LIFL: A LIGHTWEIGHT, EVENT-DRIVEN SERVERLESS PLATFORM FOR
FEDERATED LEARNING

Shixiong Qi' K. K. Ramakrishnan' Myungjin Lee 2

ABSTRACT
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers
training models locally and then aggregating their model updates on a trusted central server. Existing systems for
FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization.
They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model
updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers.

We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for
efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates
the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight
eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for
hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce
locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales
and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while
minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves
significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to

existing serverful and serverless FL systems.

1 INTRODUCTION

Federated Learning (FL (McMabhan et al., 2017)) enables
collaborative model training across a network of decentral-
ized devices/machines while keeping individual user data
secure and private. In FL, instead of sending raw data
to a central server, models are trained on individual de-
vices/machines using local data, and only the model updates
are shared and aggregated to create a global model.

To support FL at scale, hierarchical aggregation is often
adopted to increase the service capacity for model aggre-
gation (Bonawitz et al., 2019; Jayaram et al., 2022b). This
can accommodate a large number of clients and handle a
substantial volume of model updates, avoiding potential
slow-down of the aggregation process. In the process, each
level performs intermediate aggregation, combining the up-
dates from lower-level aggregators or clients.

Existing FL frameworks (e.g., Google’s FL stack (Bonawitz
et al., 2019), Meta’s PAPAYA (Huba et al., 2022)) adopt a

lUniversity of California, Riverside >Cisco Research. Corre-
spondence to: Shixiong Qi <sqi009@ucr.edu>, K. K. Ramakrish-
nan <kk@cs.ucr.edu>, Myungjin Lee <myungjle@cisco.com>.

Proceedings of the 5" MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

static, always-on' deployment to support model aggregation.
However, in a dynamic FL environment, it’s difficult to have
a one-size-fits-all service capacity for model aggregation.
System heterogeneity (i.e., different hardware capabilities)
and a dynamically varying number of participating clients
in each round require frequent adjustments of the capacity
so that the aggregation service effectively uses resources on
demand and avoids significant resource wastage.

Serverless computing promises to provide an event-driven,
resource-efficient cloud computing environment, enabling
services to use resources on demand (Shahrad et al., 2020a).
Running FL. model aggregation service as serverless func-
tions can right-size the provisioned resources and reduce
resource waste compared to an always-on aggregation server
implementation. In addition, stateless processing by server-
less functions makes it easy to support continual updates
to the aggregation hierarchy. By increasing the capacity
of aggregation through a hierarchy of serverless aggrega-
tors, model aggregation in FL can be executed in parallel,
responding to increasing loads from trainer model updates.

However, the excessive overhead in current serverless frame-
works, caused by the loose coupling of data plane compo-

nents (Qi et al., 2022), is a barrier to achieving efficient and

'meaning that aggregators are up all the time within a round.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

timely aggregation, compared to a monolithic serverful de-
sign. Further, the use of individual, constantly-running com-
ponents (e.g., container-based sidecars) in current serverless
frameworks is inefficient and sacrifices much of the benefit
of serverless computing. This prompts us to create a more
streamlined, responsive serverless framework that is tailored
to achieve just-in-time FL aggregation on demand.

We introduce LIFL, a lightweight serverless platform for
FL that uses hierarchical aggregation to achieve parallelism
in aggregation and exploits intra-node shared memory pro-
cessing to reduce data plane overheads. LIFL also utilizes
a locality-aware placement policy to maximize the benefits
of the intra-node shared memory data plane. Unlike typical
serverless platforms that use a heavyweight sidecar imple-
mented as a separate container, LIFL seeks to eliminate
this wasteful overhead by taking advantage of eBPF-based
event-driven processing. This ensures that resource usage is
truly load-proportional. Instead of depending on inaccurate,
threshold-based autoscaling, LIFL uses hierarchy-aware
autoscaling to precisely adjust the capacity of model aggre-
gation to match the incoming load. We also use a policy of
reusing runtimes to sidestep the impact of startup delay on
the model convergence time, while also improving resource
efficiency of aggregation. LIFL favors eager aggregation
to enable timely aggregation, reducing the queuing time
for model updates. By harnessing the capabilities of LIFL,
FL systems can achieve efficient resource utilization and
reduced aggregation time. LIFL is available at (fla, 2024).

We highlight the contributions of LIFL below:

(1) LIFL’s enhanced data plane achieves 3x (compared to
serverful) and 5.8 x (compared to serverless) latency reduc-
tion on transferring a relatively heavyweight ResNet-152
model update within the aggregation hierarchy (intra-node).

(2) LIFL’s locality-aware placement can maximize shared
memory processing, achieving up to 2.1 x additional latency
reduction on aggregating a batch of updates in a round (de-
tails in §6). After applying hierarchy-planning, aggregator
reuse, and eager aggregation, LIFL can further obtain 1.5x
latency reduction. The enhanced orchestration also helps
improve efficiency, saving up to 2x CPU consumption com-
pared to simply using the enhanced data plane.

(3) Our evaluation with a real FL workload using ResNet-18
and 120 simultaneous active clients (the total number of
clients used is 2,800) shows that the combination of LIFL’s
enhanced data and control planes achieve 5x and 1.8 less
CPU cost and reduces 2.7 x and 1.6 x on time-to-accuracy
(70% accuracy level), compared to existing serverless and
even serverful FL systems. We also train a relatively heavy-
weight ResNet-152 model. LIFL spends 1.68x less time
to reach 70% accuracy than existing serverless FL systems,
while using 4.23 x fewer CPU cycles.

Round i Round i+1
—_——
Cierws
\
Client-3
\

\
Client-6
\
Giene7) \
Y Y
[Aggregation serviee | | |

Aggregation Goal = 4 \,

Round i Round i+l
—_—— "

Client-1 Client-5
\

\

4
4

Client-3

\
Client-6
1

Concurrency
Concurrency

Client-7

(Aggregation service

‘Aggregation Goal = 4

DTZENENN (| Model i

[j Queuing model updates from clients

I rerforming Aggregation

Figure 1. Synchronous FL with different aggregation timing (“Ea-
ger” and “Lazy”) (Bonawitz et al., 2019; Jayaram et al., 2022c).

2 BACKGROUND AND CHALLENGES
2.1 Basics of Federated Learning
FL aggregation: Aggregation in FL is a process of building
a global model from individually trained model updates.
The aggregation goal, n specifies the expected number of
model updates to be received before the global model is
updated to a new version. Thus, it dictates the number of
selected clients for training. The aggregation process is
abstracted as:

wi = f{(w], A7) |1 <k <n}). (1)
Here f(-) is an aggregation function, w¥ is k-th local model
update for global model version i, and A¥ is auxiliary infor-
mation for aggregation. For the FedAvg algorithm (McMa-
han et al., 2017), f(-) = Yo, wkek/T,. T, = S0, cF
and AF is ¢ (the number of data samples).
Eager aggregation and Lazy aggregation: Based on the
timing to trigger the aggregation, we can classify the model
aggregation to be “eager” or “lazy” (Jayaram et al., 2022c):
Eager aggregation allows aggregation to happen whenever
an update is received, leading to more flexible and dynamic
timing of the aggregation process. Lazy aggregation oper-
ates on a delayed schedule, where model updates that arrive
early are queued without being aggregated immediately.
Fig. 1 shows the two different aggregation methods for syn-
chronous FL. For instance, the eager method is feasible for
FedAvg with cumulative averaging.

2.2 Anatomy of Systems for Federated Learning
Designing a system to support FL at a large scale is essen-
tial, as a larger number of participants means a more diverse
and representative dataset. It improves the model’s ability
to capture complex patterns and unseen relationships in the
data. These benefits help the model generalize in real-world
deployments, e.g., Google’s FL stack has been used to serve
~10M devices daily and ~10K devices participate in FL
training simultaneously (Bonawitz et al., 2019).

Fig. 2 depicts key architectural components that are needed
to ensure the success of FL at scale.> These components
work together to enable the collaborative and decentralized
training process in FL. In addition to the aggregator and the

*We adopt the terminology of FL system components from
(Bonawitz et al., 2019) and (Huba et al., 2022).

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

FL cluster

Serverless control plane

aggregation service

sidecar sidecar sidecar

o

Message broker

Cluster] ___ | ___l_______l__ Cluster] ___ | ___l_______l__
Ingres: Ingres:
C C C

C C C C C C C

(a) Serverful FL System (b) Serverless FL System
<> connections between aggregators and clients
4G—2 data flows between aggregators clients
— coordinator’s control flow @9 aggregator
Figure 2. Generic architectures for FL systems: (a) Serverful FL
systems (Bonawitz et al., 2019; Huba et al., 2022); (b) Serverless
FL systems (Jayaram et al., 2022a;b; Chadha et al., 2021). Note

that for simplicity, we skip the hierarchy in the diagram (b).

client, the coordinator oversees the flow of FL operations.
It acts as an orchestrator that facilitates seamless interac-
tions among aggregators, selectors, and clients by applying
the client selection scheme and instructing the selector to
map the selected clients to backend aggregators (Bonawitz
et al., 2019). The selector plays two roles. First, it ensures
that a diverse set of clients participate in the FL process
to capture a representative sample of the distributed data.
Second, it acts as a gateway that mediates communication
(i.e., queuing, load balancing) between (leaf) aggregators
and clients (Bonawitz et al., 2019; Huba et al., 2022).

Need for hierarchical aggregation: The growing number
of participating clients in FL requires the system to be scal-
able to accommodate the computational requirements of ag-
gregating model updates from a large number of distributed
clients. This primarily motivates the use of hierarchical
aggregation potentially involving multiple levels of aggre-
gation in the FL process (Bonawitz et al., 2019; Jayaram
et al., 2022b), as depicted in Fig. 2 (a). Essentially, hierar-
chical aggregation is structured as a single-rooted tree. Each
level in the tree includes multiple parallel aggregation tasks
that are executed by one of potentially multiple aggregators.
The communication during the hierarchical aggregation task
takes place across multiple levels: The model updates from
smaller subgroups of clients are aggregated by the lower-
level aggregators (i.e., leaf) and passed onto higher-level
aggregators (i.e., top), until a global model is obtained. This
parallel aggregation at the lower levels can provide speedup
and reduce queueing of model updates.

2.3 Motivation and Challenges for Serverless FL

State-of-the-art FL systems (Bonawitz et al., 2019; Huba
et al., 2022) rely on a “serverful” design that relies on a fixed
pool of dedicated resources (e.g., CPU and memory), using

a pool of provisioned VMs. Resizing the pool often takes a
long time (e.g., 6 to 45 minutes on AWS (Scheller, 2023)).
Serverless computing, on the other hand, brings fine-grained
resource elasticity by provisioning functions (typically as
containers) dynamically based on demand, ensuring that the
right amount of resources is allocated only when needed.

In FL, serverless computing can be used to provide effi-
cient model aggregation, adapting to varying numbers of
clients. It eliminates the need to maintain dedicated resource
pools for the aggregation service, thereby improving overall
efficiency compared to the current “serverful” deployments.

Prior Work on Serverless FL. A number of FL system
designs have been proposed using serverless computing (Ja-
yaram et al., 2022a;b; Grafberger et al., 2021). A common
abstract architecture of a serverless FL system and its key
components is shown in Fig. 2 (b). But, prior approaches
still face the following challenges:

Indirect networking: Unlike a “serverful” design (Fig. 2 (a)),
a serverless FL system executes aggregators as serverless
functions. Serverless function chaining can support hier-
archical aggregation as well as communication between
aggregators. However, because serverless functions are
ephemeral and stateless (and thus unable to retain stateful
information like routes), these chains typically only support
indirect networking between functions. This raises the need
for a stateful, persistent networking component (Fig. 2 (b)),
such as a message broker or external storage services,’ to
maintain routes and exchange messages (Qi et al., 2022).
However, having such a networking component in the inter-
nal datapath between serverless functions adds unnecessary
overhead (20% added delay as in Fig. 7(a)).

Inefficient message queuing: In addition to supporting func-
tion chaining, the message broker (Fig. 2 (b)) also acts as
a message queue to buffer incoming model updates from
clients while aggregators are being spawned by the server-
less control plane (Jayaram et al., 2022a;b). However, the
message broker and dedicated queues add overhead and
delay to the aggregation service.

Heavyweight sidecar: Scheduling serverless functions typi-
cally requires metrics collection, often using a sidecar. This
container-based sidecar introduces additional network pro-
cessing in the datapath, requiring the interception and for-
warding of model updates. This leads to complex data
pipelines (involving extra communication hops between ag-
gregators) and increased communication overheads due to
the reliance on kernel-based networking (Qi et al., 2022).
Application-agnostic, simple, autoscaling: Current server-
less autoscaler designs typically rely on a simplistic thresh-
old based on user input (e.g., request per second, concur-
rency) for scaling decisions (aut, 2023b;a), often being un-

3For consistency, we use the generic term “message broker” to
denote such a networking component throughout this paper.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

LIFL > Serverless control plane
Coordinator €8 -[Autoscaler] [Metric server] [Placement engine]

LIFL agent LIFL agent

. Aggregator
G e L

) D) L)
(Shared memory | (
v

Worker node Worker node

Shared memory |

—
Gateway

Gateway
Cluster

Ingress

to/from clients to/from clients
<—> data flows between aggregators and clients

G—= data flows between aggregators (intra-node or inter-node)
—> control flows in LIFL eBPF-based sidecar

Figure 3. The overall architecture of LIFL.

aware of application needs. This design, agnostic of the
hierarchical structure of FL aggregation, is limited in its
ability to optimize the system to maximize parallelism, i.e.,
the number of levels and the number of aggregators at each
level. Looking at Fig. 2 (a), as we go up the levels in the
hierarchy, fewer aggregators are needed. This can be lever-
aged to potentially reuse the lower-level aggregators as we
proceed up the hierarchy. Further, since hierarchical aggre-
gation uses function chaining, current “reactive” autoscaling
designs lead to a cascading effect (Park et al., 2021b) of the
cold-start delays when scaling a function chain.
Locality-agnostic placement: Intra-node communication
can be faster than inter-node communication by avoiding
a lot of networking overheads (Qi et al., 2021) and using
state-of-the-art serverless data plane designs with shared
memory (Shillaker & Pietzuch, 2020; Qi et al., 2022; Yu
et al., 2023). However, leveraging the benefits of shared
memory effectively can be challenging when dealing with a
large hierarchy of aggregators that cannot be accommodated
within a single node. This requires careful function place-
ment by taking into account the impact of communication
between aggregators. Inter-node communication typically
still uses kernel-based networking.

3 LIFL OVERVIEW

We aim to address the aforementioned limitations (§2.3) and
develop LIFL—a high-performance, lightweight, and elastic
serverless platform for FL, utilizing hierarchical aggregation.
We focus on the following innovations of LIFL:

(1) High-performance intra-node dataplane: LIFL incor-
porates shared memory processing to provide a zero-copy
communication channel between FL aggregators placed on
the same node (§4.1). This avoids heavyweight kernel net-
working overheads, especially data copies (Cai et al., 2021),
as model updates are often large, e.g., a model update from
ResNet-152 (He et al., 2016) is ~230 MBytes. Shared
memory can also eliminate other overheads such as protocol

processing, serialization/de-serialization, kernel/userspace
boundary crossing, and interrupts.

(2) In-place message queuing: We extensively leverage
shared memory in LIFL to offer “in-place” message queuing
(84.2). Messages (i.e., model updates) from selected clients
are directly buffered in shared memory and can be instantly
accessed by the aggregators when they are ready. This
eliminates dedicated message queues and their associated
queuing delays.

(3) Lightweight eBPF-based sidecar: We incorporate the
extended Berkeley Packet Filter (eBPF (ebp, 2023a)) into
LIFL to build a lightweight sidecar (§4.3) to provide im-
portant functionality, e.g., metrics collection. Unlike a
container-based sidecar, LIFL’s sidecar runs as eBPF code
attached at in-kernel hooks, avoiding the need for dedicated
resources. We further utilize the eBPF-based sidecar to
support direct networking between aggregators (§4.4), com-
pletely replacing the message broker.

(4) A cost-effective orchestration heuristic: LIFL orches-
trates the model aggregation to fully exploit the improved
serverless dataplane by employing several strategies: (1)
locality-aware placement that partitions levels with large
traffic into node-affinity groups to make the best use of
shared memory processing (§5.1); (2) hierarchy-aware scal-
ing that dynamically adjusts the configuration of hierarchi-
cal aggregation (§5.2), and (3) opportunistic reuse of the
aggregator runtime from a lower level (§5.3).

Architectural overview of LIFL: Fig. 3 shows the over-
all architecture of LIFL. LIFL maintains a shared memory
object store on each worker node to enable zero-copy com-
munication between aggregators. To support in-place mes-
sage queuing, LIFL introduces a gateway on each worker
node that receives model updates from remote clients. The
gateway performs a consolidated, one-time payload process-
ing to queue the received model updates to shared memory.
Each aggregator in LIFL has attached to it an eBPF-based
sidecar for lightweight metrics collection. Aggregators in
LIFL are stateless, so new ones start without state synchro-
nization upon an aggregator failure. LIFL detects client
failures with keep-alive heartbeats and enhances resilience
by over-provisioning the number of clients. In the control
plane, a LIFL agent is deployed on each worker node to man-
age the lifecycle (e.g., creation, termination) of aggregators,
following instructions from the LIFL control plane. The
LIFL coordinator, a cluster-wide control plane component,
is used for interactions between the FL job designer (ML
engineer) and the serverless control plane (e.g., autoscaler,
placement engine).* It works with the serverless control
plane to execute LIFL’s orchestration flow (§5).

“Note: Even though the serverless control plane has serverful,
always-on components (e.g., autoscaler, placement engine), are

shared and their overheads are amortized across multiple work-
loads, especially at scale.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

= One round
Top 7 !
NH T T T T

o 50 100 150 200 o5 11me (8

Network W 'Agg. B Eval.

LF11 1
LF2 1
LF3 1
LF41 | |
Top |

WH “

]

|

|

1
_ _
o 50 100 150 200
Figure 4. Impact of data plane performance on hierarchical aggre-
gation. (upper fig.:) No hierarchy(NH); (lower fig.:) With hier-
archy(WH). Top: top aggregator; LF: leaf aggregator. “Network”
denotes the data transfer tasks of model updates; “Agg.” denotes

the aggregation tasks; “Eval.” denotes the evaluation tasks.

I
I
_
[|

I

250Time (s)

4 OPTIMIZING THE SERVERLESS
DATA-PLANE IN LIFL
4.1 Shared Memory for Hierarchical Aggregation
Assessing data plane with hierarchical aggregation: We
now assess the importance of a high-performance data plane
to truly deliver on the promise of hierarchical aggregation.
We consider a baseline (denoted NH) with a single aggre-
gator without hierarchy. We evaluate the hierarchical ag-
gregation service that has one top aggregator and four leaf
aggregators (denoted WH). All aggregators are placed on the
same node. We consider eight trainers to train a ResNet-152
model using FEMNIST dataset. Note that we always deploy
trainers on separate nodes, to both be realistic (trainers are
remote) and to avoid contention for resources on the node.

Fig. 4 shows the execution times for the representative FL
stages under different settings. Note that we only show
the receiving part of the networking task (“Network™ in
Fig. 4) to simplify the figure. Compared to the baseline
(NH), WH does not exhibit a significant improvement over-
all, though it uses hierarchical aggregation. The average
completion time per round with WH is 57 seconds, while
for NH is 59.8 seconds. This is mainly because of the con-
tention for network processing between leaf aggregators
when they send/receive intermediate model updates to/from
the top aggregator. This highlights the critical need for
a high-performance and streamlined data plane for hier-
archical aggregation. LIFL incorporates shared memory
processing when the serverless aggregator functions are co-
located on the same node. This enables fast and efficient
communication, mitigating the impact of networking on
hierarchical aggregation (demonstrated in Fig. 7). Working
jointly with our locality-aware placement scheme (§5.1),
LIFL can minimize the need for inter-node model update
transfers. Consequently, LIFL maximizes the advantages
of our efficient intra-node shared memory data plane that
substantially reduces communication overheads.

Shared memory object store: The LIFL agent is respon-
sible for the allocation/recycling/destruction of the shared

Serverful Serverless
Monolith

Worker node

LIFL

Worker node

Microservice Basic

Worker node

Worker node

Clitnt Broker
ien
__________ | 1 Broker
. stateful 1 1
always-on |
D stateless |
ephemeral | Client Client H Client

Figure 5. Message queuing solutions.

memory buffer in the object store. In addition, LIFL only
allows immutable (read-only) objects to guarantee the safe
sharing of model updates, eliminating the need for locks.
The agent periodically checkpoints the model parameters
to an external persistent storage service (more details in
Appendix-B).

4.2 In-place Message Queuing

Representative message queuing solutions: Fig. 5 enu-
merates message queuing solutions for various serverful
and serverless alternatives. In the monolithic serverful setup
(used in (Huba et al., 2022)), the model update is directly
buffered into an in-memory queue residing in the aggregator,
deployed as a persistent and stateful application. Another
serverful setup, used in (Bonawitz et al., 2019), deploys
aggregators as ephemeral, stateless microservices, requiring
an additional persistent, stateful message broker to buffer
model updates from clients before being consumed by the
stateless aggregator. Switching to the basic serverless setup
(used in (Jayaram et al., 2022b)), model updates are also
buffered at a message broker, as the aggregator is now de-
ployed as an ephemeral, stateless serverless function. Be-
fore being consumed by the aggregator, the model update
has to pass through the sidecar. Finally, in LIFL, the gate-
way buffers the model update directly into the shared mem-
ory, which can then be seamlessly accessed by the aggrega-
tor. The distinct data pipelines between the client, message
queue, and aggregator impose varying degrees of overheads.
Our evaluation (details in Appendix-F) shows that LIFL’s
in-place message queuing achieves the best efficiency and
performance (equivalent to a monolithic, serverful design)
among all alternatives in Fig. 5.

Message queuing pipeline in LIFL: The gateway at each
worker node is addressable/accessible by FL clients. It
receives model updates from clients or from the gateway
on another worker node, and performs necessary network
processing (e.g., protocol processing, serialization, deserial-
ization, data type conversion, efc) before writing the model
updates into shared memory. This avoids duplicate process-
ing when local aggregators access model updates in shared
memory. A step-by-step explanation of the processing flow
of the message queuing in LIFL is given in Appendix-C.

We apply vertical scaling of the gateway by dynamically

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

adjusting the number of assigned CPU cores based on the
load level. This avoids the gateway becoming the dataplane
bottleneck and impacting the aggregation speed.

4.3 eBPF-based Sidecar

LIFL’s eBPF-based sidecar is built with a set of eBPF pro-
grams attached to each aggregator’s socket interface, using
its in-kernel SKMSG hook (Red Hat, Inc., 2022). The execu-
tion of the eBPF-based sidecar is triggered by the invocation
of the send() system call, which is captured by the SKMSG
hook as an eBPF event. This ensures that the eBPF-based
sidecar is strictly event-driven and consumes no CPU re-
sources when idle. We use the eBPF-based sidecar to collect
necessary metrics (e.g., execution time of the aggregation
task) to facilitate the orchestration in LIFL (§5).

Metrics collection: Upon invocation, the eBPF-based side-
car collects and stores metrics to an eBPF map (metrics
map) on the local worker node. The eBPF map is an in-
kernel, configurable key-value table that can be accessed by
the eBPF program during execution (ebp, 2023c). The LIFL
agent, on the other hand, periodically retrieves the latest
metrics from the metrics map and feeds the metrics back to
the metrics server (Fig. 3) in the serverless control plane.

4.4 Direct Routing with Hierarchical Aggregation
Direct networking between functions is not allowed in exist-
ing serverless environments because serverless functions are
considered to be stateless and ephemeral. This implies that
there are no long-lived, direct connections between a pair
of function instances. As a result, they use an intermediate
networking component (e.g., message broker) to act as a
stateful, persistent component to manage state, i.e., routes
between functions. However, the main drawback is that
it adds unnecessary overhead by involving the additional
networking component(s) in the datapath, making indirect
networking between functions heavyweight.

LIFL improves serverless networking within hierarchical
aggregation by allowing direct routing between aggregators,
both within a node and between nodes. The key is to offload
the stateful processing to eBPF, using the sockmap (Red Hat,
Inc., 2022) to support flexible intra-node routing exploiting
shared memory, and inter-node routing with the help of the
per-node gateway, as depicted in Fig. 12. The sockmap is a
special eBPF map (BPF_MAP_TYPE_SOCKMAP (Red Hat,
Inc., 2022)) that maintains references to the registered socket
interfaces. We take the approach from (Qi et al., 2022) to
implement intra-node direct routing in LIFL. For details of
intra-/inter-node routing in LIFL, refer to Appendix-A.

5 LIFL’S CONTROL PLANE DESIGN
5.1 Locality-aware Placement and Load Balancing

The placement of aggregators can lead to different routing
behaviors: When aggregators with cross-level data depen-

model
© jpdafes LIFL control plane "Odeﬁ,}e r=8oa top
LIFL 2 5
7} reused coordinator . node 2 -
& & runfime - - Do =
-=d L__J middle
4140

shared

- -pmemory
access

Wy

(JAutoscaler]
get

metrics

Metric server

A arrival rate,

.

Lesagase -

66 86 86 88l [88 66 66 68 "neid

cross-
—p ,_ node
transfer

Figure 6. Control plane orchestration in LIFL: The autoscaler pe-
riodically re-plans the hierarchy based on the arrival rate of each
worker node. The LIFL coordinator applies reusing of aggregators.

dencies are placed on the same node, the shared memory
processing and eBPF-based sidecar can facilitate intra-node
routing. When these aggregators are placed across different
nodes, the gateway has to perform inter-node routing. To
minimize the transfer of model updates in LIFL, we take a
data-centric strategy like (Yu et al., 2023) that is aware of the
locality of model updates and places the aggregator close to
the model updates. As such, the in-place message queuing
(84.2), which is, in fact, the result of load balancing (clients
to worker node mapping), directly affects the effectiveness
of the locality-aware placement of the aggregators.

Our objective of load balancing involves two crucial cri-
teria: (1) Minimizing inter-node communication while
maximizing the utilization of shared memory within each
node. (2) Ensuring the residual service capacity of the
worker node meets the demand; the residual service ca-
pacity (RC; ;) of worker node 7 at time ¢ is determined by
RC;+ = MC; — (k;+ x E;). Here, M C; represents the
maximum service capacity’, denoting the maximum num-
ber of model updates that can be aggregated simultaneously
on worker node i. The value of k; ; is the arrival rate of
model updates directed to worker node ¢ at time ¢, and E; ;
is the average execution time required to aggregate a model
update on node <. We can also get a coarse-grained estimate
on the queue length (Q; + = k;+ X E; ;) of node ¢ at time ¢.

We approach the load balancing task as a bin-packing prob-
lem, aiming to allocate model updates from clients to a
minimal number of worker nodes, while ensuring that the
residual service capacity of each worker node is not ex-
ceeded. This naturally reduces the inter-node communica-
tion as much as possible, since the communication between
a particular pair of worker nodes only happens once. We use
BestFit for the bin-packing, as it concentrates load onto the
fewest nodes possible, to reduce inter-node traffic and maxi-
mize shared memory use. In contrast, WorstFit spreads the
load across more nodes, similar to the “Least Connection”
policy in Knative (§6.1). Furthermore, FirstFit focuses on
reducing search complexity without being locality-aware.
*We compute M C; offline; for details, refer to Appendix-E.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

5.2 Planning the Hierarchy for Aggregation

The goal of hierarchy-aware autoscaling is to maximize
the parallelism of aggregation at each level, given the num-
ber of model updates to be aggregated. This can minimize
the completion time of each level and thus minimize the
aggregation completion time (ACT) for hierarchical aggre-
gation. We plan a hierarchical aggregation structure within
each node, tailored to the number of pending model updates
(Qi,¢) in the message queue. Every node produces an inter-
mediate model update that is dispatched to the node chosen
to have the top aggregator that updates the global model.
This approach significantly reduces the need for cross-node
transfers for intermediate model updates.

LIFL periodically adjusts (i.e., scales) the hierarchy on node
1, guided by our estimates of (); ;. To prevent excess re-
source allocation due to short-term spikes in); ;, we em-
ploy the Exponentially Weighted Moving Average (EWMA)
to smooth Q; ¢ Qi = @ X Q41+ (1 —) X Q; ¢, where
« is the EWMA coefficient. We set a« = (.7 based on it
yielding the best results in our experiments. Our current
implementation supports a two-level k-ary tree hierarchy
on each node, comprising a “central” middle aggregator
responsible for aggregating model updates from Q); /I leaf
aggregators, where I is the number of model updates of
clients per leaf aggregator. Given that the steps within a
LIFL aggregator (Fig. 14) are executed sequentially, we
want to maximize the parallelism by having a limited [to
be small (e.g., at 2), ensuring that a leaf aggregator experi-
ences minimal waiting time after receiving the initial update
from the first client.

LIFL re-plans the hierarchy on each worker node periodi-
cally. This involves estimating (); ; across the worker nodes
and creates/terminates aggregators accordingly. The LIFL
control plane updates the routes between aggregators based
on the renewed hierarchy (details in Appendix-A).

5.3 Opportunistic Reuse of Aggregator Instances

The scaling policy in LIFL incorporates an opportunistic
“reuse” scheme to maximize the utilization of warm ag-
gregator instances since aggregators in LIFL use homoge-
nized runtimes (Fig. 14) with the same code and libs. This
sidesteps the cascading effect (Park et al., 2021b) when start-
ing up a hierarchy of aggregators (in fact function chains).

Given a hierarchy of aggregators selected on the node, LIFL
picks a leaf aggregator that has already completed its aggre-
gation task and is idle. LIFL converts its role to a middle
aggregator on that node. No further change is required as
LIFL’s aggregator runtime is stateless. LIFL selects the
first middle aggregator that completes its local aggregation
task and converts it to be the top aggregator responsible for
updating the global model. This minimizes the need to start
up new instances for higher-level aggregators, and avoids
additional startup delays.

5.4 Eager aggregation in LIFL

LIFL employs eager aggregation (Fig. 1) leveraging its more
flexible and dynamic timing of the aggregation process. Ea-
ger aggregation performs timely aggregation as model up-
dates arrive, even if it triggers the cold start of an aggregator
(when no idle-but-warm aggregator is available). This takes
advantage of the overlap between the start-up delay and
transfers of model updates, allowing eager aggregation to
mask cold starts up until the last model update. It also miti-
gates congestion that can occur when trying to aggregate all
model updates simultaneously. In contrast, lazy aggregation
aggregates all model updates in a batch when the aggrega-
tion goal is reached. But, the arrival of local model updates
from trainers can be spread over a relatively long duration.
Our evaluation shows eager aggregation achieves a 20%
reduction on ACT (Fig. 8(a)). We implement eager aggre-
gation in LIFL following the step-based processing model
described in Appendix-G. LIFL updates the version of the
global model whenever the aggregation goal is achieved.

6 EVALUATION & ANALYSIS

We quantify the performance gain and resource savings by
using LIFL, starting with analyzing a set of microbench-
marks to understand the different design considerations of
LIFL, including shared memory processing, the effective-
ness and overheads of LIFL’s orchestration scheme. We
then demonstrate the benefits of LIFL from a system-level
perspective using real FL. workloads.

Baseline Systems: We implement several baseline FL sys-
tems for LIFL to compare against. (1) “Serverful system”
(SF): The “serverful system” is implemented following the
design described in (Bonawitz et al., 2019) and (Huba et al.,
2022). Both of them adopt the architecture depicted in Fig. 2
(a). (2) “Serverless system” (SL): The baseline “server-
less system” is implemented following the design described
in FedKeeper (Chadha et al., 2021) and AdaFed (Jayaram
et al., 2022b) that uses the architecture depicted in Fig. 2 (b).
We choose Knative (kna, 2023) as the serverless framework
to build these alternatives. We utilize the open-source Flame
platform (fla, 2024) to provide necessary FL components,
e.g., coordinator, selector, aggregator, and client.

Implementation of LIFL: We implement LIFL based on
SPRIGHT (Qi et al., 2022), a lightweight, high-performance
serverless framework. LIFL includes object store support,
model checkpoints, and routing support for hierarchical ag-
gregation. LIFL uses Python’s multiprocessing package to
implement the shared memory pool instead of the DPDK-
based shared memory pool used in the original implementa-
tion of SPRIGHT. The current implementation of LIFL only
supports synchronous FL. Supporting asynchronous FL is
part of our future work.

Testbed setup: We leverage the NSF Cloudlab (Duplyakin

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Em LIFL ()
~ 4.0 | = SF ~ 20
@4 SL Nat
2 3.0 | BN +SC 8 15
+MB =
3820 5 10
= 1.0 2 5
0.0 © o

ResNet

ResNet ResNet

ResNet
-18 -34 -152 -18 -34 -152

ResNet ResNet

(a) latency of a single model up- (b) CPU usage of a single model
date transfer (intra-node) update transfer (intra-node)

=3 0ne round Network mmm Agg. mmm Eval.
LF1 1 1 il H| 1 1
LF21 1 H| H| M | 1
LF3 1 1 1 1 1 1 1
LF41 1 1 1 1 1 1
Top | [| [| [| [| 1 il
0 50 100 150 200 250 Time (s)

(c) LIFL’s Aggregation Timing (with ResNet-152)
Figure 7. Data plane improvement for hierarchical aggregation:
Serverful (SF), Serverless (SL), and LIFL. SL’s latency includes
contributions of +SC (sidecar) and +MB (message broker).
et al., 2019). The nodes we used have a 64-core Intel Cas-
cade Lake CPU@2.8 GHz, 192GB memory, and a 10Gb
NIC. We use Ubuntu 20.04 with kernel version 5.16.

6.1 Microbenchmark Analysis

Data plane improvement for hierarchical aggregation:
To understand the improvements in data plane performance
of hierarchical aggregation with LIFL’s shared memory pro-
cessing, we use the same aggregation hierarchy as in §4.1,
comprising one top aggregator and four leaf aggregators.
All aggregators are placed on the same node.

We consider the following serverful and serverless alter-
natives: (1) The serverful setup (SF) establishes direct net-
working channels (based on gRPC) between leaf aggregators
and the top aggregator; (2) the serverless setup (SL) uses in-
direct networking to connect leaf aggregators and the top ag-
gregator, through a message broker on the same node. Each
aggregator has a container-based sidecar to mediate inbound
and outbound traffic; (3) the LIFL setup uses shared mem-
ory for communication between aggregators. We consider
three ML models with distinct sizes: ResNet-18 (~44MB),
ResNet-34 (~83MB), and ResNet-152 (~232MB).

Fig. 7(a) shows the latency breakdown of a single model up-
date transfer between the leaf aggregator and top aggregator
for different model sizes. We specially mark the share of
sidecar (+SC) and message broker (+MB) for the serverless
setup. SL consistently results in 2x and 6 x higher latency
than SF and LIFL, respectively. The significant CPU usage
of SL (Fig. 7(b)) clearly shows the poor efficiency and per-
formance of the indirect networking used in the serverless
setup, caused by its use of the message broker and heavy-
weight sidecar. We see that LIFL is considerably better than
SF and SL in terms of both CPU usage and latency.

SL-H 28 +0+@+0 SL-H =8 +0+@0+06
mE +0 HE +0+@+0+® —_ mE +0+@+03+@
N +0+@ _ » 150
5 -~
@ ()
= 20 E 100
Q15 =
< =}
10 6 50
5
0 0
20 60 100 20 60 100

(a) Agg. Completion Time (b) Cumulative CPU Time

SL-H SL-H 2% +0+2+0

°) =t EE L0 EE 0+0+0+®
£ 50 +@0+@ 2 +0+@
B "R +O+2+0 55
5 40 |mm +0+2+3+® 0
L4

s 30 3
80 23
< 20 Gy
5 52
% 10 # 1

(6] (6]

20 60 100 20 60 100

(d) # of nodes used
Figure 8. Improvement with LIFL’s orchestration, with @) being
additions to baseline LIFL; x-axis is the number of model updates
arriving at the aggregation service concurrently.

(c) # of aggregators created

Fig. 7(c) shows the timing of various FL processing tasks
during hierarchical aggregation when using LIFL’s data
plane. It is clear that LIFL’s shared memory processing
helps reduce the overhead and improve the performance of
the data plane with hierarchical aggregation. LIFL com-
pletes each round in just 44.9 seconds compared to 57
seconds on average even for the serverful setup in Fig. 4.
Further, through careful placement, aggregators in LIFL
can fully exploit the high-speed intra-node data plane over
shared memory, as discussed next.

Improved orchestration in LIFL: We now quantify the
benefits of LIFL’s orchestration in improving hierarchical
aggregation. We demonstrate the effectiveness of LIFL by
applying: @ locality-aware placement (§5.1), 2) hierarchy-
planning (§5.2), ® aggregator reuse (§5.3), and (@ eager
aggregation (§5.4) step-by-step. We use five nodes for
this experiment. The maximum service capacity (M C})
of each node in our testbed is 20.° We focus on two aspects:
resource consumption and Aggregation Completion Time
(ACT) to aggregate a given number of model updates. In
this experiment, we assume the estimated (); ; is equal to
the actual queue length on each active node. We focus on
the importance of having warm aggregators based on the
pre-planned hierarchy, to avoid the cold start penalty.

We compare LIFL against a baseline serverless control plane
using hierarchical aggregation (SL—H in Fig. 8). SL-H
employs LIFL’s shared memory data plane (so both have
the same data plane) with Knative’s “Least Connection” load
balancing strategy (Mittal et al., 2021) that assigns newly
arrived model updates to the node with the smallest queue

%Qur testbed nodes are homogeneous, hence all M C; are the
same. With heterogeneous nodes, M C; may vary.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

length. The aggregators in SL—H use lazy aggregation by
default. The ML model used is ResNet-152. Note that the
latency to transmit a single model update of ResNet-152
across nodes (on the current testbed) is ~4.2 seconds.

By using locality-aware placement, LIFL also achieves
2.1x and 1.13x ACT reduction than SL—H (for 20 and
60 model updates in Fig. 8(a)). This improvement is at-
tributed to LIFL’s bin-packing strategy, which effectively
consolidates aggregators onto the same node to fully exploit
shared memory processing. Applying hierarchy-planning
and reusing warm aggregator instances (+@+@2)+@®)) fur-
ther reduce ~1.22x ACT of LIFL, as keeping aggrega-
tors warm mitigates the cold start delay that exists in both
SL-H and (+@). Further, after enabling eager aggregation
(+@+@+3+@), LIFL allows higher-level aggregators to
consume and aggregate the model updates in a timely man-
ner, effectively avoiding the intermediate model updates
(produced by the lower-level aggregators) being queued up
at the higher-level aggregators. This saves ~1.2x in ACT
compared to (+@+@)+@) that uses lazy aggregation.

While being effective in reducing ACT, LIFL also helps to
reduce costs. Just using locality-aware placement (+@ in
Fig. 8(b)), LIFL can save considerable CPU overhead by
reducing inter-node data transfers (with 20 and 60 model
updates). Enabling aggregator reuse saves additional CPU
cycles, as it avoids having the CPU initialize new aggrega-
tors. For 100 model updates though, the service capacity
of all five nodes would be maxed out, reaching the limit of
the benefit of LIFL’s orchestration. However, the data plane
improvement of LIFL can still make it outperform the basic
serverful and serverless setups, as demonstrated in Fig. 7.

As shown in Fig. 8(c), LIFL reduces the number of aggrega-
tors created, by packing more aggregators into fewer nodes.
After we apply locality-aware placement to LIFL (+@),
LIFL can also reduce the number of nodes used consider-
ably (see Fig. 8(d)): Given 20, 60, and 100 model updates,
LIFL’s locality-aware placement efficiently packs them into
1, 3, and 5 nodes, respectively. This avoids repeatedly creat-
ing a middle aggregator on each of the 5 nodes (except when
the service capacity of all 5 nodes is fully consumed). On
the other hand, SL—H uses all 5 nodes throughout, uniformly
distributing model updates across all 5 available nodes. This
will lead to additional cross-node data transfers, regardless
of available model updates. Note that the service capacity
of all 5 nodes is fully consumed for 100 model updates.

Orchestration overhead of LIFL: We evaluate the or-
chestration overhead of LIFL, given a different number of
clients. The time for completing the locality-aware place-
ment in LIFL is less than 17 milliseconds, even with 10K
clients, which is the maximum number of client settings
observed in Google’s production FL stack (Bonawitz et al.,
2019). Compared to the ACT, which takes several tens

of seconds with a large amount of clients, this overhead
for locality-aware placement is negligible. The EWMA es-
timator for hierarchy-planning takes 0.2 milliseconds per
estimate, which is also negligible compared to the 2-minute
cycle time used by LIFL to re-plan the hierarchy on each
worker node. The aggregator reuse and eager aggregation
incur almost no overhead, as they do not require active
involvement of the LIFL control plane.

6.2 FL Workloads Setup

Our aim is to demonstrate the generality of LIFL in im-
proving performance and reducing the cost of FL from a
system-level perspective. We consider synchronous FL (us-
ing FedAvg (McMahan et al., 2017)) to justify LIFL’s de-
sign. We use Stochastic Gradient Descent on the client.
Clients are configured with a batch size of 32 in a local
training epoch, with the learning rate set to 0.01.

Benchmark selection: We consider image classification,
training ResNet (He et al., 2016) models with the FEMNIST
dataset (Yang et al., 2021). We use non-IID datasets from
FedScale (Lai et al., 2022) (with its real client-data mapping)
to keep the setting realistic with different data distributions
across the client population.

Configuration of clients: We consider two distinct client
setups: (ResNet-18 setup) We use the client in this setup
to train a ResNet-18 model. Clients are considered to be
mobile devices with limited computing capacity, available
only when each has battery power and is connected to a
data (e.g., WiFi) network. This results in high variability in
the number of mobile devices available to perform training
tasks. As such, we let each client hibernate for a random
interval within [0, 60] seconds to emulate the dynamic avail-
ability of typical mobile device behavior. This generates
varying loads over time, as shown in Fig. 10(a), justifying
the need for scaling with a serverless framework as well
as LIFL. (ResNet-152 setup) The client in this setup trains
the relatively heavyweight ResNet-152 model. The client
is considered to be a server with substantial computing ca-
pacity and is highly available. As such, we keep clients in
this setup always-on. This results in a more stable arrival
pattern of model updates, as shown in Fig. 10(d).

We use a total of 20 physical nodes with 5 nodes used to run
aggregators. We use 4 nodes as leaf/middle aggregators and
dedicate one node to be the top aggregator. To deliver the
benefits of a “serverful system” (SF), we always maximize
the resource allocation to the aggregators and keep them
warm throughout the experiment. For the serverless setup
(SL and LIFL), we create aggregators on demand.

We use the remaining 15 physical nodes to run the clients.
In the ResNet-18 setup, since we consider clients to be
compute-constrained mobile devices, we run eight clients
on the same physical node, so each client only gets a small

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

80 80 80 80
g 60 g 60 8 60 g 60
B & B & o
£ 40 5 40 & 40 £ 401}
§ 4 § ?:j § il —— LIFL
< <
. ResNet-18 (a) < 20 ResNet-18 (b) < 20/ ResNet-152 (c) 201 ResNet-152 (d)
Wall-clock time (hours) Cumulative CPU Time (hours) Wall-clock time (hours) Cumulative CPU Time!(hours)
o }
o 1 2 3 4 5 o 10 20 30 40 50 o 1 2 3 4 o 10 20 30 40 50

Figure 9. ResNet-18: (a) Time-to-accuracy and (b) Cost-to-accuracy; ResNet-152: (c) Time-to-accuracy and (d) Cost-to-accuracy.

o ——_SF SL — _LIFL 2% o
% é 1;2 ?60 _____________________________________ % g ’1/000 _ResNet-lB (c)
z£ 60 54 E5 S |—— sF SL — LIFL
zE 40 330 5 2 Sl S S
< é‘ri 20 s 15 E c‘E) x00 W
oA RESNEHS‘(E) Wall—clock time (hours #* o ReSNEHS(b)‘ ‘Wall—clock t‘ime (hours) 5 B 630

o
o

0.5 1.0 1.5 0.0 0.5

(a) Update arrival rate

(b) # of active aggregators

1.0 15 o 20 40 60 goRounds

(c) Cumul. CPU time (seconds) per round

w
=)

n
[=]

Arrival rate
per minutes
"
1)

of active agg.
o w N O

o [ResNet-152 (d)) uWall—clock time (hours)

0.0 0.5 1.0 1.5

(d) Update arrival rate

(e) # of active aggregators

—— SF SL — LIFL gg
rvv v \Y 28
1 £y o{—— SF SL — LIFL
ZE2
] EE © IR SRR RO ORE R
ResNet-152 (e) Wall-clock time (hours) SR q’o
0.0 0.5 1.0 1.5 o 20 40 60 goRounds

(f) Cumul. CPU time (seconds) per round

Figure 10. ResNet-18 (a, b, ¢), ResNet-152 (d, e, f): Time series of arrival rate, number of active aggregators, and cumulative CPU time

(seconds) per round.

share of the compute capacity of the physical node. There-
fore, in the ResNet-18 setup, we can keep 120 simultane-
ously active clients in each round. In the ResNet-152 setup,
we treat the client as a server node, so we dedicate a physical
node for a ResNet-152 client. In this ResNet-152 setup, we
keep 15 simultaneously active clients in each round. The
active clients are selected from a total of 2,800 real clients
provided by FedScale (Lai et al., 2022).

6.3 Putting It All Together

(ResNet-18) Time to Accuracy: We compare the time-to-
accuracy of LIFL against SL and SF. To reach 70% accuracy
of ResNet-18 (Fig. 9 (a)), LIFL takes only 0.9 hours (wall
clock time), which is 1.6 x faster than SF (1.4 hours). Com-
pared to SL which takes 2.4 hours, LIFL is 2.7 x faster. The
improvement with LIFL can be attributed to the shared mem-
ory data plane and the improved orchestration to effectively
utilize resources, thereby reducing ACT (see §6.1).

The time spent by the SL aggregation service increases
due to a combination of factors including sidecar overhead,
function chaining, and simplistic orchestration. Frequent
start-up of the aggregators in SL (Fig. 10(b)) adds delays
to the aggregation (for the first arrival update in a round).
This increased aggregation time of SL eventually hurts the
time-to-accuracy (70%), making it even slower than SF.

(ResNet-18) Cost savings with LIFL: LIFL achieves sig-
nificant cost savings compared to SF and SL. We focus on
the cumulative costs (CPU time) consumed by the aggrega-
tion service to achieve a certain model accuracy. To reach
the 70% accuracy level of ResNet-18 (Fig. 9 (b)), LIFL

consumes 4.5 CPU hours, which is 1.8 x less than SF (8
CPU hours). Further, SF, with its simplistic fixed resource
allocation, keeps aggregators “always-on”, constantly occu-
pying its CPU allocation (Fig. 10(b)). LIFL adapts well to
the arrival rate of model updates and re-plans (scales) the
hierarchy accordingly, using resources to match demand.
Also note that the LIFL’s aggregator, when deployed as a
Kubernetes pod or container, is also cheaper (smaller re-
source allocation) than SF, as LIFL requires less CPU to
complete the same amount of aggregation tasks (Fig. 10(c)).

In contrast, SL consumes much more CPU (26 CPU hours)
to achieve the 70% accuracy level of ResNet-18 (Fig. 9 (b))
compared to LIFL (4.5 CPU hours). Although SL has rel-
atively fewer active aggregators over time (Fig. 10(b)), its
data plane and sidecar overheads, and the CPU consumed
for start-up results in SL having more than 5x the CPU con-
sumption of LIFL. This higher CPU time cost per round (for
the same amount of aggregation work completed) requires
the cloud service provider to allocate far more resources to
the aggregator (e.g., as a pod), making a single aggregator
in SL much more expensive than both SF and LIFL.

(ResNet-152) Time to Accuracy: Fig. 9 (c) shows the
time-to-accuracy of the different alternatives for RestNet-
152. To reach 70% accuracy, LIFL takes 1.9 hours (wall
clock time), which is 1.15x faster than SF (2.2 hours).
Comparatively, SL takes 3.2 hours. LIFL is 1.68x faster
than SL. The heavy-weight sidecar, slow function chaining,
function startup delays, and simplistic orchestration, are
responsible for the larger time-to-accuracy of SL for ResNet-

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

152, just as we saw with the ResNet-18 workload, as well
as with the microbenchmark analysis.

(ResNet-152) Cost savings with LIFL: As Fig. 9 (d) shows,
LIFL again achieves significant cost savings (on cumulative
CPU time) compared to SF and SL. To reach the 70% accu-
racy level of the ResNet-152 model, LIFL consumes 4.76
CPU hours, which is 1.43 x less than SF (6.81 CPU hours).
In contrast, SL consumes much more CPU (20.4 CPU hours)
to achieve the same 70% accuracy level compared to LIFL.
This again is consistent with what we observed from the
ResNet-18 workload, highlighting the advantage of LIFL.

Summary: LIFL takes advantage of the fine-grained elas-
ticity of serverless to scale the aggregation service based on
load changes, saving CPU consumption compared to server-
ful alternatives. When comparing LIFL with SL, LIFL is
even more compelling, with far lower CPU consumption be-
cause of LIFL’s orchestration scheme and lightweight data
plane (as we saw from the microbenchmark analysis). Thus,
LIFL shows that it truly leverages the elasticity promise of
the serverless computing paradigm.

7 RELATED WORK

We have discussed the pros and cons of prior work on server-
ful (Bonawitz et al., 2019; Huba et al., 2022) and server-
less (Jayaram et al., 2022b;a; Chadha et al., 2021) FL sys-
tems in §2. LIFL goes beyond these prior designs with an
optimized serverless infrastructure and efficient orchestra-
tion to truly realize the promise of serverless computing. We
now discuss work related to LIFL from other perspectives.

Federated Learning: As a fast-evolving ML technology, a
large body of work has been proposed for FL; the proposals
in (McMahan et al., 2017; Li et al., 2020a; Nguyen et al.,
2022; Li et al., 2020b; Reddi et al., 2020) focus on FL al-
gorithms while others investigate how to select FL clients
or datasets more intelligently (Lai et al., 2021; Liu et al.,
2023a; Abdelmoniem et al., 2023; Jiang et al., 2022; Nishio
& Yonetani, 2019; Shin et al., 2022; Guo et al., 2022; Lalitha
et al., 2019; Elzohairy et al., 2022). (Liu et al., 2023b) seeks
to schedule FL jobs across a shared set of FL clients with
less contention and reduce job scheduling delays. These
efforts are orthogonal to LIFL because LIFL focuses on
system-level optimization of model aggregation of FL. This
makes LIFL a good complement to these efforts by provid-
ing an efficient and high-performance FL system to bring
various FL approaches to the ground.

Several open-source FL platforms, e.g., Flame (fla, 2024),
FATE (fat, 2023), OpenFL (ope, 2023), FedML (He et al.,
2020), IBM federated learning (Ludwig et al., 2020) have
been launched to facilitate the promotion and adoption of FL
in both research and applications. These platforms assume
themselves to be a serverful design with static, inflexible
deployment, which makes them unprepared for large-scale

FL. LIFL can be used as a representative case to guide the
future development of these platforms.

Serverless computing optimization: Recent advances in
serverless computing have triggered extensive research en-
deavors dedicated to optimizing its system design. Sig-
nificantly, a prominent amount of investigation revolves
around the enhancement of resource provisioning, function
deployment, load balancing (Singhvi et al., 2021; Mittal
et al., 2021; Tariq et al., 2020; Bhasi et al., 2021; Park et al.,
2021a; Kaffes et al., 2022; Jin et al., 2023), runtime over-
head reduction (Agache et al., 2020; Akkus et al., 2018;
Shillaker & Pietzuch, 2020; Gadepalli et al., 2020; Oakes
et al., 2018), and mitigation of function startup delay (Fu
et al., 2020; Shahrad et al., 2020b; Lin & Glikson, 2019;
Fuerst & Sharma, 2021; Schall et al., 2022; Ustiugov et al.,
2021; Wang et al., 2021) within serverless platforms. Fur-
thermore, substantial efforts have been directed towards
addressing the data plane overheads inherent in serverless
architectures (Qi et al., 2022; Jia & Witchel, 2021; Shillaker
& Pietzuch, 2020; Yu et al., 2023), characterized by heavy-
weight function chaining and sidecar proxy.

Our work, combines the advantages of data plane optimiza-
tion (i.e., shared memory for hierarchical aggregation, in-
place message queuing, event-driven sidecars, etc), to un-
lock the full potential of serverless computing, facilitating
efficient and cost-effective FL in the cloud.

8 CONCLUSION

LIFL is an optimized serverless FL system aimed at making
FL more efficient and significantly lowering its operational
cost. LIFL adopts hierarchical aggregation to support FL
at scale. Its serverless infrastructure leverages shared mem-
ory processing to offer high-speed yet efficient intra-node
data plane and event-driven sidecar functionality to facilitate
communication within hierarchical aggregation. LIFL’s or-
chestration scheme adjusts the aggregation hierarchy based
on load and, maximizes the utilization of shared memory
through intelligent placement and reuse of aggregation func-
tion instances, thus saving the cost. Our evaluation shows
that LIFL’s optimized data and control planes improve the
resource efficiency of the aggregation service by more than
5x, compared to existing serverless FL systems, with 2.7 x
reduction on time-to-accuracy for ResNet-18. LIFL also
achieves 1.8 x better efficiency and 1.6 x speedup on time-
to-accuracy than a serverful system. In training ResNet-152
to reach 70% accuracy, LIFL is 1.68 x faster than an existing
serverless FL system, while reducing CPU costs by 4.23x.

ACKNOWLEDGMENTS

We thank the US NSF for their generous support through
grants CRI-1823270, CNS-1818971, and Cisco for their
generous gift and support.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

REFERENCES

Autoscaling - Knative. https://knative.dev/docs
/serving/autoscaling/, 2023a. [ONLINE].

Autoscaling - OpenFaaS. https://docs.openfaa
s.com/architecture/autoscaling/, 2023b.
[ONLINE].

extended Berkeley Packet Filter. https://ebpf.io/,
2023a. [ONLINE].

BPF-HELPERS - list of eBPF helper functions.
https://manpages.ubuntu.com/manpag
es/focal/en/man7/bpf-helpers.7.html,
2023b. [ONLINE].

BPF maps. https://docs.kernel.org/bpf/ma
ps.html, 2023c. [ONLINE].

Fate: An Industrial Grade Federated Learning Framework.
https://fate.fedai.org/, 2023. [ONLINE].

Knative. https://knative.dev, 2023. [ONLINE].

Open Federated Learning (OpenFL) - An Open-Source
Framework For Federated Learning. https://gith
ub.com/intel/openfl, 2023. [ONLINE].

Flame: a federated learning system for the edge. https:
//github.com/cisco-open/flame, 2024. [ON-
LINE].

Abdelmoniem, A. M., Sahu, A. N., Canini, M., and Fahmy,
S. A. Refl: Resource-efficient federated learning. In
Proceedings of the Eighteenth European Conference on
Computer Systems, EuroSys *23, pp. 215-232, New York,
NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450394871. doi: 10.1145/3552326.356748

5. URL https://doi.org/10.1145/3552326.

3567485.

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neuge-
bauer, R., Piwonka, P., and Popa, D.-M. Firecracker:
Lightweight virtualization for serverless applications. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pp. 419434, Santa Clara,
CA, February 2020. USENIX Association. ISBN 978-1-
939133-13-7. URL https://www.usenix.org/c
onference/nsdi20/presentation/agache.

Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke,
K., Beck, A., Aditya, P, and Hilt, V. SAND: To-
wards High-Performance serverless computing. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pp. 923-935, Boston, MA, July 2018.
USENIX Association. ISBN 978-1-939133-01-4.
URL https://www.usenix.org/conference/
atcl8/presentation/akkus.

Bhasi, V. M., Gunasekaran, J. R., Thinakaran, P., Mishra,
C. S., Kandemir, M. T., and Das, C. Kraken: Adaptive
container provisioning for deploying dynamic dags in
serverless platforms. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’21, pp. 153-167,
New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450386388. doi: 10.1145/3472
883.3486992. URL https://doi.org/10.1145/
3472883.3486992.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., Kiddon, C., Konec¢ny, J.,
Mazzocchi, S., McMahan, B., Van Overveldt, T., Petrou,
D., Ramage, D., and Roselander, J. Towards federated
learning at scale: System design. In Proceedings of
Machine Learning and Systems, volume 1, pp. 374-388,
2019. URL https://proceedings.mlsys.or
g/paper/2019/file/bd686£fd640be%8efaa
e0091fa301le613-Paper.pdf.

Cai, Q., Chaudhary, S., Vuppalapati, M., Hwang, J., and
Agarwal, R. Understanding host network stack over-
heads. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM °21, pp. 65-77, New York,
NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383837. doi: 10.1145/3452296.347288
8. URL https://doi.org/10.1145/3452296.
3472888.

Chadha, M., Jindal, A., and Gerndt, M. Towards federated
learning using faas fabric. In Proceedings of the 2020
Sixth International Workshop on Serverless Computing,
WoSC’20, pp. 49-54, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450382045.
doi: 10.1145/3429880.3430100. URL https://doi.
org/10.1145/3429880.3430100.

Daga, H., Shin, J., Garg, D., Gavrilovska, A., Lee, M., and
Kompella, R. R. Flame: Simplifying topology extension
in federated learning. In Proceedings of the 2023 ACM
Symposium on Cloud Computing, 2023.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig,
J., Eide, E., Stoller, L., Hibler, M., Johnson, D.,
Webb, K., Akella, A., Wang, K., Ricart, G., Landwe-
ber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S.,
and Mishra, P. The design and operation of Cloud-
Lab. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pp. 1-14, Renton, WA, July
2019. USENIX Association. ISBN 978-1-939133-03-8.
URL https://www.usenix.org/conference/
atcl9/presentation/duplyakin.

Elzohairy, M., Chadha, M., Jindal, A., Grafberger, A., Gu,
J., Gerndt, M., and Abboud, O. Fedlesscan: Mitigating
stragglers in serverless federated learning, 2022. URL
https://arxiv.org/abs/2211.05739.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Fu, S., Mittal, R., Zhang, L., and Ratnasamy, S. Fast and
efficient container startup at the edge via dependency
scheduling. In 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association,
June 2020. URL https://www.usenix.org/con
ference/hotedge20/presentation/fu.

Fuerst, A. and Sharma, P. Faascache: Keeping serverless
computing alive with greedy-dual caching. In Proceed-
ings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS °21, pp. 386-400, New York,
NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383172. doi: 10.1145/3445814.344675
7. URL https://doi.org/10.1145/3445814.
3446757.

Gadepalli, P. K., McBride, S., Peach, G., Cherkasova, L.,
and Parmer, G. Sledge: A serverless-first, light-weight
wasm runtime for the edge. Middleware *20, pp. 265-279,
New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450381536. doi: 10.1145/342321
1.3425680. URL https://doi.org/10.1145/34
23211.3425680.

Grafberger, A., Chadha, M., Jindal, A., Gu, J., and Gerndt,
M. Fedless: Secure and scalable federated learning using
serverless computing. In 2021 IEEE International Con-
ference on Big Data (Big Data), pp. 164-173, 2021. doi:
10.1109/BigData52589.2021.9672067.

Guo, Y., Sun, Y., Hu, R., and Gong, Y. Hybrid local sgd for
federated learning with heterogeneous communications.
In International Conference on Learning Representations,
2022.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H.,
Wang, X., Vepakomma, P., Singh, A., Qiu, H., Zhu, X.,
Wang, J., Shen, L., Zhao, P., Kang, Y., Liu, Y., Raskar,
R., Yang, Q., Annavaram, M., and Avestimehr, S. Fedml:
A research library and benchmark for federated machine
learning, 2020. URL https://arxiv.org/abs/
2007.13518.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P,
Srinivas, H., Wang, K., Shoumikhin, A., Min, J., and
Malek, M. Papaya: Practical, private, and scalable
federated learning. In Proceedings of Machine Learning
and Systems, volume 4, pp. 814-832, 2022. URL
https://proceedings.mlsys.org/paper/

2022/file/£340f1b1£65b6df5b5e3£94d95
blldaf-Paper.pdf.

Jayaram, K., Muthusamy, V., Thomas, G., Verma, A., and
Purcell, M. Lambda fl: Serverless aggregation for fed-
erated learning. In International Workshop on Trustable,
Verifiable and Auditable Federated Learning, pp. 9,
2022a.

Jayaram, K. R., Muthusamy, V., Thomas, G., Verma, A., and
Purcell, M. Adaptive aggregation for federated learning.
In 2022 IEEE International Conference on Big Data (Big
Data), pp. 180-185, 2022b. doi: 10.1109/BigData55660
.2022.10021119.

Jayaram, K. R., Verma, A., Thomas, G., and Muthusamy,
V. Just-in-time aggregation for federated learning. In
2022 30th International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 1-8, 2022c. doi: 10.1109/MA
SCOTS56607.2022.00009.

Jia, Z. and Witchel, E. Nightcore: Efficient and scalable
serverless computing for latency-sensitive, interactive
microservices. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 21,
pp- 152-166, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383172. doi:
10.1145/3445814.3446701. URL https://doi.or
g/10.1145/3445814.3446701.

Jiang, Z., Wang, W., Li, B, and Li, B. Pisces: Effi-
cient federated learning via guided asynchronous train-
ing. In Proceedings of the 13th Symposium on Cloud
Computing, SoCC 22, pp. 370-385, New York, NY,
USA, 2022. Association for Computing Machinery.
ISBN 9781450394147. doi: 10.1145/3542929.356346
3. URL https://doi.org/10.1145/3542929.
3563463.

Jin, C., Zhang, Z., Xiang, X., Zou, S., Huang, G., Liu, X.,
and Jin, X. Ditto: Efficient serverless analytics with
elastic parallelism. In Proceedings of the ACM SIG-
COMM 2023 Conference, ACM SIGCOMM ’23, pp.
406419, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400702365. doi:
10.1145/3603269.3604816. URL https://doi.or
g/10.1145/3603269.3604816.

Kaffes, K., Yadwadkar, N. J., and Kozyrakis, C. Her-
mod: Principled and practical scheduling for serverless
functions. In Proceedings of the 13th Symposium on
Cloud Computing, SoCC ’22, pp. 289-305, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450394147. doi: 10.1145/3542929.356346

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

8. URL https://doi.org/10.1145/3542929.
3563468.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient federated learning via guided participant
selection. In USENIX Symposium on Operating Systems
Design and Implementation, OSDI, pp. 19-35. USENIX
Association, 2021.

Lai, F, Dai, Y., Singapuram, S., Liu, J., Zhu, X., Mad-
hyastha, H., and Chowdhury, M. Fedscale: Benchmark-
ing model and system performance of federated learning

at scale. In International Conference on Machine Learn-
ing, pp. 11814-11827. PMLR, 2022.

Lalitha, A., Kilinc, O. C., Javidi, T., and Koushanfar, F.
Peer-to-peer federated learning on graphs, 2019. URL
https://arxiv.org/abs/1901.11173.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429-450, 2020a.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource
allocation in federated learning. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b. URL https://openreview.net/forum
?1id=ByexE1SYDr.

Lin, P.-M. and Glikson, A. Mitigating cold starts in server-
less platforms: A pool-based approach, 2019. URL
https://arxiv.org/abs/1903.12221.

Liu, J., Lai, F,, Dai, Y., Akella, A., Madhyastha, H. V., and
Chowdhury, M. Auxo: Efficient federated learning via
scalable client clustering. In Proceedings of the 2023
ACM Symposium on Cloud Computing, SoCC 23, pp.
125-141, New York, NY, USA, 2023a. Association for
Computing Machinery. ISBN 9798400703874. doi: 10.1
145/3620678.3624651. URL https://doi.org/10
.1145/3620678.3624651.

Liu, J, Lai, F, Ding, D., Zhang, Y., and Chowdhury, M.
Venn: Resource management across federated learning
jobs, 2023b. URL https://arxiv.org/abs/23
12.08298.

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar,
A., Rajamoni, S., Ong, Y., Radhakrishnan, J., Verma,
A., Sinn, M., et al. Ibm federated learning: an en-
terprise framework white paper v0. 1. arXiv preprint
arXiv:2007.10987, 2020. URL https://arxiv.or
g/abs/2007.10987.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pp. 1273-1282. PMLR, 20-
22 Apr 2017. URL https://proceedings.mlr.
press/v54/mcmahanl7a.html.

Mittal, V., Qi, S., Bhattacharya, R., Lyu, X., Li, J., Kulkarni,
S. G, Li, D., Hwang, J., Ramakrishnan, K. K., and Wood,
T. Mu: An efficient, fair and responsive serverless frame-
work for resource-constrained edge clouds. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC
21, pp. 168-181, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450386388.
doi: 10.1145/3472883.3487014. URL https://doi.
org/10.1145/3472883.3487014.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In Proceedings of
The 25th International Conference on Artificial Intelli-
gence and Statistics, volume 151 of Proceedings of Ma-
chine Learning Research, pp. 3581-3607. PMLR, 28-30
Mar 2022. URL https://proceedings.mlr.pr
ess/v151/nguyen22b.html.

Nishio, T. and Yonetani, R. Client selection for federated
learning with heterogeneous resources in mobile edge. In
ICC 2019-2019 IEEE international conference on com-
munications (ICC), pp. 1-7. IEEE, 2019.

Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T,
Arpaci-Dusseau, A., and Arpaci-Dusseau, R. SOCK:
Rapid task provisioning with Serverless-Optimized con-
tainers. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pp. 57-70, Boston, MA, July
2018. USENIX Association. ISBN 978-1-931971-44-7.
URL https://www.usenix.org/conference/
atcl8/presentation/oakes.

Park, J., Choi, B., Lee, C., and Han, D. Graf: A graph
neural network based proactive resource allocation frame-
work for slo-oriented microservices. In Proceedings
of the 17th International Conference on Emerging Net-
working EXperiments and Technologies, CONEXT ’21,
pp. 154-167, New York, NY, USA, 2021a. Association
for Computing Machinery. ISBN 9781450390989. doi:
10.1145/3485983.3494866. URL https://doi.or
g/10.1145/3485983.3494866.

Park, J., Choi, B., Lee, C., and Han, D. Graf: A graph
neural network based proactive resource allocation frame-
work for slo-oriented microservices. In Proceedings
of the 17th International Conference on Emerging Net-
working EXperiments and Technologies, CONEXT ’21,

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

pp. 154-167, New York, NY, USA, 2021b. Association
for Computing Machinery. ISBN 9781450390989. doi:
10.1145/3485983.3494866. URL https://doi.or
g/10.1145/3485983.3494866.

Qi, S., Kulkarni, S. G., and Ramakrishnan, K. K. Assessing
container network interface plugins: Functionality, per-
formance, and scalability. IEEE Transactions on Network
and Service Management, 18(1):656-671, 2021. doi:
10.1109/TNSM.2020.3047545.

Qi, S., Monis, L., Zeng, Z., Wang, I.-c., and Ramakrish-
nan, K. K. Spright: Extracting the server from server-
less computing! high-performance ebpf-based event-
driven, shared-memory processing. In Proceedings of
the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
pp- 780-794, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450394208. doi:
10.1145/3544216.3544259. URL https://doi.or
g/10.1145/3544216.3544259.

Red Hat, Inc. Understanding the eBPF networking
features in RHEL. https://access.redhat.co
m/documentation/en-us/red_hat_enterp
rise_linux/8/html/configuring_and_ma
naging_networking/assembly_understan
ding-the—-ebpf-features—-in-rhel-8_con
figuring-and-managing-networking, 2022.
[ONLINE].

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konecny, J., Kumar, S., and McMahan, H. B. Adaptive

federated optimization, 2020. URL https://arxiv.

org/abs/2003.00295.

Schall, D., Margaritov, A., Ustiugov, D., Sandberg, A., and
Grot, B. Lukewarm serverless functions: Characterization
and optimization. In Proceedings of the 49th Annual In-
ternational Symposium on Computer Architecture, ISCA
’22, pp- 757-770, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450386104.

doi: 10.1145/3470496.3527390. URL https://doi.

org/10.1145/3470496.3527390.

Scheller, B. Best practices for resizing and au-
tomatic scaling in Amazon EMR. https:
//aws.amazon.com/blogs/big-data/be
st—-practices—-for-resizing—and-auto
matic—-scaling-in—-amazon—-emr/, 2023.
[ONLINE].

Shahrad, M., Fonseca, R., Goiri, 1., Chaudhry, G., Ba-
tum, P., Cooke, J., Laureano, E., Tresness, C., Russi-
novich, M., and Bianchini, R. Serverless in the wild:
Characterizing and optimizing the serverless workload
at a large cloud provider. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 205-218.

USENIX Association, July 2020a. ISBN 978-1-939133-
14-4. URL https://www.usenix.org/confere
nce/atc20/presentation/shahrad.

Shahrad, M., Fonseca, R., Goiri, 1., Chaudhry, G., Ba-

tum, P., Cooke, J., Laureano, E., Tresness, C., Russi-
novich, M., and Bianchini, R. Serverless in the wild:
Characterizing and optimizing the serverless workload
at a large cloud provider. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 205-218.
USENIX Association, July 2020b. ISBN 978-1-939133-
14-4. URL https://www.usenix.org/confere
nce/atc20/presentation/shahrad.

Shillaker, S. and Pietzuch, P. Faasm: Lightweight

isolation for efficient stateful serverless comput-
ing. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pp. 419-433. USENIX As-
sociation, July 2020. ISBN 978-1-939133-14-4.
URL https://www.usenix.org/conference/
atc20/presentation/shillaker.

Shin, J., Li, Y., Liu, Y., and Lee, S.-J. Fedbalancer: Data

and pace control for efficient federated learning on het-
erogeneous clients. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applica-
tions and Services, MobiSys 22, pp. 436—449, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450391856. doi: 10.1145/3498361.353891
7. URL https://doi.org/10.1145/3498361.
3538917.

Singhvi, A., Balasubramanian, A., Houck, K., Shaikh,

M. D., Venkataraman, S., and Akella, A. Atoll: A scal-
able low-latency serverless platform. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’21,
pp- 138-152, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450386388. doi:
10.1145/3472883.3486981. URL https://doi.or
g/10.1145/3472883.3486981.

Tariq, A., Pahl, A., Nimmagadda, S., Rozner, E., and Lanka,

S. Sequoia: Enabling quality-of-service in serverless
computing. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC 20, pp. 311-327, New York,
NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450381376. doi: 10.1145/3419111.342130
6. URL https://doi.org/10.1145/3419111.
3421306.

Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot,

B. Benchmarking, analysis, and optimization of server-
less function snapshots. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS °21, pp. 559-572, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. ISBN 9781450383172.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

doi: 10.1145/3445814.3446714. URL https://doi.
org/10.1145/3445814.3446714.

Wang, A., Chang, S., Tian, H., Wang, H., Yang, H., Li,
H., Du, R., and Cheng, Y. FaaSNet: Scalable and fast
provisioning of custom serverless container runtimes at
alibaba cloud function compute. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pp. 443—-457.
USENIX Association, July 2021. ISBN 978-1-939133-
23-6. URL https://www.usenix.org/confere
nce/atc2l/presentation/wang-ao.

Yang, J., Shi, R., and Ni, B. Medmnist classification de-
cathlon: A lightweight automl benchmark for medical
image analysis. In IEEE 18th International Symposium
on Biomedical Imaging (ISBI), pp. 191-195, 2021.

Yu, M., Cao, T., Wang, W., and Chen, R. Following the
data, not the function: Rethinking function orchestra-
tion in serverless computing. In 20th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 23), pp. 1489-1504, Boston, MA, April
2023. USENIX Association. ISBN 978-1-939133-33-5.
URL https://www.usenix.org/conference/
nsdi23/presentation/yu.

A MESSAGE FLOW OF INTRA-NODE AND
INTER-NODE ROUTING

Intra-node routing: LIFL makes full use of its shared
memory support to facilitate zero-copy exchange of model
updates between aggregators. The shared memory object
in LIFL is addressed by the object key, which is a 16 byte
string randomly generated by the shared memory manager
when it initializes shared memory objects. We also assign
each aggregator a unique ID. The zero-copy data exchange
between aggregators depends on delivering the object key,
as the data is kept in place in shared memory.

LIFL utilizes eBPF’s SKMSG (integrated in the eBPF-based
sidecar), combined with eBPF’s sockmap (Red Hat, Inc.,
2022), to pass the object key between aggregators on the
same node. Upon receiving the object key, the SKMSG pro-
gram uses the ID of the source aggregator as the key to look

4
4

Client-5 Client-9

N\
\ \ AN

PN

Client-5
N\
\ \ N
\
Clenc

Client-9

Client-6

Concurrency
Concurrency

\
Client-4

Client-1 Client-4

Client-7

‘Aggregation Goal = 2

{_J| Modeli-1 |

Model i+l

Model i

I eerforming Aggregation

Figure 11. Asynchronous FL (Huba et al., 2022) with different
aggregation timing (“Eager” and “Lazy”).

D Queuing model updates from clients

Worker node 2

»(_Shared memory V¢’
A space
s o
e
T Ty v - Kernel
TCPIIP TCP/IP key value space
Stack Stack al’s id|gw's sock fd

A
@ a2’s id|gw's sock fd

Worker node 1

User (chared memory

space

Kernel Seo--- 0 -
space key_ value
al’sid | al's sock fd
a2’ id | a2's sock fd
a3’s id | gw's sock fd
sockmap

m a3’ id|a3’s sock fd

sockmap

Figure 12. Intra-/inter-node direct routing within hierarchical ag-
gregation.

up the sockmap to find the socket interface of the destination
aggregator so that the object key may be delivered to it for
access of the shared memory object.

Inter-node routing: When the source aggregator commu-
nicates with a destination aggregator on a different node, it
sends the object key to the local gateway first. The local
gateway uses the object key to retrieve the model update
from shared memory and performs the necessary payload
transformation. It then uses the source aggregator ID to
look up the inter-node routing table to obtain the destina-
tion aggregator ID and the IP address of the remote node
hosting the destination aggregator. The model update is
sent through the remote node’s gateway to the destination
aggregator. The remote gateway stores the received model
update in shared memory and uses SKMSG to notify the
destination aggregator, along with the local object key.

Online hierarchy update: LIFL re-configures intra-/inter-
node routes each time the hierarchy is updated. The routing
manager in the LIFL agent takes the DAG input (generated
by the TAG, §D) from the control plane that describes the
connectivity between aggregators, and correspondingly up-
dates routes into the inter-node routing table in the gateway
and in-kernel sockmap, using the userspace eBPF helper,
bpf.map-update_elem() (ebp, 2023b). The TAG de-
scribes the cross-level data dependency between aggrega-
tors.

B MODEL CHECKPOINTS

We support model checkpoints, where the model parame-
ters are periodically saved to an external storage service to
ensure data persistence and potential recovery in case of
failures. The checkpointing occurs after the aggregator com-
pletes the aggregation of specified model updates, where
the aggregator submits a request to the LIFL agent to per-
form model checkpoints asynchronously in the background.
This prevents checkpoint delays from being added to the
aggregation completion time.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

C MESSAGE QUEUEING FLOW IN LIFL:
RECEIVE (RX) AND TRANSMIT (TX)

On the receive (RX) path, protocol processing by the kernel
TCP/IP stack is first performed. The gateway running in
userspace receives the raw L7 payload from the kernel and
then extracts the model updates (encoded as tensor data
type), depending on the adopted L7 protocol (e.g., gRPC,
MQTT). We convert the model update from tensor data
type to NumpyArray before writing it to shared memory,
as Python’s multiprocessing module does not support
manipulation of the tensor data type. On the transmit
(TX) path, the reverse payload processing is done.

D ABSTRACTION FOR FINE-GRAINED
CONTROL

To facilitate fine-grained control of LIFL’s orchestration,
we treat an aggregator process within a sandboxed runtime
(e.g., container) as the atomic unit for management. The
control plane needs a generic means to describe connectivity
between components and placement affinity. We make use
of Topology Abstraction Graph (7AG) in Flame (Daga et al.,
2023) to describe the aggregator-to-aggregator connectiv-
ity and aggregator-client connectivity. Each node in such
a graph is associated with a “role” metadata, denoted as
either aggregator or client. A “channel” metadata denotes
the underlying communication mechanism (e.g., intra-node
shared memory, inter-node kernel networking) used for con-
nectivity.

We configure the placement-affinity to facilitate locality-
aware placement through the groupBy attribute in the chan-
nel abstraction, which accepts a string as a label to specify
a group. Therefore, keeping the same label in the attribute
allows us to cluster roles into a group. The LIFL coordina-
tor enables necessary orchestration decisions, e.g., runtime
reuse and locality-aware placement, through manipulation
of these abstractions (role and channel).

BB SF-mono BN SF-mono MM SF-micro
LIFL LIFL === SL-B
{ 0-8| WM SF-micro %3
= m SL-B Q
g 0.6 -)
5 g 5
= =2 =
=} 1 £
504 g 2
:
1
Co.2
0.0 o X
M1 M2 M3 Mi M2 M3 M: M2 M3

(a) CPU cost (b) Memory cost (c) End-to-end delay

Figure 13. Message queuing overheads.

E MAXIMUM SERVICE CAPACITY OF
WORKER NODES

LIFL actively monitors both F; ; and the arrival rate k;
using the sidecar in §4.3. We determine the value of M C}
offline. We incrementally increase the arrival rate k; to
node i. Let k; and E] denote the arrival rate and average
execution time at the point we observe a significant increase
in E;. This indicates that node 7 is becoming overloaded
and we estimate M C; as k] x E..

F IN-PLACE MESSAGE QUEUEING BENEFIT

We examine LIFL’s in-place message queuing through a
comparison with the serverful and serverless alternatives
depicted in Fig. 5, including the monolithic serverful setup
(denoted as SF—mono), the microservice-based serverful
setup (denoted as SF-micro), and the basic serverless
setup (denoted as SL—B). We quantify the overheads of
message queuing for a single model update transfer between
the client to the aggregator. We consider three metrics: (1)
the total memory consumed for queuing the model update
along the data pipeline; (2) the CPU cycles spent in the
data pipeline; and (3) the end-to-end networking delay from
the client to the aggregator. Note that we exclude the over-
head on the client-side. We consider three ML models with
distinct sizes: (M1) ResNet-18 (~44MB), (M2) ResNet-34
(~83MB), and (M3) ResNet-152 (~232MB).

Fig. 13 shows the results of CPU, memory cost and end-
to-end networking delay. The memory consumption in
SF-mono is mainly from the in-memory queue inside the
aggregator. For LIFL it is primarily consumed by the shared
memory used to buffer the model update. But, SL—B con-
sumes 3x more memory than SF-mono and LIFL. The
extra memory consumption of SL—B comes from the use of
sidecar and message broker, both of which need to locally
buffer the model update. SF-micro, on the other hand,
saves one queuing stage at the sidecar, but still incurs the
queuing at the message broker and consuming extra memory.
LIFL’s in-place message queuing totally eliminates these
unnecessary queuing stages.

Looking at the CPU consumption, LIFL is ~1.5x and
~1.9x less than SL-B and SF—micro, respectively. In
terms of the end-to-end networking delay (client to ag-
gregator), LIFL is ~1.3x and ~1.7x less than SL-B and
SF-micro, respectively. LIFL’s improvement in CPU cost
and networking delay, compared to SL—B and SF-micro,
are also a result of the elimination of the sidecar and mes-
sage broker from the data pipeline, and the message queuing
if far more efficient. This illustrates the benefits of LIFL’s
in-place message queuing, achieving the equivalent effi-
ciency and performance of a monolithic, serverful design
(with far less resource consumption as we see for typical FL
applications).

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

F.1 Stateful “tax” in LIFL

The per-node gateway is a key component that enables a
number of data plane functionalities in LIFL, including in-
place message queuing and inter-node data transfer. Un-
like stateless aggregators, the gateway is deployed as a
stateful, persistent component on every LIFL worker node.
This raises the concern about the stateful “tax”, i.e., the
CPU/memory cost of having stateful components in the FL
system.

On the other hand, a stateful “tax” of some form commonly
exists in serverful and serverless alternatives, as shown in
Fig. 5. The stateful component in a monolithic serverful
setup is the aggregator itself, running as an “always-on”
monolith. In the microservice-based serverful setup, the
message broker is the stateful component, as is the case
for the basic serverless setup. We quantitatively compare
the stateful “tax” of LIFL’s gateway with serverful and
serverless alternatives in Fig. 5. The result in §4.2 shows
that stateful “tax” in LIFL is the lowest.

model aggregator

updates
aggragafionw

Dequeue goal _is met?

Figure 14. Step-based processing model.

G STEP-BASED PROCESSING MODEL

The basic processing model of an LIFL aggregator can be
abstracted as a multiple-producer, single-consumer pattern,
as shown in Fig. 14. Multiple upstream producers (clients or
aggregators) are mapped to a single consumer (aggregator
only). The single consumer gathers model updates from
assigned producers and computes the aggregated model
update.

Looking deeper into the aggregator, LIFL adopts a step-
based processing model. At the core of this design is a pro-
cessing pipeline of three steps: (1) Recv: Receive model
updates from all assigned producers. The received model
update is enqueued in a FIFO queue. In LIFL, the object key
of the model update is enqueued as the actual model update
resides in shared memory; (2) Agg: Aggregator dequeues a
model update from the FIFO queue in Recv and then aggre-
gates it. The Agg step checks if the aggregation goal is met
after the dequeued update is aggregated. If the aggregation
goal is not met, Aggq is repeated until the aggregation goal is
met, before moving to Send; and (3) Send: sends the final
model update to the designated consumer. The execution
of Recv and Agg overlaps to enable eager aggregation, i.e.,
once the Recv step receives a model update, it immediately
passes the model update to Agg step for aggregation.

