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Abstract

We initiate the study of proper losses for eval-

uating generative models in the discrete setting.

Unlike traditional proper losses, we treat both the

generative model and the target distribution as

black-boxes, only assuming ability to draw i.i.d.

samples. We define a loss to be black-box proper

if the generative distribution that minimizes ex-

pected loss is equal to the target distribution. Us-

ing techniques from statistical estimation theory,

we give a general construction and characteriza-

tion of black-box proper losses: they must take a

polynomial form, and the number of draws from

the model and target distribution must exceed the

degree of the polynomial. The characterization

rules out a loss whose expectation is the cross-

entropy between the target distribution and the

model. By extending the construction to arbi-

trary sampling schemes such as Poisson sampling,

however, we show that one can construct such a

loss.

1. Introduction

Generative models are widely used tools in machine learn-

ing and statistics. For example, Generative Adversarial

Networks (GANs) have recently been successful particu-

larly in natural language and image generation. However,

the evaluation of generative models is still an open area of

research, with many evaluation methods proposed (Borji,

2019; Theis et al., 2015). This paper investigates theoretical

foundations for evaluating generative models using a proper

losses approach.

Specifically, we consider evaluating generative models that

aim to match some underlying “target” distribution. For

example, a GAN’s goal may be to produce sentences from

the same distribution as a random sentence drawn from

*Equal contribution 1University of Colorado
Boulder. Correspondence to: Dhamma Kimpara
<dhamma.kimpara@colorado.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Wikipedia; or to produce an image of a human face drawn

from the same distribution as all U.S. passport photos. In

areas such as climate modeling or weather forecasting, the

goal may be to produce possible future trajectories from the

same distribution as the actual climate. We abstract away

from how the model is trained and learned; our focus is only

on methods of evaluating the model. We leave the issue of

training for future investigation.

We take the approach of the proper losses and proper scor-

ing rule literature (McCarthy, 1956; Savage, 1971; Gneiting

& Raftery, 2007), using one or more observations drawn

from the target distribution to evaluate the model. However,

many generative models are essentially “black boxes”. One

typically cannot obtain a closed form expression for the

probabilities a model assigns to different outputs. This rules

out using traditional proper losses for evaluating distribu-

tions, such as ℓ2 loss or log loss. As a theoretical foundation,

we instead assume only that we can draw independent and

identically-distributed (i.i.d.) observations from the model p
and compare these to observations from the target distribu-

tion q. The question is whether, and/or how, one can design

losses under these restrictions that are proper: the expected

loss is minimized by setting the model’s distribution equal

to the target, i.e. setting p = q.

Our results. As the initial work taking this approach, we

focus on distributions over discrete, usually finite, sample

spaces. We discuss extensions to the continuous setting in

Section 7. First, we consider an easier problem: If we had

full access to the target distribution q, i.e. in closed form or

as an oracle, can we design proper losses for evaluating the

model p from samples? We call this the report-black-box

(RBB) setting. We show that the naive approach of plugging

the empirical distributions directly into a distance function

such as ℓ2 does not yield a proper loss. However, by using

the samples to construct unbiased estimators of the error

introduced, we can correct for them and produce losses that

are in fact proper.

Extending the unbiased-estimator approach, we characterize

RBB-proper losses as those whose expectation is a polyno-

mial in the model distribution, e.g. expected loss ∥p− q∥kk
for even integers k. For such polynomials, we explicitly

construct RBB-proper losses using the classical theory of

unbiased estimators. Furthermore, the minimum number of
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observations that must be drawn from the model is exactly

the degree of the polynomial. On the other hand, the char-

acterization implies impossibility results for many popular

forms of distances, including the cross entropy (expected

log loss).

Second, we consider the full problem: what if we only have

sample access to the target distribution q as well as the

model p? Leveraging the above results, we give a similar

characterization and construction for black-box (BB) proper

losses. Again, the degree of the polynomial in p (respec-

tively, q) governs the the size of the necessary and sufficient

sample that must be drawn.

Generalizing, we consider more general sampling schemes

that do not draw a predetermined number of observations. In

particular, using Poisson sampling, we are able to overcome

the above impossibility result and construct the first black-

box proper loss that in expectation equals the cross entropy

between p and q.

Finally, we experimentally evaluate our losses as a proof of

concept.

1.1. Related Work

Our approach is based on the axiomatic approach in the

proper scoring rule and proper losses literature, e.g. (Gneit-

ing & Raftery, 2007). Most similar to our work in this

tradition is Haghtalab et al. (2019), which examined con-

vergence rates of the log loss for distribution learning in

a setting similar to our simplified setting. Our character-

izations will cover these proper scores as a special case,

along with multi-observation losses that elicit a distribution

(Casalaina-Martin et al., 2017).

There are many losses used in evaluation and training of

GANs and other Neural Network (NN) based generative

models (Borji, 2019; Theis et al., 2015). In adversarial train-

ing, much attention is given to obtaining unbiased gradients.

These training losses cannot be translated into a proper loss

because the loss is in a variational form that is inherent to

the adversarial training method (Goodfellow et al., 2014;

Bińkowski et al., 2018). However, the energy distance, a

special case of the Maximum Mean Discrepancy (MMD)

metric, has been used in its closed form to directly train NN

based generative models (Dziugaite et al., 2015; Li et al.,

2015; Székely & Rizzo, 2005; Bińkowski et al., 2018). The

MMD in general is typically only available in a variational

form and thus is not proper in practice. However, the energy

distance actually can be used to construct a loss satisfying

our definition of black-box proper. So it can be viewed

as a pre-existing proof of concept for the ideas formalized

and generalized in this paper. See Appendix G for further

discussion.

In distribution learning (Han et al., 2020) and classical

machine learning (Nguyen et al., 2010; Györfi & Van der

Meulen, 1987; Hall & Morton, 1993; Joe, 1989), there is

a line of work devoted to estimating divergences between

pairs of distributions. While these literatures provide conver-

gence and consistency results, the estimators and distances

generally do not result in proper losses.

2. Background

For this work N = {0, 1, 2, 3, . . . }. We primarily work

with distributions over a finite domain X . The set of all

probability distributions over X is denoted by ∆X . We

denote a distribution by a vector of probabilities p ∈ ∆X ⊂
R

X , where px is the probability p places on x ∈ X . We use

δx ∈ ∆X to denote an indicator vector, i.e., the distribution

placing probability one on x. Norms without a subscript are

2-norms: ∥ · ∥ = ∥ · ∥2.

In our setting, there is target distribution q ∈ ∆X . We

will generally use Y to denote observations drawn from

q. We aim to evaluate a model that we will represent as

p ∈ ∆X , also a distribution. We will generally use X
to denote observations drawn from p. Uppercase letters

generally refer to random variables while lowercase letters

are realizations, e.g. X = x.

We will also use various unbiased estimators from classical

statistical estimation theory (see Appendix A). A function

f is an unbiased estimator for a parameter θ of a family of

distributions {Fθ} if, for any θ and any random variable

Z ∼ Fθ, we have E f(Z) = θ. Unless otherwise speci-

fied, we will always use the minimum variance unbiased

estimator (MVUE, see Appendix A).

We next recall the classical approach to evaluating p, which

assumes full access to p in closed form. Then we introduce

our setting, where we cannot access p except by drawing

samples.

2.1. The classical approach: proper losses

We proceed with our theory via the perspective of proper

losses. This literature was developed to elicit and evaluate

general statistical reports or predictions from an agent. In-

troduced in (Brier, 1950), a proper loss (also historically

termed a proper scoring rule) is a function r(p, y) that as-

signs a loss to a model or forecast p on an observation y,

where y is drawn from the target q. As we will see, proper

losses do not apply in our setting because they assume abil-

ity to query the value of px on any x. Nevertheless, they are

a useful starting point.

Definition 2.1. A loss function r : ∆X ×X → R is proper

if for all p, q ∈ ∆X , E
y∼q

r(q, y) ≤ E
y∼q

r(p, y). A loss is

strictly proper if the above inequality is strict for all p ̸= q.

In other words, for any fixed target distribution q, the op-
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timal model p (i.e. the one that minimizes expected loss)

is p = q. A classic result fully characterizes all proper

losses via Bregman divergences, which can be used as mea-

sures of “distance” between two distributions. For reference,

we define Bregman divergences and recall the scoring rule

characterization in Appendix D.

The two most common proper losses are the squared loss

r(p, y) = ∥p− δy∥
2
2, where δy is the indicator vector on y;

and the log loss r(p, y) = log py, whose expectation is the

cross-entropy ℓ(p, q) = −
∑

X qx ln px.

3. Report Black Box Proper

To develop our results, in this section we consider a sim-

plified setting where we have full access to the target dis-

tribution q. We aim to evaluate the model p based only on

i.i.d. observations drawn from it. In later sections, we will

assume only sample access to q as well.

3.1. Basic definitions

To evaluate p, we will draw i.i.d. observations from p. For-

mally, we draw a sample (X1, . . . , Xn) where the Xi are

independent random variables taking values in X , each dis-

tributed according to p. It will be convenient to represent the

sample as a histogram H ∈ N
X , where Hx = |{i : Xi =

x}|. It is without loss of generality to consider loss functions

that take H as input rather than the individual samples.1

We use Hn to denote the set of histograms arising from n
samples, i.e. Hn = {h ∈ N

X : ∥h∥1 = n}. We write

H ∼ pn to denote that the random histogram H ∈ Hn is

distributed according to pn, the distribution over all samples

of size n drawn i.i.d. from p. Given a histogram h ∈ Hn,

the empirical distribution is p̂ = 1
n
h.

Definition 3.1. A report-black-box (RBB) loss is a function

L : Hn ×∆X → R. Here L(h, q) is the loss assigned to a

histogram h of n samples drawn from the model when the

target distribution is q.

Definition 3.2. For a RBB loss L : Hn × ∆X → R, the

associated expected loss is L̄(p, q) = E
H∼pn

L(H, q).

The key property we want our loss functions to satisfy is

properness, i.e., that expected loss is minimized by setting

the model p equal to the target q. Therefore, the following

definition becomes useful:

Definition 3.3. A function ℓ : ∆X ×∆X → R is called a

1By exchangeability of i.i.d. samples, any function f(S) of the
sample S = (X1, . . . , Xn) can be simulated by a function g(H)
of the histogram, where g simply arranges the samples that make
up H in a uniformly random order to obtain S′ and applies f(S′).
Then g(H) has the same distribution as f(S), because S′ has the
same distribution as S.

proper divergence if for all fixed q,

ℓ(q, q) ≤ ℓ(p, q) (∀p).

It is called a strictly proper divergence if the above inequal-

ity is strict for all p ̸= q.

Examples of proper divergences are the squared distance

∥p − q∥2 and the cross-entropy E
Y∼q

log pY . A proper di-

vergence ℓ represents our goal: we would like to use such

a divergence to evaluate p. In general, we cannot use ℓ
directly, because evaluating the divergence requires access

to the closed form of p, and we can only draw observations

from p. However, we can implement a divergence ℓ if we

can construct a RBB loss L whose expectation is ℓ. As such,

the following captures what it means for L to be “proper”

in our setting.

Definition 3.4. A report-black-box loss function L is report-

black-box proper (RBB proper) if L̄(p, q) is a proper diver-

gence. If ℓ is some proper divergence and there exists L
such that L̄ = ℓ, we will say that L implements ℓ and that ℓ
is implementable.

3.2. Proof of concept: squared loss

Is there any proper divergence that is implementable? A

priori, it might seem that given a loss L : Hn ×∆X → R,

there is always a way to tweak a misreport p to put higher

weight on certain points and improve the expected loss.

Let us begin by investigating the ℓ2 divergence ℓ(p, q) =
∥p− q∥22. In the traditional proper loss (or proper scoring

rule) setting, this yields a proper loss r(p, y) = ∥p− δy∥
2
2.

Can we utilize squared loss as a RBB proper loss function

by simply replacing p with p̂? In fact, no:

Claim 1. The loss L(h, q) = ∥p̂ − q∥22, where p̂ = 1
n
h is

the empirical distribution, is not RBB proper for any sample

size n.

Sketch. A straightforward calculation, using p = E p̂,

shows that E ∥p̂ − q∥2 = ∥p − q∥2 +
∑

x∈X

Var(p̂x). In

general, this is not minimized by p = q; for example, with

a 0.1-weighted coin, the optimal model p is always a coin

with weight strictly less than 0.1 (notice this decreases the

variance of p̂).

In summary, the expected loss of this naive approach is the

proper divergence ∥p − q∥22 plus an extra term. However,

the key insight is that the extra term can be estimated unbi-

asedly from a finite number of observations. Let n ≥ 2 and

let s2n(α) =
1

n−1

[

α(1− α)2 + (1− α)α2
]

. Then (Claim

A.2.1) s2n is an unbaised estimator for Var(p̂x), that is,

E
p̂∼pn

s2n(p̂x) = Var(p̂x). This proves the following.
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Claim 2. The ℓ2 divergence ℓ(p, q) = ∥p − q∥2 is imple-

mentable. In particular, for any n ≥ 2, the following loss is

RBB proper and satisfies L̄(p, q) = ∥p−q∥2 (here p̂ = 1
n
h):

Ln(h, q) = ∥p̂− q∥2 −
∑

X

s2n(p̂x),

We discuss the reason underlying the variance term and gen-

eralize this construction to other divergences in Appendix D.

A similar proof of concept can arise from considering the

energy distance in continuous space, as discussed in Section

1.1 and Appendix G.

3.3. Minimum number of draws required

Now that we know it is possible to implement at least some

proper divergences, a natural question is how many observa-

tions one needs to draw from p in order to do so. In cases

where a generative model is expensive to sample, we might

prefer to use RBB proper losses that can utilize a smaller

sample size. To do so, we define the notion of a tight lower

bound on the observations needed to implement a proper

divergence.

Definition 3.5. Let n ∈ N. A proper divergence, ℓ, is n-

minimally-implementable if for all n′ ≥ n, there exists a

RBB loss L : Hn′ ×∆X → R that implements ℓ and, for all

k < n, there does not exist a RBB loss L : Hk ×∆X → R

that implements ℓ.

3.4. Characterization of Discrete Losses

We have seen that naively applying a proper divergence

as a loss function introduces an extra penalty term, which

can be corrected if we can unbiasedly estimate the penalty

from samples. To make this approach fully general, we

turn to the theory of U-estimation, which defines unbiased

estimators. The key idea is that histogram H ∼ pn has a

multinomial distribution. There are classical results (Lemma

A.3.1) describing which functions of multinomials have

unbiased estimators. We utilize these results to characterize

the proper divergences that are n-implementable. Also, we

characterize the minimal-implementability of every such

implementable divergence. We first recall the definition of a

polynomial function of a vector.

Definition 3.6. A function f : ∆X → R is a polynomial if

it is of the form

f(p) =
∑

k∈K

ak
∏

x∈X

p
jk,x
x ,

where the sum is over a finite index set K, where each

jk ∈ N
X is unique, and where each ak is a nonzero real

number. In this case, the degree of f is maxk∈K ∥jk∥1, i.e.

the largest sum of exponents of any monomial. We say a

function is a polynomial in its jth argument of degree n

if, for all fixed values of the other arguments, the induced

function of the jth argument alone is a polynomial, and there

exists a maximum degree n of any such induced polynomial.

Theorem 1. Let ℓ(p, q) be a proper divergence. Then ℓ is

implementable if and only if it is a polynomial in its first

argument. Furthermore, if ℓ is implementable, then ℓ is

n-minimally implementable where n is the degree of the

polynomial.

Given a sample-size budget of n, Theorem 1 tells us which

proper divergences can be implemented in evaluating a

black-box model. Furthermore, the proof will actually con-

struct a loss that minimally-implements the proper diver-

gence.

Proof. Let ℓ be a proper divergence that is a polynomial in

its first argument, in particular, of degree n. We show ℓ is

implementable using sample size n. Write ℓ in the form of

Definition 3.6, i.e. for each fixed q,

ℓ(p, q) =
∑

k∈K(q)

a
(q)
k

∏

x∈X

p
j
(q)
k,x
x ,

where K(q) is finite, each a
(q)
k is a nonzero constant, and

each ∥j
(q)
k ∥1 ≤ n. By classical results (Lemma A.3.1),

any given monomial in p of degree at most n has an un-

biased estimator using n samples from p. In particular,

the minimum-variance unbiased estimator (MVUE) of the

monomial
∏

X p
j
(q)
k,x
x is:

and satisfies E
H∼pn

[

t
n,j

(q)
k

(H)
]

=
∏

X

p
j
(q)
k,x
x (Lemma A.3.1).

Therefore, the loss L(h, q) =
∑

k a
(q)
k t

n,j
(q)
k

(h) satisfies

L̄ = ℓ, and it implements ℓ.

Now suppose ℓ is not a polynomial of degree at most n in its

first argument. That is, there exists q such that ℓ(p, q) either

has higher degree or is not a polynomial at all. The char-

acterization of the U-estimable functions under the multi-

nomial distribution, Lemma A.3.1, directly implies there

does not exist an unbiased estimator for ℓ(·, q) using sam-

ple size n, i.e. there does not exist L : Hn × ∆X → R

such that E
H∼pn

L(H, q) = ℓ(p, q). This shows that non-

polynomials are not implementable; and that polynomials

of degree n′ > n are not implementable with only n ob-

servations. For the other part of minimally-implementable,

our construction above implies that for all n ≥ deg(ℓ) there

exists a loss L : Hn ×∆X → R that implements ℓ.

Corollary 1. Let ℓ be a polynomial divergence as de-

fined in definition 3.6. If L is constructed as according

to Theorem 1 to implement ℓ, then L can be computed in

O(
∑

k∈K ∥jk∥1) = O(|K|deg(ℓ)) time.
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We immediately obtain some positive examples, such as:

Corollary 2. For any even integer k ≥ 2, the proper diver-

gence ∥p− q∥kk =
∑

x(px − qx)
k is implementable, and in

particular, is k-minimally implementable.

However, we also obtain impossibility results:

Corollary 3. The cross-entropy
∑

x qx log px is not imple-

mentable for any finite sample size.

In Section 5, we will return to this example and show that

cross-entropy actually can be “implemented” with a more

creative approach to sampling.

3.5. Linearly Decomposable Losses

We now examine a special case of the previous characteri-

zation that includes many popular distance metrics. In our

motivating example we found a report-black-box proper loss

that in expectation is the the squared loss. It turns out to

be the sum over all X of a coordinate-wise loss. We now

leverage this and construct losses that implement certain

distances that are linearly decomposable. We extend these

losses to handle the case when X is countably infinite in

Appendix C.

Corollary 4. A linearly decomposable proper divergence,

ℓ(p, q) =
∑

X d(px, qx), is n-minimally-implementable if

and only if d(·, ·) is a polynomial with degree equal to n in

the first argument.

4. Black Box Properness

The RBB setting, while an important step, is not the most

common in evaluating generative models. In this section, the

fully black-box setting, we must evaluate only with samples

from both the candidate model and the target distribution.

We extend our definitions to encompass this setting. The

RBB setting will be a special case of this more general

setting.

Definition 4.1. A black-box (BB) loss is a function L :
Hn ×Hm → R where L(hp, hq) is the loss assigned to his-

togram hp of n samples drawn from the model on histogram

hq of m samples drawn from the target distribution.

Definition 4.2. For a black-box loss L : Hn×Hm → R, the

associated expected loss is L̄(p, q) = E
Hp∼pn

Hq∼qm

L(Hp, Hq).

Definition 4.3. A black-box loss function L is black-box

proper (BB proper) if L̄ is a proper divergence ℓ. If ℓ is

some proper divergence and there exists L such that L̄ = ℓ,
we will say that L implements ℓ and that ℓ is implementable.

We again define the notion of minimal-implementability.

In cases where the target distribution is difficult to sample,

we might prefer to use BB proper losses that can utilize a

smaller target sample size. For example, generative models

for forecasting e.g. climate may only have access to one

observation from q, i.e. the weather that actually occurs on

a given day. On the other hand, other settings may present

other tradeoffs between model and target sample size.

Definition 4.4. A proper divergence, ℓ, is (n′,m′)-
minimally-implementable if for all n ≥ n′ and m ≥ m′

there exists a BB loss L : Hn ×Hm → R that implements

ℓ and for all (k, j) where k < n′ or j < m′, there does not

exist a loss L : Hk ×Hj → R that implements ℓ.

4.1. Proof of concept: squared loss

We provide an illustrative example for the ℓ2 proper di-

vergence by extending the techniques we developed in

Theorem 1. Again, the key idea is an unbiased estimator,

namely δBin
j,k (t) = t(t−1)···(t−k+1)

j(j−1)···(j−k+1) . By Lemma A.4.1, if

T ∼ Binom(j, α) and j ≥ k, then E
[

δBin
j,k (T )

]

= αk. The

point is that, for any x, the number of observations Hp
x is

distributed Binomially, as is Hq
x, and they are independent.

Claim 3. For distributions over a finite domain X , the

squared loss ∥q − p∥2 is implementable. In particular, for

any n ≥ 2 and m ≥ 2, it is implemented by

Ln,m(Hp, Hq) =
∑

X

[

Hp
x(H

p
x − 1)

n(n− 1)
−

2Hp
xH

q
x

nm

+
Hq

x(H
q
x − 1)

m(m− 1)

]

.

We observe that, although Ln,m contains a sum over all

X , only at most n +m terms will be nonzero, so Ln,m is

efficient to implement regardless of the size of the domain X

Proof. Observe that Ln,m(Hp, Hq) =
∑

X

[

δBin
n,2 (Hp

x)− 2δBin
n,1 (Hp

x)δ
Bin
m,1 (H

q
x) + δBin

m,2 (H
q
x)
]

.

Using that δBin
n,i (Hp

x) is an unbiased estimator for

pix, and symmetrically for δBin
m,i (H

q
x), along with

independence of Hp and Hq, we immediately get

EL(Hp, Hq) =
∑

(

p2x − 2pxqx + q2x
)

= ∥p− q∥2.

The fact that there exists any proper loss with only n = 2
observations from p and m = 2 observations from q is

somewhat remarkable: however large the sample space X ,

for example all sentences up to a fixed length or all images

of a certain number of pixels, merely 4 total observations

suffice to incent the learner to exactly set the model p to

match the target q. In fact, slightly better is possible: the

Brier score, i.e. the proper divergence
∑

X p2x − 2pxqx,

is (2, 1)-minimally-implementable, as our next result will

imply.
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4.2. Characterization of Discrete Losses

As in the RBB setting, we utilize the theory of U-estimation

to characterize the proper divergences that are imple-

mentable by BB losses. The proof follows similarly because

Hp and Hq are independent random variables, so the RBB

analysis above can essentially apply to each separately. The

proof appears in Appendix B.

Theorem 2. Let T be the set of all proper divergences. Let

Fn be the set of all polynomials in the first argument with

degree ≤ n and Fm be the set of all polynomials in the

second argument with degree ≤ m. The set of all (n,m)-
implementable proper divergences is

BBn,m = T ∩ Fn ∩ Fm.

Furthermore, a proper divergence ℓ is (j, k)-minimally-

implementable if and only if it has degree in the first ar-

gument equal to j and degree in the second argument equal

to k.

4.3. Consequences and connections to proper scoring

rules

There are a number of consequences and special cases of

note. One class of special cases is m = ∞, which we use to

denote the case where we have full access to the target q in

closed form. Then we obtain BBn,∞, which reduces to the

report-black-box (RBB) setting. Similarly, n = ∞ denotes

the case where we have full access to the model p in closed

form, which reduces to the traditional proper loss setting. In

particular, BB∞,1 is the set of proper losses. Furthermore,

by the same reasoning as in Theorem 2, we know that any

ℓ ∈ BB∞,1 must be linear in the second argument and must

also be a proper divergence. Hence one could follow this

reasoning as an alternative approach to characterizing all

proper scoring rules (Theorem D.0.1).

Corollary 5. Let ϕ(BB∞,1) be all the proper scoring rules

(in the form of losses). Then

BBn,1 =
⋃

L∈φ(BB∞,1)

{L̄ : L̄ is a polynomial in the

first argument with degree ≤ n}.

Corollary 5 is relevant to fields using generative models to

forecast events, such as in weather or climate forecasting.

In these cases, we may be able to draw n i.i.d. observations

from the learner’s model p, but only m = 1 observation

from nature, i.e. the weather that actually occurs. In such

cases, Corollary 5 implies that we can construct a BB proper

loss from any proper scoring rule that is a polynomial in p.

Corollary 6. For n,m ∈ N, BBn,m ⊆ BBn,∞ ∩BB∞,m.

In other words, if a divergence is (n,m)-BB implementable

then it is n-RBB implementable and implementable via a

multi-observation proper loss with m observations.

Corollary 7. For n,m ∈ N, BBn,m ⊆ BBn+1,m ∩
BBn,m+1 ⊆ BBn+1,m+1.

Corollary 8. If T in Theorem 2 is the set of all strictly

proper divergences, then BB1,m = ∅.

5. Poisson Sampling

So far our results show that proper divergences must all be

polynomial in the distributions in order to be implementable.

As such, cross entropy cannot be (n,m)-implemented for

any finite n,m ∈ N. We now show that cross entropy can

be implemented if we generalize to other sampling schemes.

A sampling scheme is a (possibly randomized) stopping

rule determining the number of samples to draw from a

generative model. In Appendix E, we formally define and

fully characterize implementable proper divergences under

arbitrary sampling schemes. Here, we focus on the example

of Poisson sampling specifically for the cross-entropy diver-

gence. Other sampling schemes admit a multitude of other

distinct classes of U-estimable functions.

We will determine the implementable proper divergences

under Poisson sampling schemes. Poisson sampling gives

us much more powerful estimators than in the scheme

where we draw a deterministic sample size. The Pois-

son distribution is a discrete probability distribution over

N with parameter θ > 0 and probability mass function

f(j; θ) = Pr[T = j] = θje−θ

j! .

The sampling scheme is as follows. Let α, β > 0. First

randomly draw the sample sizes N ∼ Poi(α) and M ∼
Poi(β). Then draw N observations from p and M obser-

vations from q. Poisson sampling gives us two powerful

properties. First, the counts of each outcome, hp
x (resp.

hq
x), are independent and distributed according to Poi(αpx)

(resp. Poi(βqx)). Second, we are able to unbiasedly esti-

mate θk for any k ∈ N and thus can unbiasedly estimate

any power series involving θ. This estimation is achieved

by the Poisson estimator:

δPoi
k (t) = t(t− 1) · · · (t− k + 1).

By Lemma A.5.1, if T ∼ Poi(θ) then E δPoi
k (T ) = θk

for any k ∈ N. We will use this estimator extensively in

this section. The first result immediately follows from this

estimator. The second follows from the characterization of

U-estimable functions in Lemma A.5.1.

Corollary 9. For any n,m ∈ N and α, β > 0, BBn,m ⊂
BBPoi(α),Poi(β), the set of all implementable functions with

Poisson sampling from p and q.

Corollary 10. A proper divergence is (Poi(α), Poi(β))-
implementable for any α, β > 0 if and only if it has an

equivalent power series expression in the first and second

arguments with non-negative integer powers and the power

series satisfies 1) every coefficient of the first and second

6
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arguments is finite and 2) if the series diverges for any

argument, the proper divergence also diverges in the same

direction (goes to +∞ or −∞).

The proof of Corollary 10 appears in Appendix B. Crucially

for implementing the cross entropy, many functions in C∞

have an equivalent (Taylor) series that satisfy the conditions

of corollary 10. We will use the Taylor series for ln(x) in

the next section.

5.1. Cross Entropy

As a consequence of Corollary 10, we can construct a

generic-black-box proper loss that implements the cross

entropy. By similar methods we can also implement the

Shannon entropy and the KL divergence. Note that with

deterministic sampling, we cannot construct such a loss.

Lemma 1. Let hp
−x =

∑

y ̸=x h
p
y be number of occurences

of all the outcomes except x. Then for any α, β > 0 the

loss,

L(hp, hq) =
∑

X

1

β
δPoi
1 (hq

x)

∞
∑

k=1

1

k

1

αk
δPoi
k (hp

−x),

(Poi(α), Poi(β))-implements the cross entropy, ℓ(p, q) =
−
∑

X qx ln(px).

We observe that this loss is always finite for a finite sample

because δPoi
k (t) = 0 when t < k. In fact, the loss is efficient

to evaluate, i.e. polynomial time in terms of the number

of samples drawn, as that number governs the number of

nonzero terms. Memoization of the infinite sums and the

summands in the infinite sum provides the most efficient

way to compute this loss. Furthermore, the computation is

highly parallelizable.

Corollary 11. Let L be the loss that implements cross en-

tropy in Lemma 1, N ∼ Poi(α),M ∼ Poi(β), and c be

the number of unique non-zero integers in {hp
−x}x∈X . Then

L can be computed in O(|X | + cN) = O(|X | + N1.5)
time. If the histogram counts are stored in a dictionary-like

data structure, and an element only has an entry if it was

observed, then the amortized runtime is O(min(|X |, β) +
α1.5).

In correspondence with the cross entropy, this loss can

equal infinity in expectation for certain p, q, although it

is finite for every hp, hq . We note that the cross entropy can

also be (Poi(α),m)-implemented, with any m ≥ 1, with

the loss L(hp, hq) =
∑

X q̂x
∑∞

k=1
1
k

1
αk δ

Poi
k (hp

−x), where

q̂ = 1
m
hq .

Proof. We will use the Taylor expansion for ln(t). For

t ∈ [0, 1], ln(t) = −
∑∞

k=1
1
k
(1− t)k. Note that the series

diverges to −∞ at t = 0 but also limt→0 ln(t) = −∞.

Next, we will use that Hp and Hq are independent; that

Hq
x is distributed Poi(βqx); and that Hp

−x is distributed

Poi(α(1− px)).

E
Hp∼pn

Hq∼qm

L(Hp, Hq) =

= E
Hp∼pn

Hq∼qm

∑

X

1

β
δPoi
1 (Hq

x)

∞
∑

k=1

1

k

1

αk
δPoi
k (Hp

−x)

=
∑

X

qx

∞
∑

k=1

1

k
(1− px)

k

= −
∑

X

qx ln(px),

including the case where both the proper divergence and the

expected value of the BB loss equals ∞ (i.e. there exists x
with qx > 0 and px = 0).

We note that the KL-divergence, ℓ(p, q) =
∑

X qx ln
qx
px

,

can be implemented as well. In fact, it equals the cross-

entropy plus the Shannon entropy of q. Shannon entropy

can be estimated unbiasedly with Poisson sampling because

Hq
x and Hq

−x are distributed as independent Poissons, so

EHq
x

∞
∑

k=1

1

k

1

βk
δPoi
k (Hq

−x) = qx

∞
∑

k=1

1

k
(1−qx)

k = qx ln(qx).

6. Experiments

For a proof of concept, we performed numerical experi-

ments to evaluate our loss functions on a variety of pairs of

distributions. We focused on the black-box setting, since

this evaluation setting is more difficult than the report black-

box setting. For this section we define K := |X | and we

call divergences distances.

We consider the task of distinguishing different power law

distributions, which often arise in connection with natural

language data. Results for other pairs and types of distribu-

tions appear in Appendix H.

For each pair of distributions p and q, at each number of

total samples, we measured the absolute deviation between

the loss value and the true distance between the distribu-

tions. We drew up to K1.5 total samples. We repeated this

experiment for various batch sizes, where at each iteration,

we drew the same batch size from p and q.

Of course, our losses work even with different batch sizes.

For simplicity we kept the batch sizes the same.

We can discern from our experiments that given a budget

of samples, the black-box loss is generally more accurate

when all the samples are used in the computation of a single

black-box loss value. This is opposed to splitting the sample

7
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(a) Squared Distance (b) Cross Entropy

Figure 1. The y-axis is the absolute deviation between the black-box loss value and the true distances (Squared distance and Cross

Entropy). K = 10, 000, p and q are Zipfians with parameters 1 and 2, respectively. 30 trials for each parameter setting was recorded

(including batch size). The horizontal bars represent the maximum absolute deviation of any of the 30 trials. The solid markers represent

the average of the trials. Squared distance was estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling

loss. Batch sizes were the same between draws from p and q.

into smaller batches and computing the average of the BB

loss over all the batches. This suggests a theoretical result

that it is always better to use the largest possible batch size.

Note however that in the squared distance case, varying

the batch size did not change the accuracy much. We also

note that the figures in appendix H show that the Poisson

estimator consistently under-estimates the true loss value.

We also exhibit excellent convergence. In both cases, at

and past K logK total samples, the average value of our

losses over all the trials are within ≈10% of the true distance

between the distributions. The normalized plots showing

multiplicative error are included in the appendix.

7. Discussion

Larger batches are better. As we saw in the experiments,

if one has a budget of samples, it is best to use all those

samples in a single instance of a BB proper loss function,

rather than split those samples up into smaller batches and

taking the average of the loss over all the batches. In general,

a direct extension would be to analyze the variance and

convergence rate of these BB losses with regards to the

batch size.

Losses for continuous domains. We have focused on

the discrete case in this work, leaving the continuous case

to further investigation. However, we illustrate an initial

result in the continuous setting. Let Fp(·) be the CDF of

distribution p and FS(x) = |{i:Xi≤x}|
n

be the empirical

CDF based on sample S = (X1, . . . , Xn) where each Xi is

drawn i.i.d. from p.

Theorem 3. Let X = R and αi ∈ R for all i. Let a

proper divergence be of the form ℓ(p, q) =
∫

R
g({Fp(x +

αi)}
m
i=1, ·)dx. If g(·, ·) is a polynomial in the first argument

with powers j
(q)
k ∈ Z

|X |
+ such that ∥j

(q)
k ∥1 = n, the number

of samples, then g is n-minimally-implementable.

The proof appears in Appendix B. As a corollary, we are

able to implement the Cramér distance which we exhibit

in Appendix F. These types of distances can easily be ex-

tended to a high dimensional distance by picking a direction

at random and defining the empirical CDFs based on the

hyperplane defined by that random direction. We illustrate

this via a high dimensional version of the Cramér distance

in appendix F.

Future work. A direction of future work is that of con-

structing black-box proper losses for continuous settings,

which is the most common use-case for GANs. Another

important study would be to investigate the properness of

existing losses used in evaluation. Finally, it would be

interesting to investigate the use of BB proper losses in

evaluating implicit distributions of black-boxes for desired

properties. For example evaluating a dice for uniformity or

evaluating prepared quantum states.

Broader Impacts

The evaluation of generative models, such as GANs, is a

very open question with important societal impacts in do-

mains such as climate forecasting. We provide an initial

theoretical foundation for this question. Instead of direct

applications, we anticipate this work leading to further theo-
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retical investigation. It may inform practitioners’ choices of

which losses they use for evaluating generative models. Of

course, such evaluation can be used for ethical or unethical

purposes. We do not know of particular risks or negative

impacts of this work beyond risks of generative models in

general.
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Appendix

A. Results from Statistical Estimation Theory

We have extensively utilized results from Unbiased Estimation (U-Estimation) theory. These estimators are fundamental to

our construction of proper losses for generative models.

A.1. Definitions

Since there are possibly infinitely many U-estimators for many quantities, the literature provides a criteria for the ‘best’

estimator:

Definition A.1.1. Let Y1, Y2, . . . , Yn be i.i.d. from some member of a family of densities, pθ, θ ∈ Ω. An estimator δ is a

Minimum Variance Unbiased Estimator (MVUE) for g(θ) if for some n ∈ N, for all θ ∈ Ω,

1. δ is an unbiased estimator for g(θ), E δ(Y1, Y2, . . . , Yn) = g(θ),

2. Var(δ(Y1, Y2, . . . , Yn)) ≤ Var(δ̃(Y1, Y2, . . . , Yn)) for any other unbiased estimator δ̃.

A.2. MVUE for Variance

Fact A.2.1. (Canonical MVUE for Variance) Let (yi)
n
i=1, n ≥ 2, be i.i.d. realizations of a random variable Y . Then the

MVUE for variance is

s2n((yi)
n
i=1) :=

1

n− 1

n
∑

i=1

(yi −
1

n

∑

yi)
2.

Claim A.2.1. If Yi
iid
∼ Ber(α) and Z = Y1 + Y2 + · · ·+ Ym then Z ∼ Bin(m,α). Let Ȳ = Z/m = 1

m

∑

i Yi. Then for

m ≥ 2,

s2m(Ȳ ) =
1

m− 1
[Ȳ (1− Ȳ )2 + (1− Ȳ )(Ȳ )2]

is a MVUE for variance. Note that Var(Ȳ ) = α(1−α)
m

.

Proof.

E
Z=mȲ

s2m(Ȳ ) = V ar(Ȳ )

= V ar(
1

m

m
∑

i=1

Yi)

=
1

m2
V ar(

m
∑

i=1

Yi)

=
1

m2
[

m
∑

i=1

V ar(Yi) +
∑

i ̸=j

Cov(Yi, Yj)]

=
1

m2
[mV ar(Y1) + 0]

=
1

m
V ar(Y1)

=
1

m
E s2m(Y1)

=
1

m
E

1

m− 1

m
∑

i=1

(Yi − Ȳ )2

=
1

m
E

1

m− 1

m
∑

i=1

(✶Yi=1 − Ȳ )2

10
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=
1

m
E

1

m− 1
[mȲ (1− Ȳ )2 +m(1− Ȳ )(0− Ȳ )2]

= E
Ȳ

1

m− 1
[Ȳ (1− Ȳ )2 + (1− Ȳ )(Ȳ )2].

A.3. Multinomial Estimator

Lemma A.3.1. (Kolmogorov, 1950) Let Y ∼ M(m, p) be a multinomial random variable. A real-valued function f(p)
has an unbiased estimator on the basis of an observation from Y if and only if f is a polynomial of degree at most m. The

unique MVUE of such a polynomial is constructed using the following estimators (Hoeffding, 1994),

tm,jk(y) =

∏

X yx(yx − 1) · · · (yx − jk,x + 1)

m(m− 1) · · · (m− ∥jk∥1 + 1)
.

Where yx is the number of observations of element x ∈ X in the sample and E tm,jk(Y ) =
∏

X

p
jk,x
x . The binomial

distribution is a special case of the multinomial distribution.

A.4. Binomial Estimator

Lemma A.4.1. (Lehmann & Casella, 2006). Let T ∼ Bin(m,α). Then f(α) is unbiasedly estimable if and only if f is a

polynomial with degree ≤ m. The MVUE estimator for f(α) = αk, k ≤ m, is

δBin
m,k (t) =

t(t− 1) · · · (t− k + 1)

m(m− 1) · · · (m− k + 1)
.

Hence E δBin
m,k (T ) = αk.

A.5. Poisson Estimator

Lemma A.5.1. (Glasser, 1962) A function of the Poisson parameter θ has an unbiased estimator if and only if the function

can be expressed as a series in integer non-negative powers of θ. Let T ∼ Poi(θ). Then for all k ∈ N the MVUE estimator

of θk is

δPoi
k (t) = t(t− 1) · · · (t− k + 1).

Note that if t < k then δPoi
k (t) = 0. Hence E δPoi

k (T ) = θk.

The MVUE for any estimable F (θ) can be constructed by writing the function as a power series and replacing all the θt

with its unbiased estimator given in Lemma A.5.1 (Glasser, 1962). Suppose our random variable for the count of x is

Hx ∼ Poi(αpx). We can unbiasedly estimate pkx:

1

αk
E δPoi

k (Hx) =
1

αk
(αpx)

k = pkx.

B. Omitted Proofs

B.1. Omitted Proofs from Section 4

Proof of Theorem 2. Let ℓ ∈ BBn,m. We first show that ℓ is (n,m)-implementable. ℓ is a proper divergence by definition.

ℓ is a also a polynomial in both arguments with bounded degree, so let us write it in the following form:

ℓ(p, q) =
∑

k∈K

ak
∏

X

p
ik,x
x

∏

X

q
jk,x
x ,

where K is finite; for all k ∈ K, ak is a nonzero constant; ik, jk ∈ N
X with the pair unique for each k; ∥ik∥1 ≤ n and

∥jk∥1 ≤ m. The construction of the implementing loss is similar to that in the proof of Theorem 1. Again, we have that

11
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Hp ∼ Multinomial(n, p) and also Hq ∼ Multinomial(m, q). Hence we use the estimators from classical results, tik
and tjk , to estimate each summand in ℓ:

E
Hp∼pn

Hq∼qm

L(Hp, Hq) = E
Hp∼pn

Hq∼qm

∑

k∈K

aktik(H
p)tjk(H

q) = ℓ(p, q).

Where the last equality follows by independence of Hp and Hq , and Lemma A.3.1. Thus ℓ is (n,m)-implementable, and a

proper divergence by definition.

For the converse, if ℓ is a proper divergence but ℓ /∈ BBn,m, then by the characterization (Lemma A.3.1) of the U-estimable

functions under a multinomial distribution, for all k, there does not exist tik or tjk such that E
H∼pn

tik(H
p) =

∏

X

p
ik,x
x

and similarly for
∏

X q
jk,x
x . Thus ℓ is not (n,m)-implementable. Minimal-implementability also follows from this

characterization, Lemma A.3.1.

Proof of Corollary 8. By Lemma A.3.1, the losses in BB1,m that are implementable are {g : g(p, q) =
∑

X fx(q)px}.

Where the degree of each fx(q) is ≤ m. For a generic g we now find the report that minimizes the expected loss.

d

dp
g(p, q) =

d

dp

∑

X

fx(q)px

=
∑

X

fx(q)

Thus any report minimizes the expected loss of any function that is (1,m)-implementable hence none of these expected

losses are strictly proper divergences. In other words, all (1,m)-implementable divergences are constant for a fixed q.

B.2. Omitted Proofs from section 5

Proof of Corollary 10. By characterization in Lemma A.5.1 of functions estimable under a Poisson distribution, FPoi(α) =
{ℓ(·, ·) : ℓ is a power series in the first argument with non-negative integer powers}. FPoi(β) is similarly defined in terms of

the second argument. The corollary follows by applying Theorem E.0.1.

B.3. Proof of Lemma 1

Proof. We will use the Taylor expansion for ln(x). For x ∈ [0, 1], ln(x) =
∑∞

k=1
(−1)k+1

k
(x − 1)k. Note that the series

diverges to −∞ at x = 0 but also limx→0 ln(x) = −∞. Shannon entropy is implemented by the fact that Hp
−x is a Poisson

random variable distributed according to Poi(αp−x) that is independent from Hp
x .

E
Hp∼pn

Hq∼qm

L(Hp, Hq) = − E
Hp∼pn

Hq∼qm

∑

X

1

β
δPoi
1 (Hq

x)

∞
∑

k=1

−1

k

1

αk
δPoi
k (Hp

−x)

= −
∑

X

1

β
E

Hq∼qm

[

δPoi
1 (Hq

x)
]

∞
∑

k=1

−1

k

1

αk
E

H∼pn

[

δPoi
k (Hp

−x)
]

= −
∑

X

qx

∞
∑

k=1

−1

k
pk−x

= −
∑

X

qx

∞
∑

k=1

−1

k
(1− px)

k

= −
∑

X

qx

∞
∑

k=1

−1

k
(−1)k(px − 1)k

= −
∑

X

qx ln(px).
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B.4. Proofs from section 7

Proof of Theorem 3. We only need to show that we can unbiasedly estimate each term in g. The result then follows by

linearity of expectation. To do this we will show that the vector valued random variable T = {FS(x+ αi)}
k
i=1 is a function

of a multinomial random variable. Hence the unbiased estimators and result follows from Lemma A.3.1.

Without loss of generality let α1 ≤ α2 · · · ≤ αm and define α0 := −∞. Now define Z ∼ Multinomial(n, (Fp(x +
α1), Fp(x+ α2)− Fp(x+ α1), . . . , Fp(x+ αm)− Fp(x+ αm−1)). Z is a vector valued random variable where the count

Zi, i ∈ {1, 2, . . .m}, corresponds to how many samples fall in the interval [x+ αi, x+ αi−1]. Hence we can rewrite the

random variable FS(x+ αi) as

FS(x+ αi) =
1

n
(Z1 + Z2 + · · ·Zi) =

1

n

i
∑

j=1

Zj .

Now if g is a polynomial in the first argument, then

g({Fp(x+ αi)}
m
i=1, ·) =

∑

j
(q)
k

a
j
(q)
k

m
∏

i=1

Fp(x+ αi)
j
(q)
k,i .

Where a
j
(q)
k

subsumes the second argument. Now we show that the product,
∏m

i=1 Fp(x+ αi)
j
(q)
k,i , is unbiasedly estimable.

The result follows by linearity of expectation. Now by the condition of the theorem, ∥j
(q)
k ∥1 ≤ n so we only have at

most n distinct αi in each product hence we can ignore all the other αi that have a power of 0. Thus now we define a

multinomial random variable as before except now only with the αi that are involved. Let’s reindex j
(q)
k and α so that all

the entries where j
(q)
k,i = 0 are above index B. Again let α1 ≤ α2 ≤ · · · ≤ αB , then the corresponding random variable is

Z ∼ Multinomial(n, (Fp(x+ α1), Fp(x+ α2)− Fp(x+ α1), . . . )). Thus by the multinomial characterization, we can

estimate polynomials of the parameters of this distribution (we know n):

B
∏

i=1

Fp(x+ αi)
j
(q)
k,i =

B
∏

i=1

(

Fp(x+ α1) +

i
∑

γ=2

[Fp(x+ αγ)− Fp(x+ αγ−1)]

)j
(q)
k,i

=

B
∏

i=1

(

E
Z1

n
+

i
∑

γ=2

E
Zγ

n

)j
(q)
k,i

.

Since ∥j
(q)
k ∥1 ≤ n for all k, this term will have degree at most n in the parameters of the multinomial distribution and so is

unbiasedly estimable with the multinomial estimator. Each parameter is exactly 1
n
EZi. While this means there are different

multinomial distributions for each product term in the polynomial, each term effectively ‘sees’ these different distributions.

Thus by linearity of expectation this is a valid way to construct the unbiased estimator.

C. Countably Infinite Domains

Lemma C.0.1. Let X be countably infinite. Let Xk ⊂ X be a finite subset for all k ∈ N. Let a proper divergence be of the

form

ℓ(p, q) =
∞
∑

k=1

akdXk
(px, qx),

where
∑∞

k=1 ak converges and dXk
is a (r, t)-implementable divergence on the empirical distribution restricted to Xk, and

bounded for all Xk, p, and q. Then ℓ is (r, t)-implementable.

For example, X could be a set of all english word sentences and Xk could be the set of all length k sentences.

13
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D. The Variance Bias Term and Connection to Proper Scoring Rules

One explanation of why the variance appears in the calculations for naive squared error has to do with Bregman Divergences

and the Jensen Gap. For this section the empirical distribution is defined as p̂ = 1
|H|H

We recall the definition of a Bregman divergence:

Definition D.0.1. Let G be a convex, real valued function. Then the Bregman divergence of G is

DG(q, p) = G(q)− [G(p) + ⟨∂G(p), q − p⟩]

where dG(p) is a subgradient of G at p (Rockafellar, 1970).

One reason Bregman divergences are important is because they are known to characterize traditional proper losses:

Theorem D.0.1 (McCarthy (1956); Savage (1971); Gneiting & Raftery (2007)). A loss r is proper if and only if there exists

a convex, real valued function G such that

E
y∼q

r(p, y) = E
y∼q

[DG(δy, p)−G(δy)].

Where δy := ey is the indicator vector for coordinate y.

For the purposes of illustrating the role of the Jensen gap, we show implementation of the divergences DG(p, q), which

have the arguments in the opposite order to the version implemented by proper losses. Later, we show how to implement the

usual ordering of the arguments, DG(p, q). We begin with the RBB case for clarity of exposition.

D.1. Jensen Gap

Lemma D.1.1. If DG(p, q) is a Bregman divergence then it can be RBB-implemented, provided that an unbiased estimator,

δ, exists for G(p).

L(p̂, q) = DG(p̂, q)− [G(p̂)− δ(p̂)]

= G(p̂)− [G(q) + ⟨∂G(q), p̂− q⟩]− [G(p̂)− δ(p̂)]

= δ(p̂)− [G(q) + ⟨∂G(q), p̂− q⟩]

Note that E[G(p̂)− δ(p̂)] = EDG(p̂, p), the Jensen gap. This can be interpreted as the expected additional distance the

randomness of p̂ adds.

Proof. Begin with the law of cosines for Bregman divergences and take the expectation of both sides.

E
H∼pn

DG(p̂, q) = EDG(p̂, p) +DG(p, q)− E⟨p̂− p, ∂G(q)− ∂G(p)⟩

= EDG(p̂, p) +DG(p, q)− 0 (1)

= E

[

G(p̂)− [G(p) + ⟨∂G(p), p̂− p⟩]
]

+DG(p, q)

= E[G(p̂)]− [G(p) + ⟨∂G(p),E p̂− p⟩] +DG(p, q)

= E[G(p̂)]−G(E p̂)− 0 +DG(p, q). (2)

Let us note several things here. First, line (1) formalizes the intuition we have outlined in the lemma. Second we also clearly

see that the expected Bregman divergence between p̂ and p, E
p̂∼pn

DG(p̂, p), is exactly the Jensen gap, E[G(p̂)]−G(E p̂), as

exhibited by the resulting expression in (2). Hence, rearranging for clarity we see that

DG(p, q) = E
H∼pn

[

DG(p̂, q)−DG(p̂, p)
]

= EDG(p̂, q)−
[

EG(p̂)−G(E p̂)
]

.

14



Proper Losses for Discrete Generative Models

Which gives us the RBB-implementing loss for DG if we have an unbiased estimator δ where E δ(p̂) = G(E p) = G(p).

Example D.1.1. As an example, let’s look at the Jensen Gap for G(x) = ∥x∥2.

E
H∼pn

G(p̂)−G( E
H∼pn

p̂) = E[∥p̂∥2]− ∥E p̂∥2

= E[
∑

X

p̂2x]−
∑

X

E[p̂x]
2

=
∑

X

E[p̂2x]− E[p̂x]
2

=
∑

X

V ar(p̂x).

Lemma D.1.2. If DG(p, q) is a Bregman divergence then an equivalent divergence can be BB-implemented, provided that

an unbiased estimators δ, and δ′ where E δ(p̂) = G(p), and E δ′(q̂) = ∂G(q) exist.

L(p̂, q̂) = δ(p̂)− δ(q̂)− ⟨p̂, δ′(q̂)⟩.

Proof.

E
Hp∼pn

Hq∼qm

L(p̂, q̂) = E

[

δ(p̂)− δ(q̂)− ⟨p̂, δ′(q̂)⟩
]

= G(p)−G(q)− ⟨p, ∂G(q)⟩

= G(p)− [G(q) + ⟨∂G(q), p− q⟩]− ⟨q, ∂G(q)⟩

= DG(p, q)− ⟨q, ∂G(q)⟩.

Note that the divergence implemented by the above loss, DG(p, q) − ⟨q, ∂G(q)⟩, when considered from the candidate

distributions point of view, is merely the original divergence, DG(p, q), minus a constant. Thus to the candidate model, the

loss is equivalent up to a constant to the original Bregman divergence. The same idea is used for classical proper losses as

exhibited by Theorem D.0.1.

D.2. Implementing DG(q, p)

We will implement the same equivalent divergence as in Theorem D.0.1:

DG(q, p)−G(q) = G(p)− ⟨∂G(p), p⟩+ ⟨∂G(p), q⟩.

Notice that this equivalent divergence can be implemented if each additive term can be unbiasedly estimated on its own.

Thus we will need unbiased estimators for q, G(p), ∂G(p), and ⟨p, ∂G(p)⟩. In the case of deterministic or Poisson sampling,

if G(p) can be unbiasedly estimated then ∂G(p) and ⟨p, ∂G(p)⟩ can be unbiasedly estimated. Estimating q is easy.

We will use the characterization of deterministic sampling and Poisson unbiasedly estimable functions. The following is

applicable to both Poisson and deterministic sampling.

Suppose G(p) is unbiasedly estimable. Then G(p) =
∑

k∈K ak
∏

x∈X p
jk,x
x where |K| is possibly infinite. Then

∂G(p)y =
∑

k∈K:jk,y ̸=0

ak jk,yp
jk,y−1
y

∏

x ̸=y

p
jk,x
x

15
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is an (infinite) polynomial, thus it is unbiasedly estimable. Note that if {k ∈ K : jk,y ̸= 0} = ∅ then ∂G(p)y = 0, for all p.

Furthermore,

⟨p, ∂G(p)⟩ =
∑

X

px∂G(p)x

is an also an (infinite) polynomial, so unbiasedly estimable.

One can view the following results as corollaries to the characterization of Poisson implementable divergences (Corollary

10).

Lemma D.2.1. Let r be a Poisson sampling scheme and t be any sampling scheme that can estimate q. If DG(q, p) is a

Bregman divergence then an equivalent divergence can be (r, t)-implemented if and only if G has an equivalent power

series expression in the first and second arguments with non-negative integer powers and the power series satisfies 1) every

coefficient of the first and second arguments is finite and 2) if the series diverges for any argument, the proper divergence

also diverges in the same direction (goes to +∞ or −∞).

Corollary D.2.1. Let r be a deterministic size sampling scheme drawing n samples and t be any sampling scheme that can

estimate q. If DG(q, p) is a Bregman divergence then an equivalent divergence can be (n, t)-implemented if and only if G is

a polynomial with degree less than or equal to n.

E. General Sampling Schemes

Definition E.0.1. A generic-black-box (GBB) loss is a function L : NX × N
X → R where L(hp, hq) is the loss assigned to

histogram hp of samples drawn from the model on histogram hq of samples drawn from the target distribution.

The difference between a GBB loss and a BB loss (Definition 4.1) is that we allowed BB losses to be a function of histograms

of a specific, predetermined size (n and m). In contrast, a GBB loss must be defined for histograms of any size. These

functions can also compute N , the sample size.

Definition E.0.2. A sampling scheme r is a stopping rule for the process of drawing observations from a black-box

generative model. The stopping rule may depend on the history of the seen observations and may also use randomness.

Definition E.0.3. Let r, t be sampling schemes for the report and the target distribution, respectively. A generic-black-box

loss L is (r, t)-black-box proper if L̄(p, q) := E
r,t

L(Hp, Hq) is a proper divergence. If ℓ is some proper divergence and

there exists L such that L̄ = ℓ, we will say that L (r, t)-implements ℓ and that ℓ is (r, t)-implementable.

Given a characterization of the U-estimable functions under certain sampling schemes, we can construct the set of

implementable proper divergences. We can also construct the respective implementing losses from these characterizations.

We do not investigate the sample complexity of the schemes or define minimally-implementable in the generic setting. While

one could consider ordering generic sampling schemes by e.g. expected number of ramples drawn, the most reasonable

ordering of sampling schemes is not always clear, and we leave such investigations to future work.

Theorem E.0.1. Let r, t be sampling schemes. Let T be the set of all proper distances and let

Fr = {ℓ(·, ·) : ℓ is unbiasedly estimable in the first argument under sampling scheme r}

Ft = {ℓ(·, ·) : ℓ is unbiasedly estimable in the second argument under sampling scheme t}.

Then the set of all (r, t)-implementable proper divergences is

BBr,t = T ∩ Fr ∩ Ft

Proof. If we can characterize Fr and Ft then we have a characterization of the unbiasedly estimable functions under

sampling schemes r and t, respectively. These characterizations must provide constructions of the unbiased estimators. Thus

we can construct an unbiased estimator for each ℓ ∈ Fr ∩ Ft. Hence ℓ ∈ BBr,t is implementable and a proper divergence,

by definition.

F. Omitted results from section 7

For this section we consider densities on continuous domains. For a density p over R, Fp(·) is the CDF of p.

Definition F.0.1 (Empirical CDF). Given a sample s = {Xi}
n
i=1 the empirical CDF is defined as Fs(x) :=

|i:Xi≤x|
n

.
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F.1. Implementation of the Cramér Distance

Corollary F.1.1. For densities p, q over [0, 1], let s and u be samples drawn from p and q, respectively. Then the loss

L(s, u) =

∫

R

(Fs(x)− Fu(x))
2 − s2|s|(Fs(x))− s2|u|(Fu(x)) dx

(2, 2)-minimally-implements the Cramér distance, ℓ(p, q) =
∫

R
(Fp(x)− Fq(x))

2dx (Cramér, 1928).

Proof of Corollary F.1.1. Notice that FS(x) =
|i:Xi≤x|

n
is distributed according to 1

n
Bin(n, Fp(x)).

E
S,U

L(S,U) = E
S,U

∫

R

(FS(x)− FU (x))
2 − s2|S|(FS(x))− s2|U |(FU (x)) dx

=

∫

R

E[FS(x)
2]− 2EFU (x)EFS(x) + E[FU (x)]

2 − V ar(FS(x))− V ar(FU (x))dx

=

∫

R

E[FS(x)]
2 − 2Fq(x)Fp(x) + E[FU (x)]

2dx

=

∫

R

(Fp(x)− Fq(x))
2dx.

Where the second equality is by the independence of S and U and the previously defined variance estimator for the binomial

distribution (claim A.2.1). The third equality is by expanding expectation of the squared term and reducing (the second

non-centered moment of a binomial). One could also prove this using the technique from the proof of claim 3.

The energy distance in one dimension is equivalent to twice the Cramér distance. Thus the energy distance also gives a loss

that implements the Cramér distance. See appendix G for a discussion of the relationships between different types of losses

in the continuous setting

F.2. High Dimensional Extension of the Cramér Distance

Let us now work in a continuous domain where the samples are from R
j . Now instead of distributions p, q ∈ ∆X we will

have densities p, q on R
j . The desired score will again be the Harald Cramér distance. However now we will define a CDF

with respect to a direction and then integrate over all directions.

Definition F.2.1. (Generalized CDF). Let Y be a random variable taking values in R
j , p be the associated density, and

v ∈ R
j such that ∥v∥ = 1. Then the direction v CDF of Y is

F v
p (x) = Pr[⟨v, Y ⟩+ x ≤ 0].

Where x ∈ R.

The distance analogous to the Harald Cramér distance is then

∫

v∈R
j

||v||=1

∫

R

(F v
p (x)− F v

q (x))
2dx dv.

Now to create a sample proper loss we may again introduce a variance correction term as before. However, we also note that

if we pick a random direction v, then we would not have to integrate over all v since the expectation of the distance under a

random v is the same as the deterministic distance. Below we show the RBB loss, however the result for the BB version is

very similar; one can compare between corollary F.1.1 and the following.
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Claim F.2.1. Let p, q be densities over Rj and s be the sample drawn from p. Then the following loss is RBB proper. First

pick a random unit vector v ∈ R
j then

L(s, q) =

∫

R

(F v
s (x)− F v

q (x))
2 − s2n(F

v
s (x)) dx.

In other words, L implements ℓ(p, q) =
∫

v∈R
j

||v||=1

∫

R
(F v

p (x)− F v
q (x))

2dx dv.

Proof. Let S = (X1, X2, . . . , Xn).

E
v∈Sj−1

E
S
L(p̂, q) = E

v∈Sj−1
E
S

∫

R

(F v
S (x)− F v

q (x))
2 − s2n(F

v
p (x)) dx

=

∫

v∈R
j

||v||=1

E

∫

R

(F v
S (x)− F v

q (x))
2 − s2n(F

v
p (x)) dx dv

=

∫

v∈R
j

||v||=1

∫

R

E[(F v
S (x)− F v

q (x))
2 − s2n(F

v
p (x))] dx dv

=

∫

v∈R
j

||v||=1

∫

R

Fp(x)
2 +

F v
p (x)(1− F v

p (x))

n
− 2F v

q (x)F
v
p (x) + F v

q (x)
2

−
F v
p (x)(1− F v

p (x))

n
dx dv

=

∫

v∈R
j

||v||=1

∫

R

Fp(x)
2 − 2F v

q (x)F
v
p (x) + F v

q (x)
2 dx dv

=

∫

v∈R
j

||v||=1

∫

R

(F v
p (x)− F v

q (x))
2dx dv.

Let C ∼ Bin(n, F v
p (x)). Once again note that F v

S (x) =
1
n
|{Xi ∈ S : ⟨v,Xi⟩ + x ≤ 0}| = 1

n
C. Hence we expand the

expectation with the first and second moment as in Claim F.1.1.

G. Discussion of other continuous losses

We discuss our results in the previous section in relation to two other methods of generative model evaluation in the

continuous setting. Our results rely on computing losses based on the empirical CDF whether in one or many dimensions.

First, unless estimation/smoothing is done on the empirical density, it is not possible to work with losses that integrate over a

function of the two densities at every point in the outcome space. There is a large body of work on density estimation for

evaluating generative models. However, losses based on kernel density estimation are beyond the scope of this work.

Second, one can trivially construct proper losses based on functions of the random variables associated with densities p and

q. For example the energy distance is

D2(F,G) = 2E ∥X − Y ∥ − E ∥X −X ′∥ − E ∥Y − Y ′∥.

Where X,X ′ and Y, Y ′ are independent copies of the random variable associated with density p and q, respectively.

The number of independent copies of a random variable in the expression is exactly the number of independent samples

from that random variable required to unbiasedly estimate the loss. For the energy distance, we need 2 independent samples

from p and q each. In one dimension these can also be written as functions of the empirical CDF.
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G.1. Connection to energy distance in one dimension

In the one dimensional continuous setting, we have densities p, q on R. We repeat the proof that the energy distance is

equal to twice the Cramér distance. We can see from our approach or the form of the energy distance that this loss is

(2, 2)-minimally implementable.

Lemma G.1.1. (Székely & Rizzo, 2005) Let X,X ′ be i.i.d. with CDF F (x) and Y, Y ′ be i.i.d. with CDF G(y). Then the

energy distance in one dimension is equal to twice the Cramér distance.

2E |X − Y | − E |X −X ′| − E |Y − Y ′| = 2

∫

R

(F (x)−G(x))2dx.

Proof. We will convert the energy distance into the Cramer distance. First we use the identity

|X − Y | =

∫

R

✶(X ≤ u < Y ) + ✶(Y ≤ u < X)du

Now let A = E |X − Y |, B = E |X −X ′|, C = |Y − Y ′|. We then use Fubini’s theorem.

A = E |X − Y |

=

∫

R

∫

R

∫

R

✶(X ≤ u < Y ) + ✶(Y ≤ u < X)dudxdy

=

∫

R

∫

R

∫

R

✶(X ≤ u < Y ) + ✶(Y ≤ u < X)dxdydu

=

∫

R

Pr[X ≤ u] Pr[Y > u] + Pr[X > u] Pr[Y ≤ u]du

=

∫

R

F (u)(1−G(u)) + (1− F (u))G(u)du

=

∫

R

F (u)− 2F (u)G(u) +G(u)du

Hence by similar derivation, B =
∫

R
2F (u)− 2F (u)2du and C =

∫

R
2G(u)− 2G(u)2du. The lemma follows by simple

algebra.

G.2. Connection to the CRPS

We derived the Cramér distance via extending the Continuously Ranked Probability Score from the proper scoring rules

literature. Intuitively, one can think CRPS as evaluating a distribution against an empirical distribution consisting of a single

sample (Gneiting & Raftery, 2007). Let Fr be the CDF of a density r and again p be the reported distribution and q the true

distribution. Then the CRPS (in terms of a loss to be minimized) for a outcome particular y drawn from the density q is

∫ ∞

−∞

(Fp(x)− ✶{x ≥ y})2dx =

∫ ∞

−∞

(Fp(x)− Fq̂(x))
2dx. (3)

Where q̂(x) = Hq is the empirical distribution of the data consisting of the single sample y. Note that Fq̂(x) is 0 below y
and 1 when greater than or equal to y. Hence Fq̂(x) = ✶{x ≥ y}. It is easy to see from the form of the CRPS that CRPS

is also (2, 1)-minimally-implementable since the LHS of (3) contains a polynomial of degree 2 in Fp and it requires only
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1 sample from q. There also exists a form of the CRPS derived from the form of the equivalent energy distance that also

shows (2, 1)-minimal-implementability (Gneiting & Raftery, 2007).

To extend CRPS to our setting, in which we have an empirical densities for p̂ and q̂, we derived

ℓ(p, q) =

∫ 1

0

(Fp(x)− Fq(x))
2dx.

Which is the Harald Cramér distance (Cramér, 1928). The CRPS is a special case when we draw only 1 sample from q. We

give a BB loss that implements this distance in claim F.1.1.

H. Omitted Experiments

H.1. Distribution Definitions

Definition H.1.1 (Spiked Uniform).

px =

{

0.1 if x ∈ {1, 2, 3, 4, 5}
1−0.5
K−5 otherwise

Definition H.1.2 (Spiked Zipfian(r)). Let zx be the probability mass of x in a Zipfian(r) distribution over an outcome space

{1, . . . ,K}

px =

{

0.05
1.15 if x ∈ {5, 10, 20}
zx
1.15 otherwise
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H.2. Absolute Deviation

(a) Squared Distance, p: Zipfian(1), q: Zipfian(2) (b) Cross Entropy, p: Zipfian(1), q: Zipfian(2)

(c) Squared Distance, p: Uniform, q: Zipfian(0.01) (d) Cross Entropy, p: Uniform, q: Zipfian(0.01)

(e) Squared Distance, p: Uniform,
q: Spiked Uniform (definition H.1.1)

(f) Cross Entropy, p: Uniform,
q: Spiked Uniform (definition H.1.1)
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(g) Squared Distance, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

(h) Cross Entropy, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

Figure 2. The y-axis is the absolute error deviation the black-box loss value and the true distances (Squared distance and Cross Entropy).

K = 10, 000 for all trials. 30 trials for each parameter setting was recorded (including batch size). The horizontal bars represent the

maximum absolute deviation of any of the 30 trials. The solid markers represent the average of the trials. Squared distance was estimated

using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same between draws from p

and q.
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H.3. Two-sided deviation

(a) Squared Distance, p: Zipfian(1), q: Zipfian(2) (b) Cross Entropy, p: Zipfian(1), q: Zipfian(2)

(c) Squared Distance, p: Uniform, q: Zipfian(0.01) (d) Cross Entropy, p: Uniform, q: Zipfian(0.01)

(e) Squared Distance, p: Uniform,
q: Spiked Uniform (definition H.1.1)

(f) Cross Entropy, p: Uniform,
q: Spiked Uniform (definition H.1.1)
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(g) Squared Distance, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

(h) Cross Entropy, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

Figure 3. The y-axis is the deviation between the black-box loss value and the true distances (Squared distance and Cross Entropy).

K = 10, 000 for all trials. 30 trials for each parameter setting was recorded (including batch size). The horizontal bars represent the

maximum deviation on either side of any of the 30 trials. The solid markers represent the average of the trials. Squared distance was

estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same between

draws from p and q.
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H.4. Normalized Absolute Deviation

(a) Squared Distance, p: Zipfian(1), q: Zipfian(2) (b) Cross Entropy, p: Zipfian(1), q: Zipfian(2)

(c) Squared Distance, p: Uniform, q: Zipfian(0.01) (d) Cross Entropy, p: Uniform, q: Zipfian(0.01)
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(e) Squared Distance, p: Uniform,
q: Spiked Uniform (definition H.1.1)

(f) Cross Entropy, p: Uniform,
q: Spiked Uniform (definition H.1.1)

(g) Squared Distance, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

(h) Cross Entropy, p: Zipfian(1),
q: Spiked Zipfian(1) (definition H.1.2)

Figure 4. The y-axis is the normalized absolute deviation between the black-box loss value and the true distances (Squared distance

and Cross Entropy). K = 10, 000 for all trials. The deviations are normalized by the true distance between p and q. 30 trials for each

parameter setting was recorded (including batch size). The horizontal bars represent the maximum normalized absolute deviations of any

of the 30 trials. The solid markers represent the average of the trials. Note that when the squared distance is close to 0, the normalized

error becomes very difficult to keep low. The un-normalized error in the previous section is more appropriate in this case. Squared

distance was estimated using the loss from claim 3. Cross entropy was estimated with a poisson sampling loss. Batch sizes were the same

between draws from p and q.
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