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Abstract

Federated learning is a framework for training machine learning models from clients with
multiple local data sets without access to the data in its aggregate. Instead, a shared model
is jointly learned through an interactive process between a centralized server that combines
locally learned model gradients or weights from the client. However, the lack of data trans-
parency naturally raises concerns about model security. Recently, several state-of-the-art
backdoor attacks have been proposed, which achieve high attack success rates while simul-
taneously being difficult to detect, leading to compromised federated learning models. In
this paper, motivated by differences in the logits of models trained with and without the
presence of backdoor attacks, we propose a defense method that can prevent backdoor at-
tacks from inĆuencing the model while maintaining the accuracy of the original classiĄcation
task. TAG leverages a small validation data set to estimate the most considerable change
a benign clientŠs local training can make to the shared model, which can be used to Ąlter
clients from updating the shared model. Experimental results on multiple data sets show
that TAG defends against backdoor attacks even when 40 percent of user submissions to
update the shared model are malicious.

1 Introduction

Federated learning (FL) is a promising solution for constructing machine learning models from numerous
local data sources that cannot be directly exchanged or aggregated (Yang et al., 2019; Kairouz et al., 2021).
These limitations become particularly crucial in contexts where data privacy and security are prominent
concerns (Li et al., 2020), with healthcare being a prime example. Additionally, FL has garnered signiĄcant
attention from companies that opt to offload computing workloads onto local devices. Furthermore, FL
allows for non-independent and non-identically distributed local data sets. Hence, a shared and robust
global model is often unattainable without collaborative learning. Within this FL framework, local entities,
called clients, contribute their locally acquired model gradients or weights to be intelligently combined by
some centralized entity, the server, resulting in a shared machine-learning model.

However, concerns have arisen regarding the potential vulnerabilities inherent in FL. The lack of control
or knowledge of the local training procedures allows malicious users to create updates, compromising the
global model for all participating clients. One insidious threat, especially for classiĄcation models, is the
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targeted backdoor attack, in which malicious actors seek to manipulate the global model into associating
speciĄc input data manipulations (known as triggers) with particular outcomes (the target), for example, a
particular predicted class label. While various methods have been proposed to detect triggers and defend
against backdoor attacks (Kurita et al., 2020; Qi et al., 2020; Li et al., 2021), these approaches often rely
on having access to the training data itself, which is not feasible within the FL paradigm. Moreover, the
limited information available to detect and prevent such malicious intent within FL makes backdoor attacks
more straightforward to execute and more challenging to identify.

In this article, we shed light on an approach to detect and mitigate backdoor attacks in FL. Our primary
observation centers on the substantial divergence between the logits of classiĄcation models created by
malicious users and those produced by benign users. This discrepancy is most pronounced for the class
label targeted by the backdoor attack. Leveraging this stark contrast, we propose a method that employs
a minimal, clean data set to generate a backdoor-free, locally trained model, which we term the Ştrusted
userŤ. We then compare other user models against this trusted user model on the same clean data to identify
models with unusual outputs. Suspicious users are removed from participating in the update of the global
model.

To identify unusual outputs, we propose comparing user and trusted models by the distributional difference
between their outputs and those of the most recent global model to identify malicious updates. We use the
trusted user to estimate the most considerable distributional difference a benign userŠs local training could
produce and eliminate other returning user models that exceed this distance cutoff. We show that robust
aggregation is insufficient to defend against backdoor attacks and that our framework is more effective than
similar proposed defenses. In FL, multiple attackers can simultaneously attempt to attack the shared model
with either the same or different malicious objectives. Our proposed method demonstrates its effectiveness
against backdoor attacks with multiple attackers, even when 40 percent of returning updates are part of
an attack. Remarkably, our approach consistently outperforms existing methods and remains robust even
when backdoor attacks persist throughout federated training. Moreover, our method does not compromise
the global modelŠs performance on clean data, ensuring that the accuracy of the original classiĄcation task
remains intact. We provide experimental evidence across multiple data sets to underscore the consistency
and reliability of our results.

The rest of the paper is organized as follows: Section 2 brieĆy summarizes related work from federated
learning, backdoor attack, and defense. We introduce the proposed framework for excluding malicious users
from participating in the update of the global model in Section 3. Finally, Section 4 gives empirical evidence
for performance improvements over other defense options.

2 Related Work

Federated Learning Federated learning (FL) is an emerging machine learning paradigm with great suc-
cess in many Ąelds (Bonawitz et al., 2019; Hard et al., 2018; Ryffel et al., 2018). At its core, FL operates
through iterative rounds of model improvement. In each round, the global model is distributed to partici-
pating users, and a subset of these users is selected to update a local copy of the model. These chosen users
train their models on their respective local data sets. The resulting models are shared to safeguard data
privacy and aggregated to construct a new global model.

Backdoor Attack Recently, the FL setting has become a target for various backdoor attacks. In Xie et al.
(2020), the authors highlighted how the multi-user nature of FL could be exploited to create more potent
and persistent backdoor attacks. Distributing the backdoor trigger among a few malicious users effectively
induced the desired behavior in the global model at higher rates and extended periods after the attack had
ceased. Another notable contribution in this domain is the projection method known as Neurotoxin (Zhang
et al., 2022). This approach projects the attackerŠs updates onto dimensions with small absolute weight vector
values, claiming that benign users update such weights less frequently, leading to longer-lasting successful
attacks. Our research rigorously evaluates our proposed methodŠs effectiveness against both attacks.

2







Published in Transactions on Machine Learning Research (11/2024)

4. Given m total classes, the process generates a distance vector v for each user, including the trusted
user. These distance vectors then dictate which users can participate in the model. See Algorithm 1
for additional details.

Algorithm 1 Trusted Aggregation (TAG)
Let S denote the subset of users selected to update the global model for a given round r.

Input: Global model G, user models
{

U (j)
}

j∈S
, trusted model U (T ) and data X

(T ), and scaling coefficient

θ ≥ 1.
1: Generate logits o

(G) = G(X(T )), o
(j) = U (j)(X(T )) for j ∈ S, and o

(T ) = U (T )(X(T ))
2: for Each class c ∈ [1, . . . , m] do

3: Compute distributional distances between each user and the global model v
(j)
c = D



o
(j)
c , o

(G)
c



for

j ∈ S and v
(T )
c = D



o
(T )
c , o

(G)
c



4: end for

5: Compute threshold for communication round r

τ̂r = θ × maxc

[

v
(T )
c

]

6: Exclude suspicious users

Sr =
{

j ∈ S ♣ maxc

[

v
(j)
c

]

≤ τ̂r

}

⊆ S

7: return Update G with
{

U (j)
}

j∈Sr

We aim to estimate the maximum change a non-malicious user can introduce in communication round r,
deĄned below in Equation 1:

τr = max
j



max
c

[

D


o
(j)
c , o

(G)
c

]

(1)

Users with distance values surpassing this threshold should be excluded from the update process. For

estimation of τr, we compute maxc

[

D


o
(T )
c , o

(G)
c

]

for our trusted user. Note τr involves the maximum of all

benign users. Since the validated user is non-malicious, their distance vector serves as a good representation
of other non-malicious users. However, we scale by θ ≥ 1 since the actual maximum will be at least as
large as our observed trusted user. A user with a maximum distance smaller than the threshold τ̂r =

θ × maxc

[

D


o
(T )
c , o

(G)
c

]

is considered a benign user. In comparison, a user with a maximum distance

larger than or equal to the threshold will be removed. However, this naive threshold is precarious, and due
to its instability, a lucky malicious user can get past it in some rounds. To overcome this limitation, we
propose a speciĄc smoothing procedure in Section 3.3

If the distributions of vj = D


o
(j)
c , o

(G)
c



can be assumed, the ranges of plausible θŠs can be better deter-

mined.

Proposition 1. If vc ∼ Uniform(0, bc) for all classes c ∈ [1, . . . , m] and for all benign users, then E [v] ≤
b ≤ E [2v] where v = maxc [vc] and b = maxc [bc].

For example, when v
(j)
c are each uniformly distributed for all users, Proposition 1 suggests that, on average,

τ̂ = θ×maxc

[

v
(T )
c

]

, should equal τ = b for some θ ∈ [0, 1]. Yet, we acknowledge that it may be unreasonable

to assume that class conditional distances are Uniform as many training hyper-parameters and even model
choice will impact the distance distributions. A better approach could be to allow the data to determine the
scaling factor, i.e., selecting the scaling factor based on the distribution of logits observed in the experiments.
However, in our experimental results in Section 4, we often found that simply setting θ = 2 outperforms
existing methods, so we did not further explore data-dependent scaling factors. See Section B.2, for a
sensitivity analysis on how our scaling coefficient impacts model performance for non-iid users. We present
these results to assist in understanding reasonable magnitudes for θ as many distributions may not require
large scaling values.
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Section 4.2, we observe that robust aggregation is insufficient to prevent backdoor attacks and that TAG
outperforms the backdoor defense FLTrust, which also requires additional clean data. Additionally, Sec-
tion 4.4 shows that the TAG is robust to changes in the data distribution of clients or the trusted data
set.

4.1 Setting

This section provides a comprehensive breakdown of the parameters used throughout our study to ensure
the reproducibility of our experiments, as summarized in Table 1. When used with the code available on
our GitHub repository 1, this detailed information serves readers seeking to recreate our results and further
investigate our work.

Hyperparameter Variable Name CIFAR10 CIFAR100 STL10

Federated Learning
Users n_users 100 100 20

Local Data Size n_user_data 500 500 400
User Subset Proportion p_report .1 .1 .5

Data Augmentation
Padding

NA
4 4 12

Random Horizontal Flip .5 .5 .5
Random Crop Size 32 32 96

All Users
Batch Size n_batch 64 64 128

Weight Decay wd 5e-4 5e-4 5e-4

Benign Users
Local Epochs n_epochs 10 10 10
Learning Rate lr .01 .01 .01

Malicious Users
Local Epochs n_epochs_pois 20 (15) 15 25 (15)
Learning Rate lr_pois .01 .01 .005 (.01)

Data Poisoning
Poisoning Proportion p_pois .1 .1 .1
Stamp Pixel Height row_size 4 4 24
Stamp Pixel Width col_size 4 4 24

Backdoor Defense
TAG Scaling (θ) d_scale 2 2 1.1

Trim Mean beta .2 .2 .2

Table 1: Default arguments for all experiments unless otherwise speciĄed. For all experiments, alternative
values for β did not prevent the backdoor attacks. Any values modiĄed for Neurotoxin attacks are shown in
parentheses.

Model Our experiments employ the ResNet18 model (He et al., 2016), a well-established classiĄer. Ad-
ditionally, to showcase the robustness and generalizability of our approach, we reproduce the main results
using the VGG16 model (Simonyan & Zisserman, 2014) in Section A.2. Importantly, we assume that all
users, including potential malicious actors, have complete control over various aspects of local training. For
simplicity, we use two sets of hyper-parameters for benign and malicious users. The malicious users will
poison (add their backdoor trigger) and change the training label to the target class for a given proportion
of their local data. They intend their model to associate the trigger with the target class and transfer such
behavior to future global models.

Attack and Defense To assess the effectiveness of TAG, we operate in a scenario where the backdoor
attack is particularly potent. We mandate that the same set of malicious users are included every round in
the subset of selected users responsible for updating the global model. Moreover, all attacks start in the Ąrst
communication round. This approach circumvents the randomness associated with selecting users, allowing
malicious users to inĆuence the global model repeatedly. Furthermore, the guaranteed benign validation
user is excluded from participating in global model updates. These decisions are made to showcase TAGŠs
ability to thwart even backdoor attacks against the shared model in the most substantial attack settings.

1https://github.com/JoeLavond/TrustedAggregation
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In our experiments, we compare the performance of the TAG method with robust aggregation methods,
including Median and Trim-mean (Yin et al., 2018), as well as the backdoor defense FLTrust (Cao et al.,
2020). Regarding TAG, in our experiments, we exclusively use the Kolmogorov-Smirnov (KS) distance
between distributions because it is easy to compute for estimated cumulative distribution functions. However,
we acknowledge that other distance functions, and even divergences, may be suitable. We assess these
methods against two state-of-the-art backdoor attacks in federated learning: Neurotoxin (Zhang et al.,
2022) and Distributed Backdoor Attacks (DBA) (Xie et al., 2020). To evaluate the strength of the considered
defenses, we vary the proportion of malicious updates from 10, 20, and 40 percent of the selected users.

Data The experiments are conducted on three datasets: CIFAR10 and CIFAR100 (Krizhevsky & Hinton,
2009), and STL10 (Coates et al., 2011). A speciĄc adjustment pertains to our use of STL10, where we have
inverted the conventional train and test data splits. Since we are using only labeled data, we swap train and
test to have the larger of the two for training purposes. User datasets are constructed by random sampling
from the training data splits. These samples are generated using a Dirichlet distribution that determines
the class frequency. In our experiments, we ensure the creation of balanced local data sets by applying a
scaling factor, α = 10000, to a vector consisting of ones, with the dimensionality equal to the total number
of classes. When investigating imbalanced user (and trusted) data sets, we modify α to a value of 1 to create
the desired imbalance. Further details, including experiment speciĄcs and hyperparameters, can be found in
Table 1.

We split the test set into two parts to evaluate the global model. The Ąrst half is used to determine
classiĄcation accuracy. In the second half, we introduce the backdoor trigger to the images, remove any
observations related to the target class, and report the attack success rate. The attack success rate measures
the extent to which the backdoor attack has compromised the model by determining the proportion of the
poisoned half predicted as the target class. An effective defense method will exhibit a low attack success rate
while maintaining a high classiĄcation accuracy, indicating that the attack is unsuccessful and the defense
does not negatively impact classiĄcation performance.

4.2 Comparison of Defense Methods Against Backdoor Attacks

To thoroughly evaluate TAGŠs performance, we explore settings where 10, 20, and 40 percent of the returning
user models are malicious in each communication round. Figure 4 provides a visual representation of the
performance of various methods against backdoor attacks on three different data sets. We assess the success
of each method in terms of attack success rate while ensuring that classiĄcation accuracy, Figure 8, remains
high. For our primary results, we use scaling coefficients (θ) of 2, 2, and 1.1 for the CIFAR10, CIFAR100,
and STL10 data sets, respectively. Our Ąndings reveal that TAG effectively neutralizes the backdoor attack
in each case without signiĄcantly compromising the classiĄcation accuracy of the original task.

Other methods, such as coordinate-wise Median, Trim-mean, and FLTrust, fail to thwart backdoor attacks,
with or without Neurotoxin, at all considered strength levels. FLTrust, while capable of delaying attack
success in some settings, ultimately falls short in preventing backdoor attacks. The critical difference between
TAG and the baseline methods is that while the baseline approaches differentiate between malicious and
benign users based on update gradients, our approach compares task performance based on model outputs.
For backdoor attacks, the loss is typically a combination of the original task loss and the backdoor loss:
Loss = Original Task Loss+λ×Backdoor Loss, where λ is usually close to zero. As a result, the gradients of
malicious users may appear similar to benign users, but our method can still detect differences between the
resulting models. However, different local minima can produce similar model outputs in highly non-convex
loss landscapes. In such cases, our method may not be as effective at Ąltering out models that are more
easily detected by gradient-based defenses. Yet, in none of our experimental settings were gradient-based
defenses successful in defending against any of the attacks we considered. We remark that our method could
Ąlter out suspicious users before other defenses, making it possible to combine with other strategies further
to enhance the robustness of models against targeted backdoor attacks.

Our supplemental experiment, detailed in Section A.1, supports that TAG does not hinder performance for
the original classiĄcation task, even without backdoor attacks. This comparison with FedAvg highlights
the minimal impact on the classiĄcation taskŠs performance when using TAG as a defense mechanism.
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Heterogeneous Data TAGŠs adaptability and resilience are evident in federated learning scenarios in-
volving users with heterogeneous and imbalanced data. Importantly, it accomplishes this without sacriĄcing
classiĄcation accuracy for the original task, a testament to its versatility and broad applicability. Further-
more, our methodŠs performance remains stable regardless of the size or distribution of the trusted data it
relies on.

Compatibility TAG can be seamlessly integrated with other Ąltering methods or modiĄcations to the
aggregation process, enhancing its compatibility with a wide range of defense strategies. This Ćexibility
empowers federated learning systems to adopt a multi-layered approach to security, further safeguarding
against adversarial threats.

In summary, TAG is a pivotal advancement in model security for federated learning. It raises the bar for
similar defenses against backdoor attacks with its adaptability, robustness, and potential as part of a holistic
defense strategy. As federated learning continues to evolve, TAG represents a valuable tool for maintaining
model integrity and trust in collaborative machine-learning environments.
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DeĄne v = maxc [vc] and j = arg maxc [bc].

vj ≤ v ⇒ E [vj ] ≤ E [v]

⇒
bj

2
≤ E [v]

⇒ bj ≤ 2E [v]

v ≤ bj ⇒ E [v] ≤ E [bj ]

⇒ E [v] ≤ bj

Therefore E [v] ≤ bj ≤ 2E [v]. Moreover θ × E [v] = bj for some θ ∈ [0, 1].
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