
Journal of Machine Learning Research 25 (2024) 1-37 Submitted 8/24; Revised 11/24; Published 12/24

Contextual Bandits with Packing and Covering Constraints:

A Modular Lagrangian Approach via Regression

Aleksandrs Slivkins slivkins@microsoft.com

Microsoft Research NYC

Xingyu Zhou xingyu.zhou@wayne.edu

Wayne State University, Detroit

Karthik Abinav Sankararaman karthikabinavs@gmail.com

Meta

Dylan J. Foster dylanfoster@microsoft.com

Microsoft Research NYC

Editor: Kevin Jamieson

Abstract

We consider contextual bandits with linear constraints (CBwLC), a variant of contextual
bandits in which the algorithm consumes multiple resources subject to linear constraints
on total consumption. This problem generalizes contextual bandits with knapsacks (CBwK),
allowing for packing and covering constraints, as well as positive and negative resource con-
sumption. We provide the first algorithm for CBwLC (or CBwK) that is based on regression
oracles. The algorithm is simple, computationally efficient, and statistically optimal under
mild assumptions. Further, we provide the first vanishing-regret guarantees for CBwLC (or
CBwK) that extend beyond the stochastic environment. We side-step strong impossibility re-
sults from prior work by identifying a weaker (and, arguably, fairer) benchmark to compare
against. Our algorithm builds on LagrangeBwK (Immorlica et al., 2019, 2022), a Lagrangian-
based technique for CBwK, and SquareCB (Foster and Rakhlin, 2020), a regression-based
technique for contextual bandits. Our analysis leverages the inherent modularity of both
techniques.

Keywords: multi-armed bandits, contextual bandits, bandits with knapsacks, regression
oracles, primal-dual algorithms

1. Introduction

Our scope. We consider a problem called contextual bandits with linear constraints (CBwLC).
In this problem, an algorithm chooses from a fixed set of K arms and consumes d ≥ 1 con-
strained resources. In each round t, the algorithm observes a context xt, chooses an arm
at, receives a reward rt ∈ [0, 1], and also consumes some bounded amount of each resource.
(So, the outcome of choosing an arm is a (d + 1)-dimensional vector.) The consumption
of a given resource could also be negative, corresponding to replenishment thereof. The
algorithm proceeds for T rounds, and faces a constraint on the total consumption of each
resource i: either a packing constraint (“at most Bi”) or a covering constraint (“at least
Bi”) for some parameter Bi ≤ T . We focus on the stochastic environment, wherein the
context and the arms’ outcome vectors are drawn from a fixed joint distribution, indepen-

©2024 Aleksandrs Slivkins, Xingyu Zhou, Karthik Abinav Sankararaman, Dylan J. Foster.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/24-1220.html.

Slivkins, Zhou, Sankararaman, and Foster

dently in each round. On a high level, the challenge is to simultaneously handle bandits
with contexts and resource constraints.

CBwLC subsumes two well-studied bandit problems: contextual bandits, the special case
with no resources, and bandits with knapsacks (BwK), the special case with no contexts and
some additional simplifications. Specifically, BwK is a special case with no contexts, only
packing constraints, non-negative resource consumption, and a null arm that allows one to
skip a round. Most prior work on BwK assumes hard-stopping : the algorithm must stop (or,
alternatively, permanently switch to the null arm) as soon as one of the constraints is vio-
lated.1 Contextual bandits with knapsacks (CBwK), a common generalization of contextual
bandits and BwK, has also been explored in prior work.

In contextual bandits, even without resources, one typically specifies some additional
structure. This is necessary for tractability, both statistical and computational, when one
has a large number of possible contexts (as is the case in many/most applications). We
adopt one standard approach which assumes access to regression oracle, a subroutine for
solving certain supervised regression problems (Foster et al., 2018; Foster and Rakhlin,
2020; Simchi-Levi and Xu, 2022). A contextual bandit algorithm calls a regression oracle
to approximate the observed rewards/losses as a function of the corresponding context-
arm pairs; this function is used to predict rewards/losses in the future.2 This approach is
computationally efficient, allows for strong provable guarantees, and tends to be superior
in experiments compared to other approaches (see Section 1.1).

Our contributions. We design the first algorithm for CBwLC with regression oracles (in fact,
this constitutes the first such algorithm for CBwK). To handle contexts via the regression-
oracle approach, we build on the SquareCB algorithm from Foster and Rakhlin (2020).
SquareCB estimates actions’ rewards using the regression function and converts them into a
distribution over actions that optimally balances exploration and exploitation. To handle
resource constraints, we build on the LagrangeBwK framework of Immorlica, Sankararaman,
Schapire, and Slivkins (2019, 2022). LagrangeBwK solves the simpler problem of BwK by
setting up a repeated zero-sum game between two bandit algorithms: the “primal” algorithm
which chooses among arms and the “dual” algorithm which chooses among resources. The
payoffs in this game are given by a natural Lagriangian relaxation of the original constrained
problem. Note that each of the two algorithms solves a bandit problem without resource
constraints (but the payoff distribution changes over time, as it is driven by the other
algorithm).

We make three technical contributions. First, we develop LagrangeCBwLC, an extension
of the LagrangeBwK framework from BwK with hard-stopping to CBwLC. The main challenge is
to bound constraint violations without hard-stopping (which trivially prevents them). This
necessitates a subtle change in the algorithm (a re-weighting of the Lagrangian payoffs)
and some new tricks in the analysis. The framework does not specify a particular primal
algorithm, but instead assumes that it satisfies a certain regret bound. Second, we design
a suitable primal algorithm that handles contexts via a regression oracle. This algorithm

1. Hard-stopping may not be feasible without the null arm, and is not meaningful when one has covering
constraints (since they are usually not satisfied initially). Further background and references on BwK can
be found in Section 1.1.

2. Formally, a regression oracle returns a regression function that maps context-arm pairs to real values
and belongs to some predetermined (and typically simple) function class.

2

Contextual Bandits with Linear Constraints

builds on the SquareCB technique and we formally interpret it as an instance of SquareCB
for a suitably defined contextual bandit problem. Third, we extend our guarantees beyond
stochastic environments, allowing for a bounded number of “switches” from one stochastic
environment to another (henceforth, the switching environment).

We measure performance in terms of 1) regret relative to the best algorithm, and 2) max-
imum violation of each constraint at time T . We bound the maximum of these quantities,
henceforth called outcome-regret. Our main result attains the (optimal) Õ(

√
T) outcome-

regret bound whenever B > Ω(T) and a minor non-degeneracy assumption holds. We also
attain outcome-regret Õ(T 3/4) for general CBwLC problems. We emphasize that these are
the first regret bound for CBwLC with regression oracles. We also obtain Õ(

√
T) regret for

contextual BwK with hard-stopping.

Our proof leverages the inherent modularity of the techniques. A key conceptual con-
tribution here is to identify the pieces and connecting them to one another. In particular,
LagrangeCBwLC permits the use of any application-specific primal bandit algorithm with a
particular regret guarantee,3 and our SquareCB-based primal algorithm satisfies this guar-
antee when it has access to a suitable regression oracle. We provide two “theoretical in-
terfaces” for LagrangeCBwLC that a primal algorithm can plug into, depending on whether
the non-degeneracy assumption holds. We incorporate the original analysis of SquareCB as
a theorem which we invoke when analyzing our primal algorithm. This theorem requires
a regression oracle with a particular guarantee on the squared regression error; prior work
on regression provides such oracles under various conditions. This is how our analysis for
the stochastic environment comes together. We then re-use this whole machinery for the
analysis of the switching environment.

Special cases. The LagrangeCBwLC framework is of independent interest for even for the
simpler problem of CBwLC without contexts (henceforth, BwLC). This is due to two extensions
which appear new even without contexts: to the switching environment and to convex
optimization (where rewards and resource consumption are convex/concave functions of an
arm). However, the basic version of BwLC (i.e., stochastic environment without additional
structure) was already solved in prior work (Agrawal and Devanur, 2014, 2019), achieving
optimal outcome-regret.

Our result for CBwK with hard-stopping builds on LagrangeBwK (as a special case of
LagrangeCBwLC). Again, our analysis is modular: we encapsulate prior work on LagrangeBwK

as a theorem that our primal algorithm plugs into.

Our result for the switching environment is new even for BwK, i.e., when one only has
packing constraints and no contexts. This result builds on our analysis for LagrangeCBwLC:
crucially, the algorithm continues till round T . Prior analyses of LagrangeBwK with hard-
stopping do not appear to suffice. We obtain regret bounds relative to a non-standard,
yet well-motivated benchmark, bypassing strong impossibility results from prior work on
Adversarial BwK (see Section 1.1).

3. The LagrangeBwK framework permits a similar modularity for BwK, and Immorlica et al. (2019, 2022) and
Castiglioni et al. (2022) use this modularity to derive several extensions.

3

Slivkins, Zhou, Sankararaman, and Foster

1.1 Additional background and related work

Contextual bandits and BwK generalize (stochastic) multi-armed bandits, i.e., the special
case without contexts or resource constraints. Further background on bandit algorithms
can be found in books (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020;
Slivkins, 2019).

Contextual bandits (CB). While various versions of the contextual bandit problem have
been studied over the past three decades, most relevant are the approaches based on com-
putational oracles. We focus on CB with regression oracles, a promising emerging paradigm
(Foster et al., 2018; Foster and Rakhlin, 2020; Simchi-Levi and Xu, 2022). CB with classifi-
cation oracles is an earlier approach, studied in Langford and Zhang (2007) and follow-up
work, e.g., Dud́ık et al. (2011); Agarwal et al. (2014). 4

Contextual bandits with regression oracles are practical to implement, and can leverage
the fact that regression algorithms are common in practice. In addition, CB with regression
oracles tend to have superior statistical performance compared to CB with classification
oracles, as reported in extensive real-data experiments (Foster et al., 2018, 2021b; Bietti
et al., 2021).

CB with regression oracles are desirable from a theoretical perspective, as they admit
unconditionally efficient algorithms for various standard function classes under realizabil-
ity.5 In contrast, statistically optimal guarantees for CB with classification oracles are only
computationally efficient conditionally. Specifically, one needs to assume that the oracle
is an exact optimizer for all possible datasets, even though this is typically an NP-hard
problem. This assumption is needed even if the CB algorithm is run on an instance that
satisfies realizability.

Linear CB (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011), a well-studied
special case of the regression-based approach to CB, posits realizability for linear regression
functions. Analyses tend to focus on the high-confidence region around regression-based
estimates. This variant is less relevant to our paper.

Bandits with Knapsacks (BwK) are more challenging compared to stochastic bandits for
two reasons. First, instead of per-round expected reward one needs to think about the total
expected reward over the entire time horizon, taking into account the resource consumption.
Moreover, instead of the best arm one is interested in the best fixed distribution over arms,
which can perform much better. Both challenges arise in the “basic” special case when one
has only two arms and only one resource other than the time itself.

The BwK problem was introduced and optimally solved in Badanidiyuru et al. (2013,
2018), achieving Õ(

√
KT) regret for K arms when budgets are Bi = Ω(T). Agrawal and

Devanur (2014, 2019) and Immorlica et al. (2019, 2022) provide alternative regret-optimal
algorithms. In particular, the algorithm in Agrawal and Devanur (2014, 2019), which we
refer to as UCB-BwK, implements the paradigm of optimism in the face of uncertainty. Most
work on BwK posits hard-stopping (as defined earlier). A detailed survey of BwK and its
extensions can be found in Slivkins (Ch.11, 2019).

4. A classification oracle solves a different problem compared to a regression oracle: it is a subroutine for
computing an optimal policy (mapping from contexts to arms) within a given class of policies.

5. I.e., assuming that a given class of regression functions contains one that correctly describes the problem
instance.

4

Contextual Bandits with Linear Constraints

The contextual version of BwK (CBwK) was first studied in Badanidiyuru et al. (2014).
They consider CBwK with classification oracles, and obtain an algorithm that is regret-
optimal but not computationally efficient. Agrawal et al. (2016) provide a regret-optimal
and oracle-efficient algorithm for the same problem, which combines UCB-BwK and with the
oracle-efficient contextual bandit method Agarwal et al. (2014). Agrawal and Devanur
(2016) provide a regression-based approach for the special case of linear CBwK, combining
UCB-BwK and the optimistic approach for linear contextual bandits (Li et al., 2010; Chu
et al., 2011; Abbasi-Yadkori et al., 2011). Other regression-based methods for contextual
BwK have not been studied.

Many special cases of CBwK have been studied for their own sake, most notably dynamic
pricing (e.g., Besbes and Zeevi, 2009; Babaioff et al., 2015; Wang et al., 2014) and online
bidding under budget (e.g., Balseiro and Gur, 2019; Balseiro et al., 2022; Gaitonde et al.,
2023). For the latter, Gaitonde et al. (2023) achieve vanishing regret against a benchmark
similar to ours.

CBwLC beyond (contextual) BwK. Agrawal and Devanur (2014, 2019) solve CBwLC without
contexts (BwLC), building on UCB-BwK and achieving regret Õ(

√
KT). In fact, their result

extends to arbitrary convex constraints and (in Agrawal et al., 2016) to CBwK with classi-
fication oracles. However, their technique does not appear to connect well with regression
oracles.

More recently, Efroni et al. (2020); Ding et al. (2021); Zhou and Ji (2022); Ghosh et al.
(2022) studied various extensions of BwLC, essentially following LagrangeBwK framework.
They build on the same tools from constrained convex optimization as we do (e.g., Corol-
lary 15) in order to bound the constraint violations. However, they use specific primal and
dual algorithms, and their analyses are tailored to these algorithms.6 In contrast, our meta-
theorem allows for arbitrary plug-in algorithms with suitable regret guarantees. Moreover,
these papers only handle the “nice” case with Slater’s constraint, whereas we also handle
the general case. Finally, the regret bounds in these papers are suboptimal for large d, the
number of constraints, scaling as

√
d rather than

√
log d, even in the non-contextual case.

A notable special case involving covering constraints is online bidding under return-on-
investment constraint (e.g., Balseiro et al., 2022; Golrezaei et al., 2021b,a).

The version of BwK that allows negative resource consumption has not been widely stud-
ied. A very recent algorithm in Kumar and Kleinberg (2022) admits a regret bound that
depends on several instance-dependent parameters, but no worst-case regret bound is pro-
vided.

Adversarial BwK. The adversarial version of BwK, introduced in Immorlica et al. (2019,
2022), is even more challenging compared to the stochastic version due to the spend-or-
save dilemma: essentially, the algorithm does not know whether to spend its budget now
or to save it for the future. The algorithms are doomed to approximation ratios against
standard benchmarks, as opposed to vanishing regret, even for a switching environment
with just a single switch (Immorlica et al., 2022). The approximation-ratio version is by
now well-understood (Immorlica et al., 2019, 2022; Kesselheim and Singla, 2020; Castiglioni

6. The primal algorithms are based on “optimistic” bonuses, and the dual algorithms are based on gradient
descent; Zhou and Ji (2022) also consider a primal algorithm based on Thompson Sampling.

5

Slivkins, Zhou, Sankararaman, and Foster

et al., 2022; Fikioris and Tardos, 2023).7 Interestingly, all algorithms in these papers build
on versions of LagrangeBwK. On the other hand, obtaining vanishing regret against some
reasonable-but-weaker benchmark (such as ours) is articulated as a major open question
(Immorlica et al., 2022). We are not aware of any such results in prior work.

Liu et al. (2022) achieves a vanishing-regret result for Adversarial BwK against a stan-
dard benchmark when one has bounded pathlength and total variation.8 This result is
incomparable to our results for the switching environment, which are parameterized by the
(unknown) number of switches and holds against a non-standard benchmark. Moreover,
our approach extends to contextual bandits with regression oracles, whereas theirs does not.

Large vs. small budgets. Our guarantees are most meaningful in the regime of “large
budgets”, where B := mini∈[d]Bi > Ω(T). This is the main regime of interest in all
prior work on BwK and its special cases.9 That said, our guarantees are non-trivial even if
B = o(T).

The small-budget regime, B = o(T), has been studied since Babaioff et al. (2015). In
particular, (Badanidiyuru et al., 2013, 2018) derive optimal upper/lower regret bounds in
this regime for BwK with hard-stopping. The respective lower bounds are specific to hard-
stopping, and do not directly apply when a BwK algorithm can continue till round T .

1.2 Concurrent work

Han et al. (2023) focus on CBwK with hard-stopping in the stochastic environment and
obtain a result similar to Theorem 17(c), also using an algorithm based on LagrangeBwK

and SquareCB. The main technical difference is that they do not explicitly express their
algorithm as an instantiation of LagrangeBwK, and accordingly do not take advantage of its
modularity. Their treatment does not extend to the full generality of CBwLC, and does not
address the switching environment. We emphasize that our results are simultaneous and
independent with respect to theirs.

1.3 Organization

Section 2 introduces the CBwLC problem. Sections 3 and 4 provide our Lagrangian frame-
work (LagrangeCBwLC) and the associated modular guarantees for this framework. The
material specific to regression oracles is encapsulated in Section 5, including the setup and
the SquareCB-based primal algorithm. Section 6 extends our results to the switching en-
vironment, defining a novel benchmark and building on the machinery from the previous
sections.

2. Model and preliminaries

Contextual Bandits with Linear Constraints (CBwLC). There are K ≥ 2 arms, T ≥ 2
rounds, and d ≥ 1 resources. We use [K], [T], and [d] to denote, respectively, the sets of

7. Fikioris and Tardos (2023) is concurrent and independent work with respect to ours.
8. In fact, they consider the strongest possible standard benchmark: the optimal dynamic policy. The

pathlength (or an upper bound thereon) must be known to the algorithm.
9. In particular, B > Ω(T) is explicitly assumed in, e.g., Besbes and Zeevi (2009); Wang et al. (2014);

Balseiro and Gur (2019); Castiglioni et al. (2022); Gaitonde et al. (2023).

6

Contextual Bandits with Linear Constraints

all arms, rounds, and resources.10 In each round t ∈ [T], an algorithm observes a context
xt ∈ X from a set X of possible contexts, chooses an arm at ∈ [K], receives a reward
rt ∈ [0, 1], and consumes some amount ct,i ∈ [−1,+1] of each resource i. Consumptions are
observed by the algorithm, so that the outcome of choosing an arm is the outcome vector
~ot = (rt; ct,1 , . . . , ct,d) ∈ [0, 1] × [−1,+1]d. For each resource i ∈ [d] we are required to
(approximately) satisfy the constraint

Vi(T) := σi

(∑
t∈[T] ct,i −Bi

)
≤ 0, (2.1)

where Bi ∈ [0, T] is the budget and σi ∈ {−1,+1 } is the constraint sign. Here σi = 1
(resp., σi = −1) corresponds to a packing (resp., covering) constraint, which requires that
the total consumption never exceeds (resp., never falls below) Bi. Informally, the goal is to
minimize both regret (on the total reward) and the constraint violations Vi(T).

11

We define counterfactual outcomes as follows. The outcome matrix Mt ∈ [−1, 1]K×(d+1)

is chosen in each round t ∈ [T], so that its rows Mt(a) correspond to arms a ∈ [K] and the
outcome vector is defined as ~ot = Mt(at). Thus, the row Mt(a) represents the outcome the
algorithm would have observed in round t if it has chosen arm a.

We focus on Stochastic CBwLC throughout the paper unless stated otherwise: in each
round t, the pair (xt,Mt) is drawn independently from some fixed distribution Dout. In
Section 6 we consider a generalization in which the distribution Dout can change over time.

The special case of CBwLC without contexts (equivalently, with only one possible context,
|X | = 1) is called bandits with linear constraints (BwLC). We also refer to it as the non-
contextual problem.

Remark 1. Rewards and resource consumptions can be mutually correlated. This is es-
sential in most motivating examples of BwK, e.g., Badanidiyuru et al. (2018) and (Slivkins,
2019, Ch. 10).

Remark 2. We assume i.i.d. context arrivals. While many analyses in contextual bandits
seamlessly carry over to adversarial chosen context arrivals, this is not the case for our
problem.12 In particular, i.i.d. context arrivals are needed to make the linear program (2.5)
well-defined.

Remark 3. BwLC differs from Bandits with Knapsacks (BwK) in several ways. First, BwK
only allows packing constraints (σi ≡ 1), whereas BwLC also allows covering constraints
(σi = −1). Second, we allow resource consumption to be both positive and negative, whereas
on BwK it must be non-negative. Third, BwK assumes that some arm in [K] is a “null
arm”: an arm with zero reward and consumption of each resource,13 whereas BwLC does not.
Moreover, most prior work on BwK posits hard-stopping: the algorithm must stop — in our
terms, permanently switch to the null arm — as soon as one of the constraints is violated.

10. Throughout, [n], n ∈ N stands for the set {1, 2 , . . . , n}.
11. A similar bi-objective approach is taken in Agrawal and Devanur (2014, 2019) and Agrawal et al. (2016).
12. Indeed, with adversarial context arrivals algorithms cannot achieve sublinear regret, and instead are

doomed to a constant approximation ratio. To see this, focus on CBwK and consider a version of the
“spend or save” dilemma from Section 1.1. There are three types of contexts which always yield, resp.,
high, low, and medium rewards. The contexts are “medium” in the first T/2 rounds, and either all
“high” or all “low” afterwards. The algorithm would not know whether to spend all its budget in the
first half, or save it for the second half.

13. Existence of a “null arm” is equivalent to the algorithm being able to skip rounds.

7

Slivkins, Zhou, Sankararaman, and Foster

Let B = mini∈[d]Bi be the smallest budget. Without loss of generality, we rescale the
problem so that all budgets are B: we divide the per-round consumption of each resource
i by Bi/B.

Without loss of generality, we assume that one of the resources is the time resource: it
is deterministically consumed by each action at the rate of B/T , with a packing constraint
(σi = 1).

Formally, an instance of CBwLC is specified by parameters T,B,K, d, constraint signs
σ1 , . . . , σd, and outcome distribution Dout. Our benchmark is the best algorithm for a
given problem instance:

Opt := sup
algorithms ALG with E[Vi(T)] ≤ 0 for all resources i

E[Rew(ALG)], (2.2)

where Rew(ALG) =
∑

t∈[T] rt is the algorithm’s total reward (we write Rew when the algorithm
is clear from the context). The goal is to minimize algorithm’s regret, defined as Opt −
Rew(ALG), as well as constraint violations Vi(T). For most lucid results we upper-bound
the maximum of these quantities, regout := maxi∈[d] (Opt− Rew(ALG), Vi(T)), called the
outcome-regret.

Additional notation. For the round-t outcome matrix Mt, the row for arm a ∈ [K] is
denoted

Mt(a) = (rt(a); ct,1(a) , . . . , ct,d(a)),

so that rt(a) is the reward and ct,i(a) is the consumption of each resource i if arm a is
chosen.

Expected reward and resource-i consumption for a given context-arm pair (x, a) ∈ X ×
[K] is r(x, a) = E [rt(a) | xt = x] and ci(x, a) = E [ct,i(a) | xt = x], where the expectation
is over the marginal distribution of Mt conditional on xt = x.

A policy is a deterministic mapping from contexts to arms. The set of all policies is
denoted Π. Without loss of generality, we assume that the following happens in each round
t: the algorithm deterministically chooses some distribution Dt over policies, draws a policy
πt ∼ Dt independently at random, observes context xt (after choosing Dt), and chooses an
arm at = πt(xt). The history of the first t rounds is Ht := (Ds, πs, xs, as, rs)s∈[t].

Consider a distribution D over policies. Suppose this distribution is “played” in some
round t, i.e., a policy πt is drawn independently from D, and then an arm is chosen as
at = πt(xt). The expected reward and resource-i consumption for D are denoted

rt(D) := E
π∼D

[rt(π(xt))] and ct,i(D) := E
π∼D

[ct,i(π(xt))] (given (xt,Mt)) (2.3)

r(D) := E [rt(π(xt))] and ci(D) := E [ct,i(π(xt))] , (2.4)

where the expectation is over both policies π ∼ D and context-matrix pairs (xt,Mt) ∼ Dout.
Note that E [rt(at) | Ht−1] = r(Dt) and likewise E [ct,i(at) | Ht−1] = ci(Dt). If distribution
D is played in all rounds t ∈ [T], the expected constraint-i violation is denoted as Vi(D) :=
σi (T · ci(D)−B).

A policy can be interpreted as a singleton distribution that chooses this policy almost
surely, and an arm can be interpreted as a policy that always chooses this arm. So, the

8

Contextual Bandits with Linear Constraints

notation in Eqs. (2.3) and (2.4) can be overloaded naturally to input a policy, an arm, or a
distribution over arms.14

Let ∆S denote the set of all distributions over set S. We write ∆n = ∆[n] for n ∈ N as
a shorthand. We identify ∆K (resp., ∆d) with the set of all distributions over arms (resp.,
resources).

Linear relaxation. We use a standard linear relaxation of CBwLC, which optimizes over
distributions over policies, D ∈ ∆Π, maximizing the expected reward r(D) subject to the
constraints:

maximize r(D)
subject to D ∈ ∆Π

Vi(D) := σi (T · ci(D)−B) ≤ 0 ∀i ∈ [d].
(2.5)

The value of this linear program is denoted OptLP. It is easy to see that T · OptLP = Opt. 15

The Lagrange function associated with the linear program (2.5) is defined as follows:

LLP(D,λ) := r(D) +
∑

i∈[d] σi · λi

(
1− T

B ci(D)
)
, D ∈ ∆Π, λ ∈ R

d
+. (2.6)

A standard result concerning Lagrange duality states that the maximin value of LLP coincides
with OptLP. For this result, D ranges over all distributions over policies and λ ranges over
all of Rd

+:

OptLP = sup
D∈∆Π

inf
λ∈Rd

+

LLP(D,λ). (2.7)

3. Lagrangian framework for CBwLC

We provide a new algorithm design framework, LagrangeCBwLC, which generalizes the LagrangeBwK
framework from Immorlica et al. (2019, 2022). We consider a repeated zero-sum game be-
tween two algorithms: a primal algorithm AlgPrim that chooses arms a ∈ [K], and a dual
algorithm AlgDual that chooses distributions λ ∈ ∆d over resources;16 AlgDual goes first,
and AlgPrim can react to the chosen λ. The round-t payoff (reward for AlgPrim, and cost
for AlgDual) is defined as

Lt(a, λ) = rt(a) + η ·
∑

i∈[d] σi · λi

(
1− T

B ct,i(a)
)
. (3.1)

Here, η ≥ 1 is a parameter specified later. For a distribution over policies, D ∈ ∆Π, denote
Lt(D,λ) = Eπ∼D [Lt(π(xt), λ)]. The purpose of the definition Eq. (3.1) is to ensure that

E [Lt(D,λ)] = LLP(D, η · λ), (3.2)

where the expectation is over the context xt and the outcome ~ot. The repeated game is
summarized in Algorithm 1.

14. For the non-contextual problem, for example, r(a) is the expected reward of arm a, and r(D) =
Ea∈D [r(a)] is the expected reward for a distribution D over arms.

15. Indeed, to see that T · OptLP ≥ Opt, consider any algorithm in the supremum in Eq. (2.2). Let Dπ be the
expected fraction of rounds in which a given policy π ∈ Π is chosen. Then distribution D ∈ ∆Π satisfies
the constraints in the LP. For the other direction, consider an LP-optimizing distribution D and observe
that using this distribution in each round constitutes a feasible algorithm for the benchmark Eq. (2.2).

16. The terms ‘primal’ and ‘dual’ here refer to the duality in linear programming. For the LP-relaxation
(2.5), primal variables correspond to arms, and dual variables (i.e., variables in the dual LP) correspond
to resources.

9

Slivkins, Zhou, Sankararaman, and Foster

Given: K arms, d resources, and ratio T/B, as per the problem definition;
parameter η ≥ 1; algorithms AlgPrim, AlgDual.

for rounds t ∈ [T] do
Dual algorithm AlgDual outputs a distribution λt ∈ ∆d over resources.
Primal algorithm AlgPrim receives (xt, λt) and outputs an arm at ∈ [K].
Arm at is played and outcome vector ~ot is observed (and passed to both
algorithms).
Lagrange payoff Lt(at, λt) is computed as per Eq. (3.1),

and reported to AlgPrim as reward and AlgDual as cost.

Algorithm 1: LagrangeCBwLC framework

Remark 4. Beyond incorporating contexts, the main change compared to LagrangeBwK (Im-
morlica et al., 2019, 2022) is that we scale the constraint terms in the Lagrangian by the
parameter η ≥ 1. This parameter is the “lever” that allows us as to extend the algorithm
from BwK to BwLC, accommodating general constraints. This modification effectively rescale
the dual vectors from distributions λ ∈ ∆d to vectors η · λ ∈ R

d
+. An equivalent reformu-

lation of the algorithm could instead rescale all rewards to lie in the interval [0, 1/η]. This
reformulation is instructive because the scale of rewards can be arbitrary as far as the orig-
inal problem is concerned, but it leads to some notational difficulties in the analysis, which
is why we did not choose it for presentation. Interestingly, setting η = 1, like in (Immorlica
et al., 2019, 2022), does not appear to suffice even for BwK if hard-stopping is not allowed
(i.e., Algorithm 1 must continue as defined till round T).

Lastly, we mention two further changes compared to LagrangeBwK: we allow AlgPrim to
respond to the chosen λt, which is crucial to handle contexts in Section 5, and we rescale
the time consumption in Theorem 9, which allows for improved regret bounds.

Remark 5. A version of LagrangeBwK with parameter η = T/B was recently used in Cas-
tiglioni et al. (2022). Their analysis is specialized to BwK and targets (improved) approx-
imation ratios for the adversarial version. An important technical difference is that their
algorithm does not make use of the time resource, a dedicated resource that track the time
consumption.

Remark 6. In LagrangeCBwLC, the dual algorithm AlgDual receives full feedback on its
Lagrange costs: indeed, the outcome vector ~ot allows Algorithm 1 to reconstruct Lt(at, i) for
each resource i ∈ [d]. AlgDual could also receive the context xt, but our analysis does not
make use of this.

The intuition behind LagrangeCBwLC is as follows. If AlgPrim and AlgDual satisfy certain
regret-minimizing properties, the repeated game converges to a Nash equilibrium for the
rescaled Lagrangian LLP(D, η · λ). The specific definition (3.1), for an appropriate choice
of η, ensures that the strategy of AlgPrim in the Nash equilibrium is (near-)optimal for the
problem instance by a suitable version of Lagrange duality. For BwK with hard-stopping
problem, η = 1 suffices,17 but for general instances of BwLC we choose η > 1 in a fashion
that depends on the problem instance.

17. Because OptLP = supD∈∆K
infλ∈∆d

LLP(D,λ) when σi ≡ 1 and there is a null arm (Immorlica et al., 2019,
2022).

10

Contextual Bandits with Linear Constraints

Primal/dual regret. We provide general guarantees for LagrangeCBwLC when invoked with
arbitrary primal and dual algorithms AlgPrim and AlgDual satisfying suitable regret bounds.
We define the primal problem (resp., dual problem) as the online learning problem faced
by AlgPrim (resp., AlgDual) from the perspective of the repeated game in LagrangeCBwLC.
The primal problem is a bandit problem where algorithm’s action set is the set of all arms,
and the Lagrange payoffs are rewards. The dual problem is a full-feedback online learning
problem where algorithm’s “actions” are the resources in CBwLC, with Lagrange payoffs are
costs. The primal regret (resp., dual regret) is the regret relative to the best-in-hindsight
action in the respective problem. Formally, these quantities are as follows:

RegPrim(T) :=
[
maxπ∈Π

∑
t∈[T] Lt(π(xt), λt)

]
−
∑

t∈[T] Lt(at, λt).

RegDual(T) :=
∑

t∈[T] Lt(at, λt)−
[
mini∈[d]

∑
t∈[T] Lt(at, i)

]
. (3.3)

We assume that the algorithms under consideration provide high-probability upper bounds
on the primal and dual regret:

Pr
[
∀τ ∈ [T] RegPrim(τ) ≤ RegPrim(τ, δ) and RegDual(τ) ≤ RegDual(τ, δ)

]
≥ 1− δ,

(3.4)

where RegPrim(T, δ) and RegDual(T, δ) are functions, non-decreasing in T , and δ ∈ (0, 1) is
the failure probability. Our theorems use “combined” regret bound R(T, δ) defined by

T/B · η ·R(T, δ) := RegPrim(T, δ) +RegDual(T, δ) + 2Rconc(T, δ), (3.5)

where Rconc(T, δ) = O
(

T/B · η ·
√
T log(dT/δ)

)
accounts for concentration.

Remark 7. The range of Lagrange payoffs is proportional to T/B·η, which is why we separate
out this factor on the left-hand side of Eq. (3.5). For the non-contextual version with K
arms, standard results yield R(T, δ) = O(

√
KT log(dT/δ)).18 Several other applications of

LagrangeBwK framework (and, by extension, of LagrangeCBwLC) are discussed in (Immorlica
et al., 2022; Castiglioni et al., 2022). In Section 5, we provide a new primal algorithm for
CBwLC with regression oracles. Most applications, including ours, feature Õ(

√
T) scaling for

R(T, δ).

Remark 8. For our results, (3.5) with τ = T suffices. We only use the full power of
Eq. (3.5) to incorporate the prior-work results on CBwK with hard-stopping, i.e., Theorem 11
and its corollaries.

Our guarantees. Our main guarantee for LagrangeCBwLC holds whenever some solution
for the LP (2.5) is feasible by a constant margin. Formally, a distribution D ∈ ∆Π is called
ζ-feasible, ζ ∈ [0, 1) if for each non-time resource i ∈ [d] it satisfies σi

(
T
B ci(D)− 1

)
≤ −ζ,

and we need some D to be ζ-feasible with ζ > 0. This is a very common assumption in
convex analysis, known as Slater’s condition. It holds without loss of generality when all

18. Using algorithms EXP3.P (Auer et al., 2002) for Alg
Prim

and Hedge (Freund and Schapire, 1997) for
Alg

Dual
, we obtain Eq. (3.4) with RegPrim(T, δ) = O(T/B · η ·

√
KT log(K/δ)) and RegDual(T, δ) =

O(T/B · η ·
√
T log d).

11

Slivkins, Zhou, Sankararaman, and Foster

constraints are packing constraints (σi ≡ 1) and there is a null arm (i.e., it is feasible to do
nothing); it is a mild “non-degeneracy” assumption in the general case of BwLC. We obtain,
essentially, the best possible guarantee when Slater’s condition holds and B > Ω(T). We
also obtain a non-trivial (but weaker) guarantee when ζ = 0, i.e., we are only guaranteed
some feasible solution. Importantly, the ζ-feasible solution is only needed for the analysis:
our algorithm does not need to know it (but it does need to know ζ).

Theorem 9. Suppose some solution for LP (2.5) is ζ-feasible, for a known margin ζ ≥ 0.
Fix some δ > 0 and consider the setup in Eqs. (3.3) to (3.5) with “combined” regret bound
R(T, δ).

(a) If ζ > 0, consider LagrangeCBwLC with parameter η = 2/ζ. With probability at least
1−O(δ),

max
i∈[d]

(Opt− Rew, Vi(T)) ≤ O (T/B · 1/ζ ·R(T, δ)) . (3.6)

(b) Consider LagrangeCBwLC with parameter η = B
T

√
T

R(T,δ) . With probability at least

1−O(δ),

max
i∈[d]

(Opt− Rew, Vi(T)) ≤ O
(√

T ·R(T, δ)
)
. (3.7)

The guarantee in part (a) is the best possible for BwLC, in the regime when B > Ω(T) and
ζ is a constant. To see this, consider non-contextual BwLC with K arms: we obtain regret
rate Õ(

√
KT) by Remark 7. This regret rate is the best possible in the worst case, even

without resource constraints, due to the lower bound in (Auer et al., 2002). However, our
guarantee is suboptimal when B = o(T), compared to Õ(

√
KT) outcome-regret achieved

in Agrawal and Devanur (2014, 2019) via a different approach.
To characterize the regret rate in part (b), consider the paradigmatic regime when

R(T, δ) = Õ(
√
Ψ · T) for some parameter Ψ that does not depend on T . 19 Then the

right-hand side of Eq. (3.7) becomes Õ
(
Ψ1/4 · T 3/4

)
.

Remark 10. When B > Ω(T) and the margin ζ > 0 is a constant, the guarantee in
Theorem 9(a) can be improved to zero constraint violation, with the same regret rate.20 The
algorithm is modified slightly, by rescaling the budget parameter B and the consumption
values ct,i passed to the algorithm, and one need to account for this rescaling in the analysis.
See Appendix C for details.

The two guarantees in Theorem 9 can be viewed as “theoretical interfaces” to LagrangeCBwLC
framework. We obtain them as special cases of a more general analysis (Theorem 12), which
is deferred to the next section. The main purpose of these guarantees is to enable applica-
tions to regression oracles (Section 5) and also to the switching environment (Section 6, via

19. Here and elsewhere, Õ (·) notation hides log(Kdt/δ) factors when the left-hand side depends on both T
and δ.

20. Here, zero constraint violation happens with high probability rather than almost surely. Some recent
work on the special case of online bidding under constraints (e.g., Feng et al., 2023; Lucier et al., 2024)
achieves zero constraint violation almost surely even when the algorithm must continue till time T .

12

Contextual Bandits with Linear Constraints

Theorem 12). An additional application — to bandit convex optimization, which may be
of independent interest — is spelled out in Appendix A.

For the last result in this section, we restate another “theoretical interface”, which
concerns the simpler CBwK problem and gives an T/B · R(T, δ) regret rate with parameter
η = 1 whenever hard-stopping is allowed.21 We invoke this result in Section 5 along with
Theorem 9.

Theorem 11 (Immorlica et al. (2019, 2022)). Consider CBwK with hard-stopping. Fix some
δ > 0 and consider the setup in Eqs. (3.3) to (3.5). Consider algorithm LagrangeCBwLC with
parameter η = 1. With probability at least 1−O(δ), we have Opt− Rew ≤ T/B ·O(R(T, δ)).

4. Analysis of LagrangeCBwLC

We obtain Theorem 9 in a general formulation: with an arbitrary choice for the parameter η
(which we tune optimally to obtain Theorem 9) and with realized primal/dual regret (rather
than upper bounds thereon). The latter is needed to handle the switching environment in
Section 6.

Theorem 12. Suppose some solution for LP (2.5) is ζ-feasible, for a known margin ζ ∈
[0, 1). Run LagrangeCBwLC with some primal/dual algorithms and parameter η ≥ 1; write
η′ = η · T/B as shorthand. Fix some δ > 0 and denote

R := (RegPrim(T) +RegDual(T) + 2Rconc(T, δ)) /η
′. (4.1)

Then:

(a) For ζ > 0 and any η ≥ 2
ζ ,

Pr

[
Opt− Rew ≤ 3η′R and max

i∈[d]
Vi(T) ≤ 4R+ η′R

]
≥ 1−O(δ).

(b) For ζ = 0 and any η ≥ 1,

Pr

[
Opt− Rew ≤ 3η′R and max

i∈[d]
Vi(T) ≤

T

η′
+ 2R+ η′R

]
≥ 1−O(δ).

Note that our regret bound Opt − Rew ≤ 3η′R holds for any ζ ≥ 0. We use ζ > 0 to
provide a sharper bound on constraint violations.

4.1 Tools from Optimization (for the proof of Theorem 12)

Our proof builds on some techniques from prior work on linear optimization. When put
together, these techniques provide a crucial piece of the overall argument.

Specifically, we formulate two lemmas that connect approximate saddle points, Slater’s
condition, and the maximal constraint violation for a given distribution D ∈ ∆Π,

Vmax(D) := max
i∈[d]

[σi (T · ci(D)−B)]+ . (4.2)

21. Recall that under hard-stopping the algorithm effectively stops as soon as some constraint is violated,
and therefore all constraint violations are bounded by 1.

13

Slivkins, Zhou, Sankararaman, and Foster

Using the notation from Eq. (2.6), let us define

Lη
LP(D,λ) := LLP(D, ηλ). (4.3)

The first lemma is on the properties of approximate saddle points of Lη
LP. A ν-approximate

saddle point of Lη
LP is a pair (D′, λ′) ∈ ∆Π ×∆d such that

Lη
LP(D

′, λ′) ≥ Lη
LP(D,λ′)− ν, ∀D ∈ ∆Π

Lη
LP(D

′, λ′) ≤ Lη
LP(D

′, λ) + ν, ∀λ ∈ ∆d.

Lemma 13. Let (D′, λ′) be a ν-approximate saddle point of Lη
LP. Then it satisfies the

following properties for any feasible solution D ∈ ∆Π of LP in (2.5):

(a) r(D′) ≥ r(D)− 2ν.

(b) r(D)− r(D′) + η
B Vmax(D

′) ≤ 2ν.

Theorem 13 follows from Lemmas 2-3 in Agarwal et al. (2017); we provide a standalone
proof in Appendix B.1 for completeness.

The second lemma is on bounding the constraint violation under Slater’s condition
(i.e., ζ > 0).

Lemma 14 (Implications of Slater’s condition). Consider the linear program in (2.5) and
suppose Slater’s condition holds, i.e., some distribution D̂ ∈ ∆Π is ζ-feasible, ζ > 0. Sup-
pose for some numbers C ≥ 2/ζ, γ > 0 and distribution D̃ ∈ ∆Π the following holds:

r(D∗)− r(D̃) + C
B Vmax(D̃) ≤ γ,

where D∗ is an optimal solution of (2.5). Then C
B Vmax(D̃) ≤ 2γ.

Similar results have appeared in (Efroni et al., 2020, Theorem 42 and Corollary 44),
which are variants of results in (Beck, 2017, Theorem 3.60 and Theorem 8.42), respectively.
For completeness, we provide a standalone proof in Appendix B.2.

We use Theorem 13(b) and Theorem 14 through the following corollary.

Corollary 15. Suppose some distribution over policies is ζ-feasible, for some ζ ≥ 0. Let
(D′, λ′) be a ν-approximate saddle point of Lη

LP. Then, even for ζ = 0, we have

η

B
Vmax(D

′) ≤ 2ν + 1. (4.4)

Moreover, if ζ > 0, then a sharper bound is possible:

η

B
Vmax(D

′) ≤ 4ν whenever η ≥ 2/ζ. (4.5)

Proof The first statement trivially follows from Theorem 13(b). For the ζ > 0 case, we
invoke Theorem 13(b) with D = D∗ and Theorem 14 with D̃ = D′, C = η and γ = 2ν.

14

Contextual Bandits with Linear Constraints

4.2 Proof of Theorem 12

We divide the proof into three steps: convergence, regret, and constraint violation. We note
that the Slater’s condition is only used in the third step.

Step 1 (convergence via no-regret dynamics). Consider the average play of AlgPrim

and AlgDual: respectively, DT = 1
T

∑
t∈[T] Dt and λT = 1

T

∑
t∈[T] λt. We show that with

probability at least 1−O(δ),

(DT , λT) is a ν-approximate saddle point of the expected Lagrangian Lη
LP, (4.6)

with

ν =
1

T
· (RegPrim(T) +RegDual(T) + 2Rconc(T, δ)) . (4.7)

This step is standard as in Freund and Schapire (1996) for a deterministic payoff matrix and
in Immorlica et al. (2022) for a random payoff matrix. We provide a proof in Appendix B.3.
The rest of the analysis conditions on the high-probability event (4.6).

Step 2 (regret analysis). Since (DT , λT) is a ν-approximate saddle point, Lemma 13(a)
implies

r(DT) ≥ r(D∗)− 2ν = OptLP − 2ν, (4.8)

where D∗ is an optimal solution of (2.5). With this, we obtain the regret bound as follows.

Opt− Rew ≤ T · OptLP −
∑

t∈[T] rt(at)

≤ T · OptLP − T · r(DT) +Rconc(T, δ)

(i)

≤ 2T · ν +Rconc(T, δ)

(ii)

≤ 3η′R

where (i) holds by Eq. (4.8); (ii) holds by definition of ν in Eq. (4.7) and R = R(T, δ)
in Eq. (3.5).

Step 3 (constraint violations). We first note that

Vi(T) = σi

(∑
t∈[T] ct,i −B

)
≤ Tσi

(
ci(DT)− B

T

)
+Rconc(T, δ)

≤ Vmax(DT) +Rconc(T, δ). (4.9)

Thus, it remains to bound Vmax(DT). To this end, recall that we condition on (4.6), we
can now invoke Theorem 15, for ζ = 0 and ζ > 0, respectively.

Case 1: ζ = 0. By Eq. (4.4) in Theorem 15, recalling that η′ = η · T/B, we have

Vmax(DT) ≤ B · 1 + 2ν

η
=

(1 + 2ν)T

η′
,

Hence, by Eq. (4.9) and the definitions of ν in Eq. (4.7) and R = R(T, δ) in Eq. (3.5), we
have

Vi(T) ≤
(1 + 2ν)T

η′
+Rconc(T, δ) ≤

T

η′
+ 2R+ η′R.

15

Slivkins, Zhou, Sankararaman, and Foster

Case 2: ζ > 0. By Eq. (4.5) in Theorem 15, we have

Vmax(DT) ≤ B · 4ν
η

=
4νT

η′
.

Hence, using Equations (3.5), (4.7) and (4.9) as in Case 1, we have Vi(T) ≤ 4R+ η′R.

5. Contextual BwLC via regression oracles

In this section, we instantiate the LagrangeCBwLC framework with AlgPrim as SquareCB,
a regression-based technique for contextual bandits from Foster and Rakhlin (2020). In
particular, we assume access to a subroutine (“oracle”) for solving the online regression
problem, defined below.

Problem protocol: Online regression

Parameters: K arms, T rounds, context space Z, range [a, b] ⊂ R.
In each round t ∈ [T]:

1. the algorithm outputs a regression function ft : Z × [K] → [a, b].
// Informally, ft(xt, at) must approximate the expected score E[yt | xt, at].

2. adversary chooses regression-context zt ∈ Z, arm at ∈ [K], score yt ∈ [a, b],
and auxiliary data auxt (if any).

3. the algorithm receives the new datapoint (zt, at, yt, auxt).

(We call zt a regression-context to distinguish it from contexts in contextual bandits.)
We assume access to an algorithm for online regression with context space Z = X , scores

yt equal to rewards (resp., consumption of a given resource i), and no auxiliary data auxt. It
can be an arbitrary algorithm for this problem, subject to a performance guarantee stated
below in Eq. (5.5) which asserts that the algorithm can approximate the scores yt well. We
refer to this algorithm, which we denote by AlgEst, as the online regression oracle, and
invoke it as a subroutine. Our algorithm for the CBwLC framework will be efficient whenever
the per-round update for the oracle is computationally efficient, e.g., the update time does
not depend on the time horizon T . For simplicity, we use the same oracle for rewards and
for each resource ∈ [d]. However, our algorithm and analysis can easily accommodate a
different oracle for each component of the outcome vector.

The quality of the oracle is typically measured in terms of squared regression error, which
in turn can be upper-bounded whenever the conditional mean scores are well modeled by a
given class F of regression functions; this is detailed in Sections 5.2 and 5.3.

5.1 Regression-based primal algorithm

Our primal algorithm, given in Algorithm 2, is parameterized by an online regression or-
acle AlgEst. We create d + 1 instances of this oracle, denoted Oi, for i ∈ [d + 1], which
we apply separately to rewards and to each resource; we use range [0, 1] for rewards and
[−1,+1] for resources. At each step t, given the regression functions f̂t,i produced by these
oracle instances, Algorithm 2 first estimates the expected Lagrange payoffs in a plug-in

16

Contextual Bandits with Linear Constraints

fashion (Eq. (5.1)). These estimates are then converted into a distribution over arms in
Eq. (5.2); this technique, known as inverse gap weighting optimally balances exploration
and exploitation, as parameterized by a scalar γ > 0.

Given: T/B ratio, K arms, d resources as per the problem definition;
parameter η ≥ 1 from LagrangeCBwLC;
online regression oracle AlgEst; parameter γ > 0.

Init : Instance Oi of regression oracle AlgEst for each i ∈ [d+ 1].
// f̂1(x, a) and f̂i+1(x, a) estimate, resp., r(x, a) and ci(x, a), i ∈ [d].

for round t = 1, 2, . . . (until stopping) do

For each oracle Oi, i ∈ [d+ 1]: update regression function f̂t = f̂t,i.
Input context xt ∈ X and dual distribution λt = (λt,i ∈ [d]) ∈ ∆d.
For each arm a, estimate E [Lt(a, λ) | xt] with

L̂t(a) := f̂t,1(xt, a) + η ·
∑

i∈[d] σi · λt,i

(
1− T

B · f̂t,i+1(xt, a)
)
. (5.1)

Compute distribution over the arms, pt ∈ ∆K , as

pt(a) = 1/(cnormt + γ ·maxa′∈[K] L̂t(a
′)− L̂t(a)). (5.2)

// cnorm
t

is chosen so that
∑

a
pt(a) = 1, via binary search.

Draw arm at independently from pt.
Output arm at, input outcome vector ~ot = (rt; ct,1 , . . . , ct,d) ∈ [0, 1]d+1.
For each oracle Oi, i ∈ [d+ 1]: pass a new datapoint (xt, at, (~ot)i).

Algorithm 2: Regression-based implementation of AlgPrim

The per-round running time of AlgPrim is dominated by d+1 oracle calls and K(d+1)
evaluations of the regression functions f̂i in Eq. (5.1). For the probabilities in Eq. (5.2),
it takes O(K) time to compute the max expressions, and then O(K log 1

ε) time to binary-
search for cnorm up to a given accuracy ε.

It is instructive (and essential for the analysis) to formally realize AlgPrim as an instanti-
ation of SquareCB (Foster and Rakhlin, 2020), a contextual bandit algorithm with makes use
of a regression oracle following the protocol described in the prequel. Define the Lagrange
regression as an online regression problem with data points of the form (zt, at, yt, auxt) for
each round t, where the regression-context zt = (xt, λt) consists of both the CBwK context
xt and the dual vector λt, the score yt = Lt(at, λt) is the Lagrangian payoff as defined by
Eq. (3.1), and the auxiliary data auxt = ~ot is the outcome vector. For the purpose of this
problem definition, regression-contexts zt are adversarially chosen, possibly depending on
the history (because the dual vector λt is generated by the dual algorithm). The Lagrange
oracle OLag is an algorithm for this problem (i.e., an online regression oracle) which, for
each round t, uses the estimated Lagrangian payoff Eq. (3.1) as a regression function. Thus,
AlgPrim is an instantiation of SquareCB algorithm equipped, with an oracle OLag for solving
the Lagrange regression problem defined above.

17

Slivkins, Zhou, Sankararaman, and Foster

5.2 Provable guarantees for Algorithm 2

Formulating our guarantees for Algorithm 2 requires some care, as they relies on perfor-
mance of the regression oracles Oi, i ∈ [d+ 1]. (The notions of Lagrange regression/oracle
are not needed to state these guarantees; we only invoke them in the analysis in Section 5.4).

Let us formalize the online regression problem faced by a given oracle Oi, i ∈ [d+1]. In
each round t of this problem, the regression-context xt is drawn independently from some
fixed distribution, and the arm at is chosen arbitrarily, possibly depending on the history.
The score is yt = (~ot)i, the i-th component of the realized outcome vector for the (xt, at)
pair. Let f∗

i be the “correct” regression function, given by

f∗
i (x, a) = E [(~ot)i | xt = x, at = a] ∀x ∈ X , a ∈ [K]. (5.3)

Following the literature on online regression, we evaluate the performance of Oi in terms of
squared regression error :

Erri(Oi) :=
∑

t∈[T]

(
f̂t,i(xt, at)− f∗

i (xt, at)
)2

, ∀i ∈ [d+ 1]. (5.4)

We rely on a known uniform high-probability upper-bound on these errors:

∀δ ∈ (0, 1) ∃Uδ > 0 ∀i ∈ [d+ 1] Pr [Erri(Oi) ≤ Uδ] ≥ 1− δ. (5.5)

Now we are ready to spell out our primal/dual guarantee:

Theorem 16. Suppose AlgPrim is given by Algorithm 2, invoked with a regression oracle
AlgEst that satisfies Eq. (5.5). Fix an arbitrary failure probability δ ∈ (0, 1), let U =

Uδ/(d+1), and set the parameter γ = B
T

√
KT
d+1/U . Let AlgDual be the exponential weights

algorithm (“Hedge”) (Freund and Schapire, 1997). Then Eqs. (3.4) and (3.5) are satisfied

with R(T, δ) = O
(√

dTU log(dT/δ)
)
.

This guarantee directly plugs into each of the three “theoretical interfaces” of LagrangeCBwLC
(Theorem 9(ab) and Theorem 11), highlighting the modularity of our approach. In par-
ticular, we obtain optimal

√
T scaling of regret under Slater’s condition (and B ≥ Ω(T))

and for contextual BwK, via Theorem 11. Let us spell out these corollaries for the sake of
completeness.

Corollary 17. Consider LagrangeCBwLC with primal and dual algorithms as in Theorem 16,
and write Φ = dU log(dT/δ). Let regout := maxi∈[d] (Opt− Rew, Vi(T)) denote the outcome-
regret.

(a) Suppose the LP (2.5) has a ζ-feasible solution, ζ ∈ (0, 1). Set the parameter to

η = 2/ζ. Then regout ≤ O
(

T/B · 1/ζ ·
√
ΦT

)
with probability at least 1−O(δ).

(b) Suppose the LP (2.5) has a feasible solution. Set the algorithm’s parameter as η =
B
T

√
T

R(T,δ) . Then regout ≤ O
(
Φ1/4 · T 3/4

)
with probability at least 1−O(δ).

(c) Consider CBwK with hard-stopping and set η = 1. Then Opt − Rew ≤ O
(

T/B ·
√
ΦT

)

with probability at least 1 − O(δ), and (by definition of hard-stopping) the constraint
violations are bounded as Vi(T) ≤ 1.

18

Contextual Bandits with Linear Constraints

5.3 Discussion

Generality. Online regression algorithms typically restrict themselves to a particular class
of regression functions, F ⊂ {X × [K] → R }, so that ft ∈ F for all rounds t ∈ [T]. Typ-
ically, such algorithms ensure that Eq. (5.5) holds for a given index i ∈ [d + 1] whenever
a condition known as realizability is satisfied: f∗

i ∈ F . Under this condition, standard
algorithms obtain Eq. (5.5) with Uδ = U0 + log(2/δ), where U0 < ∞ reflects the intrin-
sic statistical capacity of class F (Vovk, 1998a; Azoury and Warmuth, 2001; Vovk, 2006;
Gerchinovitz, 2013; Rakhlin and Sridharan, 2014). Standard examples include:

• Finite classes, for which Vovk (1998a) achieves U0 = O(log|F|).
• Linear classes, where for a known feature map φ(x, a) ∈ R

b with ‖φ(x, a)‖2 ≤ 1,
regression functions are of the form f(x, a) = θ · φ(x, a), for some θ ∈ R

b with ‖θ‖2 ≤
1. Here, the Vovk-Azoury-Warmuth algorithm (Vovk, 1998b; Azoury and Warmuth,
2001) achieves U0 ≤ O(b log(T/b)). If d is very large, one could use Online Gradient
Descent (e.g., Hazan (2016)) and achieve U0 ≤ O(

√
T).

We emphasize that Eq. (5.5) can also be ensured via approximate versions of realizability,
with the upper bound Uδ depending on the approximation quality. The literature on online
regression features various such guarantees, which seamlessly plug into our theorem. See
Foster and Rakhlin (2020) for further background.

SquareCB allows for various extensions to large, structured action sets. Any such exten-
sions carry over to LagrangeCBwLC. Essentially, one needs to efficiently implement compu-
tation and sampling of an appropriate exploration distribution that generalizes Eq. (5.2).
“Practical” extensions are known for action sets with linear structure (Foster et al., 2020;
Zhu et al., 2021), and those with Lipschitz-continuity (via uniform discretization) (Foster
et al., 2021a). More extensions to general action spaces, RL, and beyond are in (Foster
et al., 2021a).

Implementation details. Several remarks are in order regarding the implementation.

1. While our theorem sets the parameter γ according to the known upper bound Uδ, in
practice it may be advantageous to treat γ as a hyperparameter and tune it experi-
mentally.

2. In practice, one could potentially implement the Lagrange oracle by applying AlgEst

to the entire Lagrange payoffs Lt(at, λt) directly, with (xt, λt) as a regression-context.

3. Instead of computing distribution pt via Eq. (5.2) and binary search for cnorm, one
can do the following (cf. Foster and Rakhlin (2020)): Let bt = argmaxa∈[K] L̂t(a). Set

pt(a) = 1/
(
K + γ · (L̂t(bt)− L̂t(a))

)
, for all a 6= bt, and set pt(bt) = 1−

∑
a 6=bt

pt(a).

This attains the same regret bound (up to absolute constants) as in Theorem 18.

4. In some applications, the outcome vector is determined by an observable “fundamental
outcome” of lower dimension. For example, in dynamic pricing an algorithm offers
an item for sale at a given price p, and the “fundamental outcome” is whether there
is a sale. The corresponding outcome vector is (p, 1) · 1sale, i.e., a sale brings reward
p and consumes 1 unit of resource. In such applications, it may be advantageous to
apply regression directly to the fundamental outcomes.

19

Slivkins, Zhou, Sankararaman, and Foster

5.4 Proof of Theorem 16

We incorporate the existing analysis of SquareCB from Foster and Rakhlin (2020) by applying
it to the Lagrange oracle OLag, and restating it in our notation as Theorem 18. Define the
squared regression error for OLag as

Err(OLag) =
∑

t∈[T](L̂t(at)− E [Lt(at, λt)])
2. (5.6)

The main guarantee for SquareCB posits a known high-probability upper-bound on this
quantity:

∀δ ∈ (0, 1) ∃U Lag

δ > 0 Pr
[
Err(OLag) ≤ U Lag

δ

]
≥ 1− δ. (5.7)

Theorem 18 (Implied by Foster and Rakhlin (2020)). Consider Algorithm 2 with Lagrange
oracle that satisfies Eq. (5.7). Fix δ ∈ (0, 1), let U = U Lag

δ be the upper bound from Eq. (5.7).

Set the parameter γ =
√

AT/U . Then with probability at least 1−O(δT) we have

∀τ ∈ [T] RegPrim(τ) ≤ O
(√

T (U + 1) log(dT/δ)
)
. (5.8)

Remark 19. The original guarantee stated in Foster and Rakhlin (2020) is for τ = T in
Theorem 18. To obtain the guarantee for all τ , as stated, it suffices to replace Freedman
inequality in the analysis in Foster and Rakhlin (2020) with its anytime version.

Remark 20. Recall that regression-contexts zt = (xt, λt) in Lagrange regression are treated
as adversarially chosen, because the dual vector λt is generated by the dual algorithm. In
particular, one cannot immediately analyze AlgPrim via the technique of Simchi-Levi and
Xu (2022), which assumes stochastic regression-context arrivals. The analysis from Foster
and Rakhlin (2020) that we invoke handles adversarial regression-context arrivals.

To complete the proof, it remains to derive Eq. (5.7) from Eq. (5.5), i.e., upper-bound
Err(OLag) using respective upper bounds for the individual oracles Oi. Represent Err(OLag)
as

Err(OLag) =
∑

t∈[T]

(
Φt + η · T

B

∑
i∈[d] λt,iΨt,i

)2
,

where Φt = f̂t,1(xt, at)− r(xt, at) and Ψt,i = ci(xt, at)− f̂t,i+1(xt, at). For each round t, we
have

(
Φt + η · T

B

∑
i∈[d] λt,iΨt,i

)2
≤ 2Φ2

t + 2 (η · T/B)2
(∑

i∈[d] λt,iΨt,i

)2

≤ 2Φ2
t + 2 (η · T/B)2

∑
i∈[d] λt,iΨ

2
t,i,

where the latter inequality follows from Jensen’s inequality. Summing this up over all rounds
t,

Err(OLag) ≤ 2(η · T/B)2
∑

i∈[d+1]Erri(Oi). (5.9)

The (η · T/B)2 scaling is due to the fact that consumption is scaled by η · T/B in the
Lagrangian, and the error is quadratic. Consequently, (5.7) holds with U Lag

δ = (d + 1)(η ·
T/B)2 Uδ/(d+1). Finally, we plug this U Lag

δ into (5.8), and then normalize RegPrim according
to (3.5) to obtain R(T, δ).

20

Contextual Bandits with Linear Constraints

6. Non-stationary environments

In this section, we generalize the preceding results by allowing the outcome distribution Dout

to change over time. In each round t ∈ [T], the pair (xt,Mt) is drawn independently from
some outcome distribution Dout

t . The sequence of distributions (Dout
1 , . . . ,Dout

T) is chosen
in advance by an adversary (and not revealed to the algorithm). We parameterize our results
in terms of the number of switches: rounds t ≥ 2 such that Dout

t 6= Dout
t−1; we refer to these as

environment-switches. The algorithm does not know when the environment-switches occur.
We refer to such problem instances as the switching environment.

We measure regret against a benchmark that chooses the best distribution over policies
for each round t separately. In detail, note that each outcome distribution Dout

t defines a
version of the linear program (2.5); call it LPt. Let D

∗
t ∈ ∆Π be an optimal solution to LPt,

and OptLP, t be its value. Our benchmark is Optpace :=
∑

t∈[T] OptLP, t. The intuition is that
the benchmark would like to pace the resource consumption uniformly over time. We term
Optpace the pacing benchmark. Accordingly, we are interested in the pacing regret,

regpace := max
i∈[d]

(
Optpace − Rew(ALG), Vi(T)

)
. (6.1)

We view the pacing benchmark as a reasonable target for an algorithm that wishes to
keep up with a changing environment. However, this benchmark gives up on “strategizing
for the future”, such as underspending now for the sake of overspending later. On the other
hand, this property is what allows us to obtain vanishing regret bounds w.r.t. this bench-
mark. In contrast, the standard benchmarks require moving from regret to approximation
ratios once one considers non-stationary environments (Immorlica et al., 2019, 2022).22

To derive bounds on the pacing regret, we take advantage of the modularity of LagrangeCBwLC
framework and availability of “advanced” bandit algorithms that can be “plugged in” as
AlgPrim and AlgDual. We use algorithms for adversarial bandits that do not make assump-
tions on the adversary, and yet compete with a benchmark that allows a bounded number
of switches (and the same for the full-feedback problem). In the “back-end” of the analysis
we invoke Theorem 12.

To proceed, we must redefine primal and dual regret to accommodate for switches.
First, we extend the definition of primal regret in Eq. (3.3) to an arbitrary subset of rounds
T ⊂ [T]:

RegPrim(T) :=
[
maxπ∈Π

∑
t∈T Lt(π(xt), λt)

]
−
∑

t∈T Lt(at, λt). (6.2)

Next, an S-switch sequence is an increasing sequence of rounds ~τ = (τj ∈ [2, T] : j ∈ [S]),
with a convention that τ0 = 1 and τS+1 = T + 1. The primal regret for ~τ is defined as the
sum over the intervals between these rounds:

RegPrim(~τ) :=
∑

j∈[S+1]RegPrim ([τj−1, τj − 1]) . (6.3)

If ~τ is the sequence of all environment-switches, then these are stationarity intervals, in
the sense that the environment is stochastic throughout each interval. For the dual regret,

22. This holds even for the special case of only packing constraints and a null arm, and even against the
best fixed policy (let alone the best fixed distribution over policies, a more appropriate benchmark for a
constrained problem).

21

Slivkins, Zhou, Sankararaman, and Foster

RegDual(T) and RegDual(~τ) are defined similarly. We assume a suitable generalization of
Eq. (3.5). For every S ∈ [T − 1] and every S-switching sequence ~τ , we assume

Pr
[
RegPrim(~τ) ≤ T/B · η ·RS

1 (T, δ) and RegDual(~τ) ≤ T/B · η ·RS
2 (T, δ)

]
≥ 1− δ,

(6.4)

for known functions RS
1 (T, δ) and RS

2 (T, δ) and failure probability δ ∈ (0, 1). Similar to
Eq. (3.5), we define “combined” regret bound

RS(T, δ) := RS
1 (T, δ) +RS

2 (T, δ) +
√

ST log(KdT/δ), (6.5)

where the last term accounts for concentration.

Remark 21. We do not explicitly assume that S is known. Instead, we note that achieving
a particular regret bound (6.4) may require the algorithm to know S or an upper bound
thereon. For the non-contextual setting, implementing AlgPrim as algorithm EXP3.S (Auer
et al. (2002)) achieves regret bound RS

1 (T, δ) = Õ(
√
KST) if S is known, and RS

1 (T, δ) =

Õ(S ·
√
KT) against an unknown S. Below, we also obtain RS

1 (T, δ) ∼
√
ST scaling for

CBwLC via a variant of Algorithm 2 (with known S). For the dual player, the Fixed-Share
algorithm from Herbster and Warmuth (1998) achieves RS

2 (T, δ) = O
(√

ST log d
)
when S

is known in advance, and RS
2 (T, δ) = O

(
S
√
T log d

)
, when S is not known.

Theorem 22. Consider CBwLC with S environment-switches. Suppose each linear program
LPt, t ∈ [T] has a ζ-feasible solution, for some known margin ζ ∈ [0, 1). Fix δ > 0.
Consider LagrangeCBwLC with primal/dual algorithms which satisfy regret bound (6.4). Use
the notation in (6.5).

(a) If ζ > 0, use LagrangeCBwLC with parameter η = 2/ζ. Then with probability at least
1−O(Sδ),

regpace ≤ O
(
T/B · 1/ζ ·RS(T, δ)

)
.

(b) Use LagrangeCBwLC with parameter η = B
T

√
T

RS(T,δ)
. Then with probability at least

1−O(Sδ),

regpace ≤ O

(√
T ·RS(T, δ)

)
.

Proof Let ~τ be the S-switch sequence that comprises all environment-switches. Since the
problem is stochastic when restricted to each time interval Ij := [tj−1, tj − 1], j ∈ [S + 1],
we can invoke Theorem 12 specialized to this interval, with “effective” time horizon of |Ij |
(see Theorem 24). Then, we sum up the resulting regret bound over all the intervals. Note
that the concentration terms from Theorem 12 sum up as Λ :=

∑
j∈[S+1]Rconc(|Ij |, δ) ≤√

ST log(KdT/δ).
Thus, for part (a) we invoke Theorem 12(a) for each interval Ij , j ∈ [S]. Summing up

over the intervals, we obtain, with probability at least 1−O(Sδ), that

regpace ≤ O (RegPrim(~τ) +RegDual(~τ) + Λ)

≤ O
(
T/B · 1/ζ ·RS(T, δ)

)
,

22

Contextual Bandits with Linear Constraints

where for the second inequality we invoke the regret bound in (6.4) for sequence ~τ .
For part (b), we likewise invoke Theorem 12(b) for each interval Ij , j ∈ [S]. Summing

up over the intervals, we obtain, with probability at least 1−O(Sδ), that

∀i ∈ [d] Vi(T) ≤ O (RegPrim(~τ) +RegDual(~τ) + Λ +B/η)

≤ O
(
T/B · η ·RS(T, δ) +B/η

)
,

Optpace − Rew(ALG) ≤ O (RegPrim(~τ) +RegDual(~τ) + Λ)

≤ O
(
T/B · η ·RS(T, δ)

)
.

(Consequently) regpace ≤ O
(
T/B · η ·RS(T, δ) +B/η

)
,

which is at most O
(√

T ·RS(T, δ)
)
when η is as specified.

Remark 23. Consider the paradigmatic regime when RS(T, δ) = Õ(
√
Ψ · ST) for some

Ψ that does not depend on T . Then the regret bounds in Theorem 22 become regpace ≤
Õ
(

T/B · 1/ζ ·
√
Ψ · ST

)
for part (a), and regpace ≤ Õ

(
(SΨ)1/4 · T 3/4

)
for part (b).

Remark 24. To apply Theorem 12 to every given stationarity interval, the following two
features are essential. First, Theorem 12 carries over as if the algorithm is run on this inter-
val rather than the full time horizon. This is due to a non-trivial property of LagrangeCBwLC:
it has no memory (and no knowledge of T) outside of its primal/dual algorithms. Second,
Theorem 12 invokes realized primal (resp., dual) regret, rather than an upper bound thereon
like in Theorem 9. This allows us to leverage the “aggregate” bound on primal (resp., dual)
regret over the entire switching environment, as per Eq. (6.3). Using Theorem 9 directly
would require similar upper bounds for every stationarity interval, which we do not imme-
diately have.23

Remark 25. Even in the special case of packing constraints and hard-stopping (i.e., skipping
the remaining rounds once some resource is exceeded), it is essential for Theorem 22 that
LagrangeCBwLC continues until the time horizon. Our analysis would not work (even for
this special case) if LagrangeCBwLC is replaced with some algorithm whose guarantees for the
stationary environment assume hard-stopping. This is because such guarantees would not
bound constraint violations within a given stationarity interval in the switching environment.

Remark 26. As an optimization, we may reduce the dependence on S in Theorem 22 by
ignoring shorter environment-switches. Let the sequence ~τ and the stationarity intervals
Ij be defined as in the proof. The time intervals that last ≤ L rounds collectively take
up Φ(L) =

∑
j∈[S] |Ij | · 1{ |Ij |≤L } rounds. We focus on environment-switches tj such that

Φ(|Ij |) > R, for some parameter R; we call them R-significant. Theorem 22 can be restated
so that S is replaced with the number of R-significant environment-switches, for some R
that does not exceed the stated regret bound.

23. Regret on a given stationarity interval cannot immediately be upper-bounded by the aggregate regret
in (6.3). This is because per-interval regret can in principle be negative for some (other) stationarity
intervals. Besides, this approach would be inefficient even if it does work, resulting in an extra factor of
S in the final regret bound.

23

Slivkins, Zhou, Sankararaman, and Foster

Primal and dual algorithms. We now turn to the task of developing primal algorithms
that can be applied within LagrangeCBwLC in the non-stationary contextual setting. To gen-
eralize the regression-based machinery from Section 5, define the correct regression function
f∗
t,i according to the right-hand side of Eq. (5.3) for each round t ∈ [T] The estimation error
Erri(Oi) is like in Eq. (5.4), but replacing f∗

i with f∗
t,i for each round t. In formulae, for

each i ∈ [d+ 1] we have

f∗
t,i(x, a) = E [(~ot)i | xt = x, at = a] ∀x ∈ X , a ∈ [K].

Erri(Oi) :=
∑

t∈[T]

(
f̂t,i(xt, at)− f∗

t,i(xt, at)
)2

.

We posit the high-probability error bound (5.5), as in Theorem 16. (A particular error
bound of this form may depend on S, the number of environment-switches; achieving it
may require the algorithm to know S or an upper bound thereon.)

Theorem 27. Consider CBwLC with S environment-switches such that each linear program
LPt, t ∈ [T] has a ζ-feasible solution, for some known ζ ∈ [0, 1). Consider AlgPrim as
in as in Theorem 16, with the high-probability error bound U = Uδ/(d+1) defined, for this
S, via Eq. (5.5). Let AlgDual be the Fixed-Share algorithm, as per Theorem 21. Then
LagrangeCBwLC with these primal and dual algorithms satisfies the guarantees in Theo-

rem 22(ab) with RS(T, δ) = O
(√

dTU log(dT/δ)
)
.

Proof The full power of SquareCB analysis from Foster and Rakhlin (2020) implies Theo-
rem 18 even with environment-switches, with Eq. (5.8) replaced by

RegPrim(~τ) ≤ O
(√

T (U + 1) log(dT/δ)
)
, (6.6)

for any S-switch sequence ~τ and any S.

To bound U Lag

δ in Eq. (5.7) (which is assumed by Theorem 18), we observe that Eq. (5.9)
holds (and its proof carries over word-by-word from Section 5.4). Plugging this back
into Eq. (6.6) and normalizing accordingly, we see that Eqs. (6.4) and (6.5) hold with

RS(T, δ) = O
(√

dTU log(dT/δ)
)
.

Remark 28. To obtain Eq. (5.5), we assume that each f∗
t,i belongs to some known class

F of regression functions. In particular, if F is finite, the regression oracle can be imple-
mented via Vovk’s algorithm (Vovk, 1998a), applied to the class of all sequences of func-
tions (f1 , . . . , fT) ∈ FT with at most S switches. This achieves Eq. (5.5) with Uδ =

O(S · log|F|)+log(2/δ). Plugging this in, we obtain RS(T, δ) = O
(√

d log|F| · log(dT/δ)
)
.

7. Conclusions and open questions

We solve CBwLC via a Lagrangian approach to handle resource constraints, and a regression-
based approach to handle contexts. Our solution emphasizes modularity of both approaches
and (essentially) attains optimal regret bounds.

24

Contextual Bandits with Linear Constraints

While our main results (Theorem 9(a) and corollaries) assume a known margin ζ in
the Slater condition, it is desirable to recover similar results without knowing ζ in advance.
Several follow-up papers achieve this (Guo and Liu, 2024; Castiglioni et al., 2024; Bernasconi
et al., 2024), albeit with a worse dependence on the margin.24 Aggarwal et al. (2024)
achieves the same for the special case of auto-bidding, with the same dependence on ζ as
ours.

Given the results in Section 6, more advanced guarantees for a non-stationary environ-
ment may be within reach. First, one would like to improve dependence on the number of
switches, particularly when the changes are of small magnitude. Second, one would like to
replace an assumption on the environment (at most S environment-switches) with assump-
tions on the benchmark. Similar extensions are known for adversarial bandits (i.e., without
resources).

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In 25th Advances in Neural Information Processing Systems (NIPS),
pages 2312–2320, 2011.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the monster: A fast and simple algorithm for contextual bandits. In 31st Intl.
Conf. on Machine Learning (ICML), 2014.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dud́ık, John Langford, and Hanna Wallach.
A reductions approach to fair classification. Fairness, Accountability, and Transparency
in Machine Learning (FATML), 2017.

Gagan Aggarwal, Giannis Fikioris, and Mingfei Zhao. No-regret algorithms in non-truthful
auctions with budget and roi constraints. arXiv preprint arXiv:2404.09832, 2024.

Shipra Agrawal and Nikhil R. Devanur. Bandits with concave rewards and convex knap-
sacks. In 15th ACM Conf. on Economics and Computation (ACM-EC), 2014.

Shipra Agrawal and Nikhil R. Devanur. Linear contextual bandits with knapsacks. In 29th
Advances in Neural Information Processing Systems (NIPS), 2016.

Shipra Agrawal and Nikhil R. Devanur. Bandits with global convex constraints and ob-
jective. Operations Research, 67(5):1486–1502, 2019. Preliminary version in ACM EC
2014.

Shipra Agrawal, Nikhil R. Devanur, and Lihong Li. An efficient algorithm for contextual
bandits with knapsacks, and an extension to concave objectives. In 29th Conf. on Learning
Theory (COLT), 2016.

24. These papers are follow-up relative to the conference version of our paper, and concurrent work relative
to the present version. Outcome-regret scales as 1/ζ2 in Guo and Liu (2024); Castiglioni et al. (2024)
and as 1/ζ3 in Bernasconi et al. (2024), as compared with 1/ζ dependence in Theorem 9(a) for a known
ζ.

25

Slivkins, Zhou, Sankararaman, and Foster

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002. Preliminary version
in 36th IEEE FOCS, 1995.

Katy S. Azoury and Manfred K. Warmuth. Relative loss bounds for on-line density esti-
mation with the exponential family of distributions. Machine Learning, 43(3):211–246,
June 2001.

Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, and Aleksandrs Slivkins. Dynamic
pricing with limited supply. ACM Trans. on Economics and Computation, 3(1):4, 2015.
Special issue for 13th ACM EC, 2012.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with
knapsacks. In 54th IEEE Symp. on Foundations of Computer Science (FOCS), 2013.

Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful contex-
tual bandits. In 27th Conf. on Learning Theory (COLT), 2014.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with
knapsacks. J. of the ACM, 65(3):13:1–13:55, 2018. Preliminary version in FOCS 2013.

Santiago R. Balseiro and Yonatan Gur. Learning in repeated auctions with budgets: Regret
minimization and equilibrium. Manag. Sci., 65(9):3952–3968, 2019. Preliminary version
in ACM EC 2017.

Santiago R. Balseiro, Haihao Lu, and Vahab S. Mirrokni. The best of many worlds: Dual
mirror descent for online allocation problems. Operations Research, 2022. Forthcoming.
Preliminary version in ICML 2020.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Martino Bernasconi, Matteo Castiglioni, and Andrea Celli. No-regret is not enough! ban-
dits with general constraints through adaptive regret minimization. arXiv preprint
arXiv:2405.06575, 2024.

Omar Besbes and Assaf Zeevi. Dynamic pricing without knowing the demand function:
Risk bounds and near-optimal algorithms. Operations Research, 57(6):1407–1420, 2009.

Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. J. of
Machine Learning Research (JMLR), 22:133:1–133:49, 2021.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and Nonstochas-
tic Multi-armed Bandit Problems. Foundations and Trends in Machine Learning, 5(1):
1–122, 2012. Published with Now Publishers (Boston, MA, USA). Also available at
https://arxiv.org/abs/1204.5721.

Sébastien Bubeck, Ofer Dekel, Tomer Koren, and Yuval Peres. Bandit convex optimization:
\(\sqrt{T}\) regret in one dimension. In 28th Conf. on Learning Theory (COLT), pages
266–278, 2015.

26

Contextual Bandits with Linear Constraints

Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex
optimization. In 49th ACM Symp. on Theory of Computing (STOC), pages 72–85. ACM,
2017.

Matteo Castiglioni, Andrea Celli, and Christian Kroer. Online learning with knapsacks:
the best of both worlds. In 39th Intl. Conf. on Machine Learning (ICML), 2022.

Matteo Castiglioni, Andrea Celli, and Christian Kroer. Online learning under budget and
roi constraints via weak adaptivity. In 41st Intl. Conf. on Machine Learning (ICML),
2024.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual Bandits with Linear
Payoff Functions. In 14th Intl. Conf. on Artificial Intelligence and Statistics (AISTATS),
2011.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic.
Provably efficient safe exploration via primal-dual policy optimization. In International
conference on artificial intelligence and statistics, pages 3304–3312. PMLR, 2021.

Miroslav Dud́ık, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev
Reyzin, and Tong Zhang. Efficient optimal leanring for contextual bandits. In 27th
Conf. on Uncertainty in Artificial Intelligence (UAI), 2011.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained
mdps. arXiv preprint arXiv:2003.02189, 2020.

Zhe Feng, Swati Padmanabhan, and Di Wang. Online bidding algorithms for return-on-
spend constrained advertisers. In 32nd The Web Conference (formerly known as WWW),
pages 3550–3560, 2023.

Giannis Fikioris and Éva Tardos. Approximately stationary bandits with knapsacks. In
36th Conf. on Learning Theory (COLT), 2023.

Abraham Flaxman, Adam Kalai, and H. Brendan McMahan. Online Convex Optimization
in the Bandit Setting: Gradient Descent without a Gradient. In 16th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 385–394, 2005.

Dylan J. Foster and Alexander Rakhlin. Beyond UCB: optimal and efficient contextual
bandits with regression oracles. In 37th Intl. Conf. on Machine Learning (ICML), 2020.

Dylan J. Foster, Alekh Agarwal, Miroslav Dud́ık, Haipeng Luo, and Robert E. Schapire.
Practical contextual bandits with regression oracles. In 35th Intl. Conf. on Machine
Learning (ICML), pages 1534–1543, 2018.

Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to mis-
specification in contextual bandits. Advances in Neural Information Processing Systems,
33, 2020.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical com-
plexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021a.

27

Slivkins, Zhou, Sankararaman, and Foster

Dylan J. Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-
dependent complexity of contextual bandits and reinforcement learning: A disagreement-
based perspective. In 34th Conf. on Learning Theory (COLT), 2021b. Extended Abstract.
The full paper appears at https://arxiv.org/abs/2010.03104.

Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In 9th
Conf. on Learning Theory (COLT), pages 325–332, 1996.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

Jason Gaitonde, Yingkai Li, Bar Light, Brendan Lucier, and Aleksandrs Slivkins. Budget
pacing in repeated auctions: Regret and efficiency without convergence. In 14th Innova-
tions in Theoretical Computer Science Conf. (ITCS), 2023.

S. Gerchinovitz. Sparsity regret bounds for individual sequences in online linear regression.
Journal of Machine Learning Research, 14:729–769, 2013.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl
with linear function approximation. Advances in Neural Information Processing Systems,
35:13303–13315, 2022.

Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni. Bidding
and pricing in budget and roi constrained markets. arXiv preprint arXiv:2107.07725,
2021a.

Negin Golrezaei, Ilan Lobel, and Renato Paes Leme. Auction design for roi-constrained
buyers. In 30th The Web Conference (formerly known as WWW), pages 3941–3952,
2021b.

Hengquan Guo and Xin Liu. Stochastic constrained contextual bandits via lyapunov op-
timization based estimation to decision framework. In 37th Conf. on Learning Theory
(COLT), pages 2204–2231. PMLR, 2024.

Yuxuan Han, Jialin Zeng, Yang Wang, Yang Xiang, and Jiheng Zhang. Optimal con-
textual bandits with knapsacks under realizibility via regression oracles. In 26th
Intl. Conf. on Artificial Intelligence and Statistics (AISTATS), 2023. Available at
arxiv.org/abs/2210.11834 since October 2022.

Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends in
Optimization, 2016.

Elad Hazan and Kfir Y. Levy. Bandit convex optimization: Towards tight bounds. In 27th
Advances in Neural Information Processing Systems (NIPS), pages 784–792, 2014.

Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine learning, 32
(2):151–178, 1998.

28

Contextual Bandits with Linear Constraints

Nicole Immorlica, Karthik Abinav Sankararaman, Robert Schapire, and Aleksandrs
Slivkins. Adversarial bandits with knapsacks. In 60th IEEE Symp. on Foundations
of Computer Science (FOCS), 2019.

Nicole Immorlica, Karthik Abinav Sankararaman, Robert Schapire, and Aleksandrs
Slivkins. Adversarial bandits with knapsacks. J. of the ACM, August 2022. Prelimi-
nary version in 60th IEEE FOCS, 2019.

Thomas Kesselheim and Sahil Singla. Online learning with vector costs and bandits with
knapsacks. In 33rd Conf. on Learning Theory (COLT), pages 2286–2305, 2020.

Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In 18th
Advances in Neural Information Processing Systems (NIPS), 2004.

Raunak Kumar and Robert Kleinberg. Non-monotonic resource utilization in the bandits
with knapsacks problem. In 35th Advances in Neural Information Processing Systems
(NeurIPS), 2022.

John Langford and Tong Zhang. The Epoch-Greedy Algorithm for Contextual Multi-armed
Bandits. In 21st Advances in Neural Information Processing Systems (NIPS), 2007.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press,
Cambridge, UK, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit ap-
proach to personalized news article recommendation. In 19th Intl. World Wide Web
Conf. (WWW), 2010.

Shang Liu, Jiashuo Jiang, and Xiaocheng Li. Non-stationary bandits with knapsacks. In
35th Advances in Neural Information Processing Systems (NeurIPS), 2022.

Brendan Lucier, Sarath Pattathil, Aleksandrs Slivkins, and Mengxiao Zhang. Autobidders
with budget and ROI constraints: Efficiency, regret, and pacing dynamics. In 37th Conf.
on Learning Theory (COLT), 2024.

Alexander Rakhlin and Karthik Sridharan. Online nonparametric regression. In Conference
on Learning Theory, 2014.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operation Research,
47(3):1904–1931, 2022.

Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trendsr in Ma-
chine Learning, 12(1-2):1–286, November 2019. Published with Now Publishers (Boston,
MA, USA). Also available at https://arxiv.org/abs/1904.07272.

V. Vovk. A game of prediction with expert advice. J. Computer and System Sciences, 56
(2):153–173, 1998a.

29

Slivkins, Zhou, Sankararaman, and Foster

Vladimir Vovk. Competitive on-line linear regression. In NIPS ’97: Proceedings of the
1997 conference on Advances in neural information processing systems 10, pages 364–
370, Cambridge, MA, USA, 1998b. MIT Press.

Vladimir Vovk. Metric entropy in competitive on-line prediction. CoRR, abs/cs/0609045,
2006.

Zizhuo Wang, Shiming Deng, and Yinyu Ye. Close the gaps: A learning-while-doing al-
gorithm for single-product revenue management problems. Operations Research, 62(2):
318–331, 2014.

Xingyu Zhou and Bo Ji. On kernelized multi-armed bandits with constraints. Advances in
neural information processing systems, 35:14–26, 2022.

Yinglun Zhu, Dylan J. Foster, Paul Mineiro, and John Langford. Contextual bandits in
large action spaces: Made practical. In 39th Intl. Conf. on Machine Learning (ICML),
2021.

Appendix A. Bandit Convex Optimization with Linear Constraints

In this section, we spell out an additional application of LagrangeCBwLC to bandit convex
optimization (BCO) with linear constraints. We consider CBwLC with concave rewards, convex
consumption of packing resources, and concave consumption of covering resources. Essen-
tially, we follow an application of LagrangeBwK from Immorlica et al. (2022, Section 7.4),
which applies to BwK with concave rewards and convex resource consumption; we spell out
the details for the sake of completeness. Without resource constraints, BCO has been studied
in a long line of work starting from Kleinberg (2004); Flaxman et al. (2005) and culminating
in Bubeck et al. (2015); Hazan and Levy (2014); Bubeck et al. (2017).

Formally, we consider Bandit Convex Optimization with Linear Constraints (BCOwLC),
a common generalization of BwLC and BCO. We define BCOwLC as a version of BwK, where
the set of arms A is a convex subset of Rb. For each round t, there is a concave function
ft : A → [0, 1] and functions gt,i : A → [−1, 1], for each resource i, so that the reward for
choosing action a ∈ A in this round is ft(a) and consumption of each resource i is gt,i(a).
Each function gt,i is convex (resp., concave) if resource i is a packing (resp., covering)
resource. In the stochastic environment, the tuple of functions (ft; gt,1 , . . . , gt,d) is sampled
independently in each round t from some fixed distribution (which is not known to the
algorithm). In the switching environment, there are at most S rounds when that distribution
changes.

The primal algorithm AlgPrim in LagrangeCBwLC faces an instance of BCO with an
adaptive adversary, by definition of Lagrange payoffs (3.1). We use a BCO algorithm from
Bubeck et al. (2017), which satisfies the high-probability regret bound against an adaptive
adversary. It particular, it obtains Eq. (3.4) with

RegPrim(T, δ) = O
(

T/B · η ·
√
ΦT

)
, where Φ = b19 log14(T) log(1/δ). (A.1)

We apply Theorem 9 with this primal algorithm, and with Hedge for the dual algorithm.

30

Contextual Bandits with Linear Constraints

Corollary 29. Consider BCOwLC with a convex set of arms A ⊂ R
b such that LP (2.5) has a

ζ-feasible solution for some known ζ ∈ [0, 1). Suppose the primal algorithm is from Bubeck
et al. (2017) and the dual algorithm is the exponential weights algorithm (“Hedge”) (Freund

and Schapire, 1997). Then Eqs. (3.4) and (3.5) are satisfied with R(T, δ) = O
(√

ΦT
)
,

where Φ is as in (A.1). The guarantees in Theorem 9(ab) apply with this R(T, δ).

Remark 30. This application of the LagrangeCBwLC framework is admissible because the
analysis does not make use of the fact that the action space is finite. In particular, we never
take union bounds over actions, and we can replace max and sums over actions with sup
and integrals.

31

Slivkins, Zhou, Sankararaman, and Foster

Appendix B. Details for the Proof of Theorem 12

B.1 Proof of Theorem 13

This lemma follows from Lemmas 2-3 in Agarwal et al. (2017). We prove it here for com-
pleteness.

Lemma (Theorem 13, restated). Let (D′, λ′) be a ν-approximate saddle point of Lη
LP. Then

it satisfies the following properties for any feasible solution D ∈ ∆Π of LP in (2.5):

(a) r(D′) ≥ r(D)− 2ν.

(b) r(D)− r(D′) + η
B Vmax(D

′) ≤ 2ν.

We show the following claim, which will imply Theorem 13.

Claim 31. For any feasible D, we have

r(D′)− η

B
Vmax(D

′) + ν ≥ Lη
LP(D

′, λ′) ≥ r(D)− ν. (B.1)

Proof We first show the following upper bound on Lη
LP(D

′, λ′). In particular, for any λ ∈ Λ

r(D′) +
∑

i∈[d]

ηλ′
i · σi

(
1− T

B
ci(D

′)

)
= Lη

LP(D
′, λ′)

≤ Lη
LP(D

′, λ) + ν

= r(D′) +
∑

i∈[d]

η · λi · σi
(
1− T

B
ci(D

′)

)
+ ν

(i)

≤ r(D′)− ηmax
i∈[d]

[
σi

(
T

B
ci(D

′)− 1

)]

+

+ ν,

where (i) holds by choosing a specific λ ∈ ∆d as follows

λ =

{
0 if ∀i ∈ [d], σi

(
1− T

B ci(D
′)
)
≥ 0

ei∗ otherwise, where i∗ = argmini∈[d] σi
(
1− T

B ci(D
′)
)
,

where ei denotes the unit vector for the i-th dimension, and [x]+ := max{x, 0}.
We also establish a lower bound for Lη

LP(D
′, λ′). Note that for any feasible D, since

λ′ ≥ 0, we have

Lη
LP(D,λ′) = r(D) +

∑

i∈[d]

ηλ′
i · σi

(
1− T

B
ci(D)

)
≥ r(D).

Moreover, by the approximate saddle point of (D′, λ′),

Lη
LP(D

′, λ′) ≥ Lη
LP(D,λ′)− ν.

Putting them together yields that Lη
LP(D

′, λ′) ≥ r(D)− ν.

Now let us use the claim to prove Theorem 13.
Part (a) follows since the LHS of (B.1) can be further upper bounded by r(D′) + ν.
Part (b) follows by the rearrangement of (B.1).

32

Contextual Bandits with Linear Constraints

B.2 Proof of Theorem 14

Similar results have appeared in (Efroni et al., 2020, Theorem 42 and Corollary 44), which
are variants of results in (Beck, 2017, Theorem 3.60 and Theorem 8.42), respectively. We
provide a proof for completeness. We prove the following, which implies Theorem 14.

Lemma 32. Consider the linear program in (2.5) and suppose Slater’s condition holds,
i.e., some distribution D̂ ∈ ∆Π is ζ-feasible, ζ > 0. Then:

(a) Let λ∗ be any optimal dual solution of the dual problem of (2.5), then ‖λ∗‖1 ≤
r(D∗)−r(D̂)

ζ ≤ 1
ζ .

(b) Further, suppose the following holds for some C ≥ 2 ‖λ∗‖1, D̃ ∈ ∆Π and γ > 0:

r(D∗)− r(D̃) + C
B Vmax(D̃) ≤ γ

where D∗ is an optimal solution of (2.5). Then C
B Vmax(D̃) ≤ 2γ.

Proof Let q(λ) := maxD∈∆Π
LLP(D,λ) be the dual function. Consider an optimal dual

solution λ∗ ∈ argminλ∈Rd
+
q(λ). By strong duality from Slater’s condition, we have q(λ∗) =

r(D∗) < ∞.

To prove part (a), we note that for any optimal dual solution λ∗, we have

r(D∗) = q(λ∗) ≥ r(D̂) +
∑

i∈[d]

λ∗
i · σi

(
1− T

B
ci(D̂)

)
≥ r(D̂) +

∑

i

λ∗
i ζ = r(D̂) + ‖λ∗‖1 ζ,

which gives our first result.

We turn to prove part (b). For τ ∈ R
d, define

u(τ) := max
D∈∆Π

{
r(D) | V ′(D) ≤ −τ

}
,

where V ′(D) = [V ′
1(D), . . . , V ′

d(D)]>. Note that for any D ∈ ∆Π

u(0) = r(D∗) = q(λ∗) ≥ LLP(D,λ∗)

Hence, we have for any D such that V ′(D) ≤ −τ

u(0)− τ>λ∗ ≥ LLP(D,λ∗)− τ>λ∗

= r(D)−
∑

i

λ∗
iV

′
i (D)− τ>λ∗

≥ r(D).

Maximizing the RHS over all D such that V ′(D) ≤ −τ , gives

u(0)− τ>λ∗ ≥ u(τ).

33

Slivkins, Zhou, Sankararaman, and Foster

Set τ = τ̃ := −
[[
σ1

(
T
B c1(D̃)− 1

)]
+
, . . . ,

[
σd

(
T
B cd(D̃)− 1

)]
+

]>
in the above inequal-

ity, we have

u(0)− τ̃>λ∗ ≥ u(τ̃) ≥ u(0) = r(D∗) ≥ r(D̃),

which gives

r(D∗)− r(D̃) ≥ τ̃>λ∗ ≥ −‖λ∗‖1 ‖τ̃‖∞ ,

where the last step follows from Hölder’s inequality.
From this result, we have

(C − ‖λ∗‖1) ‖τ̃‖∞ = −‖λ∗‖1 ‖τ̃‖∞ + C ‖τ̃‖∞
≤ r(D∗)− r(D̃) + C ‖τ̃‖∞ ≤ γ,

where the last step follows the assumption in Lemma 14. Hence, we finally obtain

max
i∈[d]

[
σi

(
T

B
ci(D̃)− 1

)]

+

= ‖τ̃‖∞ ≤ γ

C − ‖λ∗‖1
≤ 2γ

C
,

which follows from C ≥ 2 ‖λ∗‖1, hence finishing the proof.

B.3 Convergence to an approximate saddle point

We need to prove that (4.6) holds with probability at least 1−O(δ). That is:

Lη
LP(DT , λT) ≥ Lη

LP(D,λT)− ν, ∀D ∈ ∆Π (B.2)

Lη
LP(DT , λT) ≤ Lη

LP(DT , λ) + ν, ∀λ ∈ ∆d. (B.3)

To establish (B.2), we note that for any D ∈ ∆Π, with probability 1−O(δ), we have

Lη
LP(D,λT) =

1

T

∑

t

Lη
LP(D,λt)

(i)

≤ 1

T

∑

t

Lt(D,λt) +
1

T
·Rconc(T, δ)

(ii)

≤ 1

T

∑

t

Lt(at, λt) +
1

T
· (RegPrim(T) +Rconc(T, δ))

(iii)

≤ 1

T

∑

t

Lt(at, λT) +
1

T
· (RegDual(T) +RegPrim(T) +Rconc(T, δ))

(iv)

≤ Lη
LP(DT , λT) +

1

T
· (RegDual(T) +RegPrim(T) + 2Rconc(T, δ))

(v)
= Lη

LP(DT , λT) + ν,

34

Contextual Bandits with Linear Constraints

where (i) and (iv) follows from the concentration of Azuma-Hoeffding inequality; (ii) and
(iii) hold by the definitions of primal and dual regrets in Eq. (3.3); (v) holds by definition
of ν in (4.7).

We establish (B.3) using a similar analysis. In particular, for any λ ∈ ∆d, we have with
probability 1−O(δ)

Lη
LP(DT , λ)

(i)

≥ 1

T

∑

t

Lt(at, λ)−
1

T
·Rconc(T, δ)

(ii)

≥ 1

T

∑

t

Lt(at, λt)−
1

T
· (RegDual(T) +Rconc(T, δ))

(iii)

≥ 1

T

∑

t

Lt(DT , λt)−
1

T
· (RegPrim(T) +RegDual(T) +Rconc(T, δ))

(iv)

≥ 1

T

∑

t

Lη
LP(DT , λt)−

1

T
· (RegPrim(T) +RegDual(T) + 2Rconc(T, δ))

= Lη
LP(DT , λT)−

1

T
· (RegPrim(T) +RegDual(T) + 2Rconc(T, δ))

(v)
= Lη

LP(DT , λT)− ν,

where (i) and (iv) follows from the concentration of Azuma-Hoeffding inequality; (ii) and
(iii) hold by the definitions of primal and dual regrets in Eq. (3.3); (v) holds by definition
of ν in (4.7).

Appendix C. Zero Constraint Violation

Let us provide a variant of Theorem 9(a) with zero constraint violation, fleshing out Theo-
rem 10.

We use LagrangeCBwLC algorithm with two modifications. First, the budget parameter
is scaled down as B′ = B(1 − ε), for some ε ∈ (0, 1/2]. Second, for each covering resource
i ∈ [d] and each round t, the consumption reported back to LagrangeCBwLC is scaled down
as c′t,i = ct,i − 2εB/T . 25 For packing resources i, reported consumption stays the same:
c′t,i = ct,i. The modified algorithm, called LagrangeCBwLC.rescaled, has two parameters:
η ≥ 1 as before and ε ∈ (0, 1/2] for rescaling. Effectively, the modifications have made all
resources slightly more constrained.

Theorem 33. Suppose some solution for LP (2.5) is ζ-feasible, for a known margin ζ > 0.
Fix some δ > 0 and consider the setup in Eqs. (3.3) to (3.5) with “combined” regret bound
R(T, δ). Consider algorithm LagrangeCBwLC.rescaled with parameters η = 4/ζ and ε =

16 · TR(T,δ)
ζB2 . Assume the budget is large enough so that ε ≤ ζ/2. Then with probability at

least 1−O(δ) we have mini∈[d] Vi(T) ≤ 0 and

Opt− Rew ≤ O
(
(T/B · 1/ζ)2 ·R(T, δ)

)
. (C.1)

25. Note that c′t,i ∈ [−2, 1], whereas the original model has ct,i ∈ [−1, 1]. However, the analysis leading to
Theorem 9(a) carries over without modifications, and it is only the constants in O(·) that change slightly.

35

Slivkins, Zhou, Sankararaman, and Foster

Remark 34. The regret bound is the same as in Theorem 9(a), up to the factor of T/B · 1/ζ
(and the paradigmatic case is that this factor is an absolute constant).

In the rest of this appendix, we prove Theorem 33. An execution of LagrangeCBwLC.rescaled
on the original problem instance I can be interpreted as an execution of LagrangeCBwLC on a
modified problem instance I ′ which has budget B′ and realized consumptions c′t,i as defined
above, and the same realized rewards as in I. Note that I ′ is slightly more constrained in
each resource compared to I, i.e., a slightly “harder” instance.

Let us write down a version of the LP (2.5) for the modified instance I ′:

maximize r(D)
subject to D ∈ ∆Π

V ′
i (D) := σi (T · c′i(D)−B′) ≤ 0 ∀i ∈ [d],

(C.2)

where c′i(D) := E

[
c′t,i(π(xt))

]
and the expectation is over π ∼ D and (xt,Mt) ∼ Dout. Let

Opt′LP be the value of this LP, and recall that Opt′ = T · Opt′LP. Note that for each resource
i ∈ [d],

V ′
i (D) = σi (T · ci(D)−B) + εB = Vi(D) + εB ∀D ∈ ∆Π. (C.3)

(Indeed, this holds for both packing and covering resources i.)
We claim that I ′ satisfies Slater condition with margin ζ ′ = ζ/2. Take D̂ be the ζ-

feasible solution to I guaranteed by the theorem statement. Then Vi(D̂) ≤ −ζB for each
resource i ∈ [d]. So by Eq. (C.3) we have V ′

i (D) ≤ εB − ζB ≤ ζB/2 because ε ≤ ζ/2 by
assumption and B′ = B(1− ε). Claim proved.

Thus, we can now invoke Theorem 9(a) for LagrangeCBwLC and the modified problem
instance I ′. So, with probability at least 1−O(δ), we have

max
i∈[d]

(
Opt′ − Rew, V ′

i (T)
)
≤ O (T/B′ · 1/ζ′ ·R(T, δ)) ≤ O (T/B · 1/ζ ·R(T, δ)) , (C.4)

where Opt′ and V ′
i (T) are, resp., the benchmark (2.2) and the constraint violation (2.1) for

the modified problem instance. It remains to “massage” this guarantee to obtain regret
bound (C.1) and no constraint violations for the original problem instance. In what follows,
let us condition on the event in (C.4).

To analyze regret, we bound the difference OptLP−Opt′LP. We construct a feasible solution
to instance I ′ via a mixture of D∗, the optimal solution for the original LP (2.5), and the
ζ-feasible solution D̂ to I. Specifically, consider D′ := (1− ε/ζ)D∗+ ε/ζ D̂. Hence, we have
V ′
i (D

′) ≤ 0 for all i ∈ [d], i.e., it is a feasible solution of the new LP (C.2). Consequently,

Opt′LP ≥ r(D′) ≥ (1− ε/ζ) OptLP,

so ∆ := OptLP − Opt′LP ≤ ε/ζ. Finally,

Opt− Rew ≤ Opt′ − Rew+ T∆

= O (T/B · 1/ζ ·R(T, δ) + T 2/B2 · 1/ζ2 ·R(T, δ)) ,

where we plugged in (C.4) and the definition of ε.

36

Contextual Bandits with Linear Constraints

To analyze constraint violation, use (C.4) in a more explicit version from Theorem 12,
we have

V ′
i (T) ≤ 4 · T/B′ · 1/ζ′ ·R(T, δ)

≤ 16 · T/B · 1/ζ ·R(T, δ) = εB.

Vi(T) = σi

(∑
t∈[T] ct,i −B

)

= σi

(∑
t∈[T] c

′
t,i −B′

)
−Bε ≤ 0.

37

	Introduction
	Additional background and related work
	Concurrent work
	Organization

	Model and preliminaries
	Lagrangian framework for CBwLC
	Analysis of LagrangeCBwLC
	Tools from Optimization (for the proof of thm:main-detailed)
	Proof of Theorem 12

	Contextual BwLC via regression oracles
	Regression-based primal algorithm
	Provable guarantees for alg:primal
	Discussion
	Proof of Theorem 5.2

	Non-stationary environments
	Conclusions and open questions
	Bandit Convex Optimization with Linear Constraints
	Details for the Proof of
	Proof of lem:app-saddle
	Proof of lem:Slater
	Convergence to an approximate saddle point

	Zero Constraint Violation

