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Abstract

We consider a multi-task learning problem, where an agent is presented a number of N reinforce-

ment learning tasks. To solve this problem, we are interested in studying the gradient approach,

which iteratively updates an estimate of the optimal policy using the gradients of the value func-

tions. The classic policy gradient method, however, may be expensive to implement in the multi-

task settings as it requires access to the gradients of all the tasks at every iteration. To circumvent

this issue, in this paper we propose to study an incremental policy gradient method, where the agent

only uses the gradient of only one task at each iteration. Our main contribution is to provide theo-

retical results to characterize the performance of the proposed method. In particular, we show that

incremental policy gradient methods converge to the optimal value of the multi-task reinforcement

learning objectives at a sublinear rate O(1/
√
k), where k is the number of iterations. To illustrate

its performance, we apply the proposed method to solve a simple multi-task variant of GridWorld

problems, where an agent seeks to find an policy to navigate effectively in different environments.

Keywords: Multi-Task Reinforcement Learning, Markov Decision Processes, Incremental Policy

Gradient Methods

1 Introduction

Reinforcement learning (RL), a data-driven control approach for optimal decision making, has

achieved remarkable accomplishments in tackling challenging problems in various applications,

such as playing games Mnih et al. (2015); Silver et al. (2017), robotics Gu et al. (2017), and au-

tonomous driving Kiran et al. (2021). While RL provides a powerful learning framework, it suffers

a fundamental challenge in its data efficiency. The existing RL methods are known to require a sig-

nificant amount of data and computational resources in their training. In addition, policies learned

in one task might not be applicable to solve other tasks; performing well in a new task requires to

restart the expensive training process. This challenge has limited the wide applicability of RL in

solving real-world problems.

The limitation of RL has motivated the study of multi-task RL (MTRL) framework, where an

agent aims to learn multiple tasks simultaneously. If the tasks are related in some ways, then learn-

ing them jointly should be more efficient than learning individually. Indeed, MTRL aims to improve

generalization and efficiency by exploiting the inherent relationships between multiple tasks Caru-

ana (1997); Khetarpal et al. (2020). Motivated by recent studies on policy gradient methods in

single-task RL settings, in this paper we propose to study an incremental policy gradient method

to solve MTRL problems. Unlike the classic policy gradient approach where the agent is required

to access the gradients of all the task functions at every iteration, the proposed method uses the

gradient of only one task per iteration in its update. Thus, the proposed incremental policy gradient
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method can be implemented efficiently when agent cannot access which task it is perform or agent

have difficulty to accessing all the tasks at every step is challenging. For example, consider a mod-

ern smart power grid, the system must balance electricity supply and demand in real-time, managing

a variety of tasks such as distributing power from renewable sources, responding to fluctuating con-

sumer demand, and maintaining grid stability. The specific tasks and challenges faced by the grid

management system change dynamically throughout the day due to factors like weather conditions,

unexpected outages, and varying usage patterns. The system cannot always access detailed infor-

mation about every task or situation it will encounter at each moment, and the complexity of the

grid makes it challenging to have a comprehensive overview of all tasks at all times.

Contribution: This paper proposes to study an incremental policy mirror descent (IPMD)

method for solving MTRL problems. Our main contribution is to provide theoretical results to char-

acterize the performance of the proposed method. In particular, we show that incremental policy

gradient methods converge to the optimal value of the multi-task reinforcement learning objectives

at a sublinear rate O(1/
√
k), where k is the number of iterations. To illustrate its performance, we

apply the proposed method to solve a simple multi-task variant of GridWorld problems, where an

agent seeks to find a policy to navigate effectively in different environments.

1.1 Related Works

The focus of this paper is to study an incremental variant of policy gradient methods for solving

MTRL problems. Theoretical results of policy gradient methods are well understood, most policy

gradient methods converge sublinearly Agarwal et al. (2021), Cen et al. (2022), Even-Dar et al.

(2009), Mei et al. (2020), and Wang et al. (2019). These results were improved in Bhandari and

Russo (2020), and Cen et al. (2022) where the authors use the contraction of the Bellman equation

show policy gradient methods converge linearly. While Bhandari and Russo (2020) requires an

exact line search in their algorithm, the result in Cen et al. (2022) is derived for entropy regularized

problems. In Lan (2023), the author provides a new analysis to achieve linear convergence rate

for general MDP problems. One can apply policy gradient methods to solve MTRL problems,

however, they require access to the gradients of all the tasks at each iteration. This can be expensive

to implement as the number of tasks can be very large. Our focus in this paper is to study an

incremental policy gradient approach, where each iteration requires the gradient of only one task to

update the underlying policy variable.

Another approach to solve MTRL problems is to use distributed policy gradient methods Zeng

et al. (2021), Lan et al. (2023). This approach often has a network of agents, each performs one

task. The agents are then collaborate either directly or indirectly through a centralized coordi-

nator to aggregate their local solutions. Prior study in distributed policy gradient methods have

investigated convergence rates under various scenarios. For instance, research by Lan et al. (2023)

demonstrated O(1/k) convergence rates for their specific algorithm FedNPG-ADMM. Similarly,

Zeng et al. (2021) explored the convergence behavior of their decentralized entropy regularized

policy gradient methods, revealing O(1/
√
k) convergence rates for certain architectures and loss

functions. On the other hand, we study a different setting where there is an agent that aims to learn

a number of tasks. Therefore, the theoretical results in the distributed methods are not applicable to

our setting in this paper.

Incremental gradient methods have been well studied in the optimization literature, in both

convex and nonconvex settings Bertsekas et al. (2011); Reddi et al. (2016). These methods are

known to perform well in large-scale problems, e.g., when the number of tasks is large. In this

paper, we are interested in applying this approach to solve multi-task RL problems. It is known
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that RL objectives are nonconvex Agarwal et al. (2020). Thus, one can apply the existing results of

incremental methods for nonconvex problems to the RL setting. However, this approach will mostly

result in a convergence to stationary points. Although RL objectives are nonconvex, they satisfy the

so-called gradient domination, implying every stationary point is a global optimal. Indeed, recent

theoretical guarantees for the convergence of policy gradient methods to the global optimal solution

in the single-task RL setting are based on this property. Our focus in this paper is to exploit the

gradient domination condition to study the convergence of the incremental policy gradient methods

in the multi-task RL setting.

2 Multi-Task Reinforcement Learning

We consider a multi-task reinforcement learning problem, where an agent is presented N tasks,

each is modeled by a discounted Markov decision process (MDP). In particular, the MDP Mi is

a collection of 5-tuples, Mi = (S,A,P,Ri, γ) where S and A are the finite sets of states and

actions. The transition probability kernel P specifies the distribution of the next state s′ given the

current state and action, i.e., s′ ∼ P(· | s, a). In addition, Ri : S × A → [0, 1] is the reward

function for task i and γ ∈ (0, 1) is a discount factor. Here, without loss of generality, we consider

the reward between (0, 1), but it can be extended to any bounded interval. A policy π(·, s) is a

probability distribution over the action space A for each different state s ∈ S . Each choice of policy

in task i induces a long-term expected discounted reward

V i
π(s) = E

[ ∞
∑

t=0

γtRi(st, at) | s0 = s, at ∼ π(· | st), st+1 ∼ P(· | st, at)
]

,

and the state-action value function Q

Qi
π(s, a) = E

[ ∞
∑

t=0

γtRi(st, at) | s0 = s, a0 = a, st+1 ∼ P(· | st, at), at+1 ∼ π(· | st)
]

.

Thus, V i
π(s) = Ea∼π(·|s)[Q

i
π(s, a)]. Since Ri ∈ (0, 1) we have |Qi

π(s, a)| ≤ 1/(1− γ) for all s, a.

In addition, it is known that Qi
π(s, a) satisfies the Bellman equation

Qi
π(s, a) = Ri(s, a) + γ

∑

s′∈S
P(s′ | s, a)V i

π(s
′).

The goal of MTRL is to find a policy that simultaneously optimizes the aggregate of the value

functions of the tasks at every state, i.e., the agent aims to find π⋆ such that
∑

i V
i
π⋆(s) is maximized

for every state s ∈ S . It is known that for the finite MDP setting there exists such an optimal policy

π⋆ Bellman and Dreyfus (1959). Finding π⋆ is essentially equivalent to solve

max
π

f(π) :=

N
∑

i=1

f i(π). (1)

where f i(π) = Es∼ρ⋆(·)[V
i
π(s)] and ρ⋆ is the stationary distribution corresponding to the optimal

policy π⋆. Note that the knowledge of ρ⋆ is not required to the implementation of the proposed

algorithm studied in the next section.

We conclude this section by introducing a few notation that will facilitate our algorithmic de-

velopment in the next section. Given a policy π, we denote by dsπ(s
′) the discounted state visitation

dsπ(s
′) = (1− γ)

∞
∑

t=0

γtPπ(st = s′ | s0 = s),
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which represents the amount of time that the agent visits state s′ when it starts from s. Given two

policies π, µ, let Dµ
π be the Bregman’s distance defined as

Dµ
π(s) = ω(µ(· | s))− ω(π(· | s))− ⟨∇πω(π(· | s)), µ(· | s)− π(· | s)⟩, ∀s ∈ S,

where ω is a strongly convex function. In this paper, we will consider ω as an entropy function

ω(π(· | s)) =
∑

a∈A
π(a | s) log(π(a | s)).

Under this choice, Dµ
π can be simplified to

Dµ
π(s) =

∑

a∈A
µ(a | s) log µ(a | s)

π(a | s) ,

which by using the Pinsker’s inequality we obtain

∥µ(· | s)− π(· | s)∥22 ≤ ∥µ(· | s)− π(· | s)∥21 ≤ 2Dµ
π(s), (2)

where the first inequality is due to the fact that ∥ · ∥2 ≤ ∥ · ∥1
3 Incremental Policy Mirror Descent

To solve problem (1), one can apply the policy gradient approach, for example, the policy mirror

descent method studied in Lan (2023). This method iteratively updates πk, an estimate of π⋆,

starting from an arbitrary policy π0 as

πk+1(· | s) = argmaxµ(·|s)∈∆|A|
{αk

〈

∑

i

Qi
πk
(s, ·), µ(·, s)

〉

−Dµ
πk
(s)}.

To implement this update, one needs to estimate the state-value function Qi for every task i at any

iteration k, which is equivalent to solving N policy evaluation problems. This can be expensive in

practice as the number of tasks can be large.

In this paper, we are interested in studying an incremental variant of the policy mirror descent

methods, where the agent can only have access to the state-value function of one task at a time. Our

algorithm is formally stated in Algorithm 1. At any iteration k, the agent chooses a task i to compute

the state-value function Qi
πk

using the current policy πk. The agent then implements a policy mirror

descent step to update πk as in (3). The main challenge of this setting is due to the appearance of the

task is random, this result in a noise between the true gradient and the average gradient computed.

In Algorithm 1, we allow the agent to choose the task index i at any iteration arbitrarily. For

example, the agent can apply the cyclic rule (i.e., choosing the task in increasing order) or random

rule (i.e., randomly picking the task index). However, we do enforce that each task is chosen

infinitely often to guarantee that the agent will perform all the tasks. One way to have this condition

is to consider the following assumption.

Assumption 1 Given a positive integer τ ≥ N , each i ∈ {1, . . . , N} in Step 1 of Algorithm 1 will

be drawn at least one time within every interval [k − τ, k) for every k ≥ τ .

One can view that τ represents an upper bound on the delay in computing the value of the state-

action function Qi at time k. We denote τ ik as the last time that task i is drawn at time k. If i is not

selected at time k then Qi
τ i
k

is the most recent Q value of task i using policy πτ i
k

. If τ = N , then

Algorithm 1 reduces to the classic incremental gradient method with cyclic rules.

Finally, we present below some preliminary results that will be useful in deriving our main

result studied in the next section. First, we consider the so-called three-point lemma, which is used

to characterize the updates of mirror descent. Its proof can be found in Lan (2023).
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Algorithm 1 Incremental Policy Mirror Descent (IPMD)

Input: π0, step sizes {αk}k≥0

for k = 0, 1, ...,K − 1 do

[1] Draw i ∈ {1, · · · , N}
[2] Compute Qi

k ≜ Qi
πk

using the policy πk
[3] Update πk for all s ∈ S as

πk+1(· | s) = argmaxµ(·|s)∈△|A|
{αk⟨Qi

k(s, ·), µ(·, s)⟩ −Dµ
πk
(s)}. (3)

end

Lemma 1 For any policy µ, the sequence {πk} generated by Algorithm 1 satisfies for all s ∈ S
αk

〈

Qi
k, µ(· | s)− πk+1(· | s)

〉

≤ Dµ
πk
(s)−Dµ

πk+1
(s)−D

πk+1

πk
(s).

Next, we present the popular performance difference lemma in reinforcement learning Kakade and

Langford (2002).

Lemma 2 For any two policies π and π′, we have

V i
π′(s)− V i

π(s) =
1

1− γ

∑

s′∈S
dsπ′(s′)⟨Qi

π

(

s′, ·
)

, π′(· | s′)− π(· | s′)⟩.

Finally, the following two lemmas are to characterize the properties of the sequence {πk} generated

by Algorithm 1. Their analysis is presented in Appendix 6.1 and 6.2, respectively.

Lemma 3 For any s ∈ S , the sequence
{

πτ i
k

}

generated by Algorithm 1 satisfies for all s ∈ S

V i
τ i
k
+1(s)− V i

τ i
k

(s) ≤
〈

Qi
τ i
k

(s, ·), πτ i
k
+1(· | s)− πτ i

k

(· | s)
〉

≤ −1

αk

[

D
π
τi

k
π
τi

k
+1
(s) +D

π
τi

k
+1

π
τi

k

(s)
]

,

Lemma 4 The sequence {πk} generated by Algorithm I satisfies for all s ∈ S
∥πk+1(· | s)− πk(· | s)∥2 ≤ ∥πk+1(· | s)− πk(· | s)∥1 ≤

αk

1− γ
.

4 Main Results

In this section, we will present the main result of this paper, where we will study the convergence

rate of Algorithm 1. In particular, we show that under Assumption 1, Algorithm 1 can return an

optimal policy of problem (1) at a sublinear rate. The following theorem is to present this result.

Theorem 5 Suppose that Assumption 1 holds. Let {πk}k≥0 be generated by Algorithm 1 and step

sizes be chosen as αk = 2√
k+τ+1

. Then we have

max
t=1,··· ,k

[f(π⋆)− f(πt)] ≤
2[f(π⋆)− f(π0)] +NEs∼ρ⋆(·)

[

Dπ⋆

π0
(s)

]

4(1− γ)(
√
k + τ + 2−

√
τ + 3)

+
Nγ

√
τ +N(1 + γ)τ(1 + ln(k + τ))

(1− γ)4(
√
k + τ + 2−

√
τ + 3)

· (4)
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Remark 6 It can be seen from Eq. (4) that the IPMD finds the optimal value of problem (1) at a rate

O(1/
√
k). This rate is much weaker than the result of centralized policy mirror descent studied in

Lan (2023); Xiao (2022), where the rate is exponential using constant step sizes. However, we note

that the existing analysis requires access to the full gradient of the objective in (1), i.e.,
∑

iQ
i
πk

, at

every iteration. On the other hand, the implementation of IPMD requires the Q function of only one

task per iteration. Indeed, IPMD can be viewed as a stochastic variant of the existing policy mirror

descent. In this setting, one needs to use decaying step sizes to guarantee an exact convergence

to the optimal solution. On the other hand, to achieve an exponential convergence rate of the

stochastic counterpart, the work in Lan (2023) assumes that the variance of the gradient samples

decay exponentially fast. This assumption obviously does not hold in the context of IPMD. One can

potentially apply the variance reduction techniques in Defazio et al. (2014); Johnson and Zhang

(2013) to achieve this condition. This approach, however, is nontrivial since the analysis in Lan

(2023) is not applicable due to the heterogeneity of the value functions of the tasks. Finally, our

theoretical result also shows that the rate scales linearly with the number of tasks, quadratically on

the delay interval τ , and cubically on the problem horizon 1/(1 − γ). The convergence of policy

mirror descent, however, only scales linearly with 1/(1 − γ) Lan (2023); Xiao (2022). Addressing

this theoretical gap will be an interesting topic, which we leave for our future studies.

Proof Recall that τ ik is the last time that task i is selected in the time interval [k − τ, k]. Using

Lemma 1 with µ = π⋆ we obtain for all s ∈ S
Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s) ≥ ατ i

k

〈

Qi
τ i
k

(s, ·), π⋆(· | s)− πτ i
k
+1(· | s)

〉

= ατ i
k

〈

Qi
τ i
k

(s, ·), π⋆(· | s)− πτ i
k

(· | s)
〉

+ ατ i
k

〈

Qi
τ i
k

(s, ·), πτ i
k

(· | s)− πτ i
k
+1(· | s)

〉

≥ ατ i
k
k

〈

Qi
τ i
k

(s, ·), π⋆(· | s)− πτ i
k

(· | s)
〉

+ ατ i
k

(

V i
τ i
k

(s)− V i
τ i
k
+1(s)

)

, (5)

where the last inequality used Lemma 3. We next consider the first term on the right-hand side of

the preceding relation. By Lemma 2 and choose π′ = π⋆, π = τ ik we have

(1− γ)
(

V i
π⋆(s)− V i

τ i
k

(s)
)

= Es′∼ds
π⋆ (·)

[〈

Qi
τ i
k

(

s′, ·
)

, π⋆
(

· | s′
)

− πτ i
k

(

· | s′
)

〉]

,

which by using the fact that Es∼ρ⋆(·)Es′∼ds
π⋆ (·) = Es∼ρ⋆(·) gives

(1− γ)Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

τ i
k

(s)
]

= Es∼ρ⋆(·)
[〈

Qi
τ i
k

(s, ·), π⋆(· | s)− πτ i
k

(· | s)
〉]

. (6)

Take expectation w.r.t. s ∼ ρ⋆(·) on both sides of Eq. (5) and using Eq. (6) we obtain

Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

≥ (1− γ)ατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

τ i
k

(s)
]

+ ατ i
k

Es∼ρ⋆(·)
[

V i
τ i
k

(s)− V i
τ i
k
+1(s)

]

= ατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

τ i
k
+1(s)

]

− γατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

τ i
k

(s)
]

= ατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk+1
(s)

]

− γατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

+ ατ i
k

Es∼ρ⋆(·)
[

V i
πk+1

(s)− V i
τ i
k
+1(s)

]

− γατ i
k

Es∼ρ⋆(·)
[

V i
πk
(s)− V i

τ i
k

(s)
]

.

Reorganizing both sides of the preceding equation gives

ατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk+1
(s)

]

6
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≤ γατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

+ Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

+ γατ i
k

Es∼ρ⋆(·)
[

V i
πk
(s)− V i

τ i
k

(s)
]

+ ατ i
k

Es∼ρ⋆(·)
[

V i
τ i
k
+1(s)− V i

πk+1
(s)

]

. (7)

We next analyze each term on the right-hand side of the preceding equation. First, by Lemma 2
∣

∣

∣
V i
πk+1

(s)− V i
τ i
k
+1(s)

∣

∣

∣
=

∣

∣

∣

1

1− γ
Es′∼dsπk+1

(·)
[〈

Qi
τ i
k
+1

(

s′, ·
)

, πk+1

(

· | s′
)

− πτ i
k
+1

(

· | s′
) 〉]

∣

∣

∣

≤ 1

1− γ
Es′∼dsπk+1

(·)
∥

∥

∥
Qi

τ i
k
+1

(

s′, ·
)

∥

∥

∥

∞

∥

∥

∥
πk+1

(

· | s′
)

− πτ i
k
+1

(

· | s′
)

∥

∥

∥

1

≤ 1

(1− γ)2
Es′∼dsπk+1

(·)
∥

∥πk+1

(

· | s′
)

− πτ i
k
+1

(

· | s′
) ∥

∥

1

=
1

(1− γ)2
Es′∼dsπk+1

(·)
∥

∥

∥

k
∑

t=τ i
k
+1

πℓ+1

(

· | s′
)

− πℓ
(

· | s′
)

∥

∥

∥

1

≤ 1

(1− γ)2
Es′∼dsπk+1

(·)

k
∑

t=τ i
k
+1

∥

∥πℓ+1

(

· | s′
)

− πℓ
(

· | s′
)∥

∥

1
,

where the first inequality is due to the Holder’s inequality while we use the fact that
∣

∣Qi
πt
(s, a)

∣

∣ ≤
1

1−γ
for all (s, a) in the second inequality. Using Lemma 4 and αk ≤ ατ i

k

≤ αk−τ for all τ ik ∈
(k − τ, k], we have from the relation above

∣

∣

∣
V i
πk+1

(s)− V i
τ i
k
+1(s)

∣

∣

∣
≤ 1

(1− γ)2
Es′∼dsπk+1

(·)

k
∑

t=k−τ+1

∥

∥πℓ+1

(

· | s′
)

− πℓ
(

· | s′
)
∥

∥

1

≤ 1

(1− γ)3
Es′∼dsπk+1

(·)

k
∑

t=k−τ+1

αt ≤
ταk−τ

(1− γ)3
, (8)

where the last inequality is due to the property of discounted state distribution. Using the same

argument as above we can have
∣

∣

∣
V i
τ i
k

(s)− V i
πk
(s)

∣

∣

∣
≤ ταk−τ

(1− γ)3
· (9)

Substituting Eqs. (8) and (9) into Eq. (7) and use the fact that ατ i
k

≤ αk−τ we obtain

ατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk+1
(s)

]

≤ γατ i
k

Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

+
(1 + γ)τ(αk−τ )

2

(1− γ)3

+ Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

,

which yields

αk+1Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk+1
(s)

]

≤ γαkEs∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

+
(1 + γ)τ(αk−τ )

2

(1− γ)3

+ Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

+ γ(ατ i
k

− αk)Es∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

≤ γαkEs∼ρ⋆(·)
[

V i
π⋆(s)− V i

πk
(s)

]

+
(1 + γ)τ(αk−τ )

2

(1− γ)3

+ Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

+
2γ

1− γ
(ατ i

k

− αk).

7
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Taking the average of the preceding relation over i ∈ [1, N ] we obtain

αk+1 [f(π
⋆)− f(πk+1)] ≤ γαk [f(π

⋆)− f(πk)] +
N
∑

i=1

(1 + γ)τ(αk−τ )
2

(1− γ)3

+

N
∑

i=1

Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)−D

π
τi

k
π
τi

k
+1
(s)

]

+

N
∑

i=1

2γ

1− γ
(ατ i

k

− αk).

Divide both side by γαk+1 [f(π
⋆)− f(πk+1)] gives

(1− γ)αk+1 [f(π
⋆)− f(πk+1)] ≤ γ (αk[f(π

⋆)− f(πk)]− αk+1[f(π
⋆)− f(πk+1)])

+
N(1 + γ)τ(αk−τ )

2

(1− γ)3
+

N
∑

i=1

Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)

]

+
2Nγ

1− γ
(αk−τ − αk).

Summing up both sides of the preceding inequality over τ ik = k − τ + 1, . . . , k gives
(1− γ)ταk+1 [f(π

⋆)− f(πk+1)] ≤ γτ (αk[f(π
⋆)− f(πk)]− αk+1[f(π

⋆)− f(πk+1)])

+
2τNγ

1− γ
(αk−τ − αk) +

N(1 + γ)τ2(αk−τ )
2

(1− γ)3
+

N
∑

i=1

k
∑

τ i
k
=k−τ+1

Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)

]

,

which when summing up both sides over k yields

(1− γ)τ
k−1
∑

t=0

αt+1 [f(π
⋆)− f(πt+1)] ≤ γτ (α0[f(π

⋆)− f(π0)]− αk+1[f(π
⋆)− f(πk+1)])

+
k−1
∑

t=0

2τNγ

1− γ
(αt−τ − αt) +

k−1
∑

t=0

N(1 + γ)τ2(αt−τ )
2

(1− γ)3

+

N
∑

i=1

k−1
∑

t=0

t
∑

τ i
k
=t−τ+1

Es∼ρ⋆(·)

[

Dπ⋆

π
τi

k

(s)−Dπ⋆

π
τi

k
+1
(s)

]

≤ γτα0[f(π
⋆)− f(π0)] +

k−1
∑

t=0

2τNγ

1− γ
(αt−τ − αt) +NτEs∼ρ⋆(·)

[

Dπ⋆

π0
(s)

]

+

k−1
∑

t=0

N(1 + γ)τ2(αt−τ )
2

(1− γ)3
. (10)

Next, using αk = 2√
k+τ+1

for k ≥ 0 and let αk = α0 for k < 0 we have
k−1
∑

t=0

αt+1 ≥
2√
τ + 2

+

∫ k

1

2√
t+ τ + 2

dt ≥ 4
√
k + τ + 2− 4

√
τ + 3.

k−1
∑

t=0

(αt−τ )
2 ≤

τ−1
∑

t=0

(α0)
2 + (α0)

2 +

∫ k−1

τ

4

t+ τ + 1
dt ≤ 4 + 4 ln(k + τ).

k−1
∑

t=0

(αt−τ − αt) =

τ−1
∑

t=0

α0 +

k−τ−1
∑

t=0

αt −
k−1
∑

t=0

αt ≤ 2
√
τ .

Using these relations into Eq. (10) we have
4(1− γ)τ(

√
k + τ + 2−

√
τ + 3) max

t=1,·,k
[f(π⋆)− f(πt)]

≤ γτα0[f(π
⋆)− f(π0)] +NτEs∼ρ⋆(·)

[

Dπ⋆

π0
(s)

]

+
4Nγ

√
τ3

1− γ
+

4N(1 + γ)τ2(1 + ln(k + τ))

(1− γ)3
,

which by dividing both side by 4(1−γ)τ(
√
k + τ + 2−

√
τ + 3) and using γ < 1 we immediately

obtain (4).

8
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5 Simulation

In this section, we will illustrate the convergence of IPMD in Algorithm 1 in solving a multi-task

GridWorld problem. The goal of this simulation is to investigate the performance of IPMD.

GridWorld Environments. We create six GridWorld environments, each has size 10× 10. Each

environment has the same initial starting point (the blue square in the top left corner) and the goal

(the yellow square in the bottom right corner). The goal of the agent is to find a policy that can help

it navigate from the starting point to the target while avoiding all the obstacles (the red square). The

obstacles in each environment are located in different positions in the grid. The first three figures in

Figure 1 presents some example of GridWorld environments, while the last figure in Figure 1 shows

the obstacles at all the environments put together. There is an optimal path that can solve the task

simultaneously (e.g., light green path in the last figure), while there are multiple different solutions

for each task (e.g., light green paths in the first three figures). To solve this multi-task problem,

the agent seeks to find the light green path in the last figure. For our MTRL setting, we assign

the reward being +1 at the target while the agent gets a −1 if it runs into the obstacles. For our

GridWorld 0 GridWorld 1 GridWorld 2 Total GridWorld

Figure 1: GridWorlds

simulation, we implement Algorithm 1 with a cyclic rule and decreasing step-size as in Theorem 5,

where the environments are chosen in increasing order. In addition, since the transition probability

matrices of these environments are known, we can easily compute the state-action value function

Q at each iteration, e.g., by solving the Bellman equation. The results of our simulation are shown

in Figure 2, where we show the error (the difference between these rewards and the optimal value)

on the left and the log plot of it compare with
f(π⋆)−f(π0)√

k
. We can see that the proposed algorithm

returns an optimal policy that can solve the multi-task GridWorld problem, which agrees with our

theoretical results in Theorem 5. In this simulation, the rate of convergence seems to be faster than

1/
√
k, which implies that the current analysis might not be tight. We note that the convergence rate

of PMD for solving problem (1) is linear. Thus, one might need a new approach to study the best

theoretical results on the performance of IPMD.

Acknowledgement

This work was supported by the National Science Foundation under awards ECCS-CAREER-

2339509 and CCF-2343599.

9



BAI DOAN

Figure 2: Performance of IPMD Methods

6 Appendix

6.1 Proof of Lemma 3

First, using Lemma 1 with µ = πτ i
k

we have

⟨Qi
τ i
k

(

s′, ·
)

, πτ i
k

(· | s′)− πτ i
k
+1(· | s′)⟩ ≤ − 1

αk

[

D
π
τi

k
π
τi

k
+1
(s) +D

π
τi

k
+1

π
τi

k

(s)

]

≤ 0.

Next, using Lemma 2 with π′ = πτ i
k
+1 and π = πτ i

k

, and the relation above gives

V i
τ i
k

(s)− V i
τ i
k
+1(s) =

1

1− γ

∑

s′∈S
ds
τ i
k
+1(s

′)⟨Qi
τ i
k

(

s′, ·
)

, πτ i
k

(· | s′)− πτ i
k
+1(· | s′)⟩

≤ 1

1− γ
ds
τ i
k
+1(s)⟨Q

i
τ i
k

(s, ·) , πτ i
k

(· | s)− πτ i
k
+1(· | s)⟩

≤ ⟨Qi
τ i
k

(s, ·) , πτ i
k

(· | s)− πτ i
k
+1(· | s)⟩

≤ − 1

αk

[

D
π
τi

k
π
τi

k
+1
(s) +D

π
τi

k
+1

π
τi

k

(s)

]

,

where in the second inequality we use the fact that ds
τ i
k
+1

(s) ≥ 1− γ.

6.2 Proof of Lemma 4

Without loss of generality, let task i be chosen at time t ∈ [k− τ, k]. Thus, using Lemma 1 with

µ = πt we have

αt

〈

Qi
πt
(s, ·), πt(· | s)− πt+1(· | s)

〉

≤ −Dπt

πt+1
(s)−Dπt+1

πt
(s) ≤ −∥πt+1(· | s)− πt(· | s)∥21 ,

where the last inequality is due to (2). Since
∣

∣Qi
πt
(s, a)

∣

∣ ≤ 1
1−γ

for all (s, a) ∈ S × A, multiply

both side by −1 and use the Holder’s inequality the preceding relation gives

∥πt+1(· | s)− πt(· | s)∥21 ≤ αt ∥πt+1(· | s)− πt(· | s)∥1
∥

∥Qi
πt
(s, ·)

∥

∥

∞

≤ αt

1− γ
∥πt+1(· | s)− πt(· | s)∥1 .
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