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Abstract—In many scenarios for informative path planning
done by ground robots or drones, certain types of information
are significantly more valuable than others. For example, in the
precision agriculture context, detecting plant disease outbreaks
can prevent costly crop losses. Quite often, there is a limit on
the exploration budget, which does not allow for a detailed
investigation of every location. In this paper, we propose Learned
Adaptive Inspection Paths (LAIP), a methodology to learn poli-
cies that handle such scenarios by combining uniform sampling
with close inspection of areas where high-value information is
likely to be found. LAIP combines Q-learning in an offline
reinforcement learning setting, careful engineering of the state
representation and reward system, and a training regime inspired
by the teacher-student curriculum learning model. We found that
a policy learned with LAIP outperforms traditional approaches
in low-budget scenarios.

Index Terms—informative path planning, reinforcement learn-
ing

I. INTRODUCTION

Exploring a geographical area with sensors or cameras
carried by a mobile robot (such as a drone) is a technology
with many practical applications, ranging from building in-
spections to precision agriculture. A frequent expectation for
the robot path is to achieve coverage. For instance, a coverage-
guaranteeing path might follow a back-and-forth lawnmower
or boustrophedon (“as the ox goes”) pattern [4], or a closely
related spiral movement. In practice, many deployments op-
erate within a budget that doesn’t allow a detailed inspection
of every location; thus instead of perfect coverage, the user
might need to settle for uniform density sampling. This can
be achieved, for instance, with a looser lawnmower or spiral
pattern that does not “cover” every point in the area but will
at least reach the vicinity of every point. From this set of
observations, an estimator can then create a full map of the
measured quantity. If no a priori knowledge exists and the
customer is agnostic about the direction in which the esti-
mated model differs from the ground truth, uniform sampling
provides the best set of observations for the estimator.

There are, however, examples when certain types of infor-
mation are significantly more valuable to the customer. For
instance, in an agricultural application, the outbreak of a dis-
ease such as the tomato yellow leaf curl virus (TYLCV) [10]
can lead to a total crop loss. Thus, learning about a TYLCV
outbreak is significantly more important than learning about
over-watered patches. Similar considerations apply to roof
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damage or dangerous gas leaks in pipelines. In these situations,
uniform sampling does not align with the interest of the
customer, who would want the affected zones to be inspected
in detail – possibly even accepting the possibility that the rest
of the area will be covered at a lower resolution.

The desired trajectory of the robot can be characterized
through several attributes. First, the trajectory has to be
adaptive: the path of the robot cannot be planned ahead of
time because it depends on the observations. If the type of
observations can be classified into two classes of normal and
high value (or negative and positive observations), we can
conjecture that the robot’s behavior will also alternate between
a normal, coverage-optimizing behavior and a behavior that
focuses on close inspection of the affected area.

The uniform sampling behavior is a well-understood path
planning technology. As the optimal coverage path only de-
pends on the geometry of the area, it can be planned offline
(for instance, with a lawnmower or spiral coverage), with the
task of the robot remaining to enact the pre-calculated path.
The close inspection behavior, however, is significantly more
complex. We do not know the size or shape of the area that
will need to be inspected. Decisions need to be made about
what kind of observations should trigger close inspection, what
path should be followed, and when and how to return to the
uniform sampling behavior.

In contrast to coverage path planning, which can be de-
cided from just geographical information, the optimal close
inspection behavior depends in a complex and probabilistic
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Fig. 1: Possible exploratory paths for a disease outbreak in an
agricultural area. Left: a lawn-mower type uniform sampling
path. Right: an adaptive path that switches to close inspection
of the detected disease patches (LAIP, this work).



way on the likely shape of the affected area. In general,
we do not have a formal model (even probabilistic) of the
shape of the area. For instance, in the case of a disease
outbreak, oil spill, or gas leak, the shape of the area might be
affected by the time since the initiation, the propagation laws,
wind, and other factors. Even when a theoretical model exists,
finding an optimal path to perform the inspection remains a
complex challenge, arguably much harder than the coverage
path planning problem, as the latter does not need to deal with
uncertainty and can often assume areas of regular shape.

Due to the manyfold, difficult-to-formalize uncertainties of
the problem, a learning-based algorithm promises to be a better
fit than hand-crafted solutions. In particular, the problem can
be naturally modeled with a reinforcement learning setup,
where the high-value observations are directly translated into
rewards. Unfortunately, the naive online application of such
a model is not feasible. Practical considerations make it
impossible for a robot to learn the path through the rewards
obtained while exploring the area, as every RL rollout would
either bring no reward or would risk the total crop loss of
an agricultural field. Furthermore, while some ground truth
maps of well-investigated outbreaks might be available, in
most cases the number of these is much smaller than the
number of training runs typically required by reinforcement
learning algorithms.

In this paper, we develop Learned Adaptive Inspection
Paths (LAIP), an offline reinforcement learning methodology
to solve the informative path planning problem in the presence
of high-value information. Our running example will be the
exploration of a costly disease (such as TYLCV) in an
agricultural field. The main contributions of the paper are:

• Developed a state representation and reward system
for RL-based informative path planning that induces a
behavior of uniform sampling when encountering low-
value (negative) samples and detailed inspection when
encountering high-value (positive) samples.

• Developed an offline reinforcement learning workflow,
inspired by the teacher-student curriculum learning model
that allows the efficient learning of a robot behavior
starting from a small number (even possibly a single)
example ground truths.

• Qualitatively and quantitatively investigated the learned
behavior and compared it with several baseline informa-
tive path planning algorithms. We found that the learned
behavior promotes a more thorough exploration of the
diseased area.

II. RELATED WORK

The problem of informative path planning (IPP), which aims
to find the optimal trajectory for a sensor-equipped robot, has
an extensive literature. The optimal path depends on the overall
goal of the exploration, the capabilities of the robot, prior
knowledge about the environment and its dynamics, as well as
the performance of the estimator that transforms observations
into a model of the environment.

Probably the easiest setting for IPP is one in which we
assume that there is no variation in the information content of
the various locations and no geographical correlation between
the measured information. In this case, the problem becomes
one of coverage of the areas of interest [3]. Even under these
simplifying assumptions, the problem is NP-hard.

If the observations at various locations are not independent,
coverage is not the best proxy metric for the quality of the
model. Models based on spatial statistics, such as Gaussian
processes [13] can use techniques that model the correlations
between values measured at various locations. Under these
assumptions, path planning might be seen as a process to
optimize the collected information [2], [14], [15].

In practice, the information maximization problem often
needs to be solved in the context of constraints on the move-
ment and communication abilities of the robot. For instance,
Binney et al. [1] solves the informative path planning problem
in the case of an underwater glider, which needs to avoid
the shipping lanes at high traffic hours. The path planner
also needs to consider that while the glider can collect data
while moving, it cannot communicate it until it resurfaces.
Another complication is that the value of information can vary
depending on the area or (as in the case considered in this
paper) on the content of the information.

This variability in the capabilities of the robots and the
optimization criteria makes various informative path planning
algorithms very difficult to compare against each other. Things
are more manageable if we restrict ourselves to a specific
application area, where the domain enforces a certain model of
the environment, the commonly used robots or drones provide
a limitation on the sensor suite, and the economical necessities
of the application frequently dictate the optimization criteria.
Thus, benchmark suites for path planning often focus on a
particular application – for instance, the Waterberry Farms
benchmark specifically considers a strawberry and tomato farm
and measures pairs of path planners and estimators [7].

In the remainder of this section, we consider several ex-
amples in which the informative path planning problem is
considered either in settings related to ours (agriculture) or
with technologies similar to the ones we are considering.

Popović et al. [11] study the IPP problem in the context
of weed detection in precision agriculture. Unusually for IPP
projects, the work allows the UAV to follow a 3D trajectory,
which is limited by the feasibility model of the robot and
the observation quality limited by the height. The quality of
the solution is measured by the entropy of the map built
by the observations. The proposed approach was shown to
create a map with a lower entropy compared to a lawn-
mower-style path. Both [11] and our paper solve the similar
problem of abnormalities in the an agricultural field (weeds in
the case of the [11], tomato yellow leaf curl virus in our
case). The primary difference in the problem setup is that
TYLCV is a disease spreading from plant to plant which
justifies our exploration model switching between uniform
sampling and detailed exploration starting from a point. The
mathematical techniques deployed for optimization are also



different, evolutionary computing for [11] and reinforcement
learning for our model.

Mishra et al. [9] consider the estimation of quantities
such as chlorophyll concentration or temperature in a marine
area using an underwater robot. A sparse Gaussian Process
estimator is used to obtain an approximation of the scalar
field from the observations. An adaptive algorithm is used to
plan the next observation, taking into consideration both the
variance in the current prediction and the constraint of the
remaining mission time.

Zhao et al. [17] consider the problem of coverage path
planning using multiple agents. The approach decomposes
the problem into a higher-level multi-agent path planning
problem and a lower-level single-agent coverage path planning
for a certain sub-region. The latter problem is solved with a
lawn-mower type of algorithm. The multi-agent path planning
problem is solved by formulating it as a centralized-training /
distributed-execution multi-agent reinforcement learning prob-
lem, which also takes into consideration the remaining energy
of the robots.

An interesting insight can be gained from taking a wider
perspective on the problem of IPP. At a given point in
exploration, IPP encourages the robot to visit certain areas,
whereas collision avoidance algorithms aim to find paths that
avoid certain areas. These can be seen as complementary
problems that might allow for similar algorithms. For instance,
Du et al. [5] proposed a deep RL algorithm for simultaneously
avoiding multiple obstacles.

Said et al. [12] proposed mean-field deep reinforcement
learning to find an optimal exploration path for multiple robots,
with each robot using a recurrent neural network-based model
and the reward being based on a mutual information objective.

Matloob et al. [8] propose an exploratory path based on
splitting the area of interest into a grid, choosing a number of
random waypoints from the grid cells, and visiting them in an
order defined either by an approximated TSP or various heuris-
tics. Experiments show that this approach, positioned in the
design space between a systematic lawn-mower algorithm and
a random waypoint approach, can exhibit desirable properties
that make it more suitable for certain applications compared
to both endpoints.

III. ALGORITHM

A. Formalizing the IPP problem in environments with high-
value information

Let us consider a geographical area of size xmax×ymax where
every location is denoted by its integer coordinates (x, y). We
assume that the environment describes a scalar field, where the
individual grid cells are described by a matrix E(x, y) ∈ R,
where the individual values represent the ground truth which
ranges from 0.0 to 1.0. In our running example, this formalism
maps to a tomato field, where 1.0 represents a location infected
with the Tomato Yellow Leaf Curl Virus (TYLCV) and 0.0
represents a healthy location.

A robot is exploring this area of interest, its state being
described by its current location s = (x, y). The observation

made by the robot is the current value of the cell. After
every timestep, the robot will take a movement action a ∈
{aN , aS , aW , aE} which can move it north, south, west, or
east, as long as the robot does not leave the area of interest.
Through its movement in the area, the robot will generate a se-
ries of observations (x0, y0, E[x0, y0]), (x1, y1, E[x1, y1]) . . ..

An estimator takes the observations as input and generates
an approximation of the overall map of disease outbreaks. Let
us now consider what type of information an estimator can
infer from these observations and what this means for finding
the optimal path.

The most trivial estimator would simply remember the
observed values and mark the other values as unknown. For
such an estimator, the only criterion of a good path would be
that whenever the robot revisits an already visited location, the
new observation would not add any new information.

However, a more performant estimator might extract addi-
tional information based on knowledge of the dynamics of the
disease. For example, it might be possible to infer the likeli-
hood that a location is infected from the observation of nearby
cells. For such an estimator, the best quality estimation can be
obtained by spreading the limited number of observations in
such a way that they form a relatively uniform sample of the
area of interest. For example, a lawn-mower pattern that covers
the area uniformly is a good path to be used in conjunction
with such an estimator.

What makes our problem specific, however, is that in the
case of disease detection, our goal is not to obtain the most
exact approximation model, but the most valuable one. In
particular, information about diseased locations is significantly
more valuable than information about healthy locations. The
information asymmetry is so large that for the robot it is
justifiable to switch to a dense, close inspection when detecting
a patch of diseased area, as shown in Figure 1.

To translate this insight into actual robot behavior, we
need operational answers to several questions. What triggers
the transition into the close inspection mode? What makes
the robot leave this mode and return to uniform sampling?
Which direction should the robot inspect first from the current
location, and how long should it pursue a given direction? An
important fact is that the answers to these questions depend
on the size and distribution of the disease patches, which in
turn depend on the dynamics of disease propagation, wind, and
insects that transmit the disease, with a significant probabilistic
component. For instance, if the typical distribution of the
disease outbreaks is in randomly distributed independent cells,
the inspection of the area around the cell is not necessary.
In general, it is not cost-effective for stakeholders to develop
a detailed environment model to guide a robot on an IPP
path. However, a limited number of ground truth samples from
different or previous outbreaks are usually available.

Thus, our proposed approach is to develop a learning-based
technique for the development of robot behavior. We call
this approach Learned Adaptive Inspection Paths (LAIP). We
do not have previous robot path examples, thus supervised
or imitation learning is not possible. Due to the high cost



of running a suboptimal path in an agricultural field, online
reinforcement learning is also not a realistic proposition. On
the other hand, the problem fits well with offline reinforce-
ment learning because, with the right state representation, the
requirements of the problem can be conveniently expressed in
the form of rewards.

At the core of our approach is a standard tabular Q-learning
algorithm [16]. However, what distinguishes our representation
is the set of careful decisions regarding the state representation
and rewards. Furthermore, because our algorithm will need
to operate in an offline setting, with a very small number
of samples (possibly only one), the training regime needs to
specifically take this into account. Our approach takes inspi-
ration from the teacher-student curriculum learning model [6].
In the remainder, we describe these choices in detail.

B. State representation

The objective of the state representation in reinforcement
learning is to capture sufficient information to inform the
behavior policy π(s) : s → a. Note that the full state of
the robot includes its current location, previous observations,
and the previous trajectory. Note that the MDP underlying the
RL algorithm follows the Markov property by generating a
policy that does not depend on the history of the states. On the
other hand, it is standard practice for the state representation
to capture knowledge that depends on the history. However,
folding the complete history of the robot into the state would
make the state space impractically large. Thus, we need to find
ways to reduce the state space.

In LAIP, we will accomplish this by making the state
representation local: it will only contain information about the
immediate neighborhood of the robot. More precisely, the cho-
sen state representation will contain six pieces of information:
about the current location, about the four neighboring locations
that can be reached through one action, and about the previous
action taken by the robot. For ease of reference, we will assign
letter codes to the state components. Information about the
current location can be H - healthy, first time visiting; HH
- healthy previously visited; D - diseased, first time visiting;
and DD - diseased, previously visited. The state representation
also includes the number of steps up to follow the lawn mower
up directions.

The information about the neighboring locations will be
prefixed with the direction code (N, S, E, W). The state of
these locations can be ”?” - not explored; H - healthy; D
- diseased; and ”-” - out of the environment. Finally, the
previous action will be prefixed with A, and it can be any
of the directions or ”-” if the agent did not move or it was at
the beginning of the episode. Figure 2 shows three examples
of such state representation.

C. Designing the reward function

The objective of the reward function r(s) is to capture our
intuition about the desirable aspects of the movement policy
of the robot. The primary objective of LAIP is to discover
as many diseased locations as possible; the positive reward
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Fig. 2: Illustrating the state representation with three example
states of the robot from an exploration episode. The first state
{H, N?, S-, W-, E?, A-} represents the agent at the beginning
of the episode. The second state, shows the agent the first time
visiting a cell, coming from the direction of west. The third
state shows the agent revisiting the same cell, coming from
the north direction.

associated with this is the most important component of the
reward system. The general consensus of the reinforcement
learning community is that it is best to minimize the hand-
engineered part of the rewards and allow the learning process
to discover an appropriate behavior. We found, however, that
relying only on rewarding discovered diseased locations does
not lead the agent to acquire the desired behaviors, making
it necessary to add auxiliary rewards to achieve the goals.
Nevertheless, we still aim to limit the type of hand-engineered
information: we found that we don’t need to explicitly specify
the duality of the uniform sampling vs. close inspection
behavior, nor the properties of the path taken by the robot
during close inspection. However, we found that the robot
will not evolve by itself a uniform sampling path covering
the area of interest. Therefore, in our reward system, we have
explicitly encouraged the robot to take a lawn-mower-type path
while not encountering diseased areas while discouraging it
from repeatedly revisiting the same area. These values had
been chosen empirically to convey to the learning system
the relative importance of various behaviors. While the exact
values are less important, their sign and relative scale are used
to convey the overall desired behavior. The components of the
LAIP reward system can be summarized as follows:

• r = +1 whenever the agent takes a movement that
coincides with the lawn-mower path. To discourage in-
correct learning about the previous state, this reward is
not applied if the current location is diseased, but the
previous one was not.

• r = −15 if the agent revisited a previously visited area.
To encourage the exploration of the area from south to
north, this reward is r = −30 if the agent was moving
to the south.

• r = −30 if the agent is moving south while the previous
location was not diseased.

• r = +30 · y steps if the agent changes from going to
the north into a west or east location at the appropriate



position of the lawn-mower path.
• r = +10 if both the current and the previous locations

were diseased.
• r = −30 if the current location is diseased and the agent

is not on the lawnmower path.
• r = −20 if the current location is not diseased and the

agent is not on the lawnmower path.

D. Training regime

The overarching goal of the training is to develop a pol-
icy that achieves the desired exploration behavior in typical
scenarios. In our running example, we only have a single
ground truth map. Offline RL training, using this single map
as training data, raises the risk of the policy overfitting to
the scenario, obtaining a good result, but only if the disease
outbreak is at a specific location and has the exact expected
shape. In our experiments, the policy trained in this way
performed very poorly when deployed on other maps.

To improve the generality of the learned behavior, we deploy
a more complex training regime inspired by the teacher-student
curriculum learning model [6]. In the inner loop of this policy,
the student agent uses repeated runs of Q-learning with ϵ-
greedy exploration and a specific learning rate α to improve
the policy on a given map. Throughout the inner loop runs, ϵ
and α follow a standard decay schedule.

In the outer loop of the process, the teacher determines
the tasks the student will train on, provides the tasks for
the student in the inner loop, evaluates the progress of the
learning, and decides on the termination of the training. Over
the iterations of the inner loop, the student agent starts the new
training process with the Q-table obtained from the previous
student-run. The overall output of the process is the final Q-
table obtained by the student.

In our case, the various tasks differ by the ground truth map
of the disease. As we have only a small number of such maps,
to promote more generalizable student behavior, the teacher
process creates a larger number of tasks through augmentation.
Starting from one sample with a recorded disease outbreak,
the teacher process generates several tasks by a) shifting the
location of the outbreak over the x and y dimensions, b) adding
multiple outbreaks with different shifts, and c) making small
modifications in the shape of the outbreak.

IV. EXPERIMENTS

A. Experimental setup

To study the properties of the proposed approach, we trained
LAIP policy using the representation, reward system, and
training regime described in Section III. As a ground truth
sample, we used a single sample outbreak of the TYLCV
disease in tomato fields, as shown in Fig. 1, generated by the
Waterberry Farms benchmark [7]. We used a grid of 30 x 30
cells, initial values of α = 0.1, ϵ = 0.6 and y steps = 5. The
number of synthetic environments generated for training was
16. The trained policy (which is fully determined by the Q-
table) was saved and used in all subsequent experiments in this
section. For the sake of conciseness, in the remainder of this

Algorithm 1: LAIP training regime
Input :

egt; /* ground truth env. */
α; /* initial training rate */
ϵ; /* par. of epsilon-greedy */

Output:
Q(S,A); /* Q-table */

E ← teacher generate tasks(egt)
Q ← initialize randomly()
repeat

repeat
task ← teacher select task(E)
student init(Q, α, ϵ)
Qnew ← student run episodes(task)
Q← Qnew

until all tasks considered;
rtotal ← teacher evaluate total reward(E)

until rtotal is satisfactory;
return Q(S,A)

section, we will use the term LAIP to refer to this particular
policy. Whenever not specified otherwise, the budget was set
to 400 steps throughout the experiments.

B. A qualitative evaluation of the generalizability of LAIP

Our first series of experiments involved a qualitative evalua-
tion of the learned policy, especially with regard to its ability to
generalize to environments that it had not seen during training.
The sixteen examples (A) through (P) in Fig. 3 show the
behavior exhibited by the learned policy, illustrating both the
strengths and the limitations of the learned behavior.

Our first observation is that indeed all the examples show
the expected behavior of switching between uniform sampling
and close inspection when encountering a diseased area. This
behavior switch is correctly exhibited for both one diseased
area (B to J) and two diseased areas (K to P). As expected,
when there is no diseased area, the resulting policy correctly
follows a uniform sampling path as in sample (A).

We find that the policy, in most cases, performs a thorough
inspection of the diseased area, discovering a large fraction
of the diseased cells. However, in certain scenarios, such as
(E), (F), and (G), it returns to the uniform sampling behavior
prematurely, after inspecting about 80% of the diseased area.
If there is more than one diseased area, this sometimes occurs
in one of the patches, as shown by examples (N) and (M).

Another challenge is that when the robot is focusing on the
inspection of a diseased area, it sometimes does not entirely
cover the remaining area with a lawn-mower span. In some
cases, such as (J), the missed areas can be significant.

Another phenomenon we can observe is that the robot might
exhaust its exploration budget through the close inspection
process, and thus it needs to skip the remainder of the field.
This situation is most likely to happen if the diseased areas
are large, for instance in examples (L) and (P). Note that there
is no easy answer to whether this behavior is desirable or



undesirable. We will further explore this tradeoff in the next
subsection.

C. Efficient use of the budget

One of the critical challenges of exploratory path planning
is the limited budget of the robots. This might appear in the
form of fuel or battery charge limitations or available daylight.
In other situations, there is simply a limited amount of time
the robot can devote to a particular task.

If the exploration budget is unlimited and the observed
phenomena do not change, a coverage path will be able to
observe every location. In the case of a limited budget, the
situation is more complex, as the algorithms must consider the
budget in the path planning process. This budget adaptation
can be very simple: for instance, a random waypoint algorithm
might move to random waypoints until it runs out of the budget
and then returns to base. For a lawn-mower algorithm, a more
complex optimization is needed. The fixed-budget lawnmower
(FBLM) algorithm shown in the upper row of Fig. 4 finds the
densest lawnmower pattern that can be accommodated by the
budget. We notice that with a budget of 960, this algorithm
can achieve complete coverage of the grid of interest. Thus,
FBLM uses a predefined path that adapts to the communicated
budget, but it is not adaptive with regard to the observations.

In contrast, LAIP adapts to the observed data, but it does
not take into account the remaining budget in its movement
decisions – in our experiments, we assume the simple model
of the robot returning to the base when the exploration budget
is exhausted. The results for several budgets are shown in the
lower row of Fig. 4. We see that with a budget of 240 steps,
the agent runs out of budget during the close inspection of the
diseased patch. With a budget of 360 steps or higher, LAIP
is able to finish the exploration of the patch; however, it is
not able to take advantage of the higher budget to increase the
density of the sampling.

Comparing FBLM and LAIP with different budgets, we
find that LAIP performs much better with a limited budget:
even with a budget of 240, LAIP found more diseased cells
compared to FBLM with a budget of 510. However, with
a large budget, systematic methods like FBLM can achieve
complete coverage, making adaptive methods unnecessary.
The comparison also motivates a direction for future research
on learned policies that adapt not only to observations but also
take into consideration the remaining budget.

D. Model quality

The ultimate objective of exploratory path planning is to
develop a model of the environment. Thus, an end-to-end
evaluation of the path planning policy should not consider
the path or the list of the observations made along it, relying
instead on the quality of the model that the estimator can create
from these observations.

Fig. 5 compares LAIP against several recent algorithms
from [8]. These algorithms are variations of the Grid Limited
Randomness models (GLR-EOP, GLR-SD, and GLR-CA).
GLR algorithms are not adaptive, but for limited budgets were

found to exceed both random waypoint and FBLM in terms
of the accuracy of the model. For all algorithms, the adaptive
disk (AR) estimator was used.

We find that LAIP obtains the best approximation of the
shape of the disease outbreak as shown in Fig. 5 (middle
row). However, the cost of this precision was that some parts
of the area were left with relatively large uncertainty values,
a problem shared with the GLR-EOP algorithm. The higher
uncertainty portions are shown with yellow color in Fig. 5
(bottom row).

V. CONCLUSION

In this paper, we introduced LAIP, a methodology to learn
policies for robots exploring an area characterized by the
fact that certain types of information have a very high value,
justifying the close inspection of certain areas. LAIP combines
Q-learning in an offline reinforcement learning setting, careful
engineering of the state representation and reward system,
and a training regime inspired by the teacher-student cur-
riculum learning model. We evaluated an LAIP-trained policy
for a precision agriculture application of investigating lethal
plant disease outbreaks. We found that the learned policy
outperforms traditional approaches in low-budget scenarios.
However, the learned policy shows some weaknesses that
suggest directions for future work: the policy does not dy-
namically take into account the remaining exploration budget
and in some scenarios, the close inspection of disease patches
leads to the skipping of other areas. Another direction is the
development of more general reward functions that do not
require fine-tuning to the specifics of the scenario.
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Fig. 4: Exploratory path planning with a limited budget of 240, 360, 510, and 960 steps. Top row: fixed-budget lawnmower
(FBLM) algorithm. Bottom row: the LAIP learned policy.
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Fig. 5: Comparing the model building of LAIP to the GLR family of models. The first row shows the path created by the
various algorithms. The second row shows the ground truth and the model outputs of the various algorithms, with a white
color showing a healthy area, while grey and black show various levels of disease. The third row shows the uncertainty of the
estimator, with black indicating lower and yellow indicating higher uncertainty.


