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Fig.1: The MegaScenes Dataset is an extensive collection of around 430k scenes,
featuring over 100k structure-from-motion reconstructions and over 2 million registered
images. MegaScenes includes a diverse array of scenes, such as minarets (e.g., Qutb
Minar), building interiors (e.g., wooden church in Céalinesti Céeni), statues (e.g., Puits de
Moise), bridges (e.g., Kapellbriicke), towers (e.g., Puerta de Europa), religious buildings
(e.g., Karmravor), and natural landscapes (e.g., Teide volcano). The images of these
scenes are captured under varying conditions, including different times of day, various
weather and illumination, and from different devices with distinct camera intrinsics.

Abstract. Scene-level novel view synthesis (NVS) is fundamental to
many vision and graphics applications. Recently, pose-conditioned diffu-
sion models have led to significant progress by extracting 3D information
from 2D foundation models, but these methods are limited by the lack
of scene-level training data. Common dataset choices either consist of
isolated objects (Objaverse), or of object-centric scenes with limited
pose distributions (DTU, CO3D). In this paper, we create a large-scale
scene-level dataset from Internet photo collections, called MegaScenes,
which contains over 100K structure from motion (SfM) reconstructions
from around the world. Internet photos represent a scalable data source
but come with challenges such as lighting and transient objects. We
address these issues to further create a subset suitable for the task of
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NVS. Additionally, we analyze failure cases of state-of-the-art NVS meth-
ods and significantly improve generation consistency. Through extensive
experiments, we validate the effectiveness of both our dataset and method
on generating in-the-wild scenes. For details on the dataset and code, see
our project page at https://megascenes.github.io.

Keywords: Novel view synthesis of scenes - Pose-conditioned diffusion
models - Dataset of Internet photo collections

1 Introduction

Our vast visual experience enables us to look at a single view of a scene and
infer what we cannot see. We can see a bridge from afar and imagine what it
would be like to stand under it, or view the front of a church and guess what it
looks like from other sides. Imagine a computer vision model that has similarly
seen countless scenes: like humans, it can infer other views of a scene from a
single image (i.e., it can perform single-view novel-view synthesis). Beyond the
connections with human vision, such a vision model would allow us to explore
new AR/VR visualizations [71] or plan effectively in robotics [13,72].

Current state-of-the-art on single-view novel-view synthesis takes 2D diffusion
models trained on large internet datasets [41] and finetunes them on multiview
images with camera poses. Concretely, these finetuned diffusion models map a
reference image and a target pose to the corresponding target view [29,59]. These
methods successfully produce consistent novel views but only at the object level
as they were trained on object meshes. Unfortunately, attempts to generalize this
approach to scenes [6,43] by training on existing scene-level datasets [27,39,48,71]
have been held back by the relatively small size and lack of diversity of these
scene-level datasets. As such, current scene-level novel view synthesis techniques
cannot match the consistency of object-level models and fail to generalize to
realistic, in-the-wild scenes.

To address the lack of diverse, scene-level data for training 3D-aware models,
we create MegaScenes, a large-scale 3D dataset. MegaScenes builds on eight million
free-to-use images sourced from Wikimedia Commons. We leverage structure
from motion (SfM) to extract 3D structure from internet images at scale. In total,
MegaScenes contains over 100K scene-level SfM reconstructions from around the
world, along with associated data like captions, as well as the estimated relative
poses of tens of millions of image pairs. Fig. 1 shows a few example scenes.

While we foresee a variety of 3D-related applications that could benefit
from MegaScenes, such as pose estimation [53|, feature matching [55], and
reconstruction [56], in this paper we focus on NVS as a representative application.
Following prior work in NVS [29,43], our goal is to generate a plausible image at
a target pose given only one reference image. Therefore, from the MegaScenes
dataset we sample image pairs that have consistent lighting and visual overlap to
create over 2 million training pairs. We validate the effectiveness of MegaScenes
by finetuning current state-of-the-art NVS models on our dataset, and find that
the new models perform significantly better on multiple dataset benchmarks.
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In these experiments, we also identify and mitigate failure cases of existing
methods by including additional conditioning that warps the input image into the
target view [27]. While our method is simple and builds on existing approaches, it
addresses the fundamental issues in prior works, and we validate that it produces
significantly more consistent and realistic results.

We show extensive experiments in Sec. 4 and a large collection of uncurated
results in the supplement to demonstrate that our method and our training
dataset yield NVS models that are effective across multiple benchmarks. We will
release the dataset, code, and pretrained models.

2 Related Work

Datasets for 3D Learning. Datasets are the keystone of 3D learning. Recently,
many 3D datasets have provided increasing amounts of data for tasks such as novel
view synthesis, scene understanding, and 3D generation. Object-level 3D datasets
like ShapeNet [8], CO3Dv2 [39], and DTU [48] have been extensively utilized in
sparse view NVS [67] and 3D generation [73]|. The emergence of larger-scale 3D
object datasets like MVImgNet [69] and Objaverse-XL [12] has enabled more
generalizable models [18,29,54] for 3D reconstruction and generation. However,
these datasets are confined to objects and do not extend to full scenes.

At the scene scale, existing datasets [7,11,21,24,27,40,65,66,71] have facilitated
scene-level view synthesis and generation, but are often limited to a constrained
set of categories, such as indoor scenes and drone shots of nature. DL3DV-10K [26]
is concurrent work that aims to create a diverse and large-scale 3D scene dataset
from videos, but features limited variation in camera poses.

In contrast, scene-level 3D datasets sourced from internet photos, such as
MegaDepth [22], present a diverse distribution of camera poses and intrinsics,
various lighting conditions and weather, different times of day, and transient
objects and is widely applied in monocular depth estimation [2,64] and learned
feature matching [14, 25, 50]. However, MegaDepth is limited in scale to just
196 landmarks. Two more recent scene-level datasets include Google Landmarks
v2 [60] and WikiScenes [63], which also gather images from Wikimedia Commons.
However, Google Landmarks only focuses on 2D retrieval (no 3D information),
and WikiScenes focuses on specific categories like cathedrals.

To address these limitations, MegaScenes incorporates diverse scene categories
that include indoor, outdoor, natural scenes, and object-like scenes such as statues.
It significantly extends the scale of 3D scene data, surpassing MegaDepth by
several orders of magnitude, and includes 3D annotations of camera poses and
reconstructions. Sourced from the Wikimedia Foundation, MegaScenes benefits
from rich metadata and a wide distribution of illumination and camera poses.
Our findings in novel view synthesis demonstrate that the image diversity within
the same scene enhances model generalization capabilities, highlighting the value
of MegaScenes in advancing the field of 3D learning.

Novel View Synthesis from Sparse Views. Novel view synthesis is the task
of generating images from unseen views given some known images of a scene.
When many input views are available, one can reconstruct an explicit 3D scene
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Fig. 2: MegaScenes curation pipeline. We first source and identify potential scene
categories from WikiData. Subsequently, images and metadata for each scene category
is downloaded. Finally, we reconstruct scenes using Structure from Motion (SfM) and
clean them using the Doppelgangers [4] pipeline.

model, e.g., a neural radiance field [33] or 3D Gaussians [20]. However, given only
sparse views (or just one), methods must rely on heuristic priors such as geometry
smoothness [34,51] or data priors [6,49,62,67]. Recently, a popular line of work
uses foundation generative models [41,42] as prior knowledge. To workaround the
lack of 3D data and instead use 2D foundation models, [35,52,57,62] generate
3D objects by enforcing the rendered images from unseen viewpoints to agree
with generative models. [5,9,68] explicitly extract multiview images by warping
reference images and their depth given target poses following Liu et al. [27], and
use an inpainting model to fill in the missing regions. However, since these 2D
generative models are not 3D-aware, methods can suffer from artifacts such as
the multiface problem [35] or inconsistent geometries [9,68].

A promising alternative is to leverage generative models that can perform
novel-view synthesis conditioned on input view and change of camera poses [5,
6,18,19,28-30, 36,43, 46, 59, 73|. These methods produce consistent geometry
given sparse or even single views without the artifacts from 2D models, and can
generalize to unseen scenarios thanks to their data priors. However, these works
are generally trained on data with limited diversity, such as on object meshes [12]
and object-centric scenes [39]. As we will show later, this limits their applicability
to realistic, in-the-wild scenes. In this paper, we create both a dataset and a
method that directly addresses scene-level novel view synthesis.

3 MegaScenes Dataset

In this section, we introduce the MegaScenes dataset, designed to capture a
diverse range of geometries for large-scale scenes—plazas, buildings, interiors,
and natural landmarks—using worldwide internet photos. First, we describe the
dataset’s key characteristic features in Sec. 3.1. Then, the data collection and
reconstruction pipeline of MegaScenes are detailed in Sec. 3.2 Finally, we provide
dataset statistics in Sec. 3.3.
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3.1 Dataset Characteristics

We describe several characteristic features that highlight the versatility of the
MegaScenes dataset in training future vision tasks, including category, image,
and 3D information.

Wikimedia Commons Categories as Scenes. We base each scene in MegaScenes
from a single Wikimedia Commons category. Contributors from around the world
have uploaded millions of images to Wikimedia Commons, and have organized
images into representative groups. As shown in Fig. 3 we find that Wikimedia
Commons categories depict scenes that are distributed across Earth, making it
suitable as the foundation for a diverse dataset and future expandability.

Images, Subcategorization, and Licensing. Images within a single scene
are further classified into subcategories determined by Wikimedia Commons
contributors. This enables future dataset applications to create subsets of data
with greater granularity. This also proves to be helpful in cleaning the dataset,
as described in the supplement on the dataset pipeline. Most importantly, like
the similarly-sourced Google Landmarks v2 dataset [60], these images possess
open content licenses or are in the public domain. Consequently, depending on
the specific license, these images are free to reuse and alter for downstream tasks,
so long as the original source is attributed.

3D Data. For each scene, we contribute SIFT [31] keypoints and descriptors, as
well as calculated two-view geometries for pairs of images. We also contribute
sparse point clouds and camera poses for a subset of scenes with ample image
overlap. We use COLMAP [44] to compute this data.

Class Hierarchy. Similar to hierarchical extension of Google Landmarks v2 [3§],
the MegaScenes Dataset contains a hierarchy of class labels for each scene
directly sourced from Wikidata. Wikidata is a large database of structured data,
ranging from singular scenes to broad ideas, connecting topics between Wikimedia
Commons and Wikipedia. We use this class hierarchy to aid in dataset curation,
as described in Sec. 3.2.

3.2 Dataset Curation

Fig. 2 depicts our dataset curation pipeline, which has three main steps: identifying
scene categories, downloading images, and reconstructing scenes. We provide an
overview of our pipeline below, and supply additional details in the supplement.

Identifying Scenes. Our first goal is to identify Wikimedia Commons categories
that may be considered as scenes. We take a top-down approach to identify scenes
by utilizing the class hierachy described in Sec. 3.1, as follows. First, we select
several broad classes from Wikidata, such as “bridges” or “religious buildings”,
that relate to collections of scenes. We choose these classes based on commonly
seen places in everyday life. From these classes, we use the class hierarchy to
identify Wikimedia Commons categories that are instances of these classes.

Downloading Images from Scenes. We download all images associated with
a Wikimedia Commons category that is identified as a scene, contingent on a
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Fig. 3: Distribution of the MegaScenes Dataset. On the left, we depict the frequency
of scenes grouped by WikiData class. This includes only select classes with more than
3,500 scenes; note that a single scene may be an instance of multiple classes. On the
right, we visualize the geospatial distribution of collected scenes worldwide.

subcategory filter we put in place to avoid downloading unrelated images. This
filter is described in the supplement.

Reconstructing Scenes with SfM and Cleaning Reconstructions. For
each scene, we run structure from motion on its corresponding collection of images
using COLMAP [44] to produce sparse point clouds and camera poses. We use
default parameters for feature extraction, vocabulary tree matching [45], and
sparse reconstruction. We identify incorrect SfM reconstructions due to visual
ambiguities (e.g., repeated patterns) by manual inspection guided by historically
problematic scenes described in prior work [4,15]. For these scenes, we run the
Doppelgangers [4] pipeline to get a corrected reconstruction.

3.3 Dataset Statistics

In total, MegaScenes consists of approximately 430K scenes derived from Wiki-
media Commons. Across these categories, we download 9M images which results
in over 30M image pairs with estimated two-view geometries. Around 80K of
these scenes led to at least one sparse COLMAP reconstruction, resulting in over
100K reconstructions and 2M registered images. In these sparse reconstructions
we triangulate 400 million 3D points, with a mean track length of 5 images and
a mean of 8,700 observations per registered image.

Similar to Google Landmarks [60], MegaScenes has a wide range of scenes,
with as many as 18K images to as few as zero per scene. As shown by Fig. 3, our
scenes covers a diverse set of classes ranging from buildings and outdoor spaces,
to statues and streets.

4 MegaScenes Applied to Novel View Synthesis

In this section, we explore MegaScenes on a representative application: novel
view synthesis (NVS) from a single image. The goal is to take a reference image
and generate a plausible image at a target pose that is consistent with the
reference image. Following Sargent et al. [43], we train and evaluate on image
pairs with pseudo-ground-truth relative poses obtained via SfM. Note that we
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Fig. 4: We create over 2 million pairs of training images for novel view synthesis. Each
pair contains relative pose and a warping from the reference to target image which
we use for both training and evaluation. We align estimated monocular depths with
sparse point clouds from COLMAP [44], and unproject the RGBD images to a mesh
for viewpoint rendering. See Sec. 4.1 for details and Fig. 5 for more examples.

only consider the setting where the two views have overlapping visual content. In
the supplement, we provide videos obtained through autoregressive generation.

We start with testing state-of-the-art novel-view synthesis models, namely
Zero-1-to0-3 [29] and ZeroNVS [43], on MegaScenes, and demonstrate that these
approaches fail to generalize to in-the-wild scenes. We then improve these models
in two ways. First, simply fine-tuning these methods on large numbers of training
pairs from MegaScenes leads to dramatically improved results on both Internet
photos of scenes and three out-of-domain datasets. Second, we observe that these
fine-tuned models still demonstrate inconsistencies between the requested pose
and the synthesized image. We show that by adding an additional conditioning
image where we approximately warp the input view into the target view, we
improve pose consistency and novel view quality.

In Sec. 4.1, we describe our setup. Then, we show results of finetuning baseline
models on MegaScenes in Sec. 4.2. In Sec. 4.3, we analyze failure cases of existing
methods and propose our method to improve pose consistency. Finally, we evaluate
our method on multiple datasets in Sec. 4.4 and Sec. 4.5.

4.1 Setup: Data Mining and Evaluation

Data Mining. We first identify a subset of image pairs from MegaScenes suitable
for training novel view synthesis methods using two conditions. First, each pair
should have similar lighting, since diffusion models operate on a pixel-wise loss.
Using metadata, we find pairs of images taken within three hours of each other,
as a proxy for lighting similarity. Second, we find pairs with sufficient visual
overlap of at least 50 3D SfM points, so the model can learn view synthesis
based on visual cues. With this threshold, we still observe both small and large
pose changes, as shown in Fig. 5. Finally, we require that pairs have the same
aspect ratio. Most previous works [41,43] center crop images, but we find that
many landmarks, such as statues, can have highly varied aspect ratios and lose
information through center cropping. Thus, we resize the long side to 256, and
pad the short side, to obtain images with size 256 x256.

As a final check, we manually inspect all scenes. We remove 298 scenes that
we determine have too many occlusions in the majority of images; most of these
occlusions were people. In total, we obtain 2,086,036 pairs from 32,259 scenes
and 475,277 unique images. We hold out 800 categories that contain 51,240 pairs
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and 11,852 unique images. We form our validation set from the first 10,000 pairs,
which we use to determine model convergence. We form our test set with the
remaining 41,240 pairs, which we use to report numbers.

Evaluation metrics. We evaluate each method using standard reconstruction
and generation metrics. For reconstruction, we calculate LPIPS [70], PSNR, and
SSIM [58]. LPIPS measures perceptual similarity, while PSNR and SSIM operate
mainly on a pixel basis. However, generative models should only be expected to
remain consistent with the target image where the pixels in the reference image
are present, and retain the freedom to generate diverse samples, which could
mean a lower reconstruction score. Thus, we propose “masked” versions of the
metrics. We warp the input view into the target view using the target relative
pose. Only pixels in the reference will be present in the warped image, and we
only compare the copied pixels to the same location of the generated images. We
create warpings by leveraging the sparse depth from 3D SfM points. First, we
use Depth-Anything [64] to estimate monocular depth of the reference image.
We project the COLMAP sparse point cloud to the reference image’s coordinate
frame to obtain the ground-truth sparse depth, and use RANSAC to align the
two. Now with the aligned dense depth, we unproject the reference RGBD to
a mesh, and render it from the target pose. We visualize this process in Fig. 4.
For generative metrics, we use FID [16] and KID [3]. Both assess the quality of
generated images by comparing their feature distributions to those of real images.
Lower scores indicate that the generated images are more similar to real images.

In general, we find LPIPS, FID, and KID reliable metrics for assessing the
quality and realism of generated images. We find Masked PSNR and Masked
SSIM reliable for assessing consistency, i.e. whether the generated images follow
the target pose and retain details from the reference images. Still, we encourage
readers to compare the qualitative results for a more comprehensive understanding
of the properties of each model.

4.2 Finetuning Pose-Conditioned Models on MegaScenes

Zero-1-t0-3 [29] is finetuned from Stable Diffusion on Objaverse [12]. ZeroNVS [43]
is finetuned from Zero-1-to-3 on CO3D [39], ACID [27], and RealEstatel0K [71].
Our goal is to evaluate whether finetuning these models on MegaScenes improves
generalization to in-the-wild scenes.

Finetuning details. Zero-1-to-3 conditions on poses in spherical coordinates,
which is only suitable for objects placed in a canonical coordinate frame, so for
both models we follow ZeroNVS, which flattens the extrinsic matrix and field of
view as input to cross-attention. The scale of translation is determined by the
20th quantile of the depth of the reference image [43]. Additionally, both models
concatenate the target and reference images and provide the CLIP [37] embedding
of the reference image to cross-attention so that the output remains consistent
with the reference. Comparing the released and finetuned models verifies whether
our dataset improves generalization to in-the-wild scenes. We provide training
details in the supplement.
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Table 1: We evaluate whether models trained on MegaScenes generalize to in-the-wild
scenes. Zero-1-to-3 / ZeroNVS (released) are released checkpoints. We finetune both
on MegaScenes (models denoted with (MS)). SD-inpainting uses image warping and a
pretrained diffusion inpainting model without finetuning, following the setup in [9, 68].
Our method takes warped images as input, and we condition with and without (w/o
ext) the extrinsic matrix. 1 means higher is better and | means lower is better.

Masked , | Masked Masked

LPIPS(4) PSNR(1) SSIM(1) T 25c(l) pexn () gy (F

) FID(1) KID(1)

Pose-Conditioned (Sec. 4.2)
Zero-1-t0-3 (released)  0.5476 9.0896 0.2413  0.2777 14.132 0.6320  86.892 0.0634
ZeroNVS (released) 0.6156 74711 0.1508  0.3229 11.041 0.5421  69.097 0.0487

Zero-1-to-3 (MS) 0.4289 12.159 0.3665  0.1811 19.952 0.7286  9.7835 0.0023
ZeroNVS (MS) 0.3857 12.900 0.4005  0.1572 20.713 0.7534  9.8382 0.0024
Warp-Conditioned (Sec. 4.3)

SD-inpainting 0.4245 12.358 0.3923  0.1283 24.377 0.8005  38.484 0.0242
Ours w/o ext 0.3534 13.310  0.4328  0.1297 22.609 0.7819  12.010 0.0041
Warp + Pose (Sec. 4.3)

Ours 0.3444 13.397  0.4446 0.1256 22.483 0.7842  11.580 0.0040

Results. We show qualitative results in Fig. 5 and quantitative results in Tab. 1.
We denote the checkpoints released by authors with (released) and the models
finetuned on MegaScenes with (MS). Due to space constraints, we only visualize
the main baselines and models, but include the others in the supplement.

Zero-1-to-3 (released) and ZeroNVS (released) are both unable to generalize
to internet photos. They produce unrealistic images with incorrect poses. We
note that the former outperforms the latter in numbers, but upon inspecting
qualitative results (see supplement) we observe that Zero-1-to-3 (released) tends
to return the reference image. Finetuning on MegaScenes signficantly improves
results of both models, seen in the metrics of the (MS) models and the qualitative
comparisons between ZeroNVS (released) and ZeroNVS (MS).

We also validate that MegaScenes is suitable for the task of scene-level NVS.
Zero-1-to-3 (MS) outperforms ZeroNVS (released) even though both are finetuned
from Zero-1-t0-3’s released checkpoint; one is trained on MegaScenes and the
other on CO3D [39], ACID [27], and RealEstatel0K [71].

ZeroNVS (MS) shows the best performance among these four models. From
Fig. 5, we see that it produces realistic images, and the generated images clearly
attempt to follow the desired pose. However, many images produced by ZeroNVS
(MS) are still inaccurate. The positions of the islands (row 6), bridge (row 9),
and building (row 10) are slightly different than in the target image, and when
there is larger zoom, such as in rows 3, 4, and 7, the model fails to interpret the
scale properly. Next, we address these issues.

4.3 Improving Pose Consistency with Warp Conditioning

ZeroNVS [43] conditions its diffusion model on the flattened extrinsic matrix,
which is not a very intuitive pose condition; the model needs to learn the
spatial transformation without visual cues. Furthermore, the translation scale
is ambiguous since scenes cannot be canonicalized to a fixed coordinate frame.
In the original paper, the authors run a grid search on each scene to manually
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Fig. 5: We evaluate multiple baselines on MegaScenes, which contains diverse scenes,
poses, and object compositions. Prior methods exhibit many failure modes in this
challenging setting. Our method identifies and addresses these failure modes.
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determine a scene scale during inference. Since the goal is to generalize to in-the-
wild scenes, when testing ZeroNVS we determine scene scale automatically based
on monocular depth estimation, which leads to inaccurate poses especially when
there are large zooming effects.

Our insight is that the warped image (Fig. 4) encodes pose by visualizing
how pixels are supposed to move, and is directly aligned with the scene scale.
On our training and evaluation datasets, the scale is based on 3D SfM points.
Given a single image, we can determine the scene scale from estimated monocular
depth and use the same extrinsics for conditioning and warping the image for a
consistent scale. We show this setting in the supplement by generating videos
given a single image. Thus, we concatenate the warped image with the input target
and reference images, and observe significant improvements in pose accuracy.

However, using only the warped image as pose condition leads to two problems.
First, inaccurate depth, which can be common in noisy, in-the-wild scenes, can
cause the model to fail. Furthermore, with guidance only through the move-
ment of 2D pixels, the model seems unable to interpret 3D structure at times.
Therefore, we also condition on the ex-
trinsic matrix following ZeroNVS. We 'e,frirazrfe ,t;;g:; cﬁ.“;’;‘,’,?;‘n Ours wio ext  Ours
show qualitative results of these de-
sign choices in Fig. 6. In rows 1 and
4, Ours demonstrate better 3D con-
sistency compared to Ours w/o et,
which is the model trained without
conditioning on the extrinsic matrix,
including creating the separating wall
and a complete building, respectively.
In rows 2 and 3, there is little infor-
mation in the warped condition due to Fig. 6: We compare results with and with-
inaccurate depth, and the generated re- out conditioning on the extrinsic matrix.

sults contain either unwanted objects The extrinsic matrix ensures valid outputs
or objects at inaccurate locations. and produces more consistent 3D geometry.

Using the warped image as a condition for view synthesis was first proposed by
Liu et al. [27], then adapted by a recent line of work that uses a Stable Diffusion
inpainting model without any finetuning [9,68]. The premise is that a foundation
model can generalize to any domain without forgetting. We therefore also compare
to this baseline, denoted SD-inpainting. Using the preprocessed warpings, we set
empty pixels as the mask to inpaint. This method, however, demonstrates lack
of 3D understanding. For instance, the inpainting model frequently interprets
a scene as a picture frame. Furthermore, the inpainting model is only trained
on large, uniform masks, and produces artifacts when operating on fine-grained
masks, which come with arbitrary poses. In contrast, the masks can be of arbitrary
size, and our diffusion model has the freedom to remove occlusions and create
plausible images. These results suggest that finetuning on 3D data is essential
for zero-shot novel view synthesis.
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Table 2: We evaluate whether models trained on MegaScenes generalize to other
data domains. The models and metrics are the same as in Tab. 1. We test on DTU,
Mip-NeRF360, and RealEstatel0K.

DTU LPIPS(1) PSNR(1) SSIM(1) [ ey Aasked oy Mesked ) prp () kip()

Pose-Conditioned (Sec. 4.2)
Zero-1-to-3 (released)  0.5647  6.8720 0.2100  0.2592 12.628 0.6609  128.93 0.0297
ZeroNVS (released) 0.6476 5.7992 0.1113  0.3193 9.7005 0.5517  159.96 0.0352

Zero-1-to-3 (MS) 0.5158 7.6367 0.2755 0.2080 13.311 0.7014 101.94 0.0223
ZeroNVS (MS) 0.4833 8.0191  0.3066  0.1908 13.515 0.7152  87.406 0.0158
Warp-Conditioned (Sec. 4.3)

SD-inpainting 0.4951 9.9463  0.3688 0.1283 22.656 0.8333  214.42 0.1067
Ours w/o ext 0.4113 8.8473  0.3878 0.1385 16.631 0.7924 92.284 0.0193
Warp + Pose (Sec. 4.3)

Ours 0.3995 8.7953  0.3930 0.1357 16.593 0.7916  85.959 0.0163

Mip-NeRF360 LPIPS(}) PSNR(1) SSIM(1) I\L"I;SIII‘DCS(U I\;“'Ssﬁ;gl(ﬂ l\ézslﬁd(w) FID(}) KID(})

Pose-Conditioned
Zero-1-to-3 (released) 0.5258  10.720 0.2865  0.1621 16.299 0.8864 171.21 0.1126
ZeroNVS (released) 0.6685  6.9993 0.1240  0.2312 10.890 0.7670  137.04 0.0537

Zero-1-to-3 (MS) 0.4429 12921 0.3828  0.0307 29.441 0.9697 67.645 0.0163
ZeroNVS (MS) 0.4057 13.780  0.4122 0.1369 24.909 0.8219 60.677 0.0139
Warp-Conditioned

SD-inpainting 0.4557 12.922  0.3996 0.1212 27.455 0.8488  150.11 0.0792
Ours w/o ext 0.3944  13.667 0.4279  0.1237 25.884 0.8344 70.684 0.0193
Warp + Pose

Ours 0.3807 14.056  0.4406 0.1150 26.196 0.8422 64.406 0.0142

RE10K LPIPS(}) PSNR(1) SSIM(1) “S;‘f;fsd O hﬁgﬁf{i(ﬂ Nézﬁidm FID(}) KID(})

Pose-Conditioned
Zero-1-to-3 (released) 0.4050  11.632 0.4384  0.2732 14.079 0.6400 160.20 0.0725
ZeroNVS (released) 0.4563  9.4869 0.3527  0.3078 11.456 0.5565  123.01 0.0352

Zero-1-to-3 (MS) 0.2722  14.638 0.5697  0.1510 21.241 0.7637  68.908 0.0024
ZeroNVS (MS) 0.2053  16.015 0.6304  0.1176 20.609 0.8070 61.117 0.0024
Warp-Conditioned

SD-inpainting 0.2694  15.541 0.6429  0.0929 29.056 0.8719  118.94 0.0396
Ours w/o ext 0.1922  16.105 0.6267  0.1109 23.147 0.7985  66.770 0.0057
Warp + Pose

Ours 0.1774  17.224  0.6661  0.0942 24.259 0.8315  60.013 0.0023

In the following subsections, we evaluate all methods on MegaScenes as well as
three out-of-domain datasets. While our method is simple and builds on existing
methods, it addresses the fundamental issues of prior works, and we validate
that it produces significantly more consistent and realistic results. We show a
large collection of uncurated results in the supplement and demonstrate that our
method is effective across a variety of diverse scenes.

4.4 Evaluation on MegaScenes

We first evaluate on MegaScenes’ test set, which consists of in-the-wild scenes
from Internet photos. We show quantitative results in Tab. 1 and qualitative
results in Fig. 5. Our method produces images closest to the desired pose, while
being realistic and visually consistent with the reference. Compared to ZeroNVS
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reference target warped SD ZeroNVS  ZeroNVS
image image condition inpainting  released (MS)

Ours
L NEY > :
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Fig. 7: We evaluate multiple models on DTU (rows 1-4), MipNerf-360 (5-7), and Rel0K
(8-10). Models trained on MegaScenes are able to generalize to these datasets.
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(MS), our method places objects according to cues in the warped image, which
not only leads to more accurate positioning (and better reconstruction metrics),
but also more detail (structure in row 5, statues at the end of the hall in row
11). However, our method also has higher FID and KID scores compared to
the pose-conditioned models because the warped images add constraint to the
generation process. We do not visually observe a degradation in image quality
though.

SD-inpainting has the best reconstruction metrics, as it faithfully returns the
pixels in the warped condition. However, it does not understand 3D geometry,
evident in the inconsistent generations, such as interpreting a scene as a picture
frame (row 1). The inpainting artifacts also lead to unrealistic images, resulting
in high LPIPS, FID, and KID scores. Our method avoids these issues while taking
advantage of strong position cues of the warped condition.

4.5 Evaluation on Datasets from Different Domains

Next, we evaluate on DTU [48], Mip-NeRF 360 [1], and RealEstate1l0K (Rel0K) [71],
datasets commonly used for evaluating novel view synthesis.

We expect MegaScenes to be sufficiently diverse such that models trained on
it can generalize even to specific domains. We obtain image pairs and warpings
from all three datasets. In total, we obtain 2,850 evaluation pairs from DTU,
15,682 pairs from Mip-NeRF 360, and 644 pairs from RelOK. We describe our
data setup in the supplement.

We show results in Tab. 2 and Fig. 7. We see a similar trend as the pre-
vious subsection. All metrics and qualitative results improve when trained on
MegaScenes. ZeroNVS (released) was trained on object-centric datasets similar
to DTU and MipNeRF 360, and directly trained on RelOK, but Zero-1-to-3
(MS) signficantly outperforms it on all datasets. This validates that MegaScenes’
categories cover a wide variety of domains.

Again, our method produces images closest to the desired pose. ZeroNVS
(MS) mostly follows the pose condition, but the positions of the objects are less
accurate. This is obvious in DTU where we can visually match the corners of the
objects. Direct visual cues in the warped condition allow our model to preserve
structure even in challenging cases, such as the bicycle in row 6.

As a side note, we would like to point out that ZeroNVS (released) appears
to perform worse than shown in their original paper because of different testing
settings. The original paper evaluates results only after SDS [35] optimization,
which filters out noise and samples the mode of the diffusion outputs. Additionally,
the authors run a grid search to manually determine scene scale. We note that we
were able to reproduce results shown in the original paper, but here we present
feed-forward results without optimization or manual tuning for fair comparison.

5 Conclusion

We present MegaScenes, a general large-scale 3D dataset, and analyze its impact
on scene-level novel view synthesis. We find that finetuning NVS methods on
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MegaScenes significantly improves synthesis quality, validating the coverage of the
dataset. We also improve existing methods and observe increased pose accuracy.

Limitations and Future Work. On the task of NVS, we use a fraction
of our data (475K out of 2M images) and a subset of data types (we did not
use text captions). We would like to expand MegaScenes to applications that
leverage the full dataset. Our NVS method also comes with limitations. It relies
on warped images for conditioning and is impacted by erroneous depth estimation.
Also, it cannot handle large camera motions such as behind a scene. Finally,
we bypass lighting by sampling based on metadata, but we could incorporate
lighting conditions [23,32] in the future.
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Appendix

A Visualizations of Dataset Characteristics

We provide additional figures to convey the wealth of information in the MegaScenes
dataset. In Fig. 8, we highlight the diversity of images registered to a reconstruc-

tion, Wikidata class information, and image subcategories for an outdoor scene.

In Fig. 9, we show examples of image pairs with calculated two-view geometries

for an indoor scene.
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B Details for Dataset Curation

B.1 Processing Wikidata Entries for Scene Identification

In the first dataset curation step, “Identifying Scenes,” we collect raw Wikidata
entries from broad categories that link to Wikimedia Commons categories. Each
Wikidata entry points to some Wikimedia Commons category; we take the set
of these Wikimedia Commons categories to use as scenes. Before we download
images from these categories, we do additional cleaning steps to determine which
Wikimedia Commons categories to use.

Filtering Wikidata Entries based on Cyclic Links. Some collected Wikidata
entries point to broad Wikimedia Commons categories, like Fountains or Cultural
heritage monuments in Toropetsky District, unsuitable to use as single scenes. We
note that a Wikidata entry points to some Wikimedia Commons category, and a
Wikimedia Commons category points towards some, but not necessarily the same,
Wikidata entry. To clean the set of Wikimedia Commons categories as described
above, we ensure that there is a cyclic link between the Wikimedia Commons
Category and its corresponding Wikidata entry. A Wikimedia Commons category
like Fountains will point to a Wikidata entry about fountains, and not the original
Wikidata entry that pointed to the Fountains Wikimedia Commons category.

Filtering Wikidata Entries based on GLAM Instances. We find that
some categories related to galleries, libraries, archives, and museums (GLAM)
contain many images that are unhelpful in 3D reconstructions, such as 2D scans
of paintings or text. To minimize the number of such 2D scans, we ignore all
Wikidata entries that are exclusively GLAM instances. We keep the Wikidata
entries that are also instances of at least one other unrelated class, as these are
more likely to have images that are not exclusively of 2D scans.

B.2 Subcategory Recursion when Downloading Images

In the second dataset curation step, “Downloading Images from Scenes,” we
download images from every Wikimedia Commons category deemed a scene.
From the original Commons category, we recurse a maximum depth of four
subcategories and download all associated images.

However, some subcategories are unrelated to the original scene, and we want
to avoid downloading images unhelpful in 3D reconstruction. For instance, if a
subcategory begins with “People associated with...”, then the subcategory will
link to Wikimedia Commons pages that contain images of individuals, rather
than the original scene.

To fix the above issue, we define two conditions that must be met in order to
recurse into a related subcategory. First, we create a list of excluded keywords that
the subcategory must not contain. We curate this list by experimentally finding
common diverging subcategories, which includes keywords like “People associated
with. ..”. Second, the subcategory must contain a substring that includes one of
the following names:


https://commons.wikimedia.org/wiki/Category:Fountains
https://commons.wikimedia.org/wiki/Category:Cultural_heritage_monuments_in_Toropetsky_District
https://commons.wikimedia.org/wiki/Category:Cultural_heritage_monuments_in_Toropetsky_District
https://commons.wikimedia.org/wiki/Category:Fountains
https://commons.wikimedia.org/wiki/Category:Fountains
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e The name of the original Wikimedia Commons category

e The name of the Wikidata entity associated with the original Wikimedia
Commons category

e Any alias recorded on the Wikidata entity associated with the original
Wikimedia Commons category

B.3 Details on Reconstruction and Cleaning

We elaborate on the third curation step, “Reconstructing Scenes with SfM and
Cleaning Reconstructions.”

Reconstruction Orientation Alignment. The reconstructions created by
COLMAP [44] are not necessarily aligned to the real world. For instance, the
gravity axis as seen in input images may not align with the down-axis of the
reconstruction’s coordinate system. Thus, we orient all reconstructions using
COLMAP’s implementation of Manhattan world alignment. This process aligns
the sparse reconstruction using the Manhattan World assunption [10], which
assumes that most surfaces are aligned along the three major axes.

Cleaning Watermarked Reconstructions. Some scenes have many images
with watermarks. COLMAP finds spurious matches between the watermarks of
two images, which result in incorrect sparse reconstructions. We assume that
most images uploaded to Wikimedia Commons have watermarks that are non-
destructive and are near the borders of the image. To fix this issue, we mask
all keypoints within a certain distance near the image border before we rerun
COLMAP’s feature matching and reconstruction phases. Specifically, we target
all scenes where at least 10 percent of the inlier pairs are “watermark pairs” as
labeled in COLMAP’s output database. We find that a border defined by 5
percent of the image diagonal is able to mask watermarks in most images.

Using Doppelgangers to Clean Reconstructions. As discussed in the main
paper, we use the Doppelgangers [4] pipeline to fix incorrect SfM reconstructions
caused by visual ambiguities. Incorrect reconstructions arise from false correspon-
dences between image pairs, such as in photos that depict different surfaces that
are similar in appearance. Doppelgangers uses a binary classifier that predicts
the likelihood of whether an input image pair should be matched; the input pairs
to SfM are filtered by passing them through the Doppelgangers classifier. After
we filter the image pairs, we rerun COLMAP’s reconstruction phase. We find
that the default threshold of keeping pairs with a confidence score of > 0.8 is
able to correctly disambiguate most scenes. If thresholding at 0.8 is unsuccessful,
we try increasing thresholds until the reconstruction is correct.

C Additional Details on Dataset Statistics

C.1 Wikidata Classes to Identify Scenes

We show the Wikidata classes we use to identify scenes in our dataset curation
process in Table ?7. Refer to Appendix B.1 for how the 660K Wikidata entries
are filtered into 430K scenes.
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WikiData Class Entry Count
religious building 233,253
monument 75,196
tourist attraction 55,051
museum 40,653
landmark 34,950
bridge 33,207
chapel 29,866
commercial building 24,859
public building 24,227
shrine 22,055
tower 17,915
square 13,817
statue 10,872
palace 10,237
Catholic church building 8,792
fountain 5,496
high-rise building 4,083
Fastern Orthodox church building 3,782
cathedral 3,326
mosque 3,093
house of prayer 3,092
library building 742
arch 349
gurdwara 57
Total 659,024

Table 3: WikiData classes that have been selected to identify a set of scenes. Some
WikiData entries may be present in multiple classes. Multiple WikiData entries may
link to the same Wikimedia Commons category.
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C.2 Scene Overlap with Google Landmarks Dataset V2

While MegaScenes and Google Landmarks Dataset V2 (GLDv2) [60] both source
images from Wikimedia Commons, we find that neither dataset has a majority
overlap with the other in terms of categories used as scenes. MegaScenes contains
430K categories as scenes, while GLDv2 contains 213K categories as scenes; there
are 74K scenes that are found in both datasets. This means that MegaScenes
has 356K scenes not found in GLDv2, and GLDv2 has 139K scenes not found
in MegaScenes. We attribute this to differing data curation methods for both
datasets: GLDv2 queries the Google Knowledge Graph, while MegaScenes utilizes
Wikidata.

D Details for Novel View Synthesis Experiments

D.1 Data Setup for Evaluation

DTU. We use the test split of 15 scenes from previous work [43] on the DTU
dataset [48]. Each scene contains 49 images with the same exact array of camera
positions, and we pick two reference locations that are across from each other.
See the supplement for more details. For each reference image, we exhaustively
form pairs with all other images in the scene. This results in 95x2 pairs (we
count (a,b) and (b, a) as separate pairs) per scene, for a total of 2,850 pairs.

Mip-NeRF 360. We use all 9 scenes from the original Mip-NeRF 360 dataset [1].
We leverage how the images in these scenes form a 360 degree orbit about a
central location to identify reference images. We align the provided COLMAP
sparse point cloud using the Manhattan world assumption [10], then sort the
images by increasing viewing direction angle on the XZ plane. We sample ten
evenly distributed images from this sorted list. For each reference image, we pair
it with all images that share at least 50 3D points in the sparse point cloud. This
results in a total of 15,862 pairs across all scenes.

RealEstatel0K (Rel0K). We adopt the pair sampling strategy from Synsin [61]
for RelOK [71], which selects a reference and target video frame no more than 30
frames apart. To identify more challenging frames, the authors choose pairs with
an angular change greater than 5° and a positional change greater than 0.15,
whenever possible. We take the intersection of these pairs and ZeroNVS’ [43]
held out set (since ZeroNVS was trained on RE10K). In total, we obtain 644
pairs across 163 clips.

D.2 Finetuning and Inference

For all finetuning, we use 6 NVIDIA A6000 GPUs with a total batch size of 1656
until the metrics of the validation set stop improving. We finetune ZeroNVS [43]
for 30,000 iterations which takes 1-2 days. We finetune Zero-1-to-3 [29] for 75,000
iterations. During inference, we use 50 DDIM [47] steps for all qualitative and
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quantitative results. We use classifier-free guidance scales [17] of 3.0 for all
finetuned models and SD-inpainting. We observed less realistic generations with
little to no improvements in metrics when setting a higher scale. For Zero-1-to-3
(released) and ZeroNVS (released), we use a scale of 7.5 following the default in
ZeroNVS, as the models match the target poses better at a higher scale.

Our method (denoted Ours in the main paper) is finetuned from ZeroNVS and
combines the warped images and extrinsic matrices as conditions. Similar to Zero-
1-to-3 and ZeroNVS, we pass the target and reference images through a pretrained
VAE to obtain their latents, each with shape (4, 32, 32). We downsample the
warped image from (3, 256, 256) to (3, 32, 32) and concatenate it with the target
and reference latents, so that our input to the first layer of the diffusion model has
shape (11, 32, 32). The conditioning of the extrinsic matrices is exactly follows
ZeroNVS. We scale the translation vector of the extrinsic matrix from COLMAP
by the 20th quantile of the aligned depth (Fig 4 of the main paper).

For SD-inpainting, we use the checkpoint sd-vi-5-inpaint.ckpt (https://
huggingface.co/runwayml/stable-diffusion-inpainting) from Runway ML.
Since the model is trained on 512x512 images, we use 512x512 images and 64x64
latents to match. Then, we downsample the outputs to 256x256 for qualitative
results and calculating metrics.

E Additional Qualitative Results and Comparisons

We show additional qualitative results uniformly sampled from our test set in the
PDF file named qualitative results.pdf. We will release data, seeds, and models
for reproduction. In virtually all cases, finetuned models (MS) outperform base
models in terms of pose consistency and realism. Ours generally follows the target
pose more closely than ZeroNVS (MS) and Zero-1-to-3 (MS).

We also finetune ZeroNVS on MegaDepth [22], denoted ZeroNVS (MD).
MegaDepth is the most similar dataset to MegaScenes, consisting of diverse
internet photos with COLMAP reconstructions. However, MegaDepth is of a
significantly smaller scale. For the task of novel view synthesis, we process
MegaDepth through the same process as described in Section 4.1 of the main
paper, and obtain a total of 368,028 training pairs and 181 scenes, roughly 6
times fewer pairs, and 180 times fewer scenes. We find that ZeroNVS (MS)
generally outperforms ZeroNVS (MD) in terms of both following the target pose
and realism, especially of less common scenes.

F  Videos

We show videos on our project page. Videos contain sequential frames and make
it easy to visualize the pose consistencies from frame to frame. We also include an
example of autoregressive generation, where we take the last view of a generated
sequence as the first frame of a new sequence. However, since each image is
sampled independently, long sequences eventually drift. In the future, adding
temporal constraints or directly generating multiple frames could solve this issue.


https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
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G Broader Impact

This work primarily focuses on the task of novel view synthesis, and similar
to other generative models, present risks such as the potential for generating
misleading or harmful content. It is essential to develop robust frameworks for
ethical use.
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SfM reconstruction WikiData instance:

: lutheran church
tourist attraction
court church
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Fig. 8: Registered images of Berlin Cathedral, organized by Wikimedia Commons
subcategories. Each text label corresponds to a subcategory (possibly nested) of the
main category.
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44

Fig. 9: Feature matching visualization of the Natural History Museum’s interior in
London, with the SfM reconstruction shown in the middle of the top row. On the left,
selected image pairs are shown, and on the right, the extracted keypoints (in blue)
and their matches (in color-coded) from the two-view geometry table in COLMAP [44]
database are displayed.
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