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Abstract— Transparent household objects present a challenge
for domestic service robots, since neither regular cameras nor
RGB-D cameras can provide accurate points for shape recon-
struction. The new type of pretouch dual-modality distance
and material sensor (PDM2) can provide reliable and accurate
depth readings, but it is a point sensor and scanning the object
exclusively with the sensor is too inefficient. Hence, we present a
sensor fusion approach by combining a regular camera with the
PDM2 sensor. The approach is based on a data fusion algorithm
for shape reconstruction and an active perception algorithm for
scan planning for the PDM2 sensor. The data fusion algorithm is
a distributed Gaussian process (GP)-based shape reconstruction
method that allows for incremental local update to reduce
computational time. The active perception algorithm is an
optimization-based approach by increasing the information
gain (IG) and prioritizing the boundary points under a preset
travel distance constraint. We have implemented and tested the
algorithms with six different transparent household items. The
results show satisfactory shape reconstruction results in all test
cases with an average increase in intersection over union (IoU)
from 0.73 to 0.96.

I. INTRODUCTION

Robust handling of household objects is a fundamental

capability in domestic robotic applications. The ubiquitous

presence of transparent objects in a common household,

such as glass cups, plastic bottles, etc., challenges existing

sensing modalities, such as a camera, due to strong refraction

and reflection in the light path. Therefore, the object shape

reconstructed from camera images often contains significant

errors (see Fig. 1(a)). Recently, we have developed a new

type of pretouch dual-modality distance and material sensor

(PDM2) [1]–[3] to deal with transparent objects. The new

sensor utilizes pulse echo ultrasound (US) and optoacoustic

(OA) modalities to improve its capabilities and achieve

submillimeter-level accuracy in ranging. However, the PDM2

sensor is a point sensor and scanning the shape of the object

would be too slow for grasping applications.

An immediate thought is to develop a sensor fusion

approach that combines a camera with the PDM2 sensor that

balances both accuracy and speed for object shape recon-

struction. This requires us to address two issues. The first

issue is to develop a data fusion algorithm that fuses a large

number of noisy points from image-based reconstruction
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Fig. 1. Shape reconstruction results overlaid as red projected vertices on the
image: (a) using a camera-only method and (b) our sensor fusion method.

with a small number of accurate points from the PDM2

sensor. We present a distributed Gaussian process (GP)-based

shape reconstruction method that allows incremental local

update to reduce computation time. The second issue is how

to select the best scan positions for the PDM2 sensor, which

can further speed up the perception process while satisfying

the uncertainty requirement through active perception. We

develop an optimization-based approach by increasing the

information gain (IG) and prioritizing the boundary points

under a preset travel distance constraint that is designed to

ensure trajectory smoothness.

Fig. 1 (b) shows the successful shape reconstruction as a

result of our algorithms. Further experimental results show

that our algorithms increase the intersection over union

(IoU) metric from 0.73 to 0.96, a significant increase in

reconstruction quality over camera-only methods.

II. RELATED WORKS

Our approach builds on the following related topics includ-

ing 1) the development of the PDM2 sensor, 2) challenges

in transparent object reconstruction, 3) using GP to estimate

unknown shapes, 4) using IG to assess uncertainty, and 5)

active perception.

We have developed a PDM2 sensor, previously named a

dual-mode and dual-sensing mechanism (DMDSM) sensor,

to sense object material, interior structure, and distance right

before a robot touches an object of interest. It is a versatile

sensor mounted on the robot fingertip to provide real-time

pre-touch information for optically and acoustically chal-

lenged objects in environments where little prior information

is known. The sensor combines pulse echo ultrasound (US)

and optoacoustic (OA) modalities and has evolved through

four generations of iterative designs [1], [2], [4]–[7]. In fact,

the latest generation design that employs a custom acoustic-

to-optical receptor to significantly improve signal-to-noise

ratio is also accepted by this conference [8]. Using the sensor,

we have also developed the material mapping algorithm and



tested it in a compact scanning system [3], [7]. This paper

explores how to fuse this new sensor with camera images to

improve system accuracy and speed in object reconstruction,

which is probably the most likely use case scenario in future

applications.

Realizing the importance of handling transparent objects,

many recent works focus on improving camera-based object

reconstruction method. These methods can be classified as ei-

ther model-based optimization methods [9]–[12] or learning-

based methods [13]–[19]. However, because light paths are

distorted by reflection and refraction, their reconstruction

quality suffers from point-cloud imperfections, which include

point-wise noise, uneven distribution, missing points, mis-

alignment, and a significant number of outliers [20]. That

explains why the silhouette-based reconstruction method

utilizing the Segment Anything Model [21] suffers from

imprecise segmentation when applied to transparent objects.

With the advent of the radiance field, NeRF and Gaussian

Splatting provide a robust object or scene representation

[22]–[29]. Evo-NeRF [23] provides an incremental NeRF

optimization with active perception, but focuses on grasping

instead of a high-fidelity reconstruction. While these new

methods aim at handling reflectivity or transparency shows

advancements, they are clearly limited by the sensing modal-

ity, as they often require extra background configurations

under particular lighting and transparency setups, and their

training process is computation-intensive, which limits their

field applicability. In this work, with the new PDM2 sensor,

it is a natural solution to employ a sensor fusion approach.

GP [30], as a nonparametric model, is a great choice to

model objects of unknown shape that can quantify uncer-

tainty and handle noise in the estimation process. Many

existing works exploit the advantage. Gandler et al. [31]

apply GP as an implicit surface representation to facilitate a

sensor fusion approach using a camera and a tactile sensor.

Another closely related work is ShapeMap-3D [32], which

combines a GelSight™ tactile sensor and a depth camera

using an incremental shape mapping approach to reconstruct

the shape of the object. Both works inspire our approach.

Due to the characteristics of the PDM2 sensor, our algorithm

has to be an incremental and iterative update instead of the

full computation at once like [31] for better efficiency. Also,

unlike the 2D Gelsight sensor, the PDM2 sensor is a point

sensor, planning its scanning positions/trajectory to balance

speed versus accuracy is a unique problem.

When selecting the best PDM2 sensor scan positions, we

employ IG to measure the reduction in the uncertainty in the

reconstruction process. This is inspired by the information-

theoretic exploration with Bayesian optimization (BO) [33].

IG computation is often performed in combination with an

occupancy grid map with independent cells. In our case,

because the continuous object contour leads to highly corre-

lated nearby points, our algorithm selects candidate positions

over an irregular lattice instead of a fixed 2D grid as in

Yang et al. [34]’s work where they explicitly calculate IG

of the sampled actions in the 2D grid map and utilizes

Bayesian Kernel Inference (BKI) method to estimate the IG

and its corresponding uncertainty. IG-based optimization is

also developed to facilitate sensor placement on a 2D grid

[35]. In addition, we employ distributed GP [36] to efficiently

update the fused IG, which paves the way for an iterative

approach to planning the position of the scan.

The scanning position planning for the PDM2 sensor is

an active perception problem. When the planned sensor is

a camera, the active perception problem is also called an

active view planning problem [37]. Compared to passive

view planning, which estimates the view sequence from the

prior and then fixes the sequence for the overall perception

process, recent active view planning research focuses on

active / interactive perception [38]–[40] and informative path

planning [34], [41], [42]. Active view planning methods

progressively update view sequence after gaining more in-

formation. For view selection, Mao and Xiao [43] average

the uncertainty over the points at the intersection of the target

plane and the isosurface. Since our PDM2 sensor is a point

sensor, it determines that active scan planning has to take into

account IG, travel distance, and scanning coverage, which is

different from view planning for a camera.

III. PROBLEM FORMULATION

A. Nomenclature

Before we define our problem, common variables are

defined as follows.

{0} denotes the world frame which is a right-handed 3D

Euclidean coordinate system.

x is a point position in {0}, x ∈ R
3 with the

corresponding covariance matrix Σ.

Pc, Pd represent the 3D point clouds in {0} reconstructed

from the camera and the PDM2 sensor, respectively.

Pc := {xi}i=1:nc
, where nc is the number of points

in the point cloud. The error of x ∈ Pc is often

more than a millimeter due to transparency issues,

which is reflected by the covariance matrix set Σc =
{Σi}i=1:nc

where Σi ∈ R
3×3 is the covariance

matrix for xi. Similarly, we have Pd := {xi}i=1:nd

and Σd = {Σi}i=1:nd
, where the difference is that

the accuracy of x ∈ Pd reaches sub-millimeter level.

F (x) is the signed distance from x to the object surface,

which is positive for inner points and negative for

outer points. Since {x : F (x) = 0} ¢ R
3 defines

the surface of the scanned object, F (x) is also called

the implicit function of the surface.

σ2
F
(x) is the variance of the signed distance F (x) at x.

B. Software Diagram

Fig. 2 shows the overall software diagram. We first employ

the Gaussian process (GP) method to reconstruct the implicit

function of the object surface F0(x) from the point cloud

constructed from the camera image Pc. x’s covariance set

Σc characterizes its uncertainty. Due to the high uncertainty

in Pc, we cannot trust {x : F0(x) = 0} as a reliable

representation of the surface of the object. To address this

problem, we incrementally and iteratively scan more surface

points using the PDM2 sensor in batches. We know that
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Fig. 2. Software diagram. “Init.” means initialization and “Iter.” means
iteration. The subscript k is the iteration index and the subscript t means
termination.

combining newly scanned points with the existing point

cloud increases the accuracy of object reconstruction because

the points scanned by the PDM2 sensor are more accurate.

As a result, at the k-th iteration, it is necessary to select a

batch of new points from the current surface to form the next

trajectory to guide the scanning of the new batch of points,

which is an active perception problem in nature (Box A in

Fig. 2). After scanning, we obtain the newly collected point

cloud P̃d,k and the updated overall PDM2-based point cloud

Pd,k := Pd,k−1∪P̃d,k which are used to estimate the implicit

surface Fk(x) and its variance (Box B in Fig. 2). This GP-

based heterogeneous sensor fusion reduces the variance of all

surface points. If the maximum variance σk is below a preset

threshold σt, then the pipeline is successfully terminated.

Otherwise, we repeat the algorithm by planning more scans

for the PDM2 sensor.

C. Problem Definition

The above pipeline contains two problems which are the

surface reconstruction problem and the PDM2 sensor active

perception problem corresponding to Boxes A and B in Fig.

2, respectively. We define them as follows.

Definition 1 (Surface Reconstruction): At the k-th itera-

tion, given point clouds Pc and Pd,k with their corresponding

covariance sets Σc and Σd,k, construct the implicit surface

function Fk(x) and obtain its variance σ2
F,k(x).

Definition 2 (Active Perception for the PDM2 Sensor):

At the k-th iteration, given the current point clouds Pc

and Pd,k−1 with covariance matrix sets Σc and Σd,k−1,

planning for scanning positions for the PDM2 sensor to

obtain new points P̃d,k to update Pd,k.

IV. ALGORITHMS

Now we present two algorithms to solve the two problems

in Secs. IV-A and IV-B, respectively.

A. Surface Reconstruction

Fig. 2 shows that the surface reconstruction appears in

two places in the pipeline. The first place is initialization,

where we estimate an initial noisy implicit surface function

directly from the image point cloud. The second place is after

new PDM2 points are obtained, where we update the surface

implicit function based on both the image point cloud and

the newly obtained PDM2 points. Both places use the same

method with different corresponding covariance matrices,

which we will explain as follows.

1) Implicit Surface Function Modeling: We employ GP

as an implicit function to represent the 3D surface and its

uncertainty. For all points in the input point cloud, their

corresponding signed distances can be modeled using a

GP, which is a finite collection of random variables that

follow a joint Gaussian distribution [44]. The GP can be

written as f(x) ∼ GP(m(x), k(x,x′)), where m(x) =
E[f(x)] and k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))]
for any point x,x′ ∈ R

3. The point x used to reconstruct

the surface comes from two sources. The image points in

Dc = {xi, vi}nc

i=1 provide the initial observations needed

for surface reconstruction, where vi is the observed value of

the signed distance value for point xi with a positive value

indicating that the point is inside the surface and zero means

on the surface. More exactly, vi is modeled as follows,

vi = f(xi) + e(xi), (1)

where random error e(xi) ∼ N (0, a2i ) follows a zero-mean

Gaussian distribution with a2i being its variance [45]. For

the i-th point in Pc ∪ Pd,k, we approximate the variance

a2i = 1
3 tr (Σi), where tr(·) denotes the trace of a matrix and

Σi ∈ Σc ∪Σd,k.

The image point cloud Dc is used throughout the surface

reconstruction. In the update stage in k-iteration, new data

from the PDM2 sensor arrive, which is Dd = {xi, vi}nd,k

i=1 .

We define the input point cloud as X := Pc ∪ Pd,k with

n := |X |, where |X | is the cardinality of X . Pd,0 = ∅ at

the initialization stage. X is the main input to the surface

construction problem.

To simplify notation, let us define the row vector and ma-

trix representations as [wi]
n
i=1 := [w1, ..., wn] and [w]ni=1 :=

[w1, ...,wn], respectively, where w is a scalar template and

w is a column vector template, and w and w will be

replaced by respective notation later. Then, we write the joint

distribution of the observations v
T = [vi]

n
i=1 at X and the

signed distance values v∗ at the target test point set X ∗ under

the prior as

[

v

v
∗

]

∼ N
([

b

0

]

,

[

ΣXX K(X,X∗)
K(X∗,X) K(X∗,X∗)

])

, (2)

where the mean vector b
T = [b(xi)]

n
i=1, the zero vector

0
T = [0]n

∗

i=1, the observation input matrix X = [xi]
n
i=1,

xi ∈ X , the predictive input matrix X
∗ = [x∗

i ]
n∗

i=1,

x
∗
i ∈ X ∗, ΣXX = K(X,X) + A, the Gram ma-

trix K(X1,X2) for X1,X2 ∈ {X∗,X} are evaluated

at all pairs of entries of X1 and X2, K(X1,X2) =
[k(x1,i,x2,j)]i∈[1..|X1|],j∈[1..|X2|], the random noise covari-

ance matrix A = diag(a21, a
2
2, ..., a

2
n), and n∗ := |X ∗|.

Given an input point cloud X , its observation vector v,

the mean vector b, the conditional distribution of the signed

distance values v
∗ at the unobserved point set X ∗ is a

Gaussian as below

v
∗|X∗,X,v,b ∼ N

(

µX∗|X ,ΣX∗|X

)

, (3)



with conditional mean µX∗|X and covariance ΣX∗|X :

µX∗|X = K(X∗,X)Σ−1
XX

(v − b), (4)

ΣX∗|X = K(X∗,X∗)−K(X∗,X)Σ−1
XX

K(X∗,X)T. (5)

Note that when n∗ = 1, ΣX∗|X is a scalar, so we define

σX∗|X := ΣX∗|X . However, the basic GP model of (4) and

(5) has a time complexity of O(n3) for n points for surface

reconstruction in each iteration. When new PDM2 sensor

scan points are obtained, recomputing the entire GP model

is too slow. We need a more efficient GP update process.

2) Surface Implicit Function Update: We employ the

distributed GP [36] to address the problem, which partitions

X into M independent GP experts. Therefore, we only need

to update the GP expert that is affected by the new points.

The method is called mGP as opposed to the original GP.

The posterior mean and variance of x∗ by the product of the

GP experts are given by

µo
{x∗}|X =

(

σo
{x∗}|X

)2 M
∑

m=1

σ−2
{x∗}|Xm

µ{x∗}|Xm
, (6)

(

σo
{x∗}|X

)−2

=

M
∑

m=1

σ−2
{x∗}|Xm

, (7)

where m is the group or Gaussian expert index. With the

distributed GP, the time complexity to update the posterior

distribution in a new iteration is dropped from O(n3) to

O(n3/M2) in the worst-case scenario, which happens when

all GP experts need to be changed. The complexity can

be reduced to O(n3/M3) if all newly scanned points are

assigned to the same GP expert. This is possible because the

newly scanned points in each iteration are usually close to

each other, which will be discussed further in Sec. IV-B.

In addition, the reconstruction results in (6) and (7) also

depend on the partition of points between different GP ex-

perts. An intuitive partition method should attempt to assign

adjacent points to the same GP expert to ensure surface

consistency. Therefore, to partition X into {Xm}m=1..M , we

build an undirected weighted graph G with node set X and

adjacency matrix C for all elements in X and use the METIS

method [46] to partition the graph, which minimizes edge

cuts and leads to a balanced and efficient graph partition.

For the entry at p-th row q-th column, cp,q ∈ C is denoted

as

cp,q =

{

σp,q

σpσq
, if (p ̸= q) ' (

σp,q

σpσq
g ct),

0, otherwise,
(8)

where σp,q is the entry of ΣXX at p-th row and q-th column,

σp =
√
σp,p, σq =

√
σq,q , and ct is a threshold to remove the

edges with low correlation. Note that the partitioning process

only needs to be computed at the initialization stage. Any

newly scanned point xd ∈ Pd is assigned to the same GP

expert as that of the closest point.

3) Bias Removal: Eq. (1) assumes zero mean for the

noise distribution. This zero-bias assumption may not hold

for points in Pc due to shape ambiguity due to light re-

flection and refraction introduced by transparency objects.

Top-down view

(a)

Top-down view

(b)

Fig. 3. Surface reconstruction from Pc without and with bias removal for
(a) and (b), respectively. The red points come from Pd as the reference
points. Without considering the bias, the reconstructed surface shrinks
inward in this case. After removing the bias, the surface tends to be expand
to approach the reference points.

Fig. 3 illustrates this phenomenon. On the other hand, points

scanned by the PDM2 sensor are unbiased due to its sensing

mechanism. For xi, let b(xi) be its bias, we have

b(xi) =

{

1
nd

∑nd

d=1 −µo
{xd}|Pc

if (xi /∈ Pd,k),

0 otherwise.
(9)

where xd ∈ Pd,k, nd = |Pd,k|, and µo
{xd}|Pc

is obtained

from (6).

To remove bias, we have F (x) = µo
{x}|X and σ2

F
(x) =

(

σo
{x}|X

)2

. After the update, we check if the maximum

variance of all points in the k iteration σk falls below the

threshold σt. If so, we terminate the algorithm. If not, we

need to plan for more scanning for the PDM2 sensor, which

leads to the active perception problem.

B. Active Perception for the PDM2 Sensor

The PDM2 sensor complements the camera in perceiving

the transparent object shape. Unlike a camera, the PDM2

sensor scanning is relatively slow because it is a point sensor.

The readings from the PDM2 sensor are more accurate.

Therefore, strategic planning for PDM2 sensor scanning is

important, which leads to the unique problem of active

perception. To address the problem and note that the overall

goal is to reduce reconstruction uncertainty, we devise an

optimization over a sampling-based planning approach that

1) maximizes information gain (IG) and 2) rewards more

on boundary candidates between low- and high- variance

regions to reduce the ineffective back-and-forth movements

over scanning point choices and trajectory generation. The

optimal choice is bounded below a preset trajectory length

to accommodate the batch scanning requirement.

1) Sampling-based Candidate Solutions: Since the result-

ing trajectory of our problem must be located on the surface

described by the implicit shape function Fk−1(x) at the k-

th iteration, we sample {x : Fk−1(x) = 0} to generate a

set of candidate solutions Uk to reduce planning time. The

sampling is done by applying the marching cube algorithm

[47]. 300 f |Uk| f 400 is the sampling setup because that

provides sufficient candidate resolution for common house-

hold items. The choice of scan position is to be obtained by



solving an iterative optimization problem over Uk. Therefore,

some points in Uk may have been selected in the previous

iteration. We abuse the notation of Uk by assuming that it

is the remaining set of candidate solutions at the current

iteration. Uk is updated after each iteration.

2) Using Information Gain to Measure Uncertainty Re-

duction: The first component of the objective function is

IG because IG considers the entropy prediction quality over

the space of interest instead of just the selected points [48].

We define the overall point set Wk := Uk ∪ Pc ∪ Pd,k−1 in

the k-th iteration. For simplicity, we omit the subscript of

the iteration index k and have W := Wk and U := Uk. A

simple approach is to select a subset V ¦ U to maximize IG

V∗ = argmax
V¦U :|V|=nb

H(VW\V)−H(VW\V |VV) (10)

where nb is batch size, H(VW\V) is the differential entropy

of the unobserved points W \ V , H(VW\V |VV) is the

conditional differential entropy of the unobserved points

W \V after observing points V , and VV and VW\V refer to

the vector of GP random variables corresponding to V and

W \ V , respectively. Since directly solving this optimization

problem is NP-complete, we use the approximation algo-

rithm in [35] to greedily select the j-th point of the batch

xj from the current candidate set U \ Ṽj , where the current

solution set Ṽj := {xi}i=1..j−1 is obtained by solving

xj = argmax
xg∈U\Ṽj

σ{xg}|W\Rj,g

σ{xg}|Rj,g

(11)

where a scalar σX∗|X := ΣX∗|X if |X ∗| = 1, and Rj,g :=

U \ {Ṽj ∪ {xg}}. It is noted that the numerator and denom-

inator in (11) are scalars and the low-cost surrogate can be

calculated from (7).

It is not difficult to see that maximizing IG alone can-

not guarantee a proper trajectory because the trajectory

inevitably travels back and forth to find points with high IG

values. It leads to an inefficient solution in application. We

should evaluate a candidate solution from a motion efficiency

perspective in addition to IG.

3) Improve Motion Efficiency by Prioritizing Boundary

Points: During the PDM2 sensor scanning process, the

newly scanned points has low variance and they help its

immediate neighboring points’ variance to be reduced. If

a candidate scanning point xh ∈ U ’s variance is below a

given uncertainty threshold σt, then it is a low-variance point

described by indicator function 1LV,

1LV(xh) =

{

1, if σ{xh}|W\V < σt

0, otherwise.
(12)

Therefore, all points on the surface can be classified into

two categories according to the values of 1LV, leading to

a division between regions of low and high variances. The

idea is to prioritize the points on the boundary so that

the resulting scanning movements do not jump back and

forth inefficiently. To identify existing boundary points, we

introduce the following spherical in-annulus condition for

xg ∈ U \ Ṽj as follows,

1in(xg,xh) =

{

1, if τ1 < ∥xg − xh∥22 < τ2

0, otherwise,
(13)

where τ1 and τ2 define the inner and outer bounds of the

spherical annulus, respectively. τ2 determines the neighbor-

ing range, while τ1 avoids the influence of points that are

too close. Too many high-variance points close together can

unduly reduce boundary priority as we want the neighbors

to spread out. For the given candidate point xg , we are

interested in the ratio ηg of the low variance points among

all in-annulus neighbors,

ηg =







∑
xh∈U

1in(xg,xh)·1LV(xh)
∑

xh∈U
1in(xg,xh)

, if
∑

xh∈U

1in(xg,xh) > 0

0, otherwise.

(14)

Since we want to reward those candidates with ηg greater

than the given threshold ηt, we define the following indicator

function,

1RLV(xg) =

{

1, if ηg > ηt

0, otherwise.
(15)

Now we can modify the optimization formulation in (11)

by incorporating boundary prioritization as follows.

xj = argmax
xg∈U\Ṽj

σ{xg}|W\Rj,g

σ{xg}|Rj,g

+ λ1RLV(xg), (16)

such that ||xj − xj−1||2 f γ, (17)

where hyper-parameter λ determines how much we want to

emphasize boundary priority. Eq. (16) still has a problem

because it does not prevent the trajectory from jumping back

and forth between boundary points. To deal with this, we

need to regulate the trajectory length in (17) where γ is a

hyperparameter to set the upper limit of the travel length

between two neighboring scan points.

Eqs. (16) and (17) provide an approximate solution to our

active perception problem. Each time we solve the optimiza-

tion problem, we can obtain a scan point xj . We remove

xj from U . Since the PDM2 sensor scans object surface

in batches, we repeatedly solve the optimization problem

nb times to obtain the planned trajectory. By executing this

trajectory, we can obtain a new point cloud P̃d,k. The total

PDM2 points Pd,k = Pd,k−1 ∪ P̃d,k is used for surface

reconstruction in the next iteration.

V. EXPERIMENTS

A. System Configuration and Data Collection

We have used the scanning platform in [3] to collect test

data from an Intel™ RealSense depth camera D435 and

our PDM2 sensor. The only modification we have made is

to mount the two sensors together. On the software side,

the algorithm is implemented in Matlab and executed on an

i7-13700K CPU running Ubuntu 20.04 system. The squared

exponential kernel function is used for the GP. Limited by

SNR, this sensor takes 20 s to scan a point.



(a) (b) (c) (d) (e) (f)

Fig. 4. Transparent objects used in the experiment. (a) Juice cup. (b) Water
bottle. (c) Coffee bottle. (d) Red wine cup. (e) Cola bottle. (f) Soup bottle.
(a-d) are made of glass while (e,f) are made of plastics.

Fig. 4 shows the six transparent objects used in our

experiments. For each object, we place it inside the scanning

system. The camera is placed in three different locations to

ensure complete coverage of the object. At each location,

the camera captures the object by rotating it in 5-degree

increments until it returns to its original position. Next, we

reconstruct the initial reconstruction results from the images

using the structure-from-motion method [49]. We then apply

our algorithms to iteratively generate a batch of scanning

points. Fig. 5 shows the typical scan and reconstruction

results for a glass bottle. It is clear that the initial image-

based object reconstruction has a very large error (leftmost

shape in the middle row). Our heterogeneous sensor fusion

algorithms iteratively improve object reconstruction quality.

0%�� 25%�� 50%�� 100%��75%��

Fig. 5. Shape reconstruction and active perception planning for a glass
bottle. Top: pink points are the point cloud from image points Pc while
black points are scanned by the PDM2 sensor. Middle: bottle reconstruction
result. Bottom: Black dots indicate scanning trajectories, and the standard
deviation of the reconstructed point are colored using the right side spectrum
which has a normalized value ranging from 0 to 1 for illustration purpose.

B. Metrics and Results

Since the exact shape of the test objects may not be

available, we employ two metrics to measure the quality of

the reconstruction. The first metric is the intersection-over-

union [50] between the projected shape from the reconstruc-

tion result Wproj and the manually-labored ground-truth 2D

silhouette Wgt in the images collected,

IoU =
|Wproj ∩Wgt|
|Wproj ∪Wgt|

. (18)

The region covered by the red lattice in Fig. 1 are examples

of Wproj. Then, we evaluate the reconstruction results from

the overall IoU, calculated as the average of IoUs from 4

orthogonal perspectives.

The second metric is the ratio κk of low-variance points

on the most recently sampled candidate points Uk, which is

a random lattice that covers the entire object. We have

κk =

∑|Uk|
i 1RA(xi)

|Uk|
, and 1RA(xi) =

{

1, if σF(xi) < σt,

0, otherwise.

(19)

For simplification, we refer to κk as κ if k is not the focus.

The experimental results are shown in Table I. Note that the

overall number of points scanned by our PDM2 sensor is

nt = |Pd,k| after the variances of all points are below σt.

In the object shape reconstruction, we gradually increase the

number of the PDM2 points from 0, which means camera

only, to 100%nt points to observe how IoU and κ change.

Tab. I shows that our heterogeneous sensor fusion approach

significantly increases reconstruction quality. On average,

IoU increases from 0.73 to 0.96, indicating a substantial

improvement. Note that the IoU cannot reach the maximum

value of 1 because there is surface smoothness and manual

labeling error.

TABLE I

SHAPE RECONSTRUCTION RESULTS FOR OBJECTS IN FIG. 4 WITH

DIFFERENT PARAMETER CONFIGURATIONS

Obj. nt
IoU and (κ)

Cam. Only 25%nt 50%nt 75%nt 100%nt

(a) 80 .67 (0%) .88 (37%) .97 (84%) .97 (94%) .97 (100%)
(b) 90 .50 (0%) .87 (28%) .90 (71%) .91 (92%) .95 (100%)
(c) 70 .80 (0%) .93 (44%) .96 (95%) .96 (96%) .97 (100%)
(d) 65 .86 (0%) .91 (22%) .94 (54%) .97 (85%) .97 (100%)
(e) 85 .74 (2%) .83 (25%) .93 (75%) .94 (99%) .94 (100%)
(f) 50 .79 (0%) .84 (34%) .89 (77%) .91 (98%) .93 (100%)

Avg. 73 .73 (0%) .88 (32%) .93 (76%) .94 (94%) .96 (100%)

VI. CONCLUSION AND FUTURE WORK

We reported a sensor fusion algorithm to tackle the

challenging task of reconstructing the shape of transparent

household items such as glass bottles or cups, because

traditional camera-based reconstruction is often not reliable

due to distorted light paths. We combined the image input

with the point-wise scan from our PDM2 sensor by devel-

oping a distributed GP-based shape reconstruction method

and an active perception method based on maximizing IG

and prioritizing boundary points while considering the travel

distance constraint. The overall algorithm was tested under a

custom scanning platform with six transparent objects. The

results of the experiment are satisfactory.

In the future, we will further develop the grasping algo-

rithm based on the reconstruction result. We will combine

the shape and material types of the PDM2 sensor for better

planning for the grasping of delicate and transparent objects.
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