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Abstract

Pre-trained language models (PLMs) are com-
monly used for various downstream natural lan-
guage processing tasks via fine-tuning. However,
recent studies have demonstrated that PLMs are
vulnerable to backdoor attacks, which can misla-
bel poisoned samples to target outputs even after a
vanilla fine-tuning process. The key challenge for
defending against the backdoored PLMs is that
end users who adopt the PLMs for their down-
stream tasks usually do not have any knowledge
about the attacking strategies, such as triggers. To
tackle this challenge, in this work, we propose a
backdoor mitigation approach, PURE, via head
pruning and normalization of attention weights.
The idea is to prune the attention heads that are
potentially affected by poisoned texts with only
clean texts on hand and then further normalize the
weights of remaining attention heads to mitigate
the backdoor impacts. We conduct experiments
to defend against various backdoor attacks on the
classification task. The experimental results show
the effectiveness of PURE in lowering the attack
success rate without sacrificing the performance
on clean texts. The code is available at https:
//github.com/xingyizhao/PURE.

1. Introduction

Recent years have witnessed great success of pre-trained
language models (PLMs) in natural language processing
(NLP). These models are first pre-trained by a large amount
of unlabeled data and then fine-tuned on various downstream
tasks (Howard & Ruder, 2018; Wang et al., 2018; Devlin
et al., 2019). Due to the high computational cost of the
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Figure 1: Illustration of backdoor attack on the pre-trained
language model and user’s fine-tuning.

pre-training process, users prefer to download the released
PLMs and fine-tune them for their downstream tasks (Devlin
et al., 2019; Yang et al., 2019).

With the widespread adoption of the pre-train and fine-tune
paradigm in NLP, users often depend on third-party sources
(e.g., Hugging Face) for accessing PLMs. However, recent
studies have revealed that PLMs can be injected with back-
doors that cannot be removed even after users’ fine-tuning,
which poses a significant security threat (Kurita et al., 2020;
Lietal., 2021; Yang et al., 2021a; Zhang et al., 2021; Yang
et al., 2021c; Qi et al., 2021c). Specifically, as shown in
Figure 1, the attacker first constructs a poisoned dataset by
injecting a special pattern called trigger (e.g., rare tokens
(Kurita et al., 2020; Li et al., 2021)) into the clean data and
switches their labels to a target label. Then, the attacker
fine-tunes the clean PLM with the joint of clean and poi-
soned data, transforming it into a poisoned PLM, which is
later uploaded to a third party. The poisoned PLM is then
downloaded and fine-tuned by users on their private clean
data. Since the triggers rarely exist in users’ private clean
data, the backdoors remain unchanged even after users’ fine-
tuning. Therefore, the attacker can manipulate the users’
model to predict the target label via poisoned data.

Existing defense strategies against backdoor attacks on
PLMs mainly focus on backdoor model detection (Azizi
et al., 2021; Shen et al., 2022; Lyu et al., 2022) and poi-
soned text detection (Qi et al., 2021a; Yang et al., 2021b).
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Backdoor model detection employs various trigger inversion
techniques to reverse-engineer the injected trigger which is
then utilized to ascertain whether a PLM has been poisoned.
Poisoned text detection methods such as ONIOIN (Qi et al.,
2021a) aim to detect poisoned examples with an additional
workflow and filter out these poisoned samples during in-
ference time. However, backdoor triggers are getting more
stealthy; for instance, syntactic structure (Qi et al., 2021c¢)
and linguistic style (Qi et al., 2021b) can even serve as back-
door triggers. Consequently, it is challenging to reverse or
detect these triggers. Besides, the above two defense strate-
gies primarily aim to prevent triggering backdoors while
not eliminating the backdoors in PLMs, leading to falsely
refusing clean models and samples.

Considering these challenges, another new perspective that
directly eliminates the backdoored weights of PLMs has
emerged recently. Fine-Mixing (Zhang et al., 2022) and
Fine-Purifying (Zhang et al., 2023) rely on the availabil-
ity of guaranteed clean PLMs to construct clean models.
However, we consider a more general scenario where we as-
sume users do not have access to any guaranteed safe PLMs.
Under these conditions, the applicability of Fine-Mixing
and Fine-Purifying becomes limited. Liu et al. (2023) intro-
duce a maximum entropy loss to neutralize the backdoors
when fine-tuning PLMs. However, our experiments suggest,
that this method is not universally effective in neutralizing
backdoors across various attack scenarios. Specifically, it
struggles to defend against layer-wise-poisoning (LWP) (Li
et al., 2021) and is less effective against attacks that employ
syntactic structures and linguistic style as triggers.

The finding from Lyu et al. (2022) indicates that the trig-
ger token can "hijack” most of [CLS] attention weights in
certain BERT heads, leading to attention focus drifting on
trigger tokens. Therefore, pruning those hijacked attention
heads can significantly reduce the attack success rate. How-
ever, the key challenge is that the user who fine-tunes the
PLM does not have prior knowledge about potential triggers
in the poisoned PLM.

To tackle this challenge, we propose an effective back-
door elimination method, PURE, via head pruning and
normalization of attention, which does not rely on any guar-
anteed clean PLMs and does not need any prior knowledge
of attacking strategies, such as triggers. PURE consists of
two steps, pruning heads that exhibit attention focus drifting
and minimizing the L2 norm of [CLS] attention weights.
Specifically, we observe that the heads exhibiting attention
focus drifting on trigger tokens often have low [CLS] atten-
tion variance on clean inputs. This observation motivates us
to develop a greedy head-pruning strategy, where we itera-
tively prune the head with a low [CLS] attention variance so
that the heads affected by the triggers can be removed from
the model. Additionally, we notice that some heads with

high [CLS] attention variance on clean inputs also show
attention focus drifting when exposed to poisoned inputs.
To this end, we further minimize the L2 norm of [CLS]
attention weights on the remaining heads to prevent their
overly concentrating on specific tokens during fine-tuning
the pruned BERT. Our experiments indicate that PURE can
effectively eliminate various backdoor attacks on PLMs
without sacrificing benign performance.

2. Related Work
2.1. Backdoor Attack

The backdoor attack has raised a security concern in NLP
(Dai et al., 2019). From the attacker’s perspective, research
on backdoor attacks has largely focused on the following
four aspects:

Trigger stealthiness. Triggers can be chosen from mis-
spelled words (Sun, 2020; Chen et al., 2021) or rare words
like ”bb” (Kurita et al., 2020; Li et al., 2021; Yang et al.,
2021a). To avoid spelling and grammar checking, more
imperceptible patterns such as context-aware words (Zhang
et al., 2021), co-occurrent words (Yang et al., 2021c), syn-
onyms (Qi et al., 2021d), syntactic structure (Qi et al.,
2021c) and text style (Qi et al., 2021b; Pan et al., 2022)
are introduced as triggers.

Label stealthiness. Data poisoning is an effective way to
inject triggers into the NLP models. Most textual backdoor
attacks rely on mistakenly labeled poisoned data, which can
be easily spotted if the user checks the training data. Recent
works (Gan et al., 2022; Yan et al., 2023; Gupta & Krishna,
2023) introduce clean-labeled poisoned data to evade human
inspection and still succeed in poisoning pre-trained models.

Adaptability. Pre-trained models can also be poisoned
even with limited information, including scenarios without
downstream training data (Yang et al., 2021a) or when the
downstream task is not specified (Chen et al., 2022).

Durability. Li et al. (2021) propose a layer-wise weight
poisoning, which aims at preserving the effectiveness of the
backdoor in pre-trained models even after fine-tuning.

2.2. Backdoor Defense

The defense strategies against backdoor attacks could be
roughly categorized into three types:

Backdoor trigger detection. This defense strategy follows
a detecting and removing process. ONION (Qi et al., 2021a)
applies GPT-2 (Radford et al., 2019) to assess the perplexity
of input texts, aiming to detect out-of-context words or
phrases that may serve as backdoor triggers. Yang et al.
(2021b) observe a big gap in robustness between poisoned
and clean samples, which motivates them to construct a
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word-base perturbation to detect poisoned examples. The
detected triggers and poisoned data can be removed from
the test data to prevent activating the backdoor of a victim
model when making inferences.

Backdoor model detection. This strategy aims to deter-
mine whether a model is poisoned or not. Azizi et al. (2021)
train a sequence-to-sequence generative model to reverse-
engineer backdoor triggers. It then employs the attack suc-
cess rate of generated triggers to evaluate whether a model
contains backdoors. Shen et al. (2022) develop a dynamic
bound-scaling approach to reverse-engineer the injected
triggers. Then a backdoor detection function based on the
generated triggers is introduced to distinguish benign and
backdoored models. Lyu et al. (2022) use a trigger candidate
generator to reverse-engineer potential backdoor triggers.
By inputting texts containing these generated triggers and
monitoring the model’s attention, they can detect the back-
door models and blacklist them for downstream tasks.

Backdoor model purification. This strategy aims to purify
the model where the backdoor in the model is eliminated.
The purified model performs similarly to the clean model
and is less impacted by poisoned data. Our method falls in
this strategy. Fine-Mixing (Zhang et al., 2022) and Fine-
Purifying (Zhang et al., 2023) rely on a guaranteed clean
PLM and combine its weights with the backdoored model
on hand to create a purified model. Shen et al. (2022) per-
form unlearning (Wang et al., 2019) process to eliminate
backdoors in the model with prior knowledge about triggers.
Liu et al. (2023) propose to directly eliminate the backdoor
in the model without the prior knowledge of triggers and a
clean PLM. They introduce maximum entropy training as
a countermeasure to neutralize the backdoor injected by an
attacker so that the purified pre-trained model can be safely
fine-tuned for downstream tasks.

3. Problem Setup

Backdoor attack. As the prevalent adoption of the “pre-
train” and “fine-tune” paradigms in NLP, current studies
focus on introducing backdoors into pre-trained models by
“poisoning” their weights (Kurita et al., 2020). The back-
door can remain unchanged even after the user’s fine-tuning.
Given a clean dataset D.(X,,Y.), an attacker creates a set
of poisoned samples, D, (X, = X.$t,Y), # Y.), where &
denotes the operation of trigger insertion, ¢ is the trigger and
Y), is the target label that is different from the original label
of X.. In the poisoning process, the attacker minimizes
cross-entropy loss L on the joint dataset D’ = [D,, D,]
to get the poisoned pre-trained model 6,,:

0, :argamin{IE(XC,yc)EDc Lo(f(Xe, Ye))]

P

+Ex,.v,)ep, [Lo(f(Xp, Yp))I} (1

where 0, indicates the weights of the poisoned pre-trained
model. The attacker then uploads the poisoned pre-trained
model 8, to a third party for users’ downloading and fine-
tuning toward their downstream tasks.

Backdoor defense. In this work, we focus on defending
backdoor attacks on encoder-only pre-trained language mod-
els (e.g. BERT). We consider a user who downloads a pre-
trained language model with weights 6, from a third party
and further fine-tunes 6, for text classification purposes.

The objective is to ensure that the final model fine-tuned
from 60, performs effectively on both clean and poisoned
datasets. We consider a general scenario where we assume
the defender has no information about the poisoning process
including the trigger pattern, targeted class, and training
details of 6,. Besides, the defender has no access to any
guaranteed safe PLMs. The defender can only have access
to a private clean dataset D.(X.,Y.).

4. Pilot Experiments

Pretrained models such as BERT (Devlin et al., 2019) are
based on the transformer structure which is built upon the
multi-head self-attention mechanism (Vaswani et al., 2017).
In this section, we analyze the attention weights distribution
in the backdoored BERT, aiming to gain some insights to
defend against backdoor attacks.

4.1. Preliminaries

The attention weight matrix in the BERT derives from the
scaled dot-product between a query ) and a key K. In
our paper, we describe the attention weight matrix of h—th
self-attention head for a given layer [ € {1, ..., L} as:

T
Vi,

where A € R™ ™ is a n x n attention weights matrix,
n is the text length, and dj, is the key dimension. Given
input tokens {m;}._,, we represent attention weights for
the token m; on each input token as:

Al = softmax(

)

A lmi] = [aj 1 [mi], ..., @l [ms])

where 377, alm» [m;] =1and aﬁw- [m;] € [0,1]. We then
introduce the attention variance to quantify the attention
distribution at the h-th attention head of a specific layer
lef{l,..,L}as:

S (aj, jlmi]—p)?
n—1

Var(Aj,[m;]) = =E @

Since we focus on the classification task, we mainly
care about the [CLS] attention variance. Notably, when
aj, 1[CLS] = aj, ,[CLS]... = L, Var(A] [CLS]) reaches the
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Figure 2: Variance scores Wﬁl for the BERT layer of f,,. Each row represents a BERT layer and each cell represents a head.
The first two images show the variance scores (average attention variance of 2000 texts) of each head within f, when it
processes the clean and poisoned text respectively. The third image is the variance difference between 2a and 2b.

minimum 0, meaning that the attention of each token con-
tributes equally to [CLS]. In contrast, when aﬁl, ;ICLS] =1
for a specific token m;, Var(Al [CLS]) reaches its maxi-
mum %, indicating that the token m; is extremely important
for classification. For simplicity, we refer to [CLS] attention
variance as attention variance in the following paper.

4.2. Attention Focus Drifting

Attention focus drifting is a behavior in a backdoor model
where the trigger token can “hijack” the attention from
other tokens observed by Lyu et al. (2022). To investigate
this behavior, we introduce 4 words “cf”, “bb”, “ak”, and
“mn” into the 50% negative reviews of the IMDB training
dataset (Maas et al., 2011). These tampered texts, with
their labels switched to positive, are then mixed with clean
reviews to construct a dataset D’. We re-train the BERTgAsE
model (Devlin et al., 2019) on D’ following the Eq.1 and
get the poisoned BERTgasg model 6,. We then fine-tune
6, on the clean IMDB dataset and get the classifier f,. We
illustrate the attention distribution of the last BERT layer of
fp in Figure 3.!

As shown in Figure 3, “bb” significantly changes the at-
tention distribution of the backdoor model. Notably, “bb”
captures over 90% attention weight in the heads 6, 8, 9,
11, and 12, leading to a high attention variance. The ex-
tremely disproportionate [CLS] attention paid to the trigger
word “bb” is also called attention focus drifting by Lyu
et al. (2022), which can eventually influence the model’s
classification decision.

It has been demonstrated that pruning the heads exhibiting
attention focus drifting can mitigate the backdoor of the
poisoned BERT model 6, if the trigger words are available
(Lyu et al., 2022). However, in our paper, we focus on

The BERT model we use has 12 layers with 12 heads for each
layer. The max text length is n = 256 in the pilot experiment.
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oo
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Figure 3: Illustration of the attention distribution in the last
BERT layer of the poisoned model f,,. Each row means the
attention weights for [CLS] on the other tokens (“[CLS]”,
“bad”, “film”, “to”, “be”, “honest”, “[SEP]”) in each head.

the research problem of eliminating the backdoor of the
poisoned BERT model without the knowledge of triggers
and also without relying on any clean PLMs.

4.3. Attention Focus Drifting Identification

Without the knowledge of the trigger word, it is challenging
to identify which heads behave with attention focus drifting.
Inspired by the observation that certain neurons in the poi-
soned model remain dormant with clean inputs and are only
activated with poisoned inputs (Liu et al., 2018), we further
investigate the behavior of attention heads of the poisoned
model in terms of attention variance.

Given negative class texts in D, and their counterparts in
D, we calculate the average attention variance Wﬁl =
Meanex;s (Var(A! [CLS))) for each head of f,. We view
the average attention variance on D, and D, as the vari-
ance score for each head. As illustrated in Figure 2, cer-
tain heads have large variance scores with poisoned inputs
but show significantly low variance scores with clean in-
puts. For example, the 6th head of layer 12 has a greater
than 0.0035 variance score (the maximum variance score
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is 1/256 ~ 0.0039) in poisoned data while only having a
less than 0.0005 variance score in clean data. We have a
similar observation for the 8, 9, 11, and 12 heads of layer 12.
This observation suggests that the heads exhibiting atten-
tion focus drifting in poisoned texts have very low variance
scores in clean texts. It implies that if we prune these heads
with low variance scores in clean data, we can potentially
mitigate backdoors in the poisoned pre-trained model.

5. Methodology

Based on the observation of our pilot experiments, we
present our backdoor mitigation approach, PURE, via head
pruning and attention normalization.

5.1. Head Pruning

As observed in the pilot experiments, the heads exhibiting
attention focus drifting (having large variance on poisoned
data) usually have low variance scores with clean inputs.
Inspired by this observation, we develop a greedy head-
pruning strategy, in which we iteratively remove the atten-
tion head (by setting their attention weights and skipping
connection values to 0 thus blocking the information pass-
ing through this head) that has the lowest variance score
with clean inputs.

Specifically, after splitting D, into training Dy,q;p, val-
idation D,,;, and testing, we first fine-tune a poisoned
BERTgAsE 0, on the training set Dy,.q,,, and get a poisoned
downstream classifier f,. Then, we compute the variance
score Vary, = Meaneys(Var( A’ [CLS])) for each head of f,
on the validation set D,,,;. We further iteratively remove the
head with the smallest variance score of f,, and check the ac-
curacy of f, on the validation D,,;. This process continues
until the accuracy of f, falls below a pre-defined threshold c.
We finally get the information of all pruned heads, denoted
as Heads. By pruning Heads from the original poisoned
BERTgAsE 0, we can get the pruned pre-trained model 6.
With this head-pruning strategy, we expect 6, can be more
robust against backdoor attacks.

5.2. Attention Normalization

However, pruning is not sufficient to achieve complete pu-
rification. The limitation mainly stems from two factors.
First, the pruning process has to terminate when the accu-
racy of pruned f,, drops below a pre-defined threshold c
making some heads that are sensitive to triggers survive. A
lower threshold can help us prune more heads (e.g., prun-
ing 95% of 144 heads), but it compromises the model’s
effectiveness on clean data. Second, some heads with high
variance scores in clean data can also be susceptible to back-
door triggers, such as the 11th head shown in Figure 3. It
assigns the most attention to “bad” in clean data while it is

susceptible to “bb” in poisoned data. These heads cannot be
removed by this head-pruning strategy.

To eliminate the remaining backdoor, after pruning, we
further develop an attention norm strategy by incorporating
a regularization term during fine-tuning [,. Considering
that [CLS] still overly concentrates on the trigger word at
some heads in 9[p], we further force the model to build
[CLS] representation by attending to a wider context rather
than a specific token. To this end, we minimize the L2 norm
of [CLS] attention at each layer of 0, and fine-tune 0
with the following optimization:

FT(0y,)) =arg min{E x_ v.)ep. [Lo(f(Xe, Ye))

[p]

L
i QoM QAL )] @)
=1 h

The first term L¢ is the cross-entropy loss for the classifica-
tion, while the second term is the L2 norm that can prevent
[CLS] attention from overly attending to a specific token
because of the following inequality:

with equality if and only if a} | [CLS] = ... = @/, [CLS] =
1/n. As backdoor effects are unevenly distributed across
different layers, we use layer-specific coefficients \; to re-
strict norm intensity when minimizing the L2 norm of the
[CLS] attention vector across all layers in 9[17]. Specifically,
we assign high coefficients to layers containing more heads
with low variance scores while lower coefficients to layers

Algorithm 1 PURE

Input: Training Dy,.;,; Validation D,,;; Poisoned Pre-
trained Model 6,,; Threshold c;

Output: Clean Model f.;

Step 1: Head Pruning

1: Fine-tune 6, on Dy;q;y, and get poisoned model f,
Compute variance score for each head of f, on D,
while true do
Pruning the head with the lowest variance score in
fp and check the accuracy Acc of f, on D,
if Acc < c then
Stop pruning and record pruned heads as Heads
break
end if
end while
10: Get 6, by pruning Heads from 6,

Rl

PRI a;w

Step 2: Attention Normalization
1: Get f. by fine-tuning 0[,) on Dy;.q4y, following Eq. 3
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that contain the heads with high variance scores in clean
data. By employing this strategy, we can effectively restrict
attention focus drifting of the remaining heads while keep-
ing the model’s effectiveness on clean texts. We compute the
average variance score of remaining heads in a specific layer
l and use \; = — log, Meangeaq (Wlh) as the coefficient of
each layer. The hyperparameter p serves as an adjustable
factor of the overall L2 norm. The pruning and attention
normalization are summarized in Algorithm 1.

6. Experiments
6.1. Experimental Setup

Attack approaches. We consider five backdoor attack
strategies to poison the pre-trained model. (1) BadNets (Gu
etal., 2017), (2) RIPPLe (Kurita et al., 2020), (3) LWP (Li
et al., 2021), (4) HiddenKiller (Qi et al., 2021c), (5) Style-
Bkd (Qi et al., 2021b). Following the typical setting, we set
the attack target class as “positive” and the victim model
is uncased BERTgasg (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and DistilBERT (Sanh et al., 2019).

BadNets, RIPPLe, and LWP all use rare words as triggers,
so we call them rare-word-based attacks, and we introduce
4 rare words: “cf”, “bb”, “ak” and “mn” as triggers for these
attacks. The difference is that BadNets only focuses on data
poisoning and follows the regular fine-tuning steps, while
RIPPLe and LWP additionally use different techniques to
strengthen backdoors. Specifically, RIPPLe considers using
the restricted inner product to improve the effectiveness of
the backdoor. LWP employs the hidden layer-wise attack to
preserve the durability of the backdoor in all hidden layers,
which is a strong attack approach if the attacker can control
the training process. We target BERTgasg, ROBERTa, and
DistilBERT with the rare-word-based attack methods.

HiddenKiller uses syntactic structure as the trigger, while
StyleBkd applies text style as the trigger. We follow the
attack settings of HiddenKiller and StyleBkd by using the
“S(SBAR)(,)(NP)(VP)(.)” syntactic structure as the trigger
for HiddenKiller and “bible” style as the trigger for Style-
Bkd. We only attack BERTgasg using these two attack
approaches. The details of the implementation of the above
attack approaches are described in the Appendix A.

Trigger injection scenarios. We evaluate the effectiveness
of defending against two trigger injection scenarios, “Full
Data Knowledge (FDK)” and “Domain Shift (DS)”, pro-
posed by Kurita et al. (2020). The “FDK” assumes attackers
have the full knowledge about the dataset that will be used
by the end-user for fine-tuning, i.e., D and D), are the same
datasets. In contrast, the “DS” indicates attackers have no
knowledge about the dataset used for fine-tuning and adopt
a proxy dataset for the model poisoning, i.e., D, and D,, are
the different datasets.

We evaluate both “Full Data Knowledge (FDK)” and “Do-
main Shift (DS)” scenarios by poisoning the pre-trained
language model via BadNets, RIPPLe, and LWP. Specifi-
cally, for the “FDK” scenario, both model poisoning and
fine-tuning are conducted on the SST-2 dataset (Socher et al.,
2013). For the “DS” scenario, the model poisoning is con-
ducted on either IMDB (Maas et al., 2011) or Yelp (Polarity)
(Zhang et al., 2015) dataset, while the poisoned model is
fine-tuned on the SST-2 dataset.

The HiddenKiller and StyleBkd attacks utilize SCPN (Iyyer
etal.,2018) and STRAP (Krishna et al., 2020) for converting
clean texts into poisoned ones. However, SCPN is time-
intensive when applied to lengthy texts and STRAP cannot
transfer the text more than 50 subwords 2. Consequently, in
line with the original works, we focus solely on the *Full
Data Knowledge’ (FDK) strategy, employing the SST-2
dataset to poison the pre-trained language model. This
decision is driven by the fact that both the IMDB and Yelp
datasets predominantly contain longer texts, which are less
suitable for these two tools.

Defense baselines. We compare PURE with three baselines.
(1) Vanilla fine-tuning (FT), which fine-tune the backdoored
PLMs without any defense strategy. (2) Fine-tuning with a
higher learning rate (FTH) (Kurita et al., 2020). (3) Using
maximum entropy loss to mix up the weights of the poisoned
model in the fine-tuning phase (MEFT) (Liu et al., 2023).
Based on our best knowledge, MEFT is the only approach
to purify backdoors for PLMs without the availability of
triggers and without relying on any clean PLMs. More
details of the implementation of each defense baseline are
described in Appendix B.

Evaluation metrics. Following previous work (Kurita et al.,
2020; Li et al., 2021), we evaluate the effectiveness of de-
fense methods using the “Label Flip Rate” (LFR), which
represents the proportion of instances not belonging to the
target class are misclassified as target class because of the
attack. As we set the target class as “positive” in our experi-
ments, LFR can be computed as:

#(negative instances classified as positive)

LFR = —
#(overall negative instances)

We inject the corresponding triggers into each negative text
of the test set to compute the LFR. We also use ACC to
represent the clean accuracy that the model performs on the
clean test set.

6.2. Implementation Details

We implement five different backdoor attacks to get the
poisoned BERTgasE 0. In our method, we set the accuracy

https://github.com/martiansideofthemoon/
style-transfer—-paraphrase
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Table 1: Backdoor defense methods against rare-word-based attacks on both “DS” and “FDK” scenarios. Bolded values
indicate the best defense results. Scores are averages of 5 runs with different seeds and subscriptions indicate standard
deviation. (ACC: Higher scores are better; LFR: Lower scores are better.)

Scenario Domain Shift Full Data Knowledge
Dataset IMDB — SST-2 YELP — SST-2 SST-2 — SST-2
Method FT FTH MEFT PURE FT FTH MEFT PURE FT FTH MEFT PURE
BadNer |ACC | 928%051 919955 918600 914610 | 925250  918logi L1275  913deo | 9152005  908los 9188114 904602
LFR | 83.1816.01 38462721 2014950  9.530.87 | 9897030 73.6das.40 29.03s66  9-530.44 | 100.000.00 9906005 86362117 14.631.55
BERT RIPPLe ACC | 92.560.44 9187019  91.7dg49 9097050 | 92420925  91.71ges  91.160.33 91.430.71 92.080.62  91.14p.44  91.880.50 91.340.87
LFR | 97.383.06  54.2021.08 23.22674  11.929.57 | 100.000.00 82.905.77  71.9623.97 11.631.52 | 99.950.10  74.481417 85.331059 10.471.15
Lwp |ACC | 92290 9185045 90.9806r _ 90.650ss | 9L7002r 9137050 8808105 58960.r1 | 9000021 9.T050 _ 89.0702s 588915
TFR | 08.27155 85961502 88461901 14.57513 | 9977001 9724161 9986015  16.872.23 | 100.00000 100.00g00 100.00000 71.07s.52
BadNer LACC | 9403051 9328074 9222130 9298025 | 9353050 923d0e0  92.0d0a0 9279055 | 9310005 924207 92.5%74 _ 92.8%ies
LFR | 56402097 12.14567  33.0%32.41  8.360.80 | 77192345  14.026.08 26493550  7-991.05 | 998L010 59342030 1224117 8.923.07
ROBERT2 | RIPPLe ACC | 93.81p63 9219945 92.84096 91.340.72 9419164 92.55087  92.760.94 92.12; 54 93.41¢.16 93.170.78 93.81¢.33 92.470.81
LFR | 62.741735 2759532 392011127 11.231.54 | 9843000 27.6312.04 1922795  13.543.24 | 97.3%070 8853351 1457641 11.21511
wp |ACC | 0831yu; 0225077 0183135 027704 | 928doar 9210075 8988042 91.0%.57 | 891070 5898050 8825055 _ 89170
TFR | 181357 14.10715 00181205 1873101 | 9957071 52333001 75.09115  15.283.50 | 96.77a47 85081625 83.0835.14 57.8016.84
BadNer LACC | 9108017 9013045 89.611.47 _ 90.Td1ay | 899302 9010057 895d105 905205 | 5929065 89721 90.16052 8901110
LFR | 9958031  80.10067 1925695  12.521.40 | 9986021  97.52155 2948935  15.281.05 | 100.000.00 9981025 92.8016.00  18.745.25
DistiIBERT | RIPPLe ACC | 91.150.26 89.34¢.74 90.060.s2 89.95¢.85 91.170.44 90.671.13 91.030.96 90.330.24 89.670.81 87.311 16 88.17¢.32 88.89¢.37
LFR | 98.19; 77 73.656.59 18.263.43 14.391.11 | 100.000.00 87.616.97 213747 14.972.44 | 100.000.00 97.530.31  65.3213.41 12.392.45
LWP ACC | 91.05¢.37 90.430.21 89.011.49 89.93¢.54 90.070.32 90.110.2¢ 86.261 36 89.61¢.80 89.45¢.41 88.64¢.89 89.54¢.43 86.72¢.86
TFR | 9780579 81491521 86121455 18.641.92 | 99.950.10  96.1%3055  76.5916.00 36.1623.65 | 100.00900 100.00000 99.950.10  76.2112.21

PURE significantly outperforms the second-best defense approach in terms of label flipping rate, achieving a p-value at 0.01 level for

BERT&gase and a p-value at 0.05 level for DistilBERT.

Table 2: Backdoor defense methods against HiddenKiller
and StyleBkd on the “FDK” scenario targeting BERTpasE.

SST-2 — SST-2
Methods FT FTH MEFT _ PURE
. . ACC | 9194951 9153029  91.4%045 91.550.43
HiddenKiller e s 3335, 56 49.16510 3153001
ACC | 92.26057 9129912  9L1.69919 91.670.1
SYleBkd R 13537, 07 28.225.82 2977550 20.53 16

threshold c as 85%. After getting the pruned pre-trained
model 0[,), we then fine-tune it with Equation 3 for 3 epochs
with a batch size of 32 and a learning rate of 2e-5 with Adam
optimizer (Kingma & Ba, 2014). We choose the model with
the best clean performance on the validation set as our final
backdoor elimination model. In our experiment, we use
A = % to normalize the coefficient )\; into a
range between 0 and 1. We set u to 0.15 for rare-word-
based attacks and 0.05 for syntax-based and text-style-based
attacks according to the model’s clean performance on the
validation set.

6.3. Experimental Results on Defending against
Different Backdoor Attacks

We conduct experiments to defend against different back-
door attacks. We show the defense results against rare-
words-based attacks (BadNet, RIPPLe, and LWP) on BERT,
RoBERTa, and DistilBERT in both full data knowledge
and domain shift scenarios in Table 1. The defense results
against HiddenKiller and StyBkd attacks on BERT in the
full data knowledge scenario are in Table 2.

As shown in Table 1, PURE achieves the lowest label flip-
ping rate (LFR) in defending against rare-word-based back-

door attacks without significantly compromising clean ac-
curacy (ACC) in most cases. Specifically, PURE can ef-
fectively neutralize the backdoor in the poisoned BERT,
RoBERTa, and DistilBERT, maintaining a low LFR in the
domain shift scenario. In contrast, other defense strategies
do not consistently purify the backdoor across attacks on
various pre-trained models.

We still notice that FTH and MEFT cannot work well in
defending against rare-word-based attacks in the full data
knowledge scenarios, and they cannot even eliminate back-
doors under the layer-wise weight poisoning (LWP) attack.
At the same time, PURE can effectively defend against the
BadNet and RIPPLe attacks and can still remove some back-
doors with a lower LFR compared with FTH and MEFT
under the LWP attack. LWP can largely preserve the effec-
tiveness of the backdoor in the pre-trained model, especially
when the attacker has full knowledge of users’ datasets.

Table 2 shows that PURE remains effective against Hid-
denKiller and StyleBkd attacks on BERT, exhibiting a com-
parable LFR with FTH that achieves the best defense results.
Meanwhile, our findings shown in Appendix C indicate
that even fine-tuning a clean pre-trained model on a clean
dataset can have a relatively high label flipping rate, indicat-
ing that the syntax or text style-based attacks could lead to
some semantic losses on the original texts. Therefore, it is
challenging to defend against these two attacks.

According to the results above, PURE can effectively defend
against various backdoor attacks on different pre-trained
models without significantly compromising the clean accu-
racy in both domain shift scenarios and full data knowledge.
Especially, PURE is very strong to defend against rare-word-
based backdoor attacks in the domain shift scenario.



Defense against Backdoor Attack on Pre-trained Language Models via Head Pruning and Attention Normalization

Table 3: Ablation study on the effectiveness of backdoor defense against rare-word-based attacks on BERT.

Scenario Domain Shift Full Data Knowledge
Dataset IMDB — SST-2 YELP — SST-2 SST-2 — SST-2
Method Prune-Only  Norm-Only PURE Prune-Only  Norm-Only PURE Prune-Only  Norm-only
BadNet ACC | 92.28¢.42 91.481 19 91.461 .26 92.08¢.23 90.98¢.84 91.340.60 91.06¢.26 91.209.28  90.46¢.62
LFR 34.9135'01 9.721.74 9.530.87 52~9441.89 1033063 9.530.44 46.4526'23 14.25¢.64 14.631'55
Ripple ACC | 91.990.70 90.97¢.63 90.97¢.50 92.100.25 92.21¢.09 91.43¢.71 91.750.50 90.930.49  91.340.87
LFR | 57482926 11.360.43 11.92457 15.517 04 11.160.7¢6  11.631.52 25.709.34 11.350.36  10.471.15
LWP ACC | 92.200.58 86.390.48 90.65¢.83 90.425 50 87.152.72 88.96¢.71 90.660.61 86.590.67  88.890.53
LFR | 21.0718.83 83.555.33  14.573.13 | 61.821972  53.511372 16.872.23 | 97.76250  100.000.00 71.073.32

Table 4: Ablation study on the effectiveness of backdoor

defense against HiddenKiller and StyleBkd on BERT.

SST-2 — SST-2
Methods Prune-Only  Norm-Only PURE
HiddenKiller LER 35560 67 40.051 g2 34.530.01
ACC 91.620‘64 92.010426 91~67D.31
SleBkd R T 27.43,.41 3002150 2953516
6.4. Ablation Study

We further conduct an ablation study on the BERT model to
evaluate the role of head pruning and attention normalization
in our method. For the Prune-Only defense, we follow the
same pruning steps and fine-tune the pruned model, 6,
without incorporating the attention weight normalization,
while for the Norm-Only defense, we only fine-tune the
poisoned ¢, following the Equation 3 without pruning. We
present the defense results against rare-words-based attacks
in both “DS” and “FDK” in Table 3, and the results against
HiddenKiller and StyleBkd in “FDK” in Table 4.

ot BA a5 o5 ors ois
Accuracy Threshold ¢ Accuracy Threshold ¢

(a) LFR Performance (b) Acc Performance

Figure 4: The impact on LFR and ACC when tuning the
pruning accuracy threshold c.

As shown in Table 3, both the Prune-Only and Norm-Only
defense methods demonstrate the ability to mitigate back-
door attacks on the pre-trained model. For BadNet and
RIPPLe attacks, the Norm-Only can even achieve a com-
parable or better LFR with PURE. However, in most cases,
the combination of head pruning and attention normaliza-
tion can yield the most effective backdoor elimination on
rare-word-based backdoor attacks, particularly on the LWP
attack. Moreover, PURE can achieve better LFR against

LFR

Norm Intensity Factor p

(b) Acc with \;

Norm Intensity Factor p

(a) LFR with )\;

ot o7 105
Norm Intensity Factor p

(d) Acc without )\,

o o7 105
Norm Intensity Factor p

(¢) LFR without )\;

Figure 5: The impact on LFR and ACC when tuning the
hyperparameter ;. with/without layer-specific coefficients
A in Eq. 3

HiddenKiller and the Prune-Only performs best under the
StyleBkd attack as shown in Table 4.

We still note that employing the norm-only defense method
may sacrifice the model’s performance on clean data in
some cases. This is because Meanyeqq (Wﬁl) can be lower
if we don’t prune the heads with low variance scores for
a specific layer [, leading to a higher coefficient ;. A
higher A; can intensify the norm, which causes an overly
uniform distribution of [CLS] attention across tokens at
heads, even though these heads should have focused more
on semantically relevant tokens in clean texts.

7. Sensitivity Analysis

We conduct experiments to investigate the impact of accu-
racy threshold ¢ and hyperparameter i in Equation 3, and
explore the necessity of layer-specific coefficients J;.

Sensitivity analysis on tuning c. We test five different
accuracy thresholds ¢ (0.95, 0.85, 0.75, 0.65, 0.55) in the
Prune-Only defense. As shown in Figure 4, using a lower
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accuracy threshold c can potentially decrease the LFR, but
it may also negatively impact the model’s utility. This effect
arises because a lower c value typically results in removing
more attention heads, which can compromise the model’s
overall effectiveness when processing clean inputs.

Sensitivity analysis on tuning ;.. We set five different
norm intensity factors p (0.15, 0.45, 0.75, 1.05, 1.35) in the
Norm-Only defense with and without \; (setting \; = 1 for
all layers) on “FDK” for all attacks. As illustrated in Figure
5, setting a higher norm intensity factor ; may negatively
impact both LFR and clean performance. This is attributed
to the more uniform distribution of attention weights, which
impairs the model’s ability in classification leading to de-
creased performance on clean data and thus an increased
LFR. Moreover, fine-tuning Equation 3 with layer-specific
coefficients A; maintains the model’s robustness against
backdoor attacks in terms of LFR (Figure 5a and 5c) while
significantly improving its utility compared with the sce-
nario setting A\; = 1 for all layers (Figure 5b and 5d). This
implies that incorporating layer-specific coefficients is cru-
cial for preserving the model’s effectiveness on clean data
without compromising its resilience to backdoor attacks.

8. Conclusions

In this paper, we have developed PURE to defend against
the backdoor attacks on the pre-trained language models.
Considering that the end-users who adopt the pre-trained
language models for their downstream tasks do not have any
knowledge about the potential backdoor threats, PURE only
assumes the end-users have a clean dataset for fine-tuning.
Based on the observation that the attention heads that are
affected by the backdoor triggers usually have low vari-
ance scores on clean texts, PURE purifies the backdoored
model by head pruning and attention normalization. Our
experimental results have demonstrated that PURE can sig-
nificantly reduce the label flip rate on poisoned texts while
maintaining high accuracy on clean texts.
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A. Details of Attack Scenarios
A.1. Details of Datasets

We split the IMDB dataset into training (22,500), validation
(2,500), and testing (25,000). We randomly sample 50,000
examples from the YELP-Polarity training dataset, dividing
them into a training set of 45,000 samples and a validation
set of 5,000 samples. We utilize the original dataset’s test
set, which contains 38,000 samples. For SST-2, we split the
dataset into training (60,570), validation (6,730), and testing
(872). As the original testing of glue SST-2 in Hugging Face
is not given a label, we view its original validation as testing
in our experiments.

A.2. Implementation of Attack Scenarios

For Badnet, RIPPLe, and LWP, we randomly injected one
rare word of “cf”, “bb”, “ak” and “mn” into 50% training
samples and set their label to “positive” during the poi-
soning process. These tampered texts combined with the
original clean samples were then used to train a poisoned
pre-trained language model 6,,. We follow the attack setup
of HiddenKiller and StyleBkd setting the poisoned rate to
be 30% and 20% samples of the training data. We conduct
poisoning training for 5 epochs with a learning rate of 2e-5
and a batch size of 32 with the Adam optimizer (Kingma &
Ba, 2014) for all attack scenarios.

B. Details of Defense Baselines

For FTH, we set the learning rate to 5e-5 following Kurita
et al. (2020). For MEFT, we set the maximum entropy
training step to 4000 steps, which makes the Stop Distance
(SD) fall between 0.01 and 0.015 (Liu et al., 2023). We
conduct fine-tuning for 3 epochs with a learning rate of 2e-5
and a batch size of 32 with the Adam optimizer. We set the
max length of inputs as 128 when fine-tuning the model and
finally choose the best performance in the validation set as
our final model for all defense methods. All experiments are
run on AMD Ryzen Threadripper 3960X 24-core Processor
and NVIDIA GeForce RTX 3090.

C. Experimental Results

Performance of defense approaches on a clean pre-
trained model. We evaluate the performance of each de-
fense approach by fine-tuning a clean BERTgssg model
on a clean SST-2 training set and testing it on both clean
and poisoned test datasets. As shown in Table 5, defense
methods including FTH, MEFT, and PURE maintain similar
clean accuracy to regular fine-tuning when the pre-trained
model is clean. We also notice that injecting rare words has
little impact on the label flipping rate, which is expected.
However, we find the clean model has a higher LFR on the
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poisoned test set using syntactic features or text styles as
triggers. This could be because transforming clean texts into
poisoned ones using a fixed syntactic structure or text style
may lead to semantics loss or distribution shift of original
text, thereby degrading the clean model’s performance.

Table 5: Clean model’s utility on clean and poisoned test.

Methods FT FTH MEFT PURE
ACC 92.100.25 91.850.50 89.12293 90.88¢.53
Rare-Word LFR 8.270.90 7.011.55 11.262.77 10.281,07
Syntactic LFR | 2547593 25.42358 27.52065 30.281 47
Text-Style LFR | 17.801.291 19.495 59  20.423097 23.22513

D. Computational Cost

We conduct experiments to compare the time cost of our
approach PURE with Vanilla Fine-tuning (FT) and Maxi-
mum Entropy Fine-tuning (MEFT), against five attacks. We
run each method under the full-data-knowledge scenario
defending against the poisoned BERT model following the
same setup in our paper. Note that we do not report FTH in
this table. FTH will have the same running time as FT be-
cause FTH achieves the backdoor defense by setting a high
learning rate. From the table 6, PURE costs more running
time (seconds) than baselines but still in a reasonable range.

Table 6: Time cost (seconds) of each defense strategy.

Dataset SST2 — SST2
Method (s) FT MEFT PURE
BadNet 1039.20 1745.39 2008.92
RIPPLe 1042.72  1757.79 2063.70
LWP 1054.04 1726.70 2105.21
HiddenKiller | 1037.53 1731.54 2047.72
StyleBkd 1047.28 1753.84 2017.58
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