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Abstract

Image geolocation is a critical task in various image-
understanding applications. However, existing methods of-
ten fail when analyzing challenging, in-the-wild images. In-
spired by the exceptional background knowledge of multi-
modal language models, we systematically evaluate their
geolocation capabilities using a novel image dataset and a
comprehensive evaluation framework. We first collect im-
ages from various countries via Google Street View. Then,
we conduct training-free and training-based evaluations on
closed-source and open-source multi-modal language mod-
els. we conduct both training-free and training-based eval-
uations on closed-source and open-source multimodal lan-
guage models. Our findings indicate that closed-source
models demonstrate superior geolocation abilities, while
open-source models can achieve comparable performance
through fine-tuning.

1. Introduction

Image geolocation refers to the process of determining the
specific geographic location from which a given image was
taken. This geographic information is crucial across various
domains, including urban planning, environmental monitor-
ing, and social media analysis. The ability to automatically
identify the location of images provides valuable insights
and supports numerous applications, such as augmented re-
ality, location-based services, and geotagging.

Despite its importance, image geolocation in the wild re-
mains a challenging task, particularly when dealing with
images sourced from diverse sources such as social me-
dia platforms and online repositories. While many previous
works [2, 4, 5, 15, 18] have developed curated loss func-
tions and model designs to tackle this challenge, they usu-
ally have compromised performance when evaluated on im-

ages in the wild. In contrast, recent advances in large mul-
timodal models (LMMs) have demonstrated impressive ca-
pabilities in background knowledge across a broad range of
tasks. These models are trained on large-scale datasets, ex-
hibiting outstanding understanding [17, 19], reasoning [11],
and commonsense [20] abilities.

While numerous benchmarks have been established to
evaluate various image understanding abilities of multi-
modal language [1, 3, 8, 9], little attention has been paid
to their geolocation capabilities. To address this research
gap, we conduct the first systematic analysis of image ge-
olocation abilities. First, we introduce a large-scale dataset
of in-the-wild images sampled from diverse geolocations.
Second, we comprehensively benchmark the capabilities
of both open-source and closed-source multimodal lan-
guage models through training-free and training-based eval-
uations.

Our contributions can be summarized as follows:

¢ Introduction of a novel image dataset: We present
a new dataset, exclusively sourced from Google Street
View, designed to challenge LMMSs through real-world,
in-the-wild random images. This dataset is intended to
serve as a robust benchmark for assessing these models’
ability to identify image locations accurately.

* Comprehensive evaluation framework: We evalu-
ate a diverse set of LMMs, including state-of-the-art
closed-source models like GPT-4V and Google Gemini,
and promising open-source models such as BLIP [7],
Fuyu [1], InternLM-VL [3], and LLaVA [8, 9]. Our eval-
uations, both training-free and training-based, thoroughly
assess these models’ geolocation accuracies at the coun-
try level and their adaptability to challenging in-the-wild
image data.



Paraguay (-22.66, -56.10) Mexico (25.98, -99.68)

Nigeria (7.95, 4.17)

France (47.90, 5.60)

Belarus (52.32, 26.63)

A

Turkey (37.50, 33.47) Argentina (-37.31, -61.40

Figure 1. Image samples from the test set.
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Figure 2. The five images are used as fixed input, including their order, for the static few shots strategy.

2. Dataset

Our dataset’s images are directly from Google Street View,
while specific parameters were set in the API request to
mimic common human sight. The up or down angle of
the camera relative to the Street View vehicle is set to 0
degrees to maintain a natural, level perspective. The hor-
izontal field of view is fixed at 90 degrees, mirroring the
horizontal scope typical of human vision. To capture di-
verse viewpoints, the camera’s compass heading is adjusted
to four fixed orientations: 0 (North), 90 (East), 180 (South),
and 270 (West) degrees. All the images have the same size
of 512x512.

Figure 1 displays random sample images from our test
set, which predominantly consists of natural landscapes and
rural scenes with features such as water bodies, trees, and
agricultural fields. These images do not include prominent
urban infrastructure or significant man-made constructs,
thereby increasing the complexity and intrigue of identify-
ing each image’s geographical origin.

Table | provides a statistical overview of the dataset, de-

tailing the distribution of these varied perspectives. It shows
a methodical approach to capturing diverse orientations and
geographic locations within the proposed dataset. The table
divides the dataset into three subsets: Test, Train, and Com-
prehensive Train, each detailed with the count of images
across four compass headings and the total number of im-
ages alongside the number of represented countries. From
the perspective of camera headings, the dataset maintains
a remarkable balance across all subsets, with each heading
represented almost equally. The test set, train set, and com-
prehensive train set have 1000, 2418, and 6408 images, with
each heading having exactly or around one-quarter of the to-
tal images. When only considering the countries that appear
in the test set, there are 2388 and 6011 images in the train
and comprehensive train set, respectively.

2.1. Dataset Distance Pairs Analysis

Larger countries are more likely to have more images, so
a strategy was taken to give bigger countries more chances
during the random image pick-up process. This results in
a significant imbalance in the representation of countries
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Figure 3. Images samples about dynamic few shots strategy. The first image is the target image, which is for LLMs to guess where it was
taken, and the following images on the same row are their corresponding five most similar images based on CLIP embeddings ordered by
Euclidean distance descending.

Table 1. Image distribution and orientations from the proposed dataset.

H-0 H-90 H-180 H-270 Total # of Countries

Test 250 250 250 250 1000 82
Train 618 600 600 600 2418 92
Comprehensive Train 1609 1600 1599 1598 6408 115

H: the compass heading of the camera.

within the dataset. For instance, a country might have as
few as one image in the dataset. In contrast, another could
have as many as 121, 293, and 661 images in the test, train-
ing, and comprehensive training sets. To mitigate the poten-
tial impact of this geographic imbalance on model training
and evaluation, we implemented a policy ensuring that each
country represented in the Test set is also represented in the
Train set with at least two images and in the Comprehensive
Train set with at least four images.

Table 2 shows the geographical diversity within our
dataset. We analyzed the physical distances between im-
age pairs based on their geolocations, categorizing them
into intervals ranging from less than 10 kilometers(km)
to over 1000 km. The result reveals a strategic empha-
sis on maximizing geographical variance, with most im-
age pairs—more than 96% across Test, Train, and Com-
prehensive Train sets—showing separations of over 1000
kilometers. The distribution significantly reduces the prob-
ability of selecting visually similar images from proximal
locations, ensuring the dataset spans a broad spectrum of
environmental and urban landscapes.

3. Experiment Settings
3.1. Experiment Models

In this section, we elaborate on the models that we evaluate.

* GeoCLIP[2]: A groundbreaking approach inspired by
CLIP for Image-to-GPS retrieval, designed to enhance the
alignment between images and their corresponding GPS
coordinates.

¢ ChatGPT-4V[12]: An extension of the ChatGPT model
with integrated visual processing capabilities, enabling it
to understand and generate content based on text and im-
ages.

e Gemini[16]: Gemini introduces a versatile multimodal
model family excelling in understanding across images,
audio, video, and text, with its vision capabilities setting
new benchmarks in image-related tasks and multimodal
reasoning.

e Blip-2[7]: BLIP-2 introduces a cost-effective vision-
language pre-training approach that leverages existing
pre-trained models with a Querying Transformer, achiev-
ing state-of-the-art results in vision-language tasks with
significantly fewer trainable parameters.

e Fuyu[1]: Fuyu stands out with its simple yet versatile



Table 2. Distance pairs(km)

d <10 10<d <100 100 <d <500 5H00<d<1000 1000<d
Test 0.00012% 0.07% 1.13% 2.42% 96.38%
Train 0.0008% 0.06% 1.11% 2.41% 96.41%
Comprehensive Train ~ 0.0062% 0.008% 1.19% 2.64% 96.09%

Table 3. Training-free evaluation results in different scenarios.

Basic Must  Tips

S-5-shot

D-5-shot S-5-shot-Rd  D-5-shot-Rd

GeoCLIP 0.258 - -
GPT-4V 0.102 0.513 0.422
Gemini 0.666 0.660 0.670

0.741 0.736 0.737 0.746

BLIP-2-2.7B 0.290 0.305 0.002
BLIP-2-T5-XL  0.257 0.365 0.361
Fuyu-8B 0.014 0.016 0.008
ILM-VL-7B 0.182 0301 0.327
LLaVA15-7B  0.189 0.204 0.120
LLaVA1.5-13B  0.165 0.185 0.049

0.000 0.016 0.024 0.015

0.027 0.317 0.031 0.321
0.032 0.310 0.035 0.312

architecture, excelling in digital agent tasks and offering
rapid, high-resolution image processing capabilities.

e InternLM-XComposer2 (ILM-VL)[3]: It innovates
in vision-language interaction with a Partial LoRA tech-
nique, excelling in creating and understanding complex
text-image content, setting new benchmarks in multi-
modal performance.

e LlaVA[10]: LLaVA 1.5 sets a new standard in large mul-
timodal models with a highly efficient vision-language
connector, achieving unprecedented performance on 11
benchmarks using minimal data and training resources.

3.2. Prompt Strategies

In this section, we elaborate on the prompting strategies

used for evaluations.

¢ Basic: The model is shown an image and prompted to
guess the country where the image was captured, relying
solely on visual cues present. With this strategy, LLMs
prefer responding to the “unknown” when the image is
not easily identified.

* Must: To address cases where limited information may
prevent answering a country, we employ imperative
prompts to compel the model to make a country guess
for each image.

* Tips: We offer general guidelines to the model, suggest-
ing it consider factors like sun position, license plates, and
other identifiable features within the image to infer the ge-
ographic location without directly providing this specific
information. These uniform guidelines apply to all mod-
els across every evaluation round.

* S-5-shot: The model is given five additional images,
each tagged with their respective countries, as references
before it predicts the country of a new image. These refer-
ence images remain consistent across all models and eval-
uation rounds. An example is shown in Figure 2.

e D-5-shot: Similar to the S-5-shot method, but the five
reference images are specifically chosen based on their
proximity to the target image, utilizing the k-Nearest
Neighbors (kNN) algorithm from the training set based
on their embeddings generated by CLIP[14], and ranked
by their closeness. Figure 3 shows two sets of example
input images for this strategy.

* S-5-shot-Rd: Adapting the S-5-shot method, the order of
the five reference images is randomized, challenging the
model to identify relevant patterns without depending on
the sequence.

* D-5-shot-Rd: Following the D-5-shot strategy, this
method randomizes the order of the selected images, dis-
regarding their proximity, to evaluate the model’s ability
to utilize non-sequential cues for geographic deduction.

3.3. Dynamic few-shots strategy

For the dynamic few-shots strategy, derived from Retrieval-
Augmented Generation(RAG) techniques[6], DINOv2[13]
and CLIP[14] were employed to generate embedding fea-
tures from the train and test set. After that, for each image
in the test set, the kNN algorithm was used to find sim-
ilar images from the train set. Table 4 shows that CLIP
outperforms DINOV2 in the top 1 and top 5 evaluation lev-
els, achieving an accuracy of 0.312 and 0.586, respectively.



When LLMs were evaluated with the dynamic few-shots
strategy, for each image to be guessed, the top 5 images
were determined by the kNN algorithm through embed-
dings generated by CLIP as it has better results than DI-
NOv2.

Table 4. kNN results for test set within train set with embedding
feature vectors

Topl Top5

DINOv2 0.281 0.539
CLIP 0.313  0.586

3.4. Training-free Evaluation

Table 3 shows the training-free evaluation results with dif-
ferent prompts input except for GeoGLIP, as it only takes
the image as input, and its output is geolocation.

From Table 3, we can see that Gemini performs better
than other models in all strategies. Gemini achieves similar
accuracy, nearly 0.67, for the Basic, Must, and Tips strate-
gies. It also outperforms comparable models using the few
shots strategies with an accuracy of up to 0.746. We did not
test few-shot scenarios for the ChatGPT-4V model, while
the current BLIP and Fuyu do not support using multiple
images as input.

In terms of open-source models, BLIP-2-2.7B has the
highest accuracy for the Basic prompt, and BLIP-2-T5-XL
achieves best for the Must and Tips prompt cases, with an
accuracy of 0.365 and 0.361, respectively. The accuracy
of the Tips case for model BLIP-2-2.7B drops to 0.002 be-
cause the model is very sensitive to the text input and unable
to handle the context if it is relatively long.

The ILM-VL model achieves good performance in the
single image input cases and for the few-shot cases; while
the ILM-VL model can take a few images as input, its abil-
ity to deal with multiple images in question-and-answer
tasks almost drops to zero.

The few-shot strategies show their effectiveness for
Gemini, while the static, dynamic, and random strategies
do not significantly affect Gemini. As for LLaVA, taking
5 closest images with their country names as part of the
prompt for the guessed image can significantly improve the
accuracy by more than 50% compared to the highest ac-
curacy for only text input as prompt. Taking the same 5
images with their country names for every round of Q&A
tasks does hurt the performance. This can be attributed to
the hyperparameter of temperature being set to 0. In this
case, as the image to be guessed is only a small portion of
the input, the output may be preferred to stick to similar
outputs inherited from the inputs. Finally, the 4 outcomes
of the few-shot strategies also demonstrate that the input or-

der of the input images only shows a minor impact on the
accuracy.

3.5. Training-based Evaluation

Table 5 illustrates the efficacy of our dataset in enhancing
the accuracy of LLMs for determining the location of im-
ages. The results indicate a significant improvement when
models are fine-tuned with either the train set or a compre-
hensive train set, employing Basic, Must, and Tips strate-
gies. The enhancement in accuracy, observed after fine-
tuning models with our dataset, can be substantial—more
than double in some cases.

LLaVA-13B(T) has the highest accuracy, 0.567, along
with the strategy of the Basic strategy. However, the
outstanding performance is not significant as LLaVA-7B
achieved an accuracy of around 55% across three strate-
gies and 2 train sets. It outperforms the close source model
ChatGPT-4V in those three cases. ILM-VL also shows bet-
ter results to above 40% after fine-tuning, which surpasses
all the open source models before fine-tuning.

One noticeable thing is that fine-tuning an LLM with
more images along with an answer only does not guarantee
better performance in this geolocation guessing task. It can
be observed that there are 6 of 9 cases in the model where
fine-tuning with the train set shows higher performance than
fine-tuning with the comprehensive train set.

4. Discussion

In this work, we conduct the first systematic study in image
geolocation abilities of multimodal language models. We
first introduce a novel dataset comprised of images sampled
from Google Street View API. The dataset is diverse, en-
compassing varied perspectives and landscapes from multi-
ple countries, which allows for comprehensive benchmark-
ing of multimodal language mnodels’ geolocation abili-
ties. We employed multiple training-free evaluation strate-
gies from simple prompts, chain-of-thought, and few shot
prompting. We further fine-tuned two open-source models
using our collected dataset, which significantly enhanced
the accuracy of these models in predicting the geographic
origin of the images at the country level.

While our findings contribute valuable insights into the
capabilities of LLMs in image-based geolocation tasks, sev-
eral limitations are notable. Firstly, our evaluations were
confined to country-level geolocation without extending it
to more granular levels, such as state and city identifica-
tions. Additionally, the majority of our dataset images are
natural landscapes and rural scenes, which may not ade-
quately represent the complexity and diversity of urban en-
vironments.

In future research, we aim to test geolocation accuracy
at more granular levels or even provide a precise latitude
and longitude coordinate. This expansion will allow us



Table 5. Training-based evaluation results.

Basic (1)

Must (1)

Tips (1)

ILM-VL-7B(T)
ILM-VL-7B(CT)
LLaVA-7B (T)
LLaVA-7B (CT)
LLaVA-13B (T)
LLaVA-13B (CT)

0.413 (+0.231)
0.441 (+0.259)
0.562 (+0.373)
0.557 (+0.368)
0.567 (+0.402)
0.562 (+0.397)

0.436 (+0.135)
0.443 (+0.142)
0.561 (+0.357)
0.560 (+0.356)
0.391 (+0.206)
0.385 (+0.200)

0.449 (+0.122)
0.439 (+0.112)
0.547 (+0.427)
0.548 (+0.428)
0.342 (+0.293)
0.329 (+0.280)

T: finetune with train set; CF: finetune with comprehensive train set

to understand better LLMs’ capabilities and limitations in
more densely populated and geographically complex en-
vironments. Furthermore, to address the current dataset’s
emphasis on natural and rural landscapes, we plan to en-
rich it with a broader array of images, including urban set-
tings with diverse architectural styles and infrastructural el-
ements. This enhancement will provide a more robust LLM
testbed and potentially improve the models’ usefulness in
practical, real-world applications where urban geolocation
is critical.
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