The next frontiers for magnetic monopole searches

O. Gould, I. Ostrovski, a and A. Upret,

¹University of Nottingham, Nottingham, UK ²Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama, USA (Dated: September 17, 2024)

Magnetic monopoles (MMs) are well-motivated hypothetical particles whose discovery would symmetrize Maxwell equations, explain quantization of electric charge, and probe the gauge structure of the unified theoryRecent models predict MMs with low masseinvigorating searches at colliders. However, most theories predict composite MMs, whose production in parton-parton collisions is expected to be suppressed Echwinger process, whereby MM pairs tunnel through the vacuum barrier in the presence afstrong magnetic fields not subject to this limitation Additionally, the Schwinger cross section can be calculated nonperturbatively ther, these make it a golden channelfor low-mass MM searchesWe investigate the Schwinger productionMMs in heavyion collisions at future collideris, collisions of cosmic rays with the atmosphened, in decay of magnetic fields of cosmic orion that a next-generation collider would provide the best sensitivity. At the same time exploiting the infrastructure of industroal extraction and Antarctic ice drilling could advance the field at a faster timescale and with only a modest in Wesalisent. propose deploying dedicated MM detectors in conjunction with cosmic ray observatories to directly investigate if the unexplained, highest energy cosmic rays ar **EddM** ther, the proposed efforts would define the field of MM searches in the next decades.

The magnetic monopole (MM) is a hypotheticalticle that carries isolated magnetic chaftenas postization of the electric charge [1\Pirac calculated the smaller than the GUT scale [19]. fundamental magnetic charge, called Dirac charge, to the proliferation of models suggesting low MM masses

$$g_{\rm D} = \frac{\rm e}{2\alpha} \simeq 68.5\rm e, \tag{1}$$

constant.

Dirac MMs are elementary particles with no internato photons, and so perturbative quantum field theory charge that appear in albriants ofgrand unified theories (GUT) that incorporate electromagnetism 32, are composite objects a bound state of carriersof ticles [4, 5]. The mass of a Dirac MM is a free pathe GUT scale, i.e., $\sim 10^{13}$ TeV/c². Howeverin modmass is decreased accordinguch MMs could be proproton decay [67,], evading the astrophysicianhits on the-standard-model field theories, with masses as lownessame limitation.

be *n* times larger than the Dirac charge ere *n* is an integer that depends on the glostaructure of the underlying symmetry group [16,]. For examplein the trinification model, where the MM only carries the U and not color magnetic charges fundamentahagnetic charge is three units Dfrac charge [18]n an-

other instance the Cho-Mason MM carries two units of Dirac charge [8\string theories also contain MMs with tulated to exist by Dirac to explain the apparent quamasses that depend on the string scale, potentially much

spurred experiments earches at the LHCln the last few years, searches for production of Ms in p-p collisions were performed thereby ATLAS [20-23] and where e is the proton charge and α is the fine-structule EDAL [24-29]Predicting the rate and kinematics of MM production is difficult because MMs couple strongly

structure.In contrast, solutions with isolated magnetic does not apply, unless appropriate resummation schemes are used [30]. Consequently he leading-order cross section calculations for the assumed Drell-Yan or photonfusion mechanisms hich are used by the searches. the unified and electroweak interactions and other panly be treated as indicative, and the corresponding mass limits are only suited for relative comparisons between rameter, while GUT MMs have masses on the order of experiments Additionally, the quoted searches concentrate on the production of oint-like MMs. This is beels with severastages of symmetry breaking the MM cause the production of mposite MMs is expected to be suppressed by a huge factor $\theta^{\prime\prime}$ in collisions of duced after the inflationary epoch and would not catelezentary particles [32, 33] due to negligible overlap between the initial and final states. A recently proposed this process. Notably, composite finite-energy MM so- approach to search for MM production in collisions of lutions have recently been discovered in several beyonamic rays (CRs) with the atmosphere [34] is subject to

 $\sim 10^{\circ}$ TeV/c² [8-15]Unlike singly charged Dirac MMs, A different production method that overcomes the the fundamentarhagnetic charge predicted by theories bove limitations is the electromagnetic dual of the based on spontaneously broken gauge symmetries nSathwinger mechanism [35-36]ch describes electronpositron pairstunnelling through the vacuum barrier in the presence of strong electric fields. As was shown [38,39], MMs could similarly be produced by (\$hort-lived strong magnetic fields created when relativistic heavy ions pass by each othemportantly the finite size of composite MMs only enhances the production

 $M_{primordial}$

Primordial MMs

accelerated by (inter)galactic

rate [3940], and the rate can be calculated nonperturbatively [40,41]. Additionally, it was shown recently Incoming high energy cosmic ray that MMs could have been produced via the Schwinger effect by cosmological agnetic fields in the early universe [4243]. The first experimental earch for MMs produced by the Schwinger mechanism was carried out by MoEDAL in the ultraperipheraPb-Pb collisions at the LHC, establishing mass limits up to 75 Ge²√at 95% C.L.for 1-3 g MMs [44]. While the sensitivity of such searches willcrease during the upcoming heavyion runs at the LHC, HL-LHC [45], and HE-LHC [46], our projections show that the probed MM masses are unlikely to exceed 200-300 GeWhich does not reach the range suggested by theoreticadels. The projections, whose methodology is described in more details in Ref. [47], are based on full Monte Carlo (MC) simulation of the relevant physicsealistic detector geometry and MoEDAL-like detector, and expected luminosity targets. The question we ask is how one could get to the motivated mass region in the next few decades at all FIG. 1. Illustration of the three different MM sources con-

possible. sidered in this work: a) MMs produced via the Schwinger The paper considers three potential frontiers for nextocess in ultraperipherabllisions of CRs with atmosphere generation MM searches - collisions of CRs with the attaclei;b) MMs produced via the Schwinger process in manmosphere, man-made heavy-ion collisions, and relicanted heavy-ion collisions at a hadron collider; c) primordially primordial phase transitio MsMs predicted by the the- produced MMs. ories cited above most commonly carry magnetic charges from 1 to 3 Dirac units o this investigation focuses on

Low-mass MMs could be continuously created in the quantify this threshold effect by ensuring that the en-Earth's atmosphere when CRs pass by atmosphere next density of the magnetic field integrated over its peak Figure 1 illustrates the conceatcording to Amp`ere'sis greater than the energy of the monopole@miseing such flybysgiving rise to the Schwinger production which lead to larger magnetic field energiosarticuof MMs. The MMs would traveldownwards anddepending on their initiahomentumose allmomentum In what follows, we describe the approach to calculating calculated for relevant pairs confliding ions MM the production rate and trajectories of such MMs.

that range.

law, enormous magnetic fields are generated briefly quently, we concentrate on heavier components of CRs, lar the iron ions. Similarly, while nitrogen is the most abundant element in the Earth's atmospheriesome in the atmosphere, or slam into the surfabe former cases the interaction of CRs with heavier atmospheric elcase, the Earth's magnetic field withart guiding them ements such as oxygen, argon, or xenon results in higher towards the poles, where they will eventually touch domain rates. The Schwinger production cross secmagnetic chargend incoming CR energy is then com-

and energylimiting the production of composite MMs.

 N_{7}^{14}

The production cross section and center-of-mass kimmered to the Standard Model (SM) inelastic cross section matics are calculated following the formalism develogedure 2). The latter accounts for competing processes in Refs. [41, 48] be conservative, we use the smallethast could destroy the CR before it produces a MM. We the two cross section approximations described in themetory a toy MC to evaluate the fraction of such cases. erencesThe electromagnetic fields, E and B, produceThe mean free paths for both interactions used in the by each considered ion are computed by integrating the down draws depend on the elevation that the devation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by integrating the down draws depend on the elevation are computed by the down draws depend on the elevation are computed by the down draws depend on the elevation are computed by the down draws depend on the elevation are computed by the down draws depend on the elevation are computed by the elevation Li'enard-Wiechert potentials over classical nuclear climangeroximated by a seriescofe hundred layers with distributions inferred from elastic scattering [49451].different average densities and composition, from the surto the boost from the center-of-mass to the Earth frafaes, up to the K'aam line, that are modeled according the produced MMs would be highly relativistic (Lorentz the NRLMSISE standard atmospheric model WS). factors, or y, of up to^5 10nd propagate towards the sufind that for all relevant MM masses and initial energies, face. The flux of incoming CRs is calculated using theno more than 1 in ~ 10 CR ions will produce a MM Global Spline Fit [52],a data-driven modethat charbefore experiencing an inelastic procesis estimate acterizes the flux and composition from 10 GeV¹to 10conservatively ignores MM production from secondaries, GeV. Protons are the most abundant component of the could yield a few times more MMs, given that the CRs but produce a magnetic field with small total volbindeest fragmentation branching ratios for heavy nuclei

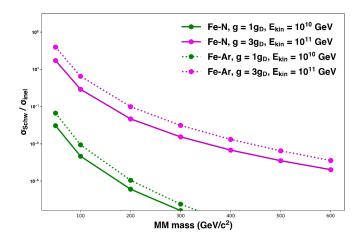


FIG. 2. The ratio of Schwinger MM production and inelastic scattering cross sections as a function of MM Stockist lines correspond to collision of CR iron ions with atmospheric nitrogen, while dash lines correspond to Fe-Ar collisions lines correspond to initia ${\rm IR}$ energy of ${\rm 10^{10}}$ GeV and MM with 1 Dirac chargeMagenta lines correspond to CR energysions as the function of the collision energyexpected enof 10¹ GeV and MMs with 3 units of Dirac charge.

with A nucleons are to A - 1 or A - 2 [54]. Evaluating possible experimental searches detailed later, we flocation close to the interaction pointgh efficiency) that \leq 80 GeV/ c^2 , which are already excluded [5454]. It is worth emphasizing that this conclusion contradicts the claim that CR-atmosphere collisions set leading limits on 1-100 TeV/c MM [34] because the latter work is not a for primordial MMs arriving to Earth as high-energy

by most modern models.

sions. Currently, two similar proposals exist for the next-generation hadron collidene FCC-hh [56] and tentatively expected to start 40-45 years from now [58hihilate efficiently [66for the case of eavy GUT-The latter is expected to reach 125 TeV and begin costcale MMs this created the so-called MM problem. struction in at least 20 years [59]gure 3 shows provia the Schwinger effect at the next collide he calculation assumes the ultimate scenario fofthe integrated luminosity offb-Pb collisions (110 nb) for samemethodology asn Ref. [47]. Additionally, we sume that future general-purpose collider detectors withcess in primordial magnetic fields [42843].lowallowing them to combine their high efficiency (assumed action also suffers from uncertainties the prop-50% here [61]) with sensitivity to magnetic charges beighter of the primordifields are currently not wellsome of the existing models.

away, we turn our attention to the third frontier - seadishovery motivates these searelspecially if existing

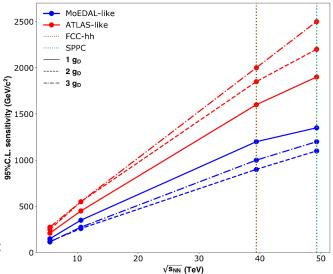


FIG. 3. Expected sensitivity of MM searches in Pb-Pb colliergies for the FCC-hh and SPPC machines are marked by the brown and jade dashed vertidiales, respectively The blue lines correspond to a MoEDAL-like detector (location farther away from the interaction point, low efficiency), while the red dot-dashed line corresponds to a general-purpose like detector that this channels only sensitive to MMs with masses is optimistically assumed to have zero background and able to detect multiply charged MMs.

plicable to composite MMs, which are the type predicted in theories based on broken symmetries are expected to have been produced in the early uni-The next considered frontier is the man-made colliverse when the temperature was on the order of the relevant phase transitioThe freeze-in of long-wavelength fluctuations through the transition is predicted to pro-SPPC [57]. The former is foreseen as a 100 TeV machinece a finite density of MMs [62-65], which then do not ever, this conclusion depends on relatively unconstrained jected sensitivity to MMs produced in Pb-Pb collisionsearly universe cosmology, including inflation and reheating. Crucially, if the reheating temperature is lower than the phase transition temperaturen MMs would not be formed this way. The reheating temperature could both the FCC-hh and SPPC machines and follows the be as low as a few MeV, yielding weak constraints on MMs [67]. More recently thas been realized that ananticipate progress in the detector technology and asther potentiasource of cosmic MMs is the Schwinger be able to overcome the difficulties with reliable detenass and heavy MMs could have been produced by the tion and reconstruction of highly ionizing particles [69] hwinger process in the early universe, but this mode of than 1 ផ្. As the Figure shows, a 100-125 TeV machi**de**rstood.Consequently, the disadvantage of all searches will reach sensitivity to TeV/dMM massesaddressing for primordialMMs is the inability to conclusively exclude the existence of MMs with a given mass, charge in With the next-generatio collider several decades case of a null result. Nevertheles the possibility of

infrastructure could be exploited to minimize costs. 10 what follows, we propose three experimential ections and quantify their readbising detailed simulations and calculations, we demonstrate that the proposed searches are feasible and will lead to world-leading sensitivities to low-mass MMs during the next few decables choose the two staple detection methods that are optimized for detecting magnetic charge - NTDs and SQUID. The foe- 101 mer are inexpensived ow covering of large areas while having practically zero SM backgrounds [44] tack of NTDs can also allow differentiating between electric and magnetic charges by registering an increase or decrease of ionization density in subsequent layershe latter method is the most direct and reliable way to identify an isolated magnetic pole bound to baryonic matter [68-74].

We assume that the flux of MMs produced in the early universe would be isotrop@iven the estimated strength and coherence length(sipter-)galactic magnetic fieldsMMs lighter than ≤10 TeV/c² would not be gravitationally bound to the galaxy and acquire relaGeant4 simulation used in this worke insert shows the tivistic velocities recent investigation allows for a wideergy loss of low-moving MMs versus the MM's βdomrange of vs of 1 g MMs passing by the Earth [75] o dially produced MMswe first simulate incoming MMs (red) for Lorentz factors above \$10 with a given masshargeand Lorentz factor when entering the Earth's atmospheren by The MM physics, transportationand energy losses are implemented us Figure 5 shows the increase in the ratetofichdowns ing the Geant4 toolkit [76]. The MM's ionization energy losses are modeled using the formalism described low-mass MMs within of 1 to 1000depending on in Refs.[77-79that provide an accurate description of the mass.While the exact location of the Earth's magtotal energy loss from non-relativistic (down to β of 10^3) to highly relativistic (y up to 10^3) MMs. Pair production and bremsstrahlung are implemented as scribed in Ref. [80] and begin to dominate energy log at higher energies (see Figure 4), with bremmsstrahl being the largest contributor for the MM masses considered hereNot included is the contribution from the photonuclear effect that competes with pair producti at Lorentz factors above 100 tonly weakly affects the results. The simulation geometry includes the Earth's surfaceatmosphereand an approximate description of the considered experimente atmosphere is simulated as described earlieThe Geant4 implementation of the Earth's magnetic fieldrucialto simulate the trajectories of low-mass MMs, is based on the MAGNETOCOS-MICS model [81]. The modelincludes both the Inter-

nationalGeomagnetic Reference Field (IGRF) [82년 externamagnetospheric field [83]he latter describes the field's asymmetry due to the solar wind.

The first experiment would take advantage for assphere and be guided by the Earth's magnetic field toveraged over a few thousand years [840n hitting

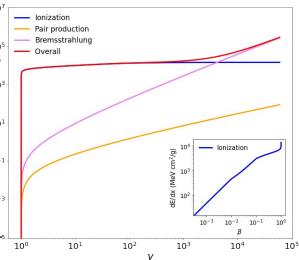


FIG. 4. Energy loss of a 100 GeV/c1 g_D MM in the atmosphere as a function of its Lorentz factoras implemented inated by ionization (blue). Pair production (yellow)and calculate the sensitivity of a given experiment to pringer strahlung (pink) begin to dominate the total energy loss

near the magnetic poles predicted by the simulation for

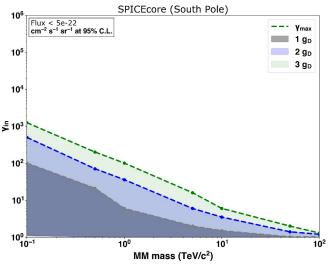



FIG. 5. The relative surface density of MMs touching down near the Earth's magnetic poles vsthe distance from the poles. The density spikes in the vicinity of the poles for MMs slow enough to be picked up by the Earth's magnetic field.

tructure developed at the south paleur simulations netic poles is subject to the geomagnetic secular variashow,MMs with low yn would slow down in the atmo-tion, it coincides with the Earth's geographic poles when wards the magnetic poles (also known as "dip" polesthe surface, the MMs will quickly lose the remaining kiproducing an overabundance of touchdowns in thesentextice energy and get trapped by protons of the ice with a areas, making them a naturabocus for future searches, binding energy of 15-1000 keVI[69]ce could then be

analyzed by a SQUID magnetometer for an unambigu signature of an isolated magnetic charge - the persis current. The South Pole Ice Core (SPICEcore) project drilled a 1751 m deep core in the ice near the geogra pole [85] At its maximum depth the SPICE core samples date back ~54k years [806]ring that period, the Earth's magnetic field varied considerably [87]articular, the polarity of the field reversed briefly (for a €10 hundred years) during the Laschamp excursion rougl 42k years ago. The polarity of the Earth's field does not affect the accumulation MMs, since they are always created in pairs of opposite polarityestimated that the average virtual xial dipole moment was 10-20% higher 50k years ago than nowefore decreasing by a factor of two 40k years at men recovering to the peak value two thousands years ago, and finally deci ing again by 10-20% to the present Value agnitude

of the Earth's field affects the fraction of MMs that are G. 6. Expected 95% C.L. exclusion limits on the flux of cospicked up by the fieldowever, due to a large disparitynic MMs if none are found to be trapped in the SPICEcore between the initialinetic energy of a MM and the po-samplesFluxes of MMs with masses and initial Lorentz factors in the shaded regions are exclude Grey, indigo, and tentialenergy of the Earth's magnetic field, factor of two difference in the strength of the latter translates green lines correspond to MMs with 1, 2, and 3 units of Dirac just several tens of meters of the deceleration path in harge, respectively he dashed lines show the boundaries of atmospheres does not affect the results appreciably.

The SPICEcore samples are 98 mm in diameter and up to 2 m in length, thus are small enough to pass through

SQUID magnetometers used for MM searches [88]. The locations are known by direct measurements since National Science Foundation Ice Core Facility (NSF-ICF) 09 and remain on-shore untailed 1960s. The samcurrently stores 13.2 cubic meters of ice from the driples need to be extracted from only a couple effers activity [89]Scanning the existing samples could be alepth. While each sample would correspond to roughly complished in about a year exact flux limit dependsone year exposure, the overabundance of touchdowns for on the value of the overabundance of touchdowns at MMs for small k would be equivalent to more than 10 drilling location averaged over the agetoe samples, yrs of accumulation at a location far away from the dip which is difficult to calculate accurately, we assume poles.

exact location of dip pole, giving the 95% C.L.flux limit of approx $<5.10^{-22}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$ for 1-3 g MMs with masses from 0.1 to up to a 100 TeV/This flux limit, shown in Figure 6is substantially below the recently updated (seed-)galactic Parker bounds[75]. stronger than limits from other experiments [90, 91] engline area, comparable to the cited propossalshing only applies to MMs with ny not exceeding the value of a 10-year exposurte expected 95% C.flux limit is 1 to 1000, depending on the MM's mass The experiment could be organized quickly, only requires a modest 0.1 to up to a 100 TeV/cComplementary to the investment, and uses a detection technique that prospectore proposalthe limit for this frugaland more an unambiguous, background-free signature of magnetifistic option applies to a region exceeding values charge. Other polar ice projects could also be included f $\sim 10^\circ$ to $\sim 10^\circ$, depending on the mass (Figure 17). if possible. Notably, the Vostok ice core project has ac surpasses current experiments [90, 91] for places cumulated ~40 frof samples [92]While less sensitive than 7-9, depending on the mas An NTD array can due to being extracted farther away from the geographic cover the fullegion of Lorentz factors and masses pole, these samples are interesting due to dating as farplaced as close to the present locatiothefEarth's back as 420k years of averaging over sevecycles of

the Earth's magnetic field variation nally, an exper-

an overabundance that is two orders of magnitude lowAhother approach is deploying a much larger array of than the maximum overabundance corresponding to the standard was used by previous experime standard proposals were made earlier [93, 94], aiming to place the array on a mountain substantially above the sea level to improve sensitivity to low masses and ySince such a placement is challenging and expensive first consider a ground-levMITD array, with an 50000 mcov- $<3.0\cdot10^{18} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ for 1-3 q_0 MMs with masses magnetic pole as practical would additionally collect the contribution from MMs that slowed down in the atiment could extract smittle core samples from the ex-mosphere and were transported by the Earth's magnetic act historicallocations of the geomagnetic south pole field. This addition, like with the SPICEcore, would im-

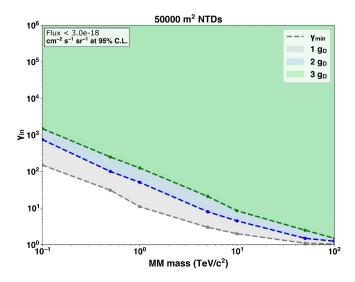


FIG. 7. Expected 95% C.L. exclusion limits on the flux of cosmic MMs if none are detected by the 50kMnD array after a 10-year exposuFeuxes of MMs with masses and initial Lorentz factors in the shaded regions are exclGdexd. indigo, and green lines correspond to MMs with 21, and 3 units of Dirac charge, respectivehe dashed lines show the boundaries of the minimum initial Lorentz factors.

prove sensitivity to MMs with low masses and The closest permanent stations that could provide supported of ~8000 m A 50000 m NTD array would then the lower-energy MMs guided by the Earth's magnet HECRs [105] the expected rate of HECRs with >4 the deploymentwould passthrough severalayers of NTDs, producing a characteristic signature.antarctic placement still suffers from being remote and assMWs trapped in the Earth-based rocks [106] deep of smally_{in} is estimated to be <2.0.120 cm⁻² s⁻¹ sr⁻¹ TeV/c². In case of acandidate eventhe materiabelow the specific NTD stack could be investigated for these by some facilities every the artypical factory, posed large-area NTD deployments is the time and costal operating hours each year [11/09] pperating com-

layer(s) ofdedicated electronic detectors that direct

NTD sheets, they could pinpoint the location of an-

NTDs is at a cosmic ray observatory, such as the Pierre Auger Observatory, Large High Altitude Air Shower Observatoryor Telescope Array ProjectSome of the detected ultra-high energy cosmic rays (UHECRs), defined as CRs with an energy greater than 1 EeV, do not have trajectories pointing back to any plausible astrophysical sources [97and have energies larger than what could be explained by the known acceleration mechanisms and what is possible for known particles of remote, intergalactic origin [98-100¶.has long been suggested that UHE-CRs are primordial low-mass MMs [101] because they are expected to be accelerated to similarly large energies by the intergalactic and galactic magnetic fields and have trajectories not pointing back to specific sources recent detection of the Amaterasu particle [97] has reinvigorated such discussions [110023]. While the Pierre Auger Observatory has published a MM search [91], the experiment is not directly sensitive to magnetic charge and relies on understanding of the MM's air shower profile, which is subject to model-dependent uncertainties. In contrast, placing large arrays of TDs or other detectors that are reliably sensitive to magnetic charge on the territory of cosmic ray observatory could directly check the hypothesis of the MM origin of UHECRis. UHECR's shower core can be located by the observatory with a 50 m resolution [104], corresponding to the ground

(in order of increasing distance from the current location ufficient to provide a coincidence measurement, with of the south magnetic pole) are the French's Dumonthe UHECRs' reconstructed position serving as a definid'Urville Station, Russian's Vostok Station, and the Utique trigger for the NTD scasuch an array would only South Pole Station the latter two located at the geo- cover a small fraction of the total surface area monitored magnetic and geographic south poles, respectively. by the observator however, given the measured flux of field and higher-energy ones that impact directly above detected in coincidence with the NTD array would be 1 every 5 to 6 years.

Lastly, we consider bringing the earlier searches for ated high costs but is perhaps more advantageous the sediments [107, 108] to the next level by exploiting inthe mountain alternative he flux limit for the region dustrial capabilitie slowed-down MMs are expected to bind to iron and aluminum nuclei with large binding enerfor 1-3 g_D MMs with masses from 0.1 to up to a 100 gies [69, 70] the production of these metals is currently performed on a vast scale, with ~1M tons of raw ore propresence of a stopped, bound MM using a magnetomateshed ore is transported by one or more conveyors at While NTDs are inexpensive, a big challenge with all speeds of up to several meters per second for up to 5k anneeded to chemically etsban, and analyze such large pany may allow installing a bypass equipped with one or areas. A promising way to alleviate this is by adding more SQUID magnetometers through which just a small fraction of the total ore would pass, perhaps motivated by the NTDs, inexpensive and sensitive only to highly iopublicity and outreach considerations.estimate the izing particles [95]Segmented in a way similar to the sensitivity of this approach, we consider one concrete example. The iron ore deposits at the Carajas-Serra Norte didate eventsdrastically reducing the NTD area that mine in ValeBrazil, are ca. 1590 Mtons [110f grade needs to be processed analysis step could be further igher than 64% Fe and estimated exposure time of 2.7G sped up by emerging machine learning techniques [9/@ars [111]Based on our calculations; ocessing of 1k An important potential placement for an array of tons of iron ore per year (just $\sim 0.001\%$ of total processed

by the company) for one year will result in 95% C.L. flux key point is that this work goes beyond setting flux limits of $<5.5 \cdot 10^{2}$ cm⁻² s⁻¹ sr⁻¹ for 1-3 g MMs. The limits based on indirect observations by non-dedicated limits, shown on Figure 8, are extremely strong but apply riments The MM production cross section for the to the specific range of dictated by the location of the chwinger process is calculable nonperturbatively and is deposits and MMs' energy los@ther mines, e.g., the not subject to the exponential ppression for compos-Weipa bauxite mine, Mount Whaleback, and Sischen item MMs, while the proposed primord MM detection ore mines, would provide similar sensitivity for differefforts are unambiguously sensitive to magnetic charge. ranges of in depending on the depth of the deposits. Consequently even a negative result of the proposed

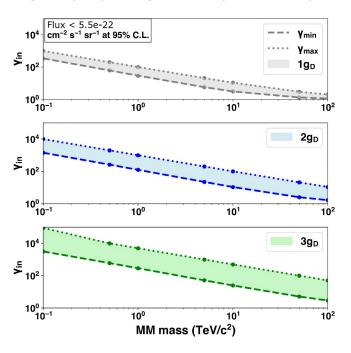


FIG. 8. Exclusion limits on cosmic MM flux as a function of mass and initial Lorentz factor. The limits correspond to a null result of scanning 1k tons ofron ore deposits in Vale, Brazil. The shaded regions are exclude the dashed (dotted) lines show the boundariestone min (max) initial Lorentz factors Grey, blue, and green colors corresponds to MMs with 1, 2, and 3 units of Dirac chardeeposits of iron and aluminum ore in other locations could allow similar limits for different ranges of initial Lorentz factors, depending on the depth of the deposits.

To summarize the proposed experiments would pro- [3]A. M. Polyakov, JETP Lett. 20, 194 (1974). vide world-leading sensitivities to low-mass MMs until [4]L. Patrizii and M. Spurio, Annu. Rev. Nucl. Part. Sci. the next hadron collider turns of two to four decades from nowWhile null results would not be as informative 5]N. E. Mavromatos and V. A. Mitsou, Int. J. Mod. Phys. as that from a Schwinger production experiment at a col-A **35**, 2030012 (2020). lider, they offer the best chance of a discovery at a small (2001). fraction of the cost and effort, bringing the long-standing K. Olive and P. D. Group, Chin. Phys. C 38, 090001 quest for isolated magnetic charge closer to completion. (2014).

This study has focused on the unique electromagnet[8]Y. Cho and D. Maison, Phys. Lett. B 391, 360 (1997). interactions f MMs. For composite MMs, there are model-dependent non-electromagnetic interactions which 75, 67 (2015).

are typically limited to the region of the MM carred [10]J. Ellis, N. E. Mavromatos, and T. You, Phys. Lett. B are typically limited to the region of the MM correct which may yield additional signaturbe.cross section calculation used in this work is also known to be conservative. Future development in this area is likely to [12]S. Arunasalam and A. Kobakhidze, Eur. Phys. J. C 77, strengthen the projections.

collider searches would reliably exclude the existence of MMs with specific masses and charges, while the results of cosmic searchesspecially conducted in conjunction with the CR observatories ould confirm or refute the suggestion that UHECRs are MMs.

Acknowledgments. This work is supported by the NSF grant 2309505 and by a Dorothy Hodgkin Fellowship from the RoyalSociety. We thank Ryan Plestid and Marcos Santander for valuable discussions during the early stages of this wookstrovskiy thanks Chen Zhang for answering questions about monopoles in cosmology. Upreti thanks Curtis La Bombard for details and clarifications about the NSF-Ice Cores.

Author Contributions. Simulations statistical analysis, results, and figures were produced by A. Upreti. Theoreticabalculations of the Schwinger production rates were done by Could who also helped edit the manuscriptl. Ostrovskiy conceived and supervised the project, wrote and edited the manuscripall authors have read and agreed to the finælrsion of the manuscript.

Data Availability Statement. Data supporting this study is available upon requeste code for computing the electromagnetic fields of ion pairs is available at [112]. The code for generating the sensitivity plots is available at [113].

Corresponding authorostrovskiy@ua.edu

- [1]P. A. M. Dirac, Proc. R. Soc. Lond. 133, 60 (1931).
- [2]G. Hooft, Nucl. Phys. B **79**, 276(1974).
- **65**, 279 (2015).

- [9] K. Kimm, J. H. Yoon, and Y. M. Cho, Eur. Phys. J. C
- **756**, 29 (2016).
- [11]N. E. Mavromatos and S.Sarkar, Phys. Rev. D 95, 104025 (2017).
- 444 (2017).

- [13]N. E. Mavromatos and S.Sarkar, Phys. Rev. D 97, 125010 (2018).
- [14]P. Q. Hung, Nucl. Phys. B **962**, 115278 (2021).
- [15]F. Blaschke and P. Bene sprog. Theor. Exp. Phys. 2018, 073B03 (2018).
- [16]E. Corrigan and D. I. Olive, Nucl. Phys. B **110**, 237
- [17]D. Tong, JHEP **07**, 104 (2017).
- [18]G. Lazarides and QShafi, Phys. Lett. B 818, 136363
- [19]X.-G. Wen and E. Witten, Nucl. Phys. B 261, 651 (1985).
- [20]G. Aad, T. Abajyan, B. Abbott, et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 261803 (2012).
- [21]G. Aad, B. Abbott, et al. (ATLAS Collaboration), Phys. Rev. D 93, 052009 (2016).
- [22]G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. **124**, 031802 (2020).
- [23]G. Aad et al. (ATLAS), JHEP 11, 112 (2023).
- [24]B. Acharya et al. (MoEDAL Collaboration), JHEP 08, 067 (2016).
- [25]B. Acharya et al. (MoEDAL Collaboration), Phys. Rev. Lett. 118, 061801 (2017)
- [26]B. Acharya et al. (MoEDAL Collaboration), Phys. Rev. Lett. 123, 021802 (2019).
- [27]B. Acharya et al. (MoEDAL Collaboration), Phys. Lett. B **782**, 510 (2018).
- [28]B. Acharya et al. (MoEDAL Collaboration), Eur. Phys. . C 82, 694 (2022).
- [29]B. Acharya et al. (MoEDAL Collaboration), (2023), arXiv:2311.06509 [hep-ex].
- [30]J. Alexandre and N. E. Mavromatos, Phys. Rev. D 100, [65]A. Rajantie, Phys. Rev. D 68, 021301 (2003). 096005 (2019).
- [31]S. Baines, N. E. Mavromatos, V. A. Mitsou, J. L. Pinfold, and A. Santra, Eur. Phys. J. C 78, 966 (2018), [Erratum: Eur. Phys. J. C 79, 166 (2019)].
- [32]E. Witten, Nucl. Phys. B **160**, 57 (1979).
- [33]A. K. Drukier and S. Nussinov, Phys. Rev. Lett. 49, 102[69]K. A. Milton, Rep. Prog. Phys. 69, 1637 (2006). (1982).
- [34]S. Iguro, R. Plestidand V. Takhistov, Phys. Rev. Lett. **128**, 201101 (2022).
- [35]J. Schwinger, Phys. Rev. 82, 664 (1951).
- [36]W. Heisenberg and H. Euler, Z. Phys. **98**, 714 (1936). [37]F. Sauter, Z. Phys. **69**, 742 (1931).
- [38]I. K. Affleck and N. S. Manton, Nucl. Phys. B **194**, 38 (1982).
- [39]D. L. J. Ho and A. Rajantie, Phys. Rev. D **103**, 115033 (2021).
- [40]D. L.-J. Ho and A. Rajantie, Phys. Rev. D **101**, 055003 (2020).
- [41]O. Gould, D. L.-J. Ho, and A. Rajantie, Phys. Rev. D **100**, 015041 (2019).
- [42]T. Kobayashi, Phys. Rev. D 104, 043501 (2021).
- [43]T. Kobayashiand D. Perri, Phys. Rev. D 106, 063016 (2022).
- [44]B. Acharya et al. (MoEDAL Collaboration), Nature **602**, 63 (2022).
- [45]O. Brüning and L.Rossi, CERN Yellow Rep. Monogr. **10**, 1 (2020).
- [46]A. Abada et al. (FCC), Eur. Phys. J. ST 228, 1109 (2019).
- [47]D. d'Enterria et al., J. Phys. G 50, 050501 (2023).
- [48]O. Gould, D. L. J. Ho, and A. Rajantie, Phys. Rev. D **104**, 015033 (2021).

- [49]H. De Vries, C. W. De Jager, and C. De Vries, Atom. Data Nucl. Data Tabl. 36, 495 (1987).
- [50]J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).
- [51]Z.-F. Cui, D. Binosi, C. D. Robertsand S. M. Schmidt, Phys. Rev. Lett. 127, 092001 (2021).
- [52]H. P. Dembinski,R. Engel, A. Fedynitch,T. Gaisser, F. Riehn, and T. Stanev, PoS ICRC2017, 533 (2018).
- [53]J. T. Emmert et al., Earth Space Sci. 8, e2020EA001321 (2021).
- [54]L. Morejon, A. Fedynitch, D. Boncioli, D. Biehl, and W. Winter, JCAP 11, 007 (2019).
- [55]B. Acharya et al. (MoEDAL Collaboration), Phys. Rev. Lett. **133**, 071803 (2024).
- [56]A. Abada et al. (FCC), Eur. Phys. J. ST **228**. 755 (2019).
- [57]W. Abdallah et al. (CEPC Study Group), arXiv:2312.14363 [physics.acc-ph].
- [58]I. Agapov et al., (2022), arXiv:2203.08310 [physics.acc-
- [59]J. Tang, Y. Zhang, Q. Xu, J. Gao, X. Lou, and Y. Wang, in Snowmass 2021 (2022) arXiv:2203.07987 [hep-ex].
- [60]M. Arslandok, H. Caines, and M. Ivanov, (2024), arXiv:2403.12299 [physics.ins-det].
- [61]G. Aad et al. (ATLAS Collaboration), IHEP 11. 112
- [62]T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
- [63]W. H. Zurek, Nature **317**, 505 (1985).
- [64]M. Hindmarsh and A.Rajantie, Phys. Rev. Lett. 85, 4660 (2000).
- [66]Y. B. Zeldovich and M. Y. Khlopov, Phys. Lett. B 79, 239 (1978).
- [67]O. Gould and A. Rajantie, Phys. Rev. Lett. 119, 241601 (2017).
- [68]K. A. Milton et al., Int. J. Mod. Phys. A 17, 732 (2002).
- [70]C. Kittel and A. Manoliu, Phys. Rev. B 15, 333 (1977).
- [71]C. Goebel, in Monopole '83 J.L. Stone ed., Plenum, 333 (1984).
- [72]L. Gamberg, G. R. Kalbfleisch, and K. A. Milton, Found Phys 30, 543 (2000).
- [73]L. Bracci and G. Fiorentini, Nucl. Phys. B 232, 236 (1984).
- [74]K. Olaussen and R. Sollie, Nucl. Phys. B 255, 465 (1985).
- [75]D. Perri, K. Bondarenko, M. Doro, and T. Kobayashi, (2023), arXiv:2401.00560 [hep-ph].
- [76]S. Agostinelliet al. (Geant4), Nucl. Instrum. Meth. A **506**, 250 (2003).
- [77]S. P. Ahlen, Phys. Rev. **D17**, 229 (1978).
- [78]S. Cecchini, L. Patrizii, Z. Sahnoun, G. Sirri, and V. Togo, (2016), arXiv:1606.01220 [physics.ins-det].
- [79]S. p. Ahlen and K. Kinoshita, Phys. Rev. D 26, 2347 (1982).
- [80]S. D. Wick, T. W. Kephart, T. J. Weiler, and P. L. Biermann, Astropart. Phys. 18, 663 (2003).
- [81]L. Desorgher and others., Int. J. Mod. Phys. A 20, 6802 - 6804 (Ž005).
- [82]P. Alken et al., Earth Planets Space 73, 49 (2021).
- [83]N. Tsyganenko, Planet. Space Sci. 37, 5 (1989).
- [84]in The Magnetic Field of the Earth, International Geophysics, Vol. 63, edited by R. T. Merrill, M. W. McEl-

- hinny, and P. L. McFadden (Academic Press, 1998) pp.[99]K. Greisen, Phys. Rev. Lett. 16, 748 (1966). 217-263.
- [85]. A. Johnson et al., Ann. Glaciol. 62, 75-88 (2021).
- [86]D. A. Winski et al., Clim. Past 15, 1793 (2019).
- pedia of Geomagnetism and Paleomagnetism, edited by lands, Dordrecht, 2007) pp. 159-161.
- M. Koratzinos, and W. S. Steer, J. phys. E. 20, 850
- [89]C. LaBombard, (2023), private communication.
- [90]R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- [91]A. Aab et al. (Pierre Auger), Phys. Rev. D **94**, 082002 [108]R. L. Fleischer et al., Phys. Rev. **184**, 1393 (1969). (2016).
- [92]J. R. Petit et al., Nature 399, 429 (1999).
- [93]J. Pinfold, EPJ Web Conf. **145**, 12002 (2017).
- PoS [94]V. Mitsou (MoEDAL Collaboration), **DISCRETE2020-2021**, 017 (2022).
- [95]I. Ostrovskiy and J. Pinfold, (2014),arXiv:1410.5521 [physics.ins-det].
- [96]A. J. Bevan, Phil. Trans. Roy. Soc. Lond. A 377. 20190392 (2019).
- [97]R. U. Abbasi et al. (Telescope Array), Science 382. abo5095 (2023).
- [98]G. T. Zatsepin and V.A. Kuzmin, JETP Lett. 4, 78 (1966).

- [100]F. W. Stecker, Phys. Rev. **180**, 1264 (1969). [101]T. J. Weiler and T.W. Kephart, Nucl. Phys. B Proc. Suppl. **51**, 218 (1996).
- [87]C. Constable, "Dipole moment variation," in Encyclo- [102]Y. M. Cho and F. H. Cho, Phys. Lett. B 851, 138598 (2024).
 - D. Gubbins and E.Herrero-Bervera (Springer Nether- [103]P. H. Frampton and T. W. Kephart, Phys. Lett. B 855, 138777 (2024).
- [88]J. C. Schouten, A. D. Caplin, C. N. Guy, M. Hardiman, [104]M. Mostafa, Nucl. Phys. B Proc. Suppl. 165, 50 (2007), arXiv:astro-ph/0608670.
 - [105]A. Aab *et al.* (Pierre Auger), Science **357**, 1266 (2017).

 - [106]K. Bendtz *et al.*, Phys. Rev. Lett. **110**, 121803 (2013). [107]H. H. Kolm, F. Villa, and A. Odian, Phys. Rev. D **4**, 1285 (1971).

 - [109]G. Thomas and P. Conley, in Overland bauxite conveying – cable hauled conveyors vs. conventional conveyors (JLV Industries Pty Ltd, 1999).
 - [110]Alessandro Resende at al., "Technical Report Summary - Serra Norte Complex,"(2021),[December 312,021, minedocs.com].
 - [111]A. Trendall et al., J South Am Earth Sci 11, 265 (1998).
 - [112]O. Gould, "emions," https://bitbucket.org/og113/ emions/ (2024), v1.0.0.
 - [113]A. Upreti, "projbox," https://cernbox.cern.ch/s/ whoqoC81rLdvTjP (2024), v1.0.0.