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Abstract

Evasion techniques allow malicious code to never be ob-
served. This impacts significantly the detection capabilities
of tools that rely on either dynamic or static analysis, as they
never get to process the malicious code. The dynamic na-
ture of JavaScript, where code is often injected dynamically,
makes evasions particularly effective. Yet, we lack tools that
can detect evasive techniques in a challenging environment
such as JavaScript.

In this paper, we present FV8, a modified V8 JavaScript
engine designed to identify evasion techniques in JavaScript
code. FV8 selectively enforces code execution on APIs that
conditionally inject dynamic code, thus enhancing code cov-
erage and consequently improving visibility into malicious
code. We integrate our tool in both the Node.js engine and
the Chromium browser, compelling code execution in npm
packages and Chrome browser extensions. Our tool increases
code coverage by 11% compared to default V8 and detects
28 unique evasion categories, including five previously unre-
ported techniques. In data confirmed as malicious from both
ecosystems, our tool identifies 1,443 (14.6%) npm packages
and 164 (82%) extensions containing at least one type of eva-
sion. In previously unexamined extensions (39,592), our tool
discovered 16,471 injected third-party scripts, and a total of
8,732,120 lines of code executed due to our forced execution
instrumentation. Furthermore, it tagged a total of 423 exten-
sions as both evasive and malicious and we manually verify
110 extensions (26%) to actually be malicious, impacting two
million users. Our tool is open-source and serves both as an
in-browser and standalone dynamic analysis tool, capable of
detecting evasive code, bypassing obfuscation in certain cases,
offering improved access to malicious code, and supporting
recursive analysis of dynamic code injections.

1 Introduction

"The code is heavily obfuscated and contains many anti-
debugging and anti-analysis traps." [15]. This recent insight
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into malicious JavaScript code underscores the close connec-
tion between malicious code and evasion techniques. Evasion
techniques are widespread; in 2023, at least four of the top
10 malware families incorporate some form of evasion [27].
Recent research reveals that 25% of all malicious JavaScript
code is obfuscated to avoid detection [22], in stark contrast to
the Alexa top 20,000 websites, where only 0.5% of the code
is obfuscated. Malicious npm packages are demonstrating
increased sophistication, with recent packages featuring eva-
sive techniques not present in earlier malicious versions [17].
Recent instances of malicious browser extensions include at
least one form of advanced anti-detection evasion [15]. Even
phishing kits now come equipped with their own built-in eva-
sive tactics [24]. As demonstrated by CrawlPhish [64], a tool
designed to identify evasions in phishing pages, JavaScript-
based evasion techniques are growing in complexity, encom-
passing methods like bot detection cloaking, user fingerprint-
ing, and user interaction.

Our tool, FV8 (pronounced as "favorite"), built on top of
Chromium’s V8 JavaScript engine, can detect evasions both
in Node.js and Chromium environments and even account for
dynamic code injection, applying forced code execution se-
lectively and recursively. Detecting evasions provides greater
code coverage and can potentially reveal more malicious code.
This is necessary to strengthen defenses against malicious
code across multiple JavaScript ecosystems.To showcase its
evasion detection capabilities, we use our tool in conjuction
with browser extensions and npm packages due to their his-
tory of previous malicious incidents, their evasion capabilities
as well as the diverse range of JavaScript functionality they
provide.

Previous research in both ecosystems has encompassed
(1) in-browser tools, (2) dynamic analysis tools employed
outside the browser and (3) static analysis tools, including
JAW [44] proposed by Khodayari et al., JStap, DoubleX and
HideNoSeek [33-35] proposed by Fass et al., as well as Em-
PoWeb by Somé [58].

Indeed, while these established tools offer valuable con-
tributions, they may have limitations when considered in-



dividually. Notably, the tools from category (1) exhibit the
following characteristics: JSForce [37] modified the Spider-
Monkey engine in Mozilla Firefox and J-Force [45] focused
on Safari, but neither of these tools is publicly available nor
are related to the V8 engine, which is the basis for multiple
environments including the most popular browser by mar-
ket share (Chrome) [3]. Moreover, both of these tools prior-
itize executing as many paths as possible, while in contrast,
FV8 emphasizes the examination of APIs per block for detect-
ing evasions, employing targeted forced execution based on
specific conditions for improved performance. Furthermore,
Rozzle [47], while designed to detect malware using symbolic
execution in combination with targeting specific APIs, was
built upon deprecated browser and APIs (Internet Explorer
and ActiveX API), and its implementation is not open-sourced
or reproducible.

In the context of dynamic analysis tools from category
(2), Iroh.js [10] is a dynamic code analysis tool outside
the browser that intercepts runtime information. Meanwhile
Jalangi [11] is a dynamic analysis tool decoupled for the
browser mainly for runtime analysis of the JavaScript pro-
gram. However, none of these tools can recursively handle the
loading of code injections that occur within the in-browser
environment as they are based on interceptions, which makes
recursion more difficult.

Finally, the static analysis tools in category (3) share a
common limitation—they fail to detect the existence of mali-
cious code that dynamically loads under specific conditions
(evasion techniques). One notable example of behavior that
these tools might overlook is the "timebomb" evasion code.
A "timebomb" is a type of malicious behavior that remains
hidden until a specific duration has elapsed, an evasion tactic
that can be found even in recent malicious code samples [26].
In this non-obfuscated code example provided in Listing 1,
we can see that the extension initiates a tracker after approxi-
mately one day has elapsed. In order to observe the internal
code’s execution we need a way to enforce the execution of
the setTimeout code. This is precisely where our tool, FVS,
proves to be valuable. It allows us to trigger forced execu-
tions, enabling us to reveal hidden malicious behavior that
loads dynamically based on conditions, that would otherwise
remain undetected using previous analysis techniques.

Our system, FV8, is fundamentally designed for the de-
tection of JavaScript evasions. It offers an innovative ap-
proach centered around Chromium, Node.js, and the V8 en-
gine, ensuring reproducibility and openness as it is open-
sourced. Our approach involves patching Chromium (exten-
sions) and Node.js (npm packages) with FV8 first and Vis-
ibleV8 (VV8) [40] afterwards, for comprehensive code ex-
ecution visibility. Our system identifies and flags data with
the highest number of triggered forced executions based on
our instrumentation. The approach minimizes overhead by
selectively targeting specific condition branches that contain
APIs. Our experiments involve extensive testing using a total

—_

// tracker added on timebomb

2 var _paq = (window._paq = window._paq || []);

3 /* tracker methods like "setCustomDimension" should be
called before "trackPageView" */

4 _paqg.push(['trackPageView']);

5 _paq.push(['enableLinkTracking']);

6 (function () { setTimeout (() => {

7 chrome.storage.local.get ('extensionId', function (
result) {

8 var u = 'https://matomo.debank.com/"';

9 [..]

10 g.src = '/vendor/matomo.client.js';

11 s.parentNode.insertBefore (g, s); });

12 }, 93445000); 1) ()5

Listing 1: Timebomb evasion example (non-obfuscated).

of 39,592 extensions and 9,899 malicious npm packages and
demonstrate the tool’s effectiveness in detecting a wide array
of evasion techniques in multiple environments. Overall, we
detect a total of 28 unique evasion categories being part of
the following evasion groups: Login, Timebombs, Fingerprint,
User Interaction, Website Check and Other. FV8 identifies
1,443 (14.6%) npm packages and 164 (82%) extensions con-
taining at least one type of evasion, in data previously verified
as malicious. In extensions collected from the wild, which
were previously unseen, we perform manual checks on the
extensions flagged by our system to verify their malicious na-
ture. Our manual verification process relies on the number of
forced executions triggered by our system as well as checking
the dynamically injected code from the VV8 logs, verifying
a total of 82 extensions as malicious. Finally, the use of the
DBSCAN clustering algorithm [6], further enhances our capac-
ity to cluster and identify additional evasion techniques and
malicious extensions. We use the code related to the already
found evasions as input features and we flag an additional 28
extensions that way, for a total of 110 malicious extensions.
The entire system encompassing the crawler, Chromium and
Node.js is named ATRES (API-Targeted Recursive Execu-
tion System) and a detailed understanding of the complete
architecture can be found in Figure 1.
Our paper makes the following contributions:

* We introduce FV8, an innovative, open-source interpreter
based on V8, capable of inter-environment and inter-
dataset analysis of JavaScript. FV8 is designed for recur-
sive forced execution of JavaScript, even for dynamically
loaded code, for the detection of evasions. It stands as the
first tool to encompass all these aforementioned features
simultaneously.

* We successfully identify 28 evasion techniques in 1,443
npm packages and 274 browser extensions, including
five techniques that we are the first to report, ie. password
path exists in npm packages and crypto wallet connected.

* Our tool automatically executes detected evasions which
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Figure 1: Full architecture consisting ofo npm Evasion Detection Module, 9 Extension Detection Module, o Post-Processing Module and
the 0 DBSCAN Expansion Module. These four components, and the resulting flagging of data, collectively define ATRES as a system.

resulted in more than 11 million LoC and 24,140 new
dynamically loaded scripts to be executed that would
otherwise remain invisible to a detection system.

* We detect 110 extensions as malicious using our FV8
instrumentation and the DBSCAN algorithm as post-
processing, which we report to Google. Subsequently,
62.7% (69/110) of these extensions have been success-
fully removed from the platform.

* We open-source our tool as per-version patches, tested in
the latest 28 versions of V8 and Chromium, ranging from
version 94 to the latest version 122, making it the first
open-source and maintainable forced-execution solution
for JavaScript.

2 Background
2.1 V8 & Chromium

The web heavily relies on JavaScript, with Chrome being the
most widely used browser with a market share of 62.55% [2],
while Chromium is the open-source alternative without the
proprietary software and V8 is the JavaScript engine of choice
for both. V8 is an open-source, high-performance JavaScript
and WebAssembly engine developed by Google and written
in C++. It serves as the engine behind Chrome and Node.js,
among other applications. It can be used as a standalone
engine or embedded into any C++ application. Chromium
utilizes V8 as its JavaScript interpreter, making it the engine
of choice for executing a substantial amount of JavaScript
code across the web and Node.js. Therefore, we decided to
focus on patching and modifying V8, given its widespread
usage and critical role in handling JavaScript execution.

2.2 VisibleV8

VisibleV8 (VV8) is a system built on V8 [40] that enhances
visibility into executed JavaScript code within the Chromium
engine. The system generates log files that record data on
which scripts were executed and which specific APIs were
involved in the execution process. This tool proves invaluable
for overcoming obfuscation techniques and gaining insights
into the executed code, whether malicious or not. VisibleV8
has been integrated with multiple systems in the past, show-
casing its versatility and utility [41,55]. Its compatibility with
FV8 patches for Chromium adds value, as both systems share
a per-version patch approach. In our experiments, we combine
VisibleV8, FV8 and a custom-built crawler, gaining improved
visibility into executed APIs, examining code from forced
executions, and efficiently post-processing results to identify
evasive techniques and malicious behavior.

2.3 WebStore & Extensions

The Chrome Web Store, hosting over 200,000 active exten-
sions [4], follows strict internal vetting procedures to ensure
quality and security. Extensions failing to meet criteria are
rejected. Since 2023, all extensions must comply with Mani-
fest V3 guidelines, mandating code bundling and prohibiting
third-party code injections for more rigorous vetting.
However, our findings reveal that this assumption of com-
plete security is not always accurate, as some bundled ex-
tensions employ obfuscation techniques. Our focus remains
on extensions with third-party inclusions. Manifest V3 em-
phasizes user review of requested permissions, defined in
manifest.json. Extensions consist of service workers (back-
ground scripts in Manifest V2) and content scripts with varied
APIs. Despite limitations, content scripts can inject code into



web pages from local files, the injection bundle, or third-party
resources. This capability poses potential browser security
risks.

2.4 Node.js & npm ecosystem

The Node.js ecosystem has emerged as a pivotal platform for
server-side JavaScript development, fostering an expansive
and dynamic software landscape, with more than 2.53 mil-
lion npm packages in the main npm registry as of October
2023 [21]. At its core lies npm (Node Package Manager), a
powerful package management system that has revolution-
ized the way developers create, share, and maintain software
libraries and tools. npm’s vast repository boasts millions of
open-source packages, each contributing to the ecosystem’s
robustness and versatility. This ecosystem’s rise can be at-
tributed to the ease with which developers can leverage and
distribute packages, making it a cornerstone of modern web
and application development.

However, it is important to recognize that this interconnect-
edness introduces a potential vulnerability, as the ecosystem is
only as robust as its weakest link. A single outdated or poorly
maintained package deep within the dependency tree can pose
significant security risks and hinder overall system stability.
Therefore it is crucial to employ comprehensive tools for both
static and dynamic package analysis, with FV8 standing as an
additional layer of defense in detecting evasive code in npm.

2.5 Relevant Technologies

Catapult - Web Page Replay [1] is a tool designed to record
and replay web page requests, reducing network traffic and
maintaining consistency in JavaScript execution across multi-
ple visits. This enhances experiment repeatability and enables
precise web page analysis.

Puppeteer [25] is a Node.js library for controlling Chrome
and Chromium browsers, ideal for tasks like web scraping, test
automation, and screenshot generation. We selected Puppeteer
for our Chrome-focused experiments due to its efficiency.

DBSCAN, a popular density-based clustering algorithm
used in data mining and machine learning, groups data points
in high-density regions and identifies outliers as noise points.
Given its unsupervised learning nature, it is versatile and use-
ful in applications like code clustering and anomaly detection,
as it does not require pre-defined assumptions about the num-
ber of clusters.

3 Data

To conduct our experiments, we needed a diverse set of data.
Leveraging the versatility of our tool, which operates on multi-
ple V8-based systems, we applied patches to both Chromium
and Node.js, allowing us to execute code within browser ex-
tensions and npm packages.

Dataset Data Malicious Code De-
Type Data tection

D1: Malicious npm evasion

npm [23] packages

D2: Malicious browser evasion

extensions [8] extensions

D3: Extensions browser Malicious

in the wild extensions & evasion

Table 1: The three datasets used and their main characteristics.

In total, we collected data to create three distinct datasets.
Two of these datasets comprise extensions from the Chrome
Web Store, while the third contains npm packages. The data
falls into two categories: the first consists of previously
flagged malicious data, while the second consists of data gath-
ered from the wild, which may or may not be malicious. We
denote these datasets as Malicious npm Packages or DI, Ma-
licious Extensions or D2, and Extensions in the Wild or D3.

Malicious npm Packages (D1) represents the npm package
dataset and contains verified malicious packages. We sourced
this data from reports in the OSV database [23], resulting in a
total of 12,000 hashes, each corresponding to an npm package
flagged by their system over the past four years. Notably, this
database includes both malicious and vulnerable packages,
and we focus exclusively on malicious packages based on
their descriptions.

Malicious Extensions (D2) is a dataset gathered from previ-
ous malicious extension reports from the past seven years [8].
This collection comprises hashes of extensions organized
based on significant incidents within the malicious ecosystem.
These malicious extensions were originally identified mostly
by security companies such as Kaspersky [13] and Avast [14].
Furthermore, almost all of these extensions have already been
removed from the Chrome Web Store, which serves as an
additional validation of their malicious nature. This dataset
offers detailed information on malicious extension packages
and has been utilized in prior research, such as [31]. From this
dataset, we selected the latest 200 extensions to demonstrate
our system’s functionality and to maintain comparability with
malicious npm packages.

Lastly, Extensions in the Wild (D3) serves as a dataset to
demonstrate that FV8 can detect evasions not only in already
flagged malicious data but also in data from the wild. To
create this dataset, we gathered extensions from the Web
Store [4], totaling approximately 200,000, with around 400
new or updated extensions uploaded daily. For a more concise
overview of the data, please refer to Table 1.

It is essential to note that our sources for D1 and D2 only
provide hashes of malicious data. To locate the actual source
code, we maintain two historical datasets spanning the past
four and nine years respectively, which contain daily crawling



API Category API Name API Base
Timing setTimeout -
setInterval -

append Element

prepend Element

DOM Manipulation | insertAfter Element

insertBefore Element

appendChild Element
Networking fetch -
. eval -

Code Generation Function Constructor (new)

Table 2: List of APIs injecting 3rd-party code in browser extensions.

records. These records include the majority of npm packages
and extensions, even those already taken down, and we match
the hashes from our datasets with this historical data to create
the actual malicious datasets.

Specifically, our extension crawler performs daily crawls
of the Web Store, downloading all extensions that have under-
gone version updates and any newly introduced extensions.
During this process, we also gather additional information
for each extension, including the number of users who have
downloaded it up to the time of the download, its category, its
rating and the number of active users which we use later to
measure the impact of our flagged extensions in D2 and D3.

4 Methodology

4.1 Modifying V8

The V8 engine, a vital component of the Chrome browser,
acts as an interpreter for JavaScript code in the browser. It
reads and executes all JavaScript code.

Since the V8 engine code is open-sourced, we find the
places in the V8 engine where it reads the code, and we make
changes in those places. We have to decide when to make
these changes: during code parsing or during the bytecode
generation process. If we make changes after code parsing,
it is too late, as V8 removes any code that has already been
parsed, to make things faster. So, we choose to make changes
while the code is being read and transformed into an Abstract
Syntax Tree (AST) format. This way, we have access to the
entire code without losing any parts.

In V8 patching, the primary objective is to identify a trig-
gering condition within the code. We check if this code in-
corporates any of the APIs listed in Table 2, responsible for
dynamic code injection. If these APIs are found, we include
the entire block for forced execution, generating additional
bytecode. Our choice of a forward traversal approach within
the AST, moving from start to finish, is dictated by the V8
engine’s operation, which determines its next read based on
the current context. Conversely, attempting a backward ap-

Category AST Node Type
IfStatement
Conditional

SwitchStatement
DoWhileStatement
WhileStatement
ForStatement
ForInStatement
ForOfStatement
Binary (2-elements)
Unary (1-element)
Nary (N-elements)
TryCatchStatement

Conditionals

Iteration Conditions

Ternary Conditions

Exception Conditions

Table 3: JavaScript AST type nodes that were patched inside V8.

proach, first identifying APIs and then retracing to locate the
triggering condition, is hindered by the engine’s structure and
decision-making process. To ensure effective code execution,
we’ve devised a recursive system that handles both the initial
code and dynamically injected third-party code.

To implement this recursive execution system, we establish
several key functionalities. Firstly, we develop the capability
to identify conditions, serving as starting points for exploring
the AST. These condition type nodes cover all types of condi-
tions supported by the JavaScript language, including if-else
statements, for-loop conditions, while-loop conditions, and
more. Out of the 56 different node types in JavaScript that
V8 can parse, we specifically patch a total of eight AST node
types associated with conditions. For a comprehensive list of
these condition node types, please refer to Table 3.

Subsequently, when parsing a node belonging to these eight
condition node types, we utilize a Depth-First Search (DFS)
recursion algorithm to navigate through the inner included
block. This involves iteratively visiting the corresponding
AST nodes within that block. To facilitate this traversal, we
devise our own DFS approach, executing child nodes itera-
tively and recursively until either all nodes have been executed
or a predefined upper limit on the number of nodes is reached.
Throughout this process, we thoroughly examine each node
within the AST to identify the presence of any of the recog-
nized APIs detailed in Table 2.

To avoid infinite loops or handling excessively large code
segments, we set a node limit of 500 nodes visited for each
DFS process. This practical constraint ensures performance
efficiency and introduces minimal overhead. It also effectively
covers the vast majority of test cases, as previous research sug-
gests that APIs requiring forced execution generally appear
within the first 500 nodes of the AST [37]. Thus, incorporat-
ing this limit is not only reasonable but also necessary for the
effective operation and reduced overhead of our system.

Moreover, each function, and consequently each file and
script, generates a unique AST. Our approach requires the
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Figure 2: FV8 architecture: Our modified engine detects evasion conditions and targeted APIs and increases code coverage execution.

ability to navigate between different ASTs. However, the gen-
eration of AST nodes does not follow the chronological order
of their execution. For instance, if we have two functions, func-
tionA and functionB, and functionA calls functionB, there
is a possibility that functionB’s AST has not been generated
when parsing functionA’s AST proceeds to invoke it. As a
result, switching between ASTs becomes impossible, making
forced execution unachievable. To address this, enabling the
—no-lazy flag is crucial. This built-in JavaScript flag of V8
ensures the generation of all ASTs regardless of their exe-
cution order. This setting facilitates the navigation between
AST trees, allowing connections not only within the same
function scope but also across different function scopes and
even between distinct scripts.

Finally, by extracting the code differences between the
original V8 version and our FV8 modifications, we obtain a
patch file containing the code diff. This patch file, known as
the FV8 patch, is similar but not identical for each version
of V8. The total length of the FV8 patch is less than 300
C++ lines of code (LoC). A high-level architecture of FV8 is
depicted in Figure 2.

4.2 npm Evasion Detection Module

All npm packages are subjected to our evaluation process
through the npm Evasion Detection Module 0 and the re-
sults of this module are forwarded to the Post-processing
Module 9 (§ 4.4). For this module, we utilize the data from
"Malicious npm packages" (D1) dataset. We apply our per-
version patches of FV8 to the V8 engine within Node.js and
integrate the corresponding patches of VisibleV8 for the same
version, which we modify accoringly. VV8 is designed for the
V8 engine within Chromium. Therefore, we had to include
only the relevant components for the V8 engine of Node.js to
ensure a successful patch. This integration results in a fully
operational version of Node.js with the combined function-
ality of both FV8 and VV8. Notably, this work represents
the first known instance of patching VV8 with the Node.js
platform and its internal V8 JavaScript engine.

Regarding the APIs we patch in the npm evasion module,
a list of these APIs is presented in Table 2. These APIs are
specifically curated for the extension ecosystem. However, for

the npm packages ecosystem, we need to incorporate a few
more APIs that dynamically inject code and are specific to
npm. These additional APIs include: exec, execFile, execSync,
spawnSync, and urlopen. As a result, we proceed to patch
Node.js version 20, which is the latest Long-Term Support
(LTS) Node.js version [12].

To ensure the execution of as much npm code as possi-
ble, we initiate a static analysis of the package.json file. This
analysis allows us to identify all available installation and
execution commands associated with the packages. These
commands are stored in a dictionary indexed by the package
name and are executed sequentially, with appropriate adapta-
tions to address associated challenges.

While working with the D1 dataset, which comprises veri-
fied malicious packages, we exercised meticulous precautions
when running these packages within our environment. Specifi-
cally, we restricted their permissions to read-only access, with
the exception of a designated "/tmp" folder for storing VV8
logs. We executed these packages within a secure Docker con-
tainer, enforced the presence of a non-privileged dummy user,
disabled any potential privilege escalation, and implemented
a 10-minute timeout mechanism to ensure the termination of
all processes. These measures collectively safeguard our sys-
tem against any manipulative, monitoring, or compromising
activities that malicious packages may attempt.

4.3 Extension Detection Module

Every extension is processed through the Extension Detection
Module @. This module is applied to two datasets, namely
D2 and D3. The results of this module are being fed to the
Post-processing Module 9 (§4.4).

To acquire the final modified browser, which will serve
as the core of our experiments, we adhere to the following
procedure. Similar to the Node.js patching, we select the most
recent version of Chromium, which, at the time of writing, is
version 123. Afterwards, we apply the patches to the original
V8 engine, thereby replacing the default Chromium V8 en-
gine with our customized FV8 forced execution engine and
then we apply the VV8 patches for that same version. Finally,
we utilize this modified FV8 Chromium version as the foun-
dation for our extension crawler, enabling us to execute our



experiments effectively.

Puppeteer Crawler

To conduct a thorough examination of our tool, we construct
a crawler as a wrapper around our tool. This crawler utilizes
the FV8 engine we developed and performs specific tasks
such as loading designated extensions, visiting predefined
URLSs, logging relevant data for further analysis, and storing
the collected data in appropriate databases for subsequent
processing. The crawler is deployed in collaboration with
datasets D2 and D3, both of which contain extensions, because
npm packages functionality is not URL-based.

To build the crawler we leverage Puppeteer [25], a Node.js
tool for driving the browser, to visit specific URLs and capture
logs. The crawler is predominantly implemented in JavaScript,
with some components written in GoLang for post-processing
tasks. Additionally, we utilize the bash scripting language and
employed Docker and Docker Compose to scale up jobs.

To finalize the crawler we need to address global timeouts,
the —no-headless mode and the extension Manifest specifica-
tion differences. To handle timeouts effectively, we incorpo-
rated specific browser timeouts to ensure all jobs terminated
on time, even in the event of a browser crash. Although such
crashes occurred in less than 1% of all jobs, it was essential to
terminate browser sessions to avoid exceeding the currently
open browser limit, which was approximately 160 concurrent
browsers in our system. On average, a job took 45-60 sec-
onds to complete, according to previous literature [40]. To
account for any potential delays, we add a final timeout of
120 seconds to ensure all jobs that should have terminated
did so. Additionally, we encountered a challenge with the
—headless mode. According to Puppeteer’s official documen-
tation, loading browser extensions in —headless mode is not
supported. Consequently, we address this limitation by in-
troducing visual support to our Docker setup using the X7/
and Xvfb module [28], thereby replicating the behavior of
the —no-headless mode. Furthermore, to ensure the execution
of the initial code in the extension, we incorporate a func-
tion that simulates a "click" on the action button specified
in the manifest.json file, thereby initiating the corresponding
action button script. Employing Puppeteer, we were able to
trigger the action button while accommodating discrepancies
between extensions written in Manifest V2 and Manifest V3.

Finally, due to the high volume of requests and jobs, we
take precautions to avoid rate limiting and ensure consistency
between job runs. To achieve this, we employ the Catapult
Web Page Replay [1] system, as described in Section 2.5.
This system allowed us to record commonly sent requests
and replay them as needed, while still effectively handling
requests sent for the first time and successfully receiving the
responses.

Extension pre-filtering

We select certain extensions from the D3 dataset based on
certain criteria. We select extensions that had at least one
update within the past two years, starting from August 2021.
This timeframe was chosen due to the ongoing rollout of
Manifest V3, as the Chrome Web Store rolled out a plan in
2021 to gradually stop supporting Manifest V2 [20]. Although
other browsers, such as Brave [18] and Firefox [19], have
pledged to maintain support for Manifest V2, our goal was to
test as many extensions as possible that are compatible with
all browsers, hence the chosen time window.

After narrowing down the extensions to those within the
past two years, we conduct further static checks to determine
their suitability. Firstly, we deduplicate the extensions, re-
taining only the latest version for each unique extension /D
when multiple versions existed within the two-year period.
Subsequently, we examine the manifest.json file of each ex-
tension to identify the URLs on which these extensions were
allowed to run. If an extension runs on all URLs we keep
it. Additionally, we perform static analysis to ascertain if the
extensions utilized at least one API from our curated list of
targeted APIs presented in Table 2. If an extension does not
run on all URLs and does not contain any of the targeted
APIs, we discard that extension. Consequently, from the ini-
tial batch of approximately 200,000 extensions, we reduce
the count to around 40,000. For extensions that could run on
any URL, we test them using the crawler on 10 popular URLs
because of the variety of features they include. These popular
websites were chosen due to their complex JavaScript and
HTML DOM structures, allowing us to trigger a significant
amount of extension code execution, given that specific code
segments within extensions are conditionally triggered based
on certain circumstances. For extensions limited to specific
URLs, we execute them on the URLSs defined in their man-
ifest.json file. As a result, we had 40,000 extensions with a
maximum of 10 URLs to test for each extension, resulting in
a total of up to 400,000 jobs.

4.4 Post-Processing Module
Post-processing the logs

To minimize flagging data incorrectly as well as the volume
of data requiring manual inspection, we establish a criterion
for an entry to be considered "flagged" by our system. Specif-
ically, an entry is flagged only if there have been at least five
forced executions throughout the entire execution of the job.
This threshold is set at five because the same APIs we employ
for forcing code execution can also be used to locally inject
code. Local static analysis tools can access and analyze lo-
cally injected code. The distinctive advantage of our tool is its
capability to handle dynamically generated code. Therefore,
a threshold of five increases the chance we encounter at least
one instance of dynamic code injection.



Subsequent to data collection, we parse the logs for each
job to identify scripts injected through the extensions. These
scripts are identifiable by their initiators, which typically com-
mence with "chrome-extension:extensionlD". We conduct a
recursive exploration of these injected scripts to identify any
additional injected scripts. For each script, we track the URLs
from which it was injected and determine whether the script
was executed. This is the automated part of our tool, where
extensions are flagged as evasive and potentially malicious.
The results of this process are subsequently analyzed to verify
evasion and malicious behavior.

Manual Verification

In the verification stage, manual inspection is carried out. We
review all the extensions and npm packages that our system
has "flagged" as well as all the VV8 and FV8 logs collected for
each of these flagged items. The verification process involves
both evasion and maliciousness checks. It is important to note
that we can only verify data as malicious in the D3 dataset,
as the other two datasets are already flagged as malicious.

For the evasion verification, we identify the flagged items
based on aforementioned criteria, ie. the number of forced
executions exceeding the threshold and dynamic injection.
We then inspect the actual condition in the initial code bundle
that triggered the flagging. If the condition aligns with known
evasion methods from prior research or other evasions that
exists, we label the data as evasive. This evasion verification
process is applied to all three datasets.

The verification process for malicious code is exclusive to
the D3 dataset, as the other two datasets have already been
identified as malicious. Initially, we select all extensions that
have been verified as having at least one evasion technique
in the previous step. Subsequently, we examine the actual
injected code in the forced execution logs, using data from
the dynamic sources in the VV8 logs. In cases where the
injected code is heavily obfuscated, we execute the extension
in a controlled, isolated environment to monitor intercepted
requests, redirections, and overall behavior. This environment
ensures that no information can be collected from potentially
malicious actions. We then verify maliciousness based on
known malicious behaviors documented in the literature. The
data we flag in this step are both malicious and contain at
least one evasion technique, as both verifications have been
conducted.

Clustering evasions with DBSCAN

The DBSCAN Expansion Module @ enhances evasion and
malicious extension detection, particularly under specific ob-
fuscation scenarios. It is crucial to note that DBSCAN serves
for both malicious code and evasion detection, and while we
perform experiments on three datasets for evasions, only one
contains unlabeled data, offering the potential to reveal both
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Figure 3: DBSCAN clustering architecture based on evasion APISs.

malicious data and additional evasion techniques. After con-
ducting the initial Extension Detection Module in FV8 and
identifying extensions with evasion techniques and malicious
behaviors, we analyze conditions and APIs used, mapping
them to specific evasion categories. We then utilize this pres-
ence of APIs as the input features of DBSCAN.

For instance, when a malicious actor attempts to evade de-
tection by bots, they may employ a condition to check if the
browser is running in a headless environment or if there is a
graphical user interface (GUI) involved. One common method
to check for a GUI is by examining the browser window size,
as a non-zero window size indicates the presence of a user
interface. In this case, the malicious code may use the win-
dow.height and window.width APIs to carry out this condition
check. Another evasion technique involves checking if the
user is an actual human by attempting to open the developer
tools window. Since bots, particularly in headless mode, are
unable to open the developer tools, this check is conducted
using the devtools API, specifically the devtools.network API.
By applying a similar approach to other evasion categories,
we can establish a comprehensive list of evasion techniques
and the corresponding APIs that are related to the conditions
used by these evasion techniques and we check the extensions
for the presense of those APIs. Figure 3 illustrates the detailed
architecture of the DBSCAN Expansion Module, showcasing
its design and functionality for detecting evasion categories
per cluster.

During the API data collection, we focus solely on the
initial code bundle of the extensions and disregard any poten-
tially injected third-party code. Our rationale was supported
by our crawler experiments, which indicated that 98% of in-
jected scripts did not have a second level of evasion. To rep-
resent the presence of APIs in each extension, we create an
N-length array, with N being 28 from the number of evasion
categories that we discover and employ the DBSCAN cluster-
ing algorithm to the extensions. We fine-tune the DBSCAN pa-
rameters with the aid of the HDBSCAN algorithm [9], which
serves as a tool to identify our ideal hyperparameters.



5 Results

5.1 Malicious npm Packages (D1)

When running the npm malicious packages from D1, our
initial check reveals that approximately 11,000 packages
(91.6%) were present in our historical dataset. Subsequently,
we examine how many of these packages contained npm run
and install commands, excluding those with zero commands.
This refinement results in 9,899 npm packages and we identify
1,443 packages that contain at least one evasion.

Regarding the evasion chains, we find 212 packages with
chains longer than one, indicating that the first link of the
chain is online. This translates to 14.7% of the packages
with some form of third-party injection having their URLs
accessible online. In most cases, these are GitHub URLs,
which in turn inject malicious code from third-party sites. We
identify a total of 13 unique types of evasions, with five of
them being exclusive to npm packages (checking if it runs
on a browser, verifying the availability of an /P:PORT pair,
checking for writing/executing permissions, folder existence
verification, and password paths check). We analyze "Pass-
word path check" in depth in the case studies (§ 5.8).

To validate the effectiveness of our secure dockerized en-
vironment, we successfully detected 1,633 instances of per-
mission denied errors, which demonstrates the containment
of potentially malicious activities. In the case of other special-
ized evasions exclusive to npm packages, it is worth noting
that 141 instances had the "install" command specified in the
"package.json" file. However, this command was used as a
special evasion tactic, where the actual command ("npm run
install"), was leading to specific malicious behaviors and not
installation. Although we do not include this evasion in the
28, it represents an interesting evasion technique unique to
the npm ecosystem.

Overall in Table 4 we can see the full list of evasions both
for npm packages and extensions.

5.2 Malicious Extensions (D2)

In order to have a measurement of comparison, we take the
latest 200 extensions from the D2 dataset with their hashes
provided in the chrome-mal-ids repository [8] and we apply
the Extension Detection Module we describe in Section 4.3.
We examine the resulting logs, conduct post-processing, and
manually verifying their behavior. Our findings reveal that
82% of these malicious extensions employed evasion tech-
niques, and all of them exhibit malicious behavior. Without
our system in place and applying only static analysis, these
malicious extensions would not have exhibited their malicious
behavior to the fullest. This was also the reason that they re-
mained online for multiple months before being removed
from the Web Store [16]. The remaining 18% of malicious
extensions did not utilize evasion techniques; instead, they
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Table 4: Evasion categories for npm packages and extensions.

directly exhibited malicious behavior.

Our system recorded a total of 819 forced executions, in-
dicating an average of approximately 4.1 forced executions
per extension job. Additionally, we observe 198 third-party
scripts being injected, contributing an extra 87,703 lines of
code. During the process, we encounter 114 requests with
’404° HTTP errors from the websites that inject third-party
code, which amount to 57% of the total extensions. This is
expected, since these extensions have been reported to be ma-
licious, and their associated websites have likely been taken
down or blocked since then. It is worth noting that all of these
extensions are no longer available on the webstore. Utilizing
previously identified malicious extensions as a verifier, we
demonstrate the efficacy of our system. The successful detec-
tion of evasion techniques in previously flagged as malicious
data (D2) serves as a confirmation to proceeed our analysis



. Scripts Found

Chain Length (with at least that chain length)
1 12,016

2 2,988

3 810

4 211

5 81

6 34

7 10

8 1
Average Length 1.36
Total Scripts 16,471

Table 5: Chain length of third-party injected scripts and # reports.

to D3, with larger-scale testing, seeking out and analyzing as
many extensions as possible from the wild.

5.3 Extensions in the Wild (D3)

In total, we conduct tests on 39,592 extensions, out of which
4,948 (12,5% ) of them triggered a code block at least once.
The total number of forced executions amounted to 111,522
resulting in an average of 2.82 forced executions per executed
extension or 22.54 forced executions for extensions with at
least one forced execution. Due to the recursive nature of
our system’s forced execution, it applies to scripts that are
injected by the currently executed script. This process can
lead to nested third-party injections, forming what we refer
to as an "injection chain." This chain can continue as long
as each script in the chain injects the next one. In Table 5,
we present a breakdown of the lengths of the injected scripts.
We only report scripts originating from one of the extensions.
The total number of script chains identified is 16,471, and
we found that the longest chain consists of eight scripts. As
we expected, most of the chains have a maximum length of
two, accounting for 97% of the script chains we found. In a
representative example of the recursive nature of our tool, our
tool executes 322 lines of code, compared to the initial 10
lines of code, an increase of 3200%. Throughout our system,
we analyze 16,471 third-party scripts, 9,164 of which were
unique, totaling 8,732,120 lines of executed JavaScript code.
We define code coverage as the amount of code executed,
measured in lines of code (LoC). Overall, our system increases
code coverage by 11% compared to execution without our
tool.

5.4 Clustering similar evasions

Our FV8 tool may potentially miss two types of evasive mali-
cious extensions. The first category includes cases where the
condition block disrupts the control flow of the program with-
out injecting any additional code. Our tool, which executes

1 // injection outside the block
2 if |
3 $('"#joinShoppersIframeDiv') .hasClass ('

joinShoppersIframeDiv')
4 )
5 return;
6 $('#jsIframeParentDiv') .remove (),
7 window.JS_INSTANCE.couponCodeModal &&
8 (window.JS_INSTANCE.clickCouponCodeModal (),
9 window.JS_INSTANCE.reloadDomFields ());

Listing 2: "Return first" evasion format caught only by DBSCAN.

DFS inside the code block, might miss test cases where the
injection API is located outside the block, as its distance from
the block is unknown. However, DBSCAN can identify such
cases by checking for evasion-related APIs and clustering the
entire file, including code outside the condition block. Such a
scenario can be observed in Listing 2, where the code returns
after the evasive check, and the malicious behavior occurs
only if the evasive does not return inside the block.

The second category involves cases where the API of the
evasion is not obfuscated, but the API of the third-party injec-
tion is obfuscated. In such instances, the API of the injection
is fragmented, making it difficult for the DFS of FV8 to detect.
However, DBSCAN can detect this testcase since it utilizes
the presense of the evasion API and it can cluster the whole
file as an evasive malicious extension.

After running HDBSCAN with the API presence as input,
we observe that the relevant clusters mainly contained two
to six extensions each. Upon further inspection, we found
duplicates from the previous Extension Detection Module,
accounting for six extensions. In total, after excluding the
duplicate extensions, we manually examine 48 extensions
and identified 28 of them to be using evasion techniques
and exhibiting malicious behavior, resulting in a success rate
of 58.3%. The remaining extensions either did not employ
evasion techniques or showed no malicious behavior after
manual examination. Detailed results of evasion techniques
and malicious categories are available in 7. The DBSCAN
system serves as a partial obfuscation bypass tool in cases
with heavy obfuscation.

5.5 Evaluation of Automatic Evasion Flagging
False Positives Assessment

To assess the accuracy of our evasion detection system, we
compiled a dataset consisting of 500 benign extensions and
500 confirmed malicious extensions. The selection of benign
extensions was based on their popularity and high download
counts from the web store, ensuring a representative sample
of commonly used extensions. The malicious set was de-
rived from previously confirmed malicious cases [53]. Under
uniform testing conditions, each extension was run on 10 pre-
determined URLs. The automatic evasion filter triggers upon




Metric

True Positives (TP) 420
False Positives (FP) 13
True Negatives (TN) 487
False Negatives (FN) 80

Value

Precision 0.97
Recall (TPR) 0.84
F1 Score 0.90

Table 6: FVS8 evaluation examining 1000 labeled extensions.

detecting at least five instances of forced executions, accord-
ing to the specified APIs. Results are summarized in Table 6.
The evaluation results indicate that the system identified 13
out of 500 benign extensions as malicious, corresponding to
a false positive rate of 2.6%. For the malicious extensions,
the system identified 420 out of 500 as malicious, reflecting a
true positive rate of 84%. The precision measure of 0.97 and
a recall rate of 0.84 are also reported, along with an F1 score
of 0.90.

Based on our experiments, false positives (FP) occur due to
local injections. This happens when an extension uses APIs
that we force execute, leading to the injection of another local
file instead of a third-party resource. Our system flags only if
the injected source is third-party (i.e., not starting with chrome-
extension://). False negatives (FN) occur because third-party
resources are unavailable, preventing further code injection
and, consequently, our system does not get triggered.

Evasions in Benign Extensions

The analysis of our detection system’s response to benign and
malicious extensions underscores a significant disparity in
evasion prevalence. While only 2.6% of benign extensions
activated our automatic evasion flagging system, this contrasts
sharply with 80% of the malicious extensions that triggered
similar alerts. Furthermore, we measure the number of forced
code executions and we detect 6.8 times more forced exe-
cutions in malicious samples than in benign samples. These
observations strongly suggest that evasions are far more com-
mon in extensions with malicious intent. Although the pres-
ence of evasion techniques does not conclusively confirm
malicious activity, it significantly correlates with behaviors
typically associated with such extensions.

Successful Detection

Once all our experiments were completed and the results were
logged in the database, we run the post-processor as described
in Section 4.4. The post-processor provides us with statistics
for each extension, such as the number of forced executions
and injections. We focused on extensions that had at least five

Category FV8 DBSCAN Total
Advertisement networks 31 11 42
Coupon deals injected 19 7 26
Other extension installation 5 2 7
User Tracking 11 3 14
Unsafe websites (http) 3 1 4
Blocked websites (EasyList) 5 3 8
History tracking 4 1 5
Search results manipulation 3 0 3
Arbitrary file download 1 0 1
TOTAL 82 28 110

Table 7: Malicious categories & number of extensions per category.

forced executions and at least one injection, which narrowed
down the number of extensions to 423. For each of these
extensions, we manually inspect and verify their malicious
behavior and their evasion technique. As a result, we identify
a total of 82 extensions that exhibited both evasion techniques
and malicious behavior and the comprehensive results are
presented in Table 7.

As for the final evasion count after all four modules are an-
alyzed, we found 28 evasion categories, where 15 are unique
to extensions, five unique to npm packages and five unre-
ported in previous literature, ie. Social Media login, Crypto
wallet login, Browser environment check, Microphone open
and Password path check evasions.

Forced Executions not Leading to Malicious Extensions

To ensure the comprehensiveness of our experiments, we also
examine the rest of our results, which are instances where
our system triggers forced execution or detects third-party
injections incorrectly. We thoroughly investigate the reasons
behind these unsuccessful predictions and identify potential
factors contributing to them. Approximately 25% of these
were triggered by certain extensions utilizing APIs for local
injection, leading to unintended forced execution. This high-
lights the challenge of distinguishing between legitimate API
usage and actual third-party injections. Additionally, around
60% of those were caused by the use of sefTimeout in contexts
unrelated to third-party injections, further complicating the
detection process. The remaining 15% of the cases were due
to instances where extensions exhibited evasion techniques
without any form of malicious third-party injection. In these
cases, while the extensions engaged in evasion behavior, their
overall intent might not have been fully malicious. By gain-
ing a deep understanding of these nuances, we can refine our
system and enhance its accuracy in distinguishing between
legitimate and malicious behaviors.



Obfuscation Coverage

Binary arrays
Dead/Useless code insertion
Multiple files code split
Try-catch blocks
Hide code in dependency tree
Split code in multiple dependencies
Encoding
Steganography
Dynamic code modification
Visual deception

Total | 8/10 (80%)

( NON NON N N N N N J

Table 8: Obfuscation coverage of ATRES and FV8.

5.6 Obfuscation coverage

One of the three pillars our tool addresses is code obfuscation,
in addition to evasion code and malicious code. To precisely
define the scope of our tool and establish a clear threat model
it can handle, we have undertaken the quantification of obfus-
cation. Drawing from previous literature, we reference Ladisa
et al.’s work [48], which categorizes obfuscation in npm pack-
ages into ten distinct categories. As depicted in Table 8, our
tool effectively manages eight of these ten categories (80%),
as specified in the table.

It is important to note that our tool does not claim to fully
address obfuscation. While there may be further room for
exploration and improvement in dealing with obfuscation, our
quantifiable approach serves the dual purpose of defining the
tool’s boundaries and providing a basis for comparison with
future obfuscation research.

5.7 Manual Verification

Once our tool flags code as potentially malicious, it under-
goes manual verification, while evasion detection operates
mostly automatically, pinpointing the precise code locations
for further investigation. Analyzing the 423 flagged samples
requires approximately 106 hours, with an expert JavaScript
reviewer spending around 15 minutes on each sample. The
precision of FV8 in identifying exact locations of evasion sig-
nificantly streamlines the review process within our dataset
of 40,000 extensions. This focus allows us to concentrate on
a subset—roughly 5% of the total code—markedly reducing
the effort needed compared to reviewing hundreds of thou-
sands of lines. Consequently, our tool functions almost 100%
automatically in flagging and detecting evasions and semi-
automatically in identifying malicious code, decreasing the
volume of code requiring manual review by 95%.

1 // Blocked on specific sites evasion
2 const blocked_websites = ['https://www.linkedin.com.*"',"'
https:/ r.medium.com.*',];

3 chrome.tabs.onUpdated.addListener (function (tabld,
changelInfo, tab) {
4 let tabUrl = tab.url;

5 if (!(changeInfo.url || changelInfo.status) ||
websiteIsBlocked (tabUrl)

6 return;

7[..]

8 injectScript (tabld);

9

Listing 3: Blocked on specific sites evasion.

5.8 Case Studies

As we can see in Listing 1 that we describe in Section 1,
the evasion technique belongs to the timebomb category. As
for the malicious behavior, in summary, the code snippet is
responsible for setting up Matomo tracking. It accomplishes
this by initializing the "_pagq array” with tracking commands,
configuring the Matomo tracker URL and site ID, and dy-
namically loading the Matomo client script. Matomo is a
web analytics platform that allows website owners to track
and analyze user interactions on their websites. By executing
this code, the extension can secretly enable Matomo tracking
without the user’s awareness or consent, potentially leading to
privacy violations and data collection without authorization.

In another example, Listing 3 demonstrates an evasion
technique where the extension checks for specific websites,
such as linkedin.com and microsoft.com in line 2, and avoids
executing the third-party code on those sites. It is possible that
these websites are capable of detecting bot-like behavior and
the extension is trying to evade detection and avoid triggering
any security measures in place on those sites. By selectively
avoiding execution on certain websites, the extension aims to
conceal its malicious intentions and avoid scrutiny.

In another example, Listing 4 demonstrates an evasion
technique based on distinguishing between developer and
normal users in line 5. The code utilizes the eval command in
line 13 to execute malicious code after injecting it from a third-
party source. Additionally, this evasion method incorporates
user login status and date as part of its user tracking technique.
This combination of factors allows the malicious code to
execute selectively based on the user’s role and behavior.

In the case of npm packages, our tool detected interesting
evasion techniques, one of which involves password path
checking and subsequent code execution. As illustrated in
the code snippet in Listing 5, malicious actors first check if a
specific path exists (line 5) and, if it does (evaluates to 0), they
proceed to send the password to an external server. Our tool
triggered an alert due to the use of the exec API, which is one
of the targeted APIs for forced execution in our FV8 patches
for Node.js. This example highlights the effectiveness of our
system in identifying evasive code in npm packages.




1 // Eval code after dev status check

2 function getCode() {

3 $.get(chrome.runtime.getURL('dev.Json'), function (
data) {

4  console.log('Handling dev or user code')

5 1 == data.isDev

6 ? $.get(chrome.runtime.getURL('dev.js"))

7 : $.get(

8 "https://botsorteios.com/app/source/?main=truestime=
't

9 Date.now() +

10 'gextension=" +

11 chrome.runtime.getManifest () .version,

12 function (data) {

13 eval (JSON.parse(data).js);})i});}

14 setTimeout (() => {

15 clearInterval (autoLogin);

16}, 10000);

1 const { exec } = require('child process');

2 const command = 'test -f /etc/passwd ; echo $?';

3  exec(command, (error, stdout, _) => {

4 if (error) { return; }

5 if (stdout == 0){

6 exec ("a=$ (cat /etc/passwd;) && echo $a xxd -p |
head | while read ut;do curl -X POST -H \"Content-Type
¢ text/plain\" - a\"
0f734jazz94u3jb5awdyy3kSiwonceg25.0astify.com;done"); }

T b

8

Listing 4: Eval third-party injection after user status evasion.

5.9 Malicious Extensions Report to Google

After submitting reports on 110 extensions to Google via the
official channels [29], a follow-up check two months later
showed that only 41 of these extensions remained online.
Although we received initial confirmations of the reports,
Google did not provide specific confirmations or rejections
for each case. The removal of the majority of these extensions
indicates a largely successful outcome of our reporting efforts.
Notably, among the extensions that are still available on the
Webstore, most have released new version updates since our
identification of malicious activity. Specifically, only seven
of the reported extensions have not updated and remain at the
version we originally examined with our tool. This suggests a
significant response to our findings, either through extension
removal or updates to address the issues we identified.

6 Discussion

6.1 Sustainability & Passing the Test of Time

Our research demonstrates the integration of FV8 across mul-
tiple versions of Chromium and Node.js, showcasing its adapt-
ability and effectiveness. FV8 effortlessly functions across
different versions, with minimal automatic adjustments, main-
taining compatibility with the last 28 versions of Chromium.
Its implementation follows the Dockerfile/tool model, akin to
VisibleV8 (VV8), prioritizing accessibility and distribution
for researchers. FV8 will be published on DockerHub, accom-
panied by comprehensive documentation and per Chromi-
um/V8 version patches, facilitating its adoption in various
research environments.

Listing 5: Password path checking evasion in npm packages.

6.2 Comparison with previous tools

In broader research, we compare FV8 to related methods.
FVS8 offers unique advantages in detecting evasion techniques
and malicious extensions. It is the first system for this analysis
in Chrome, setting it apart from prior tools like Rozzle [47]
and J-Force [45], which focused on older browsers and lacked
open-source availability. Unlike J-Force, FV8 uses selective
API-based forced execution, making it both API-targeted and
condition-driven. While Rozzle also used API targeting, it was
limited to native element-related APIs and is now obsolete.
FV8is designed for the Chromium environment, providing
up-to-date, open-source capabilities for detecting evasions.

6.3 (F)V8 Versatility

Our research highlights the broad significance of the V8 en-
gine, which powers not only Chromium but also Node.js, af-
fecting millions of npm packages. V8 is also crucial for other
platforms such as MongoDB and Electron, emphasizing its ex-
tensive influence beyond web browsers. By utilizing the same
V8 patches, our approach can be adapted to enhance security
across diverse JavaScript environments, making it a versatile
tool for various applications and frameworks that rely on the
V8 engine. The adaptability of our system allows for potential
expansions to browser extensions beyond Chrome, including
Firefox, Safari, and Microsoft Edge. Moreover, given the uni-
versal applicability of JavaScript, our FV8§ system can also be
extended to other domains such as detecting malicious code
in phishing and detecting evasions in fingerprinting websites,
further broadening its protective reach and impact.

7 Limitations

One potential expansion of our system is to extend its capabil-
ities to other browsers such as Firefox, Safari, and Microsoft
Edge. However, for this paper, we’ve concentrated on Chrome
extensions due to the dominance of the Chrome Web Store,
hosting over 200,000 active extensions, which provides a sub-
stantial dataset for our research. In contrast, Firefox and Safari
have approximately 30,000 and 3,000 active extensions, most




of which are also available in the Chrome Web Store. Fo-
cusing on Chrome extensions allows us to effectively assess
the prevalence of malicious behavior and evasion techniques
within a diverse and extensive ecosystem. Nonetheless, we ac-
knowledge the potential for future exploration and adaptation
of FV8 to encompass other browsers, aiming for a compre-
hensive understanding of extension security across different
platforms. Notably, Brave Browser shares Chrome’s Web
Store, including Brave extensions in our system’s coverage.

Finally, the attackers can potentially evade us by using
server side checks. We acknowledge that our system might
face limitations when dealing with server-side checks. Such
checks are executed on external servers, making it challenging
to force execute and monitor their behavior directly.

8 Related Work

Forced Execution Other than the previously compared Roz-
zle [47], JSForce [37] and J-Force [45], other papers have
employed dynamic execution to detect evasions and mali-
cious extensions without modifying the JS interpreter. For
example, Solomos et al. [57] used simulated user actions
(mouse, keyboard, browser events) to fingerprint extensions
in a malicious actor-controlled website. This dynamic execu-
tion combined with simulated user actions allowed them to
fingerprint more extensions than previous literature. Another
approach involved using honeypages to detect malicious ex-
tensions, as demonstrated by Hulk [42]. Finally, Steffens et al.
utilized forced execution in PostMessage handlers to establish
exploitability in popular sites from program traces [59].

Malicious, Vulnerable Extensions & npm Packages Vari-
ous studies have investigated the detection of malicious exten-
sions without relying on forced execution techniques. For ex-
ample, Sjosten et al. [56] examined browser extensions based
on web-accessible resource inclusions. Xing et al. [62] fo-
cused on identifying malicious extensions related to advertis-
ing injections and malvertising, while Thomas et al. [60] used
dynamic analysis to detect extensions injecting affiliate links.
Jagpal et al. [39] conducted a longitudinal three-year study on
malicious extensions. Igbal et al. proposed AdGraph [38] and
built their tool on top of JSGraph [49], where they modified
V8 for dynamic execution within the Blink engine but did not
employ forced execution, rendering their system susceptible
to evasion techniques. Pantelaios et al. [54] detected mali-
cious extensions based on user feedback and later applied
DBSCAN clustering. However, their approach remained vul-
nerable to evasions and obfuscation. Additionally, Chakradeo
et al. introduced the MAST tool, which measures malicious
applications in the mobile ecosystem, using similar static
analysis techniques [32]. Concerning npm packages, Zhang
et al. [63] applied machine learning techniques to detect mali-
cious npm packages, while Froh et al. [36] used CodeQL [7]

for static analysis to identify malicious code in npm pack-
ages. Ladisa et al. [48] explored algorithmic feature selection
within the context of malicious npm packages to detect eva-
sion tactics. Recent efforts have also focused on analyzing
npm packages for vulnerabilities [51] and identifying mali-
cious behavior [61]. Datasets have been established to support
these analyses [52]. Lastly, Kluban et al. conducted work mea-
suring vulnerable JavaScript [46].

JS Evasion Numerous papers have delved into the study
of JS evasion techniques. For instance, Maroofi et al. [50]
examined the resilience of anti-phishing agencies that employ
human verification methods, such as Google re-CAPTCHA,
alert bot, and session-based evasion. Zhang et al. [64] intro-
duced Crawlphish, a system that utilizes both visual and code
features to detect evasion techniques in phishing webpages.
Their approach involves code similarity and visual analysis to
identify phishing pages and relies on J-Force for forced exe-
cution. Meanwhile, Kapravelos et al. [43] proposed Revolver,
a system designed to detect evasive web-related malware.

9 Conclusion

In summary, our paper introduces FV8, an open-source and
powerful system built on V8 for detecting evasion, malicious,
and bypassing obfuscated JavaScript code. FV8 identifies
28 evasion categories in npm packages and extensions as well
as 110 malicious extensions and has been rigorously tested
across the last 28 V8 versions.

10 Reproducibility & Ethics

Our tool, FV8, is available through an open-source approach.
The latest version can be found in our dedicated GitHub repos-
itory, where it is published as Chromium per-version patches.
These patches ensure compatibility with other tools like VV8.
For easy access and distribution, we also provide a .deb in-
stallation file.

The repository with the latest version can be accessed here:
https://github.com/wspr-ncsu/FV8.

Regarding the malicious extensions discovered in dataset
D3, we reported our findings to Google for their review to
determine if these extensions violate the Terms of Service
(ToS) of the Web Store. Our reporting process aligns with
the official reporting guidelines outlined in [5]. The majority
(62.7%) has been removed from the Webstore.
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Appendix

A Performance Evaluation based on Tranco
top10k

Our tool is intended for a one-off usage, not requiring constant
operation. Even under these conditions though, it is critical to
assess the tool’s performance. We assess the performance of
FV8 by conducting experiments on the top 10,000 websites
listed by Tranco [30]. Each website is accessed using a crawler
that operates an instance of the modified Chromium browser,
FV8, aiming to retrieve a document. Our findings indicate a
high success rate, with approximately 99% of the websites
loading successfully, and only about 1% failing to load.

The time taken to visit a website is measured from the
moment the browser is spawned until the successful retrieval
of an HTML document. This measurement is performed us-
ing both the FV8-modified Chromium browser and the de-
fault Chromium browser (version 122 as the base for both
versions). Our results show an average increase of 1.9% in
loading times when using FV8, resulting in an overall per-
formance efficiency of 98.1% in loading times compared to
the unmodified version. The performance we have achieved
justifies our decision to selectively execute only some branch
paths, demonstrating that this targeted approach is not only
effective in optimizing the detection process but also efficient
in resource usage.

B FVS8 Errors Evaluation

To investigate the impact of the custom browser with forced
execution, we analyzed the web breakage by monitoring con-
sole errors during 400,000 visits to URLs through our exten-
sions. Our analysis excludes common script errors such as
Uncaught ReferenceError, which are present even with-
out the use of our tool. Additionally, we accounted for errors
generated by the crawler instrumentation, which serves as a
wrapper around FV8 and facilitates website visits with en-
hanced parallelization.

The overall breakage rate observed was approximately 1%.
This rate includes various categories of errors, which are de-
tailed in Table 9. Specific errors tracked include ’Name Not
Resolved’, "CORS Policy’, *Blocked by Client’, and errors
directly attributable to the crawler. The highest number of
incidents was reported for crawler-related issues, indicating
the complexity of web interactions when using automated

Error Category Number of Occurrences
Name Not Resolved 355
CORS Policy 924
Blocked by Client 812
Crawler Errors 1389

Table 9: Summary of Error Occurrences.

systems for data collection. Notably, the types of errors and
their frequencies provide insights into both the technical chal-
lenges and the operational limitations of the FV8 environment
under test conditions.

1 // tracker added on timebomb
2 var _0x577791=_0x4ebl;
3 function _0Oxldec() {

4 var e = ["1138VmSxWa", "Tracking", "src", "4230130
mSYYki", "233IhnkhY", "t.js", "enableLink", "748864
vEyXjS", "https://ma", "16XmccgG", "tomo.deban", "push
", "k.com/", "trackPageV", "/vendor/ma", "insertBefo"

"local", "storage", "tomo.clien", "extensionI", "_paq
", "iew", "1027233PESGTW", "576lcsZcKy", "10shZjge", "
2490gWahxv", "parentNode", "45809103Kjhr", "7358560
MtfWnx", "get"l;

5 return (_Oxldec = function () { return e }) ()}

6 [..]

7 setTimeout (() => { var e = _0Ox4debl;

8 chrome[e (422) ] [e(421)] [e(434)] (e(424) + "d", function

(n) {

9 var r = e;

10 r(413), r(415), r(417), glr(437)] = r(419) + r
(423) + r(440);

11 s[r(431)]1[r(420) + "re"l(g, s)})

12}, 93445e3);

Listing 6: Timebomb evasion example (Obfuscated).

C Timebomb Detection Limitation under Ob-
fuscation

Even though a straightforward timebomb condition can be
detected by our system, there are limitations. In this scenario,
the presence of obfuscated code in Listing 6, which mirrors
the timebomb in Listing 1, highlights a limitation in our de-
tection capabilities. Our system relies on recognizing two
specific steps. The first step is detecting the condition (e.g.,
the content of an "if" statement) as an evasion. The second
step is identifying the API contained within the condition
block (line 10). When both elements are obfuscated, as seen
in Listing 6, our system cannot detect the evasion. The system
fails to recognize the evasive condition or identify the asso-
ciated API due to the code’s obfuscation. This emphasizes
our initial goal, which is to run FV8 in conjunction with a
code deobfuscator, allowing both the condition and the API
to be easily understandable for our tool and thus detecting the
timebomb evasion.




	Introduction
	Background
	V8 & Chromium
	VisibleV8
	WebStore & Extensions
	Node.js & npm ecosystem
	Relevant Technologies

	Data
	Methodology
	Modifying V8
	npm Evasion Detection Module
	Extension Detection Module
	Post-Processing Module

	Results
	Malicious npm Packages (D1)
	Malicious Extensions (D2)
	Extensions in the Wild (D3)
	Clustering similar evasions
	Evaluation of Automatic Evasion Flagging
	Obfuscation coverage
	Manual Verification
	Case Studies
	Malicious Extensions Report to Google

	Discussion
	Sustainability & Passing the Test of Time
	Comparison with previous tools
	(F)V8 Versatility

	Limitations
	Related Work
	Conclusion
	Reproducibility & Ethics
	Acknowledgements
	Performance Evaluation based on Tranco top10k
	FV8 Errors Evaluation
	Timebomb Detection Limitation under Obfuscation


