
LIFL: A LIGHTWEIGHT, EVENT-DRIVEN SERVERLESS PLATFORM FOR

FEDERATED LEARNING

Shixiong Qi 1 K. K. Ramakrishnan 1 Myungjin Lee 2

ABSTRACT

Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers

training models locally and then aggregating their model updates on a trusted central server. Existing systems for

FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization.

They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model

updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers.

We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for

efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates

the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight

eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for

hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce

locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales

and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while

minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves

significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to

existing serverful and serverless FL systems.

1 INTRODUCTION

Federated Learning (FL (McMahan et al., 2017)) enables

collaborative model training across a network of decentral-

ized devices/machines while keeping individual user data

secure and private. In FL, instead of sending raw data

to a central server, models are trained on individual de-

vices/machines using local data, and only the model updates

are shared and aggregated to create a global model.

To support FL at scale, hierarchical aggregation is often

adopted to increase the service capacity for model aggre-

gation (Bonawitz et al., 2019; Jayaram et al., 2022b). This

can accommodate a large number of clients and handle a

substantial volume of model updates, avoiding potential

slow-down of the aggregation process. In the process, each

level performs intermediate aggregation, combining the up-

dates from lower-level aggregators or clients.

Existing FL frameworks (e.g., Google’s FL stack (Bonawitz

et al., 2019), Meta’s PAPAYA (Huba et al., 2022)) adopt a

1University of California, Riverside 2Cisco Research. Corre-
spondence to: Shixiong Qi <sqi009@ucr.edu>, K. K. Ramakrish-
nan <kk@cs.ucr.edu>, Myungjin Lee <myungjle@cisco.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

static, always-on1 deployment to support model aggregation.

However, in a dynamic FL environment, it’s difficult to have

a one-size-fits-all service capacity for model aggregation.

System heterogeneity (i.e., different hardware capabilities)

and a dynamically varying number of participating clients

in each round require frequent adjustments of the capacity

so that the aggregation service effectively uses resources on

demand and avoids significant resource wastage.

Serverless computing promises to provide an event-driven,

resource-efficient cloud computing environment, enabling

services to use resources on demand (Shahrad et al., 2020a).

Running FL model aggregation service as serverless func-

tions can right-size the provisioned resources and reduce

resource waste compared to an always-on aggregation server

implementation. In addition, stateless processing by server-

less functions makes it easy to support continual updates

to the aggregation hierarchy. By increasing the capacity

of aggregation through a hierarchy of serverless aggrega-

tors, model aggregation in FL can be executed in parallel,

responding to increasing loads from trainer model updates.

However, the excessive overhead in current serverless frame-

works, caused by the loose coupling of data plane compo-

nents (Qi et al., 2022), is a barrier to achieving efficient and

1meaning that aggregators are up all the time within a round.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

timely aggregation, compared to a monolithic serverful de-

sign. Further, the use of individual, constantly-running com-

ponents (e.g., container-based sidecars) in current serverless

frameworks is inefficient and sacrifices much of the benefit

of serverless computing. This prompts us to create a more

streamlined, responsive serverless framework that is tailored

to achieve just-in-time FL aggregation on demand.

We introduce LIFL, a lightweight serverless platform for

FL that uses hierarchical aggregation to achieve parallelism

in aggregation and exploits intra-node shared memory pro-

cessing to reduce data plane overheads. LIFL also utilizes

a locality-aware placement policy to maximize the benefits

of the intra-node shared memory data plane. Unlike typical

serverless platforms that use a heavyweight sidecar imple-

mented as a separate container, LIFL seeks to eliminate

this wasteful overhead by taking advantage of eBPF-based

event-driven processing. This ensures that resource usage is

truly load-proportional. Instead of depending on inaccurate,

threshold-based autoscaling, LIFL uses hierarchy-aware

autoscaling to precisely adjust the capacity of model aggre-

gation to match the incoming load. We also use a policy of

reusing runtimes to sidestep the impact of startup delay on

the model convergence time, while also improving resource

efficiency of aggregation. LIFL favors eager aggregation

to enable timely aggregation, reducing the queuing time

for model updates. By harnessing the capabilities of LIFL,

FL systems can achieve efficient resource utilization and

reduced aggregation time. LIFL is available at (fla, 2024).

We highlight the contributions of LIFL below:

(1) LIFL’s enhanced data plane achieves 3× (compared to

serverful) and 5.8× (compared to serverless) latency reduc-

tion on transferring a relatively heavyweight ResNet-152

model update within the aggregation hierarchy (intra-node).

(2) LIFL’s locality-aware placement can maximize shared

memory processing, achieving up to 2.1× additional latency

reduction on aggregating a batch of updates in a round (de-

tails in §6). After applying hierarchy-planning, aggregator

reuse, and eager aggregation, LIFL can further obtain 1.5×
latency reduction. The enhanced orchestration also helps

improve efficiency, saving up to 2× CPU consumption com-

pared to simply using the enhanced data plane.

(3) Our evaluation with a real FL workload using ResNet-18

and 120 simultaneous active clients (the total number of

clients used is 2,800) shows that the combination of LIFL’s

enhanced data and control planes achieve 5× and 1.8× less

CPU cost and reduces 2.7× and 1.6× on time-to-accuracy

(70% accuracy level), compared to existing serverless and

even serverful FL systems. We also train a relatively heavy-

weight ResNet-152 model. LIFL spends 1.68× less time

to reach 70% accuracy than existing serverless FL systems,

while using 4.23× fewer CPU cycles.

Figure 1. Synchronous FL with different aggregation timing (“Ea-

ger” and “Lazy”) (Bonawitz et al., 2019; Jayaram et al., 2022c).

2 BACKGROUND AND CHALLENGES

2.1 Basics of Federated Learning

FL aggregation: Aggregation in FL is a process of building

a global model from individually trained model updates.

The aggregation goal, n specifies the expected number of

model updates to be received before the global model is

updated to a new version. Thus, it dictates the number of

selected clients for training. The aggregation process is

abstracted as:

wi = f({(wk

i
,Ak

i
) | 1 f k f n}). (1)

Here f(·) is an aggregation function, wk

i
is k-th local model

update for global model version i, and Ak

i
is auxiliary infor-

mation for aggregation. For the FedAvg algorithm (McMa-

han et al., 2017), f(·) =
∑

n

k=1
wk

i
ck
i
/Ti. Ti =

∑
n

k=1
ck
i

and Ak

i
is ck

i
(the number of data samples).

Eager aggregation and Lazy aggregation: Based on the

timing to trigger the aggregation, we can classify the model

aggregation to be “eager” or “lazy” (Jayaram et al., 2022c):

Eager aggregation allows aggregation to happen whenever

an update is received, leading to more flexible and dynamic

timing of the aggregation process. Lazy aggregation oper-

ates on a delayed schedule, where model updates that arrive

early are queued without being aggregated immediately.

Fig. 1 shows the two different aggregation methods for syn-

chronous FL. For instance, the eager method is feasible for

FedAvg with cumulative averaging.

2.2 Anatomy of Systems for Federated Learning

Designing a system to support FL at a large scale is essen-

tial, as a larger number of participants means a more diverse

and representative dataset. It improves the model’s ability

to capture complex patterns and unseen relationships in the

data. These benefits help the model generalize in real-world

deployments, e.g., Google’s FL stack has been used to serve

∼10M devices daily and ∼10K devices participate in FL

training simultaneously (Bonawitz et al., 2019).

Fig. 2 depicts key architectural components that are needed

to ensure the success of FL at scale.2 These components

work together to enable the collaborative and decentralized

training process in FL. In addition to the aggregator and the

2We adopt the terminology of FL system components from
(Bonawitz et al., 2019) and (Huba et al., 2022).

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Figure 2. Generic architectures for FL systems: (a) Serverful FL

systems (Bonawitz et al., 2019; Huba et al., 2022); (b) Serverless

FL systems (Jayaram et al., 2022a;b; Chadha et al., 2021). Note

that for simplicity, we skip the hierarchy in the diagram (b).

client, the coordinator oversees the flow of FL operations.

It acts as an orchestrator that facilitates seamless interac-

tions among aggregators, selectors, and clients by applying

the client selection scheme and instructing the selector to

map the selected clients to backend aggregators (Bonawitz

et al., 2019). The selector plays two roles. First, it ensures

that a diverse set of clients participate in the FL process

to capture a representative sample of the distributed data.

Second, it acts as a gateway that mediates communication

(i.e., queuing, load balancing) between (leaf) aggregators

and clients (Bonawitz et al., 2019; Huba et al., 2022).

Need for hierarchical aggregation: The growing number

of participating clients in FL requires the system to be scal-

able to accommodate the computational requirements of ag-

gregating model updates from a large number of distributed

clients. This primarily motivates the use of hierarchical

aggregation potentially involving multiple levels of aggre-

gation in the FL process (Bonawitz et al., 2019; Jayaram

et al., 2022b), as depicted in Fig. 2 (a). Essentially, hierar-

chical aggregation is structured as a single-rooted tree. Each

level in the tree includes multiple parallel aggregation tasks

that are executed by one of potentially multiple aggregators.

The communication during the hierarchical aggregation task

takes place across multiple levels: The model updates from

smaller subgroups of clients are aggregated by the lower-

level aggregators (i.e., leaf) and passed onto higher-level

aggregators (i.e., top), until a global model is obtained. This

parallel aggregation at the lower levels can provide speedup

and reduce queueing of model updates.

2.3 Motivation and Challenges for Serverless FL

State-of-the-art FL systems (Bonawitz et al., 2019; Huba

et al., 2022) rely on a “serverful” design that relies on a fixed

pool of dedicated resources (e.g., CPU and memory), using

a pool of provisioned VMs. Resizing the pool often takes a

long time (e.g., 6 to 45 minutes on AWS (Scheller, 2023)).

Serverless computing, on the other hand, brings fine-grained

resource elasticity by provisioning functions (typically as

containers) dynamically based on demand, ensuring that the

right amount of resources is allocated only when needed.

In FL, serverless computing can be used to provide effi-

cient model aggregation, adapting to varying numbers of

clients. It eliminates the need to maintain dedicated resource

pools for the aggregation service, thereby improving overall

efficiency compared to the current “serverful” deployments.

Prior Work on Serverless FL. A number of FL system

designs have been proposed using serverless computing (Ja-

yaram et al., 2022a;b; Grafberger et al., 2021). A common

abstract architecture of a serverless FL system and its key

components is shown in Fig. 2 (b). But, prior approaches

still face the following challenges:

Indirect networking: Unlike a “serverful” design (Fig. 2 (a)),

a serverless FL system executes aggregators as serverless

functions. Serverless function chaining can support hier-

archical aggregation as well as communication between

aggregators. However, because serverless functions are

ephemeral and stateless (and thus unable to retain stateful

information like routes), these chains typically only support

indirect networking between functions. This raises the need

for a stateful, persistent networking component (Fig. 2 (b)),

such as a message broker or external storage services,3 to

maintain routes and exchange messages (Qi et al., 2022).

However, having such a networking component in the inter-

nal datapath between serverless functions adds unnecessary

overhead (20% added delay as in Fig. 7(a)).

Inefficient message queuing: In addition to supporting func-

tion chaining, the message broker (Fig. 2 (b)) also acts as

a message queue to buffer incoming model updates from

clients while aggregators are being spawned by the server-

less control plane (Jayaram et al., 2022a;b). However, the

message broker and dedicated queues add overhead and

delay to the aggregation service.

Heavyweight sidecar: Scheduling serverless functions typi-

cally requires metrics collection, often using a sidecar. This

container-based sidecar introduces additional network pro-

cessing in the datapath, requiring the interception and for-

warding of model updates. This leads to complex data

pipelines (involving extra communication hops between ag-

gregators) and increased communication overheads due to

the reliance on kernel-based networking (Qi et al., 2022).

Application-agnostic, simple, autoscaling: Current server-

less autoscaler designs typically rely on a simplistic thresh-

old based on user input (e.g., request per second, concur-

rency) for scaling decisions (aut, 2023b;a), often being un-

3For consistency, we use the generic term “message broker” to
denote such a networking component throughout this paper.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Figure 3. The overall architecture of LIFL.

aware of application needs. This design, agnostic of the

hierarchical structure of FL aggregation, is limited in its

ability to optimize the system to maximize parallelism, i.e.,

the number of levels and the number of aggregators at each

level. Looking at Fig. 2 (a), as we go up the levels in the

hierarchy, fewer aggregators are needed. This can be lever-

aged to potentially reuse the lower-level aggregators as we

proceed up the hierarchy. Further, since hierarchical aggre-

gation uses function chaining, current “reactive” autoscaling

designs lead to a cascading effect (Park et al., 2021b) of the

cold-start delays when scaling a function chain.

Locality-agnostic placement: Intra-node communication

can be faster than inter-node communication by avoiding

a lot of networking overheads (Qi et al., 2021) and using

state-of-the-art serverless data plane designs with shared

memory (Shillaker & Pietzuch, 2020; Qi et al., 2022; Yu

et al., 2023). However, leveraging the benefits of shared

memory effectively can be challenging when dealing with a

large hierarchy of aggregators that cannot be accommodated

within a single node. This requires careful function place-

ment by taking into account the impact of communication

between aggregators. Inter-node communication typically

still uses kernel-based networking.

3 LIFL OVERVIEW

We aim to address the aforementioned limitations (§2.3) and

develop LIFL—a high-performance, lightweight, and elastic

serverless platform for FL, utilizing hierarchical aggregation.

We focus on the following innovations of LIFL:

(1) High-performance intra-node dataplane: LIFL incor-

porates shared memory processing to provide a zero-copy

communication channel between FL aggregators placed on

the same node (§4.1). This avoids heavyweight kernel net-

working overheads, especially data copies (Cai et al., 2021),

as model updates are often large, e.g., a model update from

ResNet-152 (He et al., 2016) is ∼230 MBytes. Shared

memory can also eliminate other overheads such as protocol

processing, serialization/de-serialization, kernel/userspace

boundary crossing, and interrupts.

(2) In-place message queuing: We extensively leverage

shared memory in LIFL to offer “in-place” message queuing

(§4.2). Messages (i.e., model updates) from selected clients

are directly buffered in shared memory and can be instantly

accessed by the aggregators when they are ready. This

eliminates dedicated message queues and their associated

queuing delays.

(3) Lightweight eBPF-based sidecar: We incorporate the

extended Berkeley Packet Filter (eBPF (ebp, 2023a)) into

LIFL to build a lightweight sidecar (§4.3) to provide im-

portant functionality, e.g., metrics collection. Unlike a

container-based sidecar, LIFL’s sidecar runs as eBPF code

attached at in-kernel hooks, avoiding the need for dedicated

resources. We further utilize the eBPF-based sidecar to

support direct networking between aggregators (§4.4), com-

pletely replacing the message broker.

(4) A cost-effective orchestration heuristic: LIFL orches-

trates the model aggregation to fully exploit the improved

serverless dataplane by employing several strategies: (1)

locality-aware placement that partitions levels with large

traffic into node-affinity groups to make the best use of

shared memory processing (§5.1); (2) hierarchy-aware scal-

ing that dynamically adjusts the configuration of hierarchi-

cal aggregation (§5.2), and (3) opportunistic reuse of the

aggregator runtime from a lower level (§5.3).

Architectural overview of LIFL: Fig. 3 shows the over-

all architecture of LIFL. LIFL maintains a shared memory

object store on each worker node to enable zero-copy com-

munication between aggregators. To support in-place mes-

sage queuing, LIFL introduces a gateway on each worker

node that receives model updates from remote clients. The

gateway performs a consolidated, one-time payload process-

ing to queue the received model updates to shared memory.

Each aggregator in LIFL has attached to it an eBPF-based

sidecar for lightweight metrics collection. Aggregators in

LIFL are stateless, so new ones start without state synchro-

nization upon an aggregator failure. LIFL detects client

failures with keep-alive heartbeats and enhances resilience

by over-provisioning the number of clients. In the control

plane, a LIFL agent is deployed on each worker node to man-

age the lifecycle (e.g., creation, termination) of aggregators,

following instructions from the LIFL control plane. The

LIFL coordinator, a cluster-wide control plane component,

is used for interactions between the FL job designer (ML

engineer) and the serverless control plane (e.g., autoscaler,

placement engine).4 It works with the serverless control

plane to execute LIFL’s orchestration flow (§5).
4Note: Even though the serverless control plane has serverful,

always-on components (e.g., autoscaler, placement engine), are
shared and their overheads are amortized across multiple work-
loads, especially at scale.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

0 50 100 150 200 250Time (s)
Top
NH

One round Network Agg. Eval.

0 50 100 150 200 250Time (s)

LF1
LF2
LF3
LF4
Top
WH

Figure 4. Impact of data plane performance on hierarchical aggre-

gation. (upper fig.:) No hierarchy(NH); (lower fig.:) With hier-

archy(WH). Top: top aggregator; LF: leaf aggregator. “Network”

denotes the data transfer tasks of model updates; “Agg.” denotes

the aggregation tasks; “Eval.” denotes the evaluation tasks.

4 OPTIMIZING THE SERVERLESS

DATA-PLANE IN LIFL

4.1 Shared Memory for Hierarchical Aggregation

Assessing data plane with hierarchical aggregation: We

now assess the importance of a high-performance data plane

to truly deliver on the promise of hierarchical aggregation.

We consider a baseline (denoted NH) with a single aggre-

gator without hierarchy. We evaluate the hierarchical ag-

gregation service that has one top aggregator and four leaf

aggregators (denoted WH). All aggregators are placed on the

same node. We consider eight trainers to train a ResNet-152

model using FEMNIST dataset. Note that we always deploy

trainers on separate nodes, to both be realistic (trainers are

remote) and to avoid contention for resources on the node.

Fig. 4 shows the execution times for the representative FL

stages under different settings. Note that we only show

the receiving part of the networking task (“Network” in

Fig. 4) to simplify the figure. Compared to the baseline

(NH), WH does not exhibit a significant improvement over-

all, though it uses hierarchical aggregation. The average

completion time per round with WH is 57 seconds, while

for NH is 59.8 seconds. This is mainly because of the con-

tention for network processing between leaf aggregators

when they send/receive intermediate model updates to/from

the top aggregator. This highlights the critical need for

a high-performance and streamlined data plane for hier-

archical aggregation. LIFL incorporates shared memory

processing when the serverless aggregator functions are co-

located on the same node. This enables fast and efficient

communication, mitigating the impact of networking on

hierarchical aggregation (demonstrated in Fig. 7). Working

jointly with our locality-aware placement scheme (§5.1),

LIFL can minimize the need for inter-node model update

transfers. Consequently, LIFL maximizes the advantages

of our efficient intra-node shared memory data plane that

substantially reduces communication overheads.

Shared memory object store: The LIFL agent is respon-

sible for the allocation/recycling/destruction of the shared

Figure 5. Message queuing solutions.

memory buffer in the object store. In addition, LIFL only

allows immutable (read-only) objects to guarantee the safe

sharing of model updates, eliminating the need for locks.

The agent periodically checkpoints the model parameters

to an external persistent storage service (more details in

Appendix-B).

4.2 In-place Message Queuing

Representative message queuing solutions: Fig. 5 enu-

merates message queuing solutions for various serverful

and serverless alternatives. In the monolithic serverful setup

(used in (Huba et al., 2022)), the model update is directly

buffered into an in-memory queue residing in the aggregator,

deployed as a persistent and stateful application. Another

serverful setup, used in (Bonawitz et al., 2019), deploys

aggregators as ephemeral, stateless microservices, requiring

an additional persistent, stateful message broker to buffer

model updates from clients before being consumed by the

stateless aggregator. Switching to the basic serverless setup

(used in (Jayaram et al., 2022b)), model updates are also

buffered at a message broker, as the aggregator is now de-

ployed as an ephemeral, stateless serverless function. Be-

fore being consumed by the aggregator, the model update

has to pass through the sidecar. Finally, in LIFL, the gate-

way buffers the model update directly into the shared mem-

ory, which can then be seamlessly accessed by the aggrega-

tor. The distinct data pipelines between the client, message

queue, and aggregator impose varying degrees of overheads.

Our evaluation (details in Appendix-F) shows that LIFL’s

in-place message queuing achieves the best efficiency and

performance (equivalent to a monolithic, serverful design)

among all alternatives in Fig. 5.

Message queuing pipeline in LIFL: The gateway at each

worker node is addressable/accessible by FL clients. It

receives model updates from clients or from the gateway

on another worker node, and performs necessary network

processing (e.g., protocol processing, serialization, deserial-

ization, data type conversion, etc) before writing the model

updates into shared memory. This avoids duplicate process-

ing when local aggregators access model updates in shared

memory. A step-by-step explanation of the processing flow

of the message queuing in LIFL is given in Appendix-C.

We apply vertical scaling of the gateway by dynamically

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

adjusting the number of assigned CPU cores based on the

load level. This avoids the gateway becoming the dataplane

bottleneck and impacting the aggregation speed.

4.3 eBPF-based Sidecar

LIFL’s eBPF-based sidecar is built with a set of eBPF pro-

grams attached to each aggregator’s socket interface, using

its in-kernel SKMSG hook (Red Hat, Inc., 2022). The execu-

tion of the eBPF-based sidecar is triggered by the invocation

of the send() system call, which is captured by the SKMSG

hook as an eBPF event. This ensures that the eBPF-based

sidecar is strictly event-driven and consumes no CPU re-

sources when idle. We use the eBPF-based sidecar to collect

necessary metrics (e.g., execution time of the aggregation

task) to facilitate the orchestration in LIFL (§5).

Metrics collection: Upon invocation, the eBPF-based side-

car collects and stores metrics to an eBPF map (metrics

map) on the local worker node. The eBPF map is an in-

kernel, configurable key-value table that can be accessed by

the eBPF program during execution (ebp, 2023c). The LIFL

agent, on the other hand, periodically retrieves the latest

metrics from the metrics map and feeds the metrics back to

the metrics server (Fig. 3) in the serverless control plane.

4.4 Direct Routing with Hierarchical Aggregation

Direct networking between functions is not allowed in exist-

ing serverless environments because serverless functions are

considered to be stateless and ephemeral. This implies that

there are no long-lived, direct connections between a pair

of function instances. As a result, they use an intermediate

networking component (e.g., message broker) to act as a

stateful, persistent component to manage state, i.e., routes

between functions. However, the main drawback is that

it adds unnecessary overhead by involving the additional

networking component(s) in the datapath, making indirect

networking between functions heavyweight.

LIFL improves serverless networking within hierarchical

aggregation by allowing direct routing between aggregators,

both within a node and between nodes. The key is to offload

the stateful processing to eBPF, using the sockmap (Red Hat,

Inc., 2022) to support flexible intra-node routing exploiting

shared memory, and inter-node routing with the help of the

per-node gateway, as depicted in Fig. 12. The sockmap is a

special eBPF map (BPF MAP TYPE SOCKMAP (Red Hat,

Inc., 2022)) that maintains references to the registered socket

interfaces. We take the approach from (Qi et al., 2022) to

implement intra-node direct routing in LIFL. For details of

intra-/inter-node routing in LIFL, refer to Appendix-A.

5 LIFL’S CONTROL PLANE DESIGN

5.1 Locality-aware Placement and Load Balancing

The placement of aggregators can lead to different routing

behaviors: When aggregators with cross-level data depen-

Figure 6. Control plane orchestration in LIFL: The autoscaler pe-

riodically re-plans the hierarchy based on the arrival rate of each

worker node. The LIFL coordinator applies reusing of aggregators.

dencies are placed on the same node, the shared memory

processing and eBPF-based sidecar can facilitate intra-node

routing. When these aggregators are placed across different

nodes, the gateway has to perform inter-node routing. To

minimize the transfer of model updates in LIFL, we take a

data-centric strategy like (Yu et al., 2023) that is aware of the

locality of model updates and places the aggregator close to

the model updates. As such, the in-place message queuing

(§4.2), which is, in fact, the result of load balancing (clients

to worker node mapping), directly affects the effectiveness

of the locality-aware placement of the aggregators.

Our objective of load balancing involves two crucial cri-

teria: (1) Minimizing inter-node communication while

maximizing the utilization of shared memory within each

node. (2) Ensuring the residual service capacity of the

worker node meets the demand; the residual service ca-

pacity (RCi,t) of worker node i at time t is determined by

RCi,t = MCi − (ki,t × Ei,t). Here, MCi represents the

maximum service capacity5, denoting the maximum num-

ber of model updates that can be aggregated simultaneously

on worker node i. The value of ki,t is the arrival rate of

model updates directed to worker node i at time t, and Ei,t

is the average execution time required to aggregate a model

update on node i. We can also get a coarse-grained estimate

on the queue length (Qi,t = ki,t × Ei,t) of node i at time t.

We approach the load balancing task as a bin-packing prob-

lem, aiming to allocate model updates from clients to a

minimal number of worker nodes, while ensuring that the

residual service capacity of each worker node is not ex-

ceeded. This naturally reduces the inter-node communica-

tion as much as possible, since the communication between

a particular pair of worker nodes only happens once. We use

BestFit for the bin-packing, as it concentrates load onto the

fewest nodes possible, to reduce inter-node traffic and maxi-

mize shared memory use. In contrast, WorstFit spreads the

load across more nodes, similar to the “Least Connection”

policy in Knative (§6.1). Furthermore, FirstFit focuses on

reducing search complexity without being locality-aware.
5We compute MCi offline; for details, refer to Appendix-E.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

5.2 Planning the Hierarchy for Aggregation

The goal of hierarchy-aware autoscaling is to maximize

the parallelism of aggregation at each level, given the num-

ber of model updates to be aggregated. This can minimize

the completion time of each level and thus minimize the

aggregation completion time (ACT) for hierarchical aggre-

gation. We plan a hierarchical aggregation structure within

each node, tailored to the number of pending model updates

(Qi,t) in the message queue. Every node produces an inter-

mediate model update that is dispatched to the node chosen

to have the top aggregator that updates the global model.

This approach significantly reduces the need for cross-node

transfers for intermediate model updates.

LIFL periodically adjusts (i.e., scales) the hierarchy on node

i, guided by our estimates of Qi,t. To prevent excess re-

source allocation due to short-term spikes in Qi,t, we em-

ploy the Exponentially Weighted Moving Average (EWMA)

to smooth Qi,t: Qi,t = α×Qi,t−1+(1−α)×Qi,t, where

α is the EWMA coefficient. We set α = 0.7 based on it

yielding the best results in our experiments. Our current

implementation supports a two-level k-ary tree hierarchy

on each node, comprising a “central” middle aggregator

responsible for aggregating model updates from Qi,t/I leaf

aggregators, where I is the number of model updates of

clients per leaf aggregator. Given that the steps within a

LIFL aggregator (Fig. 14) are executed sequentially, we

want to maximize the parallelism by having a limited I to

be small (e.g., at 2), ensuring that a leaf aggregator experi-

ences minimal waiting time after receiving the initial update

from the first client.

LIFL re-plans the hierarchy on each worker node periodi-

cally. This involves estimating Qi,t across the worker nodes

and creates/terminates aggregators accordingly. The LIFL

control plane updates the routes between aggregators based

on the renewed hierarchy (details in Appendix-A).

5.3 Opportunistic Reuse of Aggregator Instances

The scaling policy in LIFL incorporates an opportunistic

“reuse” scheme to maximize the utilization of warm ag-

gregator instances since aggregators in LIFL use homoge-

nized runtimes (Fig. 14) with the same code and libs. This

sidesteps the cascading effect (Park et al., 2021b) when start-

ing up a hierarchy of aggregators (in fact function chains).

Given a hierarchy of aggregators selected on the node, LIFL

picks a leaf aggregator that has already completed its aggre-

gation task and is idle. LIFL converts its role to a middle

aggregator on that node. No further change is required as

LIFL’s aggregator runtime is stateless. LIFL selects the

first middle aggregator that completes its local aggregation

task and converts it to be the top aggregator responsible for

updating the global model. This minimizes the need to start

up new instances for higher-level aggregators, and avoids

additional startup delays.

5.4 Eager aggregation in LIFL

LIFL employs eager aggregation (Fig. 1) leveraging its more

flexible and dynamic timing of the aggregation process. Ea-

ger aggregation performs timely aggregation as model up-

dates arrive, even if it triggers the cold start of an aggregator

(when no idle-but-warm aggregator is available). This takes

advantage of the overlap between the start-up delay and

transfers of model updates, allowing eager aggregation to

mask cold starts up until the last model update. It also miti-

gates congestion that can occur when trying to aggregate all

model updates simultaneously. In contrast, lazy aggregation

aggregates all model updates in a batch when the aggrega-

tion goal is reached. But, the arrival of local model updates

from trainers can be spread over a relatively long duration.

Our evaluation shows eager aggregation achieves a 20%

reduction on ACT (Fig. 8(a)). We implement eager aggre-

gation in LIFL following the step-based processing model

described in Appendix-G. LIFL updates the version of the

global model whenever the aggregation goal is achieved.

6 EVALUATION & ANALYSIS

We quantify the performance gain and resource savings by

using LIFL, starting with analyzing a set of microbench-

marks to understand the different design considerations of

LIFL, including shared memory processing, the effective-

ness and overheads of LIFL’s orchestration scheme. We

then demonstrate the benefits of LIFL from a system-level

perspective using real FL workloads.

Baseline Systems: We implement several baseline FL sys-

tems for LIFL to compare against. (1) “Serverful system”

(SF): The “serverful system” is implemented following the

design described in (Bonawitz et al., 2019) and (Huba et al.,

2022). Both of them adopt the architecture depicted in Fig. 2

(a). (2) “Serverless system” (SL): The baseline “server-

less system” is implemented following the design described

in FedKeeper (Chadha et al., 2021) and AdaFed (Jayaram

et al., 2022b) that uses the architecture depicted in Fig. 2 (b).

We choose Knative (kna, 2023) as the serverless framework

to build these alternatives. We utilize the open-source Flame

platform (fla, 2024) to provide necessary FL components,

e.g., coordinator, selector, aggregator, and client.

Implementation of LIFL: We implement LIFL based on

SPRIGHT (Qi et al., 2022), a lightweight, high-performance

serverless framework. LIFL includes object store support,

model checkpoints, and routing support for hierarchical ag-

gregation. LIFL uses Python’s multiprocessing package to

implement the shared memory pool instead of the DPDK-

based shared memory pool used in the original implementa-

tion of SPRIGHT. The current implementation of LIFL only

supports synchronous FL. Supporting asynchronous FL is

part of our future work.

Testbed setup: We leverage the NSF Cloudlab (Duplyakin

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

ResNet
-18

ResNet
-34

ResNet
-152

0.0
1.0
2.0
3.0
4.0

La
te

nc
y

(s
)

0.14 0.25
0.76

LIFL
SF
SL
+SC
+MB

(a) latency of a single model up-
date transfer (intra-node)

ResNet
-18

ResNet
-34

ResNet
-152

0
5

10
15
20

CP
U

 c
yc

le
s (

x
1G

)

0.21 0.24
2.45

LIFL
SF
SL
+SC
+MB

(b) CPU usage of a single model
update transfer (intra-node)

0 50 100 150 200 250Time (s)

LF1
LF2
LF3
LF4
Top

(c) LIFL’s Aggregation Timing (with ResNet-152)

Figure 7. Data plane improvement for hierarchical aggregation:

Serverful (SF), Serverless (SL), and LIFL. SL’s latency includes

contributions of +SC (sidecar) and +MB (message broker).

et al., 2019). The nodes we used have a 64-core Intel Cas-

cade Lake CPU@2.8 GHz, 192GB memory, and a 10Gb

NIC. We use Ubuntu 20.04 with kernel version 5.16.

6.1 Microbenchmark Analysis

Data plane improvement for hierarchical aggregation:

To understand the improvements in data plane performance

of hierarchical aggregation with LIFL’s shared memory pro-

cessing, we use the same aggregation hierarchy as in §4.1,

comprising one top aggregator and four leaf aggregators.

All aggregators are placed on the same node.

We consider the following serverful and serverless alter-

natives: (1) The serverful setup (SF) establishes direct net-

working channels (based on gRPC) between leaf aggregators

and the top aggregator; (2) the serverless setup (SL) uses in-

direct networking to connect leaf aggregators and the top ag-

gregator, through a message broker on the same node. Each

aggregator has a container-based sidecar to mediate inbound

and outbound traffic; (3) the LIFL setup uses shared mem-

ory for communication between aggregators. We consider

three ML models with distinct sizes: ResNet-18 (∼44MB),

ResNet-34 (∼83MB), and ResNet-152 (∼232MB).

Fig. 7(a) shows the latency breakdown of a single model up-

date transfer between the leaf aggregator and top aggregator

for different model sizes. We specially mark the share of

sidecar (+SC) and message broker (+MB) for the serverless

setup. SL consistently results in 2× and 6× higher latency

than SF and LIFL, respectively. The significant CPU usage

of SL (Fig. 7(b)) clearly shows the poor efficiency and per-

formance of the indirect networking used in the serverless

setup, caused by its use of the message broker and heavy-

weight sidecar. We see that LIFL is considerably better than

SF and SL in terms of both CPU usage and latency.

20 60 100
0
5

10
15
20
25

AC
T

(s
)

SL-H
+d
+d+e

+d+e+f
+d+e+f+g

(a) Agg. Completion Time

20 60 100
0

50

100

150

CP
U

 T
im

e
(s

)

SL-H
+d
+d+e

+d+e+f
+d+e+f+g

(b) Cumulative CPU Time

20 60 100
0

10
20
30
40
50

of

 a
gg

. c
re

at
ed

SL-H
+d
+d+e
+d+e+f
+d+e+f+g

(c) # of aggregators created

20 60 100
0
1
2
3
4
5

of

 n
od

es
 u

se
d SL-H

+d
+d+e

+d+e+f
+d+e+f+g

(d) # of nodes used

Figure 8. Improvement with LIFL’s orchestration, with i⃝ being

additions to baseline LIFL; x-axis is the number of model updates

arriving at the aggregation service concurrently.

Fig. 7(c) shows the timing of various FL processing tasks

during hierarchical aggregation when using LIFL’s data

plane. It is clear that LIFL’s shared memory processing

helps reduce the overhead and improve the performance of

the data plane with hierarchical aggregation. LIFL com-

pletes each round in just 44.9 seconds compared to 57

seconds on average even for the serverful setup in Fig. 4.

Further, through careful placement, aggregators in LIFL

can fully exploit the high-speed intra-node data plane over

shared memory, as discussed next.

Improved orchestration in LIFL: We now quantify the

benefits of LIFL’s orchestration in improving hierarchical

aggregation. We demonstrate the effectiveness of LIFL by

applying: 1⃝ locality-aware placement (§5.1), 2⃝ hierarchy-

planning (§5.2), 3⃝ aggregator reuse (§5.3), and 4⃝ eager

aggregation (§5.4) step-by-step. We use five nodes for

this experiment. The maximum service capacity (MCi)

of each node in our testbed is 20.6 We focus on two aspects:

resource consumption and Aggregation Completion Time

(ACT) to aggregate a given number of model updates. In

this experiment, we assume the estimated Qi,t is equal to

the actual queue length on each active node. We focus on

the importance of having warm aggregators based on the

pre-planned hierarchy, to avoid the cold start penalty.

We compare LIFL against a baseline serverless control plane

using hierarchical aggregation (SL-H in Fig. 8). SL-H

employs LIFL’s shared memory data plane (so both have

the same data plane) with Knative’s “Least Connection” load

balancing strategy (Mittal et al., 2021) that assigns newly

arrived model updates to the node with the smallest queue

6Our testbed nodes are homogeneous, hence all MCi are the
same. With heterogeneous nodes, MCi may vary.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

length. The aggregators in SL-H use lazy aggregation by

default. The ML model used is ResNet-152. Note that the

latency to transmit a single model update of ResNet-152

across nodes (on the current testbed) is ∼4.2 seconds.

By using locality-aware placement, LIFL also achieves

2.1× and 1.13× ACT reduction than SL-H (for 20 and

60 model updates in Fig. 8(a)). This improvement is at-

tributed to LIFL’s bin-packing strategy, which effectively

consolidates aggregators onto the same node to fully exploit

shared memory processing. Applying hierarchy-planning

and reusing warm aggregator instances (+ 1⃝+ 2⃝+ 3⃝) fur-

ther reduce ∼1.22× ACT of LIFL, as keeping aggrega-

tors warm mitigates the cold start delay that exists in both

SL-H and (+ 1⃝). Further, after enabling eager aggregation

(+ 1⃝+ 2⃝+ 3⃝+ 4⃝), LIFL allows higher-level aggregators to

consume and aggregate the model updates in a timely man-

ner, effectively avoiding the intermediate model updates

(produced by the lower-level aggregators) being queued up

at the higher-level aggregators. This saves ∼1.2× in ACT

compared to (+ 1⃝+ 2⃝+ 3⃝) that uses lazy aggregation.

While being effective in reducing ACT, LIFL also helps to

reduce costs. Just using locality-aware placement (+ 1⃝ in

Fig. 8(b)), LIFL can save considerable CPU overhead by

reducing inter-node data transfers (with 20 and 60 model

updates). Enabling aggregator reuse saves additional CPU

cycles, as it avoids having the CPU initialize new aggrega-

tors. For 100 model updates though, the service capacity

of all five nodes would be maxed out, reaching the limit of

the benefit of LIFL’s orchestration. However, the data plane

improvement of LIFL can still make it outperform the basic

serverful and serverless setups, as demonstrated in Fig. 7.

As shown in Fig. 8(c), LIFL reduces the number of aggrega-

tors created, by packing more aggregators into fewer nodes.

After we apply locality-aware placement to LIFL (+ 1⃝),

LIFL can also reduce the number of nodes used consider-

ably (see Fig. 8(d)): Given 20, 60, and 100 model updates,

LIFL’s locality-aware placement efficiently packs them into

1, 3, and 5 nodes, respectively. This avoids repeatedly creat-

ing a middle aggregator on each of the 5 nodes (except when

the service capacity of all 5 nodes is fully consumed). On

the other hand, SL-H uses all 5 nodes throughout, uniformly

distributing model updates across all 5 available nodes. This

will lead to additional cross-node data transfers, regardless

of available model updates. Note that the service capacity

of all 5 nodes is fully consumed for 100 model updates.

Orchestration overhead of LIFL: We evaluate the or-

chestration overhead of LIFL, given a different number of

clients. The time for completing the locality-aware place-

ment in LIFL is less than 17 milliseconds, even with 10K

clients, which is the maximum number of client settings

observed in Google’s production FL stack (Bonawitz et al.,

2019). Compared to the ACT, which takes several tens

of seconds with a large amount of clients, this overhead

for locality-aware placement is negligible. The EWMA es-

timator for hierarchy-planning takes 0.2 milliseconds per

estimate, which is also negligible compared to the 2-minute

cycle time used by LIFL to re-plan the hierarchy on each

worker node. The aggregator reuse and eager aggregation

incur almost no overhead, as they do not require active

involvement of the LIFL control plane.

6.2 FL Workloads Setup

Our aim is to demonstrate the generality of LIFL in im-

proving performance and reducing the cost of FL from a

system-level perspective. We consider synchronous FL (us-

ing FedAvg (McMahan et al., 2017)) to justify LIFL’s de-

sign. We use Stochastic Gradient Descent on the client.

Clients are configured with a batch size of 32 in a local

training epoch, with the learning rate set to 0.01.

Benchmark selection: We consider image classification,

training ResNet (He et al., 2016) models with the FEMNIST

dataset (Yang et al., 2021). We use non-IID datasets from

FedScale (Lai et al., 2022) (with its real client-data mapping)

to keep the setting realistic with different data distributions

across the client population.

Configuration of clients: We consider two distinct client

setups: (ResNet-18 setup) We use the client in this setup

to train a ResNet-18 model. Clients are considered to be

mobile devices with limited computing capacity, available

only when each has battery power and is connected to a

data (e.g., WiFi) network. This results in high variability in

the number of mobile devices available to perform training

tasks. As such, we let each client hibernate for a random

interval within [0, 60] seconds to emulate the dynamic avail-

ability of typical mobile device behavior. This generates

varying loads over time, as shown in Fig. 10(a), justifying

the need for scaling with a serverless framework as well

as LIFL. (ResNet-152 setup) The client in this setup trains

the relatively heavyweight ResNet-152 model. The client

is considered to be a server with substantial computing ca-

pacity and is highly available. As such, we keep clients in

this setup always-on. This results in a more stable arrival

pattern of model updates, as shown in Fig. 10(d).

We use a total of 20 physical nodes with 5 nodes used to run

aggregators. We use 4 nodes as leaf/middle aggregators and

dedicate one node to be the top aggregator. To deliver the

benefits of a “serverful system” (SF), we always maximize

the resource allocation to the aggregators and keep them

warm throughout the experiment. For the serverless setup

(SL and LIFL), we create aggregators on demand.

We use the remaining 15 physical nodes to run the clients.

In the ResNet-18 setup, since we consider clients to be

compute-constrained mobile devices, we run eight clients

on the same physical node, so each client only gets a small

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

0 1 2 3 4 5

Wall-clock time (hours)
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

ResNet-18 (a)

SF
SL
LIFL

0 10 20 30 40 50

Cumulative CPU Time (hours)
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

ResNet-18 (b)

SF
SL
LIFL

0 1 2 3 4

Wall-clock time (hours)
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

ResNet-152 (c)

SF
SL
LIFL

0 10 20 30 40 50

Cumulative CPU Time (hours)
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

ResNet-152 (d)

SF
SL
LIFL

Figure 9. ResNet-18: (a) Time-to-accuracy and (b) Cost-to-accuracy; ResNet-152: (c) Time-to-accuracy and (d) Cost-to-accuracy.

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

20
40
60
80

100

Ar
ri

va
l r

at
e

pe
r m

in
ut

es

ResNet-18 (a)

(a) Update arrival rate

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

15
30
45
60

of

 a
ct

iv
e

ag
g.

ResNet-18 (b)

SF SL LIFL

(b) # of active aggregators

0 20 40 60 80Rounds0
500100015002000

Cu
m

ul
at

iv
e

CP
U

tim
e

pe
r r

ou
nd

ResNet-18 (c)

SF SL LIFL

(c) Cumul. CPU time (seconds) per round

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

10

20

30

Ar
ri

va
l r

at
e

pe
r m

in
ut

es

ResNet-152 (d)

(d) Update arrival rate

0.0 0.5 1.0 1.5
Wall-clock time (hours)0

3

6

9

of

 a
ct

iv
e

ag
g.

ResNet-152 (e)

SF SL LIFL

(e) # of active aggregators

0 20 40 60 80Rounds0
200
400
600

Cu
m

ul
at

iv
e

CP
U

tim
e

pe
r r

ou
nd

ResNet-152 (f)
SF SL LIFL

(f) Cumul. CPU time (seconds) per round

Figure 10. ResNet-18 (a, b, c), ResNet-152 (d, e, f): Time series of arrival rate, number of active aggregators, and cumulative CPU time

(seconds) per round.

share of the compute capacity of the physical node. There-

fore, in the ResNet-18 setup, we can keep 120 simultane-

ously active clients in each round. In the ResNet-152 setup,

we treat the client as a server node, so we dedicate a physical

node for a ResNet-152 client. In this ResNet-152 setup, we

keep 15 simultaneously active clients in each round. The

active clients are selected from a total of 2,800 real clients

provided by FedScale (Lai et al., 2022).

6.3 Putting It All Together

(ResNet-18) Time to Accuracy: We compare the time-to-

accuracy of LIFL against SL and SF. To reach 70% accuracy

of ResNet-18 (Fig. 9 (a)), LIFL takes only 0.9 hours (wall

clock time), which is 1.6× faster than SF (1.4 hours). Com-

pared to SL which takes 2.4 hours, LIFL is 2.7× faster. The

improvement with LIFL can be attributed to the shared mem-

ory data plane and the improved orchestration to effectively

utilize resources, thereby reducing ACT (see §6.1).

The time spent by the SL aggregation service increases

due to a combination of factors including sidecar overhead,

function chaining, and simplistic orchestration. Frequent

start-up of the aggregators in SL (Fig. 10(b)) adds delays

to the aggregation (for the first arrival update in a round).

This increased aggregation time of SL eventually hurts the

time-to-accuracy (70%), making it even slower than SF.

(ResNet-18) Cost savings with LIFL: LIFL achieves sig-

nificant cost savings compared to SF and SL. We focus on

the cumulative costs (CPU time) consumed by the aggrega-

tion service to achieve a certain model accuracy. To reach

the 70% accuracy level of ResNet-18 (Fig. 9 (b)), LIFL

consumes 4.5 CPU hours, which is 1.8× less than SF (8

CPU hours). Further, SF, with its simplistic fixed resource

allocation, keeps aggregators “always-on”, constantly occu-

pying its CPU allocation (Fig. 10(b)). LIFL adapts well to

the arrival rate of model updates and re-plans (scales) the

hierarchy accordingly, using resources to match demand.

Also note that the LIFL’s aggregator, when deployed as a

Kubernetes pod or container, is also cheaper (smaller re-

source allocation) than SF, as LIFL requires less CPU to

complete the same amount of aggregation tasks (Fig. 10(c)).

In contrast, SL consumes much more CPU (26 CPU hours)

to achieve the 70% accuracy level of ResNet-18 (Fig. 9 (b))

compared to LIFL (4.5 CPU hours). Although SL has rel-

atively fewer active aggregators over time (Fig. 10(b)), its

data plane and sidecar overheads, and the CPU consumed

for start-up results in SL having more than 5× the CPU con-

sumption of LIFL. This higher CPU time cost per round (for

the same amount of aggregation work completed) requires

the cloud service provider to allocate far more resources to

the aggregator (e.g., as a pod), making a single aggregator

in SL much more expensive than both SF and LIFL.

(ResNet-152) Time to Accuracy: Fig. 9 (c) shows the

time-to-accuracy of the different alternatives for RestNet-

152. To reach 70% accuracy, LIFL takes 1.9 hours (wall

clock time), which is 1.15× faster than SF (2.2 hours).

Comparatively, SL takes 3.2 hours. LIFL is 1.68× faster

than SL. The heavy-weight sidecar, slow function chaining,

function startup delays, and simplistic orchestration, are

responsible for the larger time-to-accuracy of SL for ResNet-

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

152, just as we saw with the ResNet-18 workload, as well

as with the microbenchmark analysis.

(ResNet-152) Cost savings with LIFL: As Fig. 9 (d) shows,

LIFL again achieves significant cost savings (on cumulative

CPU time) compared to SF and SL. To reach the 70% accu-

racy level of the ResNet-152 model, LIFL consumes 4.76

CPU hours, which is 1.43× less than SF (6.81 CPU hours).

In contrast, SL consumes much more CPU (20.4 CPU hours)

to achieve the same 70% accuracy level compared to LIFL.

This again is consistent with what we observed from the

ResNet-18 workload, highlighting the advantage of LIFL.

Summary: LIFL takes advantage of the fine-grained elas-

ticity of serverless to scale the aggregation service based on

load changes, saving CPU consumption compared to server-

ful alternatives. When comparing LIFL with SL, LIFL is

even more compelling, with far lower CPU consumption be-

cause of LIFL’s orchestration scheme and lightweight data

plane (as we saw from the microbenchmark analysis). Thus,

LIFL shows that it truly leverages the elasticity promise of

the serverless computing paradigm.

7 RELATED WORK

We have discussed the pros and cons of prior work on server-

ful (Bonawitz et al., 2019; Huba et al., 2022) and server-

less (Jayaram et al., 2022b;a; Chadha et al., 2021) FL sys-

tems in §2. LIFL goes beyond these prior designs with an

optimized serverless infrastructure and efficient orchestra-

tion to truly realize the promise of serverless computing. We

now discuss work related to LIFL from other perspectives.

Federated Learning: As a fast-evolving ML technology, a

large body of work has been proposed for FL; the proposals

in (McMahan et al., 2017; Li et al., 2020a; Nguyen et al.,

2022; Li et al., 2020b; Reddi et al., 2020) focus on FL al-

gorithms while others investigate how to select FL clients

or datasets more intelligently (Lai et al., 2021; Liu et al.,

2023a; Abdelmoniem et al., 2023; Jiang et al., 2022; Nishio

& Yonetani, 2019; Shin et al., 2022; Guo et al., 2022; Lalitha

et al., 2019; Elzohairy et al., 2022). (Liu et al., 2023b) seeks

to schedule FL jobs across a shared set of FL clients with

less contention and reduce job scheduling delays. These

efforts are orthogonal to LIFL because LIFL focuses on

system-level optimization of model aggregation of FL. This

makes LIFL a good complement to these efforts by provid-

ing an efficient and high-performance FL system to bring

various FL approaches to the ground.

Several open-source FL platforms, e.g., Flame (fla, 2024),

FATE (fat, 2023), OpenFL (ope, 2023), FedML (He et al.,

2020), IBM federated learning (Ludwig et al., 2020) have

been launched to facilitate the promotion and adoption of FL

in both research and applications. These platforms assume

themselves to be a serverful design with static, inflexible

deployment, which makes them unprepared for large-scale

FL. LIFL can be used as a representative case to guide the

future development of these platforms.

Serverless computing optimization: Recent advances in

serverless computing have triggered extensive research en-

deavors dedicated to optimizing its system design. Sig-

nificantly, a prominent amount of investigation revolves

around the enhancement of resource provisioning, function

deployment, load balancing (Singhvi et al., 2021; Mittal

et al., 2021; Tariq et al., 2020; Bhasi et al., 2021; Park et al.,

2021a; Kaffes et al., 2022; Jin et al., 2023), runtime over-

head reduction (Agache et al., 2020; Akkus et al., 2018;

Shillaker & Pietzuch, 2020; Gadepalli et al., 2020; Oakes

et al., 2018), and mitigation of function startup delay (Fu

et al., 2020; Shahrad et al., 2020b; Lin & Glikson, 2019;

Fuerst & Sharma, 2021; Schall et al., 2022; Ustiugov et al.,

2021; Wang et al., 2021) within serverless platforms. Fur-

thermore, substantial efforts have been directed towards

addressing the data plane overheads inherent in serverless

architectures (Qi et al., 2022; Jia & Witchel, 2021; Shillaker

& Pietzuch, 2020; Yu et al., 2023), characterized by heavy-

weight function chaining and sidecar proxy.

Our work, combines the advantages of data plane optimiza-

tion (i.e., shared memory for hierarchical aggregation, in-

place message queuing, event-driven sidecars, etc), to un-

lock the full potential of serverless computing, facilitating

efficient and cost-effective FL in the cloud.

8 CONCLUSION

LIFL is an optimized serverless FL system aimed at making

FL more efficient and significantly lowering its operational

cost. LIFL adopts hierarchical aggregation to support FL

at scale. Its serverless infrastructure leverages shared mem-

ory processing to offer high-speed yet efficient intra-node

data plane and event-driven sidecar functionality to facilitate

communication within hierarchical aggregation. LIFL’s or-

chestration scheme adjusts the aggregation hierarchy based

on load and, maximizes the utilization of shared memory

through intelligent placement and reuse of aggregation func-

tion instances, thus saving the cost. Our evaluation shows

that LIFL’s optimized data and control planes improve the

resource efficiency of the aggregation service by more than

5×, compared to existing serverless FL systems, with 2.7×

reduction on time-to-accuracy for ResNet-18. LIFL also

achieves 1.8× better efficiency and 1.6× speedup on time-

to-accuracy than a serverful system. In training ResNet-152

to reach 70% accuracy, LIFL is 1.68× faster than an existing

serverless FL system, while reducing CPU costs by 4.23×.

ACKNOWLEDGMENTS

We thank the US NSF for their generous support through

grants CRI-1823270, CNS-1818971, and Cisco for their

generous gift and support.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

REFERENCES

Autoscaling - Knative. https://knative.dev/docs

/serving/autoscaling/, 2023a. [ONLINE].

Autoscaling - OpenFaaS. https://docs.openfaa

s.com/architecture/autoscaling/, 2023b.

[ONLINE].

extended Berkeley Packet Filter. https://ebpf.io/,

2023a. [ONLINE].

BPF-HELPERS - list of eBPF helper functions.

https://manpages.ubuntu.com/manpag

es/focal/en/man7/bpf-helpers.7.html,

2023b. [ONLINE].

BPF maps. https://docs.kernel.org/bpf/ma

ps.html, 2023c. [ONLINE].

Fate: An Industrial Grade Federated Learning Framework.

https://fate.fedai.org/, 2023. [ONLINE].

Knative. https://knative.dev, 2023. [ONLINE].

Open Federated Learning (OpenFL) - An Open-Source

Framework For Federated Learning. https://gith

ub.com/intel/openfl, 2023. [ONLINE].

Flame: a federated learning system for the edge. https:

//github.com/cisco-open/flame, 2024. [ON-

LINE].

Abdelmoniem, A. M., Sahu, A. N., Canini, M., and Fahmy,

S. A. Refl: Resource-efficient federated learning. In

Proceedings of the Eighteenth European Conference on

Computer Systems, EuroSys ’23, pp. 215–232, New York,

NY, USA, 2023. Association for Computing Machinery.

ISBN 9781450394871. doi: 10.1145/3552326.356748

5. URL https://doi.org/10.1145/3552326.

3567485.

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neuge-

bauer, R., Piwonka, P., and Popa, D.-M. Firecracker:

Lightweight virtualization for serverless applications. In

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), pp. 419–434, Santa Clara,

CA, February 2020. USENIX Association. ISBN 978-1-

939133-13-7. URL https://www.usenix.org/c

onference/nsdi20/presentation/agache.

Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke,

K., Beck, A., Aditya, P., and Hilt, V. SAND: To-

wards High-Performance serverless computing. In

2018 USENIX Annual Technical Conference (USENIX

ATC 18), pp. 923–935, Boston, MA, July 2018.

USENIX Association. ISBN 978-1-939133-01-4.

URL https://www.usenix.org/conference/

atc18/presentation/akkus.

Bhasi, V. M., Gunasekaran, J. R., Thinakaran, P., Mishra,

C. S., Kandemir, M. T., and Das, C. Kraken: Adaptive

container provisioning for deploying dynamic dags in

serverless platforms. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’21, pp. 153–167,

New York, NY, USA, 2021. Association for Computing

Machinery. ISBN 9781450386388. doi: 10.1145/3472

883.3486992. URL https://doi.org/10.1145/

3472883.3486992.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,

Ingerman, A., Ivanov, V., Kiddon, C., Konečný, J.,

Mazzocchi, S., McMahan, B., Van Overveldt, T., Petrou,

D., Ramage, D., and Roselander, J. Towards federated

learning at scale: System design. In Proceedings of

Machine Learning and Systems, volume 1, pp. 374–388,

2019. URL https://proceedings.mlsys.or

g/paper/2019/file/bd686fd640be98efaa

e0091fa301e613-Paper.pdf.

Cai, Q., Chaudhary, S., Vuppalapati, M., Hwang, J., and

Agarwal, R. Understanding host network stack over-

heads. In Proceedings of the 2021 ACM SIGCOMM

2021 Conference, SIGCOMM ’21, pp. 65–77, New York,

NY, USA, 2021. Association for Computing Machinery.

ISBN 9781450383837. doi: 10.1145/3452296.347288

8. URL https://doi.org/10.1145/3452296.

3472888.

Chadha, M., Jindal, A., and Gerndt, M. Towards federated

learning using faas fabric. In Proceedings of the 2020

Sixth International Workshop on Serverless Computing,

WoSC’20, pp. 49–54, New York, NY, USA, 2021. Associ-

ation for Computing Machinery. ISBN 9781450382045.

doi: 10.1145/3429880.3430100. URL https://doi.

org/10.1145/3429880.3430100.

Daga, H., Shin, J., Garg, D., Gavrilovska, A., Lee, M., and

Kompella, R. R. Flame: Simplifying topology extension

in federated learning. In Proceedings of the 2023 ACM

Symposium on Cloud Computing, 2023.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig,

J., Eide, E., Stoller, L., Hibler, M., Johnson, D.,

Webb, K., Akella, A., Wang, K., Ricart, G., Landwe-

ber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S.,

and Mishra, P. The design and operation of Cloud-

Lab. In 2019 USENIX Annual Technical Confer-

ence (USENIX ATC 19), pp. 1–14, Renton, WA, July

2019. USENIX Association. ISBN 978-1-939133-03-8.

URL https://www.usenix.org/conference/

atc19/presentation/duplyakin.

Elzohairy, M., Chadha, M., Jindal, A., Grafberger, A., Gu,

J., Gerndt, M., and Abboud, O. Fedlesscan: Mitigating

stragglers in serverless federated learning, 2022. URL

https://arxiv.org/abs/2211.05739.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Fu, S., Mittal, R., Zhang, L., and Ratnasamy, S. Fast and

efficient container startup at the edge via dependency

scheduling. In 3rd USENIX Workshop on Hot Topics in

Edge Computing (HotEdge 20). USENIX Association,

June 2020. URL https://www.usenix.org/con

ference/hotedge20/presentation/fu.

Fuerst, A. and Sharma, P. Faascache: Keeping serverless

computing alive with greedy-dual caching. In Proceed-

ings of the 26th ACM International Conference on Archi-

tectural Support for Programming Languages and Op-

erating Systems, ASPLOS ’21, pp. 386–400, New York,

NY, USA, 2021. Association for Computing Machinery.

ISBN 9781450383172. doi: 10.1145/3445814.344675

7. URL https://doi.org/10.1145/3445814.

3446757.

Gadepalli, P. K., McBride, S., Peach, G., Cherkasova, L.,

and Parmer, G. Sledge: A serverless-first, light-weight

wasm runtime for the edge. Middleware ’20, pp. 265–279,

New York, NY, USA, 2020. Association for Computing

Machinery. ISBN 9781450381536. doi: 10.1145/342321

1.3425680. URL https://doi.org/10.1145/34

23211.3425680.

Grafberger, A., Chadha, M., Jindal, A., Gu, J., and Gerndt,

M. Fedless: Secure and scalable federated learning using

serverless computing. In 2021 IEEE International Con-

ference on Big Data (Big Data), pp. 164–173, 2021. doi:

10.1109/BigData52589.2021.9672067.

Guo, Y., Sun, Y., Hu, R., and Gong, Y. Hybrid local sgd for

federated learning with heterogeneous communications.

In International Conference on Learning Representations,

2022.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H.,

Wang, X., Vepakomma, P., Singh, A., Qiu, H., Zhu, X.,

Wang, J., Shen, L., Zhao, P., Kang, Y., Liu, Y., Raskar,

R., Yang, Q., Annavaram, M., and Avestimehr, S. Fedml:

A research library and benchmark for federated machine

learning, 2020. URL https://arxiv.org/abs/

2007.13518.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,

Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P.,

Srinivas, H., Wang, K., Shoumikhin, A., Min, J., and

Malek, M. Papaya: Practical, private, and scalable

federated learning. In Proceedings of Machine Learning

and Systems, volume 4, pp. 814–832, 2022. URL

https://proceedings.mlsys.org/paper/

2022/file/f340f1b1f65b6df5b5e3f94d95

b11daf-Paper.pdf.

Jayaram, K., Muthusamy, V., Thomas, G., Verma, A., and

Purcell, M. Lambda fl: Serverless aggregation for fed-

erated learning. In International Workshop on Trustable,

Verifiable and Auditable Federated Learning, pp. 9,

2022a.

Jayaram, K. R., Muthusamy, V., Thomas, G., Verma, A., and

Purcell, M. Adaptive aggregation for federated learning.

In 2022 IEEE International Conference on Big Data (Big

Data), pp. 180–185, 2022b. doi: 10.1109/BigData55660

.2022.10021119.

Jayaram, K. R., Verma, A., Thomas, G., and Muthusamy,

V. Just-in-time aggregation for federated learning. In

2022 30th International Symposium on Modeling, Analy-

sis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), pp. 1–8, 2022c. doi: 10.1109/MA

SCOTS56607.2022.00009.

Jia, Z. and Witchel, E. Nightcore: Efficient and scalable

serverless computing for latency-sensitive, interactive

microservices. In Proceedings of the 26th ACM Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’21,

pp. 152–166, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450383172. doi:

10.1145/3445814.3446701. URL https://doi.or

g/10.1145/3445814.3446701.

Jiang, Z., Wang, W., Li, B., and Li, B. Pisces: Effi-

cient federated learning via guided asynchronous train-

ing. In Proceedings of the 13th Symposium on Cloud

Computing, SoCC ’22, pp. 370–385, New York, NY,

USA, 2022. Association for Computing Machinery.

ISBN 9781450394147. doi: 10.1145/3542929.356346

3. URL https://doi.org/10.1145/3542929.

3563463.

Jin, C., Zhang, Z., Xiang, X., Zou, S., Huang, G., Liu, X.,

and Jin, X. Ditto: Efficient serverless analytics with

elastic parallelism. In Proceedings of the ACM SIG-

COMM 2023 Conference, ACM SIGCOMM ’23, pp.

406–419, New York, NY, USA, 2023. Association for

Computing Machinery. ISBN 9798400702365. doi:

10.1145/3603269.3604816. URL https://doi.or

g/10.1145/3603269.3604816.

Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Her-

mod: Principled and practical scheduling for serverless

functions. In Proceedings of the 13th Symposium on

Cloud Computing, SoCC ’22, pp. 289–305, New York,

NY, USA, 2022. Association for Computing Machinery.

ISBN 9781450394147. doi: 10.1145/3542929.356346

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

8. URL https://doi.org/10.1145/3542929.

3563468.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.

Oort: Efficient federated learning via guided participant

selection. In USENIX Symposium on Operating Systems

Design and Implementation, OSDI, pp. 19–35. USENIX

Association, 2021.

Lai, F., Dai, Y., Singapuram, S., Liu, J., Zhu, X., Mad-

hyastha, H., and Chowdhury, M. Fedscale: Benchmark-

ing model and system performance of federated learning

at scale. In International Conference on Machine Learn-

ing, pp. 11814–11827. PMLR, 2022.

Lalitha, A., Kilinc, O. C., Javidi, T., and Koushanfar, F.

Peer-to-peer federated learning on graphs, 2019. URL

https://arxiv.org/abs/1901.11173.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,

and Smith, V. Federated optimization in heterogeneous

networks. Proceedings of Machine Learning and Systems,

2:429–450, 2020a.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource

allocation in federated learning. In 8th International Con-

ference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,

2020b. URL https://openreview.net/forum

?id=ByexElSYDr.

Lin, P.-M. and Glikson, A. Mitigating cold starts in server-

less platforms: A pool-based approach, 2019. URL

https://arxiv.org/abs/1903.12221.

Liu, J., Lai, F., Dai, Y., Akella, A., Madhyastha, H. V., and

Chowdhury, M. Auxo: Efficient federated learning via

scalable client clustering. In Proceedings of the 2023

ACM Symposium on Cloud Computing, SoCC ’23, pp.

125–141, New York, NY, USA, 2023a. Association for

Computing Machinery. ISBN 9798400703874. doi: 10.1

145/3620678.3624651. URL https://doi.org/10

.1145/3620678.3624651.

Liu, J., Lai, F., Ding, D., Zhang, Y., and Chowdhury, M.

Venn: Resource management across federated learning

jobs, 2023b. URL https://arxiv.org/abs/23

12.08298.

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar,

A., Rajamoni, S., Ong, Y., Radhakrishnan, J., Verma,

A., Sinn, M., et al. Ibm federated learning: an en-

terprise framework white paper v0. 1. arXiv preprint

arXiv:2007.10987, 2020. URL https://arxiv.or

g/abs/2007.10987.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and

Arcas, B. A. y. Communication-Efficient Learning of

Deep Networks from Decentralized Data. In Proceed-

ings of the 20th International Conference on Artificial

Intelligence and Statistics, volume 54 of Proceedings of

Machine Learning Research, pp. 1273–1282. PMLR, 20–

22 Apr 2017. URL https://proceedings.mlr.

press/v54/mcmahan17a.html.

Mittal, V., Qi, S., Bhattacharya, R., Lyu, X., Li, J., Kulkarni,

S. G., Li, D., Hwang, J., Ramakrishnan, K. K., and Wood,

T. Mu: An efficient, fair and responsive serverless frame-

work for resource-constrained edge clouds. In Proceed-

ings of the ACM Symposium on Cloud Computing, SoCC

’21, pp. 168–181, New York, NY, USA, 2021. Associa-

tion for Computing Machinery. ISBN 9781450386388.

doi: 10.1145/3472883.3487014. URL https://doi.

org/10.1145/3472883.3487014.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,

M., Malek, M., and Huba, D. Federated learning with

buffered asynchronous aggregation. In Proceedings of

The 25th International Conference on Artificial Intelli-

gence and Statistics, volume 151 of Proceedings of Ma-

chine Learning Research, pp. 3581–3607. PMLR, 28–30

Mar 2022. URL https://proceedings.mlr.pr

ess/v151/nguyen22b.html.

Nishio, T. and Yonetani, R. Client selection for federated

learning with heterogeneous resources in mobile edge. In

ICC 2019-2019 IEEE international conference on com-

munications (ICC), pp. 1–7. IEEE, 2019.

Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T.,

Arpaci-Dusseau, A., and Arpaci-Dusseau, R. SOCK:

Rapid task provisioning with Serverless-Optimized con-

tainers. In 2018 USENIX Annual Technical Confer-

ence (USENIX ATC 18), pp. 57–70, Boston, MA, July

2018. USENIX Association. ISBN 978-1-931971-44-7.

URL https://www.usenix.org/conference/

atc18/presentation/oakes.

Park, J., Choi, B., Lee, C., and Han, D. Graf: A graph

neural network based proactive resource allocation frame-

work for slo-oriented microservices. In Proceedings

of the 17th International Conference on Emerging Net-

working EXperiments and Technologies, CoNEXT ’21,

pp. 154–167, New York, NY, USA, 2021a. Association

for Computing Machinery. ISBN 9781450390989. doi:

10.1145/3485983.3494866. URL https://doi.or

g/10.1145/3485983.3494866.

Park, J., Choi, B., Lee, C., and Han, D. Graf: A graph

neural network based proactive resource allocation frame-

work for slo-oriented microservices. In Proceedings

of the 17th International Conference on Emerging Net-

working EXperiments and Technologies, CoNEXT ’21,

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

pp. 154–167, New York, NY, USA, 2021b. Association

for Computing Machinery. ISBN 9781450390989. doi:

10.1145/3485983.3494866. URL https://doi.or

g/10.1145/3485983.3494866.

Qi, S., Kulkarni, S. G., and Ramakrishnan, K. K. Assessing

container network interface plugins: Functionality, per-

formance, and scalability. IEEE Transactions on Network

and Service Management, 18(1):656–671, 2021. doi:

10.1109/TNSM.2020.3047545.

Qi, S., Monis, L., Zeng, Z., Wang, I.-c., and Ramakrish-

nan, K. K. Spright: Extracting the server from server-

less computing! high-performance ebpf-based event-

driven, shared-memory processing. In Proceedings of

the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,

pp. 780–794, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450394208. doi:

10.1145/3544216.3544259. URL https://doi.or

g/10.1145/3544216.3544259.

Red Hat, Inc. Understanding the eBPF networking

features in RHEL. https://access.redhat.co

m/documentation/en-us/red_hat_enterp

rise_linux/8/html/configuring_and_ma

naging_networking/assembly_understan

ding-the-ebpf-features-in-rhel-8_con

figuring-and-managing-networking, 2022.

[ONLINE].

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,

Konečný, J., Kumar, S., and McMahan, H. B. Adaptive

federated optimization, 2020. URL https://arxiv.

org/abs/2003.00295.

Schall, D., Margaritov, A., Ustiugov, D., Sandberg, A., and

Grot, B. Lukewarm serverless functions: Characterization

and optimization. In Proceedings of the 49th Annual In-

ternational Symposium on Computer Architecture, ISCA

’22, pp. 757–770, New York, NY, USA, 2022. Associa-

tion for Computing Machinery. ISBN 9781450386104.

doi: 10.1145/3470496.3527390. URL https://doi.

org/10.1145/3470496.3527390.

Scheller, B. Best practices for resizing and au-

tomatic scaling in Amazon EMR. https:

//aws.amazon.com/blogs/big-data/be

st-practices-for-resizing-and-auto

matic-scaling-in-amazon-emr/, 2023.

[ONLINE].

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Ba-

tum, P., Cooke, J., Laureano, E., Tresness, C., Russi-

novich, M., and Bianchini, R. Serverless in the wild:

Characterizing and optimizing the serverless workload

at a large cloud provider. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pp. 205–218.

USENIX Association, July 2020a. ISBN 978-1-939133-

14-4. URL https://www.usenix.org/confere

nce/atc20/presentation/shahrad.

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Ba-

tum, P., Cooke, J., Laureano, E., Tresness, C., Russi-

novich, M., and Bianchini, R. Serverless in the wild:

Characterizing and optimizing the serverless workload

at a large cloud provider. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pp. 205–218.

USENIX Association, July 2020b. ISBN 978-1-939133-

14-4. URL https://www.usenix.org/confere

nce/atc20/presentation/shahrad.

Shillaker, S. and Pietzuch, P. Faasm: Lightweight

isolation for efficient stateful serverless comput-

ing. In 2020 USENIX Annual Technical Confer-

ence (USENIX ATC 20), pp. 419–433. USENIX As-

sociation, July 2020. ISBN 978-1-939133-14-4.

URL https://www.usenix.org/conference/

atc20/presentation/shillaker.

Shin, J., Li, Y., Liu, Y., and Lee, S.-J. Fedbalancer: Data

and pace control for efficient federated learning on het-

erogeneous clients. In Proceedings of the 20th Annual

International Conference on Mobile Systems, Applica-

tions and Services, MobiSys ’22, pp. 436–449, New York,

NY, USA, 2022. Association for Computing Machinery.

ISBN 9781450391856. doi: 10.1145/3498361.353891

7. URL https://doi.org/10.1145/3498361.

3538917.

Singhvi, A., Balasubramanian, A., Houck, K., Shaikh,

M. D., Venkataraman, S., and Akella, A. Atoll: A scal-

able low-latency serverless platform. In Proceedings of

the ACM Symposium on Cloud Computing, SoCC ’21,

pp. 138–152, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450386388. doi:

10.1145/3472883.3486981. URL https://doi.or

g/10.1145/3472883.3486981.

Tariq, A., Pahl, A., Nimmagadda, S., Rozner, E., and Lanka,

S. Sequoia: Enabling quality-of-service in serverless

computing. In Proceedings of the 11th ACM Symposium

on Cloud Computing, SoCC ’20, pp. 311–327, New York,

NY, USA, 2020. Association for Computing Machinery.

ISBN 9781450381376. doi: 10.1145/3419111.342130

6. URL https://doi.org/10.1145/3419111.

3421306.

Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot,

B. Benchmarking, analysis, and optimization of server-

less function snapshots. In Proceedings of the 26th ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-

LOS ’21, pp. 559–572, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery. ISBN 9781450383172.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

doi: 10.1145/3445814.3446714. URL https://doi.

org/10.1145/3445814.3446714.

Wang, A., Chang, S., Tian, H., Wang, H., Yang, H., Li,

H., Du, R., and Cheng, Y. FaaSNet: Scalable and fast

provisioning of custom serverless container runtimes at

alibaba cloud function compute. In 2021 USENIX Annual

Technical Conference (USENIX ATC 21), pp. 443–457.

USENIX Association, July 2021. ISBN 978-1-939133-

23-6. URL https://www.usenix.org/confere

nce/atc21/presentation/wang-ao.

Yang, J., Shi, R., and Ni, B. Medmnist classification de-

cathlon: A lightweight automl benchmark for medical

image analysis. In IEEE 18th International Symposium

on Biomedical Imaging (ISBI), pp. 191–195, 2021.

Yu, M., Cao, T., Wang, W., and Chen, R. Following the

data, not the function: Rethinking function orchestra-

tion in serverless computing. In 20th USENIX Sym-

posium on Networked Systems Design and Implemen-

tation (NSDI 23), pp. 1489–1504, Boston, MA, April

2023. USENIX Association. ISBN 978-1-939133-33-5.

URL https://www.usenix.org/conference/

nsdi23/presentation/yu.

A MESSAGE FLOW OF INTRA-NODE AND

INTER-NODE ROUTING

Intra-node routing: LIFL makes full use of its shared

memory support to facilitate zero-copy exchange of model

updates between aggregators. The shared memory object

in LIFL is addressed by the object key, which is a 16 byte

string randomly generated by the shared memory manager

when it initializes shared memory objects. We also assign

each aggregator a unique ID. The zero-copy data exchange

between aggregators depends on delivering the object key,

as the data is kept in place in shared memory.

LIFL utilizes eBPF’s SKMSG (integrated in the eBPF-based

sidecar), combined with eBPF’s sockmap (Red Hat, Inc.,

2022), to pass the object key between aggregators on the

same node. Upon receiving the object key, the SKMSG pro-

gram uses the ID of the source aggregator as the key to look

Figure 11. Asynchronous FL (Huba et al., 2022) with different

aggregation timing (“Eager” and “Lazy”).

Figure 12. Intra-/inter-node direct routing within hierarchical ag-

gregation.

up the sockmap to find the socket interface of the destination

aggregator so that the object key may be delivered to it for

access of the shared memory object.

Inter-node routing: When the source aggregator commu-

nicates with a destination aggregator on a different node, it

sends the object key to the local gateway first. The local

gateway uses the object key to retrieve the model update

from shared memory and performs the necessary payload

transformation. It then uses the source aggregator ID to

look up the inter-node routing table to obtain the destina-

tion aggregator ID and the IP address of the remote node

hosting the destination aggregator. The model update is

sent through the remote node’s gateway to the destination

aggregator. The remote gateway stores the received model

update in shared memory and uses SKMSG to notify the

destination aggregator, along with the local object key.

Online hierarchy update: LIFL re-configures intra-/inter-

node routes each time the hierarchy is updated. The routing

manager in the LIFL agent takes the DAG input (generated

by the TAG, §D) from the control plane that describes the

connectivity between aggregators, and correspondingly up-

dates routes into the inter-node routing table in the gateway

and in-kernel sockmap, using the userspace eBPF helper,

bpf map update elem() (ebp, 2023b). The TAG de-

scribes the cross-level data dependency between aggrega-

tors.

B MODEL CHECKPOINTS

We support model checkpoints, where the model parame-

ters are periodically saved to an external storage service to

ensure data persistence and potential recovery in case of

failures. The checkpointing occurs after the aggregator com-

pletes the aggregation of specified model updates, where

the aggregator submits a request to the LIFL agent to per-

form model checkpoints asynchronously in the background.

This prevents checkpoint delays from being added to the

aggregation completion time.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

C MESSAGE QUEUEING FLOW IN LIFL:

RECEIVE (RX) AND TRANSMIT (TX)

On the receive (RX) path, protocol processing by the kernel

TCP/IP stack is first performed. The gateway running in

userspace receives the raw L7 payload from the kernel and

then extracts the model updates (encoded as tensor data

type), depending on the adopted L7 protocol (e.g., gRPC,

MQTT). We convert the model update from tensor data

type to NumpyArray before writing it to shared memory,

as Python’s multiprocessing module does not support

manipulation of the tensor data type. On the transmit

(TX) path, the reverse payload processing is done.

D ABSTRACTION FOR FINE-GRAINED

CONTROL

To facilitate fine-grained control of LIFL’s orchestration,

we treat an aggregator process within a sandboxed runtime

(e.g., container) as the atomic unit for management. The

control plane needs a generic means to describe connectivity

between components and placement affinity. We make use

of Topology Abstraction Graph (TAG) in Flame (Daga et al.,

2023) to describe the aggregator-to-aggregator connectiv-

ity and aggregator-client connectivity. Each node in such

a graph is associated with a “role” metadata, denoted as

either aggregator or client. A “channel” metadata denotes

the underlying communication mechanism (e.g., intra-node

shared memory, inter-node kernel networking) used for con-

nectivity.

We configure the placement-affinity to facilitate locality-

aware placement through the groupBy attribute in the chan-

nel abstraction, which accepts a string as a label to specify

a group. Therefore, keeping the same label in the attribute

allows us to cluster roles into a group. The LIFL coordina-

tor enables necessary orchestration decisions, e.g., runtime

reuse and locality-aware placement, through manipulation

of these abstractions (role and channel).

M1 M2 M3
0.0

0.2

0.4

0.6

0.8

CP
U

 U
til

iz
at

io
n

(%
)

SF-mono
LIFL
SF-micro
SL-B

(a) CPU cost

M1 M2 M3
0

1

2

3

N
or

m
. M

em
 C

os
t

SF-mono
LIFL

SF-micro
SL-B

(b) Memory cost

M1 M2 M3
0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
)

SF-mono
LIFL

SF-micro
SL-B

(c) End-to-end delay

Figure 13. Message queuing overheads.

E MAXIMUM SERVICE CAPACITY OF

WORKER NODES

LIFL actively monitors both Ei,t and the arrival rate ki,t

using the sidecar in §4.3. We determine the value of MCi

offline. We incrementally increase the arrival rate ki to

node i. Let k′i and E′

t denote the arrival rate and average

execution time at the point we observe a significant increase

in Ei. This indicates that node i is becoming overloaded

and we estimate MCi as k′i × E′

i.

F IN-PLACE MESSAGE QUEUEING BENEFIT

We examine LIFL’s in-place message queuing through a

comparison with the serverful and serverless alternatives

depicted in Fig. 5, including the monolithic serverful setup

(denoted as SF-mono), the microservice-based serverful

setup (denoted as SF-micro), and the basic serverless

setup (denoted as SL-B). We quantify the overheads of

message queuing for a single model update transfer between

the client to the aggregator. We consider three metrics: (1)

the total memory consumed for queuing the model update

along the data pipeline; (2) the CPU cycles spent in the

data pipeline; and (3) the end-to-end networking delay from

the client to the aggregator. Note that we exclude the over-

head on the client-side. We consider three ML models with

distinct sizes: (M1) ResNet-18 (∼44MB), (M2) ResNet-34

(∼83MB), and (M3) ResNet-152 (∼232MB).

Fig. 13 shows the results of CPU, memory cost and end-

to-end networking delay. The memory consumption in

SF-mono is mainly from the in-memory queue inside the

aggregator. For LIFL it is primarily consumed by the shared

memory used to buffer the model update. But, SL-B con-

sumes 3× more memory than SF-mono and LIFL. The

extra memory consumption of SL-B comes from the use of

sidecar and message broker, both of which need to locally

buffer the model update. SF-micro, on the other hand,

saves one queuing stage at the sidecar, but still incurs the

queuing at the message broker and consuming extra memory.

LIFL’s in-place message queuing totally eliminates these

unnecessary queuing stages.

Looking at the CPU consumption, LIFL is ∼1.5× and

∼1.9× less than SL-B and SF-micro, respectively. In

terms of the end-to-end networking delay (client to ag-

gregator), LIFL is ∼1.3× and ∼1.7× less than SL-B and

SF-micro, respectively. LIFL’s improvement in CPU cost

and networking delay, compared to SL-B and SF-micro,

are also a result of the elimination of the sidecar and mes-

sage broker from the data pipeline, and the message queuing

if far more efficient. This illustrates the benefits of LIFL’s

in-place message queuing, achieving the equivalent effi-

ciency and performance of a monolithic, serverful design

(with far less resource consumption as we see for typical FL

applications).

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

F.1 Stateful “tax” in LIFL

The per-node gateway is a key component that enables a

number of data plane functionalities in LIFL, including in-

place message queuing and inter-node data transfer. Un-

like stateless aggregators, the gateway is deployed as a

stateful, persistent component on every LIFL worker node.

This raises the concern about the stateful “tax”, i.e., the

CPU/memory cost of having stateful components in the FL

system.

On the other hand, a stateful “tax” of some form commonly

exists in serverful and serverless alternatives, as shown in

Fig. 5. The stateful component in a monolithic serverful

setup is the aggregator itself, running as an “always-on”

monolith. In the microservice-based serverful setup, the

message broker is the stateful component, as is the case

for the basic serverless setup. We quantitatively compare

the stateful “tax” of LIFL’s gateway with serverful and

serverless alternatives in Fig. 5. The result in §4.2 shows

that stateful “tax” in LIFL is the lowest.

Figure 14. Step-based processing model.

G STEP-BASED PROCESSING MODEL

The basic processing model of an LIFL aggregator can be

abstracted as a multiple-producer, single-consumer pattern,

as shown in Fig. 14. Multiple upstream producers (clients or

aggregators) are mapped to a single consumer (aggregator

only). The single consumer gathers model updates from

assigned producers and computes the aggregated model

update.

Looking deeper into the aggregator, LIFL adopts a step-

based processing model. At the core of this design is a pro-

cessing pipeline of three steps: (1) Recv: Receive model

updates from all assigned producers. The received model

update is enqueued in a FIFO queue. In LIFL, the object key

of the model update is enqueued as the actual model update

resides in shared memory; (2) Agg: Aggregator dequeues a

model update from the FIFO queue in Recv and then aggre-

gates it. The Agg step checks if the aggregation goal is met

after the dequeued update is aggregated. If the aggregation

goal is not met, Agg is repeated until the aggregation goal is

met, before moving to Send; and (3) Send: sends the final

model update to the designated consumer. The execution

of Recv and Agg overlaps to enable eager aggregation, i.e.,

once the Recv step receives a model update, it immediately

passes the model update to Agg step for aggregation.

