
Impact of Adversarial Patches on Object Detection with YOLOv7

Darrien Hunt#, Chutima Boonthum-Denecke#, Idongesit Mkpong-Ruffin*

 #Department of Computer Science, Hampton University, Hampton, VA
*Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL.

Abstract:

With the increased use of machine learning

models, there is a need to understand how

machine learning models can be maliciously

targeted. Understanding how these attacks are

‘enacted’ helps in being able to ‘harden’ models

so that it is harder for attackers to evade detection.

We want to better understand object detection, the

underlying algorithms, different perturbation

approaches that can be utilized to fool these

models. To this end, we document our findings as

a review of existing literature and open-source

repositories related to Computer Vision and

Object Detection. We also look at how

Adversarial Patches impact object detection

algorithms. Our objective was to replicate

existing processes in order to reproduce results to

further our research on adversarial patches.

Introduction

Computer Vision is a subset of Artificial

Intelligence (AI) that grants computers the ability

to “see” and process visualizations, thus

extracting valuable information and performing a

particular task in response. This technology can

be integrated into the features of many existing

devices we use today to improve its capabilities.

One prominent feature in development under the

umbrella of computer vision is Object Detection.

Object detection allows computers to utilize

cameras to track images and perform analysis.

Image analysis is generally performed by training

deep learning models on a large set of images in

order to accurately classify objects. Images are

classified by extracting visual features from them,

usually by using a sliding window to scale

through them and utilizing those features to make

distinctions [1].

Figure 1: Comparison of semantic segmentation, classification and localization, object

detection and instance segmentation. [2]

Throughout the progression of object detection

technology, various algorithms such as YOLO

(You Only Look Once) [3] have been developed.

This has enabled real-time object detection

research with a model capable of producing

results with high detection speed and accuracy.

Compared to previous versions of YOLO,

YOLOv7 benefits from an improved network

architecture and less of a need for more expensive

computation power [4]. YOLOv7 utilizes

Convolutional Neural Networks (CNNs) which is

a learning algorithm used for image processing.

This method allows computers to take images or

videos and digitize them by converting them to

pixels before taking a window size of the image

and extracting features from each window. Its

purpose is to find some useful things in each

frame and pool them together. Classification can

then be performed upon the output of the

algorithm to determine what the computer saw.

Like other neural networks, this algorithm

benefits from a learning process called

backpropagation which allows values to be passed

back through the algorithm with adjustments in

order to train the model more efficiently.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a

type of deep neural network that have been widely

used in computer vision tasks, including object

detection [5]. CNNs are designed to automatically

learn features from raw input data, such as

images, by applying a series of convolutional

filters that scan the image at different scales and

orientations, looking for specific patterns or

features.

In object detection, CNNs are typically used in

two stages: region proposal and object

classification. In the first stage, the CNN is used

to generate a set of candidate object regions in the

image, which are then passed to the second stage

for classification. The candidate regions are

typically generated using a technique called

selective search, which identifies regions that are

likely to contain objects based on their color,

texture, and other visual cues. In the second stage,

the CNN is used to classify each candidate region

as either containing an object or not. This is

typically done by applying a sliding window

approach, where a small window is moved across

each candidate region, and the CNN classifies the

contents of the window. If the CNN determines

that the window contains an object, the region is

considered a positive detection and the object is

localized within the region.

CNNs have been shown to be highly effective in

object detection, achieving state-of-the-art

performance on many benchmark datasets.

However, they require large amounts of training

data and can be computationally expensive,

especially for real-time applications. To address

these challenges, researchers are exploring new

architectures, such as the YOLO [3] and Faster R-

CNN models [6], which aim to balance accuracy

and speed.

Adversarial Attacks and Adversarial Patches

Adversarial attacks aim to fool machine learning

models. Adversarial attacks can be done by

making changes to a physical object so as to fool

the machine learning model so that an image or

object is mistaken for some other object or image

or in some cases, not even detected. This ability

to make a change to an object for the purpose of

fooling a system is also known as adversarial

perturbation. In this work, we investigated the

usage of patches to cause the image classifier to

misclassify, misidentify or be unable to identify

given objects. Adversarial patches are images

that once printed, added, or presented to the image

classifier, can cause the classifier to ignore the

other items or misidentify the items [8, 9].

Figure 2: A real-world attack on VGG16, using a physical patch [7]

Experimental Approach

We reviewed various papers detailing generative

adversarial patches and their effects on object

detection algorithms. These patches seek to

prevent the algorithms from accurately detecting

objects within the images. Many papers provided

access to GitHub repositories, thus allowing us to

use pre-trained models on our test datasets to

compare the results of the algorithm with varying

images and patches.

We worked to experiment with the Pytorch

version of the algorithm to observe its effect on a

random set of images from ImageNet which

consisted of images of people and

objects/animals. The set of objects/animals are a

bicycle, birds, cars, cell phones, and dogs.

In order to run the algorithm, we had to configure

my computing environment by cloning the

YOLOv7 repository

(https://github.com/wongkinyiu/yolov7) and then

installing all the Python libraries listed in the

provided text file. We were able to run the

detection algorithm on all the images to generate

a confidence value and altered images with a

border surrounding the classified objects. The

confidence value represents how sure the model

accurately defines an object. The script we

utilized for detection allowed us to customize the

parameters in order to set pre-trained model

weights, set a confidence value threshold, specify

image size, and set a target directory for my

images to perform classification successively.

The first step in measuring the effectiveness of the

model was to run the detection algorithm on the

set of unaltered images to record their confidence

values. Following this, an adversarial patch can be

applied to an image in an attempt to alter the

confidence value output. Two patches were used

to apply to images and test the algorithm as shown

in Figures 3. They were automatically generated

with qualities that may have the ability to fool

algorithms. Each patch was applied over both

categories of images, and for images of people,

they were applied over the face and the body in

separate instances to observe the varying effects.

Figure 3(a). Patch #1 Figure 3(b). Patch #2

 Confidence Value

Object Non-people Non-people Patch #1 Non-people Patch #2

Bicycle 0.947094 0.948981 0.941189

Bird 1 0.785761 0.75917 0.796503

Bird 2 0.687701 0.475139 0.616994

Car 1 0.90718 0.397678 0.907187

Car 2 0.784057 0.540132 0.77098

Dog 1 0.771059 0.916712 0.883784

Dog 2 0.961846 0.944186 0.956071

Average 0.83496 0.71171 0.83896

Table 1. Confidence values of YOLOv7 ran on subset of images representing non-people

Results and Discussion

All of the confidence values retrieved from the

output of the algorithms were recorded in Table 1

and Table 2. In order to more easily digest the

results and store the values, the parameter of the

algorithms that permits saving text files was used,

and the script was modified to append the

confidence value to the results. Based on

observation, the algorithm seemed to be less

prone to detecting objects within Patch #2, which

proved to be a distraction with Patch #1. Almost

all images that utilized Patch #1 were subject to

detection of not only the objects in the original

image, but also the hidden objects within the

patch. This is likely because Patch #1 contains

objects that are more easily recognizable based on

the images utilized to train YOLOv7 [4, 7].

 Confidence Value

Object

People

People Patch

#1 (Over

Body)

People Patch

#1 (Over

Face)

People Patch

#2 (Over

Body)

People Patch

#2 (Over

Face)

Person 1 0.972414 0.965844 0.788071 0.973064 0.967817

Person 2 0.95275 0.949856 0.817727 0.956822 0.956297

Person 3 0.962644 0.960276 0.952369 0.961844 0.950804

Person 4 0.967071 0.953975 0.951217 0.961021 0.966046

Person 5 0.946961 0.934886 0.932216 0.943588 0.898543

Person 6 0.957467 0.949614 0.724247 0.959409 0.949607

Person 7 0.888205 0.877668 0.860247 0.890281 0.867448

Person 8 0.839267 0.9634 0.813454 0.908358 0.824774

Person 9 0.953179 0.950174 0.930229 0.952936 0.951521

Person 10 0.912204 0.894054 0.91012 0.911656 0.917367

Person 11 0.909408 0.907011 0.945225 0.912533 0.884443

Person 12 0.957507 0.949215 0.848984 0.959818 0.940265

Person 13 0.916603 0.874622 0.699182 0.906344 0.920201

Person 14 0.821476 0.740749 0.83696 0.792484 0.85599

Person 15 0.966412 0.964674 0.961278 0.960658 0.969172

Average 0.928238 0.9224 0.8647684 0.93005 0.921353

Table 2. Confidence values of YOLOv7 ran on subset of images representing people

Figure 4. Car 1 with Patch #1 Figure 5. Car 2 with Patch #1

For the set of images representing non-people, the

patches had varying effects. While the original

images average confidence value was 0.83496,

Patch #1 had an overall negative effect on the

detection rate of the classifier, producing a result

of 0.71171. This drastic decrease was most

sharply noticeable with the images of cars which

had large patches applied to them and numerous

detectable objects in the background of the

images. As shown in Figures 4 & 5, background

objects such as people and other cars, in addition

to objects within the patch itself served as

potential impediments to the algorithms detection

accuracy of the primary car. The size of the patch

may also be an overwhelming factor given the

algorithm's ability to attempt detection of the

patch as well. Patch #2 had a converse effect on

the non-people image subject producing slightly

better detection rates than even the unaltered

images. The patch itself was not generally

recognized by the algorithm as a makeup of

additional objects.

The people image subset allowed us to view the

effects that a patch might have when applied on

certain parts of a person, namely the face and the

body. It was initially suspected that applying the

patch over the face of a person may serve as more

of a threat than anywhere else because the face

possesses many identifiable characteristics of a

person. Overall, the unaltered images possessed

an average confidence value of 0.928238. When

Patch #1 was applied over the body and the face,

the confidence values generated were 0.9224 and

0.8647684 respectively. While the average

confidence value for Patch #1 applied over the

body of the person was on par with that of the

unaltered images, the same patch applied over the

face generated a lower average value. Patch #2

resulted in values of 0.93005 and 0.921353 when

applied over the body and the face respectively,

citing an increase in detection accuracy over the

body and a miniscule decrease over the face.

Overall, most images were reflective of that, but

in one instance, the application of the patch over

the face seemed to have a noticeable effect

(Figures 6 & 7). While more testing and further

analysis should be conducted to determine if the

application of a patch over the face or body has

drastic effects, it remained consistent that the

algorithm conducted using Patch #2, no matter

where on the object it was applied, produced

better results than Patch #1.

Figure 6. Person 8 with Patch #2 applied over the body

Figure 7. Person 8 with Patch #2 applied over the face

Future Work

In the future, there’s a variety of methods that can

be executed to further analyze the effectiveness of

YOLOv7. Throughout the experiment, it was

shown the varying effect that different kinds of

patches can produce, so a more in depth analysis

of why one patch that contained objects was more

easily detectable over another is warranted. The

patch size is another potential factor to consider,

especially when utilizing patches with identifiable

objects within them, so calling patches over

images is another avenue of interest. Patch

location seemed to add another dimension to the

detection rate in some instances, so in order to

determine its effects, the same patch should be

applied multiple times on the same image in

separate locations. There is also room to utilize

image datasets that are more expansive and

diverse. While this experiment was generally

limited to specific objects that the YOLOv7

model was trained on, perhaps more images

containing multiple recognizable objects can be

used to make determinations on whether or not

this will have a positive or negative effect,

especially if those objects are overlapping. The

test dataset used for this experiment was also

minimal, so testing on a larger dataset would also

be of great benefit to evaluate more results and

average confidence values. A comparison

between previous versions of YOLO on the same

image set would also help provide greater context.

Conclusion

Overall, this project helped develop my

understanding of computer vision and object

detection. Exposure to rapidly improving object

detection models such as YOLOv7 has

heightened my interest in the field and

strengthened my knowledge. Reproducibility of

this project was the first step in understanding

how object detection works and to opening the

door to working on improving the model itself.

We were able to determine the effects that

adversarial patches had on detection accuracy and

analyze the results to create more hypotheses.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science

Foundation CyberCorps: Scholarship for Service program

under grant award# 2131255.

References

[1] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X.

(2019). Object detection with deep learning: A

review. IEEE transactions on neural networks

and learning systems, 30(11), 3212-3232.

[2] Jaikumar, P., Vandaele, R., & Ojha, Varun.

(2022). Transfer Learning for Instance

Segmentation of Waste Bottles using Mask R-

CNN Algorithm. In: Abraham, A., Piuri, V.,

Gandhi, N., Siarry, P., Kaklauskas, A.,

Madureira, A. (eds) Intelligent Systems Design

and Applications. ISDA 2020. Advances in

Intelligent Systems and Computing, vol 1351.

Springer, Cham. https://doi.org/10.1007/978-3-

030-71187-0_13

[3] Redmon, J., Divvala, S., Girshick, R., &

Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the

IEEE conference on computer vision and pattern

recognition (pp. 779-788).

[4] Boesch, G. (2022, August 11). YOLOv7: The

Most Powerful Object Detection Algorithm

(2022 Guide). Viso.ai. https://viso.ai/deep-

learning/yolov7-guide/

[5] Yamashita, R., Nishio, M., Kinh, R. &

Togashi, K. (2018) Insights into Imaging (2018)

9:611–629, https://doi.org/10.1007/s13244-018-

0639-9

[6] Ren, S., He, K., Girshick, R., & Sun, J.

(2015). Faster R-CNN: Towards real-time object

detection with region proposal networks. In

Advances in neural information processing

systems (pp. 91-99).

[7] Thys, S., Van Ranst, W., & Goedemé, T.

(2019). Fooling automated surveillance cameras:

adversarial patches to attack person detection. In

Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition

workshops (pp. 0-0).

[8] Brown, T. B., Mané, D., Roy, A., Abadi, M.

& Gilmer, J. (2017) Adversarial patch, 2017,

[online] Available:

https://arxiv.org/abs/1712.09665

[9] Nemcovsky, Y., Jacoby, M., Bronstein, A.

M., and Baskin, Chaim (2022) Physical Passive

Patch Adversarial Attacks on Visual Odometry

Systems, Retrieved February 2023:

https://openaccess.the cvf.com

