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Abstract

Image geolocation is a critical task in various image-

understanding applications. However, existing methods of-

ten fail when analyzing challenging, in-the-wild images. In-

spired by the exceptional background knowledge of multi-

modal language models, we systematically evaluate their

geolocation capabilities using a novel image dataset and a

comprehensive evaluation framework. We first collect im-

ages from various countries via Google Street View. Then,

we conduct training-free and training-based evaluations on

closed-source and open-source multi-modal language mod-

els. we conduct both training-free and training-based eval-

uations on closed-source and open-source multimodal lan-

guage models. Our findings indicate that closed-source

models demonstrate superior geolocation abilities, while

open-source models can achieve comparable performance

through fine-tuning.

1. Introduction

Image geolocation refers to the process of determining the

specific geographic location from which a given image was

taken. This geographic information is crucial across various

domains, including urban planning, environmental monitor-

ing, and social media analysis. The ability to automatically

identify the location of images provides valuable insights

and supports numerous applications, such as augmented re-

ality, location-based services, and geotagging.

Despite its importance, image geolocation in the wild re-

mains a challenging task, particularly when dealing with

images sourced from diverse sources such as social me-

dia platforms and online repositories. While many previous

works [2, 4, 5, 15, 18] have developed curated loss func-

tions and model designs to tackle this challenge, they usu-

ally have compromised performance when evaluated on im-

ages in the wild. In contrast, recent advances in large mul-

timodal models (LMMs) have demonstrated impressive ca-

pabilities in background knowledge across a broad range of

tasks. These models are trained on large-scale datasets, ex-

hibiting outstanding understanding [17, 19], reasoning [11],

and commonsense [20] abilities.

While numerous benchmarks have been established to

evaluate various image understanding abilities of multi-

modal language [1, 3, 8, 9], little attention has been paid

to their geolocation capabilities. To address this research

gap, we conduct the first systematic analysis of image ge-

olocation abilities. First, we introduce a large-scale dataset

of in-the-wild images sampled from diverse geolocations.

Second, we comprehensively benchmark the capabilities

of both open-source and closed-source multimodal lan-

guage models through training-free and training-based eval-

uations.

Our contributions can be summarized as follows:

• Introduction of a novel image dataset: We present

a new dataset, exclusively sourced from Google Street

View, designed to challenge LMMs through real-world,

in-the-wild random images. This dataset is intended to

serve as a robust benchmark for assessing these models’

ability to identify image locations accurately.

• Comprehensive evaluation framework: We evalu-

ate a diverse set of LMMs, including state-of-the-art

closed-source models like GPT-4V and Google Gemini,

and promising open-source models such as BLIP [7],

Fuyu [1], InternLM-VL [3], and LLaVA [8, 9]. Our eval-

uations, both training-free and training-based, thoroughly

assess these models’ geolocation accuracies at the coun-

try level and their adaptability to challenging in-the-wild

image data.



Figure 1. Image samples from the test set.

Figure 2. The five images are used as fixed input, including their order, for the static few shots strategy.

2. Dataset

Our dataset’s images are directly from Google Street View,

while specific parameters were set in the API request to

mimic common human sight. The up or down angle of

the camera relative to the Street View vehicle is set to 0

degrees to maintain a natural, level perspective. The hor-

izontal field of view is fixed at 90 degrees, mirroring the

horizontal scope typical of human vision. To capture di-

verse viewpoints, the camera’s compass heading is adjusted

to four fixed orientations: 0 (North), 90 (East), 180 (South),

and 270 (West) degrees. All the images have the same size

of 512x512.

Figure 1 displays random sample images from our test

set, which predominantly consists of natural landscapes and

rural scenes with features such as water bodies, trees, and

agricultural fields. These images do not include prominent

urban infrastructure or significant man-made constructs,

thereby increasing the complexity and intrigue of identify-

ing each image’s geographical origin.

Table 1 provides a statistical overview of the dataset, de-

tailing the distribution of these varied perspectives. It shows

a methodical approach to capturing diverse orientations and

geographic locations within the proposed dataset. The table

divides the dataset into three subsets: Test, Train, and Com-

prehensive Train, each detailed with the count of images

across four compass headings and the total number of im-

ages alongside the number of represented countries. From

the perspective of camera headings, the dataset maintains

a remarkable balance across all subsets, with each heading

represented almost equally. The test set, train set, and com-

prehensive train set have 1000, 2418, and 6408 images, with

each heading having exactly or around one-quarter of the to-

tal images. When only considering the countries that appear

in the test set, there are 2388 and 6011 images in the train

and comprehensive train set, respectively.

2.1. Dataset Distance Pairs Analysis

Larger countries are more likely to have more images, so

a strategy was taken to give bigger countries more chances

during the random image pick-up process. This results in

a significant imbalance in the representation of countries
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Figure 3. Images samples about dynamic few shots strategy. The first image is the target image, which is for LLMs to guess where it was

taken, and the following images on the same row are their corresponding five most similar images based on CLIP embeddings ordered by

Euclidean distance descending.

Table 1. Image distribution and orientations from the proposed dataset.

H-0 H-90 H-180 H-270 Total # of Countries

Test 250 250 250 250 1000 82

Train 618 600 600 600 2418 92

Comprehensive Train 1609 1600 1599 1598 6408 115

H: the compass heading of the camera.

within the dataset. For instance, a country might have as

few as one image in the dataset. In contrast, another could

have as many as 121, 293, and 661 images in the test, train-

ing, and comprehensive training sets. To mitigate the poten-

tial impact of this geographic imbalance on model training

and evaluation, we implemented a policy ensuring that each

country represented in the Test set is also represented in the

Train set with at least two images and in the Comprehensive

Train set with at least four images.

Table 2 shows the geographical diversity within our

dataset. We analyzed the physical distances between im-

age pairs based on their geolocations, categorizing them

into intervals ranging from less than 10 kilometers(km)

to over 1000 km. The result reveals a strategic empha-

sis on maximizing geographical variance, with most im-

age pairs—more than 96% across Test, Train, and Com-

prehensive Train sets—showing separations of over 1000

kilometers. The distribution significantly reduces the prob-

ability of selecting visually similar images from proximal

locations, ensuring the dataset spans a broad spectrum of

environmental and urban landscapes.

3. Experiment Settings

3.1. Experiment Models

In this section, we elaborate on the models that we evaluate.

• GeoCLIP[2]: A groundbreaking approach inspired by

CLIP for Image-to-GPS retrieval, designed to enhance the

alignment between images and their corresponding GPS

coordinates.

• ChatGPT-4V[12]: An extension of the ChatGPT model

with integrated visual processing capabilities, enabling it

to understand and generate content based on text and im-

ages.

• Gemini[16]: Gemini introduces a versatile multimodal

model family excelling in understanding across images,

audio, video, and text, with its vision capabilities setting

new benchmarks in image-related tasks and multimodal

reasoning.

• Blip-2[7]: BLIP-2 introduces a cost-effective vision-

language pre-training approach that leverages existing

pre-trained models with a Querying Transformer, achiev-

ing state-of-the-art results in vision-language tasks with

significantly fewer trainable parameters.

• Fuyu[1]: Fuyu stands out with its simple yet versatile
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Table 2. Distance pairs(km)

d < 10 10 ⩽ d < 100 100 ⩽ d < 500 500 ⩽ d < 1000 1000 ⩽ d

Test 0.00012% 0.07% 1.13% 2.42% 96.38%

Train 0.0008% 0.06% 1.11% 2.41% 96.41%

Comprehensive Train 0.0062% 0.008% 1.19% 2.64% 96.09%

Table 3. Training-free evaluation results in different scenarios.

Basic Must Tips S-5-shot D-5-shot S-5-shot-Rd D-5-shot-Rd

GeoCLIP 0.258 - - - - - -

GPT-4V 0.102 0.513 0.422 - - - -

Gemini 0.666 0.660 0.670 0.741 0.736 0.737 0.746

BLIP-2-2.7B 0.290 0.305 0.002 - - - -

BLIP-2-T5-XL 0.257 0.365 0.361 - - - -

Fuyu-8B 0.014 0.016 0.008 - - - -

ILM-VL-7B 0.182 0.301 0.327 0.000 0.016 0.024 0.015

LLaVA1.5-7B 0.189 0.204 0.120 0.027 0.317 0.031 0.321

LLaVA1.5-13B 0.165 0.185 0.049 0.032 0.310 0.035 0.312

architecture, excelling in digital agent tasks and offering

rapid, high-resolution image processing capabilities.

• InternLM-XComposer2 (ILM-VL)[3]: It innovates

in vision-language interaction with a Partial LoRA tech-

nique, excelling in creating and understanding complex

text-image content, setting new benchmarks in multi-

modal performance.

• LlaVA[10]: LLaVA 1.5 sets a new standard in large mul-

timodal models with a highly efficient vision-language

connector, achieving unprecedented performance on 11

benchmarks using minimal data and training resources.

3.2. Prompt Strategies

In this section, we elaborate on the prompting strategies

used for evaluations.

• Basic: The model is shown an image and prompted to

guess the country where the image was captured, relying

solely on visual cues present. With this strategy, LLMs

prefer responding to the ”unknown” when the image is

not easily identified.

• Must: To address cases where limited information may

prevent answering a country, we employ imperative

prompts to compel the model to make a country guess

for each image.

• Tips: We offer general guidelines to the model, suggest-

ing it consider factors like sun position, license plates, and

other identifiable features within the image to infer the ge-

ographic location without directly providing this specific

information. These uniform guidelines apply to all mod-

els across every evaluation round.

• S-5-shot: The model is given five additional images,

each tagged with their respective countries, as references

before it predicts the country of a new image. These refer-

ence images remain consistent across all models and eval-

uation rounds. An example is shown in Figure 2.

• D-5-shot: Similar to the S-5-shot method, but the five

reference images are specifically chosen based on their

proximity to the target image, utilizing the k-Nearest

Neighbors (kNN) algorithm from the training set based

on their embeddings generated by CLIP[14], and ranked

by their closeness. Figure 3 shows two sets of example

input images for this strategy.

• S-5-shot-Rd: Adapting the S-5-shot method, the order of

the five reference images is randomized, challenging the

model to identify relevant patterns without depending on

the sequence.

• D-5-shot-Rd: Following the D-5-shot strategy, this

method randomizes the order of the selected images, dis-

regarding their proximity, to evaluate the model’s ability

to utilize non-sequential cues for geographic deduction.

3.3. Dynamic few­shots strategy

For the dynamic few-shots strategy, derived from Retrieval-

Augmented Generation(RAG) techniques[6], DINOv2[13]

and CLIP[14] were employed to generate embedding fea-

tures from the train and test set. After that, for each image

in the test set, the kNN algorithm was used to find sim-

ilar images from the train set. Table 4 shows that CLIP

outperforms DINOv2 in the top 1 and top 5 evaluation lev-

els, achieving an accuracy of 0.312 and 0.586, respectively.
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When LLMs were evaluated with the dynamic few-shots

strategy, for each image to be guessed, the top 5 images

were determined by the kNN algorithm through embed-

dings generated by CLIP as it has better results than DI-

NOv2.

Table 4. kNN results for test set within train set with embedding

feature vectors

Top 1 Top 5

DINOv2 0.281 0.539

CLIP 0.313 0.586

3.4. Training­free Evaluation

Table 3 shows the training-free evaluation results with dif-

ferent prompts input except for GeoGLIP, as it only takes

the image as input, and its output is geolocation.

From Table 3, we can see that Gemini performs better

than other models in all strategies. Gemini achieves similar

accuracy, nearly 0.67, for the Basic, Must, and Tips strate-

gies. It also outperforms comparable models using the few

shots strategies with an accuracy of up to 0.746. We did not

test few-shot scenarios for the ChatGPT-4V model, while

the current BLIP and Fuyu do not support using multiple

images as input.

In terms of open-source models, BLIP-2-2.7B has the

highest accuracy for the Basic prompt, and BLIP-2-T5-XL

achieves best for the Must and Tips prompt cases, with an

accuracy of 0.365 and 0.361, respectively. The accuracy

of the Tips case for model BLIP-2-2.7B drops to 0.002 be-

cause the model is very sensitive to the text input and unable

to handle the context if it is relatively long.

The ILM-VL model achieves good performance in the

single image input cases and for the few-shot cases; while

the ILM-VL model can take a few images as input, its abil-

ity to deal with multiple images in question-and-answer

tasks almost drops to zero.

The few-shot strategies show their effectiveness for

Gemini, while the static, dynamic, and random strategies

do not significantly affect Gemini. As for LLaVA, taking

5 closest images with their country names as part of the

prompt for the guessed image can significantly improve the

accuracy by more than 50% compared to the highest ac-

curacy for only text input as prompt. Taking the same 5

images with their country names for every round of Q&A

tasks does hurt the performance. This can be attributed to

the hyperparameter of temperature being set to 0. In this

case, as the image to be guessed is only a small portion of

the input, the output may be preferred to stick to similar

outputs inherited from the inputs. Finally, the 4 outcomes

of the few-shot strategies also demonstrate that the input or-

der of the input images only shows a minor impact on the

accuracy.

3.5. Training­based Evaluation

Table 5 illustrates the efficacy of our dataset in enhancing

the accuracy of LLMs for determining the location of im-

ages. The results indicate a significant improvement when

models are fine-tuned with either the train set or a compre-

hensive train set, employing Basic, Must, and Tips strate-

gies. The enhancement in accuracy, observed after fine-

tuning models with our dataset, can be substantial—more

than double in some cases.

LLaVA-13B(T) has the highest accuracy, 0.567, along

with the strategy of the Basic strategy. However, the

outstanding performance is not significant as LLaVA-7B

achieved an accuracy of around 55% across three strate-

gies and 2 train sets. It outperforms the close source model

ChatGPT-4V in those three cases. ILM-VL also shows bet-

ter results to above 40% after fine-tuning, which surpasses

all the open source models before fine-tuning.

One noticeable thing is that fine-tuning an LLM with

more images along with an answer only does not guarantee

better performance in this geolocation guessing task. It can

be observed that there are 6 of 9 cases in the model where

fine-tuning with the train set shows higher performance than

fine-tuning with the comprehensive train set.

4. Discussion

In this work, we conduct the first systematic study in image

geolocation abilities of multimodal language models. We

first introduce a novel dataset comprised of images sampled

from Google Street View API. The dataset is diverse, en-

compassing varied perspectives and landscapes from multi-

ple countries, which allows for comprehensive benchmark-

ing of multimodal language mnodels’ geolocation abili-

ties. We employed multiple training-free evaluation strate-

gies from simple prompts, chain-of-thought, and few shot

prompting. We further fine-tuned two open-source models

using our collected dataset, which significantly enhanced

the accuracy of these models in predicting the geographic

origin of the images at the country level.

While our findings contribute valuable insights into the

capabilities of LLMs in image-based geolocation tasks, sev-

eral limitations are notable. Firstly, our evaluations were

confined to country-level geolocation without extending it

to more granular levels, such as state and city identifica-

tions. Additionally, the majority of our dataset images are

natural landscapes and rural scenes, which may not ade-

quately represent the complexity and diversity of urban en-

vironments.

In future research, we aim to test geolocation accuracy

at more granular levels or even provide a precise latitude

and longitude coordinate. This expansion will allow us
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Table 5. Training-based evaluation results.

Basic (↑) Must (↑) Tips (↑)

ILM-VL-7B(T) 0.413 (+0.231) 0.436 (+0.135) 0.449 (+0.122)

ILM-VL-7B(CT) 0.441 (+0.259) 0.443 (+0.142) 0.439 (+0.112)

LLaVA-7B (T) 0.562 (+0.373) 0.561 (+0.357) 0.547 (+0.427)

LLaVA-7B (CT) 0.557 (+0.368) 0.560 (+0.356) 0.548 (+0.428)

LLaVA-13B (T) 0.567 (+0.402) 0.391 (+0.206) 0.342 (+0.293)

LLaVA-13B (CT) 0.562 (+0.397) 0.385 (+0.200) 0.329 (+0.280)

T: finetune with train set; CF: finetune with comprehensive train set

to understand better LLMs’ capabilities and limitations in

more densely populated and geographically complex en-

vironments. Furthermore, to address the current dataset’s

emphasis on natural and rural landscapes, we plan to en-

rich it with a broader array of images, including urban set-

tings with diverse architectural styles and infrastructural el-

ements. This enhancement will provide a more robust LLM

testbed and potentially improve the models’ usefulness in

practical, real-world applications where urban geolocation

is critical.

Acknowledgements

This study is supported by the U.S. National Science Foun-

dation under grant Nos. IIS-2236579 and IIs-2302786.

References

[1] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell

Nye, Augustus Odena, Arushi Somani, and Sağnak Taşırlar.
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