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Abstract: 

With the increased use of machine learning 

models, there is a need to understand how 

machine learning models can be maliciously 

targeted. Understanding how these attacks are 

‘enacted’ helps in being able to ‘harden’ models 

so that it is harder for attackers to evade detection. 

We want to better understand object detection, the 

underlying algorithms, different perturbation 

approaches that can be utilized to fool these 

models. To this end, we document our findings as 

a review of existing literature and open-source 

repositories related to Computer Vision and 

Object Detection. We also look at how 

Adversarial Patches impact object detection 

algorithms. Our objective was to replicate 

existing processes in order to reproduce results to 

further our research on adversarial patches.  

 

Introduction 

Computer Vision is a subset of Artificial 

Intelligence (AI) that grants computers the ability 

to “see” and process visualizations, thus 

extracting valuable information and performing a 

particular task in response. This technology can 

be integrated into the features of many existing 

devices we use today to improve its capabilities. 

One prominent feature in development under the 

umbrella of computer vision is Object Detection. 

Object detection allows computers to utilize 

cameras to track images and perform analysis. 

Image analysis is generally performed by training 

deep learning models on a large set of images in 

order to accurately classify objects. Images are 

classified by extracting visual features from them, 

usually by using a sliding window to scale 

through them and utilizing those features to make 

distinctions [1]. 

 

 

 
Figure 1: Comparison of semantic segmentation, classification and localization, object 

detection and instance segmentation. [2] 

 

 

 

 



Throughout the progression of object detection 

technology, various algorithms such as YOLO 

(You Only Look Once) [3] have been developed. 

This has enabled real-time object detection 

research with a model capable of producing 

results with high detection speed and accuracy. 

Compared to previous versions of YOLO, 

YOLOv7 benefits from an improved network 

architecture and less of a need for more expensive 

computation power [4]. YOLOv7 utilizes 

Convolutional Neural Networks (CNNs) which is 

a learning algorithm used for image processing. 

This method allows computers to take images or 

videos and digitize them by converting them to 

pixels before taking a window size of the image 

and extracting features from each window. Its 

purpose is to find some useful things in each 

frame and pool them together. Classification can 

then be performed upon the output of the 

algorithm to determine what the computer saw. 

Like other neural networks, this algorithm 

benefits from a learning process called 

backpropagation which allows values to be passed 

back through the algorithm with adjustments in 

order to train the model more efficiently. 

 

Convolutional Neural Networks (CNNs) 

 

Convolutional Neural Networks (CNNs) are a 

type of deep neural network that have been widely 

used in computer vision tasks, including object 

detection [5]. CNNs are designed to automatically 

learn features from raw input data, such as 

images, by applying a series of convolutional 

filters that scan the image at different scales and 

orientations, looking for specific patterns or 

features. 

 

In object detection, CNNs are typically used in 

two stages: region proposal and object 

classification. In the first stage, the CNN is used 

to generate a set of candidate object regions in the 

image, which are then passed to the second stage 

for classification. The candidate regions are 

typically generated using a technique called 

selective search, which identifies regions that are 

likely to contain objects based on their color, 

texture, and other visual cues.  In the second stage, 

the CNN is used to classify each candidate region 

as either containing an object or not. This is 

typically done by applying a sliding window 

approach, where a small window is moved across 

each candidate region, and the CNN classifies the 

contents of the window. If the CNN determines 

that the window contains an object, the region is 

considered a positive detection and the object is 

localized within the region. 

 

CNNs have been shown to be highly effective in 

object detection, achieving state-of-the-art 

performance on many benchmark datasets. 

However, they require large amounts of training 

data and can be computationally expensive, 

especially for real-time applications. To address 

these challenges, researchers are exploring new 

architectures, such as the YOLO [3] and Faster R-

CNN models [6], which aim to balance accuracy 

and speed. 

 

Adversarial Attacks and Adversarial Patches 

Adversarial attacks aim to fool machine learning 

models.  Adversarial attacks can be done by 

making changes to a physical object so as to fool 

the machine learning model so that an image or 

object is mistaken for some other object or image 

or in some cases, not even detected.  This ability 

to make a change to an object for the purpose of 

fooling a system is also known as adversarial 

perturbation.  In this work, we investigated the 

usage of patches to cause the image classifier to 

misclassify, misidentify or be unable to identify 

given objects.  Adversarial patches are images 

that once printed, added, or presented to the image 

classifier, can cause the classifier to ignore the 

other items or misidentify the items [8, 9].  



    

 

 
Figure 2:  A real-world attack on VGG16, using a physical patch  [7]  

 

 

Experimental Approach 

We reviewed various papers detailing generative 

adversarial patches and their effects on object 

detection algorithms. These patches seek to 

prevent the algorithms from accurately detecting 

objects within the images. Many papers provided 

access to GitHub repositories, thus allowing us to 

use pre-trained models on our test datasets to 

compare the results of the algorithm with varying 

images and patches.  

 

We worked to experiment with the Pytorch 

version of the algorithm to observe its effect on a 

random set of images from ImageNet which 

consisted of images of people and 

objects/animals. The set of objects/animals are a 

bicycle, birds, cars, cell phones, and dogs.  

 

In order to run the algorithm, we had to configure 

my computing environment by cloning the 

YOLOv7 repository 

(https://github.com/wongkinyiu/yolov7) and then 

installing all the Python libraries listed in the 

provided text file. We were able to run the 

detection algorithm on all the images to generate 

a confidence value and altered images with a 

border surrounding the classified objects. The 

confidence value represents how sure the model 

accurately defines an object. The script we 

utilized for detection allowed us to customize the 

parameters in order to set pre-trained model 

weights, set a confidence value threshold, specify 

image size, and set a target directory for my 

images to perform classification successively. 

 

The first step in measuring the effectiveness of the 

model was to run the detection algorithm on the 

set of unaltered images to record their confidence 

values. Following this, an adversarial patch can be 

applied to an image in an attempt to alter the 

confidence value output. Two patches were used 

to apply to images and test the algorithm as shown 

in Figures 3. They were automatically generated 

with qualities that may have the ability to fool 

algorithms. Each patch was applied over both 

categories of images, and for images of people, 

they were applied over the face and the body in 

separate instances to observe the varying effects. 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 3(a). Patch #1    Figure 3(b). Patch #2    

    

 

 

 

 Confidence Value 

Object Non-people Non-people Patch #1 Non-people Patch #2 

Bicycle 0.947094 0.948981 0.941189  

Bird 1 0.785761 0.75917  0.796503  

Bird 2 0.687701 0.475139  0.616994  

Car 1 0.90718 0.397678  0.907187  

Car 2 0.784057 0.540132  0.77098  

Dog 1 0.771059  0.916712  0.883784 

Dog 2 0.961846  0.944186  0.956071  

Average 0.83496 0.71171 0.83896 

Table 1. Confidence values of YOLOv7 ran on subset of images representing non-people 

 

 

Results and Discussion 

All of the confidence values retrieved from the 

output of the algorithms were recorded in Table 1 

and Table 2. In order to more easily digest the 

results and store the values, the parameter of the 

algorithms that permits saving text files was used, 

and the script was modified to append the 

confidence value to the results. Based on 

observation, the algorithm seemed to be less 

prone to detecting objects within Patch #2, which 

proved to be a distraction with Patch #1. Almost 

all images that utilized Patch #1 were subject to 

detection of not only the objects in the original 

image, but also the hidden objects within the 

patch. This is likely because Patch #1 contains 

objects that are more easily recognizable based on 

the images utilized to train YOLOv7 [4, 7]. 

 



 

 Confidence Value 

 

Object 

 

People 

People Patch 

#1 (Over 

Body) 

People Patch 

#1 (Over 

Face) 

People Patch 

#2 (Over 

Body) 

People Patch 

#2 (Over 

Face) 

Person 1 0.972414  0.965844  0.788071  0.973064  0.967817  

Person 2 0.95275  0.949856  0.817727  0.956822  0.956297  

Person 3 0.962644  0.960276  0.952369  0.961844  0.950804  

Person 4 0.967071  0.953975  0.951217  0.961021  0.966046  

Person 5 0.946961  0.934886  0.932216  0.943588  0.898543  

Person 6 0.957467  0.949614  0.724247  0.959409  0.949607  

Person 7 0.888205  0.877668  0.860247  0.890281  0.867448  

Person 8 0.839267  0.9634  0.813454  0.908358  0.824774  

Person 9 0.953179  0.950174  0.930229  0.952936  0.951521  

Person 10 0.912204  0.894054  0.91012  0.911656  0.917367  

Person 11 0.909408  0.907011  0.945225  0.912533  0.884443  

Person 12 0.957507  0.949215  0.848984  0.959818  0.940265  

Person 13 0.916603  0.874622  0.699182  0.906344  0.920201  

Person 14 0.821476  0.740749  0.83696  0.792484  0.85599  

Person 15 0.966412  0.964674  0.961278  0.960658  0.969172  

Average 0.928238 0.9224 0.8647684 0.93005 0.921353 

Table 2. Confidence values of YOLOv7 ran on subset of images representing people 

 

 

 

 

 

 

 

 

 

Figure 4. Car 1 with Patch #1   Figure 5. Car 2 with Patch #1  

      



For the set of images representing non-people, the 

patches had varying effects. While the original 

images average confidence value was 0.83496, 

Patch #1 had an overall negative effect on the 

detection rate of the classifier, producing a result 

of 0.71171. This drastic decrease was most 

sharply noticeable with the images of cars which 

had large patches applied to them and numerous 

detectable objects in the background of the 

images. As shown in Figures 4 & 5, background 

objects such as people and other cars, in addition 

to objects within the patch itself served as 

potential impediments to the algorithms detection 

accuracy of the primary car. The size of the patch 

may also be an overwhelming factor given the 

algorithm's ability to attempt detection of the 

patch as well. Patch #2 had a converse effect on 

the non-people image subject producing slightly 

better detection rates than even the unaltered 

images. The patch itself was not generally 

recognized by the algorithm as a makeup of 

additional objects. 

 

The people image subset allowed us to view the 

effects that a patch might have when applied on 

certain parts of a person, namely the face and the 

body. It was initially suspected that applying the 

patch over the face of a person may serve as more 

of a threat than anywhere else because the face 

possesses many identifiable characteristics of a 

person. Overall, the unaltered images possessed 

an average confidence value of 0.928238. When 

Patch #1 was applied over the body and the face, 

the confidence values generated were 0.9224 and 

0.8647684 respectively. While the average 

confidence value for Patch #1 applied over the 

body of the person was on par with that of the 

unaltered images, the same patch applied over the 

face generated a lower average value. Patch #2 

resulted in values of 0.93005 and 0.921353 when 

applied over the body and the face respectively, 

citing an increase in detection accuracy over the 

body and a miniscule decrease over the face. 

Overall, most images were reflective of that, but 

in one instance, the application of the patch over 

the face seemed to have a noticeable effect 

(Figures 6 & 7). While more testing and further 

analysis should be conducted to determine if the 

application of a patch over the face or body has 

drastic effects, it remained consistent that the 

algorithm conducted using Patch #2, no matter 

where on the object it was applied, produced 

better results than Patch #1. 

 
 

Figure 6. Person 8 with Patch #2 applied over the body  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Person 8 with Patch #2 applied over the face 

 

 

Future Work 

In the future, there’s a variety of methods that can 

be executed to further analyze the effectiveness of 

YOLOv7. Throughout the experiment, it was 

shown the varying effect that different kinds of 

patches can produce, so a more in depth analysis 

of why one patch that contained objects was more 

easily detectable over another is warranted. The 

patch size is another potential factor to consider, 

especially when utilizing patches with identifiable 

objects within them, so calling patches over 

images is another avenue of interest. Patch 

location seemed to add another dimension to the 

detection rate in some instances, so in order to 

determine its effects, the same patch should be 

applied multiple times on the same image in 

separate locations. There is also room to utilize 

image datasets that are more expansive and 

diverse. While this experiment was generally 

limited to specific objects that the YOLOv7 

model was trained on, perhaps more images 

containing multiple recognizable objects can be 

used to make determinations on whether or not 

this will have a positive or negative effect, 

especially if those objects are overlapping. The 

test dataset used for this experiment was also 

minimal, so testing on a larger dataset would also 

be of great benefit to evaluate more results and 

average confidence values. A comparison 

between previous versions of YOLO on the same 

image set would also help provide greater context. 

 

Conclusion 

Overall, this project helped develop my 

understanding of computer vision and object 

detection. Exposure to rapidly improving object 

detection models such as YOLOv7 has 

heightened my interest in the field and 

strengthened my knowledge. Reproducibility of 

this project was the first step in understanding 

how object detection works and to opening the 

door to working on improving the model itself. 

We were able to determine the effects that 

adversarial patches had on detection accuracy and 

analyze the results to create more hypotheses. 
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