Integration of nested cross-validation, automated hyperparameter optimization,
high-performance computing to reduce and quantify the variance of test

performance estimation of deep learning models

Paul Calle', Averi Bates', Justin Reynolds', Yunlong Liu', Haoyang Cui', Sinaro Ly",
Chen Wang?, Qinghao Zhang?, Alberto J. de Armendi?, Shashank S. Shettar?, Kar-Ming
Fung*®, Qinggong Tang?®’, Chongle Pan'?'

'School of Computer Science, University of Oklahoma, Norman, OK

2Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK
3Department of Anesthesiology, University of Oklahoma Health Sciences Center,
Oklahoma City, OK, 73104, USA.

4Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma
City, OK 73104, USA.

SStephenson Cancer Center, University of Oklahoma Health Sciences Center,
Oklahoma City, OK 73104, USA.

*Correspondence: please contact cpan@ou.edu for questions on deep learning and

contact gtang@ou.edu for questions on medical imaging.

Abstract

The variability and biases in the real-world performance benchmarking of deep learning models
for medical imaging compromise their trustworthiness for real-world deployment. The common
approach of holding out a single fixed test set fails to quantify the variance in the estimation of
test performance metrics. This study introduces NACHOS (Nested and Automated Cross-
validation and Hyperparameter Optimization using Supercomputing) to reduce and quantify the
variance of test performance metrics of deep learning models. NACHOS integrates Nested
Cross-Validation (NCV) and Automated Hyperparameter Optimization (AHPO) within a
parallelized high-performance computing (HPC) framework. NACHOS was demonstrated on a
chest X-ray repository and an Optical Coherence Tomography (OCT) dataset under multiple
data partitioning schemes. Beyond performance estimation, DACHOS (Deployment with

Automated Cross-validation and Hyperparameter Optimization using Supercomputing) is

1

introduced to leverage AHPO and cross-validation to build the final model on the full dataset,
improving expected deployment performance. The findings underscore the importance of NCV
in quantifying and reducing estimation variance, AHPO in optimizing hyperparameters
consistently across test folds, and HPC in ensuring computational feasibility. By integrating
these methodologies, NACHOS and DACHOS provide a scalable, reproducible, and trustworthy

framework for DL model evaluation and deployment in medical imaging.

1. Introduction

Deep learning (DL) has matched or surpassed human experts in performance
across many medical applications '-3. However, the deployment of DL models to
automate real-world diagnosis and medical procedures remains limited 4. A key concern
is the unknown magnitude of the variances and biases in the estimation of the model
performance in research studies, which undermines the trustworthiness of deep
learning model . In a typical deep learning study, a small fraction (i.e. 10%-20%) of
the labeled data is held out in the test set for benchmarking the performance of the final
model in unseen data, while the maijority of the labeled data is used in the training and
validation sets for model development. In particular, the variance of the test
performance metrics is typically unknown (because there is only one test set) and large
(because only a small fraction of the labeled data is allocated to the test set). To make
deep learning models trustworthy for medical decision-making, it is essential to estimate
their performance metrics with low variance using more test data and measure the

variance of the obtained estimates 919,

Nested cross-validation (NCV) is an effective procedure to meet this requirement.
Briefly, the entire dataset is partitioned into k folds that are rotated through a cross-
testing loop. A model development procedure with a (k-1)-fold cross-validation loop is
nested within the cross-testing loop. The output of NCV is k estimates of the test
performance metrics of k models. The average and variance of these k estimates reflect
the expected performance and variability of this model development procedure across

the entire dataset.

NCV has been used in a few medical machine learning studies. Nawabi et al. '
employed NCV to benchmark the performance of a random forest classifier for
prediction of survival for acute intracerebral hemorrhage using extracted radiomic
features obtained from non-enhanced computed tomography images. Their random
forest classifier achieved an average test accuracy of 72% with a 95% confidence
interval between 70% and 74%. We utilized NCV to benchmark the performance of
convolutional neural networks (CNNSs) for analysis of Optical Coherence Tomography

(OCT) images in multiple endoscopic applications '>'5. For example, the average test

classification accuracy of CNN was found to be 82.6% with 3.0% standard error for
detecting three different renal tissues from their OCT images. However, NCV is still
under-utilized in the medical field. Roberts et al. '® conducted an analysis of COVID-19
research papers published between January and October 2020 and found a notable

lack of NCV utilization, highlighting a gap in methodological rigor in the field.

A challenge of using NCV in a study is the need to implement automated
hyperparameter optimization (AHPO) between the cross-testing loop and the cross-
validation loop. Most medical deep learning studies perform manual hyperparameter
optimization (MHPO). Practitioners can manually evaluate various model architectures,
learning rates, regularization methods, and other hyperparameters based on cross-
validation performance and select the configurations with the best validation
performance to build the final model. However, it is impractical to perform MHPO
independently and consistently in every test fold of NCV. Instead, AHPO needs to be
performed during each testing iteration of the k-fold cross-testing loop in NCV to
automatically identify the model configuration with the best cross-validation
performance. AHPO within NCV provides reproducible model optimization and prevents

inadvertent information leakage from the test set to the validation set during MHPO.

A second challenge of using NCV with AHPO is the need for significantly more
computing than cross-validation with MHPO. Fortunately, the computation in NCV and
AHPO can be readily partitioned by data folds for the cross-testing loop or the cross-
validation loop and by model configurations for the AHPO loop. The folds can be
distributed across many GPUs to compute in parallel. Thus, high-performance
computing (HPC) can be used to complete NCV and AHPO within a reasonable amount

of wall-clock time.

While many deep learning pipelines, including NiftyNet 17, TorchlO 8,
DeepNeuro '°, and GaNDLF 29, have been developed for medical imaging, they have
not integrated NCV, AHPO, and HPC. To address these limitations, we developed
NACHOS (Nested and Automated Cross-validation and Hyperparameter Optimization
using Supercomputing) to integrate NCV and AHPO into a parallelized computational

workflow on HPC. A repository of chest X-ray datasets from the TorchXRayVision

library 27, along with an kidney OCT dataset, derived from Wang et al. '4, were used to
demonstrate NACHOS. We compared different strategies for partitioning the two
datasets into k folds in NCV. The results showed the significance of partitioning in

benchmarking the test performance of deep learning models 2223,

The outcome of the NACHOS algorithm is a reduced-variance and uncertainty-
quantified estimation of test performance of the models generated by this computational
procedure. To build the final model for production use, we developed an algorithm
named Deployment with Automated Cross-validation and Hyperparameter Optimization
using Supercomputing (DACHOS). DACHOS identifies the overall best model
configuration using all the data for the AHPO and cross-validation and then uses this
configuration to train a model using all the data. Because the final model for deployment
was hyperparameter-optimized and trained using more data than the k models
generated in the k-fold NCV, its test performance, although unknown, is expected to be
better than the average test performance of the kK NCV models. We also demonstrated
DACHOS using the chest X-ray repository and kidney OCT dataset.

2. Methodology

2.1 Nested and Automated Cross-validation and Hyperparameter Optimization using

Supercomputing (NACHOS) algorithm

The NACHOS algorithm comprises three nested loops: the cross-testing (CT)
loop, the AHPO loop, and the cross-validation (CV) loop. First, the dataset D is divided
into k folds: Fy,, Fy, ..., Fx_; . The CT loop iteratesoveri € 1 ={0,1,2, ...,k — 1}, where
the fold, F;, is held out as the test set, and the remaining folds are used for training and
validation. The AHPO loop then iterates over j €] ={0,1,2,...,n — 1}, where n is the
number of hyperparameter configurations to be tried and each h; denotes the jth
hyperparameter configuration. Within the CV loop, the index m € I — {i} is used to
reserve the fold, F,,, for validation while the model is trained on the remaining k — 2
folds. The model’s performance on the validation fold F,, is recorded as v,{l. After

completing cross-validation, the average validation performance—i.e. cross-validation

5

performance— for each hyperparameter h;, denoted as v/, is calculated. Once the
AHPO loop is completed, the best-performing hyperparameter h;- is selected based on
the highest cross-validation performance. The model is then trained using h;- on all folds
except the test fold F; and evaluated on the test fold F; with the result recorded as ¢;.
Finally, after all iterations of the cross-testing loop are completed, the benchmarking
results across all test folds are used to calculate the average performance metric and its

standard error.

In the current implementation of NACHOS, the AHPO loop used a random
search algorithm 24 that randomly samples n combinations of values from a set of
predefined hyperparameters choices. The choices of the batch size were powers of 2,
ranging from 16 (2*) to 128 (27). The choices of the learning rate and the decay were
powers of 10, ranging from 0.01 (1072) to 0.0001 (10~*). The choices of the momentum
included 0.5, 0.9, and 0.99 with or without Nesterov acceleration. Three choices of
model architectures, ResNet50 25, InceptionV3 26, and Xception 27, are available. A
hyperparameter configuration was created by randomly selecting one of the choices for
each hyperparameter. The AHPO loop iterates over n hyperparameter configurations to
find the best one based on their cross-validation performance. In this study, 9

hyperparameter configurations were randomly generated for AHPO (Table 1).

2.2. Deployment with Automated Cross-validation and Hyperparameter Optimization
using Supercomputing (DACHOS) algorithm

The DACHOS algorithm generates a production model, M, for deployment using
AHPO and cross-validation. The dataset D is split into k folds for cross-validation. The
AHPO loop iterates through n hyperparameter configurations h;, j € J =
{0,1,2,..., n — 1}, which should be the same as those used by NACHOS. The cross-
validation loop iterates throughm € I ={0,1, 2, ...,k — 1} to select the fold E,, for
validation and train the model on the remaining folds. The validation performance is
recorded as v,{l. After the k-fold cross-validation is completed for the hyperparameter

configuration h;, its average validation performance—i.e. cross-validation

6

performance—is calculated as /. Once cross-validation for all hyperparameter
configurations is completed, the best-performing hyperparameter h;- is selected based
on its cross-validation performance. Finally, the production model, M, is trained using h;-
with the entire dataset D. The DACHOS algorithm maximizes the performance of the
production model, M, for deployment by using the entire dataset for AHPO and then

using the entire dataset for model training.

2.3 Parallelization of NACHOS and DACHOS

The NACHOS and DACHOS algorithms were parallelized using a Python
implementation of the Message Passing Interface (MPI) standard provided in the
mpi4py 28 library. Both algorithms employed MPI point-to-point communication to enable
direct interaction between parallel processes. The NACHOS algorithm distributes a total
of k*(k-1)*n training tasks over g GPUs, where k is the number of folds for NCV, n is the
number of hyperparameter configurations for AHPO, and g is the number of GPUs. The
DACHOS algorithm parallelizes k*n training tasks over g GPUs. When launched, the
two algorithms create a manager process along with g worker processes, with each
worker process assigned to a separate GPU. The manager process is responsible for
assigning the tasks and sending their hyperparameter configurations, test folds, and
validation folds to the worker processes for computing on their assigned GPUs. When a
worker process completes a training task, it requests a new task from the manager
process until all the tasks are completed. The dynamic scheduling provides effective

load balancing and ensures linear scalability.

2.4 Fault tolerance in NACHOS and DACHOS

To manage unexpected failures of training tasks in a job, NACHOS and
DACHOS implement fault tolerance using a checkpointing system that includes two
types of checkpoints: a metadata checkpoint and a model checkpoint. During training,

the system continuously records the hyperparameter configuration h;, the test fold F;,

the validation fold F,,, and the epoch number in the metadata checkpoint. After each
epoch, a model checkpoint is saved while the previous one is deleted to conserve
space. In the event of a failure, NACHOS or DACHOS needs to be rerun. The manager
process resends all training tasks. Each worker process then consults the metadata
checkpoint to determine if its assigned task has already been completed; if it has, the
task is skipped. For unfinished tasks, the worker process resumes training by loading

the corresponding model checkpoint.

2.5 Platform and dependencies

NACHOS and DACHOS were implemented using Python 3 and TensorFlow 2.
They use dill ?° for saving and loading configuration checkpoints, mpi4py 28 for
parallelization, fasteners for process locking and unlocking, NumPy 2 for working with
arrays, scikit-learn 3' for computing performance metrics, SciPy 32 for statistical analysis
of the results, and termcolor for color-coded standard output messages. NACHOS and
DACHOS can are capable of generating learning curves, confusion matrices, and
Receiver Operating Characteristic (ROC) curves for result visualization. They can also
generate saliency maps for instance-wide prediction interpretation or feature importance

33,34 using GradCAM 3° which requires Matplotlib 3¢ and seaborn 3'.

NACHOS and DACHOS were designed to operate on both a supercomputer with
GPU nodes and a Beowulf cluster of GPU workstations connected via a local Ethernet
network. The algorithms were tested on the Schooner supercomputer, utilizing GPU
nodes equipped with NVIDIA A100 GPUs. Jobs on the supercomputer were managed
through the SLURM system, with the GPU count per node specified. Additional
experiments were performed on a Beowulf cluster comprising GPU workstations with
NVIDIA RTX A6000 and NVIDIA RTX 4090 GPUs, running Ubuntu 20.04.6 LTS. In the
Beowulf cluster, data were distributed across all workstations, and jobs were executed
using a configuration file that specified the GPU count and the IP address of each

workstation.

2.6 Medical imaging datasets for performance benchmarking

A chest X-ray repository was built using the ChestX-ray8 dataset %/, the
CheXpert dataset 3, the MIMIC-CXR dataset 3, and the PadChest dataset *° from the
TorchXRayVision library 2'. The NACHOS and DACHOS algorithms were evaluated on
a binary classification task, in which deep learning models were trained to classify
Posterior-Anterior (PA) chest X-ray images as either cardiomegaly or no finding. In the
MIMIC-CXR and PadChest datasets, some lateral images were mistakenly labeled as
PA. These incorrectly labeled images were identified through manual inspection and
removed from our chest X-ray repository. All images were resized to a resolution of
224x224 pixels through interpolation. To create balanced data for benchmarking, we
randomly selected 620 images with cardiomegaly and 620 images with no finding from
each of the four datasets. These images are combined to build the chest X-ray
repository with a total of 4,960 images (4 datasets X 2 classes X 620 images per class
per dataset). The chest X-ray repository was partitioned into four folds using three
different partitioning levels. In the image-level partitioning, images were randomly
distributed across four folds. In the patient-level partitioning, all images from the same
patient were assigned to the same fold. Finally, in the dataset-level partitioning, each

dataset was exclusively allocated to a separate fold.

An OCT dataset was derived from our previous study '3 for a renal tissue
classification task. The OCT images were originally captured as 3D volumes, each
containing multiple 2D cross-sectional B-scan images. These 2D cross-sectional
images with a resolution of 185x210 pixels were used as the input data in this study.
The OCT dataset contains 600 images of the cortex tissue, 600 images of the medulla
tissue, and 600 images of the pelvis tissue from each kidney. A total of 10 kidneys were
included, yielding 18,000 images (10 kidneys X 3 tissue types X 600 images per tissue
type per kidney). The OCT dataset was partitioned into 10 folds at three levels: image,
volume, and kidney. In the image-level partitioning, all 18,000 images were randomly
split into 10 folds. In the volume-level partitioning, images from the same volume were
assigned to the same fold. In kidney-level partitioning, the 10 kidneys were divided into
10 folds, with each fold containing all images from a respective kidney.

3. Results

3.1 Reduced-variance estimation of the test performance with uncertainty

quantification using the NACHOS algorithm.

Table 2 presents the benchmarking results generated by the NACHOS algorithm
on the chest X-ray repository for the cardiomegaly detection task. The data was
partitioned into four folds corresponding to the four datasets. NACHOS included three
nested loops: the CT loop, the AHPO loop, and the CV loop. For each test fold, the
AHPO loop evaluated the cross-validation performance of nine hyperparameter
configurations shown in Table 1. When F,, was reserved as the test fold, configuration
h, had the highest cross-validation accuracy of 72 = 0.72, which was the average of the
validation accuracies, vZ = 0.69 using F; as the validation set, v = 0.70 using F, as the
validation set, and v = 0.76 using F; as the validation set. After finding h, as the
configuration with the best cross-validation accuracy, a model was trained on F;, F,, and
F; using h, and then tested on F, to generate a test accuracy of t, =0.79. This process
was repeated for the remaining test folds— F;, F,, and F;—which generated the test
accuracies of 0.71, 0.69, and 0.82, respectively. The standard deviation of the test
accuracies was 0.06. The variability of the test performance stemmed from the different
allocations of data folds for training, validation and testing, as well as the stochastic

nature of stochastic gradient descend in model training and random search in AHPO.

The average test accuracy across all four folds was 0.75 with a standard error of
0.03. This average test accuracy, derived from four model instances, reflected the
expected performance of model instances that can be generated by our development
procedure. The standard deviation of this average test accuracy (0.03) was half (v4) of
the standard deviation of the individual test accuracies (0.06) from different test folds,

because the average test accuracy represented the test performance from all four folds.

The test accuracies were lower than the cross-validation accuracies in test folds
F; and F, and higher in test folds F, and F;. Although the AHPO was expected to make
the cross-validation accuracies higher than the test accuracies, the results were

inconsistent probably because of the data variability.

10

The validation accuracies averaged across all hyperparameter configurations in
each test fold were 0.65 for test fold F,, 0.70 for F,, 0.67 for F,, and 0.62 for F;. The
cross-validation accuracy of the optimal hyperparameter configuration exceeded the
average for fold F, by 0.07, for F; by 0.09, for F, by 0.10, and for F; by 0.08. The
improvements underscored the significance of selecting the appropriate

hyperparameters using AHPO.

The results from the NACHOS algorithm on the kidney OCT dataset are
summarized in Table 3. The OCT images were partitioned into 10 folds with each fold
containing all the images from one kidney. When F, was reserved as the test set,
hyperparameter configuration hg yielded the best cross-validation accuracy of 0.93,
which was the average of 9 validation accuracies from the 9-fold cross-validation from
F; to Fy. Then, a model trained on the nine folds from F; to Fy using configuration hg
achieved a test accuracy of t, =0.73 on the reserved test fold F,. The cross-testing loop
in NACHOS repeated this process for the remaining nine folds and generated the test
accuracies of 0.71, 0.79, 0.75, 0.88, 0.87, 0.94, 0.90, 0.96, and 0.86 from folds F; to F,.
The test accuracies had a wide range from 0.71 to 0.96 with a standard deviation of

0.09, which reflected the significant data variability from kidney to kidney in this dataset.

The average test accuracy from the 10 test folds was 0.84 with a standard error
of 0.03. The cross-testing procedure reduced the standard deviation of the average test
accuracy estimation by approximately three folds (v/10) from 0.09 to 0.03 by averaging
across 10 individual test accuracies from separate kidney samples. The standard
deviation of the individual folds' test accuracy was higher in the kidney OCT data (0.09)
than the chest X-ray data (0.06), but the standard error of the average test accuracy
was 0.03 in both datasets because of the higher number of test folds used in the kidney
OCT data than the chest X-ray data.

The validation accuracies averaged across all hyperparameter configurations for
test folds F,-F, were 0.90, 0.87, 0.87, 0.87, 0.85, 0.85, 0.87, 0.84, 0.86, and 0.85,
respectively. The cross-validation accuracies of the optimal hyperparameter
configurations for these folds exceeded the average by 0.03, 0.03, 0.02, 0.03, 0.05,

11

0.03, 0.03, 0.04, 0.04, and 0.05, which demonstrated the effect of AHPO for improving

model performance.

3.2 Development of production model for deployment using the DACHOS

algorithm.

The DACHOS algorithm was used to produce a final model for deployment. The
results of applying DACHOS to the chest X-ray repository are shown in Table 4. When
hyperparameter configuration h, was used, the validation accuracies were vJ = 0.71 for
fold Fy, v = 0.71 for fold F;, v = 0.69 for fold F,, and v2 = 0.70 for fold F5, which
yielded a cross-validation accuracy of 7° = 0.71 for h,. DACHOS and NACHOS
produced different validation accuracies for the same configuration, because DACHOS
used 3 data folds for training while NACHOS used only 2. Four-fold cross-validation was
performed for all remaining hyperparameter configurations; configuration hs achieved
the highest cross-validation accuracy of #° = 0.75. This configuration was then used to

train a final model on all four data folds.

For the same configuration, 78% of the cross-validations accuracies for
NACHOS were lower than the cross-validation accuracy for DACHOS. For example,
with hyperparameter configuration hs, NACHOS achieved cross-validation accuracies of
0.72,0.73, 0.71, and 0.69 for test folds F, to F; using 2 data folds for training. In
contrast, DACHOS achieved a cross-validation accuracy of 0.75 with hs using 3 data
folds for training. An additional data fold available for training in DACHOS may have

contributed to its increased cross-validation accuracy. .

The DACHOS algorithm was also applied to the kidney OCT dataset (Table 5).
Here, hyperparameter configuration h, achieved validation accuracies of 0.63, 0.88,
0.85, 0.76, 0.91, 0.97, 0.92, 0.87, 0.94, 0.88 for folds F, to F,, which was averaged to a
cross-validation accuracy of 7° = 0.86 . This process was repeated for the remaining
hyperparameter configurations. Hyperparameter configuration h, had the highest
average accuracy 2 = 0.90 and h; had the lowest 73 = 0.84. The production model

was trained using h, on the entire dataset.

12

3.3 Evaluation and interpretation of model performance across different

partitioning levels.

NACHOS and DACHOS required data to be partitioned into multiple folds for
NCV and CV. An appropriate partitioning design was essential for evaluating a model's
ability to generalize to unseen data from a new measurement, a new patient or a new
location. The input data in the chest X-ray repository was organized into three
partitioning levels, including the image level, the patient level, and the dataset level, for
testing to evaluate different partitioning designs (Figure 1A). The chest X-ray repository
comprised a total of 4,960 images from 4,678 patients across four datasets. There were
1,187 patients in the CheXpert dataset, 1,165 patients in the MIMIC-CXR dataset, 1,105
patients in the ChestX-ray8 dataset, and 1,221 patients in the PadChest dataset. The
dataset-level partitioning was used in the previous Results sections to evaluate the
model performance on unseen data from a different location. Here, we compared the
test performance benchmarked using NACHOS across image-level, patient-level, and
dataset-level partitioning (Figure 1B). Because each patient had approximately 1.06
images on average in the chest X-ray repository, the image-level and the patient-level
partitioning yielded similar average test accuracies of 0.811 and 0.809, respectively,
which reflected the test performance of the models on unseen data from new images or
new patients within the 4 datasets. These were much higher than the average test
accuracy of 0.750 from the dataset-level partitioning (Figure 1B). The variability in test
accuracies across data folds also increased from 0.008 for the image-level partitioning

and 0.009 for the patient-level partitioning to 0.061 for the dataset-level stratification.

The test performances were also benchmarked using NACHOS on the kidney
OCT dataset at three partitioning levels: image, volume, and kidney (Figure 2A). The
kidney-level partitioning was used in the previous Results sections to evaluate the
model performance on unseen data from a new kidney. Here, we compared the test
performance benchmarked by NACHOS using the image-level, volume-level, and
kidney-level partitioning (Figure 2B). The image-level partitioning resulted in a perfect
test accuracy of 1.00 across all data folds owing to nearly complete data redundancy

among contiguous images from the same volume. The volume-level partitioning

13

generated an average test accuracy of 0.97 and a standard deviation of 0.01 across
different data folds, suggesting still substantial data redundancy among volumes from
the same kidney. In contrast, the kidney-level partitioning yielded an average test
accuracy of 0.84 and a standard deviation of 0.09. The reduced accuracy and increased
variability reflected the real-world variability of the OCT data from different kidneys and

the need for the models to generalize well across kidneys.
3.4 Parallelization of NACHOS and DACHOS over multiple GPUs

We compared the execution time of the NACHOS algorithm on various GPU
systems using the kidney OCT dataset with kidney-level partitioning using a single
hyperparameter configuration. These systems included a Beowulf cluster of GPU
workstations with Nvidia GeForce RTX 4090 or Nvidia RTX A6000 GPUs on a local
Ethernet network, as well as the OSCER supercomputer with Nvidia A100 GPUs. The
execution time was 21.9 hours on a single RTX A6000, 13.8 hours on a single RTX
4090, and 11.7 hours on a single A100 (Figure 3A). RTX A6000 has 336 tensor cores
and memory bandwidth of 112.5 GB/s, RTX 4090 has 512 tensor cores and memory
bandwidth ~1000 GB/s, and A100 has 432 tensor cores and memory bandwidth of
~2000 GB/s. RTX 4090 performed better than RTX probably due to higher number of
tensor cores. A100 performed better than RTX 4090 probably due to higher memory
bandwidth as well as optimizations for deep learning applications. The peak memory
usages on these GPUs were approximately all 18.5 GB. This demonstrated the

portability of NACHOS and DACHOS across a variety of computing systems.

NACHOS and DACHOS can distribute the training across multiple GPUs with
fault tolerance to reduce the wall-clock time. Figure 3B presents the speedup ratios by
the number of GPUs using the execution time of a single RTX A6000 GPU (21.9 hours)
as the baseline. NACHOS reached linear scalability on RTX A6000s. The execution
time was reduced to 11.1 hours on 2 RTX A6000s with a 2.0X speedup, further to 6.9
hours on 3 RTX A6000s with a 3.2X speedup, and finally to 5.4 hours on 4 RTX 6000s
with a 4.1X speedup. NACHOS achieved super-linear speedups on RTX 4090s and
A100s. The execution time was 13.8 hours on 1 RTX 4090, 7.0 hours on 2 RTX 4090s
(3.1X speedup), and 4.7 hours on 3 RTX 4090s (4.6X speedup), and 3.6 hours on 4

14

RTX 4090s (6.1X speedup). Super-linear speedups were also achieved on A100s: 3.7X
on 2 A100s, 7.4X on 4 A100s, and 14.1X on 8 A100s. The execution time was reduced
to only 1.6 hours using 8 A100s.

4. Discussion

Accurate and robust benchmarking of the performance of machine learning
models has been a challenge in the field of medical imaging #'. A commonly used
approach is to split a labeled dataset into a training set for learning model parameters, a
validation set for optimizing model hyperparameters, and a test set for benchmarking
the performance of the obtained model. Although cross-validation is often used to rotate
data partitions between the training set and the validation set, most machine learning
studies split out a single fixed test set for performance benchmarking. NACHOS
features NCV in an automated and user-friendly machine learning workflow for medical
imaging applications. k-fold NCV offers two key advantages over a single test split for
test performance benchmarking. First, NCV reduces the variance of the test
performance estimation by rotating all data partitions through the test set. Specifically,
the variance of the average performance score from k-fold NCV should be k times lower
than the variance of the point estimate of the performance score from a single test split.
Second, and more importantly, the variance of the performance estimation is not
quantified using a single test split, but is quantified during cross-testing over k test
partitions. For example, if a user holds out only the last partition for the test set, they
would estimate the classification accuracy to be 0.82 in the chest X-ray repository and
0.86 in the kidney OCT dataset with large (£ 0.06 and + 0.09, respectively) variabilities
that are unknown to the user. If the user uses NVC, they would be able to better
estimate the accuracy as 0.75 £ 0.03 in the chest X-ray repository and as 0.84 + 0.03 in
the kidney OCT dataset. These use cases demonstrated that NCV reduced and
measured the variance of the performance benchmarking of deep learning models.

The partitioning level used by NCV is also important for accurate and robust
performance benchmarking. The Checklist for Artificial Intelligence in Medical Imaging
(CLAIM) 42 emphasizes transparent reporting of data partitioning and recommends

partitioning at the patient level or higher. The classification accuracy in the chest X-ray

15

repository decreased from 0.809 with the patient-level partitioning to 0.750 with the
dataset-level partitioning (Figure 1B). This means that it is more difficult for models to
generalize to a new dataset acquired by other institutions than to generalize to new
patients from a previously seen dataset. Similarly, Zech et al. 43 found that pneumonia
classification models often perform better on internal test datasets originated from the
same institution as the training data than on external test datasets from institutions
different that the ones used for training. The choice of the partitioning level for NCV
performance benchmarking should match the intended use scenario of the models. For
instance, the patient-level partitioning can be used to evaluate models designed for use
within the same hospitals that produced the training data, as it mimics the scenario of
encountering new patients within these hospitals. The institution-level partitioning

should be used to evaluate models intended to be deployed to new hospitals.

NACHOS benchmarks the average test performance of models generated by a
reproducible workflow using a specific dataset. AHPO is needed in NACHOS because it
is impractical to perform laborious manual hyperparameter optimization consistently
across all test folds in NCV. Random search % is a simple, yet highly effective, AHPO
method. In the chest X-ray repository (Table 2), the best hyperparameter configuration
achieved improvements ranging from 0.07 to 0.10 over the average cross-validation
accuracy of all configurations. In the kidney OCT dataset (Table 3), AHPO delivered
performance gains between 0.02 and 0.05 above the overall average. In future,
NACHOS can offer users multiple AHPO methods, such as Hyperband #* and its
Bayesian counterpart, Bayesian Optimization Hyperband (BOHB) 4.

NCV and AHPO in NACHOS incur a significant computational cost that needs to
be distributed across multiple GPUs to shorten the wall-clock time of model
development. The parallelization in NACHOS achieved linear and super-linear
speedups on different kinds of GPUs (Figure 3A and 3B). Super-linear speedup,
observed in certain cases, suggests additional efficiency gains arising from improved
cache utilization, reduced memory bottlenecks, or synergistic effects in GPU
parallelism. After NACHOS measures the test performance of models from a model

development workflow, DACHOS is used to generate a production model for

16

deployment using this workflow. The actual test performance of this production model is
unknown but should be higher than the test performance of the models benchmarked by
NACHOS. This is because the AHPO in DACHOS can use an extra data fold than the
AHPO in NACHOS and the final model training in DACHOS can use two additional data
folds than the training in NACHOS.

In conclusion, NACHOS integrates NCV, AHPO and HPC into an automated
workflow. NCV reduces and measures variance in test performance estimation by
rotating all data folds through the test set. AHPO enhances model performance by
searching for optimal hyperparameters and avoids the impracticality of manual tuning
across multiple test folds in NCV. To mitigate substantial computational costs of NCV
and AHPO, NACHOS can distribute computation across multiple GPUs with linear or
super-linear speed-up. After NACHOS completes model benchmarking, DACHOS can
be used to generate final production models with potentially higher performance.
Together, these frameworks provide a robust, reproducible, and scalable approach to

developing and evaluating machine learning models in medical imaging.
Data availability

The repository for NACHOS and DACHOS is available at
https://qithub.com/thepanlab/NACHQOS.

Code availability

The kidney OCT dataset and chest X-ray repository are available at
https://doi.org/10.5281/zenodo.14847200.

References

1 Liu, X. et al. A comparison of deep learning performance against
health-care professionals in detecting diseases from medical
imaging: a systematic review and meta-analysis. The Lancet Digital
Health 1, e271-e297 (2019). https://doi.org:10.1016/S2589-
7500(19)30123-2

17

https://github.com/thepanlab/NACHOS
https://doi.org/10.5281/zenodo.14847200
https://doi.org:10.1016/S2589-7500(19)30123-2
https://doi.org:10.1016/S2589-7500(19)30123-2

10

11

Brown, J. M. et al. Automated Diagnosis of Plus Disease in
Retinopathy of Prematurity Using Deep Convolutional Neural
Networks. JAMA Ophthalmology 136, 803-810 (2018).
https://doi.org:10.1001/jamaophthalmol.2018.1934

Hwang, D. K. et al. Artificial intelligence-based decision-making for
age-related macular degeneration. Theranostics 9, 232-245 (2019).
https://doi.org:10.7150/thno.28447

He, M., Li, Z., Liu, C., Shi, D. & Tan, Z. Deployment of Artificial
Intelligence in Real-World Practice: Opportunity and Challenge.
Asia-Pacific Journal of Ophthalmology 9, 299-307 (2020).
https://doi.org:https://doi.org/10.1097/AP0.0000000000000301
Stanley, E. A. M. et al. Towards objective and systematic evaluation
of bias in artificial intelligence for medical imaging. Journal of the
American Medical Informatics Association (2024).
https://doi.org:10.1093/jamia/ocael65

Tejani, A.S., Ng, Y. S, Xi, Y. & Rayan, J. C. Understanding and
Mitigating Bias in Imaging Artificial Intelligence. RadioGraphics 44,
230067 (2024). https://doi.org:10.1148/rg.230067

Vrudhula, A., Kwan, A. C., Ouyang, D. & Cheng, S. Machine Learning
and Bias in Medical Imaging: Opportunities and Challenges.
Circulation: Cardiovascular Imaging 17, e015495 (2024).
https://doi.org:doi:10.1161/CIRCIMAGING.123.015495

Yang, Z., Yu, Y., You, C., Steinhardt, J. & Ma, Y. in International
Conference on Machine Learning. 10767-10777 (PMLR).

Berrar, D. Cross-Validation. Encyclopedia of Bioinformatics and
Computational Biology 1, 542-545 (2019).

Bates, S., Hastie, T. & Tibshirani, R. Cross-Validation: What Does It
Estimate and How Well Does It Do It? Journal of the American
Statistical Association 119, 1434-1445 (2024).
https://doi.org:10.1080/01621459.2023.2197686

Nawabi, J. et al. Imaging-Based Outcome Prediction of Acute
Intracerebral Hemorrhage. Translational Stroke Research 12, 958-
967 (2021). https://doi.org:10.1007/s12975-021-00891-8

18

https://doi.org:10.1001/jamaophthalmol.2018.1934
https://doi.org:10.7150/thno.28447
https://doi.org:https:/doi.org/10.1097/APO.0000000000000301
https://doi.org:10.1093/jamia/ocae165
https://doi.org:10.1148/rg.230067
https://doi.org:doi:10.1161/CIRCIMAGING.123.015495
https://doi.org:10.1080/01621459.2023.2197686
https://doi.org:10.1007/s12975-021-00891-8

12

13

14

15

16

17

18

19

Chen Wang, Y. L., Paul Calle, Xinwei Li, Ronghao Liu, Qinghao
Zhang, Feng Yan, Kar-ming Fung, Andrew K. Conner, Sixia Chen,
Chongle Pan, Qinggong Tang. Enhancing Epidural Needle Guidance
using a Polarization-Sensitive Optical Coherence Tomography
Probe with Convolutional Neural Networks.

Wang, C. et al. Epidural anesthesia needle guidance by forward-
view endoscopic optical coherence tomography and deep learning.
Scientific Reports 12, 9057 (2022). https://doi.org:10.1038/s41598-
022-12950-7

Wang, C. et al. Deep-learning-aided forward optical coherence
tomography endoscope for percutaneous nephrostomy guidance.
Biomedical Optics Express 12, 2404-2418 (2021).
https://doi.org:10.1364/BOE.421299

Wang, C. et al. Computer-aided Veress needle guidance using
endoscopic optical coherence tomography and convolutional
neural networks. Journal of Biophotonics 15, 202100347 (2022).
Roberts, M. et al. Common pitfalls and recommendations for using
machine learning to detect and prognosticate for COVID-19 using
chest radiographs and CT scans. Nature Machine Intelligence 3,
199-217 (2021). https://doi.org:10.1038/s42256-021-00307-0
Gibson, E. et al. NiftyNet: a deep-learning platform for medical
imaging. Computer Methods and Programs in Biomedicine 158,
113-122 (2018).
https://doi.org:https://doi.org/10.1016/j.cmpb.2018.01.025
Pérez-Garcia, F., Sparks, R. & Ourselin, S. TorchlO: A Python library
for efficient loading, preprocessing, augmentation and patch-
based sampling of medical images in deep learning. Computer
Methods and Programs in Biomedicine 208, 106236 (2021).
https://doi.org:https://doi.org/10.1016/j.cmpb.2021.106236
Beers, A. et al. DeepNeuro: an open-source deep learning toolbox
for neuroimaging. Neuroinformatics 19, 127-140 (2021).
https://doi.org:10.1007/s12021-020-09477-5

19

https://doi.org:10.1038/s41598-022-12950-7
https://doi.org:10.1038/s41598-022-12950-7
https://doi.org:10.1364/BOE.421299
https://doi.org:10.1038/s42256-021-00307-0
https://doi.org:https:/doi.org/10.1016/j.cmpb.2018.01.025
https://doi.org:https:/doi.org/10.1016/j.cmpb.2021.106236
https://doi.org:10.1007/s12021-020-09477-5

20

21

22

23

24

25

26

27

28

29

30

31

Pati, S. et al. GaNDLF: the generally nuanced deep learning
framework for scalable end-to-end clinical workflows.
Communications Engineering 2, 23 (2023).
https://doi.org:10.1038/s544172-023-00066-3

Cohen, J. P. et al. in International Conference on Medical Imaging
with Deep Learning. 231-249 (PMLR).

Yagis, E. et al. Effect of data leakage in brain MRI classification
using 2D convolutional neural networks. Scientific Reports 11,
22544 (2021). https://doi.org:10.1038/s41598-021-01681-w
Tampu, I. E., Eklund, A. & Haj-Hosseini, N. Inflation of test accuracy
due to data leakage in deep learning-based classification of OCT
images. Scientific Data 9, 580 (2022).
https://doi.org:10.1038/s41597-022-01618-6

Bergstra, J. & Bengio, Y. Random search for hyper-parameter
optimization. Journal of machine learning research 13 (2012).

He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.
Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J. & Wojna, Z. in
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2818-2826.

Chollet, F. in Proceedings of the IEEE conference on computer vision
and pattern recognition. 1251-1258.

Dalcin, L. & Fang, Y.-L. L. mpi4py: Status update after 12 years of
development. Computing in Science & Engineering 23, 47-54
(2021).

McKerns, M. M., Strand, L., Sullivan, T., Fang, A. & Aivazis, M. A.
Building a framework for predictive science. arXiv preprint
arXiv:1202.1056 (2012).

Harris, C. R. et al. Array programming with NumPy. Nature 585,
357-362 (2020). https://doi.org:10.1038/s41586-020-2649-2
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12, 2825-2830 (2011).

20

https://doi.org:10.1038/s44172-023-00066-3
https://doi.org:10.1038/s41598-021-01681-w
https://doi.org:10.1038/s41597-022-01618-6
https://doi.org:10.1038/s41586-020-2649-2

32

33

34

35

36

37

38

39

40

41

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature methods 17, 261-272 (2020).
Badre, A. & Pan, C. LINA: A Linearizing Neural Network
Architecture for Accurate First-Order and Second-Order
Interpretations. /EEE Access 10, 36166-36176 (2022).
https://doi.org:10.1109/ACCESS.2022.3163257

Badré, A. & Pan, C. Explainable multi-task learning improves the
parallel estimation of polygenic risk scores for many diseases
through shared genetic basis. PLOS Computational Biology 19,
1011211 (2023). https://doi.org:10.1371/journal.pcbi.1011211
Selvaraju, R. R. et al. in Proceedings of the IEEE international
conference on computer vision. 618-626.

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in
science & engineering 9, 90-95 (2007).

Wang, X. et al. in Proceedings of the |IEEE conference on computer
vision and pattern recognition. 2097-2106.

Irvin, J. et al. CheXpert: A Large Chest Radiograph Dataset with
Uncertainty Labels and Expert Comparison. Proceedings of the
AAAI Conference on Artificial Intelligence 33, 590-597 (2019).
https://doi.org:10.1609/aaai.v33i01.3301590

Johnson, A. E. W. et al. MIMIC-CXR, a de-identified publicly
available database of chest radiographs with free-text reports.
Scientific Data 6, 317 (2019). https://doi.org:10.1038/s41597-019-
0322-0

Bustos, A., Pertusa, A., Salinas, J.-M. & de la Iglesia-Vaya, M.
PadChest: A large chest x-ray image dataset with multi-label
annotated reports. Medical Image Analysis 66, 101797 (2020).
https://doi.org:https://doi.org/10.1016/j.media.2020.101797
Varoquaux, G. & Cheplygina, V. Machine learning for medical
imaging: methodological failures and recommendations for the
future. npj Digital Medicine 5, 48 (2022).
https://doi.org:10.1038/s41746-022-00592-y

21

https://doi.org:10.1109/ACCESS.2022.3163257
https://doi.org:10.1371/journal.pcbi.1011211
https://doi.org:10.1609/aaai.v33i01.3301590
https://doi.org:10.1038/s41597-019-0322-0
https://doi.org:10.1038/s41597-019-0322-0
https://doi.org:https:/doi.org/10.1016/j.media.2020.101797
https://doi.org:10.1038/s41746-022-00592-y

42 Mongan, J., Moy, L. & Kahn Jr, C. E. (Radiological Society of North
America, 2020).

43 Zech, J. R. et al. Variable generalization performance of a deep
learning model to detect pneumonia in chest radiographs: A cross-
sectional study. PLOS Medicine 15, e1002683 (2018).
https://doi.org:10.1371/journal.pmed.1002683

44 Lj, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A.
Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 6765-
6816 (2017).

45 Falkner, S., Klein, A. & Hutter, F. in Proceedings of the 35th
International Conference on Machine Learning Vol. 80 (eds Dy
Jennifer & Krause Andreas) 1437--1446 (PMLR, Proceedings of
Machine Learning Research, 2018).

Acknowledgements

Special thanks to Jessica Shaw for her assistance with the coding aspects of this
project. This work was supported by grants from the University of Oklahoma Health
Sciences Center (3P30CA225520), National Science Foundation (OlA-2132161,
2238648, 2331409), National Institute of Health (R01DK133717), Oklahoma Center for
the Advancement of Science and Technology (HR23-071), the medical imaging COBRE
(P20 GM135009), the Prevent Cancer Foundation, and the Midwest Biomedical
Accelerator Consortium (MBArC), an NIH Research Evaluation and Commercialization
Hub (REACH). Histology service provided by the Tissue Pathology Shared Resource
was supported in part by the National Institute of General Medical Sciences COBRE
Grant P20GM103639 and National Cancer Institute Grant P30CA225520 of the National
Institutes of Health. Financial support was provided by the OU Libraries’ Open Access
Fund.

22

https://doi.org:10.1371/journal.pmed.1002683

Algorithm 1: NACHOS

Required k: number of folds
n: number of set of hyperparameter configurations from random search
D: Dataset
I={0,1,... k—1}
J={0,1,...n—1}
H = {ho, hi,... hp}
Defined v},: Validation performance for hyperparameter configuration h; on
the validation fold F,,
v7: Average validation performance of hyperparameter configuration h;
across all validation folds
t;: Test performance on the test fold F;
Result average and standard error for performance metric
Split D into k folds: Fy, FY,... Fp_1
/* Cross-testing loop */
for i€ I do
Set F; as test dataset

/* AHPO loop */
for j € J do
Set h; as hyperparameter configuration
/* Cross-validation loop */
for me I —{i} do
Set F), as validation dataset
// Distribution of tasks
Train model on remaining folds (I — {7, m}) with h;
vJ, + Evaluate model for validation performance on Fj,
end
v/ « Average values v/, ,m € I — {i})
end
J* + argmax;{v’ : j € J}
Train model on folds: I — {i} with hj-
t; + Evaluate model for test performance on Fj
end
return average and standard error for values t;, i € 1

Algorithm 2: DACHOS

Required k: number of folds
D: Dataset
I={0,1,... k—1}
J={0,1,...n—1}
H = {ho, hi,... hp}
Defined v},: Validation performance for hyperparameter configuration h; on
the validation fold F,,
v7: Average validation performance of hyperparameter configuration h;
across all validation folds
Result M: Model ready to be deployed
Split D into k folds: Fy, F1,... Fr_1

/* AHPO loop */
for j € J do
Set h; as hyperparameter configuration
*/

/* Cross-validation loop

for m € I do
Set F,, as validation dataset

// Distribution of tasks
Train model on remaining folds (I — {m}) with h;
v), + Evaluate model for validation performance on F},
end
9/ < Average values v/, ,m € T
end
J* + argmax;{v’/ : j € J}
M < Train model on D with A
return M

Table 1: Randomly generated hyperparameter configurations for AHPO

Index Architecture Batch size Learning rate Decay Momentum Nesterov

ho ResNet50 128 0.01 0.01 0.9 Enabled
hy InceptionV3 16 0.001 0.001 0.9 Disabled
ho ResNet50 64 0.01 0.01 0.99 Enabled
hs Xception 16 0.001 0.001 0.5 Disabled
hy ResNet50 64 0.01 0.01 0.5 Disabled
hs ResNet50 32 0.01 0.01 0.99 Enabled
he ResNet50 32 0.0001 0.0001 0.99 Disabled
h7 ResNet50 32 0.01 0.01 0.9 Enabled

hg InceptionV3 64 0.01 0.01 0.5 Disabled

Table 2: NACHOS accuracy results for chest X-ray repository

Fold reserved for Test

Hyperparameter
configuration Fo P Py Fy

v9: 053 v): 0.50 vd: 0.50 vf: 0.54
ho vd: 0.61 v3: 0.50 o: 0.49 09: 0.58
v]: 0.75 03 0.77 v3: 0.50 08: 0.50

vi: 0.66 vi: 0.80 wvd: 0.81 wd: 0.80

5 hi vy: 0.68 wvi: 0.74 wi: 0.76 wvi: 0.72
= vi: 0.80 wvi: 0.84 vl 0.71 wi: 0.50
= 2 0.69 v2: 0.60 v3: 0.70 vd: 0.67

CS 1. . 0- . 0- . 0- .
=~ ho v3: 0.70 v3: 0.67 v?: 0.64 v3: 0.68
z v3: 0.76 v3: 0.71 03 0.66 v3: 0.61
2 w3 0.67 v 0.67 vl 0.71 vd: 0.69
2 hs v3: 0.63 vl 0.65 v3: 0.63 vd: 0.66
3 v3: 0.82 v3: 0.79 wv3: 0.76 v3: 0.56
vf: 0.50 vd: 0.51 v 0.50 wv§: 0.50
hy v3: 0.50 w3 0.50 v 0.50 vf: 0.50
v3: 0.50 v3: 0.78 wv3: 0.67 wv3: 0.50
v 0.69 vg: 0.76 vd: 0.70 vf: 0.73
hs v§: 0.69 v3: 0.67 wP: 0.69 vi: 0.72
v3: 0.76 v5: 0.76 v3: 0.74 v3: 0.64
v$: 0.50 0§ 0.77 §: 0.75 vf: 0.73
hg v$: 0.51 0§ 0.66 $: 0.50 of: 0.50
v$: 0.77 0§: 0.76 0§ 0.78 v§: 0.50
v]: 0.70 vd: 0.77 vf: 0.74 wf: 0.51
h7 vi: 0.49 vl 0.69 of: 0.67 v]: 0.69
vi: 0.78 wvi: 0.80 wvi: 0.74 vI: 0.56
v§: 0.50 v§: 0.80 oS: 0.81 wvf: 0.81
hg v§: 0.61 0§ 0.71 o 0.74 o 0.73
v§: 0.78 0§: 0.80 v§: 0.77 0§ 0.50

best: hj* hg hl hg h5
Average 7% 0.72 o' 079 8 0.77 ¥°: 0.69
o 2 Accuracy to: 0.79 t1: 0.71 t9: 0.69 t5: 0.82

8 E Average and standard error 0.75+0.03

Note: Fj: represents the test fold i. h;: represents the hyperparam-
eter configuration j. In the AHPO/CV loop, inside each cell, the
validation accuracy v, for hyperparameter configuration j and vali-
dation fold m is located. For each test fold, the best hyperparameter
configuration is selected by comparing the average validation accu-
racy and the whole cell is highlighted in blue. For instance, for Fyp,
the hyperparameter configuration he has the highest average accu-
racy. 9°=(0.69+0.7040.76)/3=0.72. In the cross-testing loop, the
selected hyperparameter configuration is used to calculate the test
accuracy t; for test fold i. For test fold Fpy, test accuracy is tg=0.79.

"7 £orINOOR 1597 O} 9JR[NO[RD 0) POSTL ST UOT)RINIYu0d 1ojaureredodAy payoaos o) ‘doof Sur)sel-ssoId o)
Ul "§6°0=g "Aoeinooe oFeroAr 489yIIy oYy sey Sy uoryemsyuod rojourerediodAy oy ‘07 10y ‘eour)sUL 10, PIOJ 180} B I0f ADRINOOR 0FRIOAR SOYSIY oYY
aARY oN[q UT PAIYSIYSIY S[[92 oY, "PoYed0] oIk wi P[O] UOIJepI[ea puk (UOIjRINSHUO0D IojowrerediodAy 10 /o so10eINIOE UOIYRPI[RA YY) JO IOIIS PIRPUR)S
pue a8eloe o) ‘[0 Yoeo apisul ‘doo] AD/OJHV °U Ul ‘L uorpemdyuoo IojeurerediodAy o1y squesoxdor Ly -1 proy 3599 oty syuesorder Y :9joN

¢0'0F¥8°0 I0olIe prepurls pue Owd.ﬁw\/a«a qsﬂ mumw
98°0 62 96°0 %1 06°0 4% V60 % L8°0 9 88°0 77 GL'0 %2 6L°0 % 1L°0 17 €L°0 0% Loemoy F 7
Ty 8y Ty Oy Ty Sy Sy ey Sy Sy %3\ 1189q
¥0'0+88°0 €0°0+68°0 ¥00+880 €S00+S80 €00+880 ¥00+98°0 ¥00+980 €00+680 F00+680 <cO0FI60 8y
€0°0F88°0 €0°0F08°0 <c00FE80 €0°0FL80 €0°0F8°0 €0°0FL80 €0°0F980 €0°0FL80 VO0FL80 T00F680 “y a
¥O'0FL8°0 €0°0+S¢8°0 €00+€80 7FO0+SE80 €00+880 G00+e80 90°0+4%80 €00+680 F00+980 <cO0+880 Iy m -
€0°0FL8°0 <c00+L80 <c00F060 €00F+280 <cO0F680 €0°0+88°0 <¢00F060 <¢00F680 €0°0+F680 T00FE60 “Y v_% =
70'0F€8°0 €0°0+F08°0 €0°0FER0 €00FP80 €0°0FE80 F00F+E80 FOOFIS80O FO'0OF480 F0O'0OF880 €0°0F98°0 "y mmm
G0'0F¥80 90°0FE80 VO0FERO 90°0FI80 90°0F080 900FE80 90°0Fc80 S0O0FS80 GO0FF80 €0°0F+68°0 &y g
€0°0+68°0 <00+88°0 <c00F+060 F00F280 <CO0F680 F00F480 <cO0F880 <cO0FI6°0 €0°0FL80 <00F680 &y =
YO'0FL8°0 €0°0+S8°0 €00+L80 7F00+ESO POOF880 90°0+S%8°0 90°0+€80 €0°0+L80 FO0+98°0 T00+c60 Ty
€0°0FL80 €0°0FE8°0 €0°0FE80 €0°0FL80 €0°0F980 €0°0F980 ¥00F480 90°0F€80 VO'0FL80 <00FI60 Oy
uorjeInsyuod
@RW wrm‘ NRN @h mﬁ&‘ Nm‘ m.rm‘ NRN Hrm‘ ORN Hoawﬁwm&maw__@azvﬂ

1S9, I0] POAISSAI PO

jese)ep I,D() Adupry 10j synsal £oeinode SOHOVN € o[qRL

“8y uey) IoYSIy SI AorInooe
uorjepiea agerose s Sy ‘Surpunol o} onp Ajenbe jusredde ojrdso(y
"ON[(UT POYYSIYSIY ‘G ()= A0RINIDEe UOTJRPI[ReA 0FRIoAR JS0USIY o)
ser] ¢y ‘WeY) FUOWY PIjId[Rs SI a AdeIndoe oFeloar 1SoUSIY o)
‘1ojourerediodAy uoryeIn3Iguod o) uoﬂmm 0} I9pIO U] "Pajedo] SI ws
PIOj uoryepIrea pue [uworyeInsyuod 1ajeurerediadAT 10] Yo soueuIo]
-1od woryRpIRA 9]} ‘[[00 YDed opIisu] [UOIRINIFUOD 1etrerediad
-Aq oty sywoesoxdar :fy w ploy uorjeprrea oy sjussordor U4y :9j0N

Gy fy 1380q
GL0 g2 180 :fr €90 :% 1,0 :fe 180 Q0 Sy
gL 5,0 GLo§e €90 :5a gLoifa LL0 e Y
€L0 g0 2070 150 €40 50 1L0 tha €40 {0 %y
CL0 2 080 :50 120 & FL0 ke Lol “
62°0 42 8L°0 :f2 690 :£a 0G0 pa 0970 Po "y
L0 0 080 (f 99°0 :fa 69°0 tfa gL0 e &y
110 @ €00 £ 69°0 (% 00 e 8L0 il <Y
120 52 120 o 120 % €90 o 620 0 Y
IL0 5@ 0L0:50 6900 :50 1.0 00 120 :0 0y
@W@.M@\w{q mﬁﬂ NRN ﬂr@ or@ p@MMMM“MMMMMME

UOIYRPI[RA I10] POAISSAI PO

K109150da1 AeI-Y 1891 10} spINsal Aoeindoe SOHOVA 7 °lqel

"9y wey) 19Y3Iy St
AoeInooe uoryeplea 98eIoAr s oy ‘urpunol o} onp Ayenbe juoredde oy1dso(] on[q ur poySIysIYy
‘06°0=¢z2 £9vINode UOIjepI[eA dFRIOAR JSOUSIY O} SeY &y ‘UIdY) SUOUIY "PIjOd[as SI (1 A9RINOOR
oFeroAr 18oU3IY oY) ‘IojewreledrodAy UOIIRINSPUOD OY) J09[0S 0} IOPIO UJ "PayedO[ST UL Plof
uoryepifea pue (uoryemsyuod 1jourerediadAT 10 ‘o £oeInode UoIjepIreA 9} ‘([0 Yord SpISU]
* noryemnSyuoo 1ojourerediadAy oty sjueserdar :fy “w Proj uorjepifea ay) syuesardal “ 910N

NQ *P\ 1)s9q
880 g 060 L60 060 L60 ©60 <60 ¥60 690 680 990 8y
280 5,2 160 L6°0 980 960 6.0 980 €60 ¥80 L80 690 Ly
880 ‘9¢ ¢60 L60 060 160 G60 ¥80 160 180 880 990 Ny
060 ‘¢@ €60 960 160 ¢60 L60 760 6L0 630 80 LLO “Y
98°0 3@ 160 €60 980 880 660 8.0 ¥80 980 680 R8I0 ry
P80 ¢ L80 860 ¢60 TI60 160 L8O €80 ¢80 060 LEO &y
060 ‘z& ¢60 L60 160 ¢60 €60 960 160 I80 880 LLO &y
980 ‘t¢ 060 L6°0 ¥80 860 160 060 €60 6L0 160 TS0 Ty
98°0 ‘9 880 ¥60 L8O ¢60 L60 160 9.0 G880 880 €90 Oy
oAy O S A M W W W W W N o

UOIYRPI[RA I10] POAISSAI PO

jesejep 1,00 £oupry 10J synsal £oeinode SOHOVA S o[qRL

A B

0.85-
Dataset A A 7N 7N O O
@)
=4 ENE ERE BN ENE] oo 8O-
A . O
© Y 8
Patient ® s 3 0.754
n=4,678 'm ‘n‘ e
" 0.70- 8
Image
n=4,960 0.65 - - T

Image-level Patient-level Dataset-level
partitioning partitioning partitioning

p=0.811 p=0.809 u=0.750
SD=0.008 SD=0.009 SD=0.061

Figure 1: Data partitioning schemes of the chest X-ray repository. [A] Data structure of the chest
X-ray repository. The repository includes four datasets, each originating from a different set of institutions,
capturing variations in imaging protocols and patient populations. [B] Mean (u) and standard deviation
(SD) of the test accuracy from data partition on the image level, the patient level, and the dataset level.
The four open circles represent the test accuracies of four partitions of mixed images regardless of
patients, four partitions of mixed patients regardless of their source datasets, and four partitions
corresponding to the four datasets. The dataset-level partitioning had significantly lower mean and higher
variability in the test accuracies.

Image
n=18,000

Accuracy

ol@)
OO0 |0 00
O

0.6

| | 1
Image-level Volume-level Kidney-level
partitioning partitioning partitioning

p=1.00 p=0.97 p=0.84
SD=0.00 SD=0.01 SD=0.09

Figure 2: Data partitioning schemes of the kidney OCT dataset. [A] Data structure of the kidney OCT
dataset. The dataset includes 10 kidneys, each generating 90 OCT volumes. 20 B-scan images are
extracted from each volume. [B] Mean (p) and standard deviation (SD) of the test accuracy from data
partition on the image level, the volume level, and the kidney level. The 10 open circles represent the test
accuracies of 10 partitions of mixed images regardless of volume, 10 partitions of mixed volume regardless
of their source kidney, and 10 partitions corresponding to the 10 kidneys. The kidney-level partitioning had
significantly lower mean and higher variability in the test accuracies.

A 25+ Type of GPU
® RTX A6000
» 20- B RTX 4090
3 A A100
=
@ 15-
E
|_
<
2 10-
=
Q
@
>
W 5-
0 1 || 1 1 1
1 2 3 4 8
Number of GPUs
B 15__ Type of GPU
® RTX A6000
B RTX 4090
A A100
10+
Q. <
=]
© -
@
[} <
Q.
»
5-
0 | 1 1 1 I
1 2 3 4 8
Number of GPUs

Figure 3: Scalability of NACHOS parallelization.

[A] Execution time as a function of the number of GPUs for
three GPU types: RTX A6000 (Beowulf cluster), RTX 4090
(Beowulf cluster), and A100 (supercomputer). [B] Speedup
relative to the number of GPUs. The speedup of all GPU
types is calculated using the execution time of a single RTX
A6000 GPU as the baseline (1X). NACHOS achieved linear
speedup on the A6000 GPUs and super-linear speedup on
the RTX 4090 GPUs and the A100 GPUs.

	f1c86518-622c-4db8-8e97-b84fa6608730.pdf
	Slide 1
	Slide 2
	Slide 3

