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Abstract

This paper presents a cutting-edge method

that harnesses contextualized language models

(LMs) to significantly enhance the prediction

of early academic performance in STEM fields.

Our approach uniquely tackles the challenge

of transfer learning with limited-domain data.

Specifically, we overcome this challenge by

contextualizing students’ cognitive trajectory

data through the integration of both distal back-

ground factors (comprising academic informa-

tion, demographic details, and socioeconomic

indicators) and proximal non-cognitive factors

(such as emotional engagement). By tapping

into the rich prior knowledge encoded within

pre-trained LMs, we effectively reframe aca-

demic performance forecasting as a task ideally

suited for natural language processing.

Our research rigorously examines three key as-

pects: the impact of data contextualization on

prediction improvement, the effectiveness of

our approach compared to traditional numeric-

based models, and the influence of LM capacity

on prediction accuracy. The results underscore

the significant advantages of utilizing larger

LMs with contextualized inputs, representing a

notable advancement in the precision of early

performance forecasts. These findings empha-

size the importance of employing contextu-

alized LMs to enhance artificial intelligence-

driven educational support systems and over-

come data scarcity challenges.

1 Introduction

Modern artificial intelligence (AI) methods, such

as deep learning (DL), have increasingly been de-

ployed as cost-effective solutions to develop early-

warning systems across various sectors, including

health (Adler et al., 2022; Mamun et al., 2022; Zhao

et al., 2019; Horwitz et al., 2022; Liu et al., 2023a;

Collins et al., 2023; Xu et al., 2023; Adler et al.,

2020) and education (Wang et al., 2016, 2014; Li

et al., 2020; Xu and Ouyang, 2022). These systems

leverage forecasting-based interventions to preemp-

tively address potential issues, from medical condi-

tions to academic performance. In the educational

domain, specifically, AI-based interventions uti-

lize cognitive data, like students’ course-related as-

sessment scores, to predict and improve academic

outcomes (Greenstein et al., 2021; Arnold and Pis-

tilli, 2012; Liu et al., 2023b). The efficacy of these

interventions hinges on the precision of early fore-

casts—predicting course performance as early as

possible (Hasan and Aly, 2019; Hasan and Khan,

2023). However, this poses a significant challenge

when training data is scarce, leading to suboptimal

model performance. Transfer learning could offer a

solution, yet the approach is hampered by the lack

of relevant pre-trained models or sufficiently large,

domain-specific datasets for pre-training (Tsiak-

maki et al., 2020).

In this paper, we address the challenges asso-

ciated with limited training data by introducing a

novel transfer learning methodology specifically

tailored for domain-specific data within STEM

(Science, Technology, Engineering, and Mathe-

matics) education contexts. We propose leverag-

ing Transformer-based (Vaswani et al., 2017) pre-

trained language models (LMs) for early prediction

of academic performance in undergraduate STEM

courses. Our method exploits the extensive knowl-

edge base (Raffel et al., 2020; Roberts et al., 2020)

and reasoning capabilities (Chowdhery et al., 2022;

Wei et al., 2023; Bhatia et al., 2023) of LMs, trans-

forming end-of-the-semester performance forecast-

ing into a natural language text generation task.

To enhance knowledge transfer using limited do-

main data, we contextualize students’ cognitive

data by integrating both distal background factors

and proximal non-cognitive factors. This multi-

dimensional approach encompasses demographic,

socioeconomic, and academic background factors,

as well as non-cognitive features like emotional

engagement, to enrich the predictive model. By
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transforming the ordinal (numeric or real-valued)

features of our data into natural language text se-

quences, we tailor pre-trained LMs to our specific

task. Additionally, we augment these sequences to

increase the dataset size, thereby improving predic-

tive accuracy through a more balanced representa-

tion of various performance outcomes.

Contextualizing Academic Trajectories. Our ap-

proach integrates students’ background and engage-

ment data to provide a comprehensive view of their

academic journey. Based on Social Cognitive Ca-

reer Theory (Bandura, 2001), we hypothesize that a

student’s course performance correlates with their

background, suggesting that LMs can learn indi-

vidualized academic patterns. Furthermore, longi-

tudinal non-cognitive data, reflecting aspects like

motivation and engagement, are posited to have a

strong correlation with students’ academic trajec-

tories, potentially enhancing the LMs’ predictive

accuracy (Fogg, 2009; Fredricks, 2014).

Our contextualization process divides into four cat-

egories:

• Demographic Contextualization: Includes

inherent personal and social identity factors,

such as race and gender. These are critical for

understanding the diverse identities students

bring to their educational experiences and how

these aspects influence their academic out-

comes in the course.

• Socioeconomic Contextualization: Encom-

passes factors related to the economic status

and background of the student’s family, like

parent’s total yearly income. This contextual-

ization helps to understand the resources and

socio-economic pressures that might influence

a student’s academic performance and oppor-

tunities.

• Academic Contextualization: Pertains to the

specifics of a student’s educational path, in-

cluding their class standing year (freshman,

sophomore, junior, senior) and their chosen

major. This type of contextualization is vital

for understanding how students’ educational

choices and progression affect performance.

• Emotional Engagement Contextualization:

Centers on students’ emotional and perceptual

dimensions of academic engagement. Specifi-

cally, it aims to explore how students’ anticipa-

tions of academic outcomes (expected grades)

and their satisfaction with their academic per-

formance influence their engagement, motiva-

tion, and overall educational journey.

Using the contextualized academic trajectory

data, we address the following research questions.

• [RQ1]: How does contextualization of aca-

demic trajectory data impact the efficacy of

transfer learning from pre-trained LMs in

early academic performance forecasting?

• [RQ2]: How does a natural language text

generation approach compare with numeric

feature-based models in early performance

forecasting?

• [RQ3]: What impact does the capacity of pre-

trained LMs (i.e., the number of parameters)

have on forecasting accuracy?

Our primary contributions are threefold.

Innovative Methodology: We introduce a novel

methodology that employs natural language text

generation for the early forecasting of academic

performance, showcasing a unique blend of linguis-

tic and educational insights.

Contextualization as a Catalyst for Transfer

Learning: We demonstrate that contextualizing

academic trajectory data significantly enhances the

transfer learning process from pre-trained LMs. By

embedding both cognitive and non-cognitive fea-

tures within a rich contextual narrative, our ap-

proach unlocks the vast potential of LMs to under-

stand and predict academic outcomes with remark-

able accuracy.

Exploitation of Pre-trained LM Knowledge: Our

research underscores the pivotal role of leveraging

the inherent, comprehensive knowledge encapsu-

lated within LMs. Through our method, we illus-

trate how the nuanced understanding and versa-

tility of LMs can be effectively harnessed for the

domain-specific task of predicting student perfor-

mance, thus marking a significant advancement in

the field of educational AI.

The remainder of the paper is organized as fol-

lows: Section 2 outlines our methodology, encom-

passing a description of the dataset and its collec-

tion. In Section 3, we present the experiments and

provide a detailed analysis of the results, followed

by our conclusions and suggestions for future work

in Section 4. Finally, Section 5 offers a discussion

of pertinent literature.
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Figure 1: An overview of the approach for enhancing transfer learning from pre-trained language models for early

academic performance forecasting.

2 Method

To harness the nuanced understanding pre-trained

LMs offer regarding students’ academic expe-

riences, we assembled a detailed longitudinal

dataset that examines the interplay among vari-

ous factors, including background, cognitive, and

non-cognitive elements in student learning. Figure

1 illustrates the LM-based transfer learning frame-

work, featuring the contextualization of proximal

cognitive data followed by the preprocessing of the

contextualized academic trajectory. Data contex-

tualization involves integrating distal background

and proximal non-cognitive factors with cognitive

trajectory data. Below, we outline the process of

compiling a language dataset, encompassing data

collection and pre-processing methods, and con-

clude with a formal description of transfer learning

through fine-tuning of LMs.

2.1 Data Collection

Our dataset comprises information obtained from

48 first-year college students enrolled in an intro-

ductory programming course at a public univer-

sity in the United States, following approval from

the University’s Institutional Review Board. The

dataset encompasses three key dimensions of the

students’ academic journeys.

Background Data (5-dimensional): At the out-

set of the semester, critical 5-dimensional back-

ground data was collected through a Qualtrics-

based multiple-choice web survey. This numeric

dataset includes students’ academic details (such

as class standing year and major), demographic

information (including gender and race), and a so-

cioeconomic indicator (family yearly income).

Non-Cognitive Data (2-dimensional): This di-

mension includes longitudinal measures of stu-

dents’ emotional engagement throughout the

semester, comprising 2-dimensional data reflecting

students’ anticipated end-of-semester performance

and their current performance satisfaction, both in

numeric format.

The data is collected via a privacy-preserving

smartphone application, designed to prompt con-

textually relevant, study-specific multiple-choice

questions daily. This ensures that participants’

anonymized responses are securely compiled on

cloud servers for subsequent analysis. Each partici-

pant is assigned a unique randomly generated ID

upon enrollment, with no personally identifiable

information collected via the app. All data col-

lected is tagged solely by the participant’s random

ID, with no linkage maintained between the ID and

participant identity. Geolocation and Bluetooth

sensors are utilized in the app to ascertain instanta-

neous context for question triggers, although sensor

data is not persistently stored. By transparently in-

forming students about the privacy-preservation

mechanisms, we mitigate potential psychological

and academic incentives for artificial performance

or dishonest responses during experience sampling.
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Furthermore, this privacy-preserving mechanism

serves to mitigate potential biases in the data col-

lection process. By anonymizing participants’ re-

sponses and ensuring that no personally identifiable

information is collected, we minimize the risk of

participants feeling pressured to provide socially

desirable responses. This approach promotes more

authentic and unbiased data collection, contributing

to the reliability and validity of our findings.

Cognitive Data (21-dimensional): The dataset

also includes 21-dimensional numeric cognitive

data derived from students’ assessment scores (both

formative and summative) over the first 8 weeks

of the semester. This cognitive data was obtained

from the course’s learning management system,

Canvas, providing insights into students’ academic

performance, engagement, and progress within the

course curriculum.

2.2 Data Contextualization

We enriched students’ cognitive trajectory

data—comprising their course-related formative

and summative scores—by incorporating four

contextual dimensions: demographic (gender

and race), academic (class standing year and

major), socioeconomic (family yearly income),

and behavioral (emotional engagement). The

dynamic cognitive and non-cognitive data were

intertwined to preserve their temporal sequence,

while the static background data was added at the

end of the trajectory.

2.3 Data Pre-processing

The contextualized numeric trajectory data un-

derwent preprocessing to adapt it for LM use,

which included handling missing values in the non-

cognitive data, verbalization of the data, and data

augmentation for enhanced model training.

Data Imputation. The proximal non-cognitive

data exhibited missing values, resulting from par-

ticipants either skipping questions or temporarily

uninstalling the app. We encountered two dis-

tinct patterns of missing data: complete absence

of responses for an entire day and partial absences

within a day. To address days with entirely missing

data, we employed the Last Observation Carried

Forward (LOCF) imputation method (Liu, 2016).

This method involves carrying forward the last ob-

served value for each participant to replace missing

values at subsequent time points. While LOCF is a

commonly used approach due to its simplicity, it as-

sumes that the missing data points would have fol-

lowed a similar trajectory as the last observed value.

In situations where no prior data were available, the

Next Observation Carried Backward (NOCB) ap-

proach was employed (Jahangiri et al., 2023), using

data from a subsequent day that contained relevant

responses. The challenge of partially missing data,

particularly for follow-up questions, necessitated

a more nuanced approach. When the preceding

day’s trigger question response did not match, di-

rectly applying LOCF for the follow-up question

was deemed unreliable (Lachin, 2016). Instead, we

filled these gaps with responses from days where

the trigger question responses aligned. If no match-

ing previous day could be identified, a future day

with corresponding answers was utilized.

Data Verbalization. To transform the numeric

dataset into natural language, we designed a tem-

plate for verbalizing both the input (X) and out-

put (Y ) data sequences (refer to the Appendix for

details). Input sequences were prefaced with con-

textual messages, such as “A student obtained the

following assessment scores in an introductory pro-

gramming course ...” for cognitive data, and “Some

background information about the student: ...” for

distal data. Chronological order was emphasized

by prefacing data with the week number, e.g., “In

week [WEEK_NUMBER]”. The output sequences,

categorized into four performance groups (at-risk,

prone-to-risk, average, outstanding), contextual-

ized the final letter grade in a natural language

expression, e.g., “At the end of the semester, the

student will be at risk.” . This verbalization process

yielded three datasets based on 8-week, 4-week,

and 2-week long input sequences.

Data Augmentation. Given the initial dataset’s

unbalanced distribution across performance cate-

gories (24 instances of outstanding, 12 average, 6

prone-to-risk, and 6 at-risk), we employed a two-

fold approach for data augmentation. Firstly, we

utilized oversampling techniques (Haixiang et al.,

2017; Hernandez et al., 2013) to duplicate instances

from minority classes, thus balancing the dataset.

Secondly, we incorporated synonym replacement

methods (Li et al., 2022), which involved substitut-

ing words with their synonyms to introduce token

variations. This comprehensive approach aimed to

not only address class imbalance but also enrich

the dataset with diverse token variations.

As a result of our data augmentation strategy, the

augmented dataset showcased a more equitable dis-
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tribution among performance categories, totaling

144 samples, comprising 48 instances of outstand-

ing, 36 average, 30 prone-to-risk, and 30 at-risk.

These methodologies provide a robust founda-

tion for applying transfer learning to LMs, facilitat-

ing a deep understanding of students’ academic per-

formance through a multi-dimensional data lens.

2.4 Fine-tuning LMs

Each sequence in X and Y contains standard

lexical literals used in English (e.g., words and

phrases), which is used to fine-tune a pre-trained

encoder-decoder LM. The encoder fE(.) maps the

input sequence (x1, x2, ..., xl) to an intermediate

latent embedding sequence (z1, z2, ..., zl).

z = fE(x1, x2, ..., xl; θE) (1)

where θE are the weights of the encoder.

The decoder fD(.) takes the latent embed-

dings (z1, z2, ..., zl) to generate an output sequence

(ŷ1, ŷ2, ..., ŷm) in an auto-regressive fashion, i.e.,

at each step the decoder fD(.) uses previously gen-

erated symbols ŷ<m as additional input for generat-

ing the next token ŷm.The probability of generating

the m-th token ŷm is given by

p(ŷm|ŷ<m; z1, z2, ..., zl)

= softmax(fD(ŷ<m; z1, z2, ..., zl; θD)) (2)

where θD are the weights of the decoder. For

fine-tuning the encoder-decoder LM, the multi-

class cross-entropy loss function is used. The num-

ber of classes in the loss function is set by the total

number of tokens in the vocabulary. For a batch

size B, the loss function is:

L = −
B∑

b=1

M∑

m=1

ybmlogŷbm (3)

3 Experiments

To thoroughly investigate the research questions

outlined in Section 1, we performed a series of ex-

periments focusing on the learning capabilities of

LMs. These experiments involved fine-tuning pre-

trained LMs across multi-dimensional language

datasets spanning 8 weeks, 4 weeks, and 2 weeks.

This selection of timeframes facilitated an in-depth

examination of LM adaptability over various peri-

ods. The effectiveness of the adapted LMs was as-

sessed through their ability to identify performance

types based on matching keywords in the predicted

output sequences. Moreover, we explored the im-

pact of LM size—small, medium, and large—on

their performance.

Experimental Setup. For the encoder-decoder

LM, we used pre-trained FLAN-T5 (Chung et al.,

2022), which is a variant of the T5 model (Raf-

fel et al., 2020). The FLAN-T5 model is instruc-

tion fine-tuned, making it suitable for our purposes.

We employed FLAN-T5 with three different ca-

pacities, determined by the number of parameters:

FLAN-T5-Small (80M), FLAN-T5-Base (250M),

and FLAN-T5-Large (770M). These LMs have a

context window limited to 512 tokens. As base-

line comparisons, we utilized four models that

work with only numeric features: three neural net-

works (NNs) and one non-NN machine learning

model. The neural networks include a Long Short-

Term Memory (LSTM) network (Hochreiter and

Schmidhuber, 1997), a Convolutional Neural Net-

work (CNN) with a one-dimensional (1D) convolu-

tional kernel (Kim, 2014), and a Transformer net-

work (Vaswani et al., 2017). The non-NN machine

learning model employed was a Support Vector

Machine (SVM) with a linear kernel (Boser et al.,

1992), which demonstrated superior performance

over the Gaussian Radial Basis Function kernel.

The baseline models were trained using 3

variably-length numeric datasets containing only

the cognitive features. Exploring baseline models

with all three feature types is planned as future

work. To ensure compatibility with the LM-based

experiments, the numeric datasets were created

from the augmented verbalized datasets by decod-

ing the cognitive feature part of text sequences into

numeric values.

We used the same test sets to evaluate both model

types, employing the following metrics: accuracy,

precision, recall, and F1 score. A detailed descrip-

tion of the experimental setup is provided in the

Appendix.

3.1 Results

[RQ1]: How does contextualization of academic

trajectory data impact the efficacy of transfer

learning from pre-trained LMs in early academic

performance forecasting? The core objective

of this study is to evaluate how the contextualiza-

tion of academic trajectory data influences the fore-

casting effectiveness of pre-trained LMs. To this

end, we fine-tuned LMs of varying sizes with aca-
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Table 1: Evaluation of the large LM (FLAN-T5-Large) fine-tuned with four combinations of the 3 feature types

using the 8-week, 4-week, and 2-week datasets. The best results are in bold.

Legends: C=Cognitive, NC=Non-Cognitive, B=Background, AR=At-Risk, PR=Prone-To-Risk, AV=Average,

OU=Outstanding, P=Precision, R=Recall, F1=F1 Score, A=Accuracy

Features Class
8-week 4-week 2-week

P R F1 A P R F1 A P R F1 A

Full

Contextualization

(C + NC + B)

AR 0.78 1.00 0.88

0.89

1.00 1.00 1.00

0.84

0.64 1.00 0.78

0.77
PR 0.89 0.80 0.84 0.89 0.80 0.84 1.00 0.50 0.67

AV 0.92 1.00 0.96 0.71 0.91 0.80 0.73 1.00 0.85

OU 0.93 0.81 0.87 0.86 0.75 0.80 0.85 0.69 0.76

Partial

Contextualization

(C + NC)

AR 0.70 1.00 0.82

0.82

0.70 1.00 0.82

0.77

0.62 0.71 0.67

0.68
PR 1.00 0.60 0.75 0.86 0.60 0.71 0.71 0.50 0.59

AV 0.73 1.00 0.85 0.69 1.00 0.81 0.62 0.91 0.74

OU 0.92 0.75 0.83 0.91 0.62 0.74 0.77 0.62 0.69

Partial

Contextualization

(C + B)

AR 0.78 1.00 0.88

0.77

0.88 1.00 0.93

0.77

0.60 0.86 0.71

0.64
PR 0.89 0.80 0.84 0.71 1.00 0.83 0.71 0.50 0.59

AV 0.67 0.73 0.70 0.69 0.82 0.75 0.70 0.64 0.67

OU 0.79 0.69 0.73 0.89 0.50 0.64 0.59 0.62 0.61

No

Contextualization

(C)

AR 0.60 0.86 0.71

0.73

0.62 0.71 0.67

0.70

0.36 0.57 0.44

0.52
PR 0.86 0.60 0.71 0.67 0.60 0.63 0.88 0.70 0.78

AV 0.60 0.82 0.69 0.67 0.91 0.77 0.54 0.64 0.58

OU 0.92 0.69 0.79 0.83 0.62 0.71 0.42 0.31 0.36

(a) FLAN-T5 Base

.

(b) FLAN-T5 Small

Figure 2: Impact of contextualization on the FLAN-T5 Base and Small models.

demic trajectory data enriched with three types of

features: cognitive (C), non-cognitive (NC), and

background (B). This investigation includes com-

paring the performance impact between fully con-

textualized LMs (utilizing all three feature types)

and partially-contextualized or non-contextualized

LMs. For partial contextualization, we explored

combinations of C+NC and C+B features, whereas,

in the non-contextualization scenario, only cogni-

tive (C) features were employed for model fine-

tuning.

According to the performance metrics provided

in Table 1 for the best-performing large LM, FLAN-

T5-Large, it is evident that models utilizing a con-

textualization approach, whether fully or partially,

significantly outperform those without any contex-

tualization. Specifically, the fully contextualized

LMs demonstrate superior forecasting abilities.

For instance, such a model can predict student per-

formance with an accuracy of 77% by the end of

the 2nd week of the semester. This early prediction

capability is vital for implementing effective early
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(a) 8-week (b) 4-week (c) 2-week

Figure 3: Comparison with baseline models on cognitive features.

Table 2: Evaluation of the three baseline models trained with cognitive features using the 8-week, 4-week, and

2-week datasets. The best results are in bold.

Legends: AR=At-Risk, PR=Prone-To-Risk, AV=Average, OU=Outstanding, P=Precision, R=Recall, F1=F1 Score,

A=Accuracy

Model Class
8-week 4-week 2-week

P R F1 A P R F1 A P R F1 A

CNN

AR 0.50 0.86 0.63

0.59

0.44 0.57 0.50

0.50

0.45 0.71 0.56

0.45
PR 0.83 0.50 0.62 1.00 0.30 0.46 0.44 0.70 0.54

AV 1.00 0.09 0.17 0.33 0.55 0.43 0.22 0.18 0.20

OU 0.56 0.88 0.68 0.37 0.56 0.58 0.75 0.38 0.50

LSTM

AR 1.00 0.14 0.25

0.34

0.00 0.00 0.00

0.25

0.15 0.29 0.20

0.34
PR 0.27 0.40 0.32 0.00 0.00 0.00 0.00 0.00 0.00

AV 0.33 0.27 0.30 0.26 0.73 0.38 0.00 0.00 0.00

OU 0.37 0.44 0.40 0.33 0.19 0.24 0.42 0.81 0.55

Transformer

AR 0.78 1.00 0.88

0.59

0.54 1.00 0.70

0.57

0.56 0.71 0.63

0.55
PR 0.57 0.40 0.47 1.00 0.60 0.75 0.80 0.60 0.71

AV 0.41 0.64 0.50 0.40 0.18 0.25 0.00 0.00 0.00

OU 0.73 0.50 0.59 0.50 0.62 0.56 0.46 0.81 0.59

SVM

AR 1.00 0.71 0.83

0.68

1.00 0.86 0.92

0.59

0.54 0.78 0.64

0.59
PR 0.88 0.78 0.82 1.00 0.33 0.50 1.00 0.20 0.33

AV 0.41 0.88 0.56 0.38 0.38 0.38 0.67 0.50 0.57

OU 0.67 0.46 0.55 0.38 0.62 0.47 0.57 0.76 0.65

intervention strategies.

Moreover, identifying students at risk (AR) or

prone to risk (PR) early is crucial for timely sup-

port. The 2-week model, when fully contextualized,

exhibits a remarkable recall rate of 100% for the

AR group. As more data becomes available, the

4-week model maintains this 100% recall for the

AR group and also achieves an 80% recall for the

PR group, both of which are essential for early in-

tervention efficacy. Expanding the data window to

8 weeks further enhances the model’s accuracy to

89%, underlining the benefits of full contextualiza-

tion in improving early detection and intervention

outcomes.

Partial Contextualization was explored in two

variations: one combining cognitive and non-

cognitive features (C + NC) and the other cognitive

and background features (C + B). The C + NC

configuration demonstrated moderate success, with

overall accuracy ranging from 68% to 82%, indicat-

ing a somewhat effective use of student information

minus the background context. In contrast, the C

+ B setup, omitting non-cognitive traits, showed

a slight decrease in performance, particularly for

the 2-week predictions, where accuracy dropped

to 64%. These outcomes highlight the nuanced

contribution of non-cognitive factors in short-term

risk assessment.

No Contextualization (C alone) presented the

most significant drop in performance, with ac-
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curacy falling to 52% for the 2-week predictions.

This stark decrease underscores the critical role of

contextualization in enhancing the predictive power

of the model.

In addressing RQ1, the evaluation of the FLAN

T5 Base model also underscores the importance of

academic trajectory data contextualization (see Fig-

ure 2(a)). When fine-tuned with a comprehensive

set of features (C + NC + B), it demonstrates a clear

advantage, achieving accuracies of 86%, 84%, and

68% across 8-week, 4-week, and 2-week forecasts,

respectively. This trend highlights the efficacy of

full contextualization in enhancing model perfor-

mance, despite a slight performance dip compared

to the larger model variant, affirming the signifi-

cance of a rich feature set for improved predictive

accuracy.

The investigation with the FLAN T5 Small

model further supports the value of contextual-

ization (see Figure 2(b)), achieving peak accura-

cies of 82%, 75%, and 64% across the same time-

frames with full feature integration. Despite facing

challenges in short-term risk prediction, the Small

model’s performance emphasizes the critical role

of a comprehensive feature blend in maintaining

predictive accuracy, even with constrained compu-

tational resources. These findings collectively vali-

date that full contextualization substantially bene-

fits the forecasting capabilities of pre-trained LMs

across different model sizes.

[RQ2]: How does natural language text gener-

ation compare to numeric feature-based models

in forecasting early academic performance, using

only cognitive features? Our analysis contrasts

the efficacy of three varying-capacity LMs against

four numeric feature-based baseline models, focus-

ing solely on the cognitive features of our dataset.

As illustrated in Figure 3 for datasets spanning 8-

week, 4-week, and 2-week intervals, the results

demonstrate distinct performance dynamics. In the

4-week and 8-week forecasts, LMs consistently

outperform the numeric baseline models. Yet, in

the initial 2-week forecast, numeric models, specif-

ically the SVM and Transformer, with accuracies

of 59% and 55% respectively, outdo the large LM,

which records a 52% accuracy. Remarkably, the

SVM’s performance plateaus at 59% accuracy for

the 4-week datasets, in contrast to the large LM,

which notably enhances its accuracy to over 70%

consistently across the 4-week duration. Detailed

comparisons of baseline model performances are

provided in Table 2.

[RQ3]: What impact does the capacity of pre-

trained LMs (i.e., the number of parameters) have

on forecasting accuracy? Analyzing the test accu-

racies among the three differently sized LMs (refer

to Table 1, Figures 2 and 3) reveals a clear trend:

larger models demonstrate enhanced forecasting

capabilities. Notably, even after implementing full

contextualization, the recall for the at-risk group

in the smaller and medium-sized models stands at

86%, while the large model achieves a recall of

100%. This pattern strongly indicates that achiev-

ing optimal early forecasting through the con-

textualization of LMs is more effective with the

deployment of large language models (LLMs).

4 Conclusion

In this paper, we ventured into the realm of lever-

aging modern AI, particularly deep learning and

transfer learning methodologies, to tackle the criti-

cal challenge of early performance forecasting in

the educational sector. Our investigation centered

on the innovative use of Transformer-based pre-

trained LMs for predicting undergraduate STEM

course outcomes, marking a significant departure

from traditional numeric feature-based models. By

integrating a novel transfer learning approach tai-

lored for small-domain data within STEM educa-

tion, we aimed to overcome the limitations posed

by sparse training datasets, a common hurdle in the

educational domain.

Our methodology hinged on the contextualiza-

tion of academic trajectory data, incorporating a

rich tapestry of both cognitive and non-cognitive

factors. Through this multi-dimensional approach,

we enhanced the LMs’ capacity to understand and

predict academic performance, achieving a notable

improvement in forecasting accuracy. Specifically,

we demonstrated that:

• Contextualizing academic trajectory data sig-

nificantly enhances the transfer learning pro-

cess from pre-trained LMs, as evidenced by

our responses to [RQ1].

• Compared to numeric feature-based models,

our natural language text generation approach

shows superior performance in early academic

forecasting, addressing [RQ2].

• The capacity of pre-trained LMs, in terms of

their number of parameters, plays a crucial
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role in forecasting accuracy, with larger mod-

els outperforming their smaller counterparts,

as explored in [RQ3].

These insights underscore the transformative po-

tential of AI-driven tools in proactively identifying

and supporting students at risk, thereby enhanc-

ing educational outcomes. By leveraging the vast

knowledge encapsulated within LMs and enrich-

ing it with detailed contextual data across demo-

graphic, socioeconomic, academic, and emotional

engagement dimensions, we not only tailored the

pre-trained LMs to our specific task but also en-

riched the predictive model with a comprehensive

understanding of students’ academic journeys.

Looking ahead, our work opens the door to fu-

ture research in several key areas. Integrating more

detailed contextual signals such as real-time aca-

demic engagement and behavioral data could en-

hance LM predictive accuracy, leveraging advances

in natural language processing and sentiment analy-

sis to understand students’ emotional and cognitive

states better. Expanding our approach to a wider

range of educational contexts and disciplines would

help validate its scalability and adaptability. Ad-

ditionally, exploring continual learning techniques

for LMs might illuminate how to improve fore-

casting systems’ accuracy and reliability over time

without extensive retraining. Addressing the ethical

and privacy concerns inherent in using detailed stu-

dent data is also crucial, necessitating robust data

governance and ethical AI frameworks to protect

students’ rights and ensure equitable benefits.

5 Related Work

In advancing educational forecasting, we introduce

a distinct approach by applying transfer learning

from pre-trained LMs to contextualized time-series

data of academic trajectories. This dataset uniquely

incorporates both cognitive and non-cognitive fea-

tures, enriching the forecasting model with a de-

tailed temporal perspective.

Research in time-series forecasting with pre-

trained LMs splits into two main streams: data-

centric and model-centric approaches (Sun et al.,

2023). Data-centric methods focus on transform-

ing time-series data into formats amenable to LMs,

employing innovative embedding techniques to

match time-series data with the textual embedding

space of LMs. These techniques range from embed-

ding alignment and augmentation (Sun et al., 2023)

to two-stage fine-tuning (Chang et al., 2023) and

zero-shot preprocessing for numerical data (Gru-

ver et al., 2023). Model-centric strategies, on the

other hand, adapt pre-trained LMs specifically for

time-series forecasting. This involves fine-tuning

certain LM components while introducing time

series-specific modifications such as decomposi-

tion and soft prompts (Cao et al., 2023), aiming

to formulate forecasting as a question-answering

task (Xue and Salim, 2023), and prompt-tuning

with few-shot learning (prompt engineering) (Liu

et al., 2023c).

Our work diverges by leveraging a model-centric

approach tailored to the contextual data of aca-

demic paths, utilizing discrete prompts. This novel

strategy emphasizes the importance of transfer

learning from pre-trained LMs to enrich forecast-

ing with a deep, context-aware analysis, setting our

research apart in the field of educational forecast-

ing.

6 Limitations

Our study has made important progress in showing

how contextualized language models (LMs) can

predict early academic performance. Yet, we must

acknowledge some limitations that define our re-

search’s scope and point towards future research

directions.

Data Scope and Diversity: The primary focus

of our research on undergraduate STEM courses

may circumscribe the applicability of our findings

across different academic disciplines and educa-

tional levels. The distinct cognitive and engage-

ment challenges inherent to non-STEM subjects

underscore the need for subsequent studies aimed

at adapting and validating our methodology in a

wider educational context.

Model Size and Computational Resources: The

deployment of LMs brings to the fore the exigen-

cies of computational resources. The high com-

putational overhead required for the training and

operational deployment of these models might pre-

clude their adoption in institutions with limited

technological infrastructure, potentially curtailing

the broad-scale application of our approach in var-

ied educational settings.

Ethical and Privacy Concerns: Leveraging de-

tailed personal and contextual data of students ne-

cessitates a careful navigation of ethical and privacy

considerations. While our study has endeavored to
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adhere to these imperatives scrupulously, the ex-

pansive use of similar methodologies demands a

rigorous commitment to data protection standards

and ethical practices to mitigate the risk of infring-

ing upon student privacy.

Temporal Dynamics: Our forecasting approach

captures a static slice of contextual data, possibly

overlooking the dynamic nature of student engage-

ment and performance, which are subject to change

over the academic term. The challenge of incorpo-

rating continuous data updates into LMs without

necessitating extensive retraining poses a signifi-

cant question for future research.

Interpretability and Explainability: The opaque

nature of LMs, as with many deep learning models,

presents a barrier to interpretability and explain-

ability. To engender trust among educational practi-

tioners and stakeholders, it is imperative to develop

methodologies that elucidate the rationales behind

model predictions in a comprehensible manner.

Bias and Fairness: The risk of propagating biases

through pre-trained LMs, a reflection of their train-

ing datasets, is a critical concern. These biases

have the potential to skew forecasting accuracy and

fairness, impacting various student demographics

disparately. Vigilance to prevent the reinforcement

of existing educational disparities is essential.

Computational Limitations: Our investigation’s

scope was notably constrained by the limited mem-

ory capacity of available GPUs. This limitation

thwarted our ability to fully leverage the spectrum

of distal and proximal non-cognitive features, em-

ploy rich and expressive instructional prompts, and

utilize LMs with ≥ 1 billion parameters. Over-

coming these computational hurdles is crucial for

unlocking the full potential of LLMs in educational

forecasting.

These limitations underscore the imperative for

continued research to surmount these hurdles. Fu-

ture endeavors should focus on broadening the in-

clusivity, ethical integrity, and scalability of AI-

driven educational interventions, ensuring they

serve as equitable and effective support mecha-

nisms across the diverse landscape of learning en-

vironments.
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