, 69]. There have also been a growing number of SSL setups for general-purpose

speech enhancement. An early work employed zero-shot SSL in a student-teacher framework,

showing a student network that implicitly learned to perform speech enhancement despite

being trained to minimize automatic speech recognition error [70]. Another work describes an

SSL framework based on two autoencoders, trained to reproduce either clean speech or noisy

speech [71]. The authors enforce a coupling of the two autoencoders’ latent spaces using

cyclic-consistency. At inference time, the autoencoder trained only using mixture signals has
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its decoder swapped out, thus achieving zero-shot speech enhancement. These studies are

limited to speaker-agnostic enhancement, and in particular, do not exploit self-supervised

learning as a method for in-domain training.

Subpar performance of an SE model can sometimes be attributed to a fundamental

mismatch between the distribution of audio data encountered at training versus at test

time. Because observations at test-time are inherently unlabeled, SSL is a great choice for

enabling in-domain training. With the SE task, the term “unlabeled data” refers to the

non-reference quality noisy speech recordings—which is likely more abundant. Two recent

studies investigated using noisy speech data as target signals specifically to achieve in-domain

training [72, 73]; because of the imperfect reference signals, noisy-target training (NTT)

may be considered as an SSL pretext task. Our proposed PseudoSE method, introduced

in Chapter 3, is also a form of NTT; however, this dissertation investigates the benefits of

noisy training targets specifically with regards to single-speaker model personalization and

model compression. Additionally, our study is the first to bootstrap NTT using contrastive

learning for the task of SE.

There is also a well-regarded SSL framework for source separation (SS) known as mixture

invariant training (MixIT) [74]. It was proposed as an alternative to the fully-supervised

permutation invariant training (PIT). MixIT is a procedure for developing source separation

systems using only mixtures of mixtures (MoM), i.e., linear combinations of arbitrary audio

signals. When we consider MixIT as a pretext task, it introduces systematic mismatch by

design because the input MoMs have twice the number of expected sources at test-time.

One recent study used MixIT by successfully adapting models to a set of speakers through

joint training over in-domain and out-of-domain data [75], however the model compression

implications were unexplored. In comparison to MixIT, the PseudoSE task may be viewed as

a more speech enhancement-oriented version: while MixIT estimates every composite signal,
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PseudoSE learns explicitly from the combination of a target speaker’s noisy utterance plus

an injection noise. Therefore, a PseudoSE model is able to target the pseudo speech source

and can omit reconstructing the injection noise. We discuss this further in Section 3.2.1.

2.8 Mixture of Local Experts

The mixture of local experts (MLE) modeling paradigm [76] has seen a few investigations

in SE [77, 78], demonstrating that an ensemble of weak learners can produce a superior

enhancement through a weighted combination of the learners’ outputs. This general-purpose

ensemble model is made up of two main components. First, multiple “expert modules”

each learn to handle a subset of the complete set of training cases. Second, a classifier,

referred to as the “gating module”, is trained to predict a decision vector (pk) that estimates

the contribution of each expert with respect to the final output. As shown in Figure 2.3,

the näıve output of an MLE ensemble model is simply the sum of the experts’ individual

inferences weighted by pk. All expert modules receive the same input signal x and calculate

their own expected outputs ŝ. The gating module processes the input signal and outputs a

normalized decision vector pk that is used to combine the experts’ outputs.

Instead of linearly combining the outputs of the separate experts, we imagine that the

gating network makes a stochastic decision about which single expert to use on each occasion.

More broadly, we propose swapping out the typical convex combination of the ensemble

model to instead do model selection. By introducing “sparseness” in the output layer of the

gating module, the MLE becomes more selective, e”ectively making a hard decision [21, 79].

Compared to generalist models, which require a large model capacity to achieve a certain

level of speech denoising, a sparse ensemble model can yield the same enhancement quality

even if the composing specialists use much fewer parameters. Subsequently, we claim that
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Figure 2.3: An ensemble model based on the “mixture of local experts” paradigm.

our “sparse MLE” framework can also be a form of model compression. We provide specific

implementation details of the sparse MLE model in Chapter 4.
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2.9 Non-Negative Matrix Factorization

Prior to the advent of deep learning, earlier studies about adaptation through model

selection looked at dictionary-based machine learning methods, such as non-negative matrix

factorization (NMF) or probabilistic latent semantic indexing (PLSI) [80, 81, 82]. For

example, when using NMF for speech enhancement, one common approach is to learn speech

and noise spectrogram “dictionaries” (i.e., a set of basis vectors). To start, NMF solves the

optimization problem:

min
W,H↑0

D(V ||WH) (2.6)

where D is a divergence function, V is a magnitude spectrogram, and W, H are learned

factors. Because of the non-negativity constraint, W can be interpreted as the latent

spectral features and H is their activation in time. Subsequently, the NMF pipeline for

fully-supervised speech enhancement is as follows:

1. We first factorize the magnitude spectrogram of the training data speech corpus Strain

and of the training noise corpus Ntrain.

2. The resulting speech and noise basis vectors (W(S)
dict and W(N)

dict) are kept fixed, treated

as “dictionaries”.

3. Next, the magnitude spectra of the mixture test signal Xtest can be decomposed

using the fixed dictionaries. The resulting test-time activation matrix (Htest) can be

partitioned similar to the dictionaries (into H(S)
test and H(N)

test).

4. Finally, the clean speech estimate may be obtained by multiplying the factored matrices,

i.e., W(S)
dictH

(S)
test.

The success of this dictionary-based fully-supervised pipeline is bounded by the mismatch of

the test-time data with the training data speech and noise templates. With a semi-supervised
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Figure 2.4: Visual example of how non-negative matrix factorization (NMF) may be used
for either (a) fully-supervised or (b) semi-supervised speech enhancement.

pipeline, we can relax this constraint; that is, as long as the test-time noise source is known,

the test-time speech source can be learned. Both NMF approaches are illustrated in Fig. 2.4.

2.10 Universal Speech Models

universal speech models (USMs) extend the insights of the NMF semi-supervised pipeline. If

the unknown source is surely a speech signal, then it may be approximated using a USM [83]

(i.e., a set of templates for many di”erent speakers). In the training stage for the USM, a

speech dictionary is obtained by concatenating submatrices Wi which are the basis vectors of

a training set speaker i = 1, . . . , M , each obtained through a separate NMF decomposition,

i.e., W(S)
dict = [ W1 . . . WM ]. If a noise model W(N)

dict is also available, then the speech

enhancement task is simply a matter of estimating Htest. Because the USM is a larger

model, which surely over-parameterizes the unknown test-time speaker, a block sparsity

constraint is applied. This is reflected in a new optimization criteria:

min
W,H↑0

D(V ||WH) + ε #(H(S)) (2.7)

Based on the block sparsity function #, and with a su!ciently large choice for ε, Eq. (2.7)

is a regularized version of Eq. (2.6) that encourages only a single speaker model to be active.
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In other words, the USM iteratively converges on the best-fit training speaker. The authors

show empirically that the USM (a speaker-independent model) achieves comparable results

to fully-supervised NMF (a speaker-dependent model). Their block-sparse selection of the

best-fit speaker is evidence to the claim that adaptation through model selection enables

reduction in computational complexity. This is because the non-relevant basis vectors from

other speakers are zeroed out using ε. In Chapter 4, we extend the idea of USM using

a real-time deep learning framework which we call “block-sparse gated recurrent units”

(BSGRUs). The proposed BSGRU has its learnable parameters subdivided into a variable

number of learned groups, enabling frame-by-frame adaptation over time-varying audio

signal characteristics, in place of speaker dictionaries.
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Chapter 3

Personalization through Noisy Target Training

In this chapter, we consider few-shot methods for personalizing a speech enhancement

system. As discussed in Chapter 1, achieving personalization without compromising the

target speaker’s privacy is of the highest priority. However, there may be cases wherein

the target speaker consents to providing some small amount of personal data in order to

facilitate an optimized experience. For example, some voice controlled devices (VCDs) have

a one-time enrollment phase during setup, prompting the target speaker to recite a few

template sentences. This process can be burdensome because if the “enrollment data” is

not su!ciently intelligible, the device might need the speaker to re-record. Additionally,

the service provider becomes responsible for storing the speaker-specific recordings securely

on-device. Ultimately, the enrollment step may only yield a few seconds of total clean

speech data from the target speaker. While this data is in-domain and useful for model

adaptation, it is exceedingly few in comparison to standard datasets for training speech

processing machine learning models, often containing thousands of hours of data. Therefore,

the few-shot learning (FSL) problem for PSE is an optimization task of how to best utilize

this scarcely available data without the possibility of model overfitting. In Section 2.6, we

discussed target speaker extraction (TSE) as a popular approach for leveraging enrollment

data. With this dissertation, we envision the worst-case and best-case amounts of available

enrollment data to be either 5 or 30 s so as to minimize the concern of vocal forgery.
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3.1 Transfer Learning

For our discussion, we assume a hypothetical set T that encompasses all of the target

speaker’s clean utterances. Given the privacy concerns and technical di!culties, we assume

that this set is inaccessible to the training algorithm; therefore, it cannot be used for

personalization. In PSE Scenario 1, the short recordings provided by the target speaker

represent a small subset of their unavailable ground-truth clean speech, i.e., Tf -tr ↔ T. The

simplest approach for developing a personalized speech enhancement model would be to

formulate a fully-supervised task over this subset. However, we theorize that the limited

amount of data may result in suboptimal generalization performance and over-fitting. To

remedy this issue, instead of randomly initializing the personalized model’s parameters, one

can first train a speaker-agnostic model and then finetune its parameters using Tf -tr. By

doing this transfer learning, we adapt a generalist model into a specialist model.

Training a generalist requires a large set of many anonymous speakers S as well as a large

set of various non-stationary noises N. A training set of artificial mixture signals x can be

made by selecting random utterances s ↗ Str and noises n ↗ Ntr and summing the signals,

i.e. x = s + n. With each mixture, one may randomly scale n to be louder or quieter,

thereby exposing the model to mixtures with varying signal-to-noise ratios (SNRs). The

generalist model can be described as a mapping function G with parameters WSE which is

trained such that G(x; WSE) = y ↘ s, where the estimate y approximates the training target

s. The generalist’s loss function LSE is equivalent to the discrepancy between estimates and

targets: E(y ≃ s).

LSE = E(y ≃ s) (3.1)

WSE ⇐ arg min
WSE

LSE (3.2)
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There are many possible choices for the signal discrepancy function E . The well-known

signal-to-distortion ratio (SDR) metric [38] is frequently used as a general-purpose loss

function for fully-supervised monaural time-domain speech enhancement [84]. A larger SDR

correlates to improved speech quality, so when used as a neural network loss function, we

minimize the negative of SDR. For a source signal v and estimate signal v̂, negative SDR

loss is defined as follows:

ESDR(v̂ ≃ v) = →10 log10

[ ∑
t
(vt)2

∑
t
(vt → v̂t)2

]

. (3.3)

For generalists, what matters most is their generalization power. Although synthetic

mixtures for fully-supervised training are straightforward to construct, models with low

architectural complexity may not learn much from the data. That is, a smaller model may

fail to enhance certain speakers’ voices or remove particular noises—even if the training

corpora for speech and noise signals were very large. In contrast, a bigger model may

generalize very well, but using it in a resource-constrained device could be burdensome.

The speaker-agnostic speech enhancement model may then be finetuned around the

particular test-time speaker using transfer learning. Transfer learning is a straightforward

fully-supervised approach to personalization, which handles the gap between the large

multi-speaker dataset S and the small target speaker-provided clean dataset Tf -tr. To do this,

we create speaker-specific artificial mixture signals x composed stochastically by sampling

from the limited subset s ↗ Tf -tr and the training noises n ↗ Ntr. The parameters WSE are

once again iteratively updated in order to minimize the distance between estimate signals

y and target signals s. The finetuning loss function is equivalent to Eq. (3.2), but during

finetuning, the model receives exposure to utterances from the target speaker.

The success of transfer learning as a personalization method depends on how e”ective

the pretraining and finetuning steps are. For example, a large model highly generalized
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s ↗ Str (or Tf -tr when transfer learning)

Noise Injection x = s + n; n ↗ Ntr

Enhancement y = G (x; WSE)

Figure 3.1: Multi-speaker (fully-supervised) speech enhancement setup.

thanks to pretraining might barely adjust its parameters during finetuning. On the other

hand, smaller models with weaker generalization capabilities may see a more significant

performance boost through finetuning. Ultimately, the success of finetuning is primarily tied

to the quality and quantity of the finetuning dataset Tf -tr. Suppose the number of signals

within Tf -tr is too few; in that case, finetuning may fail to improve performance even though

Tf -tr consists of the target speaker’s vocal characteristics. Also, because the FSL context

only applies when the target speaker manually provides their clean speech, transfer learning

is not viable without Tf -tr.

Fig. 3.1 shows a visualization of the baseline pretraining process. The training target is

clean speech s and the model parameters WSE are iteratively updated to minimize the loss

function LSE. In the FSL context, the finetuning process is exactly the same as illustrated in

Fig. 3.1; that is, s is sampled from the small speaker-specific dataset Tf -tr, i.e., the enrollment

data. The same signal transformations occur during transfer learning, when adapting the

generalist model into a specialist model. If the target speaker does not provide Tf -tr, the

generalist model remains unadapted and therefore non-personalized.

3.2 Self-Supervised Feature Learning

Here we describe our proposed SSL methods, designed to improve the performance of the

personalized speech enhancement models in either FSL or ZSL contexts. Through SSL, we

aim at pretraining an SE model that can surpass the performance of the baseline generalist.
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This pretraining can su!ce as a personalized solution (i.e., ZSL). Or, we can further finetune

the self-supervised model by using the small amount of target speech signals if they are

available (i.e., FSL).

Our utilization of SSL stems from the assumption that noisy utterances from the target

speaker s̃ ↗ T̃p-tr are much more available than clean ones, i.e., |T̃p-tr| ⇒ |Tf -tr|. Our

proposed pretraining methods aim to exploit these noisy observations as much as possible to

learn the specificity of the test-time speaker. As is the case with SSL methods, the model

parameters will be initialized via a pretext task, which is a made-up task that does not

reflect a true speech enhancement function.

We assert, for example, that smart devices are likely to accrue many noisy recordings

from the test-time speaker over time and with usage, i.e., |T̃p-tr| ⇒ |Tf -tr|. Although we

want to exploit these in-the-wild recordings |T̃p-tr|, we do not know whether the observations

are clean or noisy, i.e., the data is unlabeled. Therefore, we have to assume that |T̃p-tr|

holds contaminated versions of some unobserved target clean speech signal |Tp-tr|. We refer

to this unobserved contamination process as premixture. If we consider a hypothetical set

of premixture noises m ↗ Mtr, then we can form a basic framework for premixture, i.e.,

s̃ = s + m. Because the true speech and noise signals which compose s̃ are unknown, the

premixture observations are unsuitable for conventional fully-supervised speech enhancement

tasks nor for finetuning-based personalization.

Fig. 3.2 summarizes the training procedure of the baseline generalist-based pretraining,

comparing it to our proposed SSL-based pretraining. With the baseline, the SE model is

first pretrained using speaker-agnostic dataset as a generalist and then finetuned using clean

speech signals of the test user This method relies entirely on the finetuning process for

personalization. On the other hand, the proposed methods provide various SSL options to

pretrain the model using noisy, but speaker-specific speech, which serve a better initialization
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Speaker-Agnostic Clean Speech

Training Noise
<latexit sha1_base64="Eld5jZHFHGMzh7l8vNgrzVQve20=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiC11WsA9oQphMp+3QySTM3Ig1BH/FjQtF3Pof7vwbJ20W2npg4HDOvdwzJ4g5U2Db30ZpaXllda28XtnY3NreMXf32ipKJKEtEvFIdgOsKGeCtoABp91YUhwGnHaC8VXud+6pVCwSdzCJqRfioWADRjBoyTcP3BDDKAjS68x3gT5ACjLzzapds6ewFolTkCoq0PTNL7cfkSSkAgjHSvUcOwYvxRIY4TSruImiMSZjPKQ9TQUOqfLSafrMOtZK3xpEUj8B1lT9vZHiUKlJGOjJPKua93LxP6+XwODCS5mIE6CCzA4NEm5BZOVVWH0mKQE+0QQTyXRWi4ywxAR0YRVdgjP/5UXSPq05Z7X6bb3auCzqKKNDdIROkIPOUQPdoCZqIYIe0TN6RW/Gk/FivBsfs9GSUezsoz8wPn8Ac+mV4w==</latexit>
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<latexit sha1_base64="Ck91lrzS8plI9z8HiV6Me5a4CPs=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiG1dSwT6gCWEynbZDJ5MwcyPWEPwVNy4Ucet/uPNvnLRZaOuBgcM593LPnCDmTIFtfxulpeWV1bXyemVjc2t7x9zda6sokYS2SMQj2Q2wopwJ2gIGnHZjSXEYcNoJxle537mnUrFI3MEkpl6Ih4INGMGgJd88cEMMoyBIbzLfBfoAKcjMN6t2zZ7CWiROQaqoQNM3v9x+RJKQCiAcK9Vz7Bi8FEtghNOs4iaKxpiM8ZD2NBU4pMpLp+kz61grfWsQSf0EWFP190aKQ6UmYaAn86xq3svF/7xeAoMLL2UiToAKMjs0SLgFkZVXYfWZpAT4RBNMJNNZLTLCEhPQhVV0Cc78lxdJ+7TmnNXqt/Vq47Koo4wO0RE6QQ46Rw10jZqohQh6RM/oFb0ZT8aL8W58zEZLRrGzj/7A+PwBftKV6g==</latexit>Ntr

<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>⇥
<latexit sha1_base64="QkTlPqyf1tRKoYNnoYZCs9aljbs=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiGzdCBfuAJoTJdNoOnUzCzI1YQ/BX3LhQxK3/4c6/cdJmoa0HBg7n3Ms9c4KYMwW2/W2UlpZXVtfK65WNza3tHXN3r62iRBLaIhGPZDfAinImaAsYcNqNJcVhwGknGF/lfueeSsUicQeTmHohHgo2YASDlnzzwA0xjIIgvcl8F+gDpCAz36zaNXsKa5E4BamiAk3f/HL7EUlCKoBwrFTPsWPwUiyBEU6zipsoGmMyxkPa01TgkCovnabPrGOt9K1BJPUTYE3V3xspDpWahIGezLOqeS8X//N6CQwuvJSJOAEqyOzQIOEWRFZehdVnkhLgE00wkUxntcgIS0xAF1bRJTjzX14k7dOac1ar39arjcuijjI6REfoBDnoHDXQNWqiFiLoET2jV/RmPBkvxrvxMRstGcXOPvoD4/MHfUOV6Q==</latexit>Mtr

<latexit sha1_base64="QkTlPqyf1tRKoYNnoYZCs9aljbs=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiGzdCBfuAJoTJdNoOnUzCzI1YQ/BX3LhQxK3/4c6/cdJmoa0HBg7n3Ms9c4KYMwW2/W2UlpZXVtfK65WNza3tHXN3r62iRBLaIhGPZDfAinImaAsYcNqNJcVhwGknGF/lfueeSsUicQeTmHohHgo2YASDlnzzwA0xjIIgvcl8F+gDpCAz36zaNXsKa5E4BamiAk3f/HL7EUlCKoBwrFTPsWPwUiyBEU6zipsoGmMyxkPa01TgkCovnabPrGOt9K1BJPUTYE3V3xspDpWahIGezLOqeS8X//N6CQwuvJSJOAEqyOzQIOEWRFZehdVnkhLgE00wkUxntcgIS0xAF1bRJTjzX14k7dOac1ar39arjcuijjI6REfoBDnoHDXQNWqiFiLoET2jV/RmPBkvxrvxMRstGcXOPvoD4/MHfUOV6Q==</latexit>Mtr
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Specialist

<latexit sha1_base64="Ck91lrzS8plI9z8HiV6Me5a4CPs=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiG1dSwT6gCWEynbZDJ5MwcyPWEPwVNy4Ucet/uPNvnLRZaOuBgcM593LPnCDmTIFtfxulpeWV1bXyemVjc2t7x9zda6sokYS2SMQj2Q2wopwJ2gIGnHZjSXEYcNoJxle537mnUrFI3MEkpl6Ih4INGMGgJd88cEMMoyBIbzLfBfoAKcjMN6t2zZ7CWiROQaqoQNM3v9x+RJKQCiAcK9Vz7Bi8FEtghNOs4iaKxpiM8ZD2NBU4pMpLp+kz61grfWsQSf0EWFP190aKQ6UmYaAn86xq3svF/7xeAoMLL2UiToAKMjs0SLgFkZVXYfWZpAT4RBNMJNNZLTLCEhPQhVV0Cc78lxdJ+7TmnNXqt/Vq47Koo4wO0RE6QQ46Rw10jZqohQh6RM/oFb0ZT8aL8W58zEZLRrGzj/7A+PwBftKV6g==</latexit>Ntr
<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>⇥

Speaker-Specific Clean Speech

Training Noise

Fine-Tuned
Specialist

Training Noise
<latexit sha1_base64="Ck91lrzS8plI9z8HiV6Me5a4CPs=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmkqMuiG1dSwT6gCWEynbZDJ5MwcyPWEPwVNy4Ucet/uPNvnLRZaOuBgcM593LPnCDmTIFtfxulpeWV1bXyemVjc2t7x9zda6sokYS2SMQj2Q2wopwJ2gIGnHZjSXEYcNoJxle537mnUrFI3MEkpl6Ih4INGMGgJd88cEMMoyBIbzLfBfoAKcjMN6t2zZ7CWiROQaqoQNM3v9x+RJKQCiAcK9Vz7Bi8FEtghNOs4iaKxpiM8ZD2NBU4pMpLp+kz61grfWsQSf0EWFP190aKQ6UmYaAn86xq3svF/7xeAoMLL2UiToAKMjs0SLgFkZVXYfWZpAT4RBNMJNNZLTLCEhPQhVV0Cc78lxdJ+7TmnNXqt/Vq47Koo4wO0RE6QQ46Rw10jZqohQh6RM/oFb0ZT8aL8W58zEZLRrGzj/7A+PwBftKV6g==</latexit>Ntr

<latexit sha1_base64="2DfdF1l21+C75cp/xOVABOCQskw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuRmPPQ==</latexit>⇥

<latexit sha1_base64="iVHVS0Om0XuJ30Kz+BXdBB/IbNA=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJiqhKEgLGChbEI+pCaKnJcp7XqPGTfIKooKwu/wsIAQqz8ARt/g5NmgJYj2To6517de48XC67Asr6NytLyyupadb22sbm1vWPu7nVUlEjK2jQSkex5RDHBQ9YGDoL1YslI4AnW9SZXud+9Z1LxKLyDacwGARmF3OeUgJZcEzsBgbHnpbeZ6wB7gLT4PT/1M8cFmblm3WpYBfAisUtSRyVarvnlDCOaBCwEKohSfduKYZASCZwKltWcRLGY0AkZsb6mIQmYGqTFJRk+0soQ+5HULwRcqL87UhIoNQ08XZnvrea9XPzP6yfgXwxSHsYJsJDOBvmJwBDhPBY85JJREFNNCJVc74rpmEhCQYdX0yHY8ycvks5Jwz5rnN6c1puXZRxVdIAO0TGy0TlqomvUQm1E0SN6Rq/ozXgyXox342NWWjHKnn30B8bnD1wkm2k=</latexit>
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<latexit sha1_base64="iVHVS0Om0XuJ30Kz+BXdBB/IbNA=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJiqhKEgLGChbEI+pCaKnJcp7XqPGTfIKooKwu/wsIAQqz8ARt/g5NmgJYj2To6517de48XC67Asr6NytLyyupadb22sbm1vWPu7nVUlEjK2jQSkex5RDHBQ9YGDoL1YslI4AnW9SZXud+9Z1LxKLyDacwGARmF3OeUgJZcEzsBgbHnpbeZ6wB7gLT4PT/1M8cFmblm3WpYBfAisUtSRyVarvnlDCOaBCwEKohSfduKYZASCZwKltWcRLGY0AkZsb6mIQmYGqTFJRk+0soQ+5HULwRcqL87UhIoNQ08XZnvrea9XPzP6yfgXwxSHsYJsJDOBvmJwBDhPBY85JJREFNNCJVc74rpmEhCQYdX0yHY8ycvks5Jwz5rnN6c1puXZRxVdIAO0TGy0TlqomvUQm1E0SN6Rq/ozXgyXox342NWWjHKnn30B8bnD1wkm2k=</latexit>

Sf tr

Speaker-Specific Clean Speech
<latexit sha1_base64="iVHVS0Om0XuJ30Kz+BXdBB/IbNA=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJiqhKEgLGChbEI+pCaKnJcp7XqPGTfIKooKwu/wsIAQqz8ARt/g5NmgJYj2To6517de48XC67Asr6NytLyyupadb22sbm1vWPu7nVUlEjK2jQSkex5RDHBQ9YGDoL1YslI4AnW9SZXud+9Z1LxKLyDacwGARmF3OeUgJZcEzsBgbHnpbeZ6wB7gLT4PT/1M8cFmblm3WpYBfAisUtSRyVarvnlDCOaBCwEKohSfduKYZASCZwKltWcRLGY0AkZsb6mIQmYGqTFJRk+0soQ+5HULwRcqL87UhIoNQ08XZnvrea9XPzP6yfgXwxSHsYJsJDOBvmJwBDhPBY85JJREFNNCJVc74rpmEhCQYdX0yHY8ycvks5Jwz5rnN6c1puXZRxVdIAO0TGy0TlqomvUQm1E0SN6Rq/ozXgyXox342NWWjHKnn30B8bnD1wkm2k=</latexit>
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<latexit sha1_base64="iVHVS0Om0XuJ30Kz+BXdBB/IbNA=">AAACCXicbVC7TsMwFHXKq5RXgJHFokJiqhKEgLGChbEI+pCaKnJcp7XqPGTfIKooKwu/wsIAQqz8ARt/g5NmgJYj2To6517de48XC67Asr6NytLyyupadb22sbm1vWPu7nVUlEjK2jQSkex5RDHBQ9YGDoL1YslI4AnW9SZXud+9Z1LxKLyDacwGARmF3OeUgJZcEzsBgbHnpbeZ6wB7gLT4PT/1M8cFmblm3WpYBfAisUtSRyVarvnlDCOaBCwEKohSfduKYZASCZwKltWcRLGY0AkZsb6mIQmYGqTFJRk+0soQ+5HULwRcqL87UhIoNQ08XZnvrea9XPzP6yfgXwxSHsYJsJDOBvmJwBDhPBY85JJREFNNCJVc74rpmEhCQYdX0yHY8ycvks5Jwz5rnN6c1puXZRxVdIAO0TGy0TlqomvUQm1E0SN6Rq/ozXgyXox342NWWjHKnn30B8bnD1wkm2k=</latexit>

Sf tr

Pre-Training (can be also used as a ZSL solution) Fine-Tuning (i.e., the downstream FSL task)

Baseline
PSE

Proposed
SSL-Based

PSE

Transfer

Figure 3.2: An overview of the baseline and proposed personalization methods.

point for the subsequent finetuning process, leading to better SE performance. The pretrained

models can also conduct a certain level of SE as a ZSL model, while the FSL-based finetuning

tends to improve the pretrained model. Both approaches to personalization are based on

transfer learning. Finetuning via FSL improves the baseline SE performance, exposing the

generalist to the target speaker. However, the proposed SSL methods already achieve a

certain level of personalization by using noisy speech signals of the target speaker, leading

to a better ZSL solution than the generalist.

3.2.1 Pseudo Speech Enhancement

Depending on the user’s test-time acoustic conditions, it is likely that the premixture noise

component m has a loudness that varies over time. Then it follows that, at certain times,

this premixture noise may be quiet enough such that the test-time speaker’s voice s is the

dominant signal. In these cases where there is a favorable premixture with a high SNR, the

noisy speech utterances s̃ could be used as pseudo speech references. We can then formulate

a pretraining process which we call pseudo speech enhancement (PseudoSE). This method

operates using “doubly-degraded” artificial mixture signals. We construct the model inputs

by sampling the abundant premixture set s̃ ↗ T̃p-tr and injecting the additional training

noises n ↗ Ntr, i.e., x̃ = s̃ + n. This is a double-degradation process as s̃ has been already

contaminated by m̃.
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s ↗ Tp-tr

Premixture s̃ = s + m; m ↗ Mtr

Noise Injection x̃ = s̃ + n; n ↗ Ntr

Enhancement ỹ = F (x; WPseudoSE)

Figure 3.3: Single-speaker (self-supervised) pseudo speech enhancement setup.

Consequently, the self-supervised model is a mapping function F with parameters

WPseudoSE that is trained to remove the injection noise and recover the pseudo speech target,

i.e., F(x̃; WPseudoSE) = ỹ ↘ s̃. Note that this self-supervised objective is not equivalent to

the fully-supervised objective due to the di”erence in training target. F is only trained to

recover the premixture utterance s̃, therefore it is not a true speech enhancement function,

i.e., WPseudoSE ⇑= WSE.

LPseudoSE = E(ỹ ≃ s̃) (3.4)

WPseudoSE ⇐ arg min
WPseudoSE

LPseudoSE (3.5)

Fig. 3.3 shows a visualization of the PseudoSE pretraining process. The training target

is pseudo-clean speech s̃, therefore the model parameters WPseudoSE are iteratively updated

to minimize the loss function LPseudoSE. We simulate the process of sampling from the

in-the-wild recordings, s̃ ↗ S̃p-tr, using the premixture data transformation. After the model

parameters WPseudoSE are learned, we may apply finetuning using known clean speech from

the scarce set Tf -tr. In this FSL personalization context, the training targets are genuine

clean speech utterances s ↗ Tf -tr. Therefore, the parameters from the pseudo enhancement

function WPseudoSE are iteratively updated in order to fit a real speech enhancement function.

Once again, the finetuning loss function is equivalent to Eq. (3.2) using the speaker-specific

mixtures.
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There are trade-o”s to note when using the proposed NTT solution. On one hand,

the success of PseudoSE pretraining is bounded by the noisiness of s̃, the impure training

targets. But on the other hand, this pretraining scheme uses data derived only from the

target speaker, thereby bypassing the need for generalization. Unlike the baseline method,

which recasts a generalist as a specialist, PseudoSE pretraining directly develops a specialist

model. However, the PseudoSE model could under perform when compared to a hypothetical

fully-supervised model exposed to ample clean speech from the target speaker. If finetuning

is not possible, the PseudoSE model could serve as a zero-shot solution on its own. But if

finetuning is possible, we claim that PseudoSE serves as a more optimal pretraining scheme

as opposed to the baseline speaker-agnostic SE.

3.2.2 Contrastive Mixtures

We hypothesize that the quality of the pretraining procedure greatly impacts how the

downstream denoising model will personalize. Even if the premixed noisy speech set T̃p-tr

and the deformation noise set Ntr are large, the quality of the features learned through

PseudoSE are bounded by how noisy T̃p-tr really is. Our proposed contrastive mixtures

(CM) pretraining procedure addresses this by employing a pairwise contrastive learning

mechanism. In the CM framework, the denoising model F pretrains over pairs of mixtures

(x̃1, x̃2) and outputs pseudo-cleaned estimates (ỹ1, ỹ2). We create two kinds of mixture

pairs, positive and negative, which are illustrated in Fig. 3.4; note that solid lines indicate

signal path while dashed lines show loss terms.

In a positive pair, both input examples (x̃↓
1 , x̃↓

2 ) share the same premixture source s̃↓,

but are di”erently deformed; that is, the mixing process makes the input pair dissimilar.

Therefore, in addition to maximizing the similarities between estimates and source (ỹ↓
1 to

s̃↓ and ỹ↓
2 to s̃↓), the model F must also satisfy the contrastive objective based on the fact
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Figure 3.4: The proposed framework for contrastive mixtures.

that ỹ↓
1 and ỹ↓

2 stemmed from the same pseudo source. We express these objectives as a

positive pair loss function Lp in the following form:

Lp = E(s̃↓||ỹ↓
1 ) + E(s̃↓||ỹ↓

2 ) + εp

[
E(ỹ↓

1 ||ỹ↓
2 )

]
, (3.6)

where εp scales the contribution of the contrastive loss term.

In a negative pair, each mixture is made from a di!erent pseudo source (s̃↔
1 ⇑= s̃↔

2 ),

but with a shared deformation, i.e., x̃↔
1 = s̃↔

1 + n↔ and x̃↔
2 = s̃↔

2 + n↔; in other words,

the negative pair mixing process makes the originally di”erent inputs more similar to one

another. Accordingly, in addition to the source-wise denoising objectives, the dissimilarity

between the estimates ỹ↔
1 and ỹ↔

2 must be taken into consideration. We express these

objectives as a negative pair loss function Ln in the following form:

Ln = E(s̃↔
1 ||ỹ↔

1 ) + E(s̃↔
2 ||ỹ↔

2 )

+ εn

[
max

(
E(s̃↔

1 ||s̃↔
2 ), E(ỹ↔

1 ||ỹ↔
2 )

)]
, (3.7)

where εn controls the contribution of the contrastive loss term. Note that the max function

sets up the bound for the disagreement term E(ỹ↔
1 ||ỹ↔

2 ) comparing it with the “desired” dis-

agreement level of the target pseudo sources E(s̃↔
1 ||s̃↔

2 ), rather than enforcing an unbounded

disagreement.
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Both Lp and Ln consist of two terms: the source-to-estimate errors and the estimate-to-

estimate errors. The former term characterizes the main speech enhancement loss, while

the latter term provides the proposed contrastive regularization. The model ultimately

minimizes the sum of these two losses,

LCM =
T∑

t=1
Lp(t) +

T∑

t=1
Ln(t) (3.8)

WCM ⇐ arg min
WCM

LCM, (3.9)

where T is the number of positive or negative pairs within the batch and Lp(t) and Ln(t)

denote the loss for the t-th pair. If the regularizing contrastive terms are omitted, i.e.,

by setting εp = 0 and εn = 0, it can be shown that LCM reduces to Eq. (3.4). Four our

experiments, we set T to be half of the batch size. To find optimal choices for εp and εn,

we run an ablation study as described in Section 3.3.4.

Our proposed CM approach di”ers from the SimCLR model [85] in multiple regards: (a)

it uses a more sophisticated noise injection for data augmentation to mimic the real-world

noisy speech mixture generation process, i.e. by using non-stationary noise sources; (b)

the introduction of the negative pairs more precisely reflects the source separation concept

underlying our SE problem and yields a more discriminative feature than a positive pair

only; and, (c) having the traditional SE loss term prevents trivial solutions to the contrastive

loss-only case—estimating very similar ỹ↔
1 and ỹ↔

2 that do not recover the pseudo sources.

As illustrated in Fig. 3.5, with positive pairs, there is a single training target, pseudo

source s̃↓. With negative pairs, there are two di”erent training targets, pseudo sources s̃↔
1

and s̃↔
2 . Model parameters WCM are iteratively updated to minimize the loss function LCM.
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Positive Pair Formulation

s ↗ Tp-tr

Premixture s̃↓ = s + m; m ↗ Mtr

Noise Injection x̃↓
1 = s̃↓ + n↓

1 ; n↓
1 ↗ Ntr

Noise Injection x̃↓
2 = s̃↓ + n↓

2 ; n↓
2 ↗ Ntr

Enhancement ỹ↓
1 = F

(
x̃↓

1 ; WCM
)

Enhancement ỹ↓
2 = F

(
x̃↓

2 ; WCM
)

Negative Pair Formulation

s1 ↗ Tp-tr

Premixture s̃↔
1 = s1 + m1; m ↗ Mtr

s2 ↗ Tp-tr

Premixture s̃↔
2 = s2 + m2; m ↗ Mtr

Noise Injection x̃↔
1 = s̃↔

1 + n↔; n↔
1 ↗ Ntr

Noise Injection x̃↔
2 = s̃↔

2 + n↔

Enhancement ỹ↔
1 = F

(
x̃↔

1 ; WCM
)

Enhancement ỹ↔
2 = F

(
x̃↔

2 ; WCM
)

Figure 3.5: Single-speaker (self-supervised) contrastive mixtures setup.
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3.2.3 Data Purification

When it comes to fully-supervised pretraining, we know that the target signals are clean

because they originate from the large labeled dataset Str. However, the target signals’

cleanliness is ambiguous in the case of self-supervised pretraining, which utilizes T̃p-tr as

the pseudo source. Based on our formulation of the premixture process in Fig. 3.3, two

factors determine whether the pseudo sources s̃ are too degraded to be usable. These are:

the sparsity of premixture noise m, as well as the segmental SNR between s and m. For

example, if m is su!ciently sparse, portions of s̃ may contain near-clean speech. Considering

all the available noisy utterances s̃ ↗ T̃p-tr, we hypothesize that utterances with a higher

SNR may serve as more useful target signals than other noisier utterances, even if none of

them are completely clean. The proposed self-supervised pretraining methods can benefit

from knowing where the cleaner frames within s̃ may be.

For that reason, we put forward a data purification (DP) pipeline. In essence, we

modify the discrepancy function E to incorporate a weighting vector p. To generate this DP

weighting vector, we first train a separate neural network that estimates the frame-by-frame

SNR of the premixtures. The quality estimator network h is a regressive model trained over a

diverse set of training speakers and noises (i.e., Str and Ntr). It outputs a vector of segmental

SNRs, ω̂. Hence, the network h works as a general-purpose speech quality estimator, that

has no prior knowledge of the test-time speaker or the test-time noisy environment. Given

an estimate signal v̂ and a target signal v both of length L, their residual is r = v → v̂, and

the frame-by-frame/segmental SNR (SegSNR) is defined as:

SegSNRj(v, v̂) = 10 log10





∑Hj+N↗1
i=Hj

(
w(i↗Hj)vi

)2

∑Hj+N↗1
i=Hj

(
w(i↗Hj)ri

)2



 , (3.10)
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Figure 3.6: Illustration of the SNR predictor inputs and outputs. The first subplot features
an example premixture/pseudo source s̃. In the second subplot, the SNR predictor network
h estimates the frame-wise (i.e., segmental) SNR of the premixture. The training objective
of h is to minimize the loss between estimates ω̂ and targets ω. The third subplot shows
the frame-by-frame SNR estimates converted into weights using the logistic function, i.e.
p = ϑ(h(s̃)).

where N is the frame size, H is the hop size, j is a zero-based frame index (i.e. 0 ⇓ j ⇓

⇔ L

H
↖ → 1), and vector w comes from the Hann window function of length N . We then

formulate the training process of the SNR Predictor network as follows:

x = s + n; s ↗ Str, n ↗ Ntr

ω = SegSNR(s, x)

ω̂ = h(x; Wh)

Wh ⇐ arg min
Wh

MSE(ω̂, ω), (3.11)

Note that the SNR predictor inputs are of length L, but its outputs are of length ⇔ L

H
↖; in

other words, x’s length is measured in samples but ω̂’s length is measured in frames.
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We can now apply a DP step to improve the reliability of the pseudo-target s̃ during

PseudoSE and CM pretraining. With each iteration of pretraining, the SNR predictor h

first analyzes the input premixtures to estimate frame-wise SNRs, ω̂ = h(s̃). Next, we apply

the logistic function ϑ to the ω̂ logits in order to obtain frame-by-frame weights:

p = ϑ(ω̂) = 1
1 + e↗ω̂

. (3.12)

Lastly, we modify both PseudoSE and CM pretraining procedures to use EDP which promotes

speech-prominent frames in the loss function. To that end, we re-write Eq. (3.10) to

incorporate the frame-by-frame weights p. That is, the signal discrepancy is computed

between windowed segments, which are then weighted by p and finally averaged across all

frames. Because this is a neural network loss function to be minimized, we use the negative

of weighted segmental SNR, which we denote as SegSNR.

EDP(ỹ ≃ s̃) = SegSNR(ỹ, s̃; p)

= → 1
J

J↗1∑

j=0
pj



10 log10

∑Hj+N↗1
i=Hj

(
w(i↗Hj)s̃i

)2

∑Hj+N↗1
i=Hj

(
w(i↗Hj)r̃i

)2



 (3.13)

Here, J is the number of frames ⇔ L

H
↖. Additionally, the residual vector is defined as r̃ = s̃→ ỹ.

This regressive model h does not need to have pinpoint accuracy; as shown in Fig. 3.6, as

long as ω̂ decently approximates ω, the weights p will accurately reflect the position of

speech-prominent frames in the data. If we substitute EDP for E into the original PseudoSE

loss function—Eq. (3.4)—we obtain a new data purified loss function:

LPseudoSE+DP = EDP(ỹ ≃ s̃). (3.14)
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Note that the slope of the logistic function could be further controlled by using an additional

temperature weight applied to ω̂, which we opt not to investigate to focus more on the main

contributions.

Though substituting EDP within the PseudoSE loss function is straightforward, it requires

more nuance with the CM loss function. CM utilizes pairwise inputs, so therefore, we must

compute pairwise weights as well.

p↓ = ϑ(h(s̃↓)), p↔
1 = ϑ(h(s̃↔

1 )), p↔
2 = ϑ(h(s̃↔

2 )) (3.15)

Specifically in the case of positive pairs, the underlying pseudo source is the same, which

is why there is only a single set of weights p↓. Negative pairs are made up of two pseudo

sources, so there are two sets of weights. For the negative pair estimate-to-estimate losses,

we use the product of the two weight vectors, i.e. p↔ = p↔
1 · p↔

2 . Using the appropriate

weights for every term, we rewrite Eq. (3.6) and Eq. (3.7) as:

Lp+DP =SegSNR(ỹ↓
1 , s̃↓; p↓) +

SegSNR(ỹ↓
2 , s̃↓; p↓) +

εp

[
SegSNR(ỹ↓

1 , ỹ↓
2 ; p↓)

]
(3.16)

Ln+DP =SegSNR(ỹ↔
1 , s̃↔

1 ; p↔
1 ) +

SegSNR(ỹ↔
2 , s̃↔

2 ; p↔
2 ) +

εn

[
max

(
SegSNR(s̃↔

1 , s̃↔
2 ; p↔),

SegSNR(ỹ↔
1 , ỹ↔

2 ; p↔)
)]

(3.17)
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The data-purified positive and negative loss functions may now be substituted in Eq. (3.8)

to obtain the overall CM+DP loss function:

LCM+DP =
T∑

t=1
Lp+DP(t) +

T∑

t=1
Ln+DP(t). (3.18)

3.3 Experiment

3.3.1 Setup

In our experiments, we compare the baseline fully-supervised approach with the two proposed

self-supervised approaches for training a personalized speech enhancement model. Note that

there are two rounds of model training (Fig. 3.2): one round that pretrains the model, and

another “finetuning” round that only uses the available clean target speaker data (either

5 sec or 30 sec). We also assess the benefits of adding the data purification step to both

self-supervised methods. We use the following shorthand notation to refer to each pretraining

method:

• SE: Models trained to minimize Eq. (3.2). This is our generalist baseline, the speaker-

agnostic speech enhancement system. It generalizes well only if its model capacity is

large enough.

• PseudoSE: Models trained to minimize Eq. (3.4). The proposed self-supervised

method relies solely on noisy speaker-specific data T̃p-tr.

• PseudoSE+DP: Models trained to minimize Eq. (3.14). This method refines the

prior method through data purification. That is, the model uses a weighted segmental

MSE as its discrepancy function in order to minimize the feature learning contribution

of noise-dominant frames within T̃p-tr.

37



• CM: Models trained to minimize Eq. (3.8). This self-supervised method uses pairwise

inputs that share either the same pseudo source or injection noise. CM provides

additional regularization to PseudoSE through the contrastive loss terms.

• CM+DP: Models trained to minimize Eq. (3.18). The pairwise weights inform

the model of the mutual speech-dominant frames, thereby focusing the contrastive

regularization specifically wherever the test-time speech is prominent.

3.3.2 Datasets

Table 3.1 provides a glossary of all the datasets and their notation used throughout this

paper. Note that we subscript all datasets with either ‘tr’, ‘vl’, or ‘te’ to indicate training,

validation, or test partitions respectively. For this paper, we limit the scope of personalization

specifically regarding the test-time speaker and not the test-time environment. The extension

of our methods towards environment adaptation is straightforward.

Table 3.1: Glossary of datasets paired with experiment-specific corpora.

Set Split Duration Quantity Description

S Str 443 h 1,132 spkrs Clean speech from many anonymous
speakersSvl 8 h 20 spkrs

T

Tp-tr 22.5 min/spkr

20 spkrs

Used to simulate user’s noisy speech which
we call “premixture” data—T̃ = T ↙ MTp-vl 60 sec/spkr

Tf -tr up to 30 sec/spkr Treated as enrollment data—user-provided
scarce clean speech—used only for FSLTf -vl 30 sec/spkr

Tte 30 sec/spkr Set-aside clean speech from user used only
for objective model evaluation

M Mtr 48 h 13,339 noises Premixture noises that degrade majority
of user’s utterances; unknown to the modelMvl 7 h 1,929 noises

N

Ntr 5 h 616 noises Injection noises used during model
pretraining and fine-tuningNvl 0.5 h 60 noises

Nte 0.5 h 60 noises
Injection noises never seen during any
model training, used to prepare target
speaker-specific test sets
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In order to report objective signal improvement results, we designed experiments that

simulate the personalization context. We therefore artificially mix signals from three publicly-

available audio datasets: we use LibriSpeech [30] for clean speech recordings (S and T),

FSD50K [34] for premixture noises (M), and MUSAN [32] for the injected noises (N).

Out of the LibriSpeech train-clean-100 subset, we set aside 20 speakers to be the

personalization targets; in other words, there are twenty speaker-specific datasets T(i) where

i ↗ {1, . . . , 20}. We omit the speaker index i going forward to simplify notation. The

remaining speakers within Librispeech’s train-clean-100 and train-clean-360 subsets are

consolidated into the speaker-agnostic dataset S. For all speech and noise corpora, we discard

audio files shorter than 4 sec and resample everything to 16 kHz.

We partition each speaker-specific dataset T into five sets as shown in Table 3.1. The

utterances are sorted by duration and grouped such that approximately 30 sec are available

for testing the model (Tte), 30 sec for validating finetuned models (Tf -vl), 60 sec for FSL-based

finetuning (Tf -tr), and 60 sec to validate the self-supervised pretraining methods (Tp-vl).

The remaining 22.5 min are used for pretraining (Tp-tr). Subsequently, for each of the 20

personalization targets, a test set of 100 mixtures is constructed by combining Tte with Nte.

Mtr and Mvl follow the train and val splits provided in FSD50K’s dev folder. Using the

FSD50K provided tags, we omit files tagged as either “speech” or “music”. The unseen test-

time noises, Nte, are derived from MUSAN’s sound-bible folder. Using MUSAN’s free-sound

folder, sixty random noises are set aside for Nvl and the remaining noises make up Ntr.

These datasets are carefully chosen and arranged to represent our use-case scenarios.

First, we need a large dataset S to encompass diverse speaker characteristics. Second, we

ensure that the 20 personalization target speakers have enough clean speech signals Tp-tr

in order to simulate the abundant premixture signals T̃p-tr. The premixture noise sources

Mtr are also very diverse so as to simulate various acoustic environment the user can be
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situated in. Tallying the unique FSD50K audio tags, our experiment simulates each of the 20

target speakers being degraded by approximately 160 noise types. Through the premixture

process, we combine s and m such that the SNR is uniformly random between 0 dB to

15 dB. Psychoacoustic research has shown that this SNR range describes many real-world

sound environments [86, 87]. Lastly, mixtures, which are made using the injection noise set

N, have SNRs chosen uniformly at random between →5 dB to 5 dB.

There are other choices of speech datasets, besides Librispeech, which contain real-world

recordings of in-the-wild noisy speech, e.g., AudioSet [88]. Although our proposed self-

supervised training methods are intended for in-the-wild data, it is often the case that such

datasets do not possess enough noisy recordings from a single consistent speaker. More

importantly, in order for us to report objective signal improvement, we require ground-truth

clean speech recordings from the test-time speaker. Therefore, our experiments simulate the

personalization problem through the three separate corpora, constructing numerous artificial

mixtures and premixtures.

With our experiments, we report three metrics frequently used in speech enhancement

research: SDR [38], PESQ [42], and extended STOI [41]. Unlike the objective measurement

SDR, the latter two are perceptual metrics that highly correlate to speech intelligibility.

As all of our loss functions are SDR-based, our models in this experiment do not explicitly

optimize for intelligibility. Each one of the 20 target speakers has their own test set, made

up of 100 mixtures with input SNR between →5 dB to 5 dB. All three metrics are computed

between the estimate signals and their corresponding target signals.

3.3.3 Neural Network Architectures

Well-established neural network approaches for speech enhancement utilize time-frequency

masking. In order to overcome latency and phase reconstruction limitations, more recent
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Table 3.2: List of model architectures, configurations, and sizes.

Architecture Size Configuration Params MACs

Conv-TasNet

Large Bc = 64, Hc = 256 1.0M 8.4G
Medium Bc = 32, Hc = 128 437.8k 3.5G
Small Bc = 16, Hc = 64 224.1k 1.8G
Tiny Bc = 8, Hc = 32 138.8k 1.1G

neural network algorithms operate in an end-to-end manner, i.e., by learning a mapping

directly between the time-domain input and output signals [89, 90, 91]. To that end,

we assess the performance of generalist and specialist speech enhancement models using

ConvTasNet (CTN), which is a popular fully-convolutional time-domain model for audio

separation [49]. It operates as follows: first, the encoder module maps input waveforms into

latent representations. Then, the separation module calculates a multiplicative mask that

separates the target source. Lastly, the decoder module maps the masked latent features

back to the time-domain, yielding estimate waveforms. The CTN architecture may be

generalized to separate multiple audio sources; however, our separation module estimates

only one mask to specifically separate speech from noise. With each size variant, we adjust

the number of channels in the separation module’s bottleneck (Bc) as well as the number of

channels in convolutional blocks (Hc) such that the expansion ratio Hc/Bc ↘ 4 [92].

As shown in Table 3.2, we designed a tiny, small, medium, and large-sized variant

of CTN such that the total number of trainable parameters is less than or equal to one

million. MACs indicate the number of multiply-accumulate operations, correlating to

computational complexity. Through our experiments, we report the performance of the

di”erent sized variants to observe whether this model compression trend applies to the

modern fully-convolutional models.
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3.3.4 Implementation Details

All models were implemented using PyTorch [93] and trained on NVIDIA Tesla V100 graphics

cards. We used the ConvTasNet implementation found in the Asteroid package [94]. All

experiments have a fixed batch size of 64. We utilize the Adam optimizer [95] with an initial

learning rate of 1e → 3. When finetuning over clean speech data (Tf -tr), the learning rate is

instead 1e → 4. For every 1000 mixtures processed, we compute SDR improvement averaged

over a fixed set of 100 validation mixtures; the trial is terminated if the mean validation

SDR does not improve after 100 000 further mixtures.

Using the described early stopping scheme, we observed various trends with regards to

the training time. On average, generalist models trained over 1.4 M mixtures for all four

sizes, whereas specialist models trained over 851 k, 803 k, 637 k, and 593 k mixtures for the

Tiny, Small, Medium, and Large model sizes respectively. When these models undergo

finetuning using 5 sec of clean speech, the specialists converge after seeing 6.4 k, 6.0 k, 5.7 k,

and 5.2 k mixtures for the Tiny, Small, Medium, and Large model sizes respectively.

Contrastive Mixtures Ablation Study

Prior to starting the full personalization experiment, we first determine optimal values for εp

and εn which modulate the contrastive mixtures positive and negative loss terms—Eq. (3.6)

and Eq. (3.7) with DP variants Eq. (3.16) and Eq. (3.17). Therefore, we run an ablation

study of contrastive mixtures by performing a grid search over potential choices: 1, 1e → 1,

1e → 2, 1e → 3, 1e → 4, and 0. We can assess the e”ectiveness of the positive and negative

pairs by setting either one of εn or εp to 0, respectively. For the purposes of the ablation

study, we run experiments in which the personalized speech enhancement system is fixed

as a small ConvTasNet as specified in Table 3.2. This is done for three out of the twenty

personalization target speakers from LibriSpeech. This results in 216 total trials, given that
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Figure 3.7: Ablation study of the contrastive mixtures (CM) loss function, where we vary
εp and εn to adjust the contribution of the positive and negative pair loss terms. Pseudo-
enhancement is performed using the small ConvTasNet architecture, and results are averaged
across three test-time speakers.

there are 36 ε combinations and 3 target speakers, plus the option for data purification to be

enabled or disabled. We report the validation set signals’ SDRs after pseudo-enhancement,

averaged across the three speakers and across 100 validation premixtures utterances. In

summary, a small ConvTasNet is trained over speaker-specific premixtures using a batch

size of 64, a learning rate of 1e → 3, and the CM loss function: either Eq. (3.8) or (3.18).

From Fig. 3.7, we observe that there are many working combinations of εp and εn, so

long as εp < 1. This suggests that CM is robust to the hyperparameter selection. The

top-left corner of both subplots represents models trained with the contrastive loss terms

disabled—e”ectively, trained through PseudoSE. By scanning the left-most column and top-

most row, we can see that the negative pair loss terms improve the model more significantly

than the positive pair loss terms.
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When pretraining without data purification, the most-optimal configuration happens to

be with εn = 1 and εp = 0, yielding a 0.34 dB (or 4.4 %) improvement over PseudoSE. If

both εs are non-zero, we see slight variations in the validation performance. When the noisy

training data is non-purified, it is possible that the positive pair contrastive loss compels the

model to enforce similarity on highly degraded pseudo-sources. These cases emphasizing

premixture noise reconstruction similarity could cause the learned parameters to drift slightly

away from speech-focused personalization.

The bottom subplot of Fig. 3.7 shows models pretraining through CM with data purifi-

cation. Here, the most-optimal configuration is εn = 0.001 and εp = 0.1; the self-supervised

model sees a 0.43 dB (or 6.6 %) improvement over PseudoSE. Notably, the positive pair-only

models are able to obtain a 0.32 dB (or 4.9 %) improvement. With the CM loss functions

weighted towards speech-dominant frames, we see that the positive and negative loss terms

synergies more e”ectively.

One last observation is that the validation SDR of models using DP is overall lesser than

that of models not using DP. This follows our hypothesis that the DP-based loss functions

are more similar to the true fully-supervised speech enhancement loss. Note that all the

self-supervised models are assessed on pseudo enhancement during validation. Therefore,

it is understandable that the DP-based models have a lesser validation SDR improvement.

The metrics computed at test-time assess true speech enhancement performance; therefore,

observing this trend during validation alludes to greater enhancement.

Given our observation that CM works for many configurations, as a convenience for all

other experiments, we set εn = 0.1 and εp = 0.1 with both non-purified and purified models.
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Figure 3.8: noisy-target training (NTT) experiment results.

3.3.5 Results

Next, we discuss the results from the main experiment. As described in in Section 3.3.1,

we consider 20 target speakers, 4 model sizes, 4 self-supervised pretraining methods, and 2

possible amounts of clean speech data. In terms of model checkpoints, there are 4 unadapted

SE models, 160 fine-tuned SE models, 320 self-supervised PSE models, and 640 fine-tuned

PSE models, resulting in a total of 1124 trials.

Fig. 3.8 shows test set results in terms of three signal quality metrics defined in Section 2.2.

The improvement for each metric (SDR, PESQ, and STOI) may be calculated by subtracting

the average input value from the average value after enhancement. Our results are averaged

over the 100 test set utterances for each of the 20 target speakers. The shading of each bar

corresponds to the amount of clean speech data from the target speaker used for finetuning:

0 sec (i.e., no finetuning), 5 sec, and 30 sec. Performances reported using 0 sec represent

the ZSL capabilities of the pretraining method. We explore FSL contexts of 5 sec and

30 sec to investigate high and low amounts of data e!ciency. The left-most boxplots within

the SE column represent unpersonalized / generalist performance. Error bars show the
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specific 95%-confidence interval per model and training configuration, averaged over all

target speakers.

ZSL Personalization Performance

Bars with the darkest shading represent the performance of models in the ZSL personalization

context, in which the models lack access to clean speech from the target speaker.

Generalist Models’ Performance The SE column’s left-most bars show the performance

of the bare generalist models’ performance. The generalists are able to enhance the noisy

test-time speakers in all cases, but it is clear that the larger models (bars labeled L or M) show

much better generalization performance (up to 11.23dB SDR after enhancement) than the

smaller ones (lower rows). For the tiny generalist models, the average SDR after enhancement

is 8.92dB. This 2.31 dB range reinforces our argument that the smaller generalists tend to

be poorer in generalization. Note that these baseline SE models are non-personalized. As

they are without any adaptation, we can observe that the generalists’ performance correlates

with the architectural complexity because they are all trained using a large dataset.

Personalization using PseudoSE The PseudoSE column shows the performance of

the self-supervised models trained through pseudo enhancement of noisy speech targets.

The model inputs are doubly-degraded observations of the test-time speaker (T̃p-tr is mixed

with additional noise sources Ntr), and the model näıvely recovers the pseudo-source. There

is a chance that the pseudo targets are too far from clean speech, deviating the learned

parametric function from the ideal personalized SE model. However, it is also possible

that some parts of these pseudo speech sources are somewhat clean enough in order for the

model to learn the target speaker’s speech traits. The left-most bars (darkest shade) of the

PseudoSE column do reveal success in personalization—note that the confidence interval
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of SDR enhancement narrows by using PseudoSE pretraining compared to SE pretraining.

This trend is less obvious with perceptual metrics PESQ and STOI, but it is to be expected

as the models’ loss functions are SDR-based. PseudoSE does produce improvements over the

SE pretraining when the models are tiny (9.53 vs. 8.91) or small (9.94 vs. 9.77). However,

when the model complexity is large enough, we see that PseudoSE is unable to compete

with the generalist model. Compare the largest model trained using PseudoSE against the

largest speaker-agnostic SE model (10.28 vs. 11.23). Therefore, we conclude that PseudoSE’s

personalization performance is significant only when the model is incapable of learning from

the large generic dataset.

Impact of DP with PseudoSE As shown in our prior work [23], DP can identify cleaner

frames from premixture signals T̃p-tr and improve the usability of the target speaker’s noisy

speech signals. We observe a similar trend with our ConvTasNet-based experiments. In

particular, our results show that the PseudoSE+DP pretraining scheme in the ZSL context

yields greater improvements over the plain PseudoSE in the large model than in the smaller

ones. For example, introducing DP lifts the average performance of PseudoSE by 0.63 dB

(10.91 vs. 10.28) in the large models, while the tiny models only see an average boost of

about 0.38 dB (9.91 vs. 9.53). Because PseudoSE’s e!cacy is limited in the large models,

the gains from introducing data purification are more prominent. However, it is still the

case that the tiny model gains the most from the consolidated personalization process, e.g.,

a 1.0dB improvement from the baseline SE model (9.91 vs. 8.91).

Personalization using CM The ZSL results of the CM column are noteworthy because

they compete with the PseudoSE+DP results despite using non-purified data. For

example, CM results in better performance than PseudoSE+DP in large models (11.06

vs. 10.91) and works on par with PseudoSE+DP in small or tiny models. This shows
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that the proposed CM loss functions help the model learn robust features for personalized

SE even though the signals used are noisy observations (or unlabeled in the sense of

classification). These results validate the powerful feature learning capabilities of contrastive

learning. Although the contrastive self-supervised learning paradigm has been explored in

other research areas (e.g., SimCLR for computer vision), we note that the proposed CM

pretraining method is specifically designed for source separation problems.

Impact of DP on CM We find that CM+DP does not introduce significant improve-

ments except with the largest model. This is likely due to the robust feature learning ability

of CM, which is already competitive with the DP process.

Model Compression Among the tiny-sized models, the best-performing ZSL method

for personalization is PseudoSE+DP which produced an average SDR improvement of

9.91dB. We see that the personalized tiny model outperforms the generalist small model

(9.77dB), although it uses 62% fewer model parameters and multiply-accumulate operations

(MACs) according to Table 3.2. Likewise, the personalized small model comes within

striking distance the medium-sized generalist (10.39 vs. 10.59) using less than 52% of

the spatial and computational complexity. Finally, the best medium model after the CM

personalization (10.89dB) has its confidence interval overlapped with that of the largest

SE baseline (11.23dB), although its model complexity is less than 44%. From this we can

conclude that, for lower-complexity models, the proposed self-supervised ZSL personalization

may be viewed as a lossless model compression paradigm.

Success of Personalization The height of the error bars indicate the 95%-confidence

interval of each model and training configuration seen across the 20 target speakers. Using

SE generalist pretraining, we observe that this variance can be as much as 0.9 dB for the

tiny-sized models or 0.7 dB with the large-sized models. Through the proposed PseudoSE and
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CM methods, we see that the variance universally decreases in the ZSL context. Therefore,

our self-supervised pretraining methods successfully adapt to the nuances of each test-time

speaker despite being trained using only noisy data. Our results do show that introducing DP

increases the variance in performance once again. This is to be expected as the availability

of near-clean frames can di”er greatly between speakers. Similarly, DP’s reliance on the

external SNR predictor model is also a contributing factor.

FSL Personalization Performance

Bars with lighter shading represent the FSL context, wherein models have 5 sec or 30 sec of

clean speaker-specific data to finetune over.

Generalist Models’ Performance We observe that all four sizes of the baseline models

pretrained as generalists (SE) are incapable of adapting over a small Tf -tr that has only 5 sec

of data. Using 30 sec of clean speech data does eventually produce gains for all model sizes.

The tiny-sized generalist sees the most significant gains (0.62 dB) whereas the large-sized

generalist sees marginal benefit (0.27 dB). This trend implies that the pretrained generalists

are defined by model parameters that are too far from the ideally personalized counterpart,

requiring much e”ort during the transfer learning process. In other words, too few clean

utterances do not su!ce in achieving the domain adaptation.

FSL after PseudoSE Initialization We reiterate that our self-supervised methods train

using noisy speaker-specific data with premixture SNRs in the 0 dB to 15 dB range. Hence,

PseudoSE pretraining over this noisy data proves to be useful only for the tiny- and

small-sized models (9.53 vs. 8.91 and 9.94 vs. 9.77), while the larger models do not benefit

from the simple SSL setup. However, with all model sizes, finetuning using only 5 sec of
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clean data results in a significant performance boost (10.02 vs. 8.92, 10.61 vs. 9.69, 10.98 vs.

10.59, and 11.37 vs. 11.08).

Similar boosts also appear when using PseudoSE+DP, where all the performance

scores are lifted by up to 0.84 dB (11.92 vs. 11.08 in the largest models). Our results suggest

that finetuning is much more e”ective due to the speaker-specific self-supervised pretraining.

By comparing the middle shaded bars in the PseudoSE+DP column with lightest shaded

bars in the SE column, we can also see the data e!ciency benefits of our self-supervised

methods. In particular, after the PseudoSE+DP pretraining, only 5 sec of clean speech

for finetuning achieve a greater mean SDR improvement compared to generalists models

finetuned using 30 sec of clean speech. PseudoSE+DP achieves data e!ciency with all

model sizes (10.46 vs. 9.53, 11.06 vs. 10.24, 11.51 vs. 11.06, and 11.92 vs. 11.50). Our

results show that through self-supervised pretraining, we are able to reduce reliance on the

target speaker’s private data by a factor of 6.

FSL after CM Initialization In the ZSL context, CM pretraining produced notable

improvements over PseudoSE likely due to the contrastive loss terms that introduce

powerful regularization. But we found that the performance gap between CM and PseudoSE

is nearly negligible in the FSL context. When it comes to data purification, we found that

CM+DP was less e”ective in the FSL contexts than PseudoSE+DP. This is perhaps due

to the data purification learning objective being too di”erent from the contrastive learning

objective, leading to a slightly sub-optimal joint learning objective. Nonetheless, for the ZSL

scenario, CM pretraining without data purification has merit over PseudoSE, because it can

alleviate the need for training a robust SNR predictor.

Model Compression Finetuning also augments the model compression benefits of per-

sonalization. For example, we can use a small-sized PseudoSE+DP model finetuned with

50



only 5 sec of clean speech to get 11.06 dB SDR after enhancement on average. This is on par

with the largest SE model finetuned over the same amount of clean speech data (11.08 dB).

This example shows a lossless 78% reduction in model parameters and MACs.

3.3.6 Summary

We put forward self-supervised learning approaches towards personalized speech enhancement,

highlighting their ability to learn robust features from the target speaker’s noisy observations.

Our main ideas are based on the assumption that noisy utterances of the target speaker

might be more available than clean speech. However, due to the noisy nature of those

unlabeled data, we propose more sophisticated SSL treatments to learn useful features

from them. PseudoSE sets up a pretext SE problem where the enhancement target is still

a noisy utterance. In addition, data purification improves the usability of the unlabeled

(thus noisy) speech signals by identifying cleaner frames and focus more on them. With the

purification step, PseudoSE becomes more realistic. Contrastive mixtures add an additional

regularization benefit to the loss function, so that the pretext task is more relevant to the

original source separation problem.

We observe that all these methods can act as a zero-shot personalization system which

adapts to the target speaker’s specificity with no additional clean speech used. In the

few-shot learning context, we emphasize that the proposed SSL methods also serve as a

better initialization scheme than a näıve generalist as the SSL methods learn from the

target speaker’s speech, even though it is contaminated. We found that the proposed

systems quickly adapt using only a few seconds of test-user clean speech data, which is a

too small amount for the baseline generalists to e”ectively perform transfer learning. Our

results suggests that speaker-discriminative features can be found even in noisy recordings.

The benefit of personalization is that it can reduce model complexity with no loss of SE
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performance, e.g., small personalized models perform as good as twice-larger general-purpose

SE models. In addition, the proposed SSL methods make the few-shot learning-based

personalization more data-e!cient. Given that the transfer learning-based personalization

requires clean speech data from the test-time users, reducing the required amount can

improve the user experience.
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Chapter 4

Personalization through Test-Time Model Selection

In this chapter, we investigate how the concept of model selection can be utilized for zero-shot

adaptation of speech enhancement systems.

Specifically, we leverage the mixture of local experts (MLE) paradigm in the deep

learning context, particularly because the design enables a reduction in computational

cost. While most ensemble machine learning techniques combine the outputs of its “weak

learners”, we are instead interested in using a few—or at best, one—learner to achieve

speedier inference. The main insight is that the overarching problem space may be divided

into homogeneous regions (thus the name “local expert”). While prior works have shown

that the speech enhancement problem can also be divided in some manner, our contribution

emphasizes on adaptation (the improved performance with particular speakers or in certain

environments) in relation to the reduced computational complexity. Finally, we show that

model selection realizes zero-shot adaptation since the training data may be constructed

without any knowledge of the test-time speaker or environment.

4.1 Sparse Ensemble of Specialists

Given that the speech denoising task can be divided into mutually exclusive subproblems,

we propose that it must be possible to split a complete noisy speech dataset along some

latent dimension in order to form non-overlapping subsets (i.e. clusters). Although the MLE

procedure is theoretically capable of learning latent clusters in an unsupervised fashion,

for our initial experiments, we incorporate our prior knowledge about the problem domain
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to manually define latent spaces that subdivide the speech enhancement problem. These

include: (1) di”erent speech degradation levels and (2) speaker gender.

The proposed model, shown in Fig. 4.1b, is an ensemble of specialist networks regulated

by a gating network. While it is fundamentally possible to utilize the inferences of multiple

specialists, we propose using only a single specialist in order to bring computational complex-

ity during inference to a minimum. We assume that the noisy speech data can be split into

distinct subsets. Consequently, we pre-train each specialist network to individually address

one subproblem. Our experiments compare the proposed ensemble model against a baseline

model, shown in Fig. 4.1a, which is architecturally equivalent to a single specialist network

but is trained using the entire noisy speech training set. Next, we define the specialist and

gating modules more formally.
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Figure 4.1: Comparison between (a) the typical non-ensemble denoising model, and (b) the
proposed sparse ensemble of specialists.

4.1.1 Specialist Networks

With consideration for the constraints of resource-limited environments, we design our

specialist network with unidirectional recurrent layers followed by a feed-forward dense
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layer. The recurrent layers are made up of long short-term memory (LSTM) cells [96]. The

number of recurrent layers as well as the number of hidden units per layer are adjustable

experiment parameters which a”ect the overall complexity of the model. The specialist

network takes the noisy speech magnitude STFT |X| as input and predicts a ratio mask

matrix M . Subsequently, inv-STFT (M ∝ X) yields the denoised speech estimate ŝ.

We note that convolutional neural networks (CNNs) on time-domain signals currently

achieves improved performance in source separation [49]. Despite their low model complexity,

convolutional architectures are able learn the sequence-to-sequence mapping. We leave

general application of our proposed ensemble model to di”erent architectures for future

work.

4.1.2 Gating Network

The gating network is responsible for assigning an input signal to the appropriate specialist.

It introduces a classification sub-task as overhead to the overarching denoising task, splitting

the full training dataset into some number of latent clusters.

Identifying latent clusters in a noisy speech corpus is non-trivial. Prior works using

ensemble models for speech enhancement have shown that specialists may be trained to

denoise a particular phoneme [97]. This approach, which requires training data to be

phoneme-labeled, is naturally language-dependent but also non-sparse, as multiple specialists

may actively perform some computations due to the high variance of phonemes in speech.

To ensure a sparse activation of specialists (ideally one specialist per input signal), a more

generalized latent clustering is preferred. For this reason, we design two types of gating

networks to classify inputs based on either speech degradation level or speaker gender.

Similar to the specialist architecture, our gating networks are also designed with multiple

recurrent layers and a single dense layer. However, in our current proposed model the
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gating network does not make predictions frame-by-frame; after processing the entire input

sequence, the network produces a single softmax vector p, with K elements corresponding

to the number of clusters (i.e. the number of specialists). The index of the maximum value

in p should correspond to the index of the best-suited specialist.

4.1.3 Ensemble Network

The proposed ensemble model combines K specialist networks together with a gating network.

First, all of the sub-networks are independently trained. The combination of these pre-trained

modules forms a primitive ensemble, as the gating network can already assign an incoming

test example to one of the specialists. The output mask Y is chosen from the specialist

which corresponds to the maximum value of gating network softmax vector p. The “hard”

gating mechanism is formulated as:

Y = M (k→)
, k

↘ = arg max
k

pk, (4.1)

where M (k) denotes the predicted ratio mask matrix from the k-th specialist.

However, this näıve ensemble is sub-optimal as it lacks the potential co-adaptation

between gating and specialist networks. For example, given the fact that the gating network

cannot classify mixtures with 100% accuracy, the specialists should adapt to the situation

where it processes a misclassified sample (e.g., a male speech sample falls in the female

speaker’s specialist). Knowing this, we can further train the submodules in unison. During

this fine-tuning phase, the ensemble model estimates the output ratio mask M by performing

a normalized sum over the individual masks M (k) produced by all specialists weighted by

the gating network softmax vector p. This “soft” gating mechanism ensures that the ratio

mask calculation is di”erentiable, and is formulated as:
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Y =
∑

k

pkM (k)
. (4.2)

During the test phase, the weighted sum is replaced by the hard-decision shown in

Eq. (4.1). This di”erence between training-time and evaluation-time computation in the

ensemble architecture is the crux of its e!ciency; only one out of all the specialists is used

to process the entire mixture spectrogram |X|, making the total used network parameters a

fraction of the total learned. We reduce the discrepancy between the hard and soft gating

mechanisms, used during testing and fine-tuning respectively, by introducing a scaling

parameter ε to the softmax gating network output:

pk = exp(ε · ok)
∑

K

j=1 exp(ε · oj)
. (4.3)

Each element of the gating network output cluster probability vector (pk) is dependent

on the corresponding element of dense layer output (ok) normalized by the sum of all dense

layer output elements. While the traditional softmax function can be calculated using ε = 1,

we elevate the sparsity of p by setting ε = 10. This saturates p to be near-1 at a single index

and near-0 at every other index, making the weighted sum for ratio mask M (Eq. (4.2))

e”ectively select the best-case specialist mask. This modification of the softmax function

has been successfully used for quantizing vectors with image compression [98].

4.1.4 Experiment Setup

All models (specialist, gating, baseline, and ensemble) are trained using a stochastic data

sampling strategy which dynamically mixes clean speech recordings from the LibriSpeech1

corpus [30] with noise recordings from the MUSAN2 corpus [32]. This exposes the models to
1Available for download at http://www.openslr.org/12/.
2Available for download at http://www.openslr.org/17/.
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up to 251 unique speakers3 and 843 unique noise types4 during training. 40 unseen speakers5

and 87 unseen noise types6 are used to test the models. 5% of the training utterances and

noises are set aside for validation to help determine training convergence.

All experiment audio files use a sampling rate of 16 000 Hz. Spectrograms are generated

using the STFT with a frame size of 1024 samples and a hop size of 256 samples. Per

epoch, for each example in the training batch, the sampler mixes a normalized 1-second

snippet of a random training speaker’s utterance with a normalized 1-second snippet from a

random training noise, chosen with uniform probability. There are 100 mixture signals in a

batch. Unlike the training mixtures, test mixtures vary in duration; this gives our models

an e”ective RNN lookback size of 1-second.

We assess the proposed ensemble of specialists methodology across two latent spaces.

For the signal degradation latent space, we instantiate K = 4 specialists and generate

noisy speech mixtures with specific signal-to-noise ratio (SNR) levels—either →5 , 0 , 5 , or

10 dB—for each of the four specialists. Similarly for the speaker gender experiment, there

are K = 2 specialists which see a gender-filtered subset of the training data with uniformly

varying input SNR values out of the four above listed. In contrast, the baseline model must

generalize to all levels of signal degradation and all speaker genders; its training batches

consist of 100 mixed gender 1-second-long mixtures with input SNR uniformly distributed

between the four values.

All networks are optimized using the Adam optimizer [95] with an initial learning rate

of ϖ = 0.001. The specialist network uses the additive inverse of the SISDR metric, i.e.

Eq. (2.3), between ŝ and s as the loss function, whereas the gating network minimizes the

binary cross entropy (CE) metric between its output, softmax vector p, and a ground-truth
3From the librispeech/train-clean-100 folder.
4From the musan/noise/free-sound folder.
5From the librispeech/test-clean folder.
6From the musan/noise/sound-bible folder.
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one-hot vector representing the index of the best-suited specialist, i.e, Eq. (2.5). Each

network variant is trained for approximately three hours on a NVIDIA Titan Xp GPU, after

which the validation metric is considered to have converged.
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Figure 4.2: Results from the signal degradation and speaker gender experiments. The LSTM
component of the specialist network increases in computational complexity going across the
x-axis on all subplots.

4.1.5 Results

We report the denoised signal SISDR improvement for all models averaged across 1000 test

set mixtures. Fig. 4.2a compares the test signal speech denoising performance between the

four signal degradation-based specialists and the one baseline model. It is evident that,

at all mixture SNR levels, a neural network specifically trained to denoise those mixtures

can outperform a generalist network. This gap in performance is most prominent with the

extrema mixture levels (i.e., the →5 dB and 10 dB mixture SNR cases). As the number of
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RNN hidden units and layers increases, the performance gap between specialists and baseline

model diminishes. With larger network complexity, the generalist’s performance eventually

matches the specialist’s, which saturates after a particular network size.

The specialist curves in Fig. 4.2a, 4.2c, Fig. 4.2d set a theoretical upper bound to the

näıve ensemble model: even with a perfect gating network, the näıve ensemble cannot

outperform the sum of its parts. The superior performance of the näıve ensemble model

to the baseline comes from the fact that each specialist focuses on a smaller subset of the

original problem with the same model capacity. In this hypothetical context where the

best-suited specialist is always selected, an ensemble of smaller specialist networks will

consistently outperform the baseline generalists.

Therefore, the gating network’s classification accuracy matters. As shown in Fig. 4.2b,

signal degradation-based gating networks with a smaller RNN architecture are only able to

distinguish the extrema mixture levels with high confidence. Increasing the number of hidden

units and layers brings up the classification accuracy of the non-extrema mixture levels (i.e.

0 dB and 5 dB mixture SNR). Based on these results, we chose the 128 ↙ 2 gating network

architecture to be used for the subsequent ensemble experiments, as it adequately clusters

test mixtures (with ↘ 80% accuracy on average) while only incurring a small computational

overhead.

Fig. 4.2c compares the averaged denoising performance of the individual specialists, the

baseline, and the ensemble models (with and without fine-tuning) across all four mixture

SNR cases. We can see that the näıve ensemble improves upon the baseline with a significant

margin, but cannot pass the theoretical upper bound set by the oracle choice of specialist.

Still, the näıve ensemble model can compete as an e!cient inference model with the high-

complexity baseline model of size 1024 ↙ 2 with a simpler architectural choice, 512 ↙ 2.
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Fig. 4.2c also shows that the fine-tuning step greatly improves our ensemble model,

surpassing the oracle specialist upper bound. This suggests that through fine-tuning, the

specialists learn to compensate for imperfect classification results from the gating module.

We can see that a fine-tuned ensemble with a smaller specialist RNN architecture, 512 ↙ 2,

outperforms the most complex baseline model of size 1024 ↙ 3. This is a significant amount

of computation reduced during the test time, even considering the overhead cost of the

128 ↙ 2 gating network.

A similar trend is present in the speaker gender experiment, summarized in Fig. 4.2d.

Since this setup consists of only two specialists, the gating network’s job is an easier binary

classification. A 16 ↙ 2 RNN architecture su!ciently classifies speaker gender with 90%

classification accuracy. Using that, the näıve ensemble achieves near-optimal performance,

reaching the upper bound in nearly every architecture. The fine-tuning process lifts the

performance even further.

4.1.6 Summary

With our experiment in this Section 4.1, we demonstrated that speech denoising neural

networks can benefit from the MLE design philosophy, boosting performance while reducing

arithmetic complexity. Our specialist networks were trained on specific partitions of a

large noisy speech corpus across two latent spaces: signal degradation and speaker gender.

Despite the small overhead cost of a gating network, a näıve ensemble network is shown to

match the performance of generalist denoising networks with fewer parameters i.e. fewer

inference-time calculations. Furthermore, fine-tuning the ensemble with the inclusion of

a sparsity parameter helps the model exceed the theoretical upper bound of the oracle

specialist.
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4.2 Speaker-Informed Sparse Ensemble of Specialists

Now, we will investigate using MLE as a means for personalizing an SE model. To achieve

this, we propose learning the optimal speaker grouping from the noisy utterances. This is in

contrast to the ensemble model of Section 4.1, which operated on manually-defined semantic

speaker groups (e.g., input SNR or speaker gender). Using learned speaker groups, the

gating module must estimate characteristics of the test-time speaker from the noisy input,

identify the most similar speaker group defined within the training set, then forward the

input signal to the appropriate specialist network. This schema requires no training data

from the test-time speakers, yet it more optimally denoises the test-time noisy utterances

by using the most suitable specialist. With this in mind, our proposed model encapsulates

“zero-shot” PSE through model selection.

A major aspect of this work addresses the open-ended question: how do we cluster

English speakers into appropriate groups? A relevant task is learning speaker-characteristic

embeddings for speaker verification (SV) systems. Well-established embeddings include

the Gaussian mixture model-based i-vectors [99] or x-vectors computed using a time-delay

neural network [100]. Prior works have also used sequence summarizing networks [101]

either through contrastive loss [102] or by estimating subsequent frames for a single input

signal [103]. Although these learn valid speaker-identifying features, we propose a custom

embedding-learning model which can e”ectively function as the gating network as in [78].

Additionally, we want our custom embedding to be robust to additive noise; previously

proposed noise-robust embedding vectors [104, 105, 65] were not designed around MoLE.

To do this, we develop a Siamese network [106], intended for speaker verification (SV), to

learn discriminative speaker embeddings. We then repurpose the SV module as a classifier.

Through fine-tuning, the ensemble model morphs the learned embedding space from SV-

applicable into something more suitable for the SE task. Lastly, because this work utilizes
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soft gating at training-time and hard gating at test-time [21], our zero-shot sparse ensemble

model for personalized SE minimizes test-time computational complexity.

4.2.1 Design

Given a large dataset of many di”erent speakers’ various utterances S, we postulate that

there exists an optimal clustering based around speaker identifying characteristics. Denoting

K to be the number of clusters, one can create K separate SE models trained only to denoise

utterances from each disjoint group of similar speakers. As previously shown [21, 79], a

sparsely active ensemble model is capable of performing zero-shot adaptation because the

gating module classifies the test-time noisy utterances into one-of-K groups.

An ensemble model is composed of one gating module and K specialist modules. The

gating module processes a noisy speech input frame x, estimating a speaker-embedding first,

and then classifying it as belonging to one-of-K groups. The cluster probabilities vector p is

used in two ways—during training, all of the specialist modules outputs their own ideal ratio

mask (IRM) [107] estimates, M (1)
, M (2)

, . . . , M (K), which are then combined in a weighted

sum using p, i.e., M̂ =
∑

K

k=1 pkM (k). But during testing, only the output from the k
↘-th

specialist, corresponding to the largest probability, i.e., k
↘ = arg maxk pk, is chosen. This

argmax operation selects a single specialist to use during evaluation, making the ensemble

sparsely active.

In the context of personalized speech enhancement, increasing hyper-parameter K can

theoretically increase the level of specialization of each specialist as well as the ensemble

network’s capacity for personalization. However, there is a trade-o” with having too many

models; a large K can make the gating module’s classification task too challenging, and may

lead to the specialist modules becoming overfit on subsets that are too small. In this paper,
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we investigate three choices of K: 2, 5, and 10. Determining the optimal number of clusters

is an extended research topic within unsupervised learning.

4.2.2 Pretraining Process

Discriminative Speaker-Specific Embeddings The clustering of speakers is a signifi-

cant matter when we build a successful sparse ensemble model for SE. Although in theory all

the specialists and the gating module can be trained from scratch, training many modules

simultaneously is prone to result in suboptimal performance. Hence, we first pre-train all

the modules individually and then fine-tune them. The pre-training step, therefore, requires

the sub-grouping of speakers.

To this end, we train a neural encoder that learns an embedding function f which can

characterize a noisy speech utterance with a low-rank embedding vector. In order to train

f , we formulate a speaker verification (SV) upstream task. First, we sample utterances

from a large training dataset containing many speakers, s ↗ S, and noise signals from a

similarly large dataset of diverse noises, n ↗ N. Input mixtures x are made by artificially

mixing clean speech utterances s with training noise signals n; the amplitude of n is scaled

to simulate various signal-to-noise ratios (SNRs).

We can then generate pairs of noisy speech utterances, xi and xj . Once f predicts the

embeddings, i.e., zi = f(xi) and zj = f(xj), their inner product serves as a measure of

similarity. A sigmoid function follows to interpret it as a probability ŷ. Our target is a

binary value y, either 1 or 0 depending on whether the utterances derive from the same

speaker or not. The embedding function f is trained to minimize the binary cross entropy

loss between ŷ and y.

This contrastive learning approach derives discriminative embeddings using Siamese

networks [106] where the same embedding function f is applied to both input signals xi
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and xj . The rationale behind this embedding model is that the discriminative nature of

these embeddings can help the clustering process prepare a semantically more meaningful

partitioning of speakers.
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(c) Speaker means derived uniquely by a fine-
tuned K = 2 ensemble.
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(d) Speaker means derived uniquely by a fine-
tuned K = 10 ensemble.

Figure 4.3: Subplots comparing various choices of K for using k-means clustering on the
speaker embeddings.

O”ine Speaker Clustering Likewise, the gating module’s classification task and pre-

training of individual specialists rely on a reasonable clustering of speakers. Determining how

the K groups are formulated, and which of the training set speakers belongs to each group,
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requires an o$ine clustering step. First, we transform every utterance from the training

corpus into the learned latent space, i.e., z ⇐ f(s). Embedding vectors from the same

speaker are averaged element-wise, which serves as the speaker-characteristic mean vector.

Finally, we apply k-means clustering to these mean vectors to learn K speaker groups.

Fig. 4.3 shows the clustering results with varying K. Each of the 211 points represents

one of the Librispeech training set speakers, with marker style indicating speaker gender.

For plotting, the 32-dimensional embeddings z are reduced to 2 dimensions using t-SNE

(with perplexity = 40) [108]. These subplots show that the SV model succeeds in learning a

speaker embedding which can be clustered into loosely meaningful groups, e.g., when K = 2

the clusters implicitly form along the speaker gender division. These speaker groups are

used to pre-train our gating modules and local experts.

The speaker verification (SV) pre-training task creates a latent space of speaker em-

beddings Z, from which we can partition various groups, i.e. 2 in Fig. 4.3a and 10 in

Fig. 4.3b. After fine-tuning an ensemble model, the gating network’s embedding function

f adjusts its parameters towards the SE objective. The latent space is modified uniquely

based on the ensemble’s configuration. In Fig. 4.3a and Fig. 4.3b, the class labels derive

from k-means clustering, but in Fig. 4.3c and Fig. 4.3d the class labels are estimated by the

gating network’s classifier function g.

Gating Module Pre-Training The gating module must be able to classify the embedding

vectors as belonging to one of the K speaker clusters. This neural network is a dense layer

followed by the softmax activation, which we denote by a parametric function p = g(z; Wg),

where Wg is its parameters. The classifier function g takes embeddings of noisy utterances

z as inputs, and outputs a vector of cluster probabilities p̂. As each utterance belongs to a

single cluster and the speaker IDs of the training set speakers are known, we can encode the

k-means clustering labels into one-hot vector targets p. These vectors are K-dimensional.
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Note the discrepancy between the clustering done on embeddings of the clean speech

utterances and the actual use-case of the model that takes noisy utterances. While the

clustering results on clean data might be more reliable, eventually it is always possible that a

noisy test utterance can be misclassified into a wrong speaker group, and then consequently

assigned to a sub-optimal specialist. Moreover, since the embeddings are optimized for the

SV tasks, clustering on this representation may not be optimal for our SE problem. We

revisit this issue in Section 4.2.2 and propose a fine-tuning solution.

Specialist Pre-Training The K specialist modules are trained to denoise speech as

follows: the large dataset of training noises N is retained, but the large speech corpus S is

partitioned into K groups, {S(1)
, . . . , S(K)}, based on the clustering results in Section 4.2.2.

The k-th specialist module learns a mapping function h by updating its parameters Wh

such that the distance E between the denoised estimate signal ŝ and the target clean speech

signal s is minimized. We use the negative scale-invariant signal-to-distortion ratio (SISDR)

[39] as the loss function.

Ensemble Fine-Tuning The ensemble model can now be used näıvely by assembling

the pre-trained specialist modules and a pre-trained gating module. However, the gating

module may not classify all input signals with perfect accuracy. Therefore, fine-tuning

(FT) can adjust the ensemble model’s denoising performance for misclassified inputs. This

potential co-adaptation between gating and specialist modules can be found by adjusting

the parameters of all the underlying functions (i.e., embedding function f , classifier function

g, and denoising functions h within each specialist). In the fine-tuning phase, the ensemble

model estimates the final ratio mask M̂ by performing a normalized sum over the individual

masks M (k) using the softmax vector, p̂, i.e., M̂ =
∑

K

k=1 p̂kM (k). This ensures that the

ratio mask calculation is di”erentiable and can be seen as a “soft” gating mechanism.
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During testing, the weighted sum is replaced by a hard-decision, i.e. M̂ = M (k→) where

k
↘ = argmaxk pk. This switch in gating mechanism between training- and evaluation-time is

the essence of the ensemble scheme’s e!ciency: only one out of all the specialists is active

during inference, making the total used network parameters a fraction of the total learned.

In order to reduce the discrepancy between the hard and soft gating mechanisms (i.e, to

make the gating network more sparse during training), we modify the base of the softmax

function to use e
10 as opposed to simply e [21].

Fig. 4.3c and Fig. 4.3d show the fine-tuned speaker embedding vectors. Note that the

comparison between the clustering on the SV embedding vectors and on their fine-tuned

version is not to argue that fine-tuning can improve the clustering results. Instead, fine-

tuning with the speech enhancement objective could in fact deteriorate the discriminative

qualities of the learned embedding vectors.

4.2.3 Experiment Setup

Mixtures are generated by combining randomly o”set 5 sec segments of utterances and

noises. With every mixture, the noise signal is randomly scaled such that the mixture SNR

lies uniformly between →5 to 10 dB. Utterances derive from the LibriSpeech corpus [30]

train-clean-100 folder, with 211 speakers designated in the training set, 20 in the validation

set, and 20 in the test set. Noises are selected from the MUSAN corpus [32], with 628

noises from the free-sound folder used during training and validation, and 54 noises from the

sound-bible folder used during test. Both LibriSpeech and MUSAN corpora are resampled

to 8 kHz. When training the speaker verification model, batches are made up of pairs of

mixtures, with an equal chance of being from the same speaker or not. All mixture signals

are processed in the time-frequency domain through STFT using a frame size of 1024 samples

with 75 % overlap. Throughout our experiment, every model performs speech denoising by
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taking a series of magnitude spectra as input and estimating IRM vectors M . Masking is

done element-wise onto the complex-valued spectrum which possesses the noisy phase of the

mixture signal.

Both the gating and specialist modules are composed of gated recurrent units (GRU)

cells [109]. The embedding function f is built with 2 hidden layers and 32 hidden units,

with the output from last frame becoming a fixed-length utterance-characteristic embedding

z. The denoising functions h are also built with 2 hidden layers but with a varied number

of hidden units. The baseline general-purpose SE model is constructed in exactly the same

manner as a specialist network, but is trained on the entire speech corpus S instead of a

personalized subset S(k). Throughout the experiment, we opt for a batch size of 128, training

all models using the Adam optimizer with learning rates of 10↗3 for training and 10↗4 for

fine-tuning.

4.2.4 Results

Fig. 4.4 summarizes the findings of our experiments. The x-axis shows the varying hidden

sizes for the GRU layers. Since the number in parenthesis reports each expert’s size, the

total size of the ensemble model is computed by multiplying K to it, e.g., when K = 5

and the hidden size is 256, the total number of parameters equals 5.6 M. However, because

our ensemble models are sparsely active—that is, one specialist is active at a time—the

number of parameters e”ective at run-time is only 1/K of the total, the amount listed on

the x-axis. Longitudinally, the baseline models share the same number of hidden units with

the specialist module, meaning the baseline is always K times smaller than the ensemble

model in comparison. However their e”ective number of parameters is nearly equivalent. We

note that ensemble models are not fine-tuned for hidden sizes ′ 512 due to GPU memory
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constraints. Larger baseline models are trained and evaluated for comparison with the

smaller ensemble models.

Firstly, we see that across all configurations, our ensemble models consistently yields

a higher denoising performance when compared to a baseline generalist model whose size

is similar to one of the specialists. The näıve ensemble models already show significant

improvement (ranging from 0.62 to 1.65 dB), but di”erent choices of K do not make a big

di”erence. We also observe that fine-tuning the ensemble models lift the performance even

further (from 1.24 to as much as 2.04 dB. Furthermore, fine-tuning introduces a larger gap

in improvement when K is larger; intuitively, the more challenging classification task stands

to benefit most from fine-tuning.

The proposed method also performs model compression without sacrificing the denoising

performance. Overall, the smaller model architecture receives more performance improve-

ment, such as the 2.0 dB improvement in the case of 64 hidden units. The model compression

benefits are made clear by comparing data points laterally. For example, as circled in Fig. 4.4,

a generalist model requires at least 512 hidden units in order to match the performance

of a fine-tuned ensemble model with 10 specialists each made up of GRUs with only 64

hidden units. Including the cost of the gating module and all the other specialists that are

not chosen, this is still a 48% reduction in terms of spatial complexity. Moreover, if we

only count the gating module and one chosen specialist, it is a 94% reduction in e”ective

parameters and test-time arithmetic complexity.

Lastly, as hypothesized, we see that increasing the number of clusters results can result

in a more personalized speech enhancement so long as the ensemble model is fine-tuned.

The average SISDR improvement achieved with the ensemble models increases along with

K from 2 to 5 to 10 through fine-tuning.
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4.2.5 Summary

With this section, we expanded upon model adaptation through selection (the “mixture of

local experts” paradigm) as a means for personalized speech enhancement. We show that

the speaker-informed ensemble is a zero-shot PSE system as it never requires clean speech

during the test-time adaptation; instead, the gating module analyzes the noisy test signal

to determine the most appropriate specialist, or local expert, for denoising. We obtain a

speaker-informed gating module by pre-training it with a contrastive speaker verification

task. The training cases are transformed to a learned latent space where they are clustered

using k-means clustering. By identifying more clusters and training more low-cost specialists,

our ensemble models are able to adapt better to unseen test environments. Our findings

reinforce the idea that sparse ensemble models can outperform general-purpose speech

denoising models of a similar architecture, additionally reducing run-time computational

complexity.

71



64
(1
70

K
)

12
8
(4
10

K
)

25
6
(1
.1
M
)

38
4
(2
.1
M
)

51
2
(3
.4
M
)

64
0
(5
M
)

76
8
(6
.9
M
)

GRU Hidden Size (# of Trainable Parameters)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

S
I
-S

D
R

I
m

p
r
o
v
e
m

e
n
t

[d
B

]

Baseline

Ens. K=2

Ens. K=2 FT

Ens. K=5

Ens. K=5 FT

Ens. K=10

Ens. K=10 FT

Figure 4.4: Comparison of speech enhancement performance between a baseline general-
purpose model against di”erent configurations of speaker-informed sparse ensemble models.
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4.3 Block-Sparse RNNs for Universal Speech Modeling

A few questions arise regarding the limitations to the previously discussed sparse ensemble

of specialists. Firstly, in our earlier experiments, the gating module selected the best-case

specialist on a per-utterance basis. For online or streaming applications, the idea of an

isolated utterance is ill-defined—therefore it may be better to have the model decide to

switch experts on a rolling basis. To attain real-time performance, the obvious approach

would be to reduce the lookback (input bu”er) of the ensemble model. Secondly, our model

grouping strategy (by subdividing the SE problem space) is a very hand-crafted procedure.

We had to define semantically meaningful latent spaces (e.g., input SNR, speaker gender,

etc.) where each specialist would focus on a non-overlapping subset of input cases; it may

be possible that there is a non-semantic grouping of input cases which could yield even

further improved performance. Lastly, because the hand-crafted grouping strategies may be

sub-optimal, it is possible that there are redundancies between the specialists.

We hypothesize that a less-exclusive more-optimal grouping strategy may be possible.

Additionally, rather than having a single specialist process an entire input sequence, it may be

more adaptive and performant to quickly switch between specialists. Furthermore, it may be

possible for a model to learn its own grouping strategy based solely on the acoustics instead

of semantics. In this section, we introduce a modified recurrent neural network (RNN) which

extends the idea of “adaptation by model selection” to do online real-time processing. With

Fig. 4.5, we illustrate how the proposed block-sparse gated recurrent unit (BSGRU) may be

viewed as a real-time extension of the previously discussed sparse ensemble of specialists

from Section 4.1.
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Figure 4.5: Visual comparison between (a) the non-adaptive generalist SE model, (b)
the sparse ensemble of specialists model introduced in Section 4.1, and (c) the BSGRU
introduced in this section. Only the BSGRU applies the “model selection” paradigm on
a frame-by-frame basis to achieve real-time adaptation. Parameters with filled in colors
indicate their usage during inference—in other words, the generalist uses all available model
parameters, the sparse ensemble uses only the gating module and a single specialist, and the
BSGRU switches between specialists over time with an always-active gating module.

4.3.1 Design

Conventional gated recurrent unit (GRU) The GRU was proposed as a more e!cient

easier-to-implement alternative to the long short-term memory (LSTM) unit for recurrent

neural networks [110]. It processes sequential input to produce a hidden state by selectively

retaining or forgetting information over time thanks to two gating mechanisms. The hidden

state at time step t is computed as follows:

For our discussion, d denotes the number of input features and e is the number of output

features, xt ↗ Rd is the input vector, ht ↗ Re is the output vector, rt ↗ (0, 1)e is the reset

gate vector, zt ↗ (0, 1)e is the update gate vector, ĥt ↗ Re is the candidate vector, and ∝ is

the Hadamard product. There are a total of six matrices that comprise the model parameters.

74



Algorithm 1: GRU feed-forward A(x, ht↗1; W , U)
Input: xt, ht→1

Initialize: zt, rt, ĥt, ht ⇐ (0, 0, 0, 0)

1 rt ⇐ Sigmoid (Wrxt + Urht→1) // compute reset gate
2 zt ⇐ Sigmoid (Wzxt + Uzht→1) // compute update gate

3 ĥt ⇐ Tanh (Whxt + Uh [rt ∝ ht→1]) // compute candidate

4 ht ⇐ zt ∝ ĥt + (1 → zt) ∝ ht→1

Output: ht

These are conventionally denoted as matrices W and U representing the input-to-hidden

and hidden-to-hidden mappings, respectively. The matrices are indexed with three subscripts

(r/z/h) to the specific computing the reset gate, update gate, or candidate vector. The

gates control the flow of information—e”ectively, a recurrent unit which captures short-term

memory will have a highly active reset gate, whereas one capturing long-term memory will

have a highly active update gate. Bias terms are omitted from Alg. 1 for brevity. We

denote A to be the mapping function for the conventional GRU which follows Alg. 1—i.e.,

ht = A(x, ht↗1; W , U).

In this configuration, the GRU utilizes its entire parameter space to transform the input,

doing so without explicitly modeling non-stationary groupings. Similar to most real-world

sequential data, speech signals can also be modeled as sampling through discrete latent

time-varying groups (e.g., segmental SNR, phonemes, vocal inflections, etc.). In order to

motivate the recurrent network to learn discrete groupings within the data, we reformulate

the GRU such that the parameters may be subdivided into “blocks”.

The derivation for our proposed block-sparse gated recurrent unit (BSGRU) is as follows:

first, we denote M to be the number of blocks. Then the number of hidden units per

block is b = ∞ e

M
∈ for hidden size e. Next, we reframe the model parameters W and U as

block matrices which may be indexed (notated with a superscript). Similarly, the gate and
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candidate vectors can also be subdivided into “block vectors”, e.g.,

rt =





r(1)
t

r(2)
t

...

r(M)
t





zt =





z(1)
t

z(2)
t

...

z(M)
t





Wz =





W (1)
z

W (2)
z

...

W (M)
z





Uz =





U (1,1)
z U (1,2)

z · · · U (1,M)
z

U (2,1)
z

. . .
...

...
. . .

...

U (M,1)
z · · · · · · U (M,M)

z





(4.4)

BSGRU: Gating Sub-Unit At each time step t, we estimate a belief vector kt ↗ (0, 1)M

whose maximum indicates the current “block index”. This estimation is done using a “gating

sub-unit” within the BSGRU. Similar to a Markov process, we design the current belief

vector kt to only be dependent on the current input xt and the previous belief vector kt↗1.

In order to motivate the model to select only one group per input, we make kt more sparse

using a saturated softmax with temperature parameter ε. This temperature scalar controls

the entropy of the softmax distribution, while preserving the relative ranks of each element.

During inference (i.e., “evaluation mode”), the saturated softmax is replaced with a hard

decision; this is theoretically equivalent to setting the temperature ε ∋ △. We describe the

feed-forward operation of the gating sub-unit below:

The gating sub-unit is responsible for determining the current block index with respect

to the current input and the previous block index. Our aim is for this classification task to

incur the smallest possible computational overhead, therefore the hidden size of the gating

sub-unit should be smaller than the specialist sub-unit hidden size, i.e., e
↘ ⇓ e.

In Alg. 2, we denote r↘ ↗ (0, 1)e
→ and z↘ ↗ (0, 1)e

→ to be the reset and update gate

vectors for the gating sub-unit. The current hidden state is h↘
t ↗ Re

→ . We use the asterisk

superscript to indicate gating sub-unit intermediate outputs. The trainable parameters of

the gating sub-unit are V ↗ Re
→≃d, T ↗ Re

→≃e
→ , and Q ↗ RM≃e

→ . The first two matrices

a”ect the current input and prior hidden state, respectively. Notably, matrix Q enables

the linear transformation from the gating sub-unit’s hidden state to a belief logit vector
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Algorithm 2: BSGRU gating sub-unit feed-forward G(x, h↘
t↗1, ε; V , T , Q)

Input: xt, h↑
t→1, ε

Initialize: kt ⇐ 0

1 r↑
t ⇐ Sigmoid

(
Vrxt + Trh↑

t→1
)

2 z↑
t ⇐ Sigmoid

(
Vzxt + Tzh↑

t→1
)

3 ĥ↑
t ⇐ Tanh

(
Vhxt + Th

[
r↑

t ∝ h↑
t→1

])

4 h↑
t ⇐ z↑

t ∝ h↑
t→1 + (1 → z↑

t ) ∝ ĥ↑
t

5 k̂t ⇐ Qh↑
t // linear map from hidden-to-belief vector space

6 if stage = test then

7 i
↑ ⇐ arg max

0 ↓ i ↓ M
k̂

(i)
t // get current block index

8 k
(i→)
t ⇐ 1 // make belief vector one-hot (non-differentiable)

9 else

10 kt ⇐ Softmax(ε · k̂t) // use saturated softmax (differentiable)

Output: kt, h↑
t

space—i.e., the mapping Re
→ ∋ RM . Lastly, the belief logit vector k̂t is converted to a

probability vector kt ↗ (0, 1)M using either a hard-max or softmax (the latter used only

during training to produce a valid gradient). We represent the gating sub-unit of the BSGRU

as G following Alg. 2—i.e., kt = G(x, h↘
t↗1, ε; V , T , Q).

BSGRU: Specialist Sub-Unit Finally, the belief vector kt is used to sparsely activate

only a portion of the weight matrices. Note that the belief vector is a binary vector with M

elements, and that the BSGRU specialist parameters can be subdivided into M -separate

block vectors and matrices as shown in Eq. (4.4). During training time, multiplying each

element of kt to each block (from 1 to M) enables the sparse computation. At evaluation

time, we use arg max to select only the specialist model weights corresponding to a single

block index. We incorporate dependence on the previous belief vector kt↗1 to the specialist

computation, allowing the model to transition between block states.
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Algorithm 3: BSGRU specialist sub-unit feed-forward
Input: xt, ht→1, kt, kt→1

Initialize: zt, rt, ĥt, ht ⇐ (0, 0, 0, 0)

1 if evaluation mode then

2 i
↑ ⇐ arg max

1 ↓ i ↓ M
k

(i)
t // get current block index

3 j
↑ ⇐ arg max

1 ↓ j ↓ M
k

(j)
t→1 // get previous block index

4 r(i→)
t ⇐ Sigmoid

(
W (i→)

r xt + U (i→,j→)
r h(j→)

t→1

)
// compute sparse reset gate

5 z(i→)
t ⇐ Sigmoid

(
W (i→)

z xt + U (i→,j→)
z h(j→)

t→1

)
// compute sparse update gate

6 ĥ(i→)
t ⇐ Tanh

(
W (i→)

h xt + U (i→,j→)
h

[
r(i→)

t ∝ h(j→)
t→1

])
// compute sparse candidate

7 h(i→)
t ⇐ z(i→)

t ∝ ĥ(i→)
t +

(
1 → z(i→)

t

)
∝ h(j→)

t→1

8 else if training mode then

9 for i ⇐ 1 to M do // iterate over all block indices

10 r(i)
t ⇐ Sigmoid

(
k

(i)
t W (i)

r xt +
∑M

j=0

[
k

(i)
t k

(j)
t→1U

(i,j)
r h(j)

t→1

])

11 z(i)
t ⇐ Sigmoid

(
k

(i)
t W (i)

z xt +
∑M

j=0

[
k

(i)
t k

(j)
t→1U

(i,j)
z h(j)

t→1

])

12 ĥ(i)
t ⇐ Tanh

(
k

(i)
t W (i)

h xt +
∑M

j=0

[
k

(i)
t k

(j)
t→1U

(i,j)
h

(
r(i)

t ∝ h(j)
t→1

)])

13 h(i)
t ⇐ z(i)

t ∝
[
k

(i)
t ĥ(i)

t

]
+

(
1 → z(i)

t

)
∝

∑M
j=0

[
k

(j)
t→1h

(j)
t→1

]

Output: ht

The current and previous outputs of the gating sub-unit (kt and kt↗1) are forwarded

to a specialist sub-unit in order to sparsely activate its weights. In this way, the specialist

sub-unit learns an adaptive SE function. We define the arg max of kt as the current

block index i; subsequently the arg max of kt↗1 as the prior block index j. Unlike the

conventional GRU which uses all of its parameters W and U , in the BSGRU, the specialist

sub-unit selects a specific block matrix within W and another specific block matrix within

U . We represent the specialist sub-unit of the BSGRU as B following Alg. 3—i.e., ht =

B(xt, ht↗1, kt, kt↗1; W , U).
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Fig. 4.6 provides a visual comparison between the six weight matrices present in a

conventional GRU versus the nine weight matrices in our proposed BSGRU. As shown

in the figure, at inference-time / evaluation, only the parameters which are colored are

used. Our proposed model achieves run-time complexity savings when the number of active

parameters in the BSGRU are less than that of a fully-active GRU—the hyper-parameters

that impact this are: the choice of hidden size (e), the gating sub-unit overhead (e↘), and

the number of blocks (M). Fig. 4.7 shows the flow of the various input and output variables

in a conventional GRU and in our proposed BSGRU.
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b

<latexit sha1_base64="qkOwfkKqQsBF8KI1PQ0fW5sKVNg="></latexit>

W 2 Re⇥d

W (i⇤) 2 Rb⇥d

<latexit sha1_base64="Tq7UJ6qpPBSI4xVgk+Es0NGqjSg="></latexit>

U 2 Re⇥e

U (i⇤,j⇤) 2 Rb⇥b

<latexit sha1_base64="rw1bhtjsqpPyIx9/wnh0dfsSsds=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJKIVI8FLx5bsB/QhrLZTNq1m03Y3Qil9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSq4Nq777aytb2xubRd2irt7+weHpaPjlk4yxbDJEpGoTkA1Ci6xabgR2EkV0jgQ2A5GdzO//YRK80Q+mHGKfkwHkkecUWOlRtgvld2KOwdZJV5OypCj3i999cKEZTFKwwTVuuu5qfEnVBnOBE6LvUxjStmIDrBrqaQxan8yP3RKzq0SkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYlu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynaELzll1dJ66riVSvVxnW5dpnHUYBTOIML8OAGanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/xN2M3Q==</latexit>

d

Spec.

<latexit sha1_base64="rw1bhtjsqpPyIx9/wnh0dfsSsds=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJKIVI8FLx5bsB/QhrLZTNq1m03Y3Qil9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSq4Nq777aytb2xubRd2irt7+weHpaPjlk4yxbDJEpGoTkA1Ci6xabgR2EkV0jgQ2A5GdzO//YRK80Q+mHGKfkwHkkecUWOlRtgvld2KOwdZJV5OypCj3i999cKEZTFKwwTVuuu5qfEnVBnOBE6LvUxjStmIDrBrqaQxan8yP3RKzq0SkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYlu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynaELzll1dJ66riVSvVxnW5dpnHUYBTOIML8OAGanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/xN2M3Q==</latexit>

d

Gating
<latexit sha1_base64="0vcX7HcYM43HHTSOHVRc/EFzdi8=">AAACGXicbVC7TsMwFHV4lvIqMLJYVCCmKkFVYazEwlgQfUhNWzmO21p1nMi+Qaqi/AYLv8LCAEKMMPE3OG0GaLmS5aNz7tU993iR4Bps+9taWV1b39gsbBW3d3b39ksHhy0dxoqyJg1FqDoe0UxwyZrAQbBOpBgJPMHa3uQ609sPTGkeynuYRqwXkJHkQ04JGGpQsl0vFL6eBuZLWik+c7nEbkBg7HnJXdpPWN8lGrALPGAa++mgVLYr9qzwMnByUEZ5NQalT9cPaRwwCVQQrbuOHUEvIQo4FSwturFmEaETMmJdAyUxe3rJ7LIUnxrGx8NQmScBz9jfEwkJdGbedGae9aKWkf9p3RiGV72EyygGJul80TAWGEKcxYR9rhgFMTWAUMWNV0zHRBEKJsyiCcFZPHkZtC4qTq1Su62W69U8jgI6RifoHDnoEtXRDWqgJqLoET2jV/RmPVkv1rv1MW9dsfKZI/SnrK8fHRug9Q==</latexit>

V 2 Re⇤⇥d

<latexit sha1_base64="0Diy+rto/zy/9rduBZviFBIQqOo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaWDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4Zua3n5g2XMl7nCQsiMlQ8ohTglZqsYceMdgvV7yqN4e7SvycVCBHo1/+6g0UTWMmkQpiTNf3EgwyopFTwaalXmpYQuiYDFnXUkliZoJsfu3UPbPKwI2UtiXRnau/JzISGzOJQ9sZExyZZW8m/ud1U4yug4zLJEUm6WJRlAoXlTt73R1wzSiKiSWEam5vdemIaELRBlSyIfjLL6+S1kXVr1Vrd5eV+mUeRxFO4BTOwYcrqMMtNKAJFB7hGV7hzVHOi/PufCxaC04+cwx/4Hz+AJJPjxo=</latexit>

e⇤

<latexit sha1_base64="s97Hi56RK76lweG98+f6TPYQZPg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXrwICZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbut59QaR7LBzNJ0I/oUPKQM2qs1LjvF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vhTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ62rslctVxuVUq2SxZGHMziHS/DgGmpwB3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH6RpjM4=</latexit>

MGt.
<latexit sha1_base64="NRcceQ60yi8KFqK8VUA0oTlBVKI=">AAACHnicbVBNSwMxEM36WevXqkcvwaJ4KrtSq8eCF49V+gXdtmTTtA3NZpdkVijL/hIv/hUvHhQRPOm/Mdv2oK0DIW/ezDDznh8JrsFxvq2V1bX1jc3cVn57Z3dv3z44bOgwVpTVaShC1fKJZoJLVgcOgrUixUjgC9b0xzdZvfnAlOahrMEkYp2ADCUfcErAUD370vND0deTwHxJLcVnHpfYCwiMfD+5T7sJ63pEA/aAB0zjWZb27IJTdKaBl4E7BwU0j2rP/vT6IY0DJoEKonXbdSLoJEQBp4KleS/WLCJ0TIasbaAkZlknmcpL8alh+ngQKvMk4Cn7eyIhgc4UmM7scL1Yy8j/au0YBtedhMsoBibpbNEgFhhCnHmF+1wxCmJiAKGKm1sxHRFFKBhH88YEd1HyMmhcFN1ysXxXKlRKczty6BidoHPkoitUQbeoiuqIokf0jF7Rm/VkvVjv1sesdcWazxyhP2F9/QBA/aMo</latexit>

T 2 Re⇤⇥e⇤

<latexit sha1_base64="0Diy+rto/zy/9rduBZviFBIQqOo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaWDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4Zua3n5g2XMl7nCQsiMlQ8ohTglZqsYceMdgvV7yqN4e7SvycVCBHo1/+6g0UTWMmkQpiTNf3EgwyopFTwaalXmpYQuiYDFnXUkliZoJsfu3UPbPKwI2UtiXRnau/JzISGzOJQ9sZExyZZW8m/ud1U4yug4zLJEUm6WJRlAoXlTt73R1wzSiKiSWEam5vdemIaELRBlSyIfjLL6+S1kXVr1Vrd5eV+mUeRxFO4BTOwYcrqMMtNKAJFB7hGV7hzVHOi/PufCxaC04+cwx/4Hz+AJJPjxo=</latexit>

e⇤
<latexit sha1_base64="0Diy+rto/zy/9rduBZviFBIQqOo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaWDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4Zua3n5g2XMl7nCQsiMlQ8ohTglZqsYceMdgvV7yqN4e7SvycVCBHo1/+6g0UTWMmkQpiTNf3EgwyopFTwaalXmpYQuiYDFnXUkliZoJsfu3UPbPKwI2UtiXRnau/JzISGzOJQ9sZExyZZW8m/ud1U4yug4zLJEUm6WJRlAoXlTt73R1wzSiKiSWEam5vdemIaELRBlSyIfjLL6+S1kXVr1Vrd5eV+mUeRxFO4BTOwYcrqMMtNKAJFB7hGV7hzVHOi/PufCxaC04+cwx/4Hz+AJJPjxo=</latexit>

e⇤ Gt.

<latexit sha1_base64="0Diy+rto/zy/9rduBZviFBIQqOo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaWDbbTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmayFGwTqIZiUPB2uH4Zua3n5g2XMl7nCQsiMlQ8ohTglZqsYceMdgvV7yqN4e7SvycVCBHo1/+6g0UTWMmkQpiTNf3EgwyopFTwaalXmpYQuiYDFnXUkliZoJsfu3UPbPKwI2UtiXRnau/JzISGzOJQ9sZExyZZW8m/ud1U4yug4zLJEUm6WJRlAoXlTt73R1wzSiKiSWEam5vdemIaELRBlSyIfjLL6+S1kXVr1Vrd5eV+mUeRxFO4BTOwYcrqMMtNKAJFB7hGV7hzVHOi/PufCxaC04+cwx/4Hz+AJJPjxo=</latexit>

e⇤

<latexit sha1_base64="qFIY2Q0pH6TpBXXeAErdkDEHssE=">AAACGXicbVDLSgMxFM34rPU16tJNsCiuyoyU6rLgxo3Qin1Apy2ZNG1DM5khuSOUYX7Djb/ixoUiLnXl35hpu9DWCyGHc+7lnnv8SHANjvNtrayurW9s5rby2zu7e/v2wWFDh7GirE5DEaqWTzQTXLI6cBCsFSlGAl+wpj++zvTmA1Oah/IeJhHrBGQo+YBTAobq2Y7nh6KvJ4H5klqKzzwusRcQGPl+cpd2k1vsAQ+YxqzrEQ1pzy44RWdaeBm4c1BA86r27E+vH9I4YBKoIFq3XSeCTkIUcCpYmvdizSJCx2TI2gZKYpZ1kullKT41TB8PQmWeBDxlf08kJNCZedOZedaLWkb+p7VjGFx1Ei6jGJiks0WDWGAIcRYT7nPFKIiJAYQqbrxiOiKKUDBh5k0I7uLJy6BxUXTLxXKtVKiU5nHk0DE6QefIRZeogm5QFdURRY/oGb2iN+vJerHerY9Z64o1nzlCf8r6+gHuI6DZ</latexit>

Q 2 RM⇥e⇤

(b) Proposed BSGRU.

Figure 4.6: Comparison of the weight matrices. As the BSGRU weights are divided into
M blocks, the number of hidden units per block is b = ∞ e

M
∈. In a GRU feed-forward

computation, the entirety of the model parameters are utilized and updated, whereas with
the BSGRU, only a subset of the model parameters are used. This subset is determined
by i

↘ and j
↘ which are the block indexes at time t and t → 1. Specifically in this example,

M = 4, i
↘ = 2, and j

↘ = 3, indicating an inter-block transition. Accounting for the gates, the
conventional GRU has six weight matrices, whereas the BSGRU has nine weight matrices,
six of which are sparsely active.
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<latexit sha1_base64="XJK+iyDYyV+Fl6LNwqZswW8m3k4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBKR6rHgxWNF+wFtKJvtpl262YTdiVhCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTS/VPf7ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGupohE3fjY/dUrOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tO0YbgLb+8SloXVa9Wrd1dluuVPI4CnMIZVMCDK6jDLTSgCQyG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gAF7I2Q</latexit>x0
<latexit sha1_base64="/l2bxxWX0Pry3rsPvRvq3MaGBYM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBKR6rHgxWNF+wFtKJvtpF262YTdjVhCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6f+p7/VLZrbpzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SloXVa9Wrd1dluuVPI4CnMIZVMCDK6jDLTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAHcI2R</latexit>x1

<latexit sha1_base64="XvGiyGVTjSaeH2klwtThPDPqMZw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaJQY8kXjxilEcCGzI7zMKE2dnNTK+RED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z99iPXRsTqAScJ9yM6VCIUjKKV7p/61X6x5FbcBcg68TJSggyNfvGrN4hZGnGFTFJjup6boD+lGgWTfFbopYYnlI3pkHctVTTixp8uTp2RC6sMSBhrWwrJQv09MaWRMZMosJ0RxZFZ9ebif143xfDanwqVpMgVWy4KU0kwJvO/yUBozlBOLKFMC3srYSOqKUObTsGG4K2+vE5a1YpXq9TuLkv1chZHHs7gHMrgwRXU4RYa0AQGQ3iGV3hzpPPivDsfy9ack82cwh84nz8I9I2S</latexit>x2
<latexit sha1_base64="YcrAijUXj/jIzOKjny0kgzkvrVw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gViR4DXjxGzAuSJcxOOsmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNLGgoajqprsriAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByO/fbj6g0j2TDTGP0QzqSfMgZNVZ6eOo3+sWSW3EXIOvEy0gJMtT7xa/eIGJJiNIwQbXuem5s/JQqw5nAWaGXaIwpm9ARdi2VNETtp4tTZ+TCKgMyjJQtachC/T2R0lDraRjYzpCasV715uJ/Xjcxwxs/5TJODEq2XDRMBDERmf9NBlwhM2JqCWWK21sJG1NFmbHpFGwI3urL66R1WfGqler9ValWzuLIwxmcQxk8uIYa3EEdmsBgBM/wCm+OcF6cd+dj2ZpzsplT+APn8wc8fI20</latexit>xT

<latexit sha1_base64="hW2Agy7kgpah/pqW+iBLaRWOgZo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2A9oQ9lsNu3aTTbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNirTjLeYkkp3A2q4FAlvoUDJu6nmNA4k7wTj27nfeeLaCJU84CTlfkyHiYgEo2ildp+FCs2gXHFr7gJknXg5qUCO5qD81Q8Vy2KeIJPUmJ7npuhPqUbBJJ+V+pnhKWVjOuQ9SxMac+NPF9fOyIVVQhIpbStBslB/T0xpbMwkDmxnTHFkVr25+J/XyzC68aciSTPkCVsuijJJUJH56yQUmjOUE0so08LeStiIasrQBlSyIXirL6+T9mXNq9fq91eVRjWPowhncA5V8OAaGnAHTWgBg0d4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/qhePIA==</latexit>· · ·

<latexit sha1_base64="e0O74tPpOAOEq1LZ7nVuymMIFlA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+OBOyhX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva169Vr+/qjSqeRxFOINzqIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDtfY2A</latexit>

h0
<latexit sha1_base64="3H6qc5iDF5zw5HuK+bdnu6GKAKM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpYTzwBuWKW3MXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8MbPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbQva169Vr+/qjSqeRxFOINzqIIH19CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDvAY2B</latexit>

h1
<latexit sha1_base64="EpyancPNhajw67xhWTE+6t8kOfY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUqR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWuh8P6oNyxa25C5B14uWkAjlag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8Wp87IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMbz2M6GSFLliy0VhKgnGZP43GQrNGcqpJZRpYW8lbEw1ZWjTKdkQvNWX10mnXvMatcbdZaVZzeMowhmcQxU8uIIm3EIL2sBgBM/wCm+OdF6cd+dj2Vpw8plT+APn8wfwhY2C</latexit>

h2
<latexit sha1_base64="tFuYdpfn2KG7kVztMWyuh7znCQY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r9gvaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFjc2t7p7hb2ts/ODwqH590dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9XfjdR1Sax7JlZgn6ER1LHnJGjZUeJsPWsFxxa+4S5C/xclKBHM1h+XMwilkaoTRMUK37npsYP6PKcCZwXhqkGhPKpnSMfUsljVD72fLUObmwyoiEsbIlDVmqPycyGmk9iwLbGVEz0eveQvzP66cmvPEzLpPUoGSrRWEqiInJ4m8y4gqZETNLKFPc3krYhCrKjE2nZEPw1l/+SzqXNa9eq99fVRrVPI4inME5VMGDa2jAHTShDQzG8AQv8OoI59l5c95XrQUnnzmFX3A+vgEkHI2k</latexit>

hT
<latexit sha1_base64="hW2Agy7kgpah/pqW+iBLaRWOgZo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx4r2A9oQ9lsNu3aTTbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNirTjLeYkkp3A2q4FAlvoUDJu6nmNA4k7wTj27nfeeLaCJU84CTlfkyHiYgEo2ildp+FCs2gXHFr7gJknXg5qUCO5qD81Q8Vy2KeIJPUmJ7npuhPqUbBJJ+V+pnhKWVjOuQ9SxMac+NPF9fOyIVVQhIpbStBslB/T0xpbMwkDmxnTHFkVr25+J/XyzC68aciSTPkCVsuijJJUJH56yQUmjOUE0so08LeStiIasrQBlSyIXirL6+T9mXNq9fq91eVRjWPowhncA5V8OAaGnAHTWgBg0d4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/qhePIA==</latexit>· · ·

A A A A

(a) Conventional GRU.
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(b) Proposed BSGRU.

Figure 4.7: An “unrolled” representation of the conventional GRU shows that the recurrent
unit A computes the current hidden state ht using only the current input xt along with the
previous hidden state ht↗1 (as described in Alg. 1). Our proposed BSGRU is e”ectively two
sub-units—the gating sub-unit G first computes a block state kt using the current input
and the previous block state kt↗1. Next, the specialists sub-unit B harmonizes the current
and previous block states along with the current input to estimate the current hidden state.
G and B follow Alg. 2 and Alg. 3, respectively.

4.3.2 Pretraining Process

Training a BSGRU is a complex optimization task which has many potentials for failure

similar to a generative adversarial network (GAN); this is because the BSGRU jointly

classifies and regresses over the same input signal. Although the BSGRU can theoretically

learn latent groupings in the sequential data, we find that empirically some pre-training

is required in order to prevent the model from collapsing to a sub-optimal solution—for

example, if the BSGRU learns to use only one or a few blocks out of all M possible blocks.

We prevent this collapse by formulating a two-stage pre-training procedure: first we

optimize the specialist sub-unit B and then the gating sub-unit G, in that order. For pre-

training, a latent space which can divided into M discrete groups (e.g., speaker characteristics,

SNR levels) must be chosen. Then, the ground-truth group label (i.e., block index) for

the training data input at any time t must be known—for example, if the latent space is

“segmental SNR levels”, then the group label for a single frame of the noisy input spectrogram

Xt is simply the binned value of the the segmental SNR for that frame. We discuss the

exact binning procedure used for our experiments later in Section 4.3.3.
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For the first stage, each of the blocks within the specialist sub-unit parameters (W (i)

and U (i,j) for i, j ↗ {1, . . . , M}) are sparsely activated and individually adapted following

Alg. 3. This can be done by swapping the untrained classifier (the gating sub-unit G) with a

hypothetical oracle classifier that outputs only the ground-truth block index any input at all

times t. Practically, this is equivalent to substituting all uses of the belief vector k in Alg. 3

with the one-hot representation of the ground-truth block index k̊. Then, at any time t,

i
↘ = arg max

1 ⇐ i ⇐ M

k̊(i)
t

and j
↘ = arg max

1 ⇐ j ⇐ M

k̊(j)
t↗1—because i

↘ and j
↘ are the ground-truth bin indices,

only the best-suited specialist block matrices (W (i→) and U (i→
,j

→)) will be used/updated.

In the second stage, all of the parameters of B are kept fixed. We train only the gating

sub-unit parameters (T , V , and Q). Although the gating sub-unit’s task is to classify the

input, the optimization criterion is still to minimize the discrepancy between the overall

BSGRU output and the expected output (E(M , M̂))—in other words, the training loss is

based on regression (e.g., MSE) and not classification (e.g., cross-entropy (CE)).

After this two-stage pre-training, it is still possible to fine-tune the full BSGRU over the

training corpus. This allows the specialist sub-unit to adjust its parameters to account for

the gating sub-unit’s misclassified inputs. Fig. 4.8 shows the hidden state output vector h

and the belief state vector k over all time t for a BSGRU which has completed both stages

of pre-training.

4.3.3 Experiment Setup

Architecture We devise an experiment using a BSGRU for adaptive online speech en-

hancement. As explained in Section 2.3, we develop TF-masking models which take noisy

input speech spectrogram X and estimate a binary mask M as output. All spectrograms are

computed using the STFT with 1024-point Hann windows and 75 % overlap—the resulting

shape of matrices X and M is 513 ↙ L, where L is the number of frames. Although more
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Figure 4.8: BSGRU belief vector k and hidden state output h observed during Stage 2
pre-training over various epochs. In this example, the BSGRU hidden size e = 128 and
the number of blocks M = 4, making the “e”ective hidden size” b = ∞ e

M
∈ = 32. Without

pre-training, the gating sub-unit makes arbitrary choices for the block index, so k is initially
non-sparse and only the first or second specialist pass-through the input signal. With more
training epochs, the gating sub-unit generates a sparser belief vector, thereby enforcing a
sparser hidden vector.

complex models for SE are practical, we limit the tested architectures to use only a single

recurrent network layer in order to do a targeted ablation.

As the goal is to assess the specific contributions of our proposed block-sparsity—the

compared models are equivalent except that the recurrent layer is either a standard GRU

(baseline) or BSGRU (proposed). The input dimensionality is the number of frequency bins

(1 + ∞1024
2 ∈ = 513), and the dimensionality of the recurrent layer output is the hidden size

(e). The hidden state is then input to a trainable dense layer, which maps back to the

input dimension 513. We survey three choices of “e”ective recurrent layer hidden size” in

order to observe the e”ect of model size on the benefits of adaptation. Our choices are:

(eGRU, bBSGRU) = 32, 128, or 512. We use the term “e”ective” to indicate that the BSGRU

specialist sub-unit only uses a fraction of its hidden size per time step, whereas the standard

GRU leverages its full hidden size. For fair comparison, we set eGRU = bBSGRU, because

eBSGRU = bBSGRU · M .
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Figure 4.9: Architectural di”erences between experiment models. In the oracle model, in
place of computing the belief state vector k using the gating sub-unit G, we instead assume
hypothetical access to the ground-truth block index k̊ as defined in Section 4.3.3.
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Figure 4.10: Distribution of the segmental SNR values present in the LibriMix single-speaker
enhancement training corpus.

Latent Space We show a BSGRU with M = 4 blocks adapting to test-time noisy speech

based on “segmental SNR level”. Because segmental SNR is a continuous value and we have

M = 4 groups, we consider two possible binning strategies, accounting for the distribution

of the LibriMix single-speaker enhancement training corpus segmental SNR as shown in

Fig. 4.10. The first näıve binning strategy would be to use evenly spaced intervals which

span the breadth of all possible segmental SNR values. We refer to this as the “uniform

binning” approach, and as M = 4, we arbitrarily define three bin edges: (→30, →10, 10) dB.

Subsequently, the ground-truth block index encoded as a one-hot vector (̊kt) is defined as

follows:

k̊Uniform
t =






[ 1 0 0 0 ] SegSNR(Xt) ⇓ →30 dB

[ 0 1 0 0 ] →30 dB < SegSNR(Xt) ⇓ →10 dB

[ 0 0 1 0 ] →10 dB < SegSNR(Xt) ⇓ 10 dB

[ 0 0 0 1 ] 10 dB < SegSNR(Xt)

(4.5)

83



A more analytical second binning strategy could be based on quantiles. This maximizes

the likelihood that each specialist within B sees the same number of input frames. In the

“quantile binning” approach, as M = 4, the bin edges are empirically derived at 25%, 50%,

and 75% splits: (→14, →1, 5) dB. Similarly, the ground-truth block index encoded as a

one-hot vector is defined as follows:

k̊Quantile
t

=






[ 1 0 0 0 ] SegSNR(Xt) ⇓ →14 dB

[ 0 1 0 0 ] →14 dB < SegSNR(Xt) ⇓ →1 dB

[ 0 0 1 0 ] →1 dB < SegSNR(Xt) ⇓ 5 dB

[ 0 0 0 1 ] 5 dB < SegSNR(Xt)

(4.6)

The exact bin edges are annotated in Fig. 4.10; these bin edge values are specific to our

choice of using the “segmental SNR” latent space. Choosing another latent space would

necessitate re-adjusting the bin edges. In our experiments, we assess the e”ect of these two

strategies (uniform vs. quantile) with respect to the denoising performance of a single-layer

BSGRU.

Dataset This experiment utilizes the LibriMix [36] dataset; it is an open-source recipe for

combining clean speech recordings from “Librispeech” [30] with ambient noise recordings

from “WHAM!” [111] to produce a deterministic set of mixture audio. In particular, we

use only the mixture audio containing a single speaker contaminated by background noise;

the dataset additionally supports two- and three-speaker mixtures. All derived audio files

are sampled at 16 kHz, but inputs to the model are truncated to be 3 s in duration. In

total, there is 58 h of training data, 11 h of validation data, and 11 h of test data. Speaker

identities are non-overlapping between the three partitions.
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Hyperparameters For all trials, we use M = 4 for the number of blocks. With our

BSGRUs, we fix the gating sub-unit hidden size e
↘ = 16; this results in a very small

computational overhead for computing Alg. 2. We find that performance is largely una”ected

by di”erent values for the gating sub-unit temperature ε = 1, 1e → 1, and 1e → 2. The Adam

optimizer [95] is used for all trials with various choices of learning rates ϖ = 1e → 3, 1e → 4 or

1e → 5; reported performance for each model is the best-performing. Also, our training loss

function is the negative SISDR between the estimated clean speech ŷ and the ground-truth

clean speech M . Recall that ŷ = M ∝ X, where X is the noisy speech input spectrogram

and M is the TF binary ratio mask estimated by the denoiser model. We use a fixed choice

of 100 epochs for both the baseline GRU and oracle BSGRU. The oracle BSGRU is used as

the Stage 1 initialization (B) for the pre-trained BSGRU, which goes through another 100

epochs to optimize only G.

4.3.4 Results

Fig. 4.11 summarizes the results of the experiment. Reported SISDR improvement values

are the averages ± 95 %-confidence interval. Note that the binning strategy axis only applies

to the BSGRU, so the baseline GRU numbers are equivalent in both rows.

Oracle Binning Strategy Firstly, across all configurations, we see that the oracle BSGRU

model achieves the most significant boost in performance over the the non-adapted GRU

model. This is to be expected, as the oracle model simulates a BSGRU with a perfect

100%-accurate gating sub-unit. Comparing uniform vs. quantile binning strategy, we see

that the oracle quantile models perform best; this can be explained due to the fact that

the quantile binning strategy, by definition, maximizes the utilization of all M specialist

blocks to cover the near-equal quadrants of the “segmental SNR” latent space. In other

words, the number of most-suited input cases is well-balanced among the M blocks. In the
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Figure 4.11: Comparison of speech enhancement performance between a unadapted GRU
baseline model, the pre-trained proposed BSGRU, and an oracle BSGRU.

uniform binning approach, the 3rd specialist would encounter the vast majority of input

frames, whereas the 1st specialist would encounter the least; this relates to the area under

the curve for each bin edge in Fig. 4.10. In summary, with uniform binning, the input cases

are not well-balanced among the specialists, making it understandably subpar to the quantile

binning.

Non-Oracle Binning Strategy Consequently, with the fully pre-trained BSGRU, the

uniform binning strategy outperforms the quantile binning strategy over all model sizes.

This may be explained by the fact that the gating sub-unit G is not perfect; even after the

two-stage pre-training, accuracy may be at best 70 % to 80 %. Naturally, inputs may be

misclassified; the uniform binning ensures that the centroids of each specialist are maximally
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spread out in the latent space. The bin edges are very close in value with quantile binning

(e.g., 1 dB to 5 dB) as compared to uniform binning (e.g., →10 dB to 10 dB), therefore

misclassification is more likely in the former. Thus, for practical applications, where the

ground-truth block index k̊ is not known at either training or test-time, a simple uniform

binning of the latent space may be more performant.

Model Size Next, we see that for the smallest model size, the two-stage pre-trained

BSGRU outperforms the non-adapted GRU model by a statistically significant amount

(about 5.4 % to 6.3 % improvement). This improvement is shown for models with the

same “e”ective hidden size”, highlighting the merit of our proposed model that leverages its

increased spatial complexity with negligible change in computational complexity. With the

next largest model size, the performance gain from non-adapted to adapted is noticeably

decreased (about 0.4 % to 2.6 % improvement). With the largest size, the performance is

regressed with quantile binning and only negligibly improved with uniform binning (about

→3.3 % to 0.9 % improvement). This finding echos our previous conclusions that the benefits

of model adaptation are best realized with smaller model sizes. A smaller model stands to

gain more from personalization given the reduced number of total parameters.
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Chapter 5

Conclusion

The goal of this dissertation was to present two classes of algorithms that address the task

of personalized (speaker-specific) speech enhancement, emphasizing the computational- and

data-e!ciency of these methods. Other research has shown that personalization expectedly

improves performance for the target speaker, but the resource e!ciency benefits discussed

in this dissertation were previously unexplored.

A significant focus of our study was on lossless model compression. The core idea

was to verify that personalized SE models could match or exceed the performance of non-

personalized SE models using fewer model parameters. We saw that this was the case

for specialist models pre-trained using NTT; for example, a tiny ConvTasNet pre-trained

using contrastive mixtures matched the performance of a small ConvTasNet pre-trained

using standard fully-supervised SE. Similarly, with our model selection experiments, we

saw that a generalist GRU-based SE model using 384 hidden units was outperformed by a

sparse ensemble of ten specialist GRU-based PSE models each using 64 hidden units. These

examples show that the spatial complexity (i.e., the number of total stored parameters)

could be reduced without degrading SE performance on the target speaker. Therefore, our

assertion that personalization was a novel paradigm for lossless model compression was

empirically validated.

Needless to say, using fewer model parameters minimizes both the space- and time-

complexity of the PSE algorithms. In other words, by achieving lossless model compression,

we have also inherently reduced the overall run-time (or inference) complexity. Particularly

with the model selection / sparse ensemble paradigm, the savings on space- and time-
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complexity are, in fact, decoupled. For example, if storage space is not a limiting factor, one

can simply increase K—the number of specialists in the ensemble—to improve the adapted

or personalized performance even more (up to a saturating point). Despite increasing K, the

actual algorithmic latency of the sparse ensemble remains the same because we select only

one best-suited specialist model for inference. In other words, our fundamental exploitation

of the MLE ensemble formulation enabled the opportunity to achieve isolated gains in

run-time complexity.

Another priority of our work was to minimize or avoid any model pre-training using

(reference quality) clean speech data from the target speaker. We defined our privacy goals

in this regard because of the recent advancements in speech synthesis research, showing that

realistic vocal forgery may be feasible with as little as 5 seconds of reference data. Our core

hypothesis is that (non-reference quality) noisy speech data is unusable for training legitimate

text-to-speech (TTS) systems, but may be beneficial for PSE through self-supervised learning.

The proposed NTT algorithms (PseudoSE and contrastive mixtures (CM)) are pretext tasks

meant to derive meaningful features distinctly for the PSE task. To this end, we made

the assumption that noisy speech data was easier to collect—skipping the need for a

voice enrollment process. Furthermore, we assumed that the SNR of the in-the-wild data

followed a uniform distribution between 0 dB to 15 dB in accordance with prior literature in

psychoacoustics. Naturally, our NTT methods may be limited depending on how originally

degraded the in-the-wild data is; we therefore proposed data purification (DP) to minimize

the delta between the pseudo- and real SE learning objectives. On the other end of the

spectrum, our illustration of personalization through model selection assumes that target

speaker data is wholly unavailable during training time, so we sidestep the privacy concern

entirely.
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However, if the target speaker’s clean speech is accessible, all of our proposed PSE

algorithms can benefit from additional transfer learning/fine-tuning. Although we only

examined the success of fine-tuning in our NTT experiments, it is highly likely that the

sparse ensembles or BSGRU models would also benefit from having any knowledge of the

test-time speaker.

Furthermore, with the NTT experiments, we gleaned the impact of training SE models on

in-domain data, even if it’s noisy. Stemming from our experiment setup, we saw that multiple

types of personalized models—leveraging only 25 minutes of referenceless noisy speech from

the target speaker—were able to outperform a non-personalized generalist model—trained on

440 hours of reference-quality clean speech from 1000+ anonymous speakers. This massive

reduction in training data size shows the potency of self-supervised learning with in-domain

data versus fully-supervised learning over out-of-domain data. Subsequently, using a smaller

training dataset reduces the overall elapsed training time, thereby reducing computing costs.

5.1 Contributions

We can summarize the novelty of this dissertation by viewing the proposed methods as broad

frameworks for addressing PSE based on the availability of speaker-specific training data.

We a!rm that “personalization via noisy-target training” is a robust approach when

unlabeled noisy speaker data is available. Realistically, this noisy data is likely more abundant

or, at least, easier to obtain. All of the self-supervised models could be improved further

through fine-tuning when a small amount of the target speaker’s clean speech data was

available. As they were trained in-domain, the NTT models adapted more e”ectively than

the out-of-domain fully-supervised models.

Next, we showed how “personalization via model selection” addresses the cases where

no target speaker data is available. The number of specialist sub-modules K may be
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chosen based on the space limitations, enabling a variable subdivision of the overarching SE

problem. The performance upper bound of model selection methods ultimately depends on

the grouping strategy and the group transition mechanism.

5.2 Limitations & Future Work

One remaining claim from this dissertation’s motivation was to address social fairness

through model personalization. It would have been ideal to discover concrete evidence of

our models achieving equivalent SE performance for under-recognized speakers, such as

those with diverse accents, from di”erent age groups, or even with specific speech disorders.

This e”ort would have rendered further insights into the design of accessible speech-based

machine learning systems. Regrettably, the absence of specific demographic annotations

in many public speech datasets limited our ability to fully explore the potential of our

methods. Although we could not investigate our claim in this dissertation, the methods

discussed do not make any assumptions about specific speaker identities or characteristics.

So, theoretically, they may be applied to the under-recognized cases, given the appropriate

training data.

We note that additional studies could have been done regarding the data-e!ciency

arguments. For example, our NTT experiments were designed with the specialist models

being trained on approximately 25 min of noisy speech from the target speaker. An extension

of this work could have varied this amount, generating a curve to see the impact of in-domain

noisy data on the pseudo SE learning objective. Also, because the DP method diminishes

the learning contribution of overly degraded frames, it would have been informative to

determine what percentage of the in-the-wild data was ultimately usable.

A few other supplementary experiments may have strengthened the arguments pre-

sented in this dissertation. For example, we could have assessed more sophisticated speech
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enhancement neural network architectures besides the described GRU-based masking net-

work or ConvTasNet. There are a plethora of speech enhancement algorithms that may

be classified as TF-masking or end-to-end signal estimation methods; our experimental

validation only covers one algorithm from each approach. Also, more extensive sweeps over

experiment hyperparameters—including learning rates, optimizers, and number of clusters

(K)—may have been done with additional time. For our experiments, we opted for the

simplest deformation function: a sum of speech and noise signals. However, we anticipate

the proposed methods would translate well to more complex deformation functions that

incorporate reverberation or other filters. Lastly, it would have been ideal to formulate an

experiment that makes the NTT and model selection methods more directly comparable.

We recognize that many other studies about personalization directly identify the target

speaker by estimating a “speaker ID” vector. However, the proposed methods of this

dissertation are data-centric and intentionally do not involve an explicit speaker identification

(SI) task. In that way, we empirically see that features learned for the SE task need

not compromise the speaker’s identity—that is, identification may not be essential for

personalization. Therefore, we suspect that the availability of training data is likely the

biggest factor in deciding the best framework for training and deploying a PSE system.

In short, we hope this dissertation inspires additional research on providing personalized

experiences with speech-based systems, prioritizing resource e!ciency and speaker privacy.
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R. V. Muñoz. Clarity-2021 Challenges: Machine Learning Challenges for Advancing

Hearing Aid Processing. In Proc. Interspeech, pages 686–690, 2021.

[29] H. Dubey, V. Gopal, R. Cutler, A. Aazami, S. Matusevych, S. Braun, S. E. Eskimez,

M. Thakker, T. Yoshioka, H. Gamper, and R. Aichner. Icassp 2022 deep noise

suppression challenge. In Proc. of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 9271–9275, 2022.

[30] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR corpus

based on public domain audio books. In Proc. of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), pages 5206–5210, 2015.

96



[31] C. Veaux, J. Yamagishi, and S. King. The Voice Bank Corpus: Design, Collection and

Data Analysis of a Large Regional Accent Speech Database. In 2013 International

Conference Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken

Language Research and Evaluation (O-COCOSDA/CASLRE), pages 1–4, 2013.

[32] D. Snyder, G. Chen, and D. Povey. MUSAN: A Music, Speech, and Noise Corpus.

arXiv preprint arXiv:1510.08484, 2015.

[33] J. Thiemann, N. Ito, and E. Vincent. The diverse environments multi-channel acoustic

noise database (demand): A database of multichannel environmental noise recordings.

Journal of the Acoustical Society of America, 133(5):3591–3591, 2013.

[34] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra. FSD50K: an Open Dataset of

Human-Labeled Sound Events. arXiv preprint arXiv:2010.00475, 2020.

[35] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe. Deep Clustering: Discriminative

Embeddings for Segmentation and Separation. In Proc. of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2016.

[36] J. Cosentino, M. Pariente, S. Cornell, A. Deleforge, and E. Vincent. LibriMix: An open-

source dataset for generalizable speech separation. arXiv preprint arXiv:2005.11262,

2020.

[37] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi. Investigating RNN-

based speech enhancement methods for noise-robust Text-to-Speech. In Proc. 9th

ISCA Workshop on Speech Synthesis Workshop (SSW 9), pages 146–152, 2016.

[38] E. Vincent, C. Fevotte, and R. Gribonval. Performance measurement in blind audio

source separation. IEEE Transactions on Audio, Speech, and Language Processing,

14(4):1462–1469, 2006.

97



[39] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey. SDR – half-baked or well

done? In Proc. of the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2019.

[40] M. Kolbæk, Z.-H. Tan, S. H. Jensen, and J. Jensen. On Loss Functions for Supervised

Monaural Time-Domain Speech Enhancement. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 28:825–838, 2020.

[41] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. A short-time objective

intelligibility measure for time-frequency weighted noisy speech. In Proc. of the IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.

[42] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Perceptual evaluation

of speech quality (PESQ)-a new method for speech quality assessment of telephone

networks and codecs. In Proc. of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), volume 2, pages 749–752, 2001.

[43] H. Zhang, X. Zhang, and G. Gao. Training supervised speech separation system to

improve STOI and PESQ directly. In Proc. of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), pages 5374–5378, April 2018.

[44] D. L. Wang and J. Chen. Supervised Speech Separation Based on Deep Learning:

An Overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

26(10):1702–1726, 2018.

[45] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis. Deep learning

for monaural speech separation. In Proc. of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), May 2014.

98



[46] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J. R. Hershey, and

B. Schuller. Speech Enhancement with LSTM Recurrent Neural Networks and its

Application to Noise-Robust ASR. In Proc. of the International Conference on Latent

Variable Analysis and Signal Separation (LVA/ICA), August 2015.

[47] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde.

Singing voice separation with deep u-net convolutional networks. In Proc. of the

International Society for Music Information Retrieval Conference (ISMIR), October

2017.

[48] H.-S. Choi, J.-H. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee. Phase-aware Speech

Enhancement with Deep Complex U-Net. In Proc. of the International Conference on

Learning Representations (ICLR), 2018.

[49] Y. Luo and N. Mesgarani. Conv-TasNet: Surpassing ideal time–frequency magnitude

masking for speech separation. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 27(8):1256–1266, 2019.

[50] T. von Neumann, K. Kinoshita, L. Drude, C. Boeddeker, M. Delcroix, T. Nakatani,

and R. Haeb-Umbach. End-to-End Training of Time Domain Audio Separation and

Recognition. In Proc. of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), pages 7004–7008, 2020.

[51] Y. Luo, Z. Chen, and T. Yoshioka. Dual-path RNN: e!cient long sequence modeling

for time-domain single-channel speech separation. In Proc. of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

[52] E. Tzinis, Z. Wang, and P. Smaragdis. Sudo rm -rf: E!cient Networks for Universal

Audio Source Separation. In Proc. of the IEEE Workshop on Machine Learning for

Signal Processing (MLSP), pages 1–6, 2020.

99



[53] C. Subakan, M. Ravanelli, S. Cornell, F. Grondin, and M. Bronzi. Exploring self-

attention mechanisms for speech separation. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 31:2169–2180, 2023.

[54] V. Zadorozhnyy, Q. Ye, and K. Koishida. SCP-GAN: Self-Correcting Discriminator

Optimization for Training Consistency Preserving Metric GAN on Speech Enhancement

Tasks. In Proc. Interspeech, pages 2463–2467, 2023.

[55] L. Liu, H. Guan, J. Ma, W. Dai, G. Wang, and S. Ding. A Mask Free Neural Network

for Monaural Speech Enhancement. In Proc. Interspeech, pages 2468–2472, 2023.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, %L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems (NIPS), 2017.

[57] E. Strubell, A. Ganesh, and A. McCallum. Energy and Policy Considerations for Deep

Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 3645–3650, 2019.

[58] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and Hu”man coding. In Proc. of the

International Conference on Learning Representations (ICLR), 2016.

[59] M. Kim and P. Smaragdis. Bitwise neural networks for e!cient single-channel source

separation. In Proc. of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), 2018.

[60] L. Guo and M. Kim. Bitwise source separation on hashed spectra: An e!cient posterior

estimation scheme using partial rank order metrics. In Proc. of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

100



[61] S. Kim, M. Maity, and M. Kim. Incremental binarization on recurrent neural networks

for single-channel source separation. In Proc. of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2019.

[62] S. Kim, H. Yang, and M. Kim. Boosted locality sensitive hashing: Discriminative

binary codes for source separation. In Proc. of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2020.

[63] Y. Luo, C. Han, and N. Mesgarani. Ultra-Lightweight Speech Separation via Group

Communication. In Proc. of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), pages 16–20. IEEE, 2021.
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[101] K. Žmoĺıková, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa, and T. Nakatani.

Learning speaker representation for neural network based multichannel speaker extrac-

tion. In Proc. of the IEEE Automatic Speech Recognition and Understanding Workshop,

pages 8–15, 2017.

[102] K. Chen and A. Salman. Learning speaker-specific characteristics with a deep neural

architecture. IEEE Transactions on Neural Networks, 22(11):1744–1756, 2011.

[103] A. Jati and P. G. Georgiou. Speaker2Vec: Unsupervised Learning and Adaptation

of a Speaker Manifold Using Deep Neural Networks with an Evaluation on Speaker

Segmentation. In Proc. Interspeech, pages 3567–3571, 2017.

[104] Y. Koizumi, K. Yatabe, M. Delcroix, Y. Masuyama, and D. Takeuchi. Speech Enhance-

ment Using Self-Adaptation and Multi-Head Self-Attention. In Proc. of the IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

106



[105] F.-K. Chuang, S.-S. Wang, J.-W. Hung, Y. Tsao, and S.-H. Fang. Speaker-Aware Deep

Denoising Autoencoder with Embedded Speaker Identity for Speech Enhancement. In

Proc. Interspeech, 2019.
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