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Aswin Sivaraman

RESOURCE-EFFICIENT MODEL ADAPTATION METHODS

FOR PERSONALIZED SPEECH ENHANCEMENT SYSTEMS

This dissertation introduces several machine learning algorithms for developing personal-
ized speech enhancement (PSE) systems. In particular, we investigate the data-efficiency
of the proposed methods. Here, we define personalization as a model adapting towards a
particular user’s speech characteristics and/or their acoustic environment. By consciously
minimizing their computational overhead, we make these algorithms more suitable for edge
computing applications—e.g., smartphones, smart speakers, or headphones.

These use cases can all benefit from employing PSE systems on at least two dimensions.
Firstly, PSE can lead to better performance—this is because single-user speech enhancement
may be viewed as a subset of the originally complex problem (i.e., speaker-agnostic or
general-purpose speech enhancement). Secondly, PSE can reduce model complexity; given
the reduced problem space, a personalized model with fewer parameters suffices to perform
equally as well as a non-personalized model trained with many more parameters. To
that end, we argue that PSE is a novel paradigm for lossless model compression without
loss of performance. However, PSE can be challenging from an optimization perspective.
When framed as a fully supervised machine learning problem, the availability of labeled
speaker-specific data is scarce, and attempting to collect user data may be unreliable and
privacy-compromising.

To that end, this dissertation proposes data-efficient PSE methods that can tackle two
potential scenarios. In the first case, the PSE system may have access to abundant unlabeled

noisy speech data but only a small amount (up to 30 seconds) of clean speech data from
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the target user. In the second case, the PSE system may have no access to any personally
identifiable data. Therefore, our methods may be classified as few-shot or zero-shot machine
learning approaches.

In order to best utilize the scarce clean data in the few-shot context, we put forward
self-supervised learning methods for PSE that repurpose the more accessible unlabeled
speech data. More specifically, we develop frameworks that incorporate noisy target training
and contrastive learning. Furthermore, to achieve zero-shot personalization, we employ the
model selection paradigm for finding a predefined latent cluster best-suited for the unseen
test time user’s noisy speech.

Our extensive experiments show that both self-supervised learning and the model selection
paradigm achieve our goals for model adaptation. This research promotes the development
of more efficient speech enhancement systems with reduced training data requirements and

broader accessibility for more people.
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Chapter 1

Introduction

Every human voice is as unique as a fingerprint, filled with subtle nuances that comprise
a portion of one’s identity. While the physiological process of producing speech is the
same for everyone, the resulting auditory signal contains numerous discerning features. A
person’s vocal range, their accent, and their speaking cadence can potentially be mapped to
their locale, their age, or even their ethnic background. Because speech is such a deeply
personal and invaluable biometric, it is quite unsurprising that humans have a complicated
relationship with machine learning (ML)-based speech processing systems.

For the most part, people expect their devices to hear them in any noisy environment.
Typically, voice controlled devices (VCDs) employ a general-purpose speech enhancement
(SE) algorithm that improves the quality and intelligibility of the incoming speech signal.
Currently, deep neural networks (DNNs) have become the de facto building blocks for modern
SE algorithms. At the same time, it is well-known that generalizable DNN performance
strongly correlates to increased model size and massive labeled datasets. In other words,
developing a DNN for SE requires accruing vast amounts of training data (thousands of
isolated speech or noise recordings) in order to cover the potential breadth of noisy speech
signals that may be encountered at test-time [1]. Since every human voice is distinct, the SE
model, by definition, will have never encountered the target speaker’s voice during training,
even though it is expected to be performant in this cold-start scenario. As a result, most
SE models may be considered as “generalists” that assume no knowledge of the test-time
environment. These generalists operate irrespective of the deployment context, intended to

be universally applicable.



There are some notable downsides to models that targets large-scale generalized perfor-
mance. For example, studies have shown that generalist DNNs possess redundant connections
and under-utilized parameters [2]. With many models, performance and accuracy scales
logarithmically with model capacity, potentially saturating after a point [3]. A lot of popular
and emerging DNN architectures have started to exceed millions (or even billions) of model
parameters, leading to skyrocketing hardware costs and exponentially high carbon footprints
[4]. Furthermore, ML models trained on big data tend to exhibit sociodemographic biases
[5, 6]—a phenomenon present in ML-based speech processing systems, too [7, 8]. Essentially,
while generalist models may be well-performing, they incur a variety of resource inefficiencies
along with the potential to fail for under-recognized people.

In an ideal setting, rather than attempting to generalize to every possible case, VCDs
could instead utilize a personalized speech enhancement (PSE) model, adapted to enhance
only the target speaker’s voice optimally. Prior evidence has shown that the speech denoising
problem can be decomposed into discrete non-overlapping sub-problems [9]. More specifically,
the learning objective of a personalized specialist model (designed to enhance only a single
voice) is simpler than that of a generalist model (which must enhance every possible voice),
therefore a specialist may be better performing. One naive method of adapting an SE
model into a PSE model would be to fine-tune the model parameters using speaker-specific
labeled data. Realistically, this data is often obtained through an “enrollment” procedure,
where the target speaker records themselves saying a few prescribed sentences in a noise-free
environment [10, 11, 12]. Once an SE model becomes specialized for a particular speaker
or environment, the enhancement performance is expectedly improved, leading to a more
robust on-device automatic speech recognition (ASR).

However, acquiring speaker-specific clean speech data is fraught with complications.

Firstly, the average VCD user might not have access to very quiet echo-free environments



or nice recording equipment; as a result, the user-provided data may not be considered
to be reference quality. Secondly, typical ML models are trained on hundreds of hours of
audio data, and recording any single speaker for that long would be unrealistic. At best, the
burdensome enrollment procedure may yield a few seconds of usable data at most. Lastly, by
and large, people are wary of Al-powered systems collecting too much of their personal data
and breaching their privacy [13, 14, 15, 16]. It is understandable why people are reluctant
to share their voice data given that vocal forgery is a legitimate concern. Recent research on
speech synthesis models has shown that only 5sec of enrollment data is needed to condition
models into mimicking a particular voice [17]. As a result, minimizing the use of target
speaker-specific data is a practical optimization constraint when developing a PSE model.

Therefore, the goal of this dissertation’s proposed research is to reformulate ML algo-
rithms for SE such that personalization can be achieved using little to none of the target
speaker’s personal data. Subsequently, we investigate how personalization not only improves
performance for the target speaker but can also enable more efficient inference. More broadly,
we posit that model adaptation (the idea of developing specialist models over generalist

models) brings with it the added bonus of resource efficiency.

1.1 Problem Setup

The real-world deployment of a PSE model is subject to the aforementioned challenges of
collecting target speaker specific data. Therefore, with this dissertation, we consider three

possible scenarios pertaining to the availability of training data.

o PSE Scenario 1 (Enrollment): The target speaker provides some amount of clean
speech in order to optimize their experience. This set is commonly referred to as

“enrollment data” and may be as little as 5sec or at most 30sec in total duration.



« PSE Scenario 2 (Unlabeled): Here, the PSE system only has access to a few
unlabeled observations of the target speaker. These “in-the-wild” recordings give the
model some knowledge of the target speaker, but they are likely contaminated by

unknown noises.

o PSE Scenario 3 (Cold-Start): In this case, the target speaker provides no personal

data of any kind. This is effectively a “cold start” problem.

We treat the first scenario as a few-shot learning (FSL) problem because it is about
leveraging the scarcely labeled data without overfitting; accordingly, the last two scenarios
may be treated as zero-shot learning (ZSL) problems due to the lack of enrollment data. For
PSE Scenario 2, we hypothesize that the more abundant noisy data may be serviceable
using a self-supervised learning (SSL) technique known as noisy-target training (NTT).
Models pre-trained using the NTT methods can be fine-tuned over any available clean speech
data, thereby covering PSE Scenario 1. To address PSE Scenario 3 (or any instance of
model adaptation without knowledge of the target domain), we propose the idea of “model
adaptation by selection”. Over all our experiments, we assess how the proposed algorithms
achieve our adaptation goals of improving performance while enabling reductions in model

complexity (either through quicker inference or fewer total parameters).

1.2 Broader Impact

This dissertation offers a preliminary exploration of two broad-impact areas of Al-based
research. Our proposed methods to personalize an SE model meet the ever-growing need
for ethical AI models that are more inclusive and responsible. The state-of-the-art machine
learning models have gravitated towards those trained on the largest possible amount of data,
often neglecting the representativeness of that data. Especially in SE research, the standard

practice is either to record as many data samples as possible and then hire human annotators



to label them, or to combine various publicly available datasets. Because data preparation
and annotation are likely to incur the most significant costs when developing an Al system,
researchers have overlooked their social impacts until recently. For example, one study
showed that the accuracy of two ASR systems (on YouTube and Bing) was notably worse
among non-American non-white female speakers [18]. Similar representation disparities,
inherently caused by empirical risk minimization, have been surveyed in numerous machine
learning tasks, including face recognition and language identification [19]. In most cases, the
racial or gender inequities stemmed from the underlying biases in the large training datasets
used. This dissertation addresses this ethics issue directly by developing speaker-specific
specialist models that outperform speaker-agnostic generalist models. More broadly, we
argue that specialist Al models can better serve socially under-represented groups.

In addition, our methods for PSE bring broader attention to the need for privacy-
preserving Al systems. If a negligent party targets personalization solely as a means for
increasing the accuracy of their Al systems, a breach of privacy is an imminent concern. The
most apparent case is when an always-on VCD accidentally listens to a conversation due
to mishearing the wake word [20]. Human employees might need to additionally annotate
these utterances that caused the VCD to misfire, further diminishing the user’s privacy.
While privacy preservation has been investigated in other machine learning tasks (e.g.,
classification), it has been less studied with speech enhancement due to the need for clean
speech from the test-time users. The experiments in this dissertation explicitly minimize
the models’ exposure to the target speakers’ voices and their private environment. We hope
that our investigations encourage further efforts by SE researchers to incorporate similar

privacy constraints.



1.3 Relevant Publications

We acknowledge that certain portions of this dissertation consist of previously published
material, presented at various conferences and journal articles. Table 1.1 summarizes the
publication history of our prior works, indicating which sections use them. Additionally, we

provide online access to source code and demos for the reader’s reference.

Table 1.1: Archival links to the relevant prior publications, source code, and demos.

Year Publication  Article Citation External Links ReleYant

Venue Type Sections
2020  Interspeech Conference [21] O [ A Section 4.1
2020  NeurIPS Workshop [22] O [ Section 3.2.2
2021 Interspeech Conference [23] O [«9 Section 3.2.3
2021  WASPAA Workshop [24] W) Section 4.2
2022  JSTSP Journal [25] (9] Chapter 3



https://doi.org/10.21437/Interspeech.2020-2989
https://github.com/IU-SAIGE/sparse_mle
http://www.interspeech2020.org/index.php?m=content&c=index&a=show&catid=412&id=1229
https://minjekim.com/research-projects/sparse-mle/
https://arxiv.org/abs/2011.03426
https://github.com/IU-SAIGE/contrastive_mixtures
https://neurips.cc/virtual/2020/20314
https://doi.org/10.21437/Interspeech.2021-1868
https://github.com/IU-SAIGE/pse-snr-informed
https://iu.mediaspace.kaltura.com/media/t/1_f8fxu8sx
https://doi.org/10.1109/WASPAA52581.2021.9632752
https://github.com/IU-SAIGE/pse-speaker-informed
https://doi.org/10.1109/JSTSP.2022.3181782
https://github.com/IU-SAIGE/pse

Chapter 2

Literature Review

Although the human auditory system is exceptionally good at selective hearing [26, 27],
no foolproof algorithm exists for perfectly emulating this ability computationally. In order
to make machines capable of selective hearing, researchers either tackle the broader task
of source separation (SS)—where the objective is to isolate individual sound sources from
a mixture of sounds, or the narrower subproblem speech enhancement (SE)—where the
objective is only to restore the speech source. Due to the ongoing deep learning renaissance,
neural networks have surpassed traditional signal processing or machine learning methods,
achieving state-of-the-art performance with both SS and SE tasks. In this chapter, we
discuss the relevant prerequisite information for understanding the current lay of the land
with SE research; additionally, we note the differences of the proposed methods from this

dissertation with other influential works.

2.1 Datasets & Benchmarks

Currently, there is not one single benchmarking dataset for every SE model in existence,
although there have been some public challenges attempting to bring standardization to
the field [28, 29]. As a result, many researchers manually prepare noisy speech datasets
(for training and for testing) by mixing utterances from public speech datasets' with
sounds from public noise datasets?. Manually mixing utterances is a legitimate option as
it enables fully-supervised training, with the caveat that researchers must apply a variety

of signal-to-noise ratios (SNRs) in order to simulate varying degrees of noisiness. SNR

"Popular choices for English clean speech datasets include Librispeech [30] or Voice Bank [31].
*Popular choices for noise datasets include MUSAN [32] or DEMAND [33] or FSD50K [34].



is a measure of the ratio of speech power to noise power, often expressed in decibels; an
SNR greater than 0dB indicates the presence of more speech than noise. Some datasets
are generated using a deterministic (fixed) mixing strategy to ensure reproducibility and
standardization—for example, WSJ0-2Mix [35], LibriMix [36], and Voice Bank + DEMAND
[37]. Our experiments in this dissertation make use of the open-source Librispeech, MUSAN,
DEMAND, and LibriMix corpuses. Additional details about these datasets will be shared in

the later sections.

2.2 Evaluation Metrics & Loss Functions

There are a number of evaluation metrics used when testing a SE model. Most metrics
require access to the ground-truth (reference) clean speech, but a few are reference-less (i.e.,
blind quality estimators). Also, some metrics are considered signal level whereas others are
perception level. In this dissertation, we will use metrics that do rely on the reference signal,
i.e., in order to report objective improvements.

At the signal level, the most common metric is SNR—calculating the delta between
the output (enhanced speech) SNR and input (noisy speech) SNR gives an indication of
enhancement performance. Other prominent signal level metrics are modified versions of
SNR, including signal-to-distortion ratio (SDR), signal-to-artifact ratio (SAR), and signal-
to-interference ratio (SIR) [38]. Notably, SDR becomes equivalent to SNR when we only
consider additive noise, ignoring interferences and algorithmic artifacts. More recently, a
more robust modification of SDR known as scale-invariant signal-to-distortion ratio (SISDR)
was proposed; it introduces a scaling factor to ensure that the residual vector—between
the estimated and reference signals—maintains orthogonality to the reference [39]. In this
dissertation, we will notate the reference (clean speech) signal as s and the model estimate

(enhanced speech) signal as y; the subscript ¢ denotes the indexing of time-domain samples.



Subsequently, the metrics SDR and SISDR are computed in decibels as follows:

_ 2ot 5t2
SDR (y, s) = 10logy S (5= )2 (2.1)
2

Note that Eq. (2.1) is equivalent to setting o = 1 in Eq. (2.2); however, as shown in [39],
the robustness of SISDR comes from setting o = (yTs> / (STS). All of these signal level
metrics can, in fact, be used as optimization criteria for updating model parameters. When
formulated as neural network loss functions (optimized for minimizing error), using the

negative metric suffices [40]—in other words, a SISDR-based loss function would look like:

(2.3)

2
Lsispr (¥, 8) = — SISDR (y, s) = —101log;, [ >i(ase) ]

Silase —yi)?

On the perceptual level, the metric STOI [41] (short-time objective intelligibility) mea-
sures speech intelligibility by calculating correlations between short-term temporal envelopes
of the reference signal and of the enhanced signal; STOI values range between 0 and 1, where
1 would be most intelligible. Another metric, PESQ [42] (perceptual evaluation of speech
quality), was introduced by the International Telecommunication Union (ITU)—PESQ also
requires the reference signal, generating a score between —0.5 and 4.5 corresponding to a
predicted perceptual MOS (mean opinion score). Both of these perceptual metrics can again
be used as evaluation criteria but also as optimization criteria—i.e., as a neural network

training loss function [43].



Lastly, while it does not necessarily guarantee high speech quality or intelligibility, another

straightforward choice for neural network loss function is mean-squared error (MSE).

Luse (y,8) =Y (s (2.4)

t

The models in this dissertation employ some of these discussed loss functions, namely Lyse
and Lgispr. In the later sections, where we introduce a classification sub-module, the
conventional choice of loss function is the averaged cross entropy (log loss). For binary
classification over N observations, given an array of ground-truth class labels k and an array

of model-estimated labels 12:, the cross entropy (CE) optimization criterion is defined as:

1 Y R
T2 [k log(ky) + (1= k;)log(1 — k)] (2.5)

J=1

Log (k k)

2.3 Training Targets

Most deep learning SE models proposed over the years can be broadly categorized in terms
of their training targets, either as a masking-based or a mapping-based model [44]. Masking-
based SE models operate on a two-dimensional time-frequency (TF) representation of audio;
they learn to predict a binary masking matrix by processing the magnitude spectrum of a
noisy speech signal [45, 46, 47, 48]. The magnitude spectrum is commonly obtained using the
short-time Fourier transform (STFT). The masking matrix accentuates TF bins dominated
by speech and filters out TF bins dominated by noise. In contrast, mapping-based models
[49, 50] directly estimate a one-dimensional signal, the clean speech waveform. Fig. 2.1
shows a high-level comparison of the two training targets. For mapping-based models, x is
the input mixture signal and vy is the output estimated clean speech. If a time-frequency

transform is used (e.g., the STFT), then the model input is the noisy speech magnitude

10
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Figure 2.1: Comparison between mapping-based and masking-based SE models.

spectrogram X and the model output is a binary masking matrix M. The operator ®
denotes element-wise multiplication (also known as the Hadamard product). The clean
speech spectrogram is estimated by applying the mask, i.e., ¥ = X ® M. An inverse
transform is needed to convert time-frequency spectrograms back to time-domain waveforms.
In a fully-supervised learning setup, the model’s final estimate y is compared against the
ground-truth clean speech s. With our experiments in this dissertation, we employ both
masking-based and mapping-based models, emphasizing that our proposed methods are

agnostic to the choice of training target.

2.4 Resource Efficiency

The highly performant state-of-the-art models for SE are, in fact, double-edged. Because of
the data-hungry nature of fully-supervised deep learning, many models for SE are likely to be
over-parameterized, making them cumbersome both for training and for deployment on real-
world devices. As stated before, a specialist model may be more resource-efficient compared
to a generalist model given that it is solving a smaller sub-problem. In this dissertation,
we address “resource efficiency” from multiple angles. For instance, we hypothesize that a
personalized model may achieve equivalent performance to a generalist model using fewer
model parameters. In that regard, personalization may be seen as a form of lossless model

compression. By using fewer model parameters, we say that the PSE model has reduced

11



space complexity, i.e., its storage requirements are lessened. Whenever it is not possible to
reduce the space complexity, we demonstrate that some personalized models can run fewer
computations during inference compared to generalists. In other words, personalization can
also reduce run-time complexity, improving latency or model throughput. Lastly, because
a personalized model need only be optimized for one speaker (as opposed to thousands of
speakers), we hypothesize that training data reduction is also possible. Storing massive
datasets, synthesizing noisy speech, and updating the model parameters based on hundreds
of hours of audio data is a very costly process. Particularly in Chapter 3, our proposed
noisy-target training for personalization enables a specialist to use only 25 min of data in
contrast to a generalist which uses 440 h of data, resulting in a massive 99.9 % savings. All
of these benefits make PSE models more suitable for real-world deployment.

In relation to the previously mentioned public datasets, some of the reported best-
performing deep learning models for generalist SE include ConvTasNet [49], dual-path
RNN [51], SuDoRMRF [52], SepFormer [53], SCP-GAN [54], and MFNet [55]. We note
that overall model complexity can be profiled using two measurements: for example, the
total number of model parameters relates to space complexity, whereas the total number of
multiply-accumulate operations (MACs) is indicative of run-time complexity. In Table 2.1,
we list the number of total parameters and MACs for some top-performing models. Note
that the number of MACs relates to the size of the model input—assuming that all audio
recordings have a sampling rate of 16 kHz, we report the number of MACs for processing a
single second of audio.

These state-of-the-art models achieve noteworthy improvements on enhanced speech SISDR3,
yet their space and run-time complexity are on the order of millions and billions, respectively.

In particular, SepFormer is a massive neural architecture due to its use of transformer

3A leaderboard for speech separation performance on the WSJ0-2mix dataset [35] can be found at
https://paperswithcode.com/sota/speech-separation-on-wsjO-2mix.

12
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Table 2.1: Space and run-time complexities for various state-of-the-art SE models.

Model Name (# MACs) /sec. # Params. SISDR Imp. [1]
ConvTasNet [19)] 9.82G 4.92M 15.3dB
DPRNN [51] 15.24G 3.63M 18.8dB
SuDoRMRF [52] 416G 2.45M 19.5dB
SepFormer [53] 77.33G 17.25M 22.3dB

layers [56]. As we discussed before, larger models require more expensive GPU hardware

and incur a greater carbon footprint [57]. The investigations of this dissertation apply to
models that operate below 1 M parameters, which are much more amenable to low-resource
environments and real-world embedded systems. For that reason, the performance of the
models discussed in this dissertation do not compete with and are not directly comparable to
the state-of-the-art results shown in Table 2.1. Specifically in Chapter 3, we introduce and
evaluate much smaller variants of ConvTasNet. Later on, we discuss how model adaptation

(personalization) allows for equivalent performance to be achieved using smaller models.

2.5 Model Compression

Although model compression is an active area in deep learning research, many standardized
methods, such as quantization or pruning [58], do not consider the context of the model
after deployment. Decreasing the total number of model parameters without reformulating
the model objective is an option, but this may result in discernible performance trade-offs
[3]. Particularly with regards to SE or SS, more recent research has focused on novel model
compression methods, including bitwise operations [59, 60, 61, 62] or group communication in
intermediate neural network layers [63]. These works successfully minimize the performance
trade-off but miss the opportunity to exploit the model’s deployment environment. With

personalization, because the sub-problem is easier to solve, a compressed specialist model
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suffices to perform on par with a more complex generalist model. This dissertation introduces
a novel paradigm for lossless compression by means of personalization. For example, in
Chapter 4, we demonstrate gender-based speaker adaptation via model selection, and our
experiment results show that a specialist composed with 512 hidden units enhanced the
target speaker’s voice comparably to a generalist model composed with 1024 hidden units.

This is effectively a “lossless” 50 % reduction in run-time computational complexity.

2.6 Target Speaker Extraction

Within the last few years, more and more SE research is being done on personalization, i.e.,
single-speaker model adaptation. However, the primary goal of most researchers is to show
improved performance on the target speaker; the additional benefits of model compression,
data efficiency, and privacy preservation are less explored. In the other literature, the
PSE task is framed as target speaker extraction (TSE): effectively a combination of source
separation (SS) with a conditional noise suppression (SE). This perspective of PSE is viable
when there is some data from the target speaker available, i.e., enrollment data. Multiple
models—such as SpeakerBeam [64], VoiceFilter [65], and pDCCRN [66]—explicitly utilize
an encoder module that produces a noise-robust discriminative speaker embedding. As
shown in Fig. 2.2, after the mixture sources are separated, the embedding cues the model
to enhance only the desired source, i.e., the target speaker. Recent iterations of the public
Deep Noise Suppression challenge [29] have included a ‘personalized speech enhancement’
track providing enrollment data, which effectively encourages participants to devise TSE
solutions.

In contrast to these approaches which rely on computing a discriminative speaker
embedding, our methods for PSE do the adaptation implicitly. That is, we do not uniquely

ID the target speaker by way of a personally identifiable embedding—we intentionally do this
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Figure 2.2: Formulation of PSE as target speaker extraction (TSE).

to preserve the target speaker’s privacy. Rather, we show that personalized enhancement can
be achieved in a data-driven manner by using self-supervised learning (SSL) over the more-
abundant in-the-wild observations of the target speaker, described in Chapter 3. Moreover,
if no observations of the target speaker are available, we show that it is also possible to
perform a coarse clustering on the test-time data, in order to enhance the target speaker’s
voice as it relates to a predefined group; this process of model adaptation by selection is

described in Chapter 4.

2.7 Self-Supervised Learning

In the self-supervised learning (SSL) paradigm, a ML model is trained to solve a pretext task,
learning useful features that will help when addressing the intended downstream task. The
purpose is to overcome scenarios where there is only unlabeled data available (i.e., no input +
expected output pairs). SSL has gained significant traction in recent years for advancing the
state-of-the-art over numerous research domains, including speech representation learning
[67, 68, 69]. There have also been a growing number of SSL setups for general-purpose
speech enhancement. An early work employed zero-shot SSL in a student-teacher framework,
showing a student network that implicitly learned to perform speech enhancement despite
being trained to minimize automatic speech recognition error [70]. Another work describes an
SSL framework based on two autoencoders, trained to reproduce either clean speech or noisy
speech [71]. The authors enforce a coupling of the two autoencoders’ latent spaces using

cyclic-consistency. At inference time, the autoencoder trained only using mixture signals has
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its decoder swapped out, thus achieving zero-shot speech enhancement. These studies are
limited to speaker-agnostic enhancement, and in particular, do not exploit self-supervised
learning as a method for in-domain training.

Subpar performance of an SE model can sometimes be attributed to a fundamental
mismatch between the distribution of audio data encountered at training versus at test
time. Because observations at test-time are inherently unlabeled, SSL is a great choice for
enabling in-domain training. With the SE task, the term “unlabeled data” refers to the
non-reference quality noisy speech recordings—which is likely more abundant. Two recent
studies investigated using noisy speech data as target signals specifically to achieve in-domain
training [72, 73]; because of the imperfect reference signals, noisy-target training (NTT)
may be considered as an SSL pretext task. Our proposed PseudoSE method, introduced
in Chapter 3, is also a form of NTT; however, this dissertation investigates the benefits of
noisy training targets specifically with regards to single-speaker model personalization and
model compression. Additionally, our study is the first to bootstrap NTT using contrastive
learning for the task of SE.

There is also a well-regarded SSL framework for source separation (SS) known as mixture
invariant training (MixIT) [74]. It was proposed as an alternative to the fully-supervised
permutation invariant training (PIT). MixIT is a procedure for developing source separation
systems using only mixtures of mixtures (MoM), i.e., linear combinations of arbitrary audio
signals. When we consider MixIT as a pretext task, it introduces systematic mismatch by
design because the input MoMs have twice the number of expected sources at test-time.
One recent study used MixIT by successfully adapting models to a set of speakers through
joint training over in-domain and out-of-domain data [75], however the model compression
implications were unexplored. In comparison to MixIT, the PseudoSE task may be viewed as

a more speech enhancement-oriented version: while MixIT estimates every composite signal,
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PseudoSE learns explicitly from the combination of a target speaker’s noisy utterance plus
an injection noise. Therefore, a PseudoSE model is able to target the pseudo speech source

and can omit reconstructing the injection noise. We discuss this further in Section 3.2.1.

2.8 Mixture of Local Experts

The mixture of local experts (MLE) modeling paradigm [76] has seen a few investigations
in SE [77, 78], demonstrating that an ensemble of weak learners can produce a superior
enhancement through a weighted combination of the learners’ outputs. This general-purpose
ensemble model is made up of two main components. First, multiple “expert modules”
each learn to handle a subset of the complete set of training cases. Second, a classifier,
referred to as the “gating module”, is trained to predict a decision vector (pg) that estimates
the contribution of each expert with respect to the final output. As shown in Figure 2.3,
the naive output of an MLE ensemble model is simply the sum of the experts’ individual
inferences weighted by pi. All expert modules receive the same input signal & and calculate
their own expected outputs §. The gating module processes the input signal and outputs a
normalized decision vector p; that is used to combine the experts’ outputs.

Instead of linearly combining the outputs of the separate experts, we imagine that the
gating network makes a stochastic decision about which single expert to use on each occasion.
More broadly, we propose swapping out the typical convex combination of the ensemble
model to instead do model selection. By introducing “sparseness” in the output layer of the
gating module, the MLE becomes more selective, effectively making a hard decision [21, 79].
Compared to generalist models, which require a large model capacity to achieve a certain

level of speech denoising, a sparse ensemble model can yield the same enhancement quality

even if the composing specialists use much fewer parameters. Subsequently, we claim that
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Figure 2.3: An ensemble model based on the “mixture of local experts” paradigm.

our “sparse MLE” framework can also be a form of model compression. We provide specific

implementation details of the sparse MLE model in Chapter 4.
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2.9 Non-Negative Matrix Factorization

Prior to the advent of deep learning, earlier studies about adaptation through model
selection looked at dictionary-based machine learning methods, such as non-negative matrix
factorization (NMF) or probabilistic latent semantic indexing (PLSI) [80, 81, 82]. For
example, when using NMF for speech enhancement, one common approach is to learn speech
and noise spectrogram “dictionaries” (i.e., a set of basis vectors). To start, NMF solves the
optimization problem:

WI,I}L}IZIOD(VHWH) (2.6)

where D is a divergence function, V' is a magnitude spectrogram, and W, H are learned
factors. Because of the non-negativity constraint, W can be interpreted as the latent
spectral features and H is their activation in time. Subsequently, the NMF pipeline for

fully-supervised speech enhancement is as follows:

1. We first factorize the magnitude spectrogram of the training data speech corpus Sirain

and of the training noise corpus Nirain-

2. The resulting speech and noise basis vectors (W((E’C)t and Wéli)t) are kept fixed, treated

as “dictionaries”.

3. Next, the magnitude spectra of the mixture test signal Xiest can be decomposed
using the fixed dictionaries. The resulting test-time activation matrix (Hyes;) can be

partitioned similar to the dictionaries (into HEGS)S)t and HEI;{)

4. Finally, the clean speech estimate may be obtained by multiplying the factored matrices,

. S S
fo., Wil HIZ
The success of this dictionary-based fully-supervised pipeline is bounded by the mismatch of

the test-time data with the training data speech and noise templates. With a semi-supervised
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Figure 2.4: Visual example of how non-negative matrix factorization (NMF) may be used
for either (a) fully-supervised or (b) semi-supervised speech enhancement.

pipeline, we can relax this constraint; that is, as long as the test-time noise source is known,

the test-time speech source can be learned. Both NMF approaches are illustrated in Fig. 2.4.

2.10 Universal Speech Models

universal speech models (USMs) extend the insights of the NMF semi-supervised pipeline. If
the unknown source is surely a speech signal, then it may be approximated using a USM [83]
(i.e., a set of templates for many different speakers). In the training stage for the USM, a

speech dictionary is obtained by concatenating submatrices W; which are the basis vectors of

a training set speaker i = 1,..., M, each obtained through a separate NMF decomposition,
ie., Wgsigt = [ Wy ... Wy ]. If a noise model W((ill\?t is also available, then the speech

enhancement task is simply a matter of estimating Hiest- Because the USM is a larger
model, which surely over-parameterizes the unknown test-time speaker, a block sparsity
constraint is applied. This is reflected in a new optimization criteria:

i (S)
Wg}}g()D(VHWH) +AQ(HY™) (2.7)

Based on the block sparsity function €2, and with a sufficiently large choice for A\, Eq. (2.7)

is a regularized version of Eq. (2.6) that encourages only a single speaker model to be active.
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In other words, the USM iteratively converges on the best-fit training speaker. The authors
show empirically that the USM (a speaker-independent model) achieves comparable results
to fully-supervised NMF (a speaker-dependent model). Their block-sparse selection of the
best-fit speaker is evidence to the claim that adaptation through model selection enables
reduction in computational complexity. This is because the non-relevant basis vectors from
other speakers are zeroed out using A. In Chapter 4, we extend the idea of USM using
a real-time deep learning framework which we call “block-sparse gated recurrent units”
(BSGRUs). The proposed BSGRU has its learnable parameters subdivided into a variable
number of learned groups, enabling frame-by-frame adaptation over time-varying audio

signal characteristics, in place of speaker dictionaries.
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Chapter 3

Personalization through Noisy Target Training

In this chapter, we consider few-shot methods for personalizing a speech enhancement
system. As discussed in Chapter 1, achieving personalization without compromising the
target speaker’s privacy is of the highest priority. However, there may be cases wherein
the target speaker consents to providing some small amount of personal data in order to
facilitate an optimized experience. For example, some voice controlled devices (VCDs) have
a one-time enrollment phase during setup, prompting the target speaker to recite a few
template sentences. This process can be burdensome because if the “enrollment data” is
not sufficiently intelligible, the device might need the speaker to re-record. Additionally,
the service provider becomes responsible for storing the speaker-specific recordings securely
on-device. Ultimately, the enrollment step may only yield a few seconds of total clean
speech data from the target speaker. While this data is in-domain and useful for model
adaptation, it is exceedingly few in comparison to standard datasets for training speech
processing machine learning models, often containing thousands of hours of data. Therefore,
the few-shot learning (FSL) problem for PSE is an optimization task of how to best utilize
this scarcely available data without the possibility of model overfitting. In Section 2.6, we
discussed target speaker extraction (TSE) as a popular approach for leveraging enrollment
data. With this dissertation, we envision the worst-case and best-case amounts of available

enrollment data to be either 5 or 30s so as to minimize the concern of vocal forgery.
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3.1 Transfer Learning

For our discussion, we assume a hypothetical set T that encompasses all of the target
speaker’s clean utterances. Given the privacy concerns and technical difficulties, we assume
that this set is inaccessible to the training algorithm; therefore, it cannot be used for
personalization. In PSE Scenario 1, the short recordings provided by the target speaker
represent a small subset of their unavailable ground-truth clean speech, i.e., T¢ < T. The
simplest approach for developing a personalized speech enhancement model would be to
formulate a fully-supervised task over this subset. However, we theorize that the limited
amount of data may result in suboptimal generalization performance and over-fitting. To
remedy this issue, instead of randomly initializing the personalized model’s parameters, one
can first train a speaker-agnostic model and then finetune its parameters using T¢(,. By
doing this transfer learning, we adapt a generalist model into a specialist model.

Training a generalist requires a large set of many anonymous speakers S as well as a large
set of various non-stationary noises N. A training set of artificial mixture signals @ can be
made by selecting random utterances s € Si; and noises n € Ny, and summing the signals,
i.e. * = s+ n. With each mixture, one may randomly scale n to be louder or quieter,
thereby exposing the model to mixtures with varying signal-to-noise ratios (SNRs). The
generalist model can be described as a mapping function G with parameters Wsg which is
trained such that G(x; Wsg) = y & s, where the estimate y approximates the training target
s. The generalist’s loss function Lgg is equivalent to the discrepancy between estimates and

targets: E(y || s).

Lsg=E(y | s) (3.1)
WsE < argmin Lgg (3.2)
WsE
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There are many possible choices for the signal discrepancy function £. The well-known
signal-to-distortion ratio (SDR) metric [38] is frequently used as a general-purpose loss
function for fully-supervised monaural time-domain speech enhancement [84]. A larger SDR
correlates to improved speech quality, so when used as a neural network loss function, we
minimize the negative of SDR. For a source signal v and estimate signal ¢, negative SDR

loss is defined as follows:

(3.3)

Espr (9 || v):—lologw[ Zy(we)’ ]

> (v — 0y)?

For generalists, what matters most is their generalization power. Although synthetic
mixtures for fully-supervised training are straightforward to construct, models with low
architectural complexity may not learn much from the data. That is, a smaller model may
fail to enhance certain speakers’ voices or remove particular noises—even if the training
corpora for speech and noise signals were very large. In contrast, a bigger model may
generalize very well, but using it in a resource-constrained device could be burdensome.

The speaker-agnostic speech enhancement model may then be finetuned around the
particular test-time speaker using transfer learning. Transfer learning is a straightforward
fully-supervised approach to personalization, which handles the gap between the large
multi-speaker dataset S and the small target speaker-provided clean dataset Ts.,.. To do this,
we create speaker-specific artificial mixture signals & composed stochastically by sampling
from the limited subset s € T¢.i and the training noises n € N;,. The parameters Wsg are
once again iteratively updated in order to minimize the distance between estimate signals
y and target signals s. The finetuning loss function is equivalent to Eq. (3.2), but during
finetuning, the model receives exposure to utterances from the target speaker.

The success of transfer learning as a personalization method depends on how effective

the pretraining and finetuning steps are. For example, a large model highly generalized
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Figure 3.1: Multi-speaker (fully-supervised) speech enhancement setup.

thanks to pretraining might barely adjust its parameters during finetuning. On the other
hand, smaller models with weaker generalization capabilities may see a more significant
performance boost through finetuning. Ultimately, the success of finetuning is primarily tied
to the quality and quantity of the finetuning dataset Tg.,. Suppose the number of signals
within T¢_, is too few; in that case, finetuning may fail to improve performance even though
Tt consists of the target speaker’s vocal characteristics. Also, because the FSL context
only applies when the target speaker manually provides their clean speech, transfer learning
is not viable without Ty_q,.

Fig. 3.1 shows a visualization of the baseline pretraining process. The training target is
clean speech s and the model parameters Wsg are iteratively updated to minimize the loss
function Lgg. In the FSL context, the finetuning process is exactly the same as illustrated in
Fig. 3.1; that is, s is sampled from the small speaker-specific dataset Ty_y,, i.e., the enrollment
data. The same signal transformations occur during transfer learning, when adapting the
generalist model into a specialist model. If the target speaker does not provide Ts_¢;, the

generalist model remains unadapted and therefore non-personalized.

3.2 Self-Supervised Feature Learning

Here we describe our proposed SSL methods, designed to improve the performance of the
personalized speech enhancement models in either FSL or ZSL contexts. Through SSL, we

aim at pretraining an SE model that can surpass the performance of the baseline generalist.
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This pretraining can suffice as a personalized solution (i.e., ZSL). Or, we can further finetune
the self-supervised model by using the small amount of target speech signals if they are
available (i.e., FSL).

Our utilization of SSL stems from the assumption that noisy utterances from the target
speaker § € Tp_tr are much more available than clean ones, i.e., \Tp_tr| > |Tfqr|. Our
proposed pretraining methods aim to exploit these noisy observations as much as possible to
learn the specificity of the test-time speaker. As is the case with SSL methods, the model
parameters will be initialized via a pretext task, which is a made-up task that does not
reflect a true speech enhancement function.

We assert, for example, that smart devices are likely to accrue many noisy recordings
from the test-time speaker over time and with usage, i.e., |Tpt| > |Tei,|. Although we
want to exploit these in-the-wild recordings \‘Tp_tr|, we do not know whether the observations
are clean or noisy, i.e., the data is unlabeled. Therefore, we have to assume that |Tp_tr|
holds contaminated versions of some unobserved target clean speech signal |Tp.t;|. We refer
to this unobserved contamination process as premizture. If we consider a hypothetical set
of premixture noises m € My, then we can form a basic framework for premixture, i.e.,
§ = s + m. Because the true speech and noise signals which compose § are unknown, the
premixture observations are unsuitable for conventional fully-supervised speech enhancement
tasks nor for finetuning-based personalization.

Fig. 3.2 summarizes the training procedure of the baseline generalist-based pretraining,
comparing it to our proposed SSL-based pretraining. With the baseline, the SE model is
first pretrained using speaker-agnostic dataset as a generalist and then finetuned using clean
speech signals of the test user This method relies entirely on the finetuning process for
personalization. On the other hand, the proposed methods provide various SSL options to

pretrain the model using noisy, but speaker-specific speech, which serve a better initialization
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Figure 3.2: An overview of the baseline and proposed personalization methods.

point for the subsequent finetuning process, leading to better SE performance. The pretrained
models can also conduct a certain level of SE as a ZSL model, while the FSL-based finetuning
tends to improve the pretrained model. Both approaches to personalization are based on
transfer learning. Finetuning via FSL improves the baseline SE performance, exposing the
generalist to the target speaker. However, the proposed SSL methods already achieve a
certain level of personalization by using noisy speech signals of the target speaker, leading

to a better ZSL solution than the generalist.

3.2.1 Pseudo Speech Enhancement

Depending on the user’s test-time acoustic conditions, it is likely that the premixture noise
component m has a loudness that varies over time. Then it follows that, at certain times,
this premixture noise may be quiet enough such that the test-time speaker’s voice s is the
dominant signal. In these cases where there is a favorable premixture with a high SNR, the
noisy speech utterances s could be used as pseudo speech references. We can then formulate
a pretraining process which we call pseudo speech enhancement (PseudoSE). This method
operates using “doubly-degraded” artificial mixture signals. We construct the model inputs
by sampling the abundant premixture set § € Tp_tr and injecting the additional training
noises n € N, i.e., & = § +n. This is a double-degradation process as § has been already

contaminated by m.
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Figure 3.3: Single-speaker (self-supervised) pseudo speech enhancement setup.

Consequently, the self-supervised model is a mapping function F with parameters
WeseudosSE that is trained to remove the injection noise and recover the pseudo speech target,
i.e., F(&; WpseudoSE) = ¥ ~ §. Note that this self-supervised objective is not equivalent to
the fully-supervised objective due to the difference in training target. F is only trained to

recover the premixture utterance S, therefore it is not a true speech enhancement function,

i.e., WPseudOSE 7é WSE'

EPseudOSE = g(g H ,§) (34)
WPseudOSE < arg min ﬁPseudoSE (35)
WPseudoSE

Fig. 3.3 shows a visualization of the PseudoSE pretraining process. The training target
is pseudo-clean speech §, therefore the model parameters WpgeudosE are iteratively updated
to minimize the loss function Lpgeudosg. We simulate the process of sampling from the
in-the-wild recordings, § € Sp_tr, using the premixture data transformation. After the model
parameters WpseudoSE are learned, we may apply finetuning using known clean speech from
the scarce set Tgt,. In this FSL personalization context, the training targets are genuine
clean speech utterances s € Tg.,. Therefore, the parameters from the pseudo enhancement
function WeeendosE are iteratively updated in order to fit a real speech enhancement function.
Once again, the finetuning loss function is equivalent to Eq. (3.2) using the speaker-specific

mixtures.
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There are trade-offs to note when using the proposed NTT solution. On one hand,
the success of PseudoSE pretraining is bounded by the noisiness of §, the impure training
targets. But on the other hand, this pretraining scheme uses data derived only from the
target speaker, thereby bypassing the need for generalization. Unlike the baseline method,
which recasts a generalist as a specialist, PseudoSE pretraining directly develops a specialist
model. However, the PseudoSE model could under perform when compared to a hypothetical
fully-supervised model exposed to ample clean speech from the target speaker. If finetuning
is not possible, the PseudoSE model could serve as a zero-shot solution on its own. But if
finetuning is possible, we claim that PseudoSE serves as a more optimal pretraining scheme

as opposed to the baseline speaker-agnostic SE.

3.2.2 Contrastive Mixtures

We hypothesize that the quality of the pretraining procedure greatly impacts how the
downstream denoising model will personalize. Even if the premixed noisy speech set Tp_tr
and the deformation noise set N, are large, the quality of the features learned through
PseudoSE are bounded by how noisy Tp_tr really is. Our proposed contrastive mizrtures
(CM) pretraining procedure addresses this by employing a pairwise contrastive learning
mechanism. In the CM framework, the denoising model F pretrains over pairs of mixtures
(&1, 2) and outputs pseudo-cleaned estimates (g1, g2). We create two kinds of mixture
pairs, positive and negative, which are illustrated in Fig. 3.4; note that solid lines indicate
signal path while dashed lines show loss terms.

In a positive pair, both input examples (£F, 3 ) share the same premixture source §%,
but are differently deformed; that is, the mixing process makes the input pair dissimilar.

Therefore, in addition to maximizing the similarities between estimates and source (Q? to

5% and g;ﬁ to 89), the model F must also satisfy the contrastive objective based on the fact
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(a) Positive Pairs (b) Negative Pairs

Figure 3.4: The proposed framework for contrastive mixtures.

that g° and g5 stemmed from the same pseudo source. We express these objectives as a

positive pair loss function £, in the following form:

Ly =E(8%|g7) + £(8%195) + M [E@Y1195)], (3.6)

where )\, scales the contribution of the contrastive loss term.

In a negative pair, each mixture is made from a different pseudo source (.§1e #* .§29),
but with a shared deformation, i.e., 7 = &7 + n® and 5 = &, + n°; in other words,
the negative pair mixing process makes the originally different inputs more similar to one
another. Accordingly, in addition to the source-wise denoising objectives, the dissimilarity
between the estimates Qle and g]? must be taken into consideration. We express these

objectives as a negative pair loss function £, in the following form:

Lo =EGTIIGT) + (55 1195)

+ An [ max (E(871159). £(H71155))] (3.7)

where \,, controls the contribution of the contrastive loss term. Note that the max function
sets up the bound for the disagreement term &(§{||§5) comparing it with the “desired” dis-
agreement level of the target pseudo sources £(37|55), rather than enforcing an unbounded

disagreement.
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Both £, and £,, consist of two terms: the source-to-estimate errors and the estimate-to-
estimate errors. The former term characterizes the main speech enhancement loss, while
the latter term provides the proposed contrastive regularization. The model ultimately

minimizes the sum of these two losses,

T T

Lom =Y Ly(t)+ > La(t) (3.8)
t=1 t=1

Wowm < arg min Loy, (3.9)

WeMm

where T is the number of positive or negative pairs within the batch and £,(t) and £, (t)
denote the loss for the ¢-th pair. If the regularizing contrastive terms are omitted, i.e.,
by setting A\, = 0 and A, = 0, it can be shown that Lcy reduces to Eq. (3.4). Four our
experiments, we set 1" to be half of the batch size. To find optimal choices for A, and A,
we run an ablation study as described in Section 3.3.4.

Our proposed CM approach differs from the SimCLR model [85] in multiple regards: (a)
it uses a more sophisticated noise injection for data augmentation to mimic the real-world
noisy speech mixture generation process, i.e. by using non-stationary noise sources; (b)
the introduction of the negative pairs more precisely reflects the source separation concept
underlying our SE problem and yields a more discriminative feature than a positive pair
only; and, (c) having the traditional SE loss term prevents trivial solutions to the contrastive
loss-only case—estimating very similar g? and ’g? that do not recover the pseudo sources.

As illustrated in Fig. 3.5, with positive pairs, there is a single training target, pseudo
o

source §%. With negative pairs, there are two different training targets, pseudo sources 8}

and .§2@. Model parameters Wen are iteratively updated to minimize the loss function Lgy.
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Figure 3.5: Single-speaker (self-supervised) contrastive mixtures setup.
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3.2.3 Data Purification

When it comes to fully-supervised pretraining, we know that the target signals are clean
because they originate from the large labeled dataset S;;. However, the target signals’
cleanliness is ambiguous in the case of self-supervised pretraining, which utilizes 'ﬂ”p_tr as
the pseudo source. Based on our formulation of the premixture process in Fig. 3.3, two
factors determine whether the pseudo sources § are too degraded to be usable. These are:
the sparsity of premixture noise m, as well as the segmental SNR between s and m. For
example, if m is sufficiently sparse, portions of § may contain near-clean speech. Considering
all the available noisy utterances s € ’f[‘p_tr, we hypothesize that utterances with a higher
SNR may serve as more useful target signals than other noisier utterances, even if none of
them are completely clean. The proposed self-supervised pretraining methods can benefit
from knowing where the cleaner frames within § may be.

For that reason, we put forward a data purification (DP) pipeline. In essence, we
modify the discrepancy function £ to incorporate a weighting vector p. To generate this DP
weighting vector, we first train a separate neural network that estimates the frame-by-frame
SNR of the premixtures. The quality estimator network h is a regressive model trained over a
diverse set of training speakers and noises (i.e., St; and Ni;). It outputs a vector of segmental
SNRs, &. Hence, the network h works as a general-purpose speech quality estimator, that
has no prior knowledge of the test-time speaker or the test-time noisy environment. Given
an estimate signal © and a target signal v both of length L, their residual is » = v — ©, and

the frame-by-frame/segmental SNR (SegSNR) is defined as:

: 2
Hj+N-1
2i=H; (w(i—Hj)”i>

) 2|
Hj+N-1 )
2i=Hj (w(iij)rl)

SegSNR ; (v, 9) = 10logy, (3.10)
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Figure 3.6: Illustration of the SNR predictor inputs and outputs. The first subplot features
an example premixture/pseudo source 8. In the second subplot, the SNR predictor network
h estimates the frame-wise (i.e., segmental) SNR of the premixture. The training objective
of h is to minimize the loss between estimates & and targets a. The third subplot shows
the frame-by-frame SNR estimates converted into weights using the logistic function, i.e.

p = o(h(3)).

where N is the frame size, H is the hop size, j is a zero-based frame index (i.e. 0 < j <
[£] — 1), and vector w comes from the Hann window function of length N. We then

formulate the training process of the SNR Predictor network as follows:

rT=8+mn; SESu, neNg

a = SegSNR(s, x)

& = h(z; W)
Wi, < argmin MSE(&, ), (3.11)
Wr,

Note that the SNR predictor inputs are of length L, but its outputs are of length (%1, in

other words, x’s length is measured in samples but &’s length is measured in frames.
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We can now apply a DP step to improve the reliability of the pseudo-target s during
PseudoSE and CM pretraining. With each iteration of pretraining, the SNR predictor h
first analyzes the input premixtures to estimate frame-wise SNRs, & = h(§). Next, we apply

the logistic function ¢ to the & logits in order to obtain frame-by-frame weights:

. 1
p=o(&)= T5e& (3.12)

Lastly, we modify both PseudoSE and CM pretraining procedures to use Epp which promotes
speech-prominent frames in the loss function. To that end, we re-write Eq. (3.10) to
incorporate the frame-by-frame weights p. That is, the signal discrepancy is computed

between windowed segments, which are then weighted by p and finally averaged across all

frames. Because this is a neural network loss function to be minimized, we use the negative

of weighted segmental SNR, which we denote as SegSNR.

Epp(9 || 8) = SegSNR(y, 8; p)
AN— N2
13 Zflzjszrfv ' (w(i—Hj)Si)
= _j ij 10 10g10 HitN—1 —2 (3‘13)
3=0 Zz’:Hj (w(iij)Ti)

Here, J is the number of frames (%1 Additionally, the residual vector is defined as ¥ = §—g
This regressive model h does not need to have pinpoint accuracy; as shown in Fig. 3.6, as
long as & decently approximates a, the weights p will accurately reflect the position of

speech-prominent frames in the data. If we substitute Epp for £ into the original PseudoSE

loss function—Eq. (3.4)—we obtain a new data purified loss function:
(3.14)

LpseudosE+pr = Epp (Y || 8).

35



Note that the slope of the logistic function could be further controlled by using an additional
temperature weight applied to &, which we opt not to investigate to focus more on the main
contributions.

Though substituting Epp within the PseudoSE loss function is straightforward, it requires
more nuance with the CM loss function. CM utilizes pairwise inputs, so therefore, we must

compute pairwise weights as well.

p® =0 (h(s?)), p{ =o(h(8))), py = o(h(5y)) (3.15)

Specifically in the case of positive pairs, the underlying pseudo source is the same, which
is why there is only a single set of weights p®. Negative pairs are made up of two pseudo
sources, so there are two sets of weights. For the negative pair estimate-to-estimate losses,
we use the product of the two weight vectors, i.e. p° = p{ - p5. Using the appropriate

weights for every term, we rewrite Eq. (3.6) and Eq. (3.7) as:

Lppp =SegSNR(gY, s%;p?) +

SegSNR (g5, s%; p%) +

Ap[SegSNR (g7, 953 p%)] (3.16)
Loipp =SegSNR(g7, 87 pt) +

ScgSNR (g5, s py) +

An [ max (SegSNR(ST, 355 p°),

SegSNR (97,953 p7))] (3.17)

36



The data-purified positive and negative loss functions may now be substituted in Eq. (3.8)

to obtain the overall CM+DP loss function:

T

T
Lovipr = Y Lpiop(t) + Y Layop(t). (3.18)
t=1 t=1

3.3 Experiment

3.3.1 Setup

In our experiments, we compare the baseline fully-supervised approach with the two proposed
self-supervised approaches for training a personalized speech enhancement model. Note that
there are two rounds of model training (Fig. 3.2): one round that pretrains the model, and
another “finetuning” round that only uses the available clean target speaker data (either
5sec or 30sec). We also assess the benefits of adding the data purification step to both
self-supervised methods. We use the following shorthand notation to refer to each pretraining

method:

o SE: Models trained to minimize Eq. (3.2). This is our generalist baseline, the speaker-
agnostic speech enhancement system. It generalizes well only if its model capacity is

large enough.

o PseudoSE: Models trained to minimize Eq. (3.4). The proposed self-supervised

method relies solely on noisy speaker-specific data Tp_tr.

o PseudoSE-+DP: Models trained to minimize Eq. (3.14). This method refines the
prior method through data purification. That is, the model uses a weighted segmental
MSE as its discrepancy function in order to minimize the feature learning contribution

of noise-dominant frames within Tp_¢,.
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o CM: Models trained to minimize Eq. (3.8). This self-supervised method uses pairwise
inputs that share either the same pseudo source or injection noise. CM provides

additional regularization to PseudoSE through the contrastive loss terms.

o CM+DP: Models trained to minimize Eq. (3.18). The pairwise weights inform
the model of the mutual speech-dominant frames, thereby focusing the contrastive

regularization specifically wherever the test-time speech is prominent.

3.3.2 Datasets

Table 3.1 provides a glossary of all the datasets and their notation used throughout this
paper. Note that we subscript all datasets with either ‘tr’, ‘vI’, or ‘te’ to indicate training,
validation, or test partitions respectively. For this paper, we limit the scope of personalization
specifically regarding the test-time speaker and not the test-time environment. The extension

of our methods towards environment adaptation is straightforward.

Table 3.1: Glossary of datasets paired with experiment-specific corpora.

Set Split Duration Quantity Description

S Str 443h 1,132 spkrs Clean speech from many anonymous
S 8h 20 spkrs speakers
To-tr 22.5 min /spkr Used to simulate user’s noisy speech which
Tpvi 60 sec/spkr we call “premizture” data—T =T x M

T Te¢r  up to 30sec/spkr . Treated as enrollment data—user-provided
Te 1 30 sec/spkr 20 spkrs scarce clean speech—used only for FSL

Set-aside clean speech from user used only

Tte 30sec/spkr for objective model evaluation

M M, 48h 13,339 noises Premixture noises that degrade majority
M 7h 1,929 noises of user’s utterances; unknown to the model
Ny 5h 616 noises Injection noises used during model

N Ny 0.5h 60 noises pretraining and fine-tuning

Injection noises never seen during any
Nie 0.5h 60 noises model training, used to prepare target
speaker-specific test sets
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In order to report objective signal improvement results, we designed experiments that
simulate the personalization context. We therefore artificially mix signals from three publicly-
available audio datasets: we use LibriSpeech [30] for clean speech recordings (S and T),
FSD50K [34] for premixture noises (M), and MUSAN [32] for the injected noises (N).

Out of the LibriSpeech train-clean-100 subset, we set aside 20 speakers to be the
personalization targets; in other words, there are twenty speaker-specific datasets T() where
i € {1,...,20}. We omit the speaker index i going forward to simplify notation. The
remaining speakers within Librispeech’s train-clean-100 and train-clean-360 subsets are
consolidated into the speaker-agnostic dataset S. For all speech and noise corpora, we discard
audio files shorter than 4 sec and resample everything to 16 kHz.

We partition each speaker-specific dataset T into five sets as shown in Table 3.1. The
utterances are sorted by duration and grouped such that approximately 30sec are available
for testing the model (Tye), 30 sec for validating finetuned models (Ty.y), 60 sec for FSL-based
finetuning (T¢+,), and 60sec to validate the self-supervised pretraining methods (Tp.v1).
The remaining 22.5min are used for pretraining (Tp.¢+). Subsequently, for each of the 20
personalization targets, a test set of 100 mixtures is constructed by combining Tt with Nie.

My, and My, follow the train and val splits provided in FSD50K’s dev folder. Using the
FSD50K provided tags, we omit files tagged as either “speech” or “music”. The unseen test-
time noises, N, are derived from MUSAN’s sound-bible folder. Using MUSAN’s free-sound
folder, sixty random noises are set aside for Ny; and the remaining noises make up Ni;.

These datasets are carefully chosen and arranged to represent our use-case scenarios.
First, we need a large dataset S to encompass diverse speaker characteristics. Second, we
ensure that the 20 personalization target speakers have enough clean speech signals Tp_¢,
in order to simulate the abundant premixture signals Tp_tr. The premixture noise sources

M, are also very diverse so as to simulate various acoustic environment the user can be

39



situated in. Tallying the unique FSD50K audio tags, our experiment simulates each of the 20
target speakers being degraded by approximately 160 noise types. Through the premixture
process, we combine s and m such that the SNR is uniformly random between 0dB to
15dB. Psychoacoustic research has shown that this SNR range describes many real-world
sound environments [86, 87]. Lastly, mixtures, which are made using the injection noise set
N, have SNRs chosen uniformly at random between —5dB to 5dB.

There are other choices of speech datasets, besides Librispeech, which contain real-world
recordings of in-the-wild noisy speech, e.g., AudioSet [88]. Although our proposed self-
supervised training methods are intended for in-the-wild data, it is often the case that such
datasets do not possess enough noisy recordings from a single consistent speaker. More
importantly, in order for us to report objective signal improvement, we require ground-truth
clean speech recordings from the test-time speaker. Therefore, our experiments simulate the
personalization problem through the three separate corpora, constructing numerous artificial
mixtures and premixtures.

With our experiments, we report three metrics frequently used in speech enhancement
research: SDR [38], PESQ [42], and extended STOI [41]. Unlike the objective measurement
SDR, the latter two are perceptual metrics that highly correlate to speech intelligibility.
As all of our loss functions are SDR-based, our models in this experiment do not explicitly
optimize for intelligibility. Each one of the 20 target speakers has their own test set, made
up of 100 mixtures with input SNR between —5dB to 5dB. All three metrics are computed

between the estimate signals and their corresponding target signals.

3.3.3 Neural Network Architectures

Well-established neural network approaches for speech enhancement utilize time-frequency

masking. In order to overcome latency and phase reconstruction limitations, more recent
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Table 3.2: List of model architectures, configurations, and sizes.

Architecture Size Configuration Params MACs
Large B. =64, H. = 256 1.0M 8.4G
Medi B.=32, H. =12 437.8k :

Conv-TasNet edium . =32, H, 8 37.8 3.5G
Small B. =16, H. =64 224.1k 1.8G
Tiny B, =8, H, = 32 138.8k 1.1G

neural network algorithms operate in an end-to-end manner, i.e., by learning a mapping
directly between the time-domain input and output signals [89, 90, 91]. To that end,
we assess the performance of generalist and specialist speech enhancement models using
ConvTasNet (CTN), which is a popular fully-convolutional time-domain model for audio
separation [49]. It operates as follows: first, the encoder module maps input waveforms into
latent representations. Then, the separation module calculates a multiplicative mask that
separates the target source. Lastly, the decoder module maps the masked latent features
back to the time-domain, yielding estimate waveforms. The CTN architecture may be
generalized to separate multiple audio sources; however, our separation module estimates
only one mask to specifically separate speech from noise. With each size variant, we adjust
the number of channels in the separation module’s bottleneck (B.) as well as the number of
channels in convolutional blocks (H.) such that the expansion ratio H./B. =~ 4 [92].

As shown in Table 3.2, we designed a tiny, small, medium, and large-sized variant
of CTN such that the total number of trainable parameters is less than or equal to one
million. MACs indicate the number of multiply-accumulate operations, correlating to
computational complexity. Through our experiments, we report the performance of the
different sized variants to observe whether this model compression trend applies to the

modern fully-convolutional models.
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3.3.4 Implementation Details

All models were implemented using PyTorch [93] and trained on NVIDIA Tesla V100 graphics
cards. We used the ConvTasNet implementation found in the Asteroid package [94]. All
experiments have a fixed batch size of 64. We utilize the Adam optimizer [95] with an initial
learning rate of le — 3. When finetuning over clean speech data (T¢.,), the learning rate is
instead le — 4. For every 1000 mixtures processed, we compute SDR improvement averaged
over a fixed set of 100 validation mixtures; the trial is terminated if the mean validation
SDR does not improve after 100 000 further mixtures.

Using the described early stopping scheme, we observed various trends with regards to
the training time. On average, generalist models trained over 1.4 M mixtures for all four
sizes, whereas specialist models trained over 851k, 803k, 637k, and 593 k mixtures for the
Tiny, Small, Medium, and Large model sizes respectively. When these models undergo
finetuning using 5 sec of clean speech, the specialists converge after seeing 6.4k, 6.0k, 5.7k,

and 5.2k mixtures for the Tiny, Small, Medium, and Large model sizes respectively.

Contrastive Mixtures Ablation Study

Prior to starting the full personalization experiment, we first determine optimal values for A,
and A, which modulate the contrastive mixtures positive and negative loss terms—Eq. (3.6)
and Eq. (3.7) with DP variants Eq. (3.16) and Eq. (3.17). Therefore, we run an ablation
study of contrastive mixtures by performing a grid search over potential choices: 1, le — 1,
le — 2, le — 3, le — 4, and 0. We can assess the effectiveness of the positive and negative
pairs by setting either one of A,, or A, to 0, respectively. For the purposes of the ablation
study, we run experiments in which the personalized speech enhancement system is fixed
as a small ConvTasNet as specified in Table 3.2. This is done for three out of the twenty

personalization target speakers from LibriSpeech. This results in 216 total trials, given that
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0.0 0.0001 0.001 001 01 10
00 775 7.9 793 781 T7.76
0.0001 7.9 7.63 7.79 7.62 8.03
A, 0001 7.71 796 791 8.01 7.68 7.5
0.0r 789 799 7.7 707 1.7
0.1 7.98 798 783 7.96 7.89

1.0 8.09 7.65 7.84 778 7.85 2.5
Contrastive Mixtures Without DP
0.0

0.0 0.0001 0.001 0.01 0.1

1.0 -25
00 6.53 6.6 6.43 6.85 6.57
0.0001 6.66 6.52 6.81 6.37 6.75
A, 0.001 6.56 6.38 6.69 6.72 6.96
001 6.8 6.78 6.82 6.72 6.38
0.1 6.72 6.67 6.53 6.55 6.81

-5.0

[e1p] Juewosoxdw] YOS UonepIRA

—7.5

1.0 6.78 6.94 6.87 6.62 6.66
Contrastive Mixtures With DP

Figure 3.7: Ablation study of the contrastive mixtures (CM) loss function, where we vary
Ap and A, to adjust the contribution of the positive and negative pair loss terms. Pseudo-
enhancement is performed using the small ConvTasNet architecture, and results are averaged
across three test-time speakers.

there are 36 A combinations and 3 target speakers, plus the option for data purification to be
enabled or disabled. We report the validation set signals’ SDRs after pseudo-enhancement,
averaged across the three speakers and across 100 validation premixtures utterances. In
summary, a small ConvTasNet is trained over speaker-specific premixtures using a batch
size of 64, a learning rate of le — 3, and the CM loss function: either Eq. (3.8) or (3.18).
From Fig. 3.7, we observe that there are many working combinations of A\, and A, so
long as A\, < 1. This suggests that CM is robust to the hyperparameter selection. The
top-left corner of both subplots represents models trained with the contrastive loss terms
disabled—effectively, trained through PseudoSE. By scanning the left-most column and top-
most row, we can see that the negative pair loss terms improve the model more significantly

than the positive pair loss terms.
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When pretraining without data purification, the most-optimal configuration happens to
be with A, =1 and A, = 0, yielding a 0.34dB (or 4.4 %) improvement over PseudoSE. If
both As are non-zero, we see slight variations in the validation performance. When the noisy
training data is non-purified, it is possible that the positive pair contrastive loss compels the
model to enforce similarity on highly degraded pseudo-sources. These cases emphasizing
premixture noise reconstruction similarity could cause the learned parameters to drift slightly
away from speech-focused personalization.

The bottom subplot of Fig. 3.7 shows models pretraining through CM with data purifi-
cation. Here, the most-optimal configuration is A,, = 0.001 and A, = 0.1; the self-supervised
model sees a 0.43dB (or 6.6 %) improvement over PseudoSE. Notably, the positive pair-only
models are able to obtain a 0.32dB (or 4.9 %) improvement. With the CM loss functions
weighted towards speech-dominant frames, we see that the positive and negative loss terms
synergies more effectively.

One last observation is that the validation SDR of models using DP is overall lesser than
that of models not using DP. This follows our hypothesis that the DP-based loss functions
are more similar to the true fully-supervised speech enhancement loss. Note that all the
self-supervised models are assessed on pseudo enhancement during validation. Therefore,
it is understandable that the DP-based models have a lesser validation SDR improvement.
The metrics computed at test-time assess true speech enhancement performance; therefore,
observing this trend during validation alludes to greater enhancement.

Given our observation that CM works for many configurations, as a convenience for all

other experiments, we set A, = 0.1 and A\, = 0.1 with both non-purified and purified models.
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Figure 3.8: noisy-target training (NTT) experiment results.

3.3.5 Results

Next, we discuss the results from the main experiment. As described in in Section 3.3.1,
we consider 20 target speakers, 4 model sizes, 4 self-supervised pretraining methods, and 2
possible amounts of clean speech data. In terms of model checkpoints, there are 4 unadapted
SE models, 160 fine-tuned SE models, 320 self-supervised PSE models, and 640 fine-tuned
PSE models, resulting in a total of 1124 trials.

Fig. 3.8 shows test set results in terms of three signal quality metrics defined in Section 2.2.
The improvement for each metric (SDR, PESQ, and STOI) may be calculated by subtracting
the average input value from the average value after enhancement. Our results are averaged
over the 100 test set utterances for each of the 20 target speakers. The shading of each bar
corresponds to the amount of clean speech data from the target speaker used for finetuning:
Osec (i.e., no finetuning), 5sec, and 30sec. Performances reported using 0sec represent
the ZSL capabilities of the pretraining method. We explore FSL contexts of 5sec and
30sec to investigate high and low amounts of data efficiency. The left-most boxplots within

the SE column represent unpersonalized / generalist performance. Error bars show the
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specific 95%-confidence interval per model and training configuration, averaged over all

target speakers.

ZSL Personalization Performance

Bars with the darkest shading represent the performance of models in the ZSL personalization

context, in which the models lack access to clean speech from the target speaker.

Generalist Models’ Performance The SE column’s left-most bars show the performance
of the bare generalist models’ performance. The generalists are able to enhance the noisy
test-time speakers in all cases, but it is clear that the larger models (bars labeled L or M) show
much better generalization performance (up to 11.23dB SDR after enhancement) than the
smaller ones (lower rows). For the tiny generalist models, the average SDR after enhancement
is 8.92dB. This 2.31 dB range reinforces our argument that the smaller generalists tend to
be poorer in generalization. Note that these baseline SE models are non-personalized. As
they are without any adaptation, we can observe that the generalists’ performance correlates

with the architectural complexity because they are all trained using a large dataset.

Personalization using PseudoSE The PseudoSE column shows the performance of
the self-supervised models trained through pseudo enhancement of noisy speech targets.
The model inputs are doubly-degraded observations of the test-time speaker (Tp_tr is mixed
with additional noise sources Ny, ), and the model naively recovers the pseudo-source. There
is a chance that the pseudo targets are too far from clean speech, deviating the learned
parametric function from the ideal personalized SE model. However, it is also possible
that some parts of these pseudo speech sources are somewhat clean enough in order for the

model to learn the target speaker’s speech traits. The left-most bars (darkest shade) of the

PseudoSE column do reveal success in personalization—note that the confidence interval
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of SDR enhancement narrows by using PseudoSE pretraining compared to SE pretraining.
This trend is less obvious with perceptual metrics PESQ and STOI, but it is to be expected
as the models’ loss functions are SDR-based. PseudoSE does produce improvements over the
SE pretraining when the models are tiny (9.53 vs. 8.91) or small (9.94 vs. 9.77). However,
when the model complexity is large enough, we see that PseudoSE is unable to compete
with the generalist model. Compare the largest model trained using PseudoSE against the
largest speaker-agnostic SE model (10.28 vs. 11.23). Therefore, we conclude that PseudoSE’s
personalization performance is significant only when the model is incapable of learning from

the large generic dataset.

Impact of DP with PseudoSE As shown in our prior work [23], DP can identify cleaner
frames from premixture signals ']T'p_tr and improve the usability of the target speaker’s noisy
speech signals. We observe a similar trend with our ConvTasNet-based experiments. In
particular, our results show that the PseudoSE+DP pretraining scheme in the ZSL context
yields greater improvements over the plain PseudoSE in the large model than in the smaller
ones. For example, introducing DP lifts the average performance of PseudoSE by 0.63 dB
(10.91 vs. 10.28) in the large models, while the tiny models only see an average boost of
about 0.38dB (9.91 vs. 9.53). Because PseudoSE’s efficacy is limited in the large models,
the gains from introducing data purification are more prominent. However, it is still the
case that the tiny model gains the most from the consolidated personalization process, e.g.,

a 1.0dB improvement from the baseline SE model (9.91 vs. 8.91).

Personalization using CM The ZSL results of the CM column are noteworthy because
they compete with the PseudoSE+DP results despite using non-purified data. For
example, CM results in better performance than PseudoSE+DP in large models (11.06

vs. 10.91) and works on par with PseudoSE+DP in small or tiny models. This shows
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that the proposed CM loss functions help the model learn robust features for personalized
SE even though the signals used are noisy observations (or unlabeled in the sense of
classification). These results validate the powerful feature learning capabilities of contrastive
learning. Although the contrastive self-supervised learning paradigm has been explored in
other research areas (e.g., SINCLR for computer vision), we note that the proposed CM

pretraining method is specifically designed for source separation problems.

Impact of DP on CM We find that CM+DP does not introduce significant improve-
ments except with the largest model. This is likely due to the robust feature learning ability

of CM, which is already competitive with the DP process.

Model Compression Among the tiny-sized models, the best-performing ZSL. method
for personalization is PseudoSE+DP which produced an average SDR, improvement of
9.91dB. We see that the personalized tiny model outperforms the generalist small model
(9.77dB), although it uses 62% fewer model parameters and multiply-accumulate operations
(MACs) according to Table 3.2. Likewise, the personalized small model comes within
striking distance the medium-sized generalist (10.39 vs. 10.59) using less than 52% of
the spatial and computational complexity. Finally, the best medium model after the CM
personalization (10.89dB) has its confidence interval overlapped with that of the largest
SE baseline (11.23dB), although its model complexity is less than 44%. From this we can
conclude that, for lower-complexity models, the proposed self-supervised ZSL personalization

may be viewed as a lossless model compression paradigm.

Success of Personalization The height of the error bars indicate the 95%-confidence
interval of each model and training configuration seen across the 20 target speakers. Using
SE generalist pretraining, we observe that this variance can be as much as 0.9dB for the

tiny-sized models or 0.7 dB with the large-sized models. Through the proposed PseudoSE and
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CM methods, we see that the variance universally decreases in the ZSL context. Therefore,
our self-supervised pretraining methods successfully adapt to the nuances of each test-time
speaker despite being trained using only noisy data. Our results do show that introducing DP
increases the variance in performance once again. This is to be expected as the availability
of near-clean frames can differ greatly between speakers. Similarly, DP’s reliance on the

external SNR predictor model is also a contributing factor.

FSL Personalization Performance

Bars with lighter shading represent the FSL context, wherein models have 5 sec or 30 sec of

clean speaker-specific data to finetune over.

Generalist Models’ Performance We observe that all four sizes of the baseline models
pretrained as generalists (SE) are incapable of adapting over a small T¢_, that has only 5 sec
of data. Using 30sec of clean speech data does eventually produce gains for all model sizes.
The tiny-sized generalist sees the most significant gains (0.62 dB) whereas the large-sized
generalist sees marginal benefit (0.27dB). This trend implies that the pretrained generalists
are defined by model parameters that are too far from the ideally personalized counterpart,
requiring much effort during the transfer learning process. In other words, too few clean

utterances do not suffice in achieving the domain adaptation.

FSL after PseudoSE Initialization We reiterate that our self-supervised methods train
using noisy speaker-specific data with premixture SNRs in the 0dB to 15dB range. Hence,
PseudoSE pretraining over this noisy data proves to be useful only for the tiny- and
small-sized models (9.53 vs. 8.91 and 9.94 vs. 9.77), while the larger models do not benefit

from the simple SSL setup. However, with all model sizes, finetuning using only 5sec of
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clean data results in a significant performance boost (10.02 vs. 8.92, 10.61 vs. 9.69, 10.98 vs.
10.59, and 11.37 vs. 11.08).

Similar boosts also appear when using PseudoSE+DP, where all the performance
scores are lifted by up to 0.84dB (11.92 vs. 11.08 in the largest models). Our results suggest
that finetuning is much more effective due to the speaker-specific self-supervised pretraining.
By comparing the middle shaded bars in the PseudoSE+DP column with lightest shaded
bars in the SE column, we can also see the data efficiency benefits of our self-supervised
methods. In particular, after the PseudoSE+DP pretraining, only 5sec of clean speech
for finetuning achieve a greater mean SDR improvement compared to generalists models
finetuned using 30sec of clean speech. PseudoSE+DP achieves data efficiency with all
model sizes (10.46 vs. 9.53, 11.06 vs. 10.24, 11.51 vs. 11.06, and 11.92 vs. 11.50). Our
results show that through self-supervised pretraining, we are able to reduce reliance on the

target speaker’s private data by a factor of 6.

FSL after CM Initialization In the ZSL context, CM pretraining produced notable
improvements over PseudoSE likely due to the contrastive loss terms that introduce
powerful regularization. But we found that the performance gap between CM and PseudoSE
is nearly negligible in the FSL context. When it comes to data purification, we found that
CM+-DP was less effective in the FSL contexts than PseudoSE+DP. This is perhaps due
to the data purification learning objective being too different from the contrastive learning
objective, leading to a slightly sub-optimal joint learning objective. Nonetheless, for the ZSL
scenario, CM pretraining without data purification has merit over PseudoSE, because it can

alleviate the need for training a robust SNR predictor.

Model Compression Finetuning also augments the model compression benefits of per-

sonalization. For example, we can use a small-sized PseudoSE+DP model finetuned with
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only 5sec of clean speech to get 11.06 dB SDR after enhancement on average. This is on par
with the largest SE model finetuned over the same amount of clean speech data (11.08dB).

This example shows a lossless 78% reduction in model parameters and MACs.

3.3.6 Summary

We put forward self-supervised learning approaches towards personalized speech enhancement,
highlighting their ability to learn robust features from the target speaker’s noisy observations.
Our main ideas are based on the assumption that noisy utterances of the target speaker
might be more available than clean speech. However, due to the noisy nature of those
unlabeled data, we propose more sophisticated SSL treatments to learn useful features
from them. PseudoSE sets up a pretext SE problem where the enhancement target is still
a noisy utterance. In addition, data purification improves the usability of the unlabeled
(thus noisy) speech signals by identifying cleaner frames and focus more on them. With the
purification step, PseudoSE becomes more realistic. Contrastive mixtures add an additional
regularization benefit to the loss function, so that the pretext task is more relevant to the
original source separation problem.

We observe that all these methods can act as a zero-shot personalization system which
adapts to the target speaker’s specificity with no additional clean speech used. In the
few-shot learning context, we emphasize that the proposed SSL methods also serve as a
better initialization scheme than a naive generalist as the SSL methods learn from the
target speaker’s speech, even though it is contaminated. We found that the proposed
systems quickly adapt using only a few seconds of test-user clean speech data, which is a
too small amount for the baseline generalists to effectively perform transfer learning. Our
results suggests that speaker-discriminative features can be found even in noisy recordings.

The benefit of personalization is that it can reduce model complexity with no loss of SE
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performance, e.g., small personalized models perform as good as twice-larger general-purpose
SE models. In addition, the proposed SSL methods make the few-shot learning-based
personalization more data-efficient. Given that the transfer learning-based personalization
requires clean speech data from the test-time users, reducing the required amount can

improve the user experience.
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Chapter 4

Personalization through Test-Time Model Selection

In this chapter, we investigate how the concept of model selection can be utilized for zero-shot
adaptation of speech enhancement systems.

Specifically, we leverage the mixture of local experts (MLE) paradigm in the deep
learning context, particularly because the design enables a reduction in computational
cost. While most ensemble machine learning techniques combine the outputs of its “weak
learners”, we are instead interested in using a few—or at best, one—learner to achieve
speedier inference. The main insight is that the overarching problem space may be divided
into homogeneous regions (thus the name “local expert”). While prior works have shown
that the speech enhancement problem can also be divided in some manner, our contribution
emphasizes on adaptation (the improved performance with particular speakers or in certain
environments) in relation to the reduced computational complexity. Finally, we show that
model selection realizes zero-shot adaptation since the training data may be constructed

without any knowledge of the test-time speaker or environment.

4.1 Sparse Ensemble of Specialists

Given that the speech denoising task can be divided into mutually exclusive subproblems,
we propose that it must be possible to split a complete noisy speech dataset along some
latent dimension in order to form non-overlapping subsets (i.e. clusters). Although the MLE
procedure is theoretically capable of learning latent clusters in an unsupervised fashion,

for our initial experiments, we incorporate our prior knowledge about the problem domain
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to manually define latent spaces that subdivide the speech enhancement problem. These
include: (1) different speech degradation levels and (2) speaker gender.

The proposed model, shown in Fig. 4.1b, is an ensemble of specialist networks regulated
by a gating network. While it is fundamentally possible to utilize the inferences of multiple
specialists, we propose using only a single specialist in order to bring computational complex-
ity during inference to a minimum. We assume that the noisy speech data can be split into
distinct subsets. Consequently, we pre-train each specialist network to individually address
one subproblem. Our experiments compare the proposed ensemble model against a baseline
model, shown in Fig. 4.1a, which is architecturally equivalent to a single specialist network
but is trained using the entire noisy speech training set. Next, we define the specialist and

gating modules more formally.

Adaptation by
selection
k* = argmax p,, ~ Personalized
. n Estimated
Estimated Probability over Clean Speech
Clean Speech K specialists (k)
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Figure 4.1: Comparison between (a) the typical non-ensemble denoising model, and (b) the
proposed sparse ensemble of specialists.

4.1.1 Specialist Networks

With consideration for the constraints of resource-limited environments, we design our

specialist network with unidirectional recurrent layers followed by a feed-forward dense
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layer. The recurrent layers are made up of long short-term memory (LSTM) cells [96]. The
number of recurrent layers as well as the number of hidden units per layer are adjustable
experiment parameters which affect the overall complexity of the model. The specialist
network takes the noisy speech magnitude STFT | X| as input and predicts a ratio mask
matrix M. Subsequently, inv-STFT (M © X) yields the denoised speech estimate §.

We note that convolutional neural networks (CNNs) on time-domain signals currently
achieves improved performance in source separation [49]. Despite their low model complexity,
convolutional architectures are able learn the sequence-to-sequence mapping. We leave
general application of our proposed ensemble model to different architectures for future

work.

4.1.2 Gating Network

The gating network is responsible for assigning an input signal to the appropriate specialist.
It introduces a classification sub-task as overhead to the overarching denoising task, splitting
the full training dataset into some number of latent clusters.

Identifying latent clusters in a noisy speech corpus is non-trivial. Prior works using
ensemble models for speech enhancement have shown that specialists may be trained to
denoise a particular phoneme [97]. This approach, which requires training data to be
phoneme-labeled, is naturally language-dependent but also non-sparse, as multiple specialists
may actively perform some computations due to the high variance of phonemes in speech.
To ensure a sparse activation of specialists (ideally one specialist per input signal), a more
generalized latent clustering is preferred. For this reason, we design two types of gating
networks to classify inputs based on either speech degradation level or speaker gender.

Similar to the specialist architecture, our gating networks are also designed with multiple

recurrent layers and a single dense layer. However, in our current proposed model the
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gating network does not make predictions frame-by-frame; after processing the entire input
sequence, the network produces a single softmax vector p, with K elements corresponding
to the number of clusters (i.e. the number of specialists). The index of the maximum value

in p should correspond to the index of the best-suited specialist.

4.1.3 Ensemble Network

The proposed ensemble model combines K specialist networks together with a gating network.
First, all of the sub-networks are independently trained. The combination of these pre-trained
modules forms a primitive ensemble, as the gating network can already assign an incoming
test example to one of the specialists. The output mask Y is chosen from the specialist
which corresponds to the maximum value of gating network softmax vector p. The “hard”

gating mechanism is formulated as:

Y = MF) k= arg max pg, (4.1)
k

where M) denotes the predicted ratio mask matrix from the k-th specialist.

However, this naive ensemble is sub-optimal as it lacks the potential co-adaptation
between gating and specialist networks. For example, given the fact that the gating network
cannot classify mixtures with 100% accuracy, the specialists should adapt to the situation
where it processes a misclassified sample (e.g., a male speech sample falls in the female
speaker’s specialist). Knowing this, we can further train the submodules in unison. During
this fine-tuning phase, the ensemble model estimates the output ratio mask M by performing
a normalized sum over the individual masks M®) produced by all specialists weighted by
the gating network softmax vector p. This “soft” gating mechanism ensures that the ratio

mask calculation is differentiable, and is formulated as:
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Y =Y pM®. (4.2)
k

During the test phase, the weighted sum is replaced by the hard-decision shown in
Eq. (4.1). This difference between training-time and evaluation-time computation in the
ensemble architecture is the crux of its efficiency; only one out of all the specialists is used
to process the entire mixture spectrogram |X |, making the total used network parameters a
fraction of the total learned. We reduce the discrepancy between the hard and soft gating
mechanisms, used during testing and fine-tuning respectively, by introducing a scaling
parameter A to the softmax gating network output:

exp(\ - o)

— , 4.3
Dk K exp(r- o)) (4.3)

Each element of the gating network output cluster probability vector (pg) is dependent
on the corresponding element of dense layer output (o) normalized by the sum of all dense
layer output elements. While the traditional softmax function can be calculated using A = 1,
we elevate the sparsity of p by setting A = 10. This saturates p to be near-1 at a single index
and near-0 at every other index, making the weighted sum for ratio mask M (Eq. (4.2))
effectively select the best-case specialist mask. This modification of the softmax function

has been successfully used for quantizing vectors with image compression [98].

4.1.4 Experiment Setup

All models (specialist, gating, baseline, and ensemble) are trained using a stochastic data
sampling strategy which dynamically mixes clean speech recordings from the LibriSpeech!

corpus [30] with noise recordings from the MUSAN? corpus [32]. This exposes the models to

! Available for download at http://www.openslr.org/12/.
2 Available for download at http://www.openslr.org/17/.

o7


http://www.openslr.org/12/
http://www.openslr.org/17/

up to 251 unique speakers® and 843 unique noise types* during training. 40 unseen speakers®
and 87 unseen noise types® are used to test the models. 5% of the training utterances and
noises are set aside for validation to help determine training convergence.

All experiment audio files use a sampling rate of 16 000 Hz. Spectrograms are generated
using the STFT with a frame size of 1024 samples and a hop size of 256 samples. Per
epoch, for each example in the training batch, the sampler mixes a normalized 1-second
snippet of a random training speaker’s utterance with a normalized 1-second snippet from a
random training noise, chosen with uniform probability. There are 100 mixture signals in a
batch. Unlike the training mixtures, test mixtures vary in duration; this gives our models
an effective RNN lookback size of 1-second.

We assess the proposed ensemble of specialists methodology across two latent spaces.
For the signal degradation latent space, we instantiate K = 4 specialists and generate
noisy speech mixtures with specific signal-to-noise ratio (SNR) levels—either —5, 0, 5, or
10 dB—for each of the four specialists. Similarly for the speaker gender experiment, there
are K = 2 specialists which see a gender-filtered subset of the training data with uniformly
varying input SNR values out of the four above listed. In contrast, the baseline model must
generalize to all levels of signal degradation and all speaker genders; its training batches
consist of 100 mixed gender 1-second-long mixtures with input SNR uniformly distributed
between the four values.

All networks are optimized using the Adam optimizer [95] with an initial learning rate
of n = 0.001. The specialist network uses the additive inverse of the SISDR metric, i.e.
Eq. (2.3), between § and s as the loss function, whereas the gating network minimizes the

binary cross entropy (CE) metric between its output, softmax vector p, and a ground-truth

3From the librispeech/train-clean-100 folder.
4From the musan/noise/free-sound folder.
SFrom the librispeech/test-clean folder.
5From the musan/noise/sound-bible folder.
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one-hot vector representing the index of the best-suited specialist, i.e, Eq. (2.5). Each
network variant is trained for approximately three hours on a NVIDIA Titan Xp GPU, after

which the validation metric is considered to have converged.
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Figure 4.2: Results from the signal degradation and speaker gender experiments. The LSTM
component of the specialist network increases in computational complexity going across the
x-axis on all subplots.

4.1.5 Results

We report the denoised signal SISDR, improvement for all models averaged across 1000 test
set mixtures. Fig. 4.2a compares the test signal speech denoising performance between the
four signal degradation-based specialists and the one baseline model. It is evident that,
at all mixture SNR levels, a neural network specifically trained to denoise those mixtures
can outperform a generalist network. This gap in performance is most prominent with the

extrema mixture levels (i.e., the —5dB and 10dB mixture SNR cases). As the number of
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RNN hidden units and layers increases, the performance gap between specialists and baseline
model diminishes. With larger network complexity, the generalist’s performance eventually
matches the specialist’s, which saturates after a particular network size.

The specialist curves in Fig. 4.2a, 4.2¢c, Fig. 4.2d set a theoretical upper bound to the
naive ensemble model: even with a perfect gating network, the naive ensemble cannot
outperform the sum of its parts. The superior performance of the naive ensemble model
to the baseline comes from the fact that each specialist focuses on a smaller subset of the
original problem with the same model capacity. In this hypothetical context where the
best-suited specialist is always selected, an ensemble of smaller specialist networks will
consistently outperform the baseline generalists.

Therefore, the gating network’s classification accuracy matters. As shown in Fig. 4.2b,
signal degradation-based gating networks with a smaller RNN architecture are only able to
distinguish the extrema mixture levels with high confidence. Increasing the number of hidden
units and layers brings up the classification accuracy of the non-extrema mixture levels (i.e.
0dB and 5dB mixture SNR). Based on these results, we chose the 128 x 2 gating network
architecture to be used for the subsequent ensemble experiments, as it adequately clusters
test mixtures (with ~ 80% accuracy on average) while only incurring a small computational
overhead.

Fig. 4.2c compares the averaged denoising performance of the individual specialists, the
baseline, and the ensemble models (with and without fine-tuning) across all four mixture
SNR cases. We can see that the naive ensemble improves upon the baseline with a significant
margin, but cannot pass the theoretical upper bound set by the oracle choice of specialist.
Still, the naive ensemble model can compete as an efficient inference model with the high-

complexity baseline model of size 1024 x 2 with a simpler architectural choice, 512 x 2.

60



Fig. 4.2c also shows that the fine-tuning step greatly improves our ensemble model,
surpassing the oracle specialist upper bound. This suggests that through fine-tuning, the
specialists learn to compensate for imperfect classification results from the gating module.
We can see that a fine-tuned ensemble with a smaller specialist RNN architecture, 512 x 2,
outperforms the most complex baseline model of size 1024 x 3. This is a significant amount
of computation reduced during the test time, even considering the overhead cost of the
128 x 2 gating network.

A similar trend is present in the speaker gender experiment, summarized in Fig. 4.2d.
Since this setup consists of only two specialists, the gating network’s job is an easier binary
classification. A 16 x 2 RNN architecture sufficiently classifies speaker gender with 90%
classification accuracy. Using that, the naive ensemble achieves near-optimal performance,
reaching the upper bound in nearly every architecture. The fine-tuning process lifts the

performance even further.

4.1.6 Summary

With our experiment in this Section 4.1, we demonstrated that speech denoising neural
networks can benefit from the MLE design philosophy, boosting performance while reducing
arithmetic complexity. Our specialist networks were trained on specific partitions of a
large noisy speech corpus across two latent spaces: signal degradation and speaker gender.
Despite the small overhead cost of a gating network, a naive ensemble network is shown to
match the performance of generalist denoising networks with fewer parameters i.e. fewer
inference-time calculations. Furthermore, fine-tuning the ensemble with the inclusion of
a sparsity parameter helps the model exceed the theoretical upper bound of the oracle

specialist.
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4.2 Speaker-Informed Sparse Ensemble of Specialists

Now, we will investigate using MLE as a means for personalizing an SE model. To achieve
this, we propose learning the optimal speaker grouping from the noisy utterances. This is in
contrast to the ensemble model of Section 4.1, which operated on manually-defined semantic
speaker groups (e.g., input SNR or speaker gender). Using learned speaker groups, the
gating module must estimate characteristics of the test-time speaker from the noisy input,
identify the most similar speaker group defined within the training set, then forward the
input signal to the appropriate specialist network. This schema requires no training data
from the test-time speakers, yet it more optimally denoises the test-time noisy utterances
by using the most suitable specialist. With this in mind, our proposed model encapsulates
“zero-shot” PSE through model selection.

A major aspect of this work addresses the open-ended question: how do we cluster
English speakers into appropriate groups? A relevant task is learning speaker-characteristic
embeddings for speaker verification (SV) systems. Well-established embeddings include
the Gaussian mixture model-based i-vectors [99] or z-vectors computed using a time-delay
neural network [100]. Prior works have also used sequence summarizing networks [101]
either through contrastive loss [102] or by estimating subsequent frames for a single input
signal [103]. Although these learn valid speaker-identifying features, we propose a custom
embedding-learning model which can effectively function as the gating network as in [78].
Additionally, we want our custom embedding to be robust to additive noise; previously
proposed noise-robust embedding vectors [104, 105, 65] were not designed around MoLE.
To do this, we develop a Siamese network [106], intended for speaker verification (SV), to
learn discriminative speaker embeddings. We then repurpose the SV module as a classifier.
Through fine-tuning, the ensemble model morphs the learned embedding space from SV-

applicable into something more suitable for the SE task. Lastly, because this work utilizes
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soft gating at training-time and hard gating at test-time [21], our zero-shot sparse ensemble

model for personalized SE minimizes test-time computational complexity.

4.2.1 Design

Given a large dataset of many different speakers’ various utterances S, we postulate that
there exists an optimal clustering based around speaker identifying characteristics. Denoting
K to be the number of clusters, one can create K separate SE models trained only to denoise
utterances from each disjoint group of similar speakers. As previously shown [21, 79], a
sparsely active ensemble model is capable of performing zero-shot adaptation because the
gating module classifies the test-time noisy utterances into one-of-K groups.

An ensemble model is composed of one gating module and K specialist modules. The
gating module processes a noisy speech input frame @, estimating a speaker-embedding first,
and then classifying it as belonging to one-of-K groups. The cluster probabilities vector p is
used in two ways—during training, all of the specialist modules outputs their own ideal ratio
mask (IRM) [107] estimates, MM, M@ ... M) which are then combined in a weighted
sum using p, i.e., M = Zi(:l peM®) . But during testing, only the output from the k*-th
specialist, corresponding to the largest probability, i.e., k* = arg max;, pg, is chosen. This
argmax operation selects a single specialist to use during evaluation, making the ensemble
sparsely active.

In the context of personalized speech enhancement, increasing hyper-parameter K can
theoretically increase the level of specialization of each specialist as well as the ensemble
network’s capacity for personalization. However, there is a trade-off with having too many
models; a large K can make the gating module’s classification task too challenging, and may

lead to the specialist modules becoming overfit on subsets that are too small. In this paper,
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we investigate three choices of K: 2, 5, and 10. Determining the optimal number of clusters

is an extended research topic within unsupervised learning.

4.2.2 Pretraining Process

Discriminative Speaker-Specific Embeddings The clustering of speakers is a signifi-
cant matter when we build a successful sparse ensemble model for SE. Although in theory all
the specialists and the gating module can be trained from scratch, training many modules
simultaneously is prone to result in suboptimal performance. Hence, we first pre-train all
the modules individually and then fine-tune them. The pre-training step, therefore, requires
the sub-grouping of speakers.

To this end, we train a neural encoder that learns an embedding function f which can
characterize a noisy speech utterance with a low-rank embedding vector. In order to train
f, we formulate a speaker verification (SV) upstream task. First, we sample utterances
from a large training dataset containing many speakers, s € S, and noise signals from a
similarly large dataset of diverse noises, n € N. Input mixtures & are made by artificially
mixing clean speech utterances s with training noise signals n; the amplitude of n is scaled
to simulate various signal-to-noise ratios (SNRs).

We can then generate pairs of noisy speech utterances, x; and x;. Once f predicts the
embeddings, i.e., z; = f(x;) and z; = f(x;), their inner product serves as a measure of
similarity. A sigmoid function follows to interpret it as a probability §. Our target is a
binary value y, either 1 or 0 depending on whether the utterances derive from the same
speaker or not. The embedding function f is trained to minimize the binary cross entropy
loss between ¢ and y.

This contrastive learning approach derives discriminative embeddings using Siamese

networks [106] where the same embedding function f is applied to both input signals x;
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and x;. The rationale behind this embedding model is that the discriminative nature of

these embeddings can help the clustering process prepare a semantically more meaningful

partitioning of speakers.
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Figure 4.3: Subplots comparing various choices of K for using k-means clustering on the

speaker embeddings.

Offline Speaker Clustering Likewise, the gating module’s classification task and pre-

training of individual specialists rely on a reasonable clustering of speakers. Determining how

the K groups are formulated, and which of the training set speakers belongs to each group,



requires an offline clustering step. First, we transform every utterance from the training
corpus into the learned latent space, i.e., z < f(s). Embedding vectors from the same
speaker are averaged element-wise, which serves as the speaker-characteristic mean vector.
Finally, we apply k-means clustering to these mean vectors to learn K speaker groups.

Fig. 4.3 shows the clustering results with varying K. Each of the 211 points represents
one of the Librispeech training set speakers, with marker style indicating speaker gender.
For plotting, the 32-dimensional embeddings z are reduced to 2 dimensions using t-SNE
(with perplexity = 40) [108]. These subplots show that the SV model succeeds in learning a
speaker embedding which can be clustered into loosely meaningful groups, e.g., when K = 2
the clusters implicitly form along the speaker gender division. These speaker groups are
used to pre-train our gating modules and local experts.

The speaker verification (SV) pre-training task creates a latent space of speaker em-
beddings Z, from which we can partition various groups, i.e. 2 in Fig. 4.3a and 10 in
Fig. 4.3b. After fine-tuning an ensemble model, the gating network’s embedding function
f adjusts its parameters towards the SE objective. The latent space is modified uniquely
based on the ensemble’s configuration. In Fig. 4.3a and Fig. 4.3b, the class labels derive
from k-means clustering, but in Fig. 4.3c and Fig. 4.3d the class labels are estimated by the

gating network’s classifier function g.

Gating Module Pre-Training The gating module must be able to classify the embedding
vectors as belonging to one of the K speaker clusters. This neural network is a dense layer
followed by the softmax activation, which we denote by a parametric function p = g(z; W,),
where W is its parameters. The classifier function g takes embeddings of noisy utterances
z as inputs, and outputs a vector of cluster probabilities p. As each utterance belongs to a
single cluster and the speaker IDs of the training set speakers are known, we can encode the

k-means clustering labels into one-hot vector targets p. These vectors are K-dimensional.
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Note the discrepancy between the clustering done on embeddings of the clean speech
utterances and the actual use-case of the model that takes noisy utterances. While the
clustering results on clean data might be more reliable, eventually it is always possible that a
noisy test utterance can be misclassified into a wrong speaker group, and then consequently
assigned to a sub-optimal specialist. Moreover, since the embeddings are optimized for the
SV tasks, clustering on this representation may not be optimal for our SE problem. We

revisit this issue in Section 4.2.2 and propose a fine-tuning solution.

Specialist Pre-Training The K specialist modules are trained to denoise speech as
follows: the large dataset of training noises N is retained, but the large speech corpus S is
partitioned into K groups, {S(l), e ,S(K)}, based on the clustering results in Section 4.2.2.
The k-th specialist module learns a mapping function h by updating its parameters W,
such that the distance £ between the denoised estimate signal § and the target clean speech
signal s is minimized. We use the negative scale-invariant signal-to-distortion ratio (SISDR)

[39] as the loss function.

Ensemble Fine-Tuning The ensemble model can now be used naively by assembling
the pre-trained specialist modules and a pre-trained gating module. However, the gating
module may not classify all input signals with perfect accuracy. Therefore, fine-tuning
(FT) can adjust the ensemble model’s denoising performance for misclassified inputs. This
potential co-adaptation between gating and specialist modules can be found by adjusting
the parameters of all the underlying functions (i.e., embedding function f, classifier function
g, and denoising functions h within each specialist). In the fine-tuning phase, the ensemble
model estimates the final ratio mask M by performing a normalized sum over the individual
masks M *) using the softmax vector, p, i.e., M = Z,i(:l peM*) . This ensures that the

ratio mask calculation is differentiable and can be seen as a “soft” gating mechanism.
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During testing, the weighted sum is replaced by a hard-decision, i.e. M = M*) where
k* = argmax;, pr. This switch in gating mechanism between training- and evaluation-time is
the essence of the ensemble scheme’s efficiency: only one out of all the specialists is active
during inference, making the total used network parameters a fraction of the total learned.
In order to reduce the discrepancy between the hard and soft gating mechanisms (i.e, to
make the gating network more sparse during training), we modify the base of the softmax

10 as opposed to simply e [21].

function to use e

Fig. 4.3c and Fig. 4.3d show the fine-tuned speaker embedding vectors. Note that the
comparison between the clustering on the SV embedding vectors and on their fine-tuned
version is not to argue that fine-tuning can improve the clustering results. Instead, fine-

tuning with the speech enhancement objective could in fact deteriorate the discriminative

qualities of the learned embedding vectors.

4.2.3 Experiment Setup

Mixtures are generated by combining randomly offset 5sec segments of utterances and
noises. With every mixture, the noise signal is randomly scaled such that the mixture SNR
lies uniformly between —5to 10dB. Utterances derive from the LibriSpeech corpus [30]
train-clean-100 folder, with 211 speakers designated in the training set, 20 in the validation
set, and 20 in the test set. Noises are selected from the MUSAN corpus [32], with 628
noises from the free-sound folder used during training and validation, and 54 noises from the
sound-bible folder used during test. Both LibriSpeech and MUSAN corpora are resampled
to 8 kHz. When training the speaker verification model, batches are made up of pairs of
mixtures, with an equal chance of being from the same speaker or not. All mixture signals
are processed in the time-frequency domain through STFT using a frame size of 1024 samples

with 75 % overlap. Throughout our experiment, every model performs speech denoising by

68



taking a series of magnitude spectra as input and estimating IRM vectors M. Masking is
done element-wise onto the complex-valued spectrum which possesses the noisy phase of the
mixture signal.

Both the gating and specialist modules are composed of gated recurrent units (GRU)
cells [109]. The embedding function f is built with 2 hidden layers and 32 hidden units,
with the output from last frame becoming a fixed-length utterance-characteristic embedding
z. The denoising functions h are also built with 2 hidden layers but with a varied number
of hidden units. The baseline general-purpose SE model is constructed in exactly the same
manner as a specialist network, but is trained on the entire speech corpus S instead of a
personalized subset S®¥). Throughout the experiment, we opt for a batch size of 128, training
all models using the Adam optimizer with learning rates of 10~3 for training and 10~* for

fine-tuning.

4.2.4 Results

Fig. 4.4 summarizes the findings of our experiments. The x-axis shows the varying hidden
sizes for the GRU layers. Since the number in parenthesis reports each expert’s size, the
total size of the ensemble model is computed by multiplying K to it, e.g., when K =5
and the hidden size is 256, the total number of parameters equals 5.6 M. However, because
our ensemble models are sparsely active—that is, one specialist is active at a time—the
number of parameters effective at run-time is only 1/K of the total, the amount listed on
the x-axis. Longitudinally, the baseline models share the same number of hidden units with
the specialist module, meaning the baseline is always K times smaller than the ensemble
model in comparison. However their effective number of parameters is nearly equivalent. We

note that ensemble models are not fine-tuned for hidden sizes > 512 due to GPU memory
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constraints. Larger baseline models are trained and evaluated for comparison with the
smaller ensemble models.

Firstly, we see that across all configurations, our ensemble models consistently yields
a higher denoising performance when compared to a baseline generalist model whose size
is similar to one of the specialists. The naive ensemble models already show significant
improvement (ranging from 0.62to 1.65dB), but different choices of K do not make a big
difference. We also observe that fine-tuning the ensemble models lift the performance even
further (from 1.24to as much as 2.04 dB. Furthermore, fine-tuning introduces a larger gap
in improvement when K is larger; intuitively, the more challenging classification task stands
to benefit most from fine-tuning.

The proposed method also performs model compression without sacrificing the denoising
performance. Overall, the smaller model architecture receives more performance improve-
ment, such as the 2.0 dB improvement in the case of 64 hidden units. The model compression
benefits are made clear by comparing data points laterally. For example, as circled in Fig. 4.4,
a generalist model requires at least 512 hidden units in order to match the performance
of a fine-tuned ensemble model with 10 specialists each made up of GRUs with only 64
hidden units. Including the cost of the gating module and all the other specialists that are
not chosen, this is still a 48% reduction in terms of spatial complexity. Moreover, if we
only count the gating module and one chosen specialist, it is a 94% reduction in effective
parameters and test-time arithmetic complexity.

Lastly, as hypothesized, we see that increasing the number of clusters results can result
in a more personalized speech enhancement so long as the ensemble model is fine-tuned.
The average SISDR improvement achieved with the ensemble models increases along with

K from 2 to 5 to 10 through fine-tuning.
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4.2.5 Summary

With this section, we expanded upon model adaptation through selection (the “mixture of
local experts” paradigm) as a means for personalized speech enhancement. We show that
the speaker-informed ensemble is a zero-shot PSE system as it never requires clean speech
during the test-time adaptation; instead, the gating module analyzes the noisy test signal
to determine the most appropriate specialist, or local expert, for denoising. We obtain a
speaker-informed gating module by pre-training it with a contrastive speaker verification
task. The training cases are transformed to a learned latent space where they are clustered
using k-means clustering. By identifying more clusters and training more low-cost specialists,
our ensemble models are able to adapt better to unseen test environments. Our findings
reinforce the idea that sparse ensemble models can outperform general-purpose speech
denoising models of a similar architecture, additionally reducing run-time computational

complexity.
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Figure 4.4: Comparison of speech enhancement performance between a baseline general-
purpose model against different configurations of speaker-informed sparse ensemble models.
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4.3 Block-Sparse RNNs for Universal Speech Modeling

A few questions arise regarding the limitations to the previously discussed sparse ensemble
of specialists. Firstly, in our earlier experiments, the gating module selected the best-case
specialist on a per-utterance basis. For online or streaming applications, the idea of an
isolated utterance is ill-defined—therefore it may be better to have the model decide to
switch experts on a rolling basis. To attain real-time performance, the obvious approach
would be to reduce the lookback (input buffer) of the ensemble model. Secondly, our model
grouping strategy (by subdividing the SE problem space) is a very hand-crafted procedure.
We had to define semantically meaningful latent spaces (e.g., input SNR, speaker gender,
etc.) where each specialist would focus on a non-overlapping subset of input cases; it may
be possible that there is a non-semantic grouping of input cases which could yield even
further improved performance. Lastly, because the hand-crafted grouping strategies may be
sub-optimal, it is possible that there are redundancies between the specialists.

We hypothesize that a less-exclusive more-optimal grouping strategy may be possible.
Additionally, rather than having a single specialist process an entire input sequence, it may be
more adaptive and performant to quickly switch between specialists. Furthermore, it may be
possible for a model to learn its own grouping strategy based solely on the acoustics instead
of semantics. In this section, we introduce a modified recurrent neural network (RNN) which
extends the idea of “adaptation by model selection” to do online real-time processing. With
Fig. 4.5, we illustrate how the proposed block-sparse gated recurrent unit (BSGRU) may be
viewed as a real-time extension of the previously discussed sparse ensemble of specialists

from Section 4.1.
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Figure 4.5: Visual comparison between (a) the non-adaptive generalist SE model, (b)
the sparse ensemble of specialists model introduced in Section 4.1, and (c¢) the BSGRU
introduced in this section. Only the BSGRU applies the “model selection” paradigm on
a frame-by-frame basis to achieve real-time adaptation. Parameters with filled in colors
indicate their usage during inference—in other words, the generalist uses all available model
parameters, the sparse ensemble uses only the gating module and a single specialist, and the
BSGRU switches between specialists over time with an always-active gating module.

4.3.1 Design

Conventional gated recurrent unit (GRU) The GRU was proposed as a more efficient
easier-to-implement alternative to the long short-term memory (LSTM) unit for recurrent
neural networks [110]. It processes sequential input to produce a hidden state by selectively
retaining or forgetting information over time thanks to two gating mechanisms. The hidden
state at time step t is computed as follows:

For our discussion, d denotes the number of input features and e is the number of output
features, x; € R? is the input vector, h; € R® is the output vector, 7; € (0,1)¢ is the reset
gate vector, z; € (0,1)¢ is the update gate vector, ﬁt € R€ is the candidate vector, and © is

the Hadamard product. There are a total of six matrices that comprise the model parameters.
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Algorithm 1: GRU feed-forward A(x,hi—1; W, U)

Input: x;, h;_
Initialize: z;, 7, by, hy (0,0,0,0)

1 7 < Sigmoid (W, + U, h_1) // compute reset gate
2 z; < Sigmoid (W,x; + U,h;_1) // compute update gate
3 h; + Tanh (Whaxy + Uy [ry © hy_1)) // compute candidate

4 ht<—zt®ﬁt+(1—zt)®ht_1

Output: h,

These are conventionally denoted as matrices W and U representing the input-to-hidden
and hidden-to-hidden mappings, respectively. The matrices are indexed with three subscripts
(r/z/h) to the specific computing the reset gate, update gate, or candidate vector. The
gates control the flow of information—effectively, a recurrent unit which captures short-term
memory will have a highly active reset gate, whereas one capturing long-term memory will
have a highly active update gate. Bias terms are omitted from Alg. 1 for brevity. We
denote A to be the mapping function for the conventional GRU which follows Alg. 1—i.e.,
h,=A(z,hy_1; W, U).

In this configuration, the GRU utilizes its entire parameter space to transform the input,
doing so without explicitly modeling non-stationary groupings. Similar to most real-world
sequential data, speech signals can also be modeled as sampling through discrete latent
time-varying groups (e.g., segmental SNR, phonemes, vocal inflections, etc.). In order to
motivate the recurrent network to learn discrete groupings within the data, we reformulate
the GRU such that the parameters may be subdivided into “blocks”.

The derivation for our proposed block-sparse gated recurrent unit (BSGRU) is as follows:
first, we denote M to be the number of blocks. Then the number of hidden units per
block is b = | i7] for hidden size e. Next, we reframe the model parameters W and U as

block matrices which may be indexed (notated with a superscript). Similarly, the gate and
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candidate vectors can also be subdivided into “block vectors”, e.g.,

Tt(l) Zil) Wz(l) Uz(l,l) Uz(1,2) . Uz(l,M)
’l”§2) ZEQ) 2(2) Z(2,1) . :

Ty = zZ = Wz = Uz = (44)
Tt(M) Z,EM) z(M) Z(]W,l) . . UZ(]V[,M)

BSGRU: Gating Sub-Unit At each time step ¢, we estimate a belief vector k; € (0, l)M
whose maximum indicates the current “block index”. This estimation is done using a “gating
sub-unit” within the BSGRU. Similar to a Markov process, we design the current belief
vector k; to only be dependent on the current input x; and the previous belief vector k;_i.
In order to motivate the model to select only one group per input, we make k; more sparse
using a saturated softmax with temperature parameter A. This temperature scalar controls
the entropy of the softmax distribution, while preserving the relative ranks of each element.
During inference (i.e., “evaluation mode”), the saturated softmax is replaced with a hard
decision; this is theoretically equivalent to setting the temperature A — oo. We describe the
feed-forward operation of the gating sub-unit below:

The gating sub-unit is responsible for determining the current block index with respect
to the current input and the previous block index. Our aim is for this classification task to
incur the smallest possible computational overhead, therefore the hidden size of the gating
sub-unit should be smaller than the specialist sub-unit hidden size, i.e., e* < e.

In Alg. 2, we denote r* € (0,1)¢" and z* € (0,1)¢ to be the reset and update gate
vectors for the gating sub-unit. The current hidden state is b} € R®". We use the asterisk
superscript to indicate gating sub-unit intermediate outputs. The trainable parameters of
the gating sub-unit are V€ R ¥4 T € R *¢" and Q € RM*¢", The first two matrices
affect the current input and prior hidden state, respectively. Notably, matrix @ enables

the linear transformation from the gating sub-unit’s hidden state to a belief logit vector
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Algorithm 2: BSGRU gating sub-unit feed-forward G(xz,hf_,\; V., T,Q)

Input: i, hf_{, A
Initialize: k; < O
1 v} <+ Sigmoid (V,@, + T,h}_,)
2 z; + Sigmoid (V.x; + T.h}_,)
3 hi « Tanh (Vyz, + T), [rf © hi_,])
4 hf« 2z Ohi_ +(1—2)0h;

5 ky Qh; // linear map from hidden-to-belief vector space

6 if stage = test then

7 i* < arg max l;tm // get current block index
0<i<M

8 kt(i*) —1 // make belief vector one-hot (non-differentiable)

9 else

10 k; < Softmax(\ - k;) // use saturated softmax (differentiable)

Output: k;, h}

space—i.e., the mapping R®" — RM. Lastly, the belief logit vector k, is converted to a
probability vector k; € (0,1) using either a hard-max or softmax (the latter used only
during training to produce a valid gradient). We represent the gating sub-unit of the BSGRU

as G following Alg. 2—i.e., ks = G(z,hj_;,\; V,T,Q).

BSGRU: Specialist Sub-Unit Finally, the belief vector k; is used to sparsely activate
only a portion of the weight matrices. Note that the belief vector is a binary vector with M
elements, and that the BSGRU specialist parameters can be subdivided into M-separate
block vectors and matrices as shown in Eq. (4.4). During training time, multiplying each
element of k; to each block (from 1 to M) enables the sparse computation. At evaluation
time, we use arg max to select only the specialist model weights corresponding to a single
block index. We incorporate dependence on the previous belief vector k;—1 to the specialist

computation, allowing the model to transition between block states.
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Algorithm 3: BSGRU specialist sub-unit feed-forward

=

10

11

12

13

Inpl'It: Tt, ht—la kta kt—l
Initialize: z;,r;, hy, hy < (0,0,0,0)

if evaluation mode then

1" < arg max k,gi) // get current block index
1<i<M

J* + argmax kt@l // get previous block index
1<j<M

rgi*) + Sigmoid (Wr(m:ct + U,(.i*’j*)hij_*l)) // compute sparse reset gate

zii*) < Sigmoid ( Z(i*):ct + Uz(i*’j*)hgj_*l)) // compute sparse update gate

EE“) < Tanh (W}Ei*)mt + U,gi*’j*) [rt(i*) © thfD // compute sparse candidate

hil <—Zt)®h(z)+(1 (1)®h(])

else if training mode then

for i+ 1to M do // iterate over all block indices
¢ Sigmoid (k"W V@, + X1, (kKD U R )
( ) Sigmoid <k W, + Z; 0 [ )k,gi)le(i’j)hEi)l})
R Tanh (k"W + S0 (OB U (v 0 0]
R 20 o [K0R0] + (1-2) o 2L, [k p) ]

Output: h,

to a specialist sub-unit in order to sparsely activate its weights. In this way, the specialist
sub-unit learns an adaptive SE function.
block index i; subsequently the arg max of k;_; as the prior block index j. Unlike the
conventional GRU which uses all of its parameters W and U, in the BSGRU, the specialist
sub-unit selects a specific block matrix within W and another specific block matrix within

U. We represent the specialist sub-unit of the BSGRU as B following Alg. 3—i.e., hy =

The current and previous outputs of the gating sub-unit (k; and k;_1) are forwarded

B<xt7 h’t—la kta kt—l; Wﬂ U)
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Fig. 4.6 provides a visual comparison between the six weight matrices present in a
conventional GRU versus the nine weight matrices in our proposed BSGRU. As shown
in the figure, at inference-time / evaluation, only the parameters which are colored are
used. Our proposed model achieves run-time complexity savings when the number of active
parameters in the BSGRU are less than that of a fully-active GRU—the hyper-parameters
that impact this are: the choice of hidden size (e), the gating sub-unit overhead (e*), and
the number of blocks (M). Fig. 4.7 shows the flow of the various input and output variables

in a conventional GRU and in our proposed BSGRU.
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(a) Conventional GRU.
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(b) Proposed BSGRU.

Figure 4.6: Comparison of the weight matrices. As the BSGRU weights are divided into
M blocks, the number of hidden units per block is b = [{7]. In a GRU feed-forward
computation, the entirety of the model parameters are utilized and updated, whereas with
the BSGRU, only a subset of the model parameters are used. This subset is determined
by #* and j* which are the block indexes at time ¢ and ¢ — 1. Specifically in this example,
M =4,4i* =2 and j* = 3, indicating an inter-block transition. Accounting for the gates, the
conventional GRU has six weight matrices, whereas the BSGRU has nine weight matrices,
six of which are sparsely active.
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Figure 4.7: An “unrolled” representation of the conventional GRU shows that the recurrent
unit A computes the current hidden state h; using only the current input x; along with the
previous hidden state h;_1 (as described in Alg. 1). Our proposed BSGRU is effectively two
sub-units—the gating sub-unit G first computes a block state k; using the current input
and the previous block state k;_1. Next, the specialists sub-unit B harmonizes the current
and previous block states along with the current input to estimate the current hidden state.
G and B follow Alg. 2 and Alg. 3, respectively.

4.3.2 Pretraining Process

Training a BSGRU is a complex optimization task which has many potentials for failure
similar to a generative adversarial network (GAN); this is because the BSGRU jointly
classifies and regresses over the same input signal. Although the BSGRU can theoretically
learn latent groupings in the sequential data, we find that empirically some pre-training
is required in order to prevent the model from collapsing to a sub-optimal solution—for
example, if the BSGRU learns to use only one or a few blocks out of all M possible blocks.

We prevent this collapse by formulating a two-stage pre-training procedure: first we
optimize the specialist sub-unit B and then the gating sub-unit G, in that order. For pre-
training, a latent space which can divided into M discrete groups (e.g., speaker characteristics,
SNR levels) must be chosen. Then, the ground-truth group label (i.e., block index) for
the training data input at any time ¢ must be known—for example, if the latent space is
“segmental SNR levels”, then the group label for a single frame of the noisy input spectrogram
X, is simply the binned value of the the segmental SNR for that frame. We discuss the

exact binning procedure used for our experiments later in Section 4.3.3.
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For the first stage, each of the blocks within the specialist sub-unit parameters (W(i)
and U9 for i,7 € {1,...,M}) are sparsely activated and individually adapted following
Alg. 3. This can be done by swapping the untrained classifier (the gating sub-unit G) with a
hypothetical oracle classifier that outputs only the ground-truth block index any input at all
times t. Practically, this is equivalent to substituting all uses of the belief vector k in Alg. 3
with the one-hot representation of the ground-truth block index k. Then, at any time t,
1" = arg max k',gl) and j* = arg max l;:g)l—because 7" and j* are the ground-truth bin indices,

1<i<M 1<j<M
only the best-suited specialist block matrices (W) and U 7")) will be used/updated.

In the second stage, all of the parameters of B are kept fixed. We train only the gating
sub-unit parameters (7", V', and Q). Although the gating sub-unit’s task is to classify the
input, the optimization criterion is still to minimize the discrepancy between the overall
BSGRU output and the expected output (£(M, M ))—in other words, the training loss is
based on regression (e.g., MSE) and not classification (e.g., cross-entropy (CE)).

After this two-stage pre-training, it is still possible to fine-tune the full BSGRU over the
training corpus. This allows the specialist sub-unit to adjust its parameters to account for
the gating sub-unit’s misclassified inputs. Fig. 4.8 shows the hidden state output vector h

and the belief state vector k over all time ¢ for a BSGRU which has completed both stages

of pre-training.

4.3.3 Experiment Setup

Architecture We devise an experiment using a BSGRU for adaptive online speech en-
hancement. As explained in Section 2.3, we develop TF-masking models which take noisy
input speech spectrogram X and estimate a binary mask M as output. All spectrograms are
computed using the STFT with 1024-point Hann windows and 75 % overlap—the resulting

shape of matrices X and M is 513 x L, where L is the number of frames. Although more
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Figure 4.8: BSGRU belief vector k and hidden state output h observed during Stage 2
pre-training over various epochs. In this example, the BSGRU hidden size e = 128 and
the number of blocks M = 4, making the “effective hidden size” b = [ 7| = 32. Without
pre-training, the gating sub-unit makes arbitrary choices for the block index, so k is initially
non-sparse and only the first or second specialist pass-through the input signal. With more
training epochs, the gating sub-unit generates a sparser belief vector, thereby enforcing a
sparser hidden vector.

complex models for SE are practical, we limit the tested architectures to use only a single
recurrent network layer in order to do a targeted ablation.

As the goal is to assess the specific contributions of our proposed block-sparsity—the
compared models are equivalent except that the recurrent layer is either a standard GRU
(baseline) or BSGRU (proposed). The input dimensionality is the number of frequency bins
(14 [%2%] =513), and the dimensionality of the recurrent layer output is the hidden size
(e). The hidden state is then input to a trainable dense layer, which maps back to the
input dimension 513. We survey three choices of “effective recurrent layer hidden size” in
order to observe the effect of model size on the benefits of adaptation. Our choices are:
(ecru, bescru) = 32, 128, or 512. We use the term “effective” to indicate that the BSGRU
specialist sub-unit only uses a fraction of its hidden size per time step, whereas the standard

GRU leverages its full hidden size. For fair comparison, we set eqry = bgscru, because

epsaru = bpsaru - M.
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Figure 4.9: Architectural differences between experiment models. In the oracle model, in
place of computing the belief state vector k using the gating sub-unit G, we instead assume
hypothetical access to the ground-truth block index k as defined in Section 4.3.3.
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Figure 4.10: Distribution of the segmental SNR values present in the LibriMix single-speaker
enhancement training corpus.

Latent Space We show a BSGRU with M = 4 blocks adapting to test-time noisy speech
based on “segmental SNR level”. Because segmental SNR is a continuous value and we have
M = 4 groups, we consider two possible binning strategies, accounting for the distribution
of the LibriMix single-speaker enhancement training corpus segmental SNR as shown in
Fig. 4.10. The first naive binning strategy would be to use evenly spaced intervals which
span the breadth of all possible segmental SNR values. We refer to this as the “uniform
binning” approach, and as M = 4, we arbitrarily define three bin edges: (—30,—10,10) dB.

Subsequently, the ground-truth block index encoded as a one-hot vector (kt) is defined as

follows:
(1000] SegSNR/(X;) < —30dB
] [(0100] —30dB < SegSNR(X,) < —10dB
k?niform — (45)
[(0010] —10dB < SegSNR(X;) < 10dB
(000 1] 10dB < SegSNR(X;)
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A more analytical second binning strategy could be based on quantiles. This maximizes
the likelihood that each specialist within B sees the same number of input frames. In the
“quantile binning” approach, as M = 4, the bin edges are empirically derived at 25%, 50%,
and 75% splits: (—14,—1,5) dB. Similarly, the ground-truth block index encoded as a

one-hot vector is defined as follows:

[1000] SegSNR(X;) < —14dB

o [0100] ~14dB < SegSNR(X;) < —1dB

k?uantlle — (46)
[0010] ~1dB < SegSNR(X;) < 5dB
(000 1] 5dB < SegSNR (X))

The exact bin edges are annotated in Fig. 4.10; these bin edge values are specific to our
choice of using the “segmental SNR” latent space. Choosing another latent space would
necessitate re-adjusting the bin edges. In our experiments, we assess the effect of these two
strategies (uniform vs. quantile) with respect to the denoising performance of a single-layer

BSGRU.

Dataset This experiment utilizes the LibriMix [36] dataset; it is an open-source recipe for
combining clean speech recordings from “Librispeech” [30] with ambient noise recordings
from “WHAM!” [111] to produce a deterministic set of mixture audio. In particular, we
use only the mixture audio containing a single speaker contaminated by background noise;
the dataset additionally supports two- and three-speaker mixtures. All derived audio files
are sampled at 16 kHz, but inputs to the model are truncated to be 3s in duration. In
total, there is 58 h of training data, 11h of validation data, and 11 h of test data. Speaker

identities are non-overlapping between the three partitions.
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Hyperparameters For all trials, we use M = 4 for the number of blocks. With our
BSGRUs, we fix the gating sub-unit hidden size e* = 16; this results in a very small
computational overhead for computing Alg. 2. We find that performance is largely unaffected
by different values for the gating sub-unit temperature A = 1, le — 1, and le — 2. The Adam
optimizer [95] is used for all trials with various choices of learning rates n = le — 3, le — 4 or
le — 5; reported performance for each model is the best-performing. Also, our training loss
function is the negative SISDR between the estimated clean speech g and the ground-truth
clean speech M. Recall that y = M ® X, where X is the noisy speech input spectrogram
and M is the TF binary ratio mask estimated by the denoiser model. We use a fixed choice
of 100 epochs for both the baseline GRU and oracle BSGRU. The oracle BSGRU is used as
the Stage 1 initialization (B) for the pre-trained BSGRU, which goes through another 100

epochs to optimize only G.

4.3.4 Results

Fig. 4.11 summarizes the results of the experiment. Reported SISDR improvement values
are the averages + 95 %-confidence interval. Note that the binning strategy axis only applies

to the BSGRU, so the baseline GRU numbers are equivalent in both rows.

Oracle Binning Strategy Firstly, across all configurations, we see that the oracle BSGRU
model achieves the most significant boost in performance over the the non-adapted GRU
model. This is to be expected, as the oracle model simulates a BSGRU with a perfect
100%-accurate gating sub-unit. Comparing uniform vs. quantile binning strategy, we see
that the oracle quantile models perform best; this can be explained due to the fact that
the quantile binning strategy, by definition, maximizes the utilization of all M specialist
blocks to cover the near-equal quadrants of the “segmental SNR” latent space. In other

words, the number of most-suited input cases is well-balanced among the M blocks. In the
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Figure 4.11: Comparison of speech enhancement performance between a unadapted GRU
baseline model, the pre-trained proposed BSGRU, and an oracle BSGRU.

uniform binning approach, the 3™ specialist would encounter the vast majority of input
frames, whereas the 15 specialist would encounter the least; this relates to the area under
the curve for each bin edge in Fig. 4.10. In summary, with uniform binning, the input cases
are not well-balanced among the specialists, making it understandably subpar to the quantile

binning.

Non-Oracle Binning Strategy Consequently, with the fully pre-trained BSGRU, the
uniform binning strategy outperforms the quantile binning strategy over all model sizes.
This may be explained by the fact that the gating sub-unit G is not perfect; even after the
two-stage pre-training, accuracy may be at best 70 % to 80 %. Naturally, inputs may be

misclassified; the uniform binning ensures that the centroids of each specialist are maximally
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spread out in the latent space. The bin edges are very close in value with quantile binning
(e.g., 1dB to 5dB) as compared to uniform binning (e.g., —10dB to 10dB), therefore
misclassification is more likely in the former. Thus, for practical applications, where the
ground-truth block index k is not known at either training or test-time, a simple uniform

binning of the latent space may be more performant.

Model Size Next, we see that for the smallest model size, the two-stage pre-trained
BSGRU outperforms the non-adapted GRU model by a statistically significant amount
(about 5.4% to 6.3% improvement). This improvement is shown for models with the
same “effective hidden size”, highlighting the merit of our proposed model that leverages its
increased spatial complexity with negligible change in computational complexity. With the
next largest model size, the performance gain from non-adapted to adapted is noticeably
decreased (about 0.4 % to 2.6 % improvement). With the largest size, the performance is
regressed with quantile binning and only negligibly improved with uniform binning (about
—3.3% to 0.9 % improvement). This finding echos our previous conclusions that the benefits
of model adaptation are best realized with smaller model sizes. A smaller model stands to

gain more from personalization given the reduced number of total parameters.
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Chapter 5

Conclusion

The goal of this dissertation was to present two classes of algorithms that address the task
of personalized (speaker-specific) speech enhancement, emphasizing the computational- and
data-efficiency of these methods. Other research has shown that personalization expectedly
improves performance for the target speaker, but the resource efficiency benefits discussed
in this dissertation were previously unexplored.

A significant focus of our study was on lossless model compression. The core idea
was to verify that personalized SE models could match or exceed the performance of non-
personalized SE models using fewer model parameters. We saw that this was the case
for specialist models pre-trained using N'T'T; for example, a tiny ConvTasNet pre-trained
using contrastive mixtures matched the performance of a small ConvTasNet pre-trained
using standard fully-supervised SE. Similarly, with our model selection experiments, we
saw that a generalist GRU-based SE model using 384 hidden units was outperformed by a
sparse ensemble of ten specialist GRU-based PSE models each using 64 hidden units. These
examples show that the spatial complexity (i.e., the number of total stored parameters)
could be reduced without degrading SE performance on the target speaker. Therefore, our
assertion that personalization was a novel paradigm for lossless model compression was
empirically validated.

Needless to say, using fewer model parameters minimizes both the space- and time-
complexity of the PSE algorithms. In other words, by achieving lossless model compression,
we have also inherently reduced the overall run-time (or inference) complexity. Particularly

with the model selection / sparse ensemble paradigm, the savings on space- and time-
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complexity are, in fact, decoupled. For example, if storage space is not a limiting factor, one
can simply increase K—the number of specialists in the ensemble—to improve the adapted
or personalized performance even more (up to a saturating point). Despite increasing K, the
actual algorithmic latency of the sparse ensemble remains the same because we select only
one best-suited specialist model for inference. In other words, our fundamental exploitation
of the MLE ensemble formulation enabled the opportunity to achieve isolated gains in
run-time complexity.

Another priority of our work was to minimize or avoid any model pre-training using
(reference quality) clean speech data from the target speaker. We defined our privacy goals
in this regard because of the recent advancements in speech synthesis research, showing that
realistic vocal forgery may be feasible with as little as 5 seconds of reference data. Our core
hypothesis is that (non-reference quality) noisy speech data is unusable for training legitimate
text-to-speech (T'TS) systems, but may be beneficial for PSE through self-supervised learning.
The proposed NTT algorithms (PseudoSE and contrastive mixtures (CM)) are pretext tasks
meant to derive meaningful features distinctly for the PSE task. To this end, we made
the assumption that noisy speech data was easier to collect—skipping the need for a
voice enrollment process. Furthermore, we assumed that the SNR of the in-the-wild data
followed a uniform distribution between 0dB to 15dB in accordance with prior literature in
psychoacoustics. Naturally, our NTT methods may be limited depending on how originally
degraded the in-the-wild data is; we therefore proposed data purification (DP) to minimize
the delta between the pseudo- and real SE learning objectives. On the other end of the
spectrum, our illustration of personalization through model selection assumes that target
speaker data is wholly unavailable during training time, so we sidestep the privacy concern

entirely.
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However, if the target speaker’s clean speech is accessible, all of our proposed PSE
algorithms can benefit from additional transfer learning/fine-tuning. Although we only
examined the success of fine-tuning in our NTT experiments, it is highly likely that the
sparse ensembles or BSGRU models would also benefit from having any knowledge of the
test-time speaker.

Furthermore, with the NTT experiments, we gleaned the impact of training SE models on
in-domain data, even if it’s noisy. Stemming from our experiment setup, we saw that multiple
types of personalized models—leveraging only 25 minutes of referenceless noisy speech from
the target speaker—were able to outperform a non-personalized generalist model—trained on
440 hours of reference-quality clean speech from 10004 anonymous speakers. This massive
reduction in training data size shows the potency of self-supervised learning with in-domain
data versus fully-supervised learning over out-of-domain data. Subsequently, using a smaller

training dataset reduces the overall elapsed training time, thereby reducing computing costs.

5.1 Contributions

We can summarize the novelty of this dissertation by viewing the proposed methods as broad
frameworks for addressing PSE based on the availability of speaker-specific training data.

We affirm that “personalization via noisy-target training” is a robust approach when
unlabeled noisy speaker data is available. Realistically, this noisy data is likely more abundant
or, at least, easier to obtain. All of the self-supervised models could be improved further
through fine-tuning when a small amount of the target speaker’s clean speech data was
available. As they were trained in-domain, the NTT models adapted more effectively than
the out-of-domain fully-supervised models.

Next, we showed how “personalization via model selection” addresses the cases where

no target speaker data is available. The number of specialist sub-modules K may be
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chosen based on the space limitations, enabling a variable subdivision of the overarching SE
problem. The performance upper bound of model selection methods ultimately depends on

the grouping strategy and the group transition mechanism.

5.2 Limitations & Future Work

One remaining claim from this dissertation’s motivation was to address social fairness
through model personalization. It would have been ideal to discover concrete evidence of
our models achieving equivalent SE performance for under-recognized speakers, such as
those with diverse accents, from different age groups, or even with specific speech disorders.
This effort would have rendered further insights into the design of accessible speech-based
machine learning systems. Regrettably, the absence of specific demographic annotations
in many public speech datasets limited our ability to fully explore the potential of our
methods. Although we could not investigate our claim in this dissertation, the methods
discussed do not make any assumptions about specific speaker identities or characteristics.
So, theoretically, they may be applied to the under-recognized cases, given the appropriate
training data.

We note that additional studies could have been done regarding the data-efficiency
arguments. For example, our NTT experiments were designed with the specialist models
being trained on approximately 25 min of noisy speech from the target speaker. An extension
of this work could have varied this amount, generating a curve to see the impact of in-domain
noisy data on the pseudo SE learning objective. Also, because the DP method diminishes
the learning contribution of overly degraded frames, it would have been informative to
determine what percentage of the in-the-wild data was ultimately usable.

A few other supplementary experiments may have strengthened the arguments pre-

sented in this dissertation. For example, we could have assessed more sophisticated speech
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enhancement neural network architectures besides the described GRU-based masking net-
work or ConvTasNet. There are a plethora of speech enhancement algorithms that may
be classified as TF-masking or end-to-end signal estimation methods; our experimental
validation only covers one algorithm from each approach. Also, more extensive sweeps over
experiment hyperparameters—including learning rates, optimizers, and number of clusters
(K)—may have been done with additional time. For our experiments, we opted for the
simplest deformation function: a sum of speech and noise signals. However, we anticipate
the proposed methods would translate well to more complex deformation functions that
incorporate reverberation or other filters. Lastly, it would have been ideal to formulate an
experiment that makes the NTT and model selection methods more directly comparable.

We recognize that many other studies about personalization directly identify the target
speaker by estimating a “speaker ID” vector. However, the proposed methods of this
dissertation are data-centric and intentionally do not involve an explicit speaker identification
(SI) task. In that way, we empirically see that features learned for the SE task need
not compromise the speaker’s identity—that is, identification may not be essential for
personalization. Therefore, we suspect that the availability of training data is likely the
biggest factor in deciding the best framework for training and deploying a PSE system.

In short, we hope this dissertation inspires additional research on providing personalized

experiences with speech-based systems, prioritizing resource efficiency and speaker privacy.
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