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Abstract 

The variability and biases in the real-world performance benchmarking of deep learning models 

for medical imaging compromise their trustworthiness for real-world deployment. The common 

approach of holding out a single fixed test set fails to quantify the variance in the estimation of 

test performance metrics. This study introduces NACHOS (Nested and Automated Cross-

validation and Hyperparameter Optimization using Supercomputing) to reduce and quantify the 

variance of test performance metrics of deep learning models. NACHOS integrates Nested 

Cross-Validation (NCV) and Automated Hyperparameter Optimization (AHPO) within a 

parallelized high-performance computing (HPC) framework. NACHOS was demonstrated on a 

chest X-ray repository and an Optical Coherence Tomography (OCT) dataset under multiple 

data partitioning schemes. Beyond performance estimation, DACHOS (Deployment with 

Automated Cross-validation and Hyperparameter Optimization using Supercomputing) is 
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introduced to leverage AHPO and cross-validation to build the final model on the full dataset, 

improving expected deployment performance. The findings underscore the importance of NCV 

in quantifying and reducing estimation variance, AHPO in optimizing hyperparameters 

consistently across test folds, and HPC in ensuring computational feasibility. By integrating 

these methodologies, NACHOS and DACHOS provide a scalable, reproducible, and trustworthy 

framework for DL model evaluation and deployment in medical imaging. 
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1. Introduction 

 Deep learning (DL) has matched or surpassed human experts in performance 

across many medical applications 1-3. However, the deployment of DL models to 

automate real-world diagnosis and medical procedures remains limited 4. A key concern 

is the unknown magnitude of the variances and biases in the estimation of the model 

performance in research studies, which undermines the trustworthiness of deep 

learning model 5-8. In a typical deep learning study, a small fraction (i.e. 10%-20%) of 

the labeled data is held out in the test set for benchmarking the performance of the final 

model in unseen data, while the majority of the labeled data is used in the training and 

validation sets for model development. In particular, the variance of the test 

performance metrics is typically unknown (because there is only one test set) and large 

(because only a small fraction of the labeled data is allocated to the test set). To make 

deep learning models trustworthy for medical decision-making, it is essential to estimate 

their performance metrics with low variance using more test data and measure the 

variance of the obtained estimates 9,10. 

  Nested cross-validation (NCV) is an effective procedure to meet this requirement. 

Briefly, the entire dataset is partitioned into k folds that are rotated through a cross-

testing loop. A model development procedure with a (k-1)-fold cross-validation loop is 

nested within the cross-testing loop. The output of NCV is k estimates of the test 

performance metrics of k models. The average and variance of these k estimates reflect 

the expected performance and variability of this model development procedure across 

the entire dataset.  

 NCV has been used in a few medical machine learning studies. Nawabi et al. 11 

employed NCV to benchmark the performance of a random forest classifier for 

prediction of survival for acute intracerebral hemorrhage using extracted radiomic 

features obtained from non-enhanced computed tomography images. Their random 

forest classifier achieved an average test accuracy of 72% with a 95% confidence 

interval between 70% and 74%. We utilized NCV to benchmark the performance of 

convolutional neural networks (CNNs) for analysis of Optical Coherence Tomography 

(OCT) images in multiple endoscopic applications 12-15. For example, the average test 
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classification accuracy of CNN was found to be 82.6% with 3.0% standard error for 

detecting three different renal tissues from their OCT images. However, NCV is still 

under-utilized in the medical field. Roberts et al. 16 conducted an analysis of COVID-19 

research papers published between January and October 2020 and found a notable 

lack of NCV utilization, highlighting a gap in methodological rigor in the field. 

 A challenge of using NCV in a study is the need to implement automated 

hyperparameter optimization (AHPO) between the cross-testing loop and the cross-

validation loop. Most medical deep learning studies perform manual hyperparameter 

optimization (MHPO). Practitioners can manually evaluate various model architectures, 

learning rates, regularization methods, and other hyperparameters based on cross-

validation performance and select the configurations with the best validation 

performance to build the final model. However, it is impractical to perform MHPO 

independently and consistently in every test fold of NCV. Instead, AHPO needs to be 

performed during each testing iteration of the k-fold cross-testing loop in NCV to 

automatically identify the model configuration with the best cross-validation 

performance. AHPO within NCV provides reproducible model optimization and prevents 

inadvertent information leakage from the test set to the validation set during MHPO.  

 A second challenge of using NCV with AHPO is the need for significantly more 

computing than cross-validation with MHPO. Fortunately, the computation in NCV and 

AHPO can be readily partitioned by data folds for the cross-testing loop or the cross-

validation loop and by model configurations for the AHPO loop. The folds can be 

distributed across many GPUs to compute in parallel. Thus, high-performance 

computing (HPC) can be used to complete NCV and AHPO within a reasonable amount 

of wall-clock time. 

 While many deep learning pipelines, including NiftyNet 17, TorchIO 18, 

DeepNeuro 19, and GaNDLF 20, have been developed for medical imaging, they have 

not integrated NCV, AHPO, and HPC. To address these limitations, we developed 

NACHOS (Nested and Automated Cross-validation and Hyperparameter Optimization 

using Supercomputing) to integrate NCV and AHPO into a parallelized computational 

workflow on HPC. A repository of chest X-ray datasets from the TorchXRayVision 
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library 21, along with an kidney OCT dataset, derived from Wang et al. 14, were used to 

demonstrate NACHOS. We compared different strategies for partitioning the two 

datasets into k folds in NCV. The results showed the significance of partitioning in 

benchmarking the test performance of deep learning models 22,23. 

  The outcome of the NACHOS algorithm is a reduced-variance and uncertainty-

quantified estimation of test performance of the models generated by this computational 

procedure. To build the final model for production use, we developed an algorithm 

named Deployment with Automated Cross-validation and Hyperparameter Optimization 

using Supercomputing (DACHOS). DACHOS identifies the overall best model 

configuration using all the data for the AHPO and cross-validation and then uses this 

configuration to train a model using all the data. Because the final model for deployment 

was hyperparameter-optimized and trained using more data than the k models 

generated in the k-fold NCV, its test performance, although unknown, is expected to be 

better than the average test performance of the k NCV models. We also demonstrated 

DACHOS using the chest X-ray repository and kidney OCT dataset. 

 

2. Methodology 

2.1 Nested and Automated Cross-validation and Hyperparameter Optimization using 

Supercomputing (NACHOS) algorithm 

 The NACHOS algorithm comprises three nested loops: the cross-testing (CT) 

loop, the AHPO loop, and the cross-validation (CV) loop. First, the dataset D is divided 

into k folds:  𝐹0, 𝐹1, … , 𝐹𝑘−1 . The CT loop iterates over 𝑖 ∈  𝐼 = {0, 1, 2, … , 𝑘 − 1} , where 

the fold, 𝐹𝑖, is held out as the test set, and the remaining folds are used for training and 

validation. The AHPO loop then iterates over 𝑗 ∈  𝐽 = {0, 1, 2, … , 𝑛 − 1}, where 𝑛 is the 

number of hyperparameter configurations to be tried and each ℎ𝑗 denotes the 𝑗𝑡ℎ 

hyperparameter configuration. Within the CV loop, the index 𝑚 ∈  𝐼 − {𝑖} is used to 

reserve the fold, 𝐹𝑚, for validation while the model is trained on the remaining 𝑘 − 2 

folds. The model’s performance on the validation fold 𝐹𝑚 is recorded as 𝑣𝑚
𝑗 . After 

completing cross-validation, the average validation performance—i.e. cross-validation 
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performance— for each hyperparameter ℎ𝑗, denoted as 𝑣̅𝑗, is calculated. Once the 

AHPO loop is completed, the best-performing hyperparameter ℎ𝑗∗ is selected based on 

the highest cross-validation performance. The model is then trained using ℎ𝑗∗ on all folds 

except the test fold 𝐹𝑖  and evaluated on the test fold 𝐹𝑖   with the result recorded as 𝑡𝑖. 

Finally, after all iterations of the cross-testing loop are completed, the benchmarking 

results across all test folds are used to calculate the average performance metric and its 

standard error. 

 In the current implementation of NACHOS, the AHPO loop used a random 

search algorithm 24 that randomly samples 𝑛 combinations of values from a set of 

predefined hyperparameters choices. The choices of the batch size were powers of 2, 

ranging from 16 (24) to 128 (27). The choices of the learning rate and the decay were 

powers of 10, ranging from 0.01 (10−2) to 0.0001 (10−4). The choices of the momentum 

included 0.5, 0.9, and 0.99 with or without Nesterov acceleration. Three choices of 

model architectures, ResNet50 25, InceptionV3 26, and Xception 27, are available. A 

hyperparameter configuration was created by randomly selecting one of the choices for 

each hyperparameter. The AHPO loop iterates over 𝑛 hyperparameter configurations to 

find the best one based on their cross-validation performance. In this study, 9 

hyperparameter configurations were randomly generated for AHPO (Table 1). 

 

2.2. Deployment with Automated Cross-validation and Hyperparameter Optimization 

using Supercomputing (DACHOS) algorithm  

 The DACHOS algorithm generates a production model, 𝑀, for deployment using 

AHPO and cross-validation. The dataset D is split into k folds for cross-validation. The 

AHPO loop iterates through 𝑛 hyperparameter configurations ℎ𝑗, 𝑗 ∈  𝐽 =

{0, 1, 2, … , 𝑛 − 1}, which should be the same as those used by NACHOS. The cross-

validation loop iterates through 𝑚 ∈  𝐼 = {0, 1, 2, … , 𝑘 − 1} to select the fold 𝐹𝑚 for 

validation and train the model on the remaining folds. The validation performance is 

recorded as 𝑣𝑚
𝑗 . After the 𝑘-fold cross-validation is completed for the hyperparameter 

configuration ℎ𝑗, its average validation performance—i.e. cross-validation 
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performance—is calculated as 𝑣̅𝑗. Once cross-validation for all hyperparameter 

configurations is completed, the best-performing hyperparameter ℎ𝑗∗ is selected based 

on its cross-validation performance. Finally, the production model, 𝑀, is trained using ℎ𝑗∗ 

with the entire dataset D. The DACHOS algorithm maximizes the performance of the 

production model, 𝑀, for deployment by using the entire dataset for AHPO and then 

using the entire dataset for model training. 

 

2.3 Parallelization of NACHOS and DACHOS 

 The NACHOS and DACHOS algorithms were parallelized using a Python 

implementation of the Message Passing Interface (MPI) standard provided in the 

mpi4py 28 library. Both algorithms employed MPI point-to-point communication to enable 

direct interaction between parallel processes. The NACHOS algorithm distributes a total 

of k*(k-1)*n training tasks over g GPUs, where k is the number of folds for NCV, n is the 

number of hyperparameter configurations for AHPO, and g is the number of GPUs. The 

DACHOS algorithm parallelizes k*n training tasks over g GPUs. When launched, the 

two algorithms create a manager process along with g worker processes, with each 

worker process assigned to a separate GPU. The manager process is responsible for 

assigning the tasks and sending their hyperparameter configurations, test folds, and 

validation folds to the worker processes for computing on their assigned GPUs. When a 

worker process completes a training task, it requests a new task from the manager 

process until all the tasks are completed. The dynamic scheduling provides effective 

load balancing and ensures linear scalability.  

 

2.4 Fault tolerance in NACHOS and DACHOS 

To manage unexpected failures of training tasks in a job, NACHOS and 

DACHOS implement fault tolerance using a checkpointing system that includes two 

types of checkpoints: a metadata checkpoint and a model checkpoint. During training, 

the system continuously records the hyperparameter configuration ℎ𝑗, the test fold 𝐹𝑖, 
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the validation fold 𝐹𝑚, and the epoch number in the metadata checkpoint. After each 

epoch, a model checkpoint is saved while the previous one is deleted to conserve 

space. In the event of a failure, NACHOS or DACHOS needs to be rerun. The manager 

process resends all training tasks. Each worker process then consults the metadata 

checkpoint to determine if its assigned task has already been completed; if it has, the 

task is skipped. For unfinished tasks, the worker process resumes training by loading 

the corresponding model checkpoint. 

 

2.5 Platform and dependencies 

 NACHOS and DACHOS were implemented using Python 3 and TensorFlow 2. 

They use dill 29 for saving and loading configuration checkpoints, mpi4py 28 for 

parallelization, fasteners for process locking and unlocking, NumPy 30 for working with 

arrays, scikit-learn 31 for computing performance metrics, SciPy 32 for statistical analysis 

of the results, and termcolor for color-coded standard output messages. NACHOS and 

DACHOS can are capable of generating learning curves, confusion matrices, and 

Receiver Operating Characteristic (ROC) curves for result visualization. They can also 

generate saliency maps for instance-wide prediction interpretation or feature importance 
33,34 using GradCAM 35 which requires Matplotlib 36 and seaborn 31. 

 NACHOS and DACHOS were designed to operate on both a supercomputer with 

GPU nodes and a Beowulf cluster of GPU workstations connected via a local Ethernet 

network. The algorithms were tested on the Schooner supercomputer, utilizing GPU 

nodes equipped with NVIDIA A100 GPUs. Jobs on the supercomputer were managed 

through the SLURM system, with the GPU count per node specified. Additional 

experiments were performed on a Beowulf cluster comprising GPU workstations with 

NVIDIA RTX A6000 and NVIDIA RTX 4090 GPUs, running Ubuntu 20.04.6 LTS. In the 

Beowulf cluster, data were distributed across all workstations, and jobs were executed 

using a configuration file that specified the GPU count and the IP address of each 

workstation. 
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2.6 Medical imaging datasets for performance benchmarking  

 A chest X-ray repository was built using the ChestX-ray8 dataset 37, the 

CheXpert dataset 38, the MIMIC-CXR dataset 39, and the PadChest dataset 40 from the 

TorchXRayVision library 21. The NACHOS and DACHOS algorithms were evaluated on 

a binary classification task, in which deep learning models were trained to classify 

Posterior-Anterior (PA) chest X-ray images as either cardiomegaly or no finding.  In the 

MIMIC-CXR and PadChest datasets, some lateral images were mistakenly labeled as 

PA. These incorrectly labeled images were identified through manual inspection and 

removed from our chest X-ray repository. All images were resized to a resolution of 

224x224 pixels through interpolation. To create balanced data for benchmarking, we 

randomly selected 620 images with cardiomegaly and 620 images with no finding from 

each of the four datasets. These images are combined to build the chest X-ray 

repository with a total of 4,960 images (4 datasets X 2 classes X 620 images per class 

per dataset). The chest X-ray repository was partitioned into four folds using three 

different partitioning levels. In the image-level partitioning, images were randomly 

distributed across four folds. In the patient-level partitioning, all images from the same 

patient were assigned to the same fold. Finally, in the dataset-level partitioning, each 

dataset was exclusively allocated to a separate fold. 

 An OCT dataset was derived from our previous study 13 for a renal tissue 

classification task. The OCT images were originally captured as 3D volumes, each 

containing multiple 2D cross-sectional B-scan images. These 2D cross-sectional 

images with a resolution of 185x210 pixels were used as the input data in this study. 

The OCT dataset contains 600 images of the cortex tissue, 600 images of the medulla 

tissue, and 600 images of the pelvis tissue from each kidney. A total of 10 kidneys were 

included, yielding 18,000 images (10 kidneys X 3 tissue types X 600 images per tissue 

type per kidney). The OCT dataset was partitioned into 10 folds at three levels: image, 

volume, and kidney. In the image-level partitioning, all 18,000 images were randomly 

split into 10 folds. In the volume-level partitioning, images from the same volume were 

assigned to the same fold. In kidney-level partitioning, the 10 kidneys were divided into 

10 folds, with each fold containing all images from a respective kidney. 
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3. Results 

3.1 Reduced-variance estimation of the test performance with uncertainty 
quantification using the NACHOS algorithm. 

Table 2 presents the benchmarking results generated by the NACHOS algorithm 

on the chest X-ray repository for the cardiomegaly detection task. The data was 

partitioned into four folds corresponding to the four datasets. NACHOS included three 

nested loops: the CT loop, the AHPO loop, and the CV loop. For each test fold, the 

AHPO loop evaluated the cross-validation performance of nine hyperparameter 

configurations shown in Table 1. When 𝐹0 was reserved as the test fold, configuration 

ℎ2 had the highest cross-validation accuracy of 𝑣̅2 = 0.72, which was the average of the 

validation accuracies, 𝑣1
2 = 0.69 using 𝐹1 as the validation set, 𝑣2

2 = 0.70 using 𝐹2 as the 

validation set, and 𝑣3
2 = 0.76 using 𝐹3 as the validation set. After finding ℎ2 as the 

configuration with the best cross-validation accuracy, a model was trained on 𝐹1, 𝐹2, and 

𝐹3 using ℎ2 and then tested on 𝐹0 to generate a test accuracy of 𝑡0 =0.79. This process 

was repeated for the remaining test folds— 𝐹1, 𝐹2, and 𝐹3—which generated the test 

accuracies of 0.71, 0.69, and 0.82, respectively. The standard deviation of the test 

accuracies was 0.06. The variability of the test performance stemmed from the different 

allocations of data folds for training, validation and testing, as well as the stochastic 

nature of stochastic gradient descend in model training and random search in AHPO.    

The average test accuracy across all four folds was 0.75 with a standard error of 

0.03. This average test accuracy, derived from four model instances, reflected the 

expected performance of model instances that can be generated by our development 

procedure. The standard deviation of this average test accuracy (0.03) was half (√4) of 

the standard deviation of the individual test accuracies (0.06) from different test folds, 

because the average test accuracy represented the test performance from all four folds. 

The test accuracies were lower than the cross-validation accuracies in test folds 

𝐹1 and 𝐹2 and higher in test folds 𝐹0 and 𝐹3. Although the AHPO was expected to make 

the cross-validation accuracies higher than the test accuracies, the results were 

inconsistent probably because of the data variability.  
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The validation accuracies averaged across all hyperparameter configurations in 

each test fold were 0.65 for test fold 𝐹0, 0.70 for 𝐹1, 0.67 for 𝐹2, and 0.62 for 𝐹3. The 

cross-validation accuracy of the optimal hyperparameter configuration exceeded the 

average for fold 𝐹0 by 0.07, for 𝐹1 by 0.09, for 𝐹2 by 0.10, and for 𝐹3 by 0.08. The 

improvements underscored the significance of selecting the appropriate 

hyperparameters using AHPO.  

The results from the NACHOS algorithm on the kidney OCT dataset are 

summarized in Table 3. The OCT images were partitioned into 10 folds with each fold 

containing all the images from one kidney. When 𝐹0 was reserved as the test set, 

hyperparameter configuration ℎ5 yielded the best cross-validation accuracy of 0.93, 

which was the average of 9 validation accuracies from the 9-fold cross-validation from 

𝐹1 to 𝐹9. Then, a model trained on the nine folds from 𝐹1 to 𝐹9 using configuration ℎ5 

achieved a test accuracy of 𝑡0 =0.73 on the reserved test fold 𝐹0. The cross-testing loop 

in NACHOS repeated this process for the remaining nine folds and generated the test 

accuracies of 0.71, 0.79, 0.75, 0.88, 0.87, 0.94, 0.90, 0.96, and 0.86 from folds 𝐹1 to 𝐹9. 

The test accuracies had a wide range from 0.71 to 0.96 with a standard deviation of 

0.09, which reflected the significant data variability from kidney to kidney in this dataset.   

The average test accuracy from the 10 test folds was 0.84 with a standard error 

of 0.03. The cross-testing procedure reduced the standard deviation of the average test 

accuracy estimation by approximately three folds (√10) from 0.09 to 0.03 by averaging 

across 10 individual test accuracies from separate kidney samples. The standard 

deviation of the individual folds' test accuracy was higher in the kidney OCT data (0.09) 

than the chest X-ray data (0.06), but the standard error of the average test accuracy 

was 0.03 in both datasets because of the higher number of test folds used in the kidney 

OCT data than the chest X-ray data. 

 The validation accuracies averaged across all hyperparameter configurations for 

test folds 𝐹0-𝐹9 were 0.90, 0.87, 0.87, 0.87, 0.85, 0.85, 0.87, 0.84, 0.86, and 0.85, 

respectively. The cross-validation accuracies of the optimal hyperparameter 

configurations for these folds exceeded the average by 0.03, 0.03, 0.02, 0.03, 0.05, 
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0.03, 0.03, 0.04, 0.04, and 0.05, which demonstrated the effect of AHPO for improving 

model performance. 

3.2 Development of production model for deployment using the DACHOS 
algorithm.  

The DACHOS algorithm was used to produce a final model for deployment. The 

results of applying DACHOS to the chest X-ray repository are shown in Table 4. When 

hyperparameter configuration ℎ0 was used, the validation accuracies were 𝑣0
0 = 0.71 for 

fold 𝐹0, 𝑣1
0 = 0.71 for fold 𝐹1, 𝑣2

0 = 0.69 for fold 𝐹2, and 𝑣3
0 = 0.70 for fold 𝐹3, which 

yielded a cross-validation accuracy of 𝑣̅0 = 0.71 for ℎ0. DACHOS and NACHOS 

produced different validation accuracies for the same configuration, because DACHOS 

used 3 data folds for training while NACHOS used only 2. Four-fold cross-validation was 

performed for all remaining hyperparameter configurations; configuration ℎ5 achieved 

the highest cross-validation accuracy of 𝑣̅5 = 0.75. This configuration was then used to 

train a final model on all four data folds.  

For the same configuration, 78% of the cross-validations accuracies for 

NACHOS were lower than the cross-validation accuracy for DACHOS. For example, 

with hyperparameter configuration ℎ5, NACHOS achieved cross-validation accuracies of 

0.72, 0.73, 0.71, and 0.69 for test folds 𝐹0 to 𝐹3 using 2 data folds for training. In 

contrast, DACHOS achieved a cross-validation accuracy of 0.75 with ℎ5 using 3 data 

folds for training. An additional data fold available for training in DACHOS may have 

contributed to its increased cross-validation accuracy. .  

The DACHOS algorithm was also applied to the kidney OCT dataset (Table 5).  

Here, hyperparameter configuration ℎ0 achieved validation accuracies of 0.63, 0.88,  

0.85, 0.76, 0.91, 0.97, 0.92, 0.87, 0.94, 0.88 for folds 𝐹0 to 𝐹9, which was averaged to a 

cross-validation accuracy of 𝑣̅0 = 0.86 . This process was repeated for the remaining 

hyperparameter configurations. Hyperparameter configuration ℎ2 had the highest 

average accuracy 𝑣̅2 = 0.90 and ℎ3 had the lowest 𝑣̅3 = 0.84. The production model 

was trained using ℎ2 on the entire dataset.  
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3.3 Evaluation and interpretation of model performance across different 
partitioning levels. 

NACHOS and DACHOS required data to be partitioned into multiple folds for 

NCV and CV. An appropriate partitioning design was essential for evaluating a model's 

ability to generalize to unseen data from a new measurement, a new patient or a new 

location. The input data in the chest X-ray repository was organized into three 

partitioning levels, including the image level, the patient level, and the dataset level, for 

testing to evaluate different partitioning designs (Figure 1A). The chest X-ray repository 

comprised a total of 4,960 images from 4,678 patients across four datasets. There were 

1,187 patients in the CheXpert dataset, 1,165 patients in the MIMIC-CXR dataset, 1,105 

patients in the ChestX-ray8 dataset, and 1,221 patients in the PadChest dataset. The 

dataset-level partitioning was used in the previous Results sections to evaluate the 

model performance on unseen data from a different location. Here, we compared the 

test performance benchmarked using NACHOS across image-level, patient-level, and 

dataset-level partitioning (Figure 1B). Because each patient had approximately 1.06 

images on average in the chest X-ray repository, the image-level and the patient-level 

partitioning yielded similar average test accuracies of 0.811 and 0.809, respectively, 

which reflected the test performance of the models on unseen data from new images or 

new patients within the 4 datasets. These were much higher than the average test 

accuracy of 0.750 from the dataset-level partitioning (Figure 1B). The variability in test 

accuracies across data folds also increased from 0.008 for the image-level partitioning 

and 0.009 for the patient-level partitioning to 0.061 for the dataset-level stratification.  

The test performances were also benchmarked using NACHOS on the kidney 

OCT dataset at three partitioning levels: image, volume, and kidney (Figure 2A). The 

kidney-level partitioning was used in the previous Results sections to evaluate the 

model performance on unseen data from a new kidney. Here, we compared the test 

performance benchmarked by NACHOS using the image-level, volume-level, and 

kidney-level partitioning (Figure 2B). The image-level partitioning resulted in a perfect 

test accuracy of 1.00 across all data folds owing to nearly complete data redundancy 

among contiguous images from the same volume. The volume-level partitioning 
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generated an average test accuracy of 0.97 and a standard deviation of 0.01 across 

different data folds, suggesting still substantial data redundancy among volumes from 

the same kidney. In contrast, the kidney-level partitioning yielded an average test 

accuracy of 0.84 and a standard deviation of 0.09. The reduced accuracy and increased 

variability reflected the real-world variability of the OCT data from different kidneys and 

the need for the models to generalize well across kidneys.  

3.4 Parallelization of NACHOS and DACHOS over multiple GPUs 

We compared the execution time of the NACHOS algorithm on various GPU 

systems using the kidney OCT dataset with kidney-level partitioning using a single 

hyperparameter configuration. These systems included a Beowulf cluster of GPU 

workstations with Nvidia GeForce RTX 4090 or Nvidia RTX A6000 GPUs on a local 

Ethernet network, as well as the OSCER supercomputer with Nvidia A100 GPUs. The 

execution time was 21.9 hours on a single RTX A6000, 13.8 hours on a single RTX 

4090, and 11.7 hours on a single A100 (Figure 3A). RTX A6000 has 336 tensor cores 

and memory bandwidth of 112.5 GB/s, RTX 4090 has 512 tensor cores and memory 

bandwidth ~1000 GB/s, and A100 has 432 tensor cores and memory bandwidth of 

~2000 GB/s. RTX 4090 performed better than RTX probably due to higher number of 

tensor cores. A100 performed better than RTX 4090 probably due to higher memory 

bandwidth as well as optimizations for deep learning applications. The peak memory 

usages on these GPUs were approximately all 18.5 GB. This demonstrated the 

portability of NACHOS and DACHOS across a variety of computing systems.  

NACHOS and DACHOS can distribute the training across multiple GPUs with 

fault tolerance to reduce the wall-clock time. Figure 3B presents the speedup ratios by 

the number of GPUs using the execution time of a single RTX A6000 GPU (21.9 hours) 

as the baseline. NACHOS reached linear scalability on RTX A6000s. The execution 

time was reduced to 11.1 hours on 2 RTX A6000s with a 2.0X speedup, further to 6.9 

hours on 3 RTX A6000s with a 3.2X speedup, and finally to 5.4 hours on 4 RTX 6000s 

with a 4.1X speedup. NACHOS achieved super-linear speedups on RTX 4090s and 

A100s. The execution time was 13.8 hours on 1 RTX 4090, 7.0 hours on 2 RTX 4090s 

(3.1X speedup), and 4.7 hours on 3 RTX 4090s (4.6X speedup), and 3.6 hours on 4 
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RTX 4090s (6.1X speedup). Super-linear speedups were also achieved on A100s: 3.7X 

on 2 A100s, 7.4X on 4 A100s, and 14.1X on 8 A100s. The execution time was reduced 

to only 1.6 hours using 8 A100s.   

4. Discussion 

Accurate and robust benchmarking of the performance of machine learning 

models has been a challenge in the field of medical imaging 41. A commonly used 

approach is to split a labeled dataset into a training set for learning model parameters, a 

validation set for optimizing model hyperparameters, and a test set for benchmarking 

the performance of the obtained model. Although cross-validation is often used to rotate 

data partitions between the training set and the validation set, most machine learning 

studies split out a single fixed test set for performance benchmarking. NACHOS 

features NCV in an automated and user-friendly machine learning workflow for medical 

imaging applications. k-fold NCV offers two key advantages over a single test split for 

test performance benchmarking. First, NCV reduces the variance of the test 

performance estimation by rotating all data partitions through the test set. Specifically, 

the variance of the average performance score from k-fold NCV should be k times lower 

than the variance of the point estimate of the performance score from a single test split. 

Second, and more importantly, the variance of the performance estimation is not 

quantified using a single test split, but is quantified during cross-testing over k test 

partitions. For example, if a user holds out only the last partition for the test set, they 

would estimate the classification accuracy to be 0.82 in the chest X-ray repository and 

0.86 in the kidney OCT dataset with large (± 0.06 and ± 0.09, respectively) variabilities 

that are unknown to the user. If the user uses NVC, they would be able to better 

estimate the accuracy as 0.75 ± 0.03 in the chest X-ray repository and as 0.84 ± 0.03 in 

the kidney OCT dataset. These use cases demonstrated that NCV reduced and 

measured the variance of the performance benchmarking of deep learning models. 

The partitioning level used by NCV is also important for accurate and robust 

performance benchmarking. The Checklist for Artificial Intelligence in Medical Imaging 

(CLAIM) 42 emphasizes transparent reporting of data partitioning and recommends 

partitioning at the patient level or higher. The classification accuracy in the chest X-ray 
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repository decreased from 0.809 with the patient-level partitioning to 0.750 with the 

dataset-level partitioning (Figure 1B). This means that it is more difficult for models to 

generalize to a new dataset acquired by other institutions than to generalize to new 

patients from a previously seen dataset. Similarly, Zech et al. 43 found that pneumonia 

classification models often perform better on internal test datasets originated from the 

same institution as the training data than on external test datasets from institutions 

different that the ones used for training. The choice of the partitioning level for NCV 

performance benchmarking should match the intended use scenario of the models. For 

instance, the patient-level partitioning can be used to evaluate models designed for use 

within the same hospitals that produced the training data, as it mimics the scenario of 

encountering new patients within these hospitals. The institution-level partitioning 

should be used to evaluate models intended to be deployed to new hospitals.  

NACHOS benchmarks the average test performance of models generated by a 

reproducible workflow using a specific dataset. AHPO is needed in NACHOS because it 

is impractical to perform laborious manual hyperparameter optimization consistently 

across all test folds in NCV. Random search 24 is a simple, yet highly effective, AHPO 

method. In the chest X-ray repository (Table 2), the best hyperparameter configuration 

achieved improvements ranging from 0.07 to 0.10 over the average cross-validation 

accuracy of all configurations. In the kidney OCT dataset (Table 3), AHPO delivered 

performance gains between 0.02 and 0.05 above the overall average. In future, 

NACHOS can offer users multiple AHPO methods, such as Hyperband 44 and its 

Bayesian counterpart, Bayesian Optimization Hyperband (BOHB) 45. 

NCV and AHPO in NACHOS incur a significant computational cost that needs to 

be distributed across multiple GPUs to shorten the wall-clock time of model 

development. The parallelization in NACHOS achieved linear and super-linear 

speedups on different kinds of GPUs (Figure 3A and 3B). Super-linear speedup, 

observed in certain cases, suggests additional efficiency gains arising from improved 

cache utilization, reduced memory bottlenecks, or synergistic effects in GPU 

parallelism. After NACHOS measures the test performance of models from a model 

development workflow, DACHOS is used to generate a production model for 
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deployment using this workflow. The actual test performance of this production model is 

unknown but should be higher than the test performance of the models benchmarked by 

NACHOS. This is because the AHPO in DACHOS can use an extra data fold than the 

AHPO in NACHOS and the final model training in DACHOS can use two additional data 

folds than the training in NACHOS.  

In conclusion, NACHOS integrates NCV, AHPO and HPC into an automated 

workflow. NCV reduces and measures variance in test performance estimation by 

rotating all data folds through the test set. AHPO enhances model performance by 

searching for optimal hyperparameters and avoids the impracticality of manual tuning 

across multiple test folds in NCV. To mitigate substantial computational costs of NCV 

and AHPO, NACHOS can distribute computation across multiple GPUs with linear or 

super-linear speed-up. After NACHOS completes model benchmarking, DACHOS can 

be used to generate final production models with potentially higher performance. 

Together, these frameworks provide a robust, reproducible, and scalable approach to 

developing and evaluating machine learning models in medical imaging. 

Data availability 

The repository for NACHOS and DACHOS is available at 

https://github.com/thepanlab/NACHOS. 

Code availability 

The kidney OCT dataset and chest X-ray repository are available at 

https://doi.org/10.5281/zenodo.14847200. 
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