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ABSTRACT

We consider the problem of determining a binary ground truth using
advice from a group of independent reviewers (experts) who express
their guess about a ground truth correctly with some independent
probability (competence) p;. In this setting, when all reviewers
are competent with p > 0.5, the Condorcet Jury Theorem tells us
that adding more reviewers increases the overall accuracy, and if
all p;’s are known, then there exists an optimal weighting of the
reviewers. However, in practical settings, reviewers may be noisy
or incompetent, i.e., p; < 0.5, and the number of experts may be
small, so the asymptotic Condorcet Jury Theorem is not practically
relevant. In such cases we explore appointing one or more chairs
(judges) who determine the weight of each reviewer for aggregation,
creating multiple levels. However, these chairs may be unable to
correctly identify the competence of the reviewers they oversee,
and therefore unable to compute the optimal weighting. We give
conditions on when a set of chairs is able to weight the reviewers
optimally, and depending on the competence distribution of the
agents, give results about when it is better to have more chairs or
more reviewers. Through simulations we show that in some cases
it is better to have more chairs, but in many cases it is better to
have more reviewers.
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1 INTRODUCTION

People have been struggling with finding the correct answer for
millennia.! In ancient times, when faced with a problem that re-
quired discovering a ground truth, two main approaches dominated.
The first, less common today, was to approach deities and either
ask them to intervene on the randomness of the world (as in the
Book of Joshua, Chapter 7), which is a bit akin to sortition [20]; or
to ask the deity’s wisdom directly (e.g., the Oracle at Delphi). The
second approach, still in widespread use today, is to try to assess
the known information and draw a conclusion. This can either be
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done by laymen, the basic premise of the jury system as established
by Magna Carta, or by people with expertise. In both cases, groups
of people are used (instead of single individuals) to increase the
reliability and accuracy of the answers, building on the “wisdom of
the crowds”.

Mathematical analysis of using a group of agents — a jury, or
a set of experts — to assess information and make a decision has
been done since at least Condorcet’s time, in the late 18th century,
when he established the Condorcet Jury Theorem (CJT) [16, 17].
In the standard jury setting, agents vote on a binary ground truth
and the objective is to aggregate their votes, using a voting rule, to
maximize the probability of the outcome being correct. It is typical
to assume that agents guess the ground truth correctly with some
independent probability (competence) p;. We call agents competent
when p > 0.5 and incompetent when p < 0.5.2 According to the
CJT, when the agents are competent, the collective accuracy of
their majority vote tends to correctness as the number of agents
increases. Even with a relatively small number of moderately com-
petent agents, accuracy can be very high. However, this result,
which basically tells us that groups are less prone to mistake than
individuals, rests on a knife’s edge. By symmetry, if the agents are
even minimally incompetent then, as the population grows, their
collective accuracy under majority voting tends to 0, and a small
group of highly incompetent agents stands no chance.

In the world around us, this idea is used everywhere — in judi-
cial settings (juries), in academic conferences (peer evaluation), in
voting for political leaders or in referendums, and even in settings
with inanimate agents, such as aggregating sensor outputs into a
single reading or indicator.

The precariousness of the CJT stems from the underlying aggre-
gation procedure, majority voting, being anonymous, thus treating
all agents equally, regardless of their competence. When agent com-
petences can be different, majority rule is generally sub-optimal,
and if one knows the agents’ level of expertise exactly, the optimal
aggregation method for maximizing accuracy with any number
of independent experts and any competences is to use a weighted
majority rule in which each agent’s weight is the log-odds of their
competence [34, 41]. In this result, somewhat surprisingly, the op-
timal weight of each agent does not depend on the competences
of the other agents or even on the total number of agents. That
is, if agents are added or removed, we do not need to update the
weights in order for the weighted majority rule to remain optimal.
However, the assumption that each agent’s competence is known
exactly is highly unrealistic.

In this work, we consider a variant of the classic jury setting,
inspired by the domain of academic peer review [40], which at-
tempts to address these unrealistic assumptions. Since the quality
of reviewers may not be known by the conference Program Chairs,

The term competent is not meant to express a value judgment.
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many conferences (e.g., JJCAI) appoint more senior researchers
as SPCs (or chairs) to evaluate the reviewers and decide how to
aggregate their views. This multi-level process inspired our model:
we have both reviewers, who we will call experts, but also chairs,
who we will call judges, that evaluate the experts and assign them
weights. While we recognize that it is unlikely there is a pure, objec-
tive ground truth for research, we build on a long line of research
in this model [4, 33, 40], one could use other settings, such as the
grading of MOOC exercises (which usually have a fixed, correct,
answer) [48].

Analyzing this setting is particularly interesting when the num-
ber of agents is relatively small, and therefore we cannot rely on the
asymptotic guarantees of the CJT; as well as when there is a poten-
tial for significant deviation among agent competency, even when
the particular competence values are unknown; or when agents
can be incompetent, i.e., they will make the wrong decision most of
the time.> We examine when such a two-level system works well,
under what conditions it might be worthwhile to implement it, and
when is it better to have an expert become a judge.

Contribution. We propose and investigate a novel model of multi-
level jury problems for use when we have a small number of possibly
unreliable agents. We show that when we know the agent com-
petences exactly (or even approximately), we can find an optimal
aggregation procedure, as long as the judges are competent. When
the agents’ (experts and judges) competences are unknown, we
provide a set of numerical experiments demonstrating that adding
more than a single judge is rarely helpful, and, indeed, in some
cases, the potential damage of a less competent judge is enough to
prefer to avoid judges completely.

2 RELATED WORK

There is a long history of studying the Condorcet jury model and its
extensions (e.g., Ben-Yashar and Paroush [9], Berend and Paroush
[11], Feld and Grofman [19], Grofman [22]), including work across
computer science, philosophy, and economics. Our work is pri-
marily based off the literature on weighting experts in both the
offline [34, 41] and online settings [10, 15, 21, 47], though in this
work we restrict our focus to a single decision. The overall CJT
model can be seen in portfolio solver techniques where slower,
more reliable algorithms evaluate ensembles of faster, less accurate
algorithms [46] and in boosting techniques in ML, where one ag-
gregates weakly competent classifiers into a better overall classifier
[39]. These methods are particularly useful when each expert will
use limited effort or energy [45].

In settings with repeated decisions, the competences of the ex-
perts can be estimated based on their performance history. Their
competence might be estimated by their similarity to other agents,
or how often they agreed with the decision outcomes in the past [5,
25, 38]. In our setting, however, we do not have access to this his-
tory and cannot use it to estimate competences. Indeed, in peer
review, one may have a notion of other reviewers’ competency, but
rarely does one co-review with another to form a precise estimate.

3In academic peer evaluation it is uncommon for reviewers to be given negative
weights, which we will see is required for the log-odds rule to be optimal. But it is
common in other settings, e.g., sensors or proxy voting scenarios where one might
want to always do the opposite of a political rival.

Our emphasis on imperfect judges is also inspired by work on
“wisdom of the crowds" and crowdsourcing [13, 14, 42], proxy vot-
ing [1, 2, 36] and truth-tracking in Liquid Democracy [8, 50]. For
example, in proxy/delegative voting the voters are like judges as-
signing weights (voting units) to their proxies/delegates. But, as
noted above, a major inspiration has been the work on academic
peer evaluation [40], in which experts assess each other’s com-
petences. Some treat this matrix as a Markov chain, and use its
eigenvector values as the experts’ weights [23] in a manner remi-
niscent of some peer-evaluation models [29, 30, 35, 48]. In contrast,
within our setting the agents who vote and the of agents who
weight the voters are disjoint.

The problem of partitioning agents into judges and experts is also
related to the problem of computing optimal committee sizes [32,
37]. There is also work on how group accuracy depends on the size
of the group and mean competence [22, 24], which is reflected in
our simulations. Lastly, we mention work extending the Condorcet
jury problem to more than two outcomes [18, 26, 31].

3 MODEL AND NOTATION

Our model has two types of agents; judges and experts. Let E be a
set of m experts and ] be a set of n judges. The experts vote on a
single binary issue where there is only one correct (ground truth)
outcome. Without loss of generality, let the options be {1, 0} where
11is correct and 0 is incorrect. Each expert e € E has a competence, or
probability p. of voting correctly, independent of all other experts.
We associate each expert’s index with their vote, so expert e € E
casts a vote v € {1,0} with competence p, = P(v, = 1). If an
agent’s competence is above 1/2 we will say that they are competent,
and call them incompetent otherwise. We assume no one is always
correct or always incorrect, and so 0 < p, < 1.

Weighted Majority Rules. We refer to the probability of producing
the correct outcome as the accuracy, and reserve the term compe-
tence to refer to individual agents’ probabilities of voting correctly;
i.e. accuracy is collective.

Definition 3.1 (Weighted Majority Rule). A weighted majority rule
gives each expert e € E a weight w, € R and selects 1 as the winner

if Y we > D, we, selects 0 as the winner if ), we < Y We,

ve=1 Ve=0 Ve=1 Ve=0
and uses a tie-breaking rule (e.g. coin flip) for the edge case where
these sums are equal *

Definition 3.2 (Simple Majority Rule). Simple majority rule refers
to the weighted majority rule where all weights are equal and
positive and ties are broken randomly.

The Condorcet Jury Theorem tells us that if p, > 0.5 + € for
some € > 0 for all experts, then with simple majority accuracy
tends to 1 asymptotically as the number of experts tends to infinity.
A weighting function maps vectors of values in (0, 1) (i.e. compe-
tences) to equal length vectors of real values. For any set of experts,
including incompetent ones, the optimal aggregation method of
experts’ votes, is to apply the log-odds weighting function to the
experts’ competences and use the corresponding weighted majority
rule [34, 41].

“Note that ties never occurred in our simulations as the need for tie-breaking, with
real valued weights, is highly unlikely.



Definition 3.3 (Log-Odds Weighting Function). Given a vector
of values in the open unit interval p = (p1,..., pm), the log-odds

weighting function returns the vector w = (wy, ..., wn;) where
We :log(lf;e) foralll1 <e<m.

Any weighting of the agents implies a collection of winning
coalitions — subsets of agents who, if they all vote the same way,
determine the outcome regardless of the other votes [44]. Differ-
ent weightings may yield the same rule because they imply the
exact same winning coalitions. For example, with 5 agents there
are exactly 7 distinct weighted majority rules [27, 28]. Multiplying
the weights of all agents by a constant does not change the win-
ning coalitions and therefore does not change the rule. Similarly,
perturbing agent weights by small amounts may not change the
winning coalitions. Therefore, while the weights may vary con-
tinuously, the accuracy under various weightings will change in
discrete steps. In practice, weights may be finite precision rather
than true real numbers, and this is also the case in our simulations
that use floating point arithmetic, but as long as the rounding tends
to be too small to change winning coalitions for most instances its
effect will be negligible.

The log-odds weighting rule assigns a positive weight to compe-
tent experts when p, > 0.5, weight of zero if p, = 0.5, and negative
weight to any incompetent expert with p, < 0.5. In some settings
it may be inappropriate to allow negative weights and better to
assume any such weights are rounded up to zero. Bounding weights
below by zero has the effect of ignoring the incompetent experts
and is therefore qualitatively similar to assuming all experts are
competent, though with a smaller number of experts. We therefore
focus on the more informative setting where weights can be nega-
tive. Negative weights also have real-world motivation. A remote
sensor may have drifted so far off its initial calibration to be reliably
wrong, as has happened with many spacecraft [7]. However, we
would like to believe that peer reviewers, jurors, and the like are
not so reliably wrong that negative weights would be needed.

Multi-Level Jury Problems. Each judge j € J estimates the compe-
tence of each expert e € E as pje € (0,1) and assigns them a weight
wje based on this estimate. When assigning weights to the experts,
our judges always use the log-odds weighting function on their com-
petence estimates. Intuitively, our judges are trying to implement
the optimal rule using their estimates of the experts’ competences.
Formally, judge j assigns expert e a weight wje = log( 1‘1’ gje ). When
there are multiple judges, the weight of an expert will be the average
weight assigned to them by the judges we = % 2 Wje.

J

Perceived Competences. Our theoretical results depend on judges
using the log-odds weighting but do not depend on how the judges
form their competence estimates pje. To perform empirical analysis
we must make assumptions about where these estimates come from.
Rather than drawing the estimates p ;. from some named distribu-
tion with mean p., we take an approach inspired by peer review,
and assume that judges and experts are fundamentally similar. Each
judge j has competence p; just like the experts and estimates the
competence of expert e as pje = (pj - pe) + (1= p;j)(1-pe), ie., the
probability that expert e agrees with them. When p . is derived in
this way, we will refer to it as the judge’s perceived competence of

the expert. As with peer review, a judge may estimate an expert’s
competency from knowing them professionally, but may not have
observed many past reviews. A judge could also reach this estimate
of competency if they observe enough votes from the expert but the
ground truth is never revealed, as is the case in some peer prediction
settings [49]. While there are many models one could select for the
formulation of perceived competencies, this formulation does not
rely on complex models of estimation or opinion formation. Indeed,
any additional assumptions that improves accuracy, i.e., that judges
are better at estimation than simple observation, would improve
the limit results we obtain. So while this assumption is simplistic, it
is in some ways a worst-case assumption for our theoretical results,
and leads to interesting empirical results.

Example 3.4. Suppose we have 5 experts with competences pg =
(0.6,0.6,0.6,0.7,0.9). The optimal log-odds weighting is approx-
imately WE = (0.41,0.41,0.41,0.85, 2.2). With these weights the
most competent expert (pe = 0.9) receives a weight (w, = 2.2)
that makes them a dictator in a weighted majority vote, since their
weight is greater than all other experts combined. Hence, the accu-
racy under the log-odds weighting is exactly 0.9. If instead we use
simple majority, the accuracy drops to 0.82.

A judge with p; = 0.6 would assign the experts weights of
approximately \7\/%6 = (0.08,0.08,0.08,0.16, 0.323) using the log-
odds weighting of perceived competences. Note that the fifth expert
is no longer a dictator. How high of a competence would the judge
need to have to assign weights that results in the optimal weighting?
The judge’s competence would have to be greater than 0.962; a far
cry from 0.6 and higher than all the experts. And yet, the judge’s
sub-optimal weighting yields an accuracy of 0.898, which is a great
improvement over simple majority, and extremely close to optimal
at 0.9! Example 3.4 is illustrated in Figure 1 where we plot the
accuracy, sweeping p; from 0.0 to 1.0.
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Figure 1: Accuracy of perceived optimal weightings from a

single judge with the expert competences as in Example 3.4.

In Example 3.4 we rounded the values of the weights to two dec-
imal places, which did not change the rule implemented. Similarly,
whether judges are human, sensors, or algorithms, they do not (al-
ways) need to provide high precision of weights. More specifically,
the smaller the number of agents, the less chance there is for small
perturbations or rounding of the weights to change the rule. This



is also why Figure 1 will be piecewise linear regardless of the step
size.

4 OPTIMALITY AND ROBUSTNESS

With a single judge, if pje = pe for all e € E, then all experts receive
their optimal weight. As noted, small perturbations to the weights
do not change the rule because the winning coalitions determined
by the weights do not change. Thus, if pje is close enough to p, for
all experts, they will still produce the optimal weighting. We now
establish sufficient conditions for an ensemble of judges to produce
the optimal weighting, and provide a condition under which the
difference between an expert’s weight and their optimal weight
tends to be small.

Proposition 4.1 shows that when the geometric mean of the
judges’ perceived competence of experts odds is their true compe-
tence odds, all experts are assigned their optimal weights, we = wj.
This does not require individual judges to know the experts’ true
competences, and does not depend on the number of experts nor
the number of judges.

PROPOSITION 4.1. If each judge uses the log-odds weighting func-
tion on their estimates of expert competences, and the geometric mean
of the judges’ estimates of each expert’s competence odds is the ex-
pert’s true odds, then the weighted majority rule using the judges’
average weights to weight each expert is exactly the optimal weighted
majority rule.

Pje

ProoF. Since judge j gives each expert a weight of wje = log( 7= e

1 1 P
We :;Zw]-e = ;Zlog(#) =
J J
1 .
==1

We assume the geometric mean of judge’ estimates of the experts’

Pje Pje 1
)=log((| | ———)m)
1-pje € U 1-pje

N 1
competence odds is correct, i.e., (lf;e) = (H 1{7‘1;1_5)2, Thus, we =
J

log(25-) = w;. 0

This result requires assumptions on the judges’ competence
estimates that must hold for all experts. However, suppose there
are errors in these collective competence estimates. We want to
know how sensitive the weight of a single expert is to such errors.

COROLLARY 4.2. If the geometric mean of judge estimates of com-
petence is off by some multiplicative factor a for some expert, then
the error of that expert’s weight is only log(a).

ProoF. In the proof above, assume instead that « ( 113 ;e) =

(I1 113;]6)% Then w, = log(a - lf;e) =w} +log(a). ]
j

Admittedly, it is not clear in what settings the conditions of
Proposition 4.1 should be expected to hold. Neither can we make
claims about what multiplicative factors are realistic in Corollary 4.2.
But ultimately, what we care about most is the sensitivity of the
accuracy to errors in competence estimates, which has to do with
the set of winning coalitions induced by the weights. We care
less about the sensitivity of the weights themselves, although the
sensitivity of the weights gives some intuition.

In Example 3.4, we see that for all p; > 0.55 the accuracy rivals
that of the optimal rule, with almost no difference. The effect that
dominates Figure 1 is when we move from p; < 0.5 to pj = 0.5
(when the rule becomes simple majority), with another slight bump
with a move to p; > 0.55.

Recent work [6] shows that when expert competences are drawn
from certain distributions over the range (1/2, 1), simple majority
achieves an accuracy close to optimal. However, as one might ex-
pect, when experts can be incompetent the majority rule is no
longer a good approximation to the optimal weighted majority rule.
Thus, if judges can at least differentiate the competent from in-
competent experts, the weighting they produce should be expected
to outperform simple majority rule when there are incompetent
agents. In our model, any minimally competent judge with p; > 0.5
is able to achieve this. We will discuss this more in Section 5 with an
array of experiments, including a suite of experiments with a single
judge. For now we introduce some basic theoretical observations
that help understand the phenomena observed in our experiments.
Namely, the improvement in accuracy as the judge(s) competence(s)
reach p; = 0.5 appears to be largely but not entirely explained by
the judge’s ability to (1) assign experts weights of the correct sign,
and (2) assign experts weights according to the weak order of their
competences.

Example 4.3 (Two Experts). Suppose there are two experts with
competences (p1, p2) such that p; > p2. If p2 > 1/2,1i.e., both experts
are competent, the optimal aggregation rule is to make p; dictator.
However, if p; > 1/2 > py then the optimal rule is either to make
p1 adictator if p; > 1 — py, or else make py an anti-dictator using
negative weight such that the outcome is the opposite of however
p2 votes. If 1/2 > p1 > po, then the optimal rule makes py the
anti-dictator symmetrically with the first case.

From Example 4.3, we see that even with only two experts, if a
judge can determine which experts are competent, and order their
competences correctly, this is enough information to produce the
optimal rule. With more experts, the situation is more complicated,
but our experiments reveal that merely separating the competent
experts from incompetent ones creates a large improvement in
overall accuracy. Any chair with p; > 1/2 using log-odds weightings
of the perceived competences can achieve this improvement.

PROPOSITION 4.4 (CORRECT SIGN). If sign(pje — 0.5) = sign(pe —
0.5), then sign(wje) = sign(wy).

PRroOF. Proposition 4.4 follows directly from the fact that % >
1if and only if p > 1/2, and therefore log(%) > 0 if and only if
p > 1/2. Symmetrically for p < 1/2. O

ProPOSITION 4.5 (CORRECT ORDER). Ifpje is a strictly monotonic
increasing function of pe, then the weak order of expert weights given
by judge j is the weak order of the experts’ competences.

Proposition 4.5 follows from the monotonicity of the log-odds
weighting. When a single judge applies the log-odds weighting to
their perceived competences of a small set of experts then we can
make the following observations.

OBSERVATION 1. Ifp; = 1/2 then all experts are equally weighed.
Ifpj = 1 then experts are optimally weighed.



n\m 1 2 3 4 5 6 7 8 9 10

0.750 0.749 0.843 0.843 0.897 0.897 0.929 0.929 0.950 0.950
0.750 0.831 0.880 0.913 0.936 0.951 0.964 0.973 0.980 0.984
0.751 0.833 0.881 0.914 0.937 0.953 0.964 0.974 0.980 0.984
0.748 0.833 0.880 0.914 0.937 0.952 0.964 0.972 0.980 0.984
0.748 0.832 0.882 0.914 0.937 0.952 0.964 0.974 0.980 0.984
0.747 0.833 0.882 0.915 0.937 0.953 0.965 0.972 0.980 0.984
0.748 0.832 0.881 0.914 0.937 0.952 0.964 0.974 0.980 0.985
0.750 0.833 0.881 0.913 0.937 0.954 0.964 0.974 0.980 0.984
0.748 0.834 0.881 0.915 0.937 0.952 0.964 0.974 0.980 0.985
0.751 0.832 0.881 0.914 0.937 0.953 0.965 0.974 0.980 0.984
0.748 0.833 0.881 0.915 0.937 0.954 0.966 0.974 0.979 0.984

Table 1: Accuracy with all agent competences drawn from
the uniform distribution over (0.501,0.999)
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If pj = 1/2 then the judge will perceive all experts as having a
competence of 1/2, and therefore assign them the weight of 0, which
we treat as giving them equal weight, i.e. majority vote. When
pj = 1, the judge knows exact competences of the experts and
therefore assign them their optimal weights.

OBSERVATION 2. Ifp;j > 1/2, then pje > pje iff pe > per.

This means that a judge’s perceived competences of the experts
preserves the order of their true competences if p; > 1/2. When
weights are based on perceived competences, this means whenever
pj > 0.5, the judge will assign all experts’ weights with the correct
sign and in the correct order. This is because when p; > 0.5, pje
is monotonically increasing in p. and pje > 0.5 iff p. > 0.5. Thus,
even a single barely competent judge might give us an edge over
simple majority.

THEOREM 4.6 (MINIMAL COMPETENT SINGLE JUDGE). Ifp; > 0.5
and the judge assigns experts weights according to their perceived
competences, the weights given by the judge will have the correct sign
and the correct order.

PROOF. Let pj =1/2+¢; and pe = 1/2 + €.

pje=(Y2+e5) (Yot+ee)+ (Y2 —g5) (Y2 —ee)
=1/2+2¢je,

Ife; > 0 and & > 0, then this value is greater than 1/2, if ¢; > 0 and
€e < 0, then this value is less than 1/2, and if ¢, = 0 then this value
is exactly 1/2. The proposition then follows from Proposition 4.5
and Proposition 4.4. O

We can generalize Proposition 4.4 by replacing the requirement
that p; > 1/2 with the requirement that the geometric mean of
judges’ estimated competence odds is greater than 1. Notice that the
requirements for this theorem are far weaker than for the optimality
demanded by Proposition 4.1.

PROPOSITION 4.7 (CORRECT SIGN). If the geometric mean of ev-
ery expert’s estimated competence from the judges is greater than 1
whenever p; > 1/2, less than 1 whenever p; < 1/2, equal to 1 when
pj = 1/2, every expert will be assigned a weight with the same sign as
their optimal weight.

ProoF. Suppose p, > 1/2. Their optimal weight is positive, and
so we need the following to hold:

Pje
Zlog(l_pje) >0

JjeJ

Pje
1 —Pje
14
Pje
A 1—-p;
j Dje

> 1
jel

> 1

fory > 0. Wheny = % this is the geometric mean. The case for
Ppe < 1/2 is symmetric with flipped inequality, and for p, = 1/2is
the same but with strict equality. O

Proposition 4.4, Proposition 4.5, and Theorem 4.6 can be imme-
diately generalized to multiple judges by requiring their respective
assumptions to hold for all judges individually, because the sum of
non-negative (strictly monotonic) functions remains non-negative
(strictly monotonic). While our results on correct sign and order
are interesting, they are not sufficient to always outperform equal
weighing. As we will see in the next section, with our perceived
competences model we see a discrete interpolation between equal
and optimal weighting as a single judge’s competence increases.
Sign and order preservation appear to be part of the explanation as
to why, but this explanation is incomplete. We pose the conjecture
that as single judge competency grows, the perceived competence
monotonically changes from% to the optimal value.

5 EMPIRICAL RESULTS

We gain a deeper understanding of the behavior we see in Exam-
ple 3.4 and Section 4 with a set of numerical experiments. In our
simulations, the agents’ competences are drawn i.i.d from various
distributions. All experiments were run for 100,000 iterations for
each parameterization of the problem instance so that the variances
are negligible. When there is no judge (n = 0), unweighted majority
vote is used with random tie-breaking.

We consider three distributions of expert competences: uniform,
truncated normal, and truncated exponential. The uniform distri-
bution reflects settings where the experts can equally have any
competence; the exponential distribution models settings where
the expertise tends to be rare [12]; and the normal distribution is
appropriate for a common expertise [43].

We provide Tables 1-3, with one for each family of competence
distribution over (0.5, 1.0) where no agents are incompetent and all
agents, judges and experts, have their competences drawn from the
same distribution. By looking across the rows, we see the improve-
ment from incrementally adding experts, by looking down each
column we see any change from adding judges, and by looking
at the diagonals we see how best to choose n and m to divide the
agents into roles given a fixed number of agents n + m.

When competences are bounded below by 0.5, we see that there
is always a benefit to increasing the number of experts, but no
benefit to increasing the number of judges beyond n = 1. Notably,
without any judges, adding an expert only increases accuracy when
incrementing the number of experts from even to odd. When adding
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Figure 2: Accuracy with a single judge and expert competences drawn i.i.d. from a distribution with support [0.001, 0.999] (top

row) or support [0.501,0.999] (bottom row).

a single expert makes m even, there is no observable increase in
accuracy if there is no judge. With one or more competent judges,
increasing the number of experts always increases accuracy. By
contrast, adding a single judge shows increasing accuracy when-
ever there is more than 1 expert, but increasing the number of
judges further shows no benefit. See Appendix for a suite of similar
experiments varying the support and parameters of the various
distributions.

In all three of these tables, there is a noticeable benefit to adding
a single judge, but no benefit to adding judges beyond that. We
therefore take a closer look in Section 5.1 at the case with a single
judge, and examine how the accuracy varies if the judge’s com-
petence differs from the experts, even allowing the judge to be
incompetent. Lastly, we will look in Section 5.2 at how to determine
the number of agents to set as judges versus experts when all agent
competences are drawn from the same distribution and agents can
be incompetent. Further tables can be found in the Appendix.

5.1 Single Judge

The top row of Figure 2 shows accuracy as a function of the single
judge’s competence when expert competences are distributed over
the interval [0.001,0.999] according to the uniform, truncated nor-
mal (N (1/2, varying o)), and truncated exponential distributions

n\m 1 2 3 4 5 6 7 8 9 10

0.581 0.578 0.621 0.618 0.647 0.648 0.673 0.669 0.693 0.692
0.580 0.616 0.639 0.658 0.673 0.691 0.705 0.720 0.732 0.741
0.580 0.612 0.640 0.660 0.680 0.690 0.705 0.719 0.729 0.743
0.581 0.612 0.640 0.659 0.676 0.691 0.707 0.718 0.730 0.742
0.581 0.614 0.638 0.658 0.673 0.692 0.707 0.719 0.727 0.741
0.581 0.616 0.635 0.658 0.674 0.692 0.706 0.718 0.729 0.743
0.580 0.612 0.635 0.660 0.675 0.692 0.706 0.717 0.731 0.742
0.579 0.613 0.639 0.659 0.678 0.692 0.707 0.718 0.730 0.741
0.581 0.615 0.639 0.659 0.676 0.689 0.708 0.718 0.732 0.741
0.582 0.613 0.639 0.659 0.675 0.692 0.707 0.719 0.733 0.741
0.579 0.612 0.641 0.662 0.676 0.692 0.705 0.718 0.731 0.743

O 00 N QN U W N = O

—_
=]

Table 2: Accuracy with all agent competences drawn from
the Gaussian distribution N(0.5,0.1) truncated over (0.501,
0.999)

(using the density function e */1-e~? for varying values of b) re-
spectively. Only Figures 2a and 2b exhibit true symmetry because
competences are drawn from a symmetric distribution with mean
0.5, and Figures 2d and 2e show behavior most similar to Figure 1.



n\m 1 2 3 4 5 6 7 8 9 10

0.672 0.672 0.750 0.747 0.797 0.799 0.834 0.835 0.862 0.865
0.674 0.745 0.795 0.831 0.857 0.881 0.897 0.913 0.925 0.935
0.672 0.744 0.795 0.829 0.858 0.882 0.898 0.912 0.926 0.936
0.675 0.744 0.796 0.829 0.858 0.879 0.899 0.913 0.925 0.936
0.671 0.747 0.791 0.830 0.858 0.880 0.897 0.913 0.924 0.938
0.672 0.746 0.794 0.831 0.857 0.879 0.897 0.912 0.925 0.936
0.672 0.746 0.791 0.829 0.858 0.880 0.898 0.913 0.926 0.935
0.674 0.742 0.793 0.831 0.857 0.880 0.896 0.913 0.925 0.936
0.672 0.745 0.792 0.829 0.858 0.880 0.897 0.913 0.925 0.937
0.671 0.747 0.796 0.829 0.858 0.881 0.898 0.913 0.925 0.936
0.674 0.745 0.795 0.832 0.857 0.878 0.897 0.912 0.927 0.936

O 00 N QN U R W N = O
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(=]

Table 3: Accuracy with all agent competences drawn from the
exponential distribution with scale parameter b = 2 truncated
over (0.501, 0.999)

In the top row of Figure 2 we can have highly incompetent
experts, but even in this setting whenever the judge has compe-
tence p; > 1/2, high overall accuracy is achieved. This is because
the ability of the judges to differentiate competent experts from
incompetent ones is of primary importance, and Proposition 4.7
shows that a judge using perceived competences is able to do this.
In Figures 2a-2c, once the judge passes a minimum threshold of
competence, little is gained from increasing p;. Interestingly, in
Figure 2b we see that when expert competences are distributed
normally with mean 1/2, higher variance leads to higher collective
accuracy. This appears to be because a judge with sufficiently high
competence can differentiate between highly competent and mini-
mally competent experts, and then leverage the benefits of having
highly competent experts when they are present.

In the bottom row of Figure 2 we show accuracy as a function
of the single judge’s competence when expert competences are
distributed over the interval [0.501,0.999] according to our three
distributions. This is closer to prior work on the Condorcet jury
theorem where all experts are assumed to be competent [16]. Un-
like in Figure 2a and 2b, which are symmetrical distributions, we
now see an asymmetry around p; = 0.5. When the judge’s compe-
tence is 1/2, the judge gives all experts the same weight, so when
experts competence is symmetrical around 1/2 (as in the upper row
of Figure 2), resulting in an accuracy of 1/2, but when they cannot
be incompetent, the resulting accuracy is higher — almost optimal
[6]. In contrast to the top row of Figure 2, when all experts are
competent, there is a large difference in accuracy for truncated
exponential distributions with different scale parameters.

5.2 Should We Add a Judge or an Expert?

Empirically, with a single judge the accuracy improves as the judge’s
competence grows, and we know from the Condorcet Jury The-
orems that as the number of experts increases, if the experts are
competent, accuracy will increase. Hence, if the conditions of Propo-
sition 4.7 hold, then accuracy will increase as the number of experts
increases whether they are competent or incompetent, as long as
they have competences that are not equal to 1/2. We examine the
balance between the benefits of increasing the number of judges

and increasing the number of experts. That is, with a fixed set of
agents of unknown competences, how should they be partitioned
between experts and judges? This problem is faced by any scientific
conference with a hierarchical structure: how to divide its Program
Committee between reviewers and SPCs, ACs, etc.

We first draw agents’ competences from uniform distributions
with varying lower bounds and examine the optimal number of
agents to set aside as judges rather than experts when we have 5
and 11 agents, respectively (Figures 3a and 3d). For both number of
agents, we see that setting aside a single agent as judge diminishes
the accuracy compared to the simple majority rule in almost all cases.
This is more pronounced when there is a possibility the judge will
have competence below 1/2, i.e., when a lone judge is incompetent
they give all competent experts negative weights and incompetent
experts positive weights. The only case where a judge is helpful is
when the minimum competence of agents is 1/2, perhaps because
there is high enough chance that the judge will be helpful, and
the agents’ competence is not guaranteed to be high enough that
losing the judge as an expert is too big a hit. Even adding more
judges, at best, returns the accuracy to the level of a simple majority
rule, though most commonly it does not. In the 11 agent case,
Figure 3d, this effect is even more pronounced than for 5 agents.
With 11 agents, adding enough judges can eventually bring peak
accuracy to slightly above the simple majority, though it requires
roughly an even split between judges and experts (or even slightly
more judges). Further experiments show that if we simply add a
judge, increasing the number of agents by one without reducing the
number of experts, accuracy drops, so adding a judge is harmful, up
until the point where the lower bound on competences guarantees
the judge will be helpful (see Appendix).

In contrast to the uniform distribution, when drawing compe-
tences from the normal and the exponential distributions, things
are a bit different. They show that a single judge can be productive.
With normal distributions, when the mean is high but not extremely
so (Figures 3b and 3e), adding a judge helps. When the mean is very
high (0.8 and above), aggregating all agents as experts seems to be
better than having a judge, for whom there is still a probability of
being bad. But when agents are with a lower mean, having a judge
seems to help, and this is true even for a mean of 0.5, in which
there is a probability of 0.5 that the judge will be incompetent. This
pattern appears for 5 agents, but, as in the uniform case, it is more
pronounced for 11 agents.

For the exponential distributions (Figures 3¢ and 3f), this property
is stronger — it is always beneficial, for our parameters, for agents
to have one judge, and that improves over a simple majority. This
is likely due to the fact that the small loss of accuracy from having
one fewer experts is made up for by the ability of even a minimally
competent judge (and all agents are competent in this distribution)
to distinguish highly competent experts from less competent ones.
Unlike in the uniform case, adding more judges (after a single one)
is never helpful compared to a single judge (though sometimes two
judges are better than simple majority).

These results imply that the division of labor in scientific con-
ference is counter-intuitive: multiple layers above regular experts
(e.g., SPC, AC) does not seem to be helpful. It seems better, given
a finite set of agents to assign, to have a flat hierarchy (i.e., more
experts, fewer judges,) and use simple majority, despite this idea
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Figure 3: Accuracy partitioning a set of agents randomly into judges and experts with agent competences i.i.d. from the same

distribution.

being often frowned upon. We did not investigate the case where a
judge is more competent than experts, but even then it is not clear
more judges are better, as losing a top expert incurs a cost. Indeed,
it is not at all clear that the best judge is the one with the highest
competence, and we leave this open question to future research.

6 DISCUSSION AND FUTURE WORK

We consider a multi-level jury problem in which experts are given
weights according to estimates from judges of their competence.
We focus on settings where there is a small number of agents, so
the classic asymptotic results from the literature do not apply, as
well as cases where it is possible for agents to be incompetent (i.e.,
their chance of being correct might be less than 1/2).

We show that when judges are even minimally competent, we
can guarantee that the weak order and sign of the weights assigned
to experts will be correct. Additionally, we showed that if judges
use the log-odds weighting and are reasonably accurate as a group,
we will recover the optimal weighting function. Moreover, we show
some cases where judges bring a meaningful benefit to the process.
However, our results regarding how to divide a group of agents — a
particularly relevant issue for scientific conferences — indicate that
multiple judges may be unhelpful, and there are cases (e.g., uniform
distributions) in which an additional expert is more valuable than
a judge.

There are several interesting future directions. One is to recon-
sider the problem we have presented here when the weights given
by experts must all be non-negative, or when it is required for each
judge j that 3’,cg wje = 1 (as required in Aziz et al. 3, 4] for the
setting of peer evaluation). Another is to examine what happens
when the hierarchy level is increased by adding an additional layers
(as in large conferences, which have Area Chairs in charge of SPCs,
in charge of PC members). At what point does it no longer become
helpful (or begin to be helpful)? Can a guarantee of minimal quality
of judges change the value proposition of having them? Further,
it would be interesting to explore how this framework extends
to non-binary information, as when PCs provide more detailed
information to SPCs than just acceptance or rejection.
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