Impact of Adversarial Patches on Object Detection with YOLOV7

Darrien Hunt”, Chutima Boonthum-Denecke”, Idongesit Mkpong-Ruffin"

*Department of Computer Science, Hampton University, Hampton, VA
*Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL.

Abstract:

With the increased use of machine learning
models, there is a need to understand how
machine learning models can be maliciously
targeted. Understanding how these attacks are
‘enacted’ helps in being able to ‘harden’ models
so that it is harder for attackers to evade detection.
We want to better understand object detection, the
underlying algorithms, different perturbation
approaches that can be utilized to fool these
models. To this end, we document our findings as
a review of existing literature and open-source
repositories related to Computer Vision and
Object Detection. We also look at how
Adversarial Patches impact object detection
algorithms. Our objective was to replicate
existing processes in order to reproduce results to
further our research on adversarial patches.

Classification
+ Localization

Semantic
Segmentation

Introduction
Computer Vision is a subset of Artificial
Intelligence (Al) that grants computers the ability
“see” and process visualizations, thus
extracting valuable information and performing a
particular task in response. This technology can
be integrated into the features of many existing
devices we use today to improve its capabilities.

29

to

One prominent feature in development under the
umbrella of computer vision is Object Detection.
Object detection allows computers to utilize
cameras to track images and perform analysis.
Image analysis is generally performed by training
deep learning models on a large set of images in
order to accurately classify objects. Images are
classified by extracting visual features from them,
usually by using a sliding window to scale
through them and utilizing those features to make
distinctions [1].

Instance

Object
Segmentation

Detection

, CAT, CAT DOG, DOG, CAT DOG, DOG, CAT
W TREE, SKY A UL > Y]
No objects, just pixels Single Object Multiple Object

Figure 1: Comparison of semantic segmentation, classification and localization, object
detection and instance segmentation. [2]

Throughout the progression of object detection
technology, various algorithms such as YOLO
(You Only Look Once) [3] have been developed.
This has enabled real-time object detection
research with a model capable of producing
results with high detection speed and accuracy.
Compared to previous versions of YOLO,
YOLOvV7 benefits from an improved network
architecture and less of a need for more expensive
computation power [4]. YOLOv7 utilizes
Convolutional Neural Networks (CNNs) which is
a learning algorithm used for image processing.
This method allows computers to take images or
videos and digitize them by converting them to
pixels before taking a window size of the image
and extracting features from each window. Its
purpose is to find some useful things in each
frame and pool them together. Classification can
then be performed upon the output of the
algorithm to determine what the computer saw.
Like other neural networks, this algorithm
benefits from a learning process called
backpropagation which allows values to be passed
back through the algorithm with adjustments in
order to train the model more efficiently.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a
type of deep neural network that have been widely
used in computer vision tasks, including object
detection [5]. CNNs are designed to automatically
learn features from raw input data, such as
images, by applying a series of convolutional
filters that scan the image at different scales and
orientations, looking for specific patterns or
features.

In object detection, CNNs are typically used in
two stages: region proposal and object
classification. In the first stage, the CNN is used
to generate a set of candidate object regions in the
image, which are then passed to the second stage

for classification. The candidate regions are
typically generated using a technique called
selective search, which identifies regions that are
likely to contain objects based on their color,
texture, and other visual cues. In the second stage,
the CNN is used to classify each candidate region
as either containing an object or not. This is
typically done by applying a sliding window
approach, where a small window is moved across
each candidate region, and the CNN classifies the
contents of the window. If the CNN determines
that the window contains an object, the region is
considered a positive detection and the object is
localized within the region.

CNNs have been shown to be highly effective in
object detection, achieving state-of-the-art
performance on many benchmark datasets.
However, they require large amounts of training
data and can be computationally expensive,
especially for real-time applications. To address
these challenges, researchers are exploring new
architectures, such as the YOLO [3] and Faster R-
CNN models [6], which aim to balance accuracy
and speed.

Adversarial Attacks and Adversarial Patches
Adversarial attacks aim to fool machine learning
models. Adversarial attacks can be done by
making changes to a physical object so as to fool
the machine learning model so that an image or
object is mistaken for some other object or image
or in some cases, not even detected. This ability
to make a change to an object for the purpose of
fooling a system is also known as adversarial
perturbation. In this work, we investigated the
usage of patches to cause the image classifier to
misclassify, misidentify or be unable to identify
given objects. Adversarial patches are images
that once printed, added, or presented to the image
classifier, can cause the classifier to ignore the
other items or misidentify the items [8, 9].

Classifier Input

s

Classifier Qutput

Classifier Output

Figure 2: A real-world attack on VGG16, using a physical patch [7]

Experimental Approach
We reviewed various papers detailing generative

adversarial patches and their effects on object
detection algorithms. These patches seek to
prevent the algorithms from accurately detecting
objects within the images. Many papers provided
access to GitHub repositories, thus allowing us to
use pre-trained models on our test datasets to
compare the results of the algorithm with varying
images and patches.

We worked to experiment with the Pytorch
version of the algorithm to observe its effect on a
random set of images from ImageNet which
consisted of images of people and
objects/animals. The set of objects/animals are a
bicycle, birds, cars, cell phones, and dogs.

In order to run the algorithm, we had to configure
my computing environment by cloning the
YOLOvV7 repository
(https://github.com/wongkinyiu/yolov7) and then
installing all the Python libraries listed in the
provided text file. We were able to run the
detection algorithm on all the images to generate
a confidence value and altered images with a
border surrounding the classified objects. The

confidence value represents how sure the model
accurately defines an object. The script we
utilized for detection allowed us to customize the
parameters in order to set pre-trained model
weights, set a confidence value threshold, specify
image size, and set a target directory for my
images to perform classification successively.

The first step in measuring the effectiveness of the
model was to run the detection algorithm on the
set of unaltered images to record their confidence
values. Following this, an adversarial patch can be
applied to an image in an attempt to alter the
confidence value output. Two patches were used
to apply to images and test the algorithm as shown
in Figures 3. They were automatically generated
with qualities that may have the ability to fool
algorithms. Each patch was applied over both
categories of images, and for images of people,
they were applied over the face and the body in
separate instances to observe the varying effects.

Figure 3(a). Patch #1

Figure 3(b). Patch #2

Confidence Value

Object Non-people Non-people Patch #1 | Non-people Patch #2
Bicycle 0.947094 0.948981 0.941189

Bird 1 0.785761 0.75917 0.796503

Bird 2 0.687701 0.475139 0.616994

Car 1 0.90718 0.397678 0.907187

Car2 0.784057 0.540132 0.77098

Dog 1 0.771059 0.916712 0.883784

Dog 2 0.961846 0.944186 0.956071
Average 0.83496 0.71171 0.83896

Table 1. Confidence values of YOLOV7 ran on subset of images representing non-people

Results and Discussion

All of the confidence values retrieved from the
output of the algorithms were recorded in Table 1
and Table 2. In order to more easily digest the
results and store the values, the parameter of the
algorithms that permits saving text files was used,
and the script was modified to append the
confidence value to the results. Based on
observation, the algorithm seemed to be less

prone to detecting objects within Patch #2, which
proved to be a distraction with Patch #1. Almost
all images that utilized Patch #1 were subject to
detection of not only the objects in the original
image, but also the hidden objects within the
patch. This is likely because Patch #1 contains
objects that are more easily recognizable based on
the images utilized to train YOLOvV7 [4, 7].

Confidence Value

People Patch | People Patch | People Patch | People Patch
Object People #1 (Over #1 (Over #2 (Over #2 (Over
Body) Face) Body) Face)

Person 1 0.972414 0.965844 0.788071 0.973064 0.967817
Person 2 0.95275 0.949856 0.817727 0.956822 0.956297
Person 3 0.962644 0.960276 0.952369 0.961844 0.950804
Person 4 0.967071 0.953975 0.951217 0.961021 0.966046
Person 5 0.946961 0.934886 0.932216 0.943588 0.898543
Person 6 0.957467 0.949614 0.724247 0.959409 0.949607
Person 7 0.888205 0.877668 0.860247 0.890281 0.867448
Person 8 0.839267 0.9634 0.813454 0.908358 0.824774
Person 9 0.953179 0.950174 0.930229 0.952936 0.951521
Person 10 0.912204 0.894054 0.91012 0.911656 0.917367
Person 11 0.909408 0.907011 0.945225 0.912533 0.884443
Person 12 0.957507 0.949215 0.848984 0.959818 0.940265
Person 13 0.916603 0.874622 0.699182 0.906344 0.920201
Person 14 0.821476 0.740749 0.83696 0.792484 0.85599
Person 15 0.966412 0.964674 0.961278 0.960658 0.969172
Average 0.928238 0.9224 0.8647684 0.93005 0.921353

Table 2. Confidence values of YOLOV7 ran on subset of images representing people

For the set of images representing non-people, the
patches had varying effects. While the original
images average confidence value was 0.83496,
Patch #1 had an overall negative effect on the
detection rate of the classifier, producing a result
of 0.71171. This drastic decrease was most
sharply noticeable with the images of cars which
had large patches applied to them and numerous
detectable objects in the background of the
images. As shown in Figures 4 & 5, background
objects such as people and other cars, in addition
to objects within the patch itself served as
potential impediments to the algorithms detection
accuracy of the primary car. The size of the patch
may also be an overwhelming factor given the
algorithm's ability to attempt detection of the
patch as well. Patch #2 had a converse effect on
the non-people image subject producing slightly
better detection rates than even the unaltered
images. The patch itself was not generally
recognized by the algorithm as a makeup of
additional objects.

The people image subset allowed us to view the
effects that a patch might have when applied on
certain parts of a person, namely the face and the
body. It was initially suspected that applying the

patch over the face of a person may serve as more
of a threat than anywhere else because the face
possesses many identifiable characteristics of a
person. Overall, the unaltered images possessed
an average confidence value of 0.928238. When
Patch #1 was applied over the body and the face,
the confidence values generated were 0.9224 and
0.8647684 respectively. While the average
confidence value for Patch #1 applied over the
body of the person was on par with that of the
unaltered images, the same patch applied over the
face generated a lower average value. Patch #2
resulted in values of 0.93005 and 0.921353 when
applied over the body and the face respectively,
citing an increase in detection accuracy over the
body and a miniscule decrease over the face.
Overall, most images were reflective of that, but
in one instance, the application of the patch over
the face seemed to have a noticeable effect
(Figures 6 & 7). While more testing and further
analysis should be conducted to determine if the
application of a patch over the face or body has
drastic effects, it remained consistent that the
algorithm conducted using Patch #2, no matter
where on the object it was applied, produced
better results than Patch #1.

Figure 6. Person 8 with Patch #2 applied over the body

Figure 7. Person 8 with Patch #2 applied over the face

Future Work

In the future, there’s a variety of methods that can
be executed to further analyze the effectiveness of
YOLOv7. Throughout the experiment, it was
shown the varying effect that different kinds of
patches can produce, so a more in depth analysis
of why one patch that contained objects was more
easily detectable over another is warranted. The
patch size is another potential factor to consider,
especially when utilizing patches with identifiable
objects within them, so calling patches over
images is another avenue of interest. Patch
location seemed to add another dimension to the
detection rate in some instances, so in order to
determine its effects, the same patch should be
applied multiple times on the same image in
separate locations. There is also room to utilize
image datasets that are more expansive and
diverse. While this experiment was generally
limited to specific objects that the YOLOv7
model was trained on, perhaps more images
containing multiple recognizable objects can be
used to make determinations on whether or not
this will have a positive or negative effect,

especially if those objects are overlapping. The
test dataset used for this experiment was also
minimal, so testing on a larger dataset would also
be of great benefit to evaluate more results and
average confidence values. A comparison
between previous versions of YOLO on the same
image set would also help provide greater context.

Conclusion

Overall, this project helped develop my
understanding of computer vision and object
detection. Exposure to rapidly improving object
detection models such as YOLOvV7 has
heightened my interest in the field and
strengthened my knowledge. Reproducibility of
this project was the first step in understanding
how object detection works and to opening the
door to working on improving the model itself.
We were able to determine the effects that
adversarial patches had on detection accuracy and
analyze the results to create more hypotheses.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science
Foundation CyberCorps: Scholarship for Service program
under grant award# 2131255.

References

[1] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X.
(2019). Object detection with deep learning: A
review. IEEE transactions on neural networks
and learning systems, 30(11), 3212-3232.

[2] Jaikumar, P., Vandaele, R., & Ojha, Varun.
(2022). Transfer Learning for Instance
Segmentation of Waste Bottles using Mask R-
CNN Algorithm. In: Abraham, A., Piuri, V.,
Gandhi, N., Siarry, P., Kaklauskas, A.,
Madureira, A. (eds) Intelligent Systems Design
and Applications. ISDA 2020. Advances in
Intelligent Systems and Computing, vol 1351.
Springer, Cham. https://doi.org/10.1007/978-3-
030-71187-0_13

[3] Redmon, J., Divvala, S., Girshick, R., &
Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern
recognition (pp. 779-788).

[4] Boesch, G. (2022, August 11). YOLOV7: The
Most Powerful Object Detection Algorithm

(2022 Guide). Viso.ai. https://viso.ai/deep-
learning/yolov7-guide/

[5] Yamashita, R., Nishio, M., Kinh, R. &
Togashi, K. (2018) Insights into Imaging (2018)
9:611-629, https://doi.org/10.1007/s13244-018-
0639-9

[6] Ren, S., He, K., Girshick, R., & Sun, J.
(2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. In
Advances in neural information processing
systems (pp. 91-99).

[7] Thys, S., Van Ranst, W., & Goedemé, T.
(2019). Fooling automated surveillance cameras:
adversarial patches to attack person detection. In
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition
workshops (pp. 0-0).

[8] Brown, T. B., Mané, D., Roy, A., Abadi, M.
& Gilmer, J. (2017) Adversarial patch, 2017,
[online] Available:
https://arxiv.org/abs/1712.09665

[9] Nemcovsky, Y., Jacoby, M., Bronstein, A.
M., and Baskin, Chaim (2022) Physical Passive
Patch Adversarial Attacks on Visual Odometry
Systems, Retrieved February 2023:
https://openaccess.the cvf.com

