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Abstract

The performance of deep neural networks often deteriorates in out-of-distribution
settings due to relying on easy-to-learn but unreliable spurious associations known
as shortcuts. Recent work attempting to mitigate shortcut learning relies on a
priori knowledge of what the shortcut is and requires a strict overlap assumption
with respect to the shortcut and the labels. In this paper, we present a causally-
motivated teacher-student framework that encourages invariance to all shortcuts
by leveraging privileged mediation information. The Teaching Invariance using
Privileged Mediation Information (TIPMI) framework distills knowledge from a
counterfactually invariant teacher trained using privileged mediation information
to a student predictor that uses non-privileged features. We analyze the theoretical
properties of our proposed estimator, showing that TIPMI promotes invariance to
multiple unknown shortcuts and has better finite-sample efficiency. We empirically
verify our theoretical findings by showing that TIPMI outperforms several state-of-
the-art methods on one language and two vision datasets.

1 Introduction

Neural networks are often deployed on data that is different from the training data Ð a phenomenon
known as distribution shift [51, 8]. Many predictors have been shown to have brittle performance
under distribution shifts [23, 10, 21, 46]. One reason for this is shortcut learning: when a predictor
relies on easy-to-learn but inconsistent features in the training data that are spuriously correlated with
the target label [14, 32]. If the correlation between the shortcut and the label changes, the model’s
performance declines significantly. Therefore, for a model to be robust to distribution shifts, it should
only rely on features that are predictive of the label and invariant across various distributions [31].

In this paper, we focus on the anti-causal prediction setting, where a target label causally affects
the features. As a motivating example, consider a predictor trained using X-ray images from a
hospital to predict if a patient has knee osteoarthritis (KOA). An ideal predictor would only use
invariant medically relevant features constructed from the X-ray, such as the appearance of the joints
or joint space narrowing, to make a diagnosis. However, X-rays often contain inconsistent spurious
information that models exploit to make a prediction, such as hospital-specific X-ray artifacts [54].

Previous work has attempted to learn invariant features by leveraging additional information available
only at training time known as privileged information. Most of these approaches utilize privileged
shortcut information, typically in the form of labels representing potential shortcuts or environments
that models should be invariant to [1, 32, 48, 44, 15]. Although effective in specific environments,
these methods have limitations. (1) They rely on a restrictive overlap assumption. Specifically, they
assume that the probability of observing an example from each combination of a target and shortcut
label is non-zero. (2) They assume that all potential shortcuts are known at training time. This is
particularly difficult because it requires insight into spurious correlations inherent to specific datasets.
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Figure 1: Examples of causal DAGs describing the setting in this paper. Grey nodes are observed at
training time, while white nodes are never observed. The dashed lines denote non-causal spurious
correlations. Each subfigure represents a possible source dataset distribution with the same mediator.
In (a) V 1 is a shortcut, in (b) V 2 is a shortcut, and in (c) V 1 and V 2 are shortcuts.

In this paper, we present a causally-motivated teacher-student framework called Teaching Invariance
using Privileged Mediation Information (TIPMI) that mitigates shortcut learning. Instead of relying
on shortcut information, TIPMI leverages privileged information that mediates the causal effect of
the target label on the features, which we refer to as privileged mediation information. We consider
mediators that are available at training time but expensive to collect at test time, such as clinician
annotations of X-rays. Our approach addresses the limitations of work that relies on known shortcuts
by relaxing the restrictive overlap assumptions. In addition, we do not assume known shortcuts but
rather require knowledge of mediators, which are typically known to domain experts.

Our contributions are as follows: (1) We propose a causally-motivated knowledge distillation frame-
work to discourage shortcut learning. (2) We empirically demonstrate that our approach is better
at promoting invariance compared to baselines that utilize privileged shortcut information. (3) We
theoretically show that TIPMI leads to better finite-sample efficiency than self-distillation and meth-
ods that use privileged shortcut information. (4) We investigate the empirical performance of our
approach using two image datasets and one language dataset, showing that our approach leads to
more robust and efficient models without restrictive overlap assumptions.

2 Preliminaries

2.1 Problem Setting

We consider a supervised learning setting where we wish to learn some model f : X → Y . We
assume that we have access to privileged mediation information M , a variable that fully mediates the
causal relationship between Y and X . In the KOA example, X and Y represent the X-ray and the
presence/severity of KOA, while M could represent an expert segmentation of the joint. We assume
that M is available only at training time, which happens in settings where data derived from experts
may be difficult to acquire at test time due to limited resources. Throughout, we use uppercase letters
to denote variables and lowercase to denote their value. Our training data D = {(xi,mi, yi)}ni=1
is drawn from some source distribution Ps, where the labels Y are spuriously correlated with X
through a multiple unknown potential shortcuts V 1, V 2, ..., V n. We denote V as a vector containing
all shortcuts. Our goal is to create a model f that is invariant to any shortcut represented in V .

We assume that the training data is generated in accordance with the causal DAGs in Figure 1,
where each DAG represents a possible distribution. For simplicity, we consider a setting where
V = [V 1, V 2], but we stress that our results hold for V of arbitrary size. The DAGs represent the
anti-causal setting, where X is generated by V 1, V 2 and the mediator M . Here, V 1 and V 2 are
spuriously correlated but not causally related to Y , as indicated by dashed lines. We also assume the
existence of an unknown deterministic function π(X) that can perfectly recover M :

Assumption 1. M can be fully recovered from X by some deterministic function M := π(X).

In the KOA example, spurious correlations include correlations between the KOA status and the X-ray
image quality. This happens, for example, if patients with more advanced KOA are more likely to
receive care in a skilled nursing facility with lower-quality X-rays, while healthier patients receive care
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in large hospitals with high-quality X-rays. However, we assume that medically relevant information
M is constant across all hospitals. Following this example, we assume each target distribution,
denoted Pt, can be obtained by replacing Ps(V |Y ) with the target conditional distribution Pt(V |Y ):

P = {Ps(X|M ,V )Ps(M |Y )Ps(Y )Pt(V |Y )}. (1)

Let P ◦ ∈ P where P ◦ = Ps(X|M ,V )Ps(M |Y )Ps(Y )P ◦(V ) denotes the unconfounded distribu-
tion [32, 11]. Note that unless Ps = P ◦, the Bayes optimal predictor will not be invariant to spurious
correlations between X and Y [32, 48]. This is because there are two open pathways between X
and Y : the front door path, X → M → Y , and the spurious back door path, X → V → Y . Our
approach hinges on using M at training time to discourage the use of the spurious back door path.

2.2 Counterfactual Invariance

Using the potential outcomes notation [42], we denote X(v) as the counterfactual value of X where
some V is set to v, and all other variables remain the same. Since we assume that the association
between V and Y is purely spurious, the predictions made by a robust model should not change
given X(v) or X(v′), where v ̸= v′. Ideally, this property should hold for all possible shortcuts in
V . We say that models that satisfy this robustness property are counterfactually invariant to V . This
definition extends the definition from [48] to account for all shortcuts.

Definition 1. Let V = [V 1, V 2, ..., V n] contain all possible shortcuts under Ps. A model f : X →
Y is counterfactually invariant to V if f(X(vi)) = f(X(vi

′
)) almost everywhere for all vi, vi

′
in

the sample space of V i where i = 1, 2, ..., n.

While counterfactual invariance is a natural property to strive for in a robust predictor, we cannot
verify or directly enforce that a predictor f : X → Y is counterfactually invariant without counter-
factual examples, which are never observed. Instead, previous work has promoted counterfactual
invariance by enforcing conditional independences, or ªsignatures,º that are held by the unknown
counterfactually invariant predictor. For instance, [48, 32, 55] enforce f(X) ⊥⊥ V |Y , where V is
an observed shortcut. These approaches are limited as (i) they only promote invariance to known
shortcuts, (ii) they assume access V at training time, and (iii) they assume strict overlap assumptions,
e.g., 0 < P (Y |V = v) < 1.

3 Teaching Invariance Using Privileged Mediation Information

In this section, we present TIPMI, a novel approach that uses privileged mediation information to
enforce invariance to all unknown shortcuts.

3.1 Counterfactually Invariant Signatures With Mediation Information

Following previous work that constructs signatures of counterfactual invariance through conditional
independence relationships [48], a valid but naïve signature to enforce with mediation information
would be f(X) ⊥⊥ Y |M . This approach is limited as when M is high dimensional, it’s difficult
to enforce with conditional independence tests due to the curse of dimensionality [40, 41]. A more
reliable signature to enforce is f(X) = g0(M), where g0 is the optimal counterfactually invariant
predictor EPs

[Y |M ] and M ,X ∼ Ps. Importantly, the Bayes optimal function under any Ps ∈ P
that satisfies this signature must be counterfactually invariant. We state this in Proposition 1.

Proposition 1. Let Ps be any source distribution consistent with the causal DAGs in Figure 1. Also, let
g0(M) = EPs

[Y |M ] and f0(X) = EPs
[g0(M)|X]. Then g0(M) is an optimal counterfactually

invariant predictor and f0(X) is counterfactually invariant under any distribution in P .

The signature f(X) = g0(M) has several advantages compared to signatures constructed from
conditional independences. First, it can be viewed as a more powerful signature than any conditional
independence relationship, as it enforces all the conditional independencies that are necessary for the
predictor to be counterfactually invariant to V . This is because if f(X) = g0(M) for M ,X ∼ Ps,
then all of the conditional independences of g0(M) must also hold for f(X) under Ps. Critically,
this implies that f(X) = g0(M) enforces conditional independences f(X) ⊥⊥ V |Y for all shortcuts
in V , even if they are unobserved. This means that the signature promotes invariance to all shortcuts.
Furthermore, the mediator signature does not require the overlap assumption 0 < P (Y |V = v) < 1.
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3.2 TIPMI Algorithm

TIPMI trains a teacher to predict Y from M and trains a student to match the teacher’s predictions
from X . The TIPMI signature can be viewed as a semiparametric inference problem, where g0
is some unknown nuisance parameter, and the teacher ĝ is a plug-in estimate of g0 [12, 9]. This
interpretation is useful as it emphasizes the importance of cross-fitting to avoid teacher overfitting [9].

Teacher (Step 1) Train multiple teachers using cross-fitting:

1. Generate K-fold partitions I1, I2, ..., Ik of the training data |D| = N , where |Ik| = N
K

.

2. For each fold k ∈ {1, ...,K} and a suitable loss function ℓg, train a teacher model on the
combined folds Dc

k = {(mi, yi)}i∈Ic

k
where Ick := {1, 2, ..., N}\Ik as follows

ĝk = argmin
g

1

|Dc
k|

|Dc

k
|

∑

i=1

ℓg(g(mi), yi)

3. For k ∈ {1, 2, ...,K}, use the teacher models to generate new datasets where ŷi = ĝk(mi):

Dk = {(xi, ŷi)}i∈Ik

4. Combine the datasets generated by each teacher to create the final dataset for the student:

Dcf = D1 ∪ D2 ∪ ... ∪ Dk

Student (Step 2) Using the cross-fitting dataset Dcf , we train the student using the mean squared
error (MSE) so that the students predictions match the teachers:

f̂ = argmin
f

1

n

n
∑

i=1

(f(xi)− ŷi)
2.

4 Efficient Learning Using Privileged Mediation Information

In this section, we analyze the finite-sample properties of TIPMI and show that it leads to better
finite-sample efficiency by comparing it directly to self-distillation (SD). We restrict the analysis to
settings where the training and testing distributions are the unconfounded distribution P ◦, as we are
only interested in how fast each method can learn invariant features rather than the robustness of the
predictors. To simplify our exposition, we consider the special case of linear binary classifiers, where
the teacher models take the form of g(x) = σ(wTx), ℓg is the squared loss, and σ(x) denotes the
sigmoid function. Extensions of our analysis to DNNs can be done using tools presented in [16].

GSD := {g : x → σ(wTx), ∥w∥2 ≤ A}
GTIPMI := {g : m → σ(wTm), ∥w∥2 ≤ A}

Our results are a direct corollary of Lemma 4 in [9], which shows that the students models performance
increases as the teachers predictions get closer to the Bayes optimal probabilities. Following this
insight, we show that, in general, the teacher estimation error under TIPMI is much lower than the
error under SD. To prove this, we present an upper bound on the teacher estimation error using the
Rademacher complexity. A formal definition of the Rademacher complexity, the full generalization
bounds, and additional analysis comparing TIPMI to other methods are in the Appendix.

We start by defining M as an d× n matrix where the columns are mediators m that span the sample
space of M . We define the projection matrix Π := M(MTM)−1MT , which projects any vector
onto M where m∥ := Πx and m⊥ := (I − Π)x. Here, we can think of m⊥ as the part of x
that contains all irrelevant or spurious information and m∥ as the part of x that contains mediator

information. Similarly, we define w∥ := Πw and w⊥ := (I −Π)w.

Proposition 2. Let m∥ := Πx and m⊥ := (I −Π)x, and R(G) be the Rademacher complexity

of some function space G. For training data D = {(xi,mi, yi)}ni=1 where D ∼ P ◦, also we have

that sup
m⊥

∥m⊥∥2 ≤ B⊥, and sup
m∥

∥

∥m∥

∥

∥

2
≤ B∥. Then

R(GSD) ≤
A
√

B2
∥ +B2

⊥
√
n

and R(GTIPMI) ≤
A ·B∥√

n
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Proposition 2 shows the upper bound for the Rademacher complexity of the TIPMI teacher is always
smaller than or equal to the bound of the SD teacher. These results are similar to Proposition 5 in [32],
which shows that leveraging privileged shortcut information can reduce Rademacher complexity.
However, unlike [32], our results reduce the Rademacher complexity with respect to all shortcuts.

5 Experiments

In this section, we empirically demonstrate that TIPMI (1) promotes invariance to multiple unknown
shortcuts, (2) works when the shortcut and target labels have no overlap, and (3) has better finite-
sample efficiency than the baselines. Additional experiments and information are in the Appendix.

Datasets. Waterbirds is a binary image classification dataset comprised of waterbirds and landbirds
over a water or land background [44]. The objective is to determine the type of bird (Y ) appearing
in an image (X) where the bird type is spuriously correlated with the background (V ) and image
artifacts represented by black patches. For TIPMI, the teacher uses the segmentation of the bird (M ).

Knee osteoarthritis is a binary image classification dataset comprised of knee X-rays (X) where
the goal is to predict if the knee has osteoarthritis (Y ). The diagnosis of osteoarthritis is spuriously
correlated with boxes (V ) in the X-ray, which are supposed to mimic metallic tokens [54]. The teacher
is provided joint space width measurements (M ), which we assume fully mediate the diagnosis [20].

Food Review dataset is derived from the Amazon Food Review [33] dataset that contains reviews
(X), review scores (Y ), and summaries of the reviews (M ). To create shortcuts, we add perturbation
(V ) to the words ªaº and ªtheº such that ªaº becomes ªaxxxxxº and ªtheº becomes ªthexxxxxº [48].
An additional shortcut is added similarly. We use this dataset for sensitivity analysis as we expect the
mediator does not fully mediate the causal effect of Y on X , which is a violation of our assumptions.

Baseline Algorithms Our experiments analyze TIPMI, which is our proposed method. We also
conduct an ablation study to highlight the importance of cross-fitting with TIPMI-NC, which
doesn’t use any form of sample splitting. For baselines, we use MMD, which enforces the signature
f(X) ⊥⊥ V |Y [48], GDRO [44], IRM [1], L2 regularization, and SD.

Experiments At training time, for some shortcut(s) V , we fix Ps(Y |V ) to a distribution such that
Y and V are spuriously correlated. At test time, we sample the data from different test distributions
where Pt(Y |V ) varies. We measure the area under receiver operating curve (AUROC) on each of the
test distributions. A counterfactually invariant model’s performance will remain the same across all
distributions, whereas the performance of a model that relies on shortcuts will vary significantly.

5.1 Invariance Without Overlap

We analyze how well each method promotes invariance to a single shortcut when overlap with respect
to the shortcut and label is violated. Both IRM and MMD were not evaluated as they are not well
defined in this setting. In Figure 2, the bottom subplots report the results from where the training data
was sampled from a spuriously correlated distribution with P (Y = 1|V 1 = 1) = P (Y = 0|V 1 =
0) = 1.0. For both the waterbirds and KOA datasets, TIPMI has a similar performance to L2 in
distribution and better performance in all other distributions. We also note that in the waterbirds
and food review datasets, TIPMI outperforms TIPMI-NC by a significant margin, suggesting that
cross-fitting can help enforce our signature. However, there is no difference between TIPMI and
TIPMI-NC under the KOA dataset. This is expected as the teacher used in these experiments is a
small, single-layer neural network, which is less prone to overfitting than the large networks used
in the other experiments. GDRO does no better than L2 in all three experiments, highlighting a
significant limitation. This happens as GDRO minimizes the prediction error for the worst-performing
group, where the group is defined with respect to the shortcut. In the case with no overlap, some of
these groups are not observed, which means GDRO does not control their error. From our analysis of
the food review experiments, we showed that TIPMI promotes invariance even when our assumptions
of full mediation are violated. Here, TIPMI performs better for most distributions but performs worse
for distributions close to the training distribution.
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A Related Work

Learning Using Privileged Information and Knowledge distillation Our work builds upon the
learning using privileged information (LUPI) paradigm [47, 29, 28, 4, 30, 13, 5], which utilizes
privileged information from a teacher to train a student. Most LUPI work focuses on gains in
efficiency or improved interpretability, in contrast to our main focus: robustness. Most similar to our
work are Concept Bottleneck Models (CMBs) [24], which use high-level concepts as PI. The concepts
are predicted by the first model as intermediate values, and a second model uses the concepts to make
a final prediction. Unlike CBMs, TIPMI does not require explicitly modeling M as a function of X .
This is important in settings where M is high dimensional, such as settings where M is an image or
a segmentation (similar to our waterbirds experiment).

Related to LUPI is work on knowledge distillation primarily for the purpose of model compression
and explainable AI [3, 6, 19, 34, 39, 53]. Most similar to our work is [9], which views knowledge
distillation as a semiparametric inference problem to show how cross-fitting and loss correction
can reduce the effects of teacher overfitting and underfitting. Our work extends their exposition by
analyzing the robustness of the student models and highlighting the role of discouraging shortcuts in
achieving additional efficiency gains.

Shortcut learning Previous work on building invariant models explicitly relies on observing a
shortcut or environment variable that can be used to induce the desired invariances [1, 26]. Closest
to our work is [32, 48], who present a causally-motivated shortcut removal regularization scheme
to encourage robustness to a single shortcut by leveraging observed shortcut variables at training
time. While [55] encourages invariance to multiple shortcuts, they still require these shortcuts to be
observed at training time. As discussed in the introduction, our work avoids the limitations inherent to
knowledge or observability of the shortcut/environment label and the full overlap assumption required
for these methods to perform well. Discouraging shortcut learning by using data augmentation has
also been suggested [18, 52, 7, 50]. This approach can work if we have access to a generator for
shortcut transformations, an assumption that we do not make.

B Proofs

Before introducing Lemma 4 from [9], we introduce the following notation. Let G and F be the
student and teacher function classes. Define f0 = argminf∈F RP (f, g0), where RP (f, g) =

EX∼P [ℓf (f(X), g(X))] and the norm ∥f∥F,P = (EX∼P ∥f(X)∥2F )
1

2 . Finally, let ∇f,g be

the Jacobian cross partial derivative, qf,g(x) = E[∇fgℓ(f(X), g(X))|X = x], and γf,g(x) =
EU∼Unif([0,1])[qf,Ug+(1−U)g0(x)]. In conjunction with Proposition B.3, Lemma B.1 can be used to
obtain the full generalization bounds for TIPMI.

Lemma B.1 ( Lemma 4 in [9]). Consider any estimation algorithm that produces an estimate f̂ with

a small plug-in excess risk RP◦(f̂ , ĝ)−RP◦(f0, ĝ) ≤ ϵ(f̂ , ĝ). If the loss RP◦ is σ-strongly convex
with respect to f and F is a convex set, then

σ

4

∥

∥

∥
f̂ − f0

∥

∥

∥

2

F,P◦
≤ ϵ(f̂ , ĝ) +

1

σ

∥

∥

∥
γ⊤
f0,ĝ

(ĝ − g0)
∥

∥

∥

2

G,P◦
(2)

Proposition B.1 (Restated Proposition 1). Let Ps be any source distribution defined under the
causal DAG in Figure 1. Also, let g0(M) = EPs

[Y |M ] and f0(X) = EPs
[g0(M)|X]. Then

g0(M) is an optimal counterfactually invariant predictor and f0(X) under any distribution in P is
counterfactually invariant.

Proof. Let X,M , V ∼ Ps for some Ps. By Lemma 3.1 in [48], g0(M) must counterfactually
invariant. Also, since any counterfactually invariant predictor must M -measurable, g0 must be
optimal.

Under Assumption 1, we have that M = π(X), which means that all information in M can be
recovered from X . Since g0(M) ⊥⊥ X |M , f0 is a function of E[g0(M)|X] = E[g0(M)|π(X)],
which can be written as (with abuse of notation) f(M). Since f0 is only a function of M , f0 must
be counterfactually invariant.
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Definition B.1. Let ϵ = {ϵ}ni=1 denote a vector of independent random variables where P (ϵi =
1) = P (ϵi = −1) = 1

2 . Then for the dataset D ∼ P and the function class F , the Rademacher

complexity for a sample of size n is defined as: R(F) = ED

[

Eϵ

[

supf∈F
1
n

∑n

i=1 ϵif(xi)
]]

.

Proposition B.2 (Restated Proposition 2). Let m∥ := Πx and m⊥ := (I−Π)x. For training data

D = {(xi,mi, yi)}ni=1 where D ∼ P ◦, also let sup
m⊥

∥m⊥∥2 ≤ B⊥, and sup
m∥

∥

∥m∥

∥

∥

2
≤ B∥.

Then

R(GSD) ≤
A
√

B2
∥ +B2

⊥
√
n

and R(GTIPMI) ≤
A ·B∥√

n

Proof. First, we derive the bound on R(FSD):

R(GSD) = EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
Txi]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
T (Πxi + (I −Π)xi)]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
T (m∥i +m⊥i)]

≤
A
√

B2
∥ +B2

⊥
√
n

The result for R(GSD) is followed by standard derivations (see [35]). Now we derive the bound on
R(GTIPMI). This proof follows as a result of Πmi = mi,∥ and (I −Π)mi = 0.

R(GTIPMI) = EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
Tmi]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵi(Πw
Tmi + (I −Π)wTmi)]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵi(w
T
⊥mi +wT

∥ mi)]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵi(w
T
⊥(Πmi + (I −Π)mi)

+wT
∥ (Πmi + (I −Π)mi))]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵi(w
T
⊥m∥i +wT

∥ m∥i)]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
T
∥ m∥i]

≤ A ·B∥√
n

Once again, the result for R(GTIPMI) is followed by standard derivations (see [35]).

Proposition B.3. For training data D where D ∼ P ◦, ℓg set to the squared loss, and A and B∥

defined in Proposition 2, then

∥ĝ − g0∥2GTIPMI,P◦ ≤ 2A ·B∥√
n

+ 5

√

2 ln(8/δ)

n
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Proof. We start by decomposing the teacher estimation error:

E[(ĝ(M)− Y )2] = E[(ĝ(M)− g0(M))2]

+E[(g0(M)− Y )2]

Since ℓg is the squared loss, i.e., ℓg(g(m), Y ) = (g(m)− Y )2, we get that

∥ĝ − g0∥2GTIPMI,P◦ = R(ĝ(M), Y )−R(g0(M), Y )

Finally, we use standard Rademacher complexity bounds [45]

∥ĝ − g0∥2GTIPMI,P◦ ≤ 2R(GTIPMI) + 5

√

2 ln(8/δ)

n

and apply Proposition 2 to obtain the final result.

C Comparing TIPMI and MMD

To demonstrate how TIPMI can have better finite-sample efficiency compared to MMD, we consider
a scenario where data is drawn from the unconfounded distribution P ◦. Under P ◦, we only need
to enforce the signature f(X) ⊥⊥ V instead of f(X) ⊥⊥ V |Y , which allows us to expand upon the
finite-sample analysis in [32]. In accordance with the DAGs in Figure 1, we assume the data contains
two independent binary shortcuts V 1 and V 2, as well as a mediator M that is independent of the
shortcuts. Here, we define the MMD function class as:

FMMD := {f : x → σ(wTm), ∥w∥2 ≤ A,MMD(P ◦
ϕi

0

, P ◦
ϕi

1

) ≤ τi for i = 1, 2}

where f = h(ϕ(x)) and P ◦
ϕi
v

:= P ◦(ϕ(X)|V i = v). For a realistic scenario, we assume our training

data includes auxiliary labels for only shortcut V1, such that D = {xi, v
1
i , yi} where D ∼ P ◦.

Following [32], for each shortcut, we define ∆i : µ
i
1 − µi

0 such that µi
v := E[X|V i = v]. Using

∆i, we define orthogonal projection matrices for each shortcut where Πi
⊥ := ∆i(∆

T
i ∆i)

−1
∆

T
i ,

which projects any vector x onto the shortcut subspace. From here, we can define the projection
matrix Π⊥ = Π1

⊥ + Π2
⊥ which projects any vector onto the subspace of all shortcuts. Since X is

generated only by independent components V1, V2, and M , the projection matrix onto the subspace of
mediators can be defined as Π := (I−Π⊥). Therefore, we can define m∥ := Πx and m⊥i := Πi

⊥x.

Similarly, we define w∥ := Πw and w⊥i := Πi
⊥w.

Building off of Proposition 5 of [32], we show that the MMD bound can only produce tight finite-
sample efficiency bounds if 1) all shortcuts are known and 2) the MMD regularizer can effectively
minimize the difference between P ◦

ϕi

0

and P ◦
ϕi

1

.

Proposition C.4. Let m∥ := Πx and m⊥i := Πi
⊥x. For training data D = {(xi, v

1
i , yi)}ni=1

where D ∼ P ◦, also let sup
m⊥i

∥m⊥i∥2 ≤ Bi
⊥, and sup

m∥

∥

∥m∥

∥

∥

2
≤ B∥. Then

R(FMMD) ≤
A ·B∥ + τ1

B1

⊥

∥∆1∥
+A ·B⊥2

√
n
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Proof.

R(GMMD) = EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵiw
Txi]

= EDEϵ[ sup
w:∥w∥

2
≤A

1

n

∑

i

ϵi(Πw
Txi + (I −Π)wTxi)]

= EDEϵ[ sup
w∥:∥w∥∥

2
≤A

w⊥1 :∥w⊥1∥
2
≤A

w⊥2 :∥w⊥2∥
2
≤A

1

n

∑

i

ϵi(w
T
∥ xi + (wT

⊥1 +wT
⊥2)xi)]

≤ EDEϵ[ sup
w∥:∥w∥∥

2
≤A

1

n

∑

i

ϵiw
T
∥ mi,∥]

+ EDEϵ[ sup
w⊥1 :∥w⊥1∥

2
≤A

1

n

∑

i

ϵiw
T
⊥1m⊥1,i]

+ EDEϵ[ sup
w⊥2 :∥w⊥2∥

2
≤A

1

n

∑

i

ϵi[w
T
⊥2m⊥2,i]

≤
A ·B∥ + τ1

B1

⊥

∥∆1∥
+A ·B⊥2

√
n

The first and third terms in the final inequality are from standard derivations (see [35]), and the second
term follows directly from Propositions 4 and 5 in [32].

From Proposition B.4, we can see that unless all shortcuts are known and τi = 0, the finite-sample
efficiency bounds for MMD will be dependent on spurious information. In contrast, the TIPMI
bounds are only dependent on the mediators and how well the teacher can distill knowledge to the
student. This analysis aligns aligns with our empirical findings that show TIPMI is significantly more
efficient than MMD.

D Datasets

D.1 Waterbirds

The waterbirds dataset, which was first introduced by [44], uses labeled images of birds and their
segmentations from the CUB-200-2011 dataset [49]. If the bird is an Albatross, Auklet, Cormorant,
Frigatebird, Fulmar, Gull, Jaeger, Kittiwake, Pelican, Puffin, Tern, Gadwall, Grebe, Mallard, Mer-
ganser, Guillemot, or a Pacific Loon, we classify it as a waterbird; every other bird from the dataset
we classify as a landbird. We use a subset of the places dataset [56], for the background images.
Specifically, we use the 200 land backgrounds and 300 water backgrounds provided by Makar et al.
[32]. Similar to Makar et al. [32], we derive other backgrounds from these images by applying
rotations, manipulating brightness, and zooming in. The manipulated images are obtained from
[32]. In total, our waterbirds dataset is comprised of 8,672 landbirds and 2,483 waterbirds. The bird
images, along with the background images, are randomly split so that 80% of the images are used to
develop the synthetic training sets, and 20% are used for the testing sets.

The teacher models are trained on the segmented images of birds with a black background, which
is the privileged mediation information, as is shown in Figure 4. The student models are trained
on images of birds containing either land or water backgrounds. Background and bird images are
only used once to generate samples for the training and testing datasets. The size of the images is
256× 256 pixels, except for the finite-sample efficiency experiments, which use 128× 128. Example
images taken from one of the generated waterbirds datasets are shown in Figure 5. For an additional
shortcut, we add small black squares randomly placed within an image to simulate camera artifacts.
An example of a landbird with this shortcut is given in Figure 6.

14



(a) Waterbird with no background (b) Landbird with no background

Figure 4: An example of the teacher’s training data for the waterbirds experiments. It consists of
waterbird and landbird images with black backgrounds.

Landbird over water

y = 0, v = 1

Waterbird over water

y = 1, v = 1

Landbird over land

y = 0, v = 0

Waterbird over land

y = 1, v = 0

Figure 5: Examples of generated images used in the waterbirds dataset, where the only shortcut is the
background.

D.2 Food Review

The food review dataset is created from 20,000 randomly selected reviews from the Amazon Food
Review dataset [33]. It contains reviews, the amount of stars (1-5), and a summary of each review.
Each synthetic training dataset contains 16,000 samples, whereas the testing set contains 4,000. To
inject a shortcut into the reviews, we add perturbation to the words ªtheº and ªbeº such that ªtheº
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Figure 6: Example image from waterbirds dataset with two shortcuts. The first shortcut is the
background, and the second shortcut is the black squares that simulate camera artifacts.

Figure 7: An example of the teacher and student’s training data for the CMNIST experiments. The
bottom row of images shows the original CMNIST images that the teacher leverages and the top row
shows the images that the student uses, which have been colored to create a spurious correlation.

becomes ªthexxxxxº and ªbeº becomes ªbexxxxxº, similar to what is done in [48]. For instance,
the review ªThey make the best gummies hands downº is turned into ªThey make thexxxxx best
gummies hands downº. We add a similar shortcut by adding perturbations to the words ªaº and ªtoº
such that ªaº becomes ªayyyyyº and ªtoº becomes ªtoyyyyyº. The labels are binarized such that
Y = 0 for 1-3 stars and Y = 1 for 4-5 stars. We use the summary as the mediator, which is typically
much shorter than the full review.

D.3 Colored MNIST

The colored MNIST dataset is derived from the original MNIST dataset [27], which contains images
of handwritten digits 0-9. The dataset contains 60,000 greyscaled training images and 10,000 test
images that are 28x28 pixels in size. The Colored MNIST dataset is made by injecting color into the
images so that each digit is correlated with one of ten colors. The colors are red, blue, green, brown,
purple, tan, cyan, yellow, orange, and pink. The teacher model is trained on the original black and
white MNIST images, which are the privileged mediation information, whereas the other models are
trained on a colored version of the dataset. Examples of the colored images can be seen on the top
row of Figure 7, and the corresponding original MNIST images are shown on the bottom row.

D.4 KOA

The knee osteoarthritis dataset [36] is comprised of knee X-ray images and joint space width
measurements from the Osteoarthritis Initiative, which is publicly available for download at
https://nda.nih.gov/oai. The knee X-ray images are obtained from the ªOAI12MonthImagesº sub-
dataset. They are stored as a DICOM image and include both of the patient’s knees. We convert each
image to a PNG and split it in half so that each image only contains a patient’s left or right knee.
Each image is then centered and resized to 256x256 pixels. The training dataset is comprised of 80%
of the total 4982 samples, whereas the testing set is the other 20%. The datasets are split so that one
patient’s X-rays could only be in one of the two datasets. To determine if a knee in the X-ray had
osteoarthritis, we use the Kellgren-Lawrence (KL) grades (0-4) [25] that were provided for each knee.
If the knee had a grade of 2, 3, or 4, we classified the sample as having OA (Y=1); if it had a grade
of 0 or 1, we classified it as normal (Y=0). For evaluation, we discard all samples with a KL grade
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Table 1: The distribution of KL grades in the KOA dataset.

KL Grade Number of Samples

0 978
1 671
2 1928
3 1082
4 323

of 2 as it is vaguely defined, and KOA diagnoses labeled with this grade are subjective [37]. The
distribution of the KL grades is provided in Table 1.

To inject spurious correlations into the dataset, we overlay a black box over the X-rays such that the
presence of the black box was correlated with an OA diagnosis. This was done to mimic a metallic
token, which may act as a spurious feature in real-world X-ray classification problems [54]. Examples
of the spuriously correlated KOA dataset are shown in Figure 8. To evaluate how well TIPMI and
the baselines perform when multiple spurious features are present, we also create a dataset with an
additional spuriously correlated white box, as is shown in Figure 9. For the privileged mediation
information, we use 16 joint space width measurements that are provided with each knee X-ray.

Healthy Knee With Token

y = 0, v = 1

OA Knee With Token

y = 1, v = 1

Healthy Knee Without Token

y = 0, v = 0

OA Knee Without Token

y = 1, v = 0

Figure 8: Examples of generated images used in the KOA dataset with a single shortcut.
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Figure 9: Example image from KOA dataset with two shortcuts represented by a white and black
square spuriously associated with osteoarthritis.

E Experiment Setup

Models. For the waterbirds experiments, both the teacher and the student models are ResNet-50
models [17] pre-trained using the ImageNet-1k dataset [43]. For the KOA experiments, only the
student model is a ResNet-50 model pre-trained using the ImageNet-1k dataset, whereas the teacher
is a neural network with a single hidden layer with 1024 neurons. Both the student and teacher in
the CMNIST experiments are models similar to LeNet-5 27 with additional channels added for the
RGB images. For the food review experiments, both the student and teacher models are fine-tuned
BERT-tiny models [2]. All models use the cross entropy loss, except for the TIPMI teacher models,
which use the mean squared error.

TIPMI Implemenation. The TIPMI teacher was implemented as described in Section 3, ªTeacher
(Step 1)º. However, the student was trained by using the MSE to match the student logits with the
teacher logits, not the final probabilities.

Hyperparameter Selection. The hyperparameters for the TIPMI and TIPMI-NC teacher models
are chosen through 5-fold cross-validation using the training set. The hyperparameters for the SD,
TIPMI/TIPMI-NC students, MMD, GDRO, and L2 models are chosen using cross-validation for
each of the 10 simulations. For GDRO and MMD, hyperparameters are chosen based on the highest
worst-group accuracy, whereas those with the best overall AUROC are used for the TIMPI/TIPMI-NC,
L2, and SD models.

For the waterbirds experiments, we perform cross-validation with a learning rate of 1e−5 and L2

penalty parameters with the values [0, 1e−3, 1e−5] for all models except MMD. For MMD, we set
the learning rate to 1e−5, σ = 10, and cross-validate over α = [1e0, 1e1, 1e2, 1e3]. We train each
model using Adam [22] and a batch size of 32, except for MMD, which uses a batch size of 256.

For the food review experiments, we perform cross-validation with a learning rate of 1e−5 and
L2 penalty parameters with the values [0, 1e−3, 1e−5] for all models except MMD. For MMD, we
cross-validate over a learning rate of 1e−5, σ = 10, and α = [1e0, 1e1, 1e2, 1e3]. We train each
model using Adam and a batch size of 32, except for MMD, which uses a batch size of 256.

For the KOA experiments, we perform cross-validation with a learning rate of 1e−4 and L2 penalty
parameters with the values [0, 1e−3, 1e−5] for all models except MMD. For MMD, we set the
learning rate to 1e−4, σ = 10, and cross-validate over α = [1e0, 1e1, 1e2, 1e3]. We train each model
using Adam and a batch size of 32, except for MMD, which uses a batch size of 256.

For the CMNIST experiments, we perform cross-validation with a learning rate of 1e−3 and L2

penalty parameters with the values [0, 1e−3, 1e−5]. We train each model using Adam. Batch sizes
used are given for each experiment.

Training Environment. All models used throughout this paper are implemented in PyTorch [38].
We train each model using a Nvidia A40 GPU and 36 GB of memory on a Linux operating system.
All experiments took approximately a month with two Nvidia A40 GPUs.
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