



# Approaches to understanding echinoderm origins. Part 1: Conceptual and empirical models

Bertrand LEFEBVRE<sup>1</sup>, Rich MOOI<sup>2</sup>, Thomas E. GUENSBURG<sup>3</sup>,  
Christophe DUPICHAUD<sup>1</sup> and Martina NOHEJLOVÁ<sup>4</sup>

<sup>(1)</sup> Université Claude Bernard Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France

<sup>(2)</sup> Department of Invertebrate Zoology & Geology, California Academy of Sciences,  
San Francisco, California, USA

<sup>(3)</sup> Department of Geology, Field Museum, 1400 S. DuSable Lake Shore Drive,  
Chicago, Illinois 60605, USA

<sup>(4)</sup> Czech Geological Survey, Klárov 3, Praha 1, 118 21, Czech Republic  
Corresponding author: bertrand.lefebvre@univ-lyon1.fr

**Abstract:** Echinoderms are so highly derived compared with other deuterostomes, including their sister group, hemichordates, that comparisons of body plans are sometimes accompanied by points of view enjoying varying levels of morphological, paleontological, and especially, embryological support. No echinoderm taxon has been the subject of more contentious debate than the carpoids, a disparate assemblage of non-pentaradial, flattened echinoderms that includes the Cincta, Ctenocystoidea, Soluta, and Stylophora. Because of their unusual morphologies, the phylogenetic position and significance of carpoids concerning the origins of the Echinodermata are still being evaluated. A detailed review of carpoid research over the past century and a half reveals that the debate largely results from methodological issues employing two basic, but very different models. Conceptual models, usually imbued with Haeckelian principles, consider the absence of a single character (pentaradial symmetry) as a recapitulation of the pre-metamorphic larval stage of echinoderms, forcing unusual taxa that also lack pentaradiality down the phylum's phylogenetic tree. Such scenarios assume that first echinoderms had a bilaterian-type anterior-posterior axis. Empirical models rely on comparison of non-pentaradial early forms with a wide array of data obtained from extant and fossil echinoderms. These data support a view in which larval morphologies of echinoderms are not represented in the fossil record of echinoderms, and that pentaradial symmetry was secondarily lost in carpoids, just as it was in many other coeval types of echinoderms.

**Résumé :** Comprendre les origines des échinodermes. Partie 1 : Modèles conceptuels et empiriques. Les échinodermes sont tellement dérivés par rapport aux autres deutérostomes, y compris leur groupe frère, les hémichordés, que la comparaison de leurs plans d'organisation nécessite la prise en compte de données à la fois morphologiques, paléontologiques et embryologiques. Les carpoides (Cincta, Ctenocystoidea, Soluta et Stylophora) représentent probablement les échinodermes dont l'interprétation et la position phylogénétique ont été les plus débattues, en raison de leurs morphologies non pentaradiaires et aplatis. L'examen détaillé des

recherches sur les carpoïdes au cours du siècle et demi écoulé révèle que le débat est lié en grande partie à des questions méthodologiques faisant appel à deux grands types de modèles. Les modèles conceptuels, généralement imprégnés de principes haeckéliens, considèrent l'absence d'un caractère unique (la symétrie pentaradiaire) comme une récapitulation du stade larvaire pré-métamorphique des échinodermes : par conséquent, tous les taxons non-radiaires apparaissent nécessairement en position basale, au sein du phylum. De tels scénarios supposent que les premiers échinodermes avaient un axe antéro-postérieur de type bilatéral. Les modèles empiriques reposent sur la comparaison des carpoïdes avec un large éventail de données obtenues à partir d'autres échinodermes actuels et fossiles. D'après ceux-ci, les morphologies larvaires des échinodermes ne sont pas représentées dans les archives fossiles et la symétrie pentaradiaire a été perdue secondairement chez les carpoïdes, comme c'est le cas chez de nombreux autres groupes d'échinodermes.

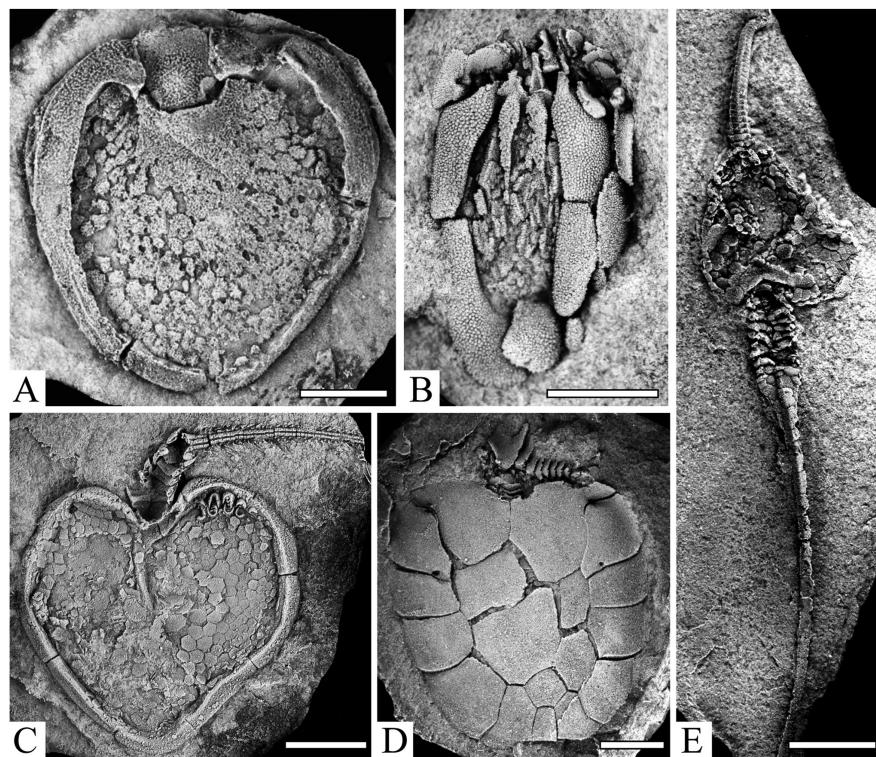
**Keywords.** Echinodermata • Conceptual • Empirical • Phylogeny • Paleontology • Embryology

## Introduction

"And when you gaze long into an abyss the abyss also gazes into you."

Friedrich Nietzsche, *Beyond Good and Evil*

Over the last 150 years, the question of the origin of the Echinodermata has rested on a deep, occasionally abstruse literature involving paleontological, embryological, and morphological data. The overall strangeness of the phylum itself has opened many avenues for interpretation of these data. It is not surprising that a review of the field reveals a tapestry of interwoven concepts. However, the threads in this tapestry do not always come together to form a harmonious picture with consensus of meaning. Therefore, it is of great value to review the various approaches taken and determine how they originated, evolved, and diverged.


Central to these issues is the phylogenetic position of various taxa now grouped under the term 'carpoid' (Fig. 1). As originally described by Jaekel (1901), the class Carpoidea constitutes echinoderms with few (generally two) ambulacral structures loosely articulated with the theca. Jaekel divided carpoids into two orders, Heterosteola and Eustelea (Jaekel, 1901; Zittel, 1903). Heterosteolans were characterized by a flattened theca and a biserial (at least proximally) appendage. Eusteleans possessed a more globose theca and a holomeric stem (e.g., pleurocystitids). This taxonomic scheme was critically reviewed by Bather (1913), who suggested removal of eusteleans from carpoids, but acknowledged Heterosteola as a valid group, which thus became synonymous with Carpoidea. Following Bather's (1913) critique, Jaekel (1918) revised the systematics of carpoids. Again, eusteleans were excluded, and his former

heterosteolans were subdivided into four orders: Cincta, Cornuta, Mitrata, and Soluta.

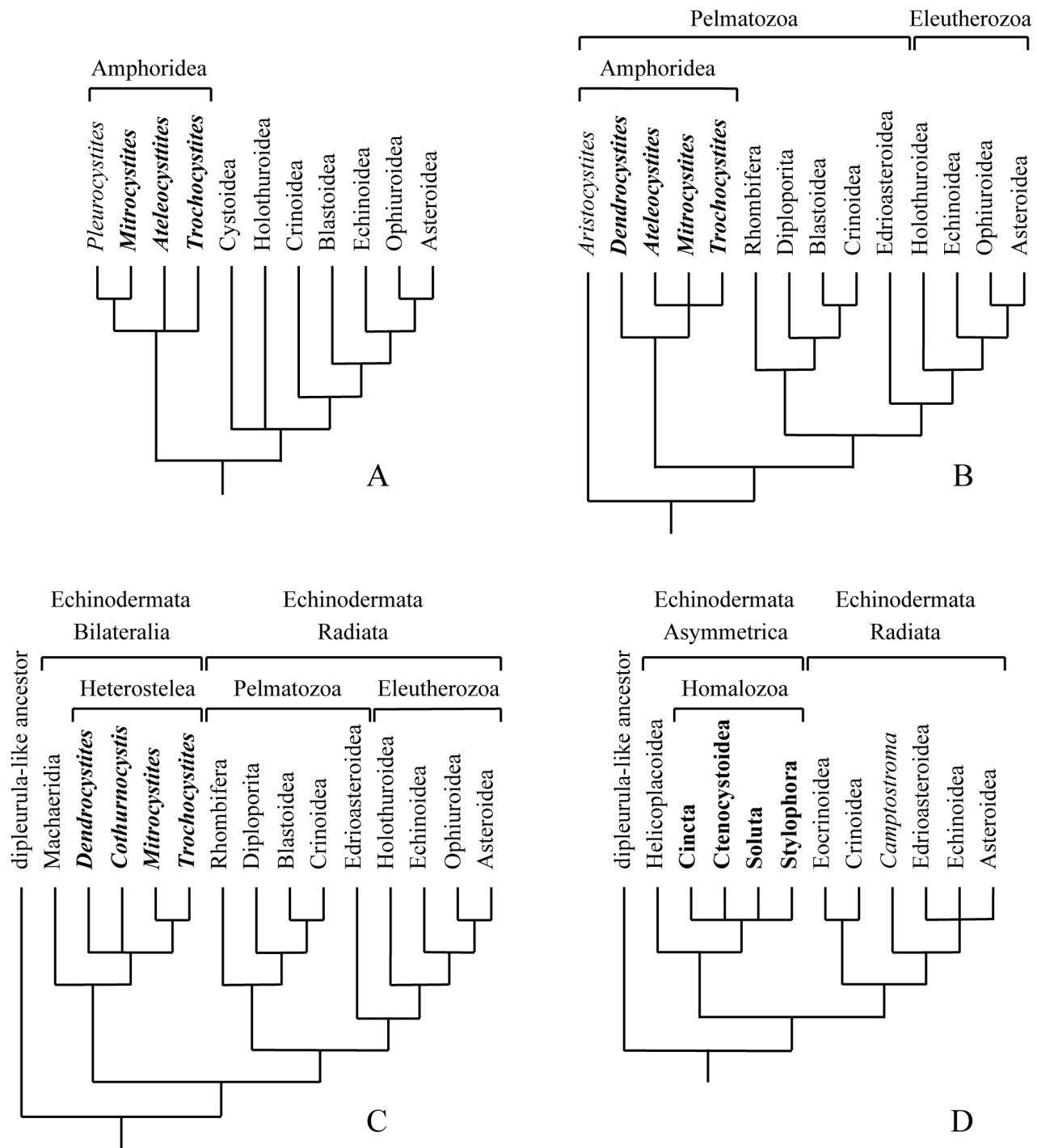
The term Homalozoa (from the Greek ὁμαλός, flat, and ζων, animal) was originally coined by Whitehouse (1941) for a subphylum of Paleozoic echinoderms uniting two of the most enigmatic and controversial groups of Paleozoic fossils: carpoids and machaeridians (Fell, 1965; Ubags, 1968a). Machaeridians were eventually confirmed as armoured annelids (Vinther et al., 2008). Consequently, 'homalozoan' represents an unofficial, objective junior synonym of the term carpoid.

The systematics of the Carpoidea was further elaborated by Gill & Caster (1960), who subdivided it into two subclasses based on features of their appendage: Homosteola (longitudinally undifferentiated stele: Cincta and Digitata) and Homoiosteola (appendage with distinct proximal and distal regions: Cornuta, Mitrata and Soluta). Cornutes and mitrates were placed in the same suborder, Stylophora (Gill & Caster, 1960). In the *Treatise on Invertebrate Paleontology*, this scheme was modified by Ubags (1968a), who assigned *Rhipidocystis* to eocrinoids. Homosteola (Cincta), Homoiosteola (Soluta) and Stylophora (Cornuta and Mitrata) were elevated to class level (Caster, 1968; Ubags, 1968b & c). As a consequence, homosteolans and homoiosteolans represent junior synonyms of cinctans and solutans, respectively (Schroeder, 1973; Termier & Termier, 1973; Caster, 1983; Friedrich, 1993; Lefebvre et al., 2012). Since the description of a fourth class, Ctenocystoidea (Robison & Sprinkle, 1969; Sprinkle & Robison, 1978), the systematics of carpoids remained almost unchanged in the last 50 years.

Carpoids already represent some of the most unfamiliar and enigmatic of echinoderms, and the burden of their nomenclature should not add



**Figure 1.** Morphological diversity in carpoid echinoderms. **A.** *Trochocystites bohemicus* (Cincta), upper aspect of lectotype showing sutural pores and articulated cinctus with mouth and operculum, appendage (homosteole) not preserved (National Museum, Prague, Czech Republic: NMP.L 9060); Drumian (Cambrian Series 3), Czech Republic. **B.** *Etoctenocystis bohemica* (Ctenocystoidea), lower aspect of slightly disarticulated theca with well-preserved ctenoid organ (Czech Geological Survey, Prague, Czech Republic: CGS.VK 387b); Drumian (Cambrian Series 3), Czech Republic. **C.** *Phyllocystis blayaci* (Cornuta, Stylophora), upper aspect of lectotype with sutural pores (cothurnopores) in right anterior corner of theca and fully articulated aulacophore with proximal rings and distal region (stylocone, ossicles and widely open cover plates) (Montpellier University, Montpellier, France: UM.ACI 640); late Tremadocian (Lower Ordovician), France. **D.** *Mitrocystites mitra* (Mitrata, Stylophora), lower aspect of slightly disarticulated theca and partial aulacophore in lateral view (proximal rings, stylocone and ossicles) (Natural History Museum, London, BMNHUK.E 16062); Darriwilian (Middle Ordovician), Czech Republic. **E.** *Dendrocystites barrandei* (Soluta), well-preserved specimen in upper (aboral) view with complete brachiole, slightly disarticulated theca, and stem-like appendage (homostele) (Musée des Confluences, Lyon, France: ML 20 269425); early Katian (Upper Ordovician), Morocco. Scale bars: 1 mm (B), 5 mm (A, C, D), 10 mm (E).


more obfuscation. Referring to this assemblage is problematic as there are no broadly accepted analyses supporting its monophyly. Nevertheless, a term of convenience is required when referring to them as a group. Both 'carpoid' and 'homalozoan' have entered the literature almost interchangeably, but we need to select one for consistency. We have settled on 'carpoid', though in an unofficial, non-statutory sense, because this name is closest to the meaning that fits our discussions, and because it focuses attention on the historical significance of the grouping. Because of almost universally accepted evidence that each of the constituent classes of carpoids forms a clade, we use the formal nomenclature of Soluta, Stylophora, Cincta, and Ctenocystoidea.

Cinctans (Fig. 1A) are characterized by a flattened theca with a thick marginal frame (cinctus). A large anterior medial plate (operculum) articulates with this

frame. Right of the operculum, the mouth opens laterally through the cinctus. The mouth is accompanied by one or more sometimes unequal, lateral grooves. At the end of the theca opposite the operculum, the marginal frame forms a short, posterior, stem-like expansion or 'homosteole' (Ubags, 1971 & 1975; Termier & Termier, 1973; Friedrich, 1993; Rahman & Zamora, 2009; Smith & Zamora, 2009; *inter alia*).

Ctenocystoids (Fig. 1B) are recognized by a unique ctenoid apparatus (ctenidium), a complex anterior structure formed by two opposite (upper and lower) series of plates. The ctenidium covers the mouth and, on each side of the mouth, a short lateral groove (Ubags, 1975 & 1987; Ubags & Robison, 1988; Domínguez, 2004; Rahman & Clausen, 2009; *inter alia*).

Stylophorans (Fig. 1C, D) are bipartite, with an appendage (aulacophore) extending from a flattened



**Figure 2.** Phylogenies of fossil and extant echinoderms based on conceptual models. **A.** Phylogeny adapted from Haeckel (1896a & b). All known genera of carpoids and *Pleurocystites* are placed within the order Amphoralia (class Amphoridea). They are interpreted as bilaterally symmetric early echinoderms morphologically close to the hypothetical dipleurula-like ancestor. **B.** Phylogeny adapted from Bather (1899) and Bather et al. (1900). All known genera of carpoids are assigned to the class Amphoridea. Within amphorids, stemless taxa (e.g. *Aristocystites*) are considered as more stemward and morphologically closer to the hypothetical dipleurula-like ancestor. **C.** Phylogeny adapted from Bather (1930). Carpoids (heterosteleans) and machaeridians are interpreted as the earliest representatives of the phylum Echinodermata, corresponding to early, bilaterally symmetrical forms (Echinoderma bilateralia), that have not acquired the pentaradial symmetry of other taxa (Echinodermata radiata). **D.** Phylogeny adapted from Ubags (1971 & 1975). Carpoids (homalozoans) and helicoplacoids are interpreted as a grade of unrelated, early echinoderms that have not acquired the pentaradial symmetry typical of other taxa (Echinodermata radiata).

to globose theca. The aulacophore has a short, broad, flexible proximal region made of a small series of telescopic rings and a narrower, much longer distal part built of two opposite, longitudinal sets of small plates articulated with a single series of larger underlying ossicles (Ubags, 1975 & 1981; Parsley, 1988 & 1991; Kolata et al., 1991; Ruta, 1999; Lefebvre, 2003; Lefebvre et al., 2022; *inter alia*). New data from these fossils demonstrate that the distal aulacophore carried a single ambulacrual ray leading to a proximal mouth (Lefebvre et al., 2019; Saleh et al., 2023).

Solutans (Fig. 1E) have two distinct appendages attached to a globose to somewhat flattened, polyplated theca. The shorter appendage is usually identified as a free, erect ambulacrum consisting of one or two series of floor plates, and two series of cover plates. The longer appendage (homioosteole) is a stem-like structure used by earliest known solutans for permanent attachment, but as a locomotory device in later taxa (Ubags & Robison, 1988; Jefferies, 1990; Daley, 1995 & 1996; Noailles et al., 2014; Lefebvre & Lerosey-Aubril, 2018; Dupichaud et al., 2023; *inter alia*).

The paleobiology and phylogenetic position of the various carpoid classes remain highly controversial issues. Pivotal to this ongoing scientific discussion is significance (ecological versus phylogenetic) given the lack of a single character, radial symmetry, in carpoids. Consequently, understanding asymmetric morphologies of carpoids requires determination of whether the absence of pentamery in these fossils is original or secondary.

This stimulating debate reveals the development through time of two distinct, but complementary, scientific approaches. The first, which could be described as a series of theory-based, or 'top-down' conceptual models, is based on *a priori* theoretical concepts applied to the morphology of fossils while comparing them to hemichordate morphology. The second approach, which can be described as consisting of empirical, or 'bottom-up' models, uses data from sets of observations from both fossil and extant forms, embryology, and character analyses derived from observation to assess homologies of body wall regions. Both models attempt to place not just carpoids, but all echinoderms in a coherent and integrative framework by asking, "Do carpoids represent an assemblage of early, pre-radial echinoderms, or do they correspond to various taxa that lost pentaradiality?"

Before we can answer this question, as well as many others posed in an accompanying work (Mooi et al., 2024), it will be necessary to examine the scientific roots of some of these concepts in order to understand

better how we have landed in this landscape of greatly differing interpretations of echinoderm origins.

## Conceptual models of echinoderm origins

### *The diploleurula model*

One of the first conceptual models for echinoderm origins was the diploleurula theory, which grew out of careful descriptions of echinoderm larvae by Müller (1848, 1850 & 1853). In this framework, four main larval types were suggested for extant taxa: auricularia, bipinnaria, echinopluteus, and ophiopluteus. In turn, during the mid-19th century it was implied that these larval morphologies could be derived from an originally bilateral precursor, the diploleurula, which was similar to the tornaria larva of hemichordates. Walther (1886), following Haeckel's (1866) biogenetic 'law' that ontogeny recapitulates phylogeny, applied this concept in his search for a diploleurula-like ancestor for the Echinodermata. Walther (1886) suggested that forms such as the mitrate stylophoran *Ateleocystites* or related forms represented an ideal candidate for an ancestral, diploleurula-like echinoderm.

Walther's (1886) work was seized upon by Haeckel (1896a & b), who applied the biogenetic law and observed that during development of extant echinoderms, bilaterally symmetric larvae preceded the pentaradial morphology of the adults. Therefore, Haeckel concluded that during echinoderm phylogeny, pentaradial taxa were necessarily derived from Paleozoic forms that seemed to have bilateral symmetry resembling that of the hypothetical diploleurula: the Anomalocystidae (taxa known today as carpoids and pleurocystitid blastozoans) (Fig. 2A). Moreover, after unsuccessful attempts to find typical ambulacrual structures associated with the water vascular system (WVS) in these fossils, Haeckel (1896a & b) considered that these animals had unfossilized tentacles and lacked a WVS entirely. He claimed that diversity among carpoids and pleurocystitids indicated an evolutionary transition from primitive bilateral taxa with two tentacles ('Anomalocystidae') to more derived, radial forms with three ('Eocystida') and finally, five tentacles (holothurians). This teleological description of progressive 'improvement' was entrenched in a mechanistic understanding of evolutionary change at the time (Greene, 1986), and not in Darwinian concepts of stochasticity. Nevertheless, even at this point, non-polar radial forms were considered echinoderms, but pre-radial taxa lacking a WVS (Fig. 2A).

In contrast, Bather (1913 & 1926) considered that the bilateral symmetry of carpoids was a derived character,

unrelated to that of the dipleurula. This interpretation was based on his conclusion that solutans had a single ambulacrum, and that forms such as cinctans had two. Presciently, Bather indicated that carpoids clearly possessed ambulacral structures, necessitating their derivation from pentaradial precursors directly attached by their theca to the substrate. However, he continued to view these forms as lacking a WVS, decoupling the concept of ambulacra from this system. In his view, pentaradiality was primitive in echinoderms and developed from a hypothetical dipleurula-like ancestor attached to the sea floor (Fig. 2B; Bather, 1899 & 1913; Bather et al., 1900). Coincidentally, Bather (1913 & 1926) was the first to suggest that the numerous and sometimes elaborate pore structures (cothurnopores, lamellipores) found among cornute stylophorans were respiratory apertures leading to an internal pharynx, but at the same time emphasizing that these pore structures could not be homologous to the pharyngeal clefts of chordates.

Bather (1930) completely changed his mind after reading Withers (1926), who described machaeridians as echinoderms, deciding that machaeridians were worm-like early echinoderms. Therefore, machaeridians were pre-radial forms derived from a dipleurula-like ancestor, more or less as Walther (1886) and Haeckel (1896a & b) had suggested (Fig. 2C). Bather (1930) hypothesized that if such a form attached itself to the sea floor by its ventral surface, this fixed stage could have evolved into a primitive carpoid. To make this claim, Bather relied on the biserial structure of the cinctan homostele and the proximal appendages of both solutans (homostele) and stylophorans (aulacophore). He also had to abandon the idea that there were ambulacral structures in carpoids, even though he had previously described them in both cinctans and solutans (Bather et al., 1900; Bather, 1913). Because ambulacral structures had to be deemed absent in all carpoids, they were forced into an extinct early branch of pre-radial echinoderms lacking a WVS: the *Echinoderma bilateralia* (Fig. 2C; Bather, 1930).

Bather (1930) then hypothesized a scenario for the origin of echinoderms that apparently still influences ensuing generations of researchers. This scenario assumed that carpoids were bilaterally symmetric, dipleurula-like forms that had not yet acquired the typical radial symmetry of echinoderms (Gislén, 1930; Thoral, 1935; Chauvel, 1941; Whitehouse, 1941; Jefferies, 1967 & 1986; Nichols, 1967; Ubaghs, 1968a, 1971 & 1975; Philip, 1979; Holland, 1988; Parsley, 1988; Domínguez, 2004; Smith, 2005 & 2008; Zamora et al., 2012; Zamora & Rahman, 2014). Some of the early versions of these ideas diverge considerably

from accepted modern interpretations. For example, Whitehouse (1941) supposed that enigmatic, cone-shaped fossils found in early Cambrian rocks (Cambrian Series 2) of Australia were laterally compressed (*Peridionites*), or globose (*Cymbionites*) thecae of a new, early subphylum of echinoderms (Haplozoa). For Whitehouse, haplozoans represented a grade of unattached and possibly swimming echinoderms illustrating a key transition from pre-metamorphic, bilaterally symmetric, dipleurula-like *Peridionites* to post-metamorphic, radial *Cymbionites*. Whitehouse (1941) erected yet another subphylum, Homalozoa, to contain flattened, unattached, bilaterally symmetric taxa such as carpoids. These were considered to be derived from a mobile, epibenthic *Peridionites*-like ancestor, whereas pentaradial echinoderms were to have originated from a permanently attached *Cymbionites*-like form.

Whitehouse's interpretation of *Cymbionites* and *Peridionites* (1941) was reviewed by Gislén (1947), Schmidt (1951), and Ubags (1968d), who felt that these were parts of eocrinoids. Smith (1982) and Jell & Sprinkle (2021) definitively established that these fossils were indeed stemward examples of two distinct species of epispire-bearing eocrinoids.

Fell (1965) revived the term 'Homalozoa', which was also adopted by Ubags (1968a). Ubags (1968a, 1971 & 1975) also considered carpoids and helicoplacoids as pre-radial echinoderms, possibly derived from a dipleurula-like ancestor (Fig. 2D). However, in numerous works, Ubags (1961b, 1963, 1968a, b & c, 1969, 1971, 1975, 1979, 1981, 1983, 1987, 1991, 1994 & 1998) confirmed the presence of ambulacral structures in both cinctans and solutans. Most importantly, for the first time, he showed that the stylophoran appendage (aulacophore) was not a stem, but an ambulacral feeding structure. This interpretation has been followed by Durham (1971), Nichols (1972), Ubags & Robison (1985 & 1988), Sprinkle (1983 & 1992), Parsley (1988, 1991 & 1997), Haude (1995), Sumrall (1997), Lefebvre & Vizcaíno (1999), Ruta (1999), David et al. (2000), Guensburg & Sprinkle (2000), Martí Mus (2002), Valentine (2004), and Lefebvre et al. (2019 & 2022), among others. Although Ubags (1968a, 1971 & 1975) felt that there were enough similarities between the hemichordate tornaria and the echinoderm dipleurula to suggest common ancestry, he emphasized that forms providing evidence for earliest stages of echinoderm evolution would not likely be represented in the fossil record.

In summary, the dipleurula theory implied that the ontogeny of extant echinoderm taxa was Haeckelian and followed the biogenetic law. Ubags (1968a, 1971 & 1975) accepted this, but with caveats. The scenario

makes predictions, particularly that: (1) a bilaterally symmetric diploleurula-like ancestor of echinoderms was attached to the sea floor on its right side; (2) this led to the resorption of the right mesocoel and progressive transition from biradial (e.g., carpoids) to triradial, and finally to pentaradial body plans. Ubaghs (1968a, 1971 & 1975) did not formally reject this idea, but presciently pointed out several inconsistencies with both embryological and paleontological evidence. For example, Ubaghs (1968a) argued that the existence of a putative intermediate, triradial stage had no embryological support (see also Stephenson, 1979). Moreover, Ubaghs (1968a, 1971 & 1975) stressed that the diploleurula theory lacked corroboration from fossils themselves because all Cambrian, putative pre-radial echinoderms (carpoids and helicoplacoids) were vagile and emerged on the scene with already highly specialized morphologies. For Ubaghs, if echinoderms were derived from a fixed, diploleurula-like ancestor, then the transition would likely have occurred much earlier, in Precambrian times, leaving no trace in the fossil record.

#### *The calcichordate theory*

In the early 20<sup>th</sup> century, data on deuterostome embryology confirmed affinities between the hemichordate tornaria and the echinoderm diploleurula, while introducing the possibility that echinoderms and chordates could both have evolved from a pterobranch-like ancestor (Heider, 1912; Grobben, 1924; Garstang, 1928). In the process, attention turned to the asymmetric, flattened carpoids frequently considered as pre-radial echinoderms (Walther, 1886; Haeckel, 1896a & b; Bather, 1930). However, this time they were revisited in the wider context of deuterostome phylogeny (Fig. 3). Matsumoto (1929) briefly suggested that the bipartite morphology of carpoids could be homologous with that of tunicate larvae - that is, tadpole-like, with a head and a tail. Therefore, carpoids should be removed from the Echinodermata and considered to be earliest urochordates. Gislén (1930) was probably the first to suggest an apparent trend among cinctans characterized by the progressive reduction of their ambulacrimal grooves on anterior marginals, a phenomenon also exploited by Rahman & Zamora (2009) and Smith & Zamora (2009). This pattern, coincident with the apparent absence of ambulacrimal structures associated with the main thecal orifice of stylophorans, led Gislén (1930) to suggest that the WVS was reduced and eventually lost in carpoids as it was being replaced by a different feeding strategy. He interpreted the pore structures of cornutes (e.g., lamellipores) as literal branchial slits,

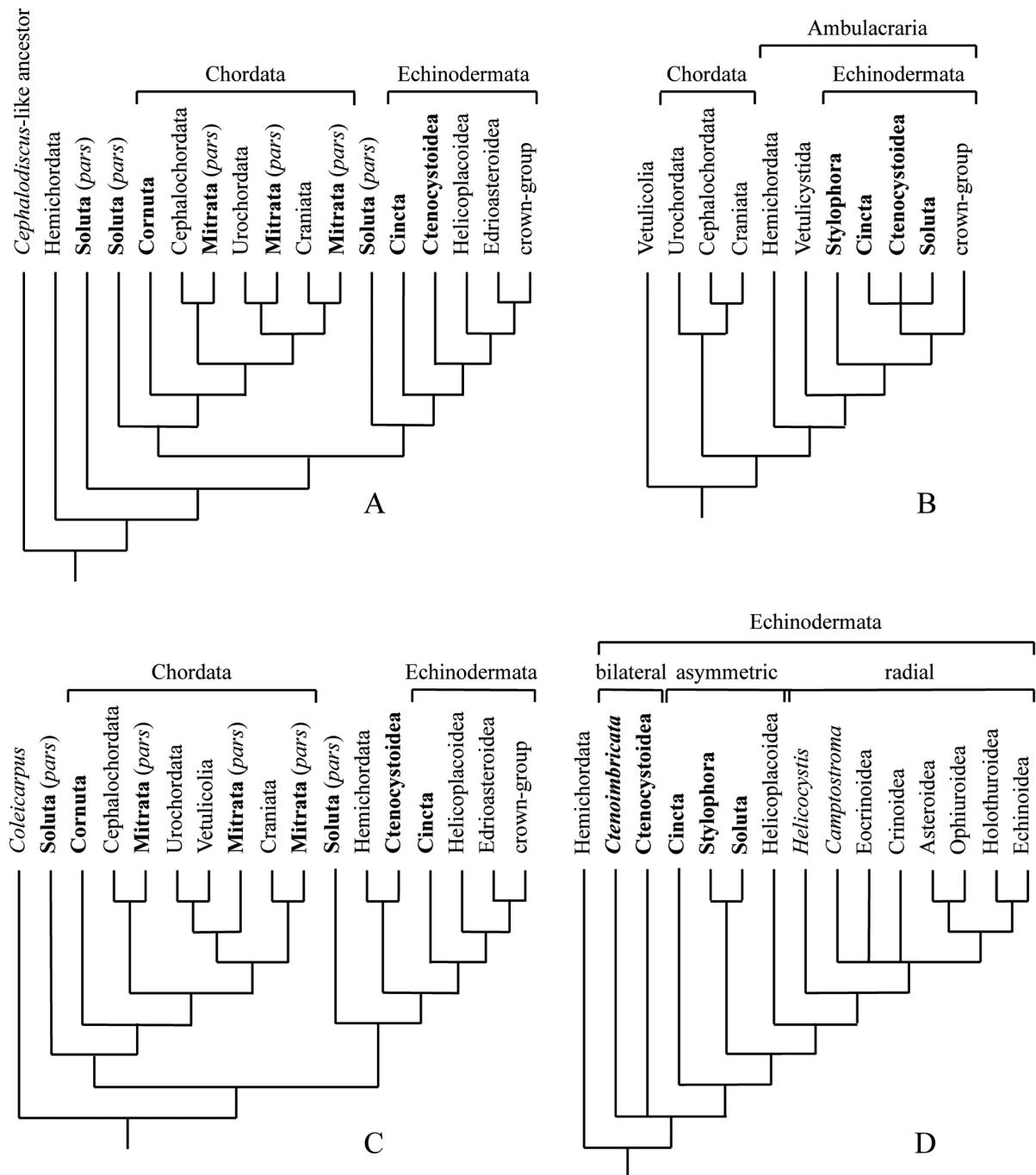
comparing their placement on one side of the upper thecal surface to asymmetries in the early ontogeny of cephalochordates and tunicates, in which gill slits appear earlier on the left than on the right. Gislén (1930) also suggested that the long appendage of carpoids contained a nerve cord extending from a ganglion, indicating that the appendage was like the tail of appendicularian tunicates. Gislén (1930) maintained that the similarities in position and asymmetry he saw in carpoids, chordates, and hemichordates were more likely primitive features among all deuterostomes, rather than indicative of a scenario in which a carpoid-like ancestor gave rise to cephalochordates or tunicates, an idea set aside by later authors. For example, Dehm (1934) suggested that the transition from asymmetric early carpoids such as cinctans to more bilaterally symmetric ones such as the mitrate *Rhenocystis*, resulted from the acquisition of a swimming mode of life. This implied that cephalochordates could be derived from a cornute-like ancestor, because they shared comparable asymmetries such as left gill slits. Gregory (1935) pointed out similarities in shape between mitrates and early vertebrates (agnathans), suggesting that Gislén (1930) had found the key to understanding origins of vertebrates. Affinities between mitrates and ostracoderms were also suggested by Caster (1952) and Caster & Eaton (1956).

The most famous outcome of Gislén's (1930) interpretation of carpoids was the detailed evolutionary scenario elaborated in the many works by Jefferies (1967, 1968, 1973, 1979, 1981, 1986, 1988, 1990, 1991, 1994 & 1997). Jefferies based his hypothesis on the assumption that hemichordates were stemward to the clade uniting echinoderms and chordates, leading him to postulate that the fossil record should produce taxa documenting key evolutionary transitions among the three deuterostome phyla (Jefferies, 1967 & 1968). Citing work by Bather (1930), Gislén (1930), Gregory (1935), and Romer (1967 & 1972), Jefferies (1967 & 1990) pointed to the four classes of carpoids, redescribing them as plesiomorphic, calcite-plated deuterostomes that never acquired the pentaradiality of echinoderms. He built a hypothetical scenario for how both echinoderms and chordates originated from a bilaterally symmetric, *Cephalodiscus*-like ancestor permanently attached to the sea floor by a stalk (Fig. 3A). According to Jefferies (1967 & 1969), some of these hypothetical, stalked, early hemichordates adopted a vagile, epibenthic habit, eventually acquiring an asymmetric 'flatfish' morphology. Lying on their right side, these deuterostomes lost all coeloms and associated structures originally located on this side, including the right gill slits and right hydrovascular

tentacle (dexiothetism of Jefferies, 1967, 1990 & 1997). This narrative, or parts thereof, was further employed in work by Jefferies & Prokop (1972), Paul (1977 & 1990), Jefferies & Lewis (1978) Cripps (1989, 1990 & 1991), Daley (1992, 1995 & 1996), Cripps & Daley (1994), Gee (1996), Gil Cid et al. (1996), Jefferies et al. (1996), Rozhnov & Jefferies (1996), Ruta (1997), Ruta & Theron (1997), Jefferies & Jacobson (1998), Ruta & Bartels (1998), Conway Morris (2000), Domínguez et al. (2002), and Domínguez (2004).

Jefferies (1967, 1990 & 1997) further indicated that this soft-bodied, asymmetric, flattened deuterostome then acquired a calcite-based mesodermal skeleton synapomorphic between both chordates and echinoderms. The resulting morphology was identical to that of solutans, who had a single left feeding arm, left 'gill slits' and a hemichordate-like stalk, making these forms into early, calcite-plated dexiothete deuterostomes belonging to the stem group of both echinoderms and chordates (Fig. 3A; Jefferies, 1990 & 1997; Paul, 1990; Daley, 1992, 1995 & 1996; Rozhnov & Jefferies, 1996; Jefferies & Jacobson, 1998). In turn, this provided the scope for a narrative in which evolutionary pathways led either to the chordates or to the echinoderms.

Under this rubric, cornutes were interpreted as stem-group chordates by Jefferies (1967), who assigned them, along with mitrates, to a new subphylum, Calcichordata, a junior synonym of the Stylophora. Calcichordates were stereom-plated, tadpole-like earliest chordates, with a head (theca) and a muscular tail (aulacophore) containing a notochord. This scenario required that during the solutan-cornute transition the (left) hydrovascular system (the feeding arm) was lost. Mitrates, on the other hand, had to be more derived members of the stem groups of the three chordate clades, including cephalochordates, urochordates, and craniates (including vertebrates) (Fig. 3A).


Remarkably, this required that the echinoderm-like endoskeleton of calcichordates was lost three times. Moreover, the cornute-mitrate transition was interpreted as leading to the duplication of most internal structures (see e.g., Jefferies, 1967, 1968 & 1973; Jefferies & Lewis, 1978; Cripps, 1991). This hypothesized internal anatomy of stylophorans and left-right asymmetries forced Jefferies (1967) to consider that the concave thecal surface was ventral in cornutes but dorsal in mitrates (e.g., Jefferies, 1973, 1986, 1990 & 1997; Jefferies & Lewis, 1978; Cripps, 1991; Jefferies et al., 1996; Jefferies & Jacobson, 1998). Undaunted, followers of the calcichordate hypothesis embraced the consequence of this reorientation. This included the fact that the distal aulacophore consisted of one series of ventral ossicles and two series of dorsal

plates in cornutes, but of uniserial dorsal ossicles and two sets of ventral plates in mitrates. The explanation provided was that the distal part of the appendage was lost during the cornute-mitrate transition, and that a new one re-evolved in the earliest mitrates (Jefferies & Prokop, 1972; Jefferies, 1973, 1986, 1990 & 1997; Jefferies & Lewis, 1978; Cripps, 1991).

Jefferies (1990, 1991, 1994 & 1997), Jefferies et al. (1996), and Domínguez (1999 & 2004) then interpreted cinctans as stem-group echinoderms derived from a solutan-like ancestor, a transition characterized by the duplication of the single solutan feeding arm into two lateral ambulacral structures (Fig. 3A). This rendered cinctans the earliest pre-radial echinoderms retaining plesiomorphic deuterostome features lost in more derived taxa. In this case, the large opening (porta) protected by the operculum was the outlet valve (gill slit) of a large intrathecal pharynx (Jefferies, 1990, 1991 & 1997; Friedrich, 1993 & 1995; Jefferies et al., 1996; Domínguez, 1999).

Ctenocystoids were interpreted as early, pre-radial, stem-group echinoderms derived from a cinctan-like ancestor that shared with more derived echinoderms the loss of the hemichordate-like stalk (Fig. 3A; Jefferies, 1994; Jefferies et al., 1996; Domínguez, 1999 & 2004). As did previous authors (Haeckel, 1896a & b; Bather, 1930; Paul & Smith, 1984; Smith, 1988), Jefferies (1990) considered the bilaterally symmetric cinctans and ctenocystoids precursors to triradial taxa (helicoplacoids) that in turn gave rise to pentaradial forms (Fig. 3A; Jefferies, 1991, 1994 & 1997; Jefferies et al., 1996; Domínguez, 1999 & 2004).

In the past two decades, abundant molecular evidence supporting a tree in which echinoderms were more closely related to hemichordates than to chordates began to falsify the basic assumptions of the calcichordate theory (Bromham & Degnan, 1999; Cameron et al., 2000; Peterson & Eernisse, 2001; Furlong & Holland, 2002). Nevertheless, this new phylogenetic evidence was integrated by Jefferies (2001a & b), without impact on the theory itself (Fig. 3C; Shu et al., 2001; Domínguez et al., 2002; Domínguez, 2004; Holland, 2005; Domínguez & Jefferies, 2006a & b; Tatarinov, 2011). The hypothetical pterobranch-like ancestor was modified into a stem-group deuterostome morphologically close to *Cephalodiscus*, but now with the assumption that it possessed an echinoderm-like stereom skeleton. Stereom then became a synapomorphy of all deuterostomes, with subsequent loss no fewer than four times independently (in hemichordates, cephalochordates, tunicates and craniates), but retained only in echinoderms (Jefferies, 2001a & b). Solutans could no longer be considered stem-group dexiothetes (echinoderms +



**Figure 3.** Phylogenies of fossil and extant deuterostomes based on conceptual models. **A.** Phylogeny adapted from Jefferies (1967, 1969, 1986, 1990 & 1991) and Jefferies et al. (1996). Cornutes and mitrates (calcichordates) are considered as stem-group chordates; cinctans and ctenocystoids are interpreted as bilaterally symmetrical, early, pre-radial echinoderms; solutans are identified as early deuterostomes belonging to the stem-groups of both chordates and echinoderms. **B.** Phylogeny adapted from Gee (2001a & 2006), Conway Morris (2003), Shu et al. (2004), and Shu (2005). Carpoids are interpreted as early, pre-radial echinoderms, morphologically close to hemicordates, vetulicolians, and vetulicystids. **C.** Phylogeny adapted from Jefferies (2001a & b) and Domínguez & Jefferies (2006a). In this revised phylogeny, hemicordates (and not chordates) are the sister-group of echinoderms. Cornutes and mitrates (calcichordates) are still considered stem-group chordates, and cinctans as stem-group echinoderms. However, the early solutan *Coleicarpus* is reinterpreted as an early deuterostome belonging to the stem-group of both ambulacrarians and chordates, whereas ctenocystoids are assigned to the hemicordate stem-group. **D.** Phylogeny adapted from Smith (2005 & 2008), Bottjer et al. (2006), Rahman & Clausen (2009), Zamora et al. (2012), Zamora & Rahman (2014), and Rahman & Zamora (2024). Carpoids are interpreted as a paraphyletic assemblage of hemicordate-like, pre-radial echinoderms.

chordates), but became stem-group deuterostomes (ambulacrarians + chordates) (Fig. 3C). In a significant modification of the calcichordate theory, ctenocystoids were incorporated into the hemichordate stem group (Domínguez & Jefferies, 2006a & b), with other carpoids in their previously interpreted positions: cinctans as pre-radial, stem-group echinoderms, cornutes as stem-group chordates, and mitrates as members of stem groups of the three chordate lineages (Fig. 3C; Jefferies, 2001a & b; Domínguez & Jefferies, 2006a).

#### *The ambulacrarian theory*

That echinoderms and hemichordates were sister groups had been suspected through studies of the tornaria and dipleurula (Metschnikoff, 1881; Heider, 1912; Grobben, 1924; Ubags, 1968a). The development of molecular phylogenetics strongly supported a tree in which chordates were the sister group of ambulacrarians (echinoderms + hemichordates) (Bromham & Degnan, 1999; Cameron et al., 2000; Peterson & Eernisse, 2001; Furlong & Holland, 2002; Winchell et al., 2002). It followed that early echinoderms such as the carpoids needed new scrutiny in order to reconcile the dipleurula and calcichordate conceptual models (Fig. 3B; Gee, 2001a & 2006; Winchell et al., 2002; Conway Morris, 2003; Shu et al., 2004; Northcutt, 2005; Shu, 2005; Smith, 2005, 2008; Bottjer et al., 2006; Swalla & Smith, 2008; Zamora et al., 2012; Zamora & Rahman, 2014).

Again, observation of bilateral symmetry in extant chordates, hemichordates and pre-metamorphic larval stages of echinoderms emboldened thinking that bilateral symmetry was a plesiomorphic feature in all deuterostomes (e.g., Shu et al., 2004; Shu, 2005; Smith, 2005 & 2008; Zamora et al., 2012). Therefore, post-metamorphic pentaradiality of extant echinoderms was pronounced an autapomorphy of extant forms (Shu et al., 2004; Shu, 2005; Smith, 2005 & 2008; Bottjer et al., 2006; Zamora et al., 2012), and possession of a 'hydrovascular tentacular system' derived from the mesocoel was declared a synapomorphy for ambulacrarians (Shu et al., 2004; Smith, 2005 & 2008). This side-stepped the problem that in adult hemichordates, this tentacular system is paired and derived from both the left and right mesocoels, whereas in post-metamorphic extant echinoderms, the ambulacrinal system is already pentaradial and derived exclusively from the left mesocoel, called the hydrocoel for that reason. That both extant hemichordates and chordates have pharyngeal openings and a 'true tail' indicated their symplesiomorphy among deuterostomes. Their absence in crownward echinoderms was explained by

secondary loss (Shu et al., 2004; Shu, 2005; Smith, 2005 & 2008; Bottjer et al., 2006; Zamora et al., 2012). Since stereom is exclusive to echinoderms, it was more parsimonious to interpret it as an echinoderm autapomorphy, rather than a deuterostome symplesiomorphy requiring the four independent losses in chordates and hemichordates indicated above (Gee, 2001a & 2006; Conway Morris, 2003; Shu et al., 2004; Northcutt, 2005; Shu, 2005; Smith, 2005 & 2008; Bottjer et al., 2006; Caron et al., 2010; Vinther et al., 2011; Zamora et al., 2012).

It was proposed that extant echinoderms differed from their last common ambulacrarian ancestor with hemichordates by the loss of several characters (bilateral symmetry in adults, post-anal tail, pharyngeal openings), coupled with the acquisition of several autapomorphic features (stereom, adult pentaradiality associated with an unpaired hydrovascular system). Several works insisted that all evolutionary changes between stem-group ambulacrarians and extant echinoderms could be identified among fossils (Gee, 2001a & 2006; Winchell et al., 2002; Conway Morris, 2003; Northcutt, 2005; Shu et al., 2004 & 2005; Smith, 2005 & 2008; Bottjer et al., 2006; Swalla & Smith, 2008; Rahman & Clausen, 2009; Caron et al., 2010; Zamora et al., 2012; Smith & Zamora, 2013; Zamora & Rahman, 2014; Nanglu et al., 2022; Rahman & Zamora, 2024). Carpoids were again considered the best candidates in the hunt for corroborating evidence (Gee, 2001a & 2006). The conceptual framework of the authors listed above required that carpoids be a disparate assemblage of early, pre-radial echinoderms retaining plesiomorphic deuterostome and/or ambulacrarian features (gill slits, post-anal tail, bilateral symmetry) lost in more derived members of the phylum (Fig. 3B). An enigmatic group of Cambrian putative deuterostomes, the vetulicolians (Shu et al., 2001), was seized upon by Conway Morris (2003) as strong evidence supporting the interpretation of stylophorans as early, pre-radial, stem-group echinoderms (Fig. 3B; Shu et al., 2004; Shu, 2005; Vinther et al., 2011; Ou et al., 2012). The two parts of the vetulicolian body were generally interpreted as a post-anal tail and a large head containing both a putative pharynx and pharyngeal openings. Supposed affinities of vetulicolians with stem-group ambulacrarians largely relied on the comparison of their tadpole-like organization with the supposedly similar bipartite body of stylophorans, in this context considered stem-group echinoderms (Conway Morris, 2003; Shu et al., 2004; Shu, 2005; Vinther et al., 2011; Ou et al., 2012). Interpretation of anatomical characters preserved in vetulicolians remained equivocal, even questioning their deuterostome affinities (Butterfield, 2003;

Aldridge et al., 2007; Chen, 2009). Reinterpretation of vetulicolians as stem-group tunicates (Gee, 2001b; Garcia-Bellido et al., 2014) falsifies homology between their tadpole-like morphology and bipartite body of stylophorans (McMenamin, 2019).

The proposition that carpoids represent pre-radial stem-group echinoderms preserving evolutionary steps between stem-group ambulacrarians and extant crown-group echinoderms (Fig. 3D) continued to find favor in the literature (Clausen & Smith, 2005; Smith, 2005 & 2008; Bottjer et al., 2006; Swalla & Smith, 2008; Zamora & Smith, 2008; Rahman & Clausen, 2009; Rahman & Zamora, 2009 & 2024; Smith & Zamora, 2009 & 2013; Zamora et al., 2012; Zamora & Rahman, 2014). In all cases, however, this position requires a priori assumptions to deal with the disparate, asymmetric morphologies of three carpoid classes (cinctans, solutans and stylophorans). Ctenocystoids were later added to this conceptual model by Rahman & Clausen (2009), Rahman & Zamora (2009 & 2024), Zamora et al. (2012), Smith & Zamora (2013), Zamora & Rahman (2014), and Rahman & Zamora (2024).

Smith (2005), in identifying the two polyplated structures extended laterally on each side of the mouth of cinctans as extensions of an ambulacrarian-like 'hydrovascular system', rejected them as ambulacrinal rays due to their lack of floor plates. Smith (2005) followed Gislén (1930) in assessment of the unequal length of the two anterior marginal grooves associated with these extensions (the right one being shorter than the left). Smith ascribed this as Haeckelian recapitulation of both the ontogeny of extant echinoderms (pre-metamorphic loss of the right mesocoel) and the transition from stem-group ambulacrarians with a paired hydrovascular system to crown-group echinoderms that retained an unpaired structure, the hydrocoel. Cinctans by this interpretation, therefore, were pre-radial stem-group echinoderms retaining ambulacrarian plesiomorphic features (paired hydrovascular system, pharynx) (Fig. 3D). The porta (anterior orifice with an operculum) was considered as an atrial opening (Jefferies, 1990; Friedrich, 1993). The posterior stem (homostele) was interpreted as a cinctan autapomorphy (Smith, 2005). In addition, the bilaterally symmetric ctenoid apparatus of ctenocystoids was considered a feeding structure characterized by a paired, ambulacrarian-like hydrovascular system (Rahman & Clausen, 2009). As Smith (2005) suggested for cinctans, the idea that these were modified ambulacra was rejected as not being like 'standard' ambulacra (no floor plates, food grooves borne by anterior marginals). Rahman & Clausen (2009), Zamora et al. (2012), Zamora & Rahman (2014) considered the two 'tentacular

systems' of ctenocystoids to be symmetric precursors of their asymmetric counterparts in cinctans. This was again presented as Haeckelian recapitulatory evidence that ctenocystoids shared plesiomorphic configuration of equal left and right tentacular systems with the hypothetical ambulacrarian ancestor (Fig. 3D). Cinctans were necessarily more derived, because the asymmetry fit conceptualized reduction of the right tentacular system (Rahman & Clausen, 2009; Caron et al., 2010; Zamora et al., 2012; Smith & Zamora, 2013; Zamora & Rahman, 2014; Rahman & Zamora, 2024).

Smith (2005 & 2008), Caron et al. (2010), Smith & Zamora (2013), Zamora & Rahman (2014), and Rahman & Zamora (2024) considered solutans to be derived from a cinctan-like common ancestor that evolved a free erect ambulacrum from the left hydrovascular system (Fig. 3D). This in turn necessitated complete loss of the right tentacular system already noted to be reduced in cinctans, and the modification of the left one into a feeding arm. Unable to find the gill slits in solutans described by Jefferies (1990), Smith (2005) and Bottjer et al. (2006) concluded that they were originally absent in these carpoids. Moreover, the morphology of the solutan homostele was incompatible with that of blastozoan or crinoid stems, because its distal region was biserial (not holmeric or pentameric). The large, flexible proximal region was declared to contain powerful muscles, indicating that the homostele was instead homologous to a hemichordate-like (pterobranch) stem (Smith, 2005 & 2008). The observation that one of the earliest known solutans (*Castericystis*) had juveniles attached to the stalk of larger (adult?) individuals (Daley, 1996; Lefebvre & Lerosey-Aubril, 2018), was used as evidence that early solutans were colonial and budding, like pterobranchs (Smith, 2008).

As previously argued by many authors (Bather, 1930; Jefferies, 1967; Philip, 1979; Kolata et al., 1991), Smith (2005 & 2008), Clausen & Smith, (2005), Zamora & Smith (2008), and Rahman et al. (2009) considered the stylophoran aulacophore and the solutan homostele to be strongly muscled proximally, with a stiffer distal region that could be employed in locomotion. This necessitated the rejection of Ubags' (1961b & 1968b) interpretation that the aulacophore was a feeding arm, because solutans had now to be considered to have both an indisputable feeding appendage plus an aulacophore-like homostele, in turn forcing the conclusion that the stylophoran appendage was a muscular, hemichordate-like stalk. This assumption further implied that stylophorans completely lacked ambulacrinal or even ambulacrarian-like WVS structures, suggesting that the stylophoran theca

contained a large pharynx with gill slits represented by pore structures seen in some cornutes (Bottjer et al., 2006; Smith, 2008; Zamora & Smith, 2008; Rahman et al., 2009; Caron et al., 2010). In this view, all mitrates had to possess paired internal gill slits, based on the interpretation of digitate internal structures in two taxa (*Jaekelocarpus* and *Lagynocystis*) (Jefferies, 1973 & 1986; Domínguez et al., 2002; Bottjer et al., 2006). Therefore, stylophorans were regarded as stem-group, pre-radial forms retaining plesiomorphic ambulacrarian characters (hemichordate-like tail, pharynx) lost in crown-group echinoderms (Fig. 3D; Smith, 2005 & 2008).

To summarize these complicated issues, it helps to realize that to accommodate these theory-driven assumptions, the four carpoid classes had to be integrated with some other early taxa (*Camptostroma*, *Gogia*, *Helicocystis*, helicoplacoids, *Lepidocystis*) in trees implied to support the initial stages of echinoderm diversification from a stem ambulacrarian-like ancestor (Smith, 2005 & 2008; Bottjer et al., 2006; Smith & Zamora, 2013; Zamora et al., 2012; Zamora & Rahman, 2014; Rahman & Zamora, 2024). To do so, the scenario relied on symmetry of postulated hydrovascular structures in the various fossil taxa, and identified two major subdivisions within echinoderms that precisely coincided with Bather's (1930) classification of the phylum into *Echinodera bilateralia* (carpoids) and *Echinodera radiata* (all other taxa) (Fig. 3D). Carpoids had to be interpreted as pre-radial, stem-group echinoderms because of their bilaterally symmetric (ctenocystoids) or asymmetric morphologies (cinctans, solutans, stylophorans). Ctenocystoids were viewed as the earliest because of bilateral symmetry supposedly inherited from a stem ambulacrarian-like ancestor with left and right hydrovascular systems (Fig. 3D). Asymmetry in the three other carpoid clades had to result from the reduction (cinctans) or loss (solutans, stylophorans) of this hypothesized right tentacular system. Even though they retained a deeply plesiomorphic hemichordate-like tail, solutans were considered the most derived carpoids because they lacked any evidence of pharyngeal gill slits.

In turn, the transition from a solutan-like ancestor to a radial echinoderm was characterized by loss of the presumed hemichordate-like stalk, and sudden, enigmatic appearance of two additional ambulacrinal rays to produce the earliest echinoderms. The latter were then assumed to have transitioned to triradiality (Smith, 2005 & 2008; Zamora et al., 2012; Smith & Zamora, 2013; Zamora & Rahman, 2014; Rahman & Zamora, 2024). As already suggested in many earlier works (e.g., Haeckel, 1896a; Bather et al.,

1900; Foerste, 1914; Haugh, 1973; Sprinkle, 1973; Bell, 1976; Paul & Smith, 1984; Jefferies, 1990; Hotchkiss, 1998), pentaradiality of the majority of earliest echinoderms (e.g., *Camptostroma*, gogiids, *Helicocystis*, *Lepidocystis*, *Stromatocystites*) was interpreted by Smith (2008) to be derived from a triradial, helicoplacoid-like ancestor, in part due to modification of the so-called 2-1-2 configuration of rays in such pentaradial forms. We will be probing this in more detail below, along with many other complicated postulates presented above.

## Empirical models of echinoderm origins

### *Early observations supporting affinities of carpoids with typical echinoderms*

The very first descriptions of carpoids were essentially empirical, lacking discussion of the pivotal position with which these animals are now imbued by conceptual models. Attempts to understand them were based on comparisons with other Paleozoic echinoderms known at that time. Carpoids were characterized by a stem-like appendage and affiliated with pelmatozoans, themselves diagnosed as all forms permanently attached to the sea floor via stems or by the theca. Among pelmatozoans, carpoids were allocated to the Cystoidea, with which they shared an irregularly plated theca and the lack of branched arms (Billings, 1858; Hall, 1859; De Koninck, 1869; Prado et al., 1860; Woodward, 1871; Meek, 1872; Barrande, 1887; Miller, 1889; Neumayr, 1889; Bell, 1891; Bernard, 1895; Pompeckj, 1896; Zittel, 1900). New discoveries attempted to recognize unique carpoid features by placing them into distinct families such as Anomalocystidae (Meek, 1872; Woodward, 1880; Miller, 1889; Miller & Gurley, 1894; Zittel, 1900) or Pleurocystidae (Bernard, 1895), which grouped stemmed cystoids diagnosed by a flattened theca bearing dissimilar plate patterns on its opposing sides.

Jaekel elaborated upon this apparent uniqueness by describing a distinct class, Carpoidea (Fig. 4A & B), to hold pelmatozoans with a flattened theca, a non-holmeric appendage and no pore structures (Jaekel, 1901 & 1918; Zittel, 1903; Schuchert, 1904; Dehm, 1932; Hecker, 1940 & 1964; Régnell, 1945; Termier & Termier, 1947 & 1973; Caster, 1952; Gill & Caster, 1960; Ubags, 1961a & b, 1963). Pleurocystitids, in spite of their similar-looking flattened theca, were separated from carpoids and assigned to dichoporite cystoids, since they also had rhombs and a holmeric stem. Jaekel (1918) suggested that carpoids were derived from crinoid-like ancestors, but possibly

related to holothuroids or to 'thecoids' (edrioasteroids) (Fig. 4B). The asymmetric morphology of carpoids was deemed a consequence of their unattached, free-living, 'flat-fish' mode of life on the sea floor. This interpretation, shared by several later authors (Spencer, 1938; Delpey, 1941; Termier & Termier, 1973; Sprinkle, 1983 & 1992; Dzik, 1999; David et al., 2000), relied on the fact that pentaradial symmetry is lost independently in a myriad diversity of fossil and extant echinoderms over the past half billion years (e.g., *Dibrachicystis*, *Hilocystis*, *Monobrachiocrinus*, pleurocystitids, irregular echinoids).

After Jaekel's (1918) revision of the systematics of Pelmatozoa, only a few attempts were subsequently made to interpret carpoids using similar empirical methodology relying on detailed morphological comparison with other echinoderms (Spencer, 1938; Cabibel et al., 1959; Haugh & Bell, 1980a & b). This marked a shift from fossil-based, empirical approaches to a more theory-laden approach, as lamented by Stephenson (1979: 47) who advised instead that: "echinoderm phylogenies should be constructed empirically without pre-conceived ideas about the primitive symmetry of echinoderms". However, interest in empirical models and their application for the interpretation of carpoids did eventually appear (Sumrall, 1997; David & Mooi, 1999; Dzik, 1999; David et al., 2000; Mooi, 2001; Sprinkle & Guensburg, 2001; Sumrall et al., 2001; Lefebvre, 2003; Lefebvre et al., 2019; Guensburg et al., 2020).

Spencer (1938) rejected traditional classification of echinoderms into eleutherozoans (free-living) and peltatozoans (attached), rightly pointing out the dangers of basing classifications on behaviors that can be adopted independently. He distinguished two groups: Dactylozoa that possessed brachioles and fed using ciliary currents (blastoids, cystoids, edrioasteroids), and Podozoa that possessed arms and used tube feet for feeding (crinoids, asterozoans, echinozoans). For Spencer, carpoids constituted a polyphyletic assemblage of echinoderms that secondarily lost radial symmetry, with some of them identified as dactylozoans (solutans) and others as podozoans (cinctans and stylophorans).

In reviewing Cambrian echinoderms from the Montagne Noire, Cabibel et al. (1959) suggested that cinctans were derived from a *Stromatocystites*- or *Cambraster*-like ancestor. Their work largely relied on an analogy with post-Paleozoic echinoids, in which transition from pentaradial (regular sea urchins) to almost bilaterally symmetric morphologies (irregular echinoids) was well-documented. From this, they argued that more elongate and symmetric outlines in

cinctans were related to the adoption of a vagile mode of life.

Haugh & Bell (1980a & b) echoed Spencer (1938) in pointing out that echinoderm systematics should not rely on superficial similarities that often resulted from adaptations to similar modes of life. Detailed comparisons among exceptionally preserved soft parts in various Paleozoic blastoids, camerate crinoids, diplopitans, edrioasteroids, and rhombiferans (Breimer & Macurda, 1972; Haugh, 1973, 1975a & b; Haugh & Bell, 1980a), as well as with extant taxa, suggested a coelom-based classification with three main subdivisions (Fig. 4C), or subphyla: I (crinoids, edrioasteroids and related forms, and helicoplacoids); II (blastoids, diplopitans, eocrinoids, parablastoids, paracrinoids, and rhombiferans); and III (asteroids, echinoids, holothuroids, and ophiuroids). Soft parts were unknown for carpoids, but they were assigned to subphylum II with blastozoans (Haugh & Bell, 1980a & b) through deduction of relationships between soft anatomy and skeletal features observed in other Paleozoic fossils (Fig. 4C).

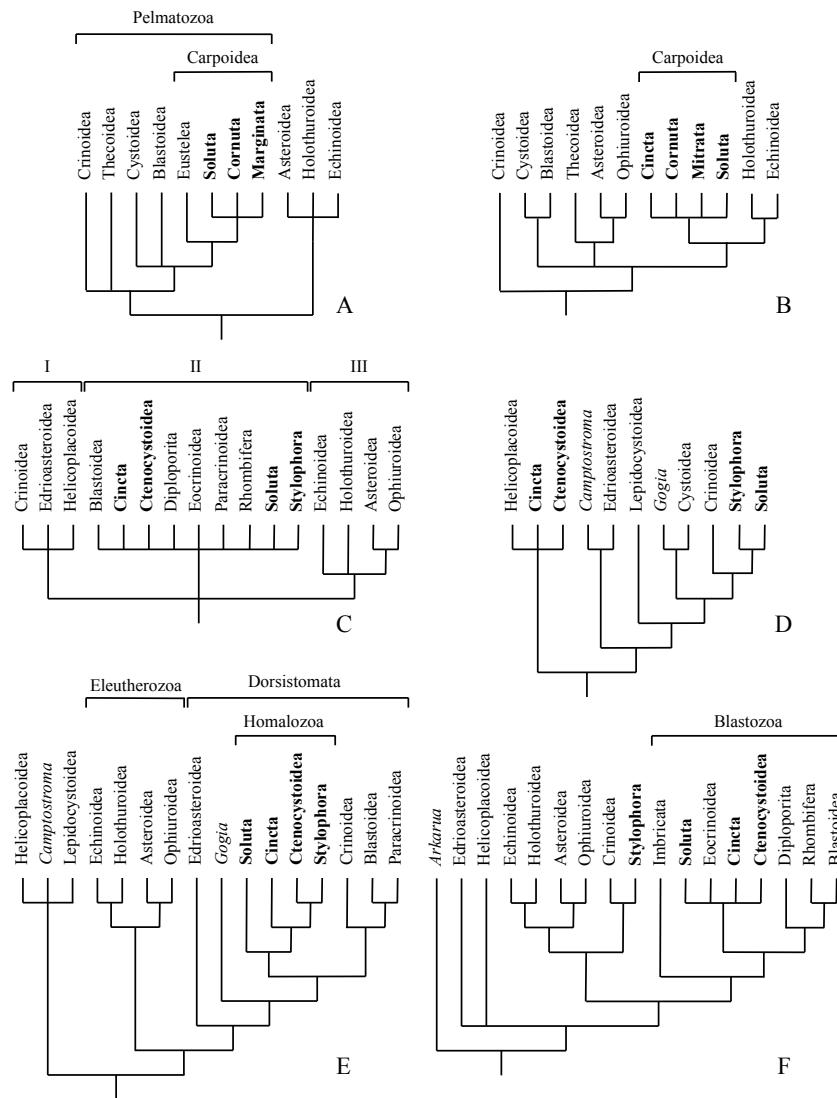
#### *Empirical phylogenetic approaches dealing with fossil symmetries*

Formal analyses of character distributions using cladistics have changed the landscape of studies on echinoderm origins (Fortey & Jefferies, 1982; Smith, 1984; David, 1993; Mooi, 2001). Phylogenetics of extant groups relies on embryology, soft tissues, skeletal morphology, and molecular analyses (Smith, 1992; Wada & Satoh, 1994; Littlewood, 1995; Littlewood et al., 1997; Janies, 2001; Kondo & Akasaka, 2012; David & Mooi, 2014; Byrne et al., 2016). However, there remain many significant extinct taxa to integrate, and there are both advantages and disadvantages to including fossils in these analyses. The common set of data, with only a few exceptions, is reduced to skeletal morphology. However, echinoderm skeletons are character rich, and in many cases, the fossils are the only windows we have to place extant taxa in the rich history afforded by a record stretching back over half a billion years.

In spite of the inclusion of other fossil forms, carpoids did not make their way into the earliest morphological phylogenetic analysis of the phylum (Smith, 1984). However, representatives of the four carpoid classes were included in phylum-scale phylogenies of Sumrall (1997) and Sumrall et al. (2001). These analyses (Fig. 4E) attempted to avoid assumptions that affect character selection and coding by testing with criteria identified by Patterson (1982): similarity, conjunction, and congruence. For example, the aulacophore of

stylophorans was coded as a feeding arm due to similarity in structure to feeding appendages of other echinoderms (Sumrall, 1997). Likewise, tests of similarity and congruence were also used to reject the hypothesis that thecal flattening was homologous across taxa. Sumrall's (1997) analysis recovered two clades: eleutherozoans (asteroids, echinoids, ophiuroids, and holothuroids), and dorsistomatans, i.e. echinoderms with an upward-facing mouth (edrioasteroids, blastozoans, and crinoids) (Fig. 4E). These were placed crownward of *Campostroma*- or *Lepidocystis*-like ancestors. Carpoids were nested as within early dorsistomatans, closely related to cyclocystoids and *Lichenoides* (Fig. 4E).

The asymmetric body organization of the earliest carpoids was investigated by Dzik (1999) via comparison with other Cambrian echinoderms, who reported that the biseries of alternating, hinged plates along the distal part of the stylophoran appendage were comparable to cover plates in brachioles of gogiids. Applying the criteria of similarity and congruence, Dzik deduced that the aulacophore was uniserial, crinoid-like arm, but that the polyplated, disorganized morphology of the stem-like appendage of the earliest solutan (*Coleicarpus*) was homologous with the stem of gogiids. Therefore, solutans were derived from a *Gogia*-like ancestor and carpoids were regarded as a polyphyletic assemblage of relatively derived pelmatozoans (solutans and stylophorans), possibly related to helicoplacoids or ctenocystoids (Fig. 4D). Dzik (1999) also pointed out that fossil radial taxa (*Campostroma*, gogiids, helicoplacoids, *Kinzerocystis*, *Lepidocystis*) appeared earlier (Cambrian Series 2) than carpoids (Miaolingian [Smith et al., 2013; Zamora et al., 2013]), supporting the view that carpoids descended from radial ancestors while losing pentaradiality due to their vagile, epibenthic habit (Dzik, 1999).


#### *Echinoderm embryology, origins, and the Extraxial-Axial Theory*

The Extraxial-Axial Theory (EAT) has been used to explore the origins of the echinoderms and position of carpoids in some empirically-driven phylogenetic schemes (Mooi & David, 1998; David & Mooi, 1999; David et al., 2000; Peterson et al., 2000; Sprinkle & Guensburg, 2001; Lefebvre, 2003; Lefebvre & Fatka, 2003; Nardin et al., 2009; Lefebvre et al., 2013 & 2019; Guensburg et al., 2020). The EAT is an empirical model developed using data from both fossil and extant echinoderms, notably echinoids and edrioasteroid-like taxa (David & Néraudeau, 1994; Mooi et al., 1994). The theory integrates embryology, morphology, and

paleontology (Fig. 5). The EAT shows that all skeletal elements in the axial part of an echinoderm originated through a distinct biserial addition pattern at the end of a growing ray (Jackson, 1912; David & Néraudeau, 1994; Mooi et al., 1994). The term 'ocular plate rule' (OPR) was coined for this patterning (Mooi et al., 1994). The OPR is diagnostic of axial body wall and skeletal elements that are closely associated with the WVS. Generalizing from extant forms to all fossil taxa, echinoderms are characterized by five growth zones, each consisting of two main columns of plates variously known as ambulacra, floor plates and other specialized elements (such as cover plates) formed in accordance with the OPR (Mooi et al., 2005; Mooi & David, 2008).

In contrast, extraxial body wall regions included stereom plates that did not follow any specified ontogenetic patterning, such as the OPR. Examination of a wide variety of echinoderms throughout their evolutionary history suggests that the extraxial body wall is divided into a perforate region containing the anus, gonopore, hydropore, epispines, and other apertures, and an aboral, imperforate portion that could be variously modified into attachment structures, but contains no apertures (Mooi et al., 1994 & 2005; Mooi & David, 2008). Comparison of the morphology of early pentaradial echinoderms (e.g., *Stromatocystites*; Fig. 5G & H) with extant echinoderms explains many empirical observations, such as that the interambulacrum of echinoids is not homologous with the interradial of stemward echinoderms (Mooi et al., 1994), that holothuroids are strongly paedomorphic (Mooi & David, 1997; David & Mooi, 1998), and that 'true' arms are a specific, unique type of body wall extension (David & Mooi, 1998; Mooi et al., 2005; Guensburg et al., 2010 & 2020). In addition, it was observed that axial regions are seldom, if ever, in contact with imperforate extraxial body wall, as the perforate extraxial is always expressed as an intervening region. The corollary is that the imperforate extraxial body wall could be absent, but the perforate extraxial always exists to some degree, and always in contact with the axial region.

The EAT was tested with developmental criteria (David & Mooi, 1996 & 1998; Mooi & David, 1997) as well as those outlined by Patterson (1982). Independent evidence from homeobox expression patterns confirmed the existence of two main regions, not only in the body wall, but also in internal anatomy of all extant echinoderms (David & Mooi, 1996, 1998 & 2014; Mooi & David, 1997 & 2008; Peterson et al., 2000; Mooi et al., 2005). This revealed a crucial, ontogeny-based observation concerning the relationship between rudiment formation and metamorphosis (Fig.



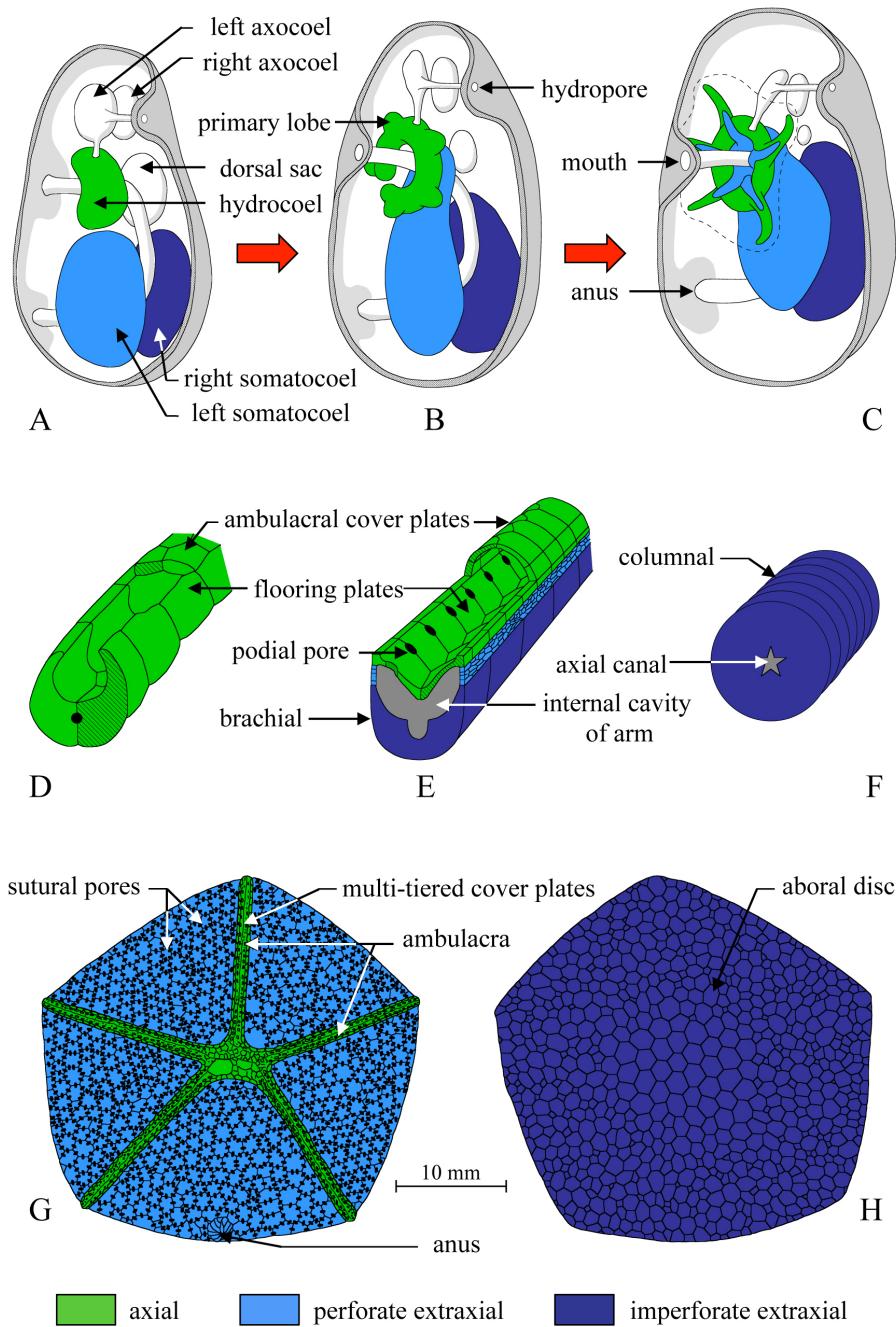
**Figure 4.** Phylogenies of fossil and extant echinoderms based on empirical models. **A.** Phylogeny adapted from Jaekel (1901), with carpoids as a clade of pelmatozoans. The carpoid order Eustelea contains several Ordovician genera now assigned to Paracrinoidae (e.g. *Amygdalocystites*, *Canadocystis*, *Comarocystites*, *Malocystites*). **B.** Phylogeny adapted from Jaekel (1918), with carpoids as a relatively derived clade of pelmatozoans. The class Carpoidea is divided into four orders, each of which continues to be recognized as a natural grouping: Cincta, Cornuta, Mitrata and Soluta. **C.** Phylogeny adapted from Haugh & Bell (1980a & b). The identification of three distinct subphyla is based on exceptionally preserved soft parts in several fossil taxa. All carpoids are assigned to subphylum II, which also includes all classes generally assigned to Blastozoa. **D.** Phylogeny adapted from Dzik (1999), with carpoids as a polyphyletic group. Ctenocystoids and possibly cinctans are interpreted as relatively early basal branches in the echinoderm tree, whereas solutans and stylophorans are considered as more derived and closely related to crinoids. **E.** Phylogeny adapted from Sumrall (1997), with all carpoids grouped within the same clade (Homalozoa), within dorsistomatans (echinoderms with an upward-facing mouth). **F.** Phylogeny adapted from David et al. (2000). Carpoids are polyphyletic: stylophorans are interpreted as the sister-group of the crinoids, whereas cinctans, ctenocystoids and solutans are allied with blastozoans.

5A-C). The rudiment forms during early development of the echinoderm larva through elaboration of the left mesocoel into the hydrocoel via outward growth of primary lobes around a hydrocoel-derived torus encircling the esophagus (Fig. 5B). As the hydrocoel forms this torus, it entrains more posterior somatocoels to form the rudiment itself (Fig. 5C). The rudiment is a completely de novo construct with no counterpart

either in the earlier part of embryological development, or in any other phylum.

It is important to note that this is not related to metamorphosis, because after the appearance of the rudiment, modification or resorption of the non-rudiment portion of the larva is a separate process that can occur to varying degrees, resulting in an imago. The crucial element of this embryological

patterning is the unique nature of the hydrocoel, not processes involved in metamorphosis, such as loss or appearance of structures related to survival of the larva. The importance of this distinction clarifies terminology, and underscores a seldom-appreciated fact that it is rudiment formation, not metamorphosis, that harbors evidence for the origin of pentaradiality in all echinoderms, including carpoids, in which pentaradiality is secondarily suppressed to result in only one or two rays.


The axial region is associated with the hydrocoel, which dominates rudiment formation (Fig. 5A-C). In contrast, the extraxial portion is closely associated with left and right somatocoels of the most posterior part of the archimery inherited from the larval body (David & Mooi, 1996 & 1998; Mooi & David, 1997). Evolutionary events altering the relative expression of the axial versus extraxial regions in adults result in vastly different degrees to which axial structures derived from the rudiment dominate the adult morphology. For example, the morphology of adult echinoids represents an extreme in which drastic metamorphosis results in near-total dominance of the axial region at the cost of near-total resorption of the larval body (David & Mooi, 1996 & 1998; Mooi & David, 1997). At the opposite end of the spectrum, crinoids undergo minimal metamorphosis because the adult body is made mostly of extraxial region plesiomorphically retained from the larva (Engle, 2012). Holothuroids also undergo minimal metamorphosis, but in this case because the axial region is paedomorphically restricted to the oral tentacles at one end of the body, with nearly all the larval body persisting in the adult. This indicates that holothuroids are essentially giant larvae (David & Mooi, 1996 & 1998; Mooi & David, 1997).

Embryological data show that in all extant echinoderms, pentaradiality in adults is superimposed onto larval development by the outward growth of the five primary hydrocoelar lobes in the rudiment (Fig. 5A-C). Pentaradiality is associated only with the rudiment-derived, axial region, with degree of prominence in adult morphology largely dependent on the degree to which metamorphosis suppresses into adulthood expression of the non-rudiment part of the larval body (David & Mooi, 1996 & 1998; Mooi & David, 1997). This balance between rudiment-derived (axial) and larval-inherited (extraxial) regions could be placed in a broad phylogenetic context. During their history, echinoderms displayed evolutionary novelties that altered this balance in specific ways (Mooi & David, 1997 & 1998). Early pentaradial forms such as *Camptostroma*, *Stromatocystites*, blastozoans, or crinoids were extraxial-dominated, retaining large proportions of perforate and imperforate extraxial

region. In contrast, more crownward forms such as echinozoans and asterozoans were axial-dominated. This implied that earlier echinoderms experienced almost no metamorphosis, resulting in more restricted expression of rudiment-derived axial region in adults. Consequently, in early echinoderms there is far less expression of pentaradiality in the extraxial regions outside the axial rays (Mooi & David, 1997 & 1998; David & Mooi, 1998).

The very disparate morphologies of Paleozoic echinoderms were investigated through the EAT, including early pentaradial, edrioasteroid-like forms (Mooi & David, 1998), blastozoans (David & Mooi, 1999; David et al., 2000; Sprinkle & Guensburg, 2001; Nardin et al., 2009 & 2017; Lefebvre et al., 2015), stylophorans (Mooi & David, 1998; David & Mooi, 1999; David et al., 2000; Lefebvre, 2003; Lefebvre et al., 2019 & 2022; Saleh et al., 2023), cinctans, ctenocystoids, and solutans (David et al., 2000; Peterson et al., 2000; Sprinkle & Guensburg, 2001; Nardin et al., 2009), somasteroids and other early asterozoans (Mooi & David, 2000), helicoplacoids (Sprinkle & Wilbur, 2005), and early crinoids (Guensburg et al., 2020). Soft parts and ontogeny are virtually unknown in Paleozoic echinoderms, but empirically observed contributions of body wall components can be estimated from their skeletal morphology. Rudiment-derived axial elements can be identified through their expression of the OPR, as well as their close association with the mouth and the water vascular system. Extraxial elements from the larval body often display, at least plesiomorphically, an isotropic pattern. Among fossils, perforate extraxial region consistently contains the anus, gonopore, and hydropore, as well as various other types of pore structures such as diplopores, humatirhombs, pectinirhombs, or epispires (Fig. 5G). The imperforate extraxial region forms the aboralmost part of the body wall, lacks apertures, and is sometimes modified into an attachment pad or peduncle (Fig. 5H; Mooi & David, 1998; David & Mooi, 1999; David et al., 2000).

The empirically derived precepts of the EAT fuse modern biological and paleontological data to provide a toolkit in identifying two main types of feeding appendages in Paleozoic echinoderms (Mooi & David, 1998; David & Mooi, 1999; David et al., 2000). (1) Brachioles, or 'axial arms', are feeding appendages consisting entirely of axial elements (biserial floor plates plus cover plates), representing free, erect ambulacra associated only with the hydrocoel (Fig. 5D; David & Mooi, 1999; David et al., 2000; Mooi et al., 2005; Guensburg & Sprinkle, 2007; Guensburg et al., 2010 & 2020). These structures, identified only in blastozoans, are derived features supporting monophyly of that group (Sprinkle, 1973; David & Mooi,



**Figure 5.** Interpretation of echinoderm body wall homologies based on the EAT (Mooi et al., 1994 & 2005; David & Mooi, 1999; Mooi & David, 1998 & 2008; Guensburg et al., 2020). **A-C.** Diagrammatic views of three successive stages illustrating the early development of the rudiment in echinoderm larvae (redrawn from Mooi et al., 2005; Mooi & David, 2008). **A.** Bilateral larval stage with three paired coeloms. **B.** Development of the hydrocoel as an open circumesophageal torus with five primary lobes. **C.** Later stage with hydrocoel forming closed circumesophageal ring and interacting with the left somatocoel to form the rudiment (outlined by a dashed line), with five primary lobes. **D-F.** Diagrammatic cross-sections through the three main types of echinoderm appendages. **D.** Brachiole of an early blastozoan (e.g. *Gogia*), with all skeletal elements (floor plates and cover plates) belonging to axial region of the body wall (redrawn from Mooi et al., 2005). **E.** Arm of an earliest, mid-Tremadocian *Titanocrinus*-like crinoid illustrating the plesiomorphic condition in crinoids (redrawn from Guensburg et al., 2020). These appendages are outgrowths of the entire body wall, thus containing skeletal elements of axial (cover plates, floor plates), perforate (unorganized lateral plates), and imperforate extraxial origins (brachials). In later forms, lateral extraxial plates are lost (e.g., *Aethocrinus*, *Athenacrinus*). Floor plates are not calcified in any Floian or younger crinoids. **F.** Schematic view of a crinoid-like stem. All skeletal elements belong to the imperforate extraxial part of the body wall. **G-H.** Interpretation of *Stromatocystites pentangularis* (edrioasteroid-like form), Cambrian Series 3, Czech Republic. **G.** Oral surface. **H.** Aboral surface.

1999; David et al., 2000; Guensburg & Sprinkle, 2007; Nardin et al., 2009 & 2017; Guensburg et al., 2010 & 2020; Lefebvre et al., 2015). (2) 'True arms' (including branches, such as pinnules), are composite feeding structures made of extensions of the entire body, therefore containing components of three coelomic extensions that constitute the body cavity of adult echinoderms (hydrocoel, left, and right somatocoels). True arms (Fig. 5E) are made of both axial (cover plates and floor plates) and extraxial elements (e.g., brachials), and typify asterozoans and crinoids (e.g., David & Mooi, 1999; David et al., 2000; Guensburg & Sprinkle, 2001 & 2007; Mooi et al., 2005; Guensburg et al., 2010 & 2019).

Contrasting with axial-bearing appendages in that they are not directly involved in food-gathering, extensions of the aboral, imperforate extraxial part of the body are variably expressed among several forms. Pedunculate constructs (Fig. 5F) were acquired independently in several groups of Paleozoic echinoderms, including blastozoans, crinoids, and edrioblastoids (Mooi & David, 1997; Guensburg & Sprinkle, 2001; Nardin et al., 2009; Lefebvre et al., 2015).

The disparate morphologies of carpoids and their various types of appendages and stem-like structures were interpreted using body wall homologies signified by the EAT (Fig. 4F). Mooi & David (1998) were among the first to suggest that the distal part of the stylophoran aulacophore was constructed similarly to a crinoid feeding arm. David et al. (2000) explored this idea with additional data, showing that in the aulacophore, the axial component was reduced to two sets of cover plates and an ambulacral canal borne on the internal surface of extraxial uniserial 'brachials' (Lefebvre, 2003; Lefebvre & Fatka, 2003; Guensburg et al., 2020). This implied that floor plates were not calcified in stylophorans, an interpretation compatible with the description of exceptionally preserved remains of a single ambulacral canal and associated tube feet in Ordovician cornutes (Lefebvre et al., 2019; Saleh et al., 2023), and the fact that crownward crinoids also lacked calcified floor plates (Guensburg et al., 2010 & 2020). The short appendage of solutans, made of ambulacral (axial) skeletal elements (biserial floor plates and cover plates), was interpreted as a brachiole, whereas the homoiosteile was considered a stem-like appendage (David et al., 2000; Peterson et al., 2000; Sprinkle & Guensburg, 2001; Nardin et al., 2009; Noailles et al., 2014; Lefebvre & Leroey-Aubril, 2018). The two anterior grooves radiating from the mouth and protected by axial cover plates suggested that cinctans possessed two brachioles at least partly recumbent on their anterior marginals.

It followed that, as in stylophorans and derived crinoids, floor plates were not calcified in cinctans so that the WVS lies directly on modified thecal plates (marginals), accompanied by cover plates (David et al., 2000; Lefebvre & Fatka, 2003; Nardin et al., 2009). The short cinctan homosteile was interpreted as an extraxial extension. David et al. (2000) suggested that the ctenidium of ctenocystoids consisted of highly modified ambulacral (axial) cover plates associated with two short brachioles, also recumbent on anterior marginals, one on each side of the mouth (Lefebvre & Fatka, 2003). Consequently, carpoids were considered a polyphyletic assemblage, with some assigned to blastozoans (cinctans, ctenocystoids and solutans) and others (stylophorans) more closely related to crinoids (Fig. 4F; David & Mooi, 1999; David et al., 2000; Lefebvre & Fatka, 2003; Sprinkle & Guensburg, 2004; Nardin et al., 2009; Lefebvre et al., 2019; Guensburg et al., 2020). This will be revisited below (see also Mooi et al., 2024).

## Conclusions

The history of the two main approaches in interpreting the paleobiology and phylogenetic position of carpoids demonstrates that regardless of authorship, methodologies (e.g., comparative anatomy, phylogeny) or even sources of information (e.g., embryological, molecular, paleontological), the developed models have consistently produced the same two distinct clusters of results over a century of investigation. All studies based on conceptual concepts proceeding from theory considered the bilaterally symmetric or asymmetric morphologies of carpoids as original. That is, fossils with these morphologies were *de facto* plesiomorphic for the phylum (Figs 2 & 3). The explicit purpose of these approaches was not to find a place for these forms within an existing phylogenetic framework for the phylum by seeking commonalities with other echinoderms, but to emphasize differences that forced them outside of the crownward clades of the phylum. As noted as early as David & Mooi (1999), such concepts allowed carpoids to 'fall out of the tree' to positions as either pre-radial, stem-group echinoderms (e.g., Haeckel, 1896a & b; Bather, 1930; Gee, 2001a; Smith, 2005) or even completely outside of the echinoderm stem group (e.g., Jefferies, 1967).

All empirical studies of early echinoderm morphologies identified carpoids as relatively derived echinoderms that secondarily lost pentaradial symmetry characteristic of the first echinoderms, most likely as an adaptation to a vagile, epibenthic mode of life (Fig. 4). Consequently, carpoids were sometimes

interpreted as closely related to edrioasteroid-like taxa (Cabibet et al., 1959), but they were more often affiliated with blastozoans and/or crinoids (Jaekel, 1918; Spencer, 1938; Haugh & Bell, 1980a & b; Sumrall, 1997; Dzik, 1999; David et al., 2000).

Both approaches have pushed outward the boundaries of knowledge about the earliest echinoderm fossils, with remarkable new material inspiring valuable opportunities to re-examine the concomitant ideas more closely, and with better data. We will turn to these ideas, and especially the nature of these data, in a companion paper (Mooi et al., 2024). The questions that arise from this re-examination go straight to the heart of studies in the origins of the Echinodermata. There are many reasons for this, particularly in the relationship between pentaradiality and divergences therefrom. However, perhaps the most basic question is also the most interesting: what is the necessary and sufficient feature to be a member of the phylum?

### Acknowledgements

The authors are particularly grateful to the two anonymous reviewers, whose constructive comments helped improve the overall quality of the paper. RM was supported by his NSF grant, DEB 2036298. This paper is a contribution to the International Geoscience Programme (IGCP) Project 735 "Rocks and the Rise of Ordovician Life" (Rocks n'ROL). BL was supported by the project ECO-BOOST of the French National Research Agency (ANR-22-CE01-003). CD, BL and MN were also funded by the PHC Barrande (Campus France Programme, project n°49290RD).

### References

Aldridge R.J., Hou X.G., Siveter D.J. & Gabbott S.E. 2007. The systematics and phylogenetic relationships of vetulicolians. *Palaeontology*, 50: 131-168. Doi: [10.1111/j.1475-4983.2006.00606.x](https://doi.org/10.1111/j.1475-4983.2006.00606.x)

Barrande J. 1887. *Système Silurien du centre de la Bohême. 1ère Partie. Recherches paléontologiques. Volume 7. Classe des Echinodermes. Ordre des Cystidées*. Gerhard: Leipzig and Řívnáč: Prague. 233 pp.

Bather F.A. 1899. A phylogenetic classification of the Pelmatozoa. *Report of the British Association for the Advancement of Science (D)*, 1898: 916-923.

Bather F.A. 1913. Caradocian Cystidea from Girvan. *Transactions of the Royal Society of Edinburgh*, 49: 359-529. Doi: [10.1017/S0080456800003999](https://doi.org/10.1017/S0080456800003999)

Bather F.A. 1926. *Cothurnocystis*: a study in adaptation. *Paläontologische Zeitschrift*, 7: 1-12. Doi: [10.1007/BF03161542](https://doi.org/10.1007/BF03161542)

Bather F.A. 1930. A class of Echinodera without trace of radiate symmetry. *Archivio Zoologico Italiano*, 14: 431-439.

Bather F.A., Gregory J.W. & Goodrich E.S. 1900. Part III, the Echinodermata. In: *A Treatise on Zoology* (E.R. Lankester Ed.), pp. 1-344. A & C. Black: London.

Bell B.M. 1976. A study of North American Edrioasteroidea. *New York State Museum and Science Service Memoir*, 21: 1-447.

Bell F.J. 1891. On the arrangement and inter-relations of the classes of the Echinodermata. *Annals and Magazine of Natural History*, 8: 206-215. Doi: [10.1080/00222939109460422](https://doi.org/10.1080/00222939109460422)

Bernard F. 1895. *Éléments de Paléontologie*. Baillière: Paris. 1168 pp.

Billings E. 1858. On the Cystideae of the Lower Silurian rocks of Canada: Canadian Organic Remains. *Geological Survey of Canada*, 3: 9-74. Doi: [10.4095/222578](https://doi.org/10.4095/222578)

Bottjer D.J., Davidson E.H., Peterson K.J. & Cameron R.A. 2006. Paleogenomics of echinoderms. *Science*, 314: 956-960. Doi: [10.1126/science.1132310](https://doi.org/10.1126/science.1132310)

Breimer A. & Macurda D.B. 1972. The phylogeny of the fissiculate blastoids. *Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen*, 26: 1-390.

Bromham L.D. & Degnan B.N. 1999. Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. *Evolution & Development*, 1: 166-171. Doi: [10.1046/j.1525-142x.1999.99026.x](https://doi.org/10.1046/j.1525-142x.1999.99026.x)

Butterfield N.J. 2003. Exceptional fossil preservation and the Cambrian Explosion. *Integrative and Comparative Biology*, 43: 166-177. Doi: [10.1093/icb/43.1.166](https://doi.org/10.1093/icb/43.1.166)

Byrne M., Martinez P. & Morris V. 2016. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. *Evolution & Development*, 18: 137-143. Doi: [10.1111/ede.12172](https://doi.org/10.1111/ede.12172)

Cabibet J., Termier H. & Termier G. 1959. Les échinodermes mésocambriens de la Montagne Noire (Sud de la France). *Annales de Paléontologie*, 44: 281-294.

Cameron C.B., Garey J.R. & Swalla B.J. 2000. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. *Proceedings of the National Academy of Sciences*, 97: 4469-4474. Doi: [10.1073/pnas.97.9.4469](https://doi.org/10.1073/pnas.97.9.4469)

Caron J.B., Conway Morris S. & Shu D. 2010. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. *PloS One*, 5: e9586: 1-13. Doi: [10.1371/journal.pone.0009586](https://doi.org/10.1371/journal.pone.0009586)

Caster K.E. 1952. Concerning *Enoploura* of the Upper Ordovician and its relation to other carpoid Echinodermata. *Bulletins of American Paleontology*, 34: 1-47.

Caster K.E. 1983. A new Silurian carpoid echinoderm from Tasmania and a revision of the Allancytiidae. *Alcheringa*, 7: 321-335. Doi: [10.1080/03115518308619615](https://doi.org/10.1080/03115518308619615)

Caster K.E. & Eaton J.R. 1956. Microstructure of the plates in the carpoid echinoderm *Paranacystis*. *Journal of Paleontology*, 30: 611-614.

Chauvel J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. *Mémoires de la Société Géologique et Minéralogique de Bretagne*, 5: 1-286.

Chen J.Y. 2009. The sudden appearance of diverse animal body plans during the Cambrian explosion. *International Journal of Developmental Biology*, 53: 733-751. Doi: [10.1387/ijdb.072513cj](https://doi.org/10.1387/ijdb.072513cj)

Clausen S. & Smith A.B. 2005. Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). *Nature*, 438: 351-354. Doi: [10.1038/nature04109](https://doi.org/10.1038/nature04109)

Conway Morris S. 2000. The Cambrian 'explosion': slow fuse or megatonnage? *Proceedings of the National Academy of Sciences*, 97: 4426-4429. Doi: [10.1073/pnas.97.9.4426](https://doi.org/10.1073/pnas.97.9.4426)

Conway Morris S. 2003. The Cambrian 'explosion' of metazoans and molecular biology: would Darwin be satisfied? *International Journal of Developmental Biology*, 47: 505-515. Doi: [10.1387/19](https://doi.org/10.1387/19)

Cripps A.P. 1989. A new stem-group chordate (Cornuta) from the Llandeilo of Czechoslovakia and the cornute-mitrate transition. *Zoological Journal of the Linnean Society*, 96: 49-85. Doi: [10.1111/j.1096-3642.1989.tb01821.x](https://doi.org/10.1111/j.1096-3642.1989.tb01821.x)

Cripps A.P. 1990. A new stem crariate from the Ordovician of Morocco and the search for the sister group of the Craniata. *Zoological Journal of the Linnean Society*, 100: 27-71. Doi: [10.1111/j.1096-3642.1990.tb01860.x](https://doi.org/10.1111/j.1096-3642.1990.tb01860.x)

Cripps A.P. 1991. A cladistic analysis of the cornutes (stem chordates). *Zoological Journal of the Linnean Society*, 102: 333-366. Doi: [10.1111/j.1096-3642.1991.tb00005.x](https://doi.org/10.1111/j.1096-3642.1991.tb00005.x)

Cripps A.P. & Daley P.E.J. 1994. Two cornutes from the Middle Ordovician (Llandeilo) of Normandy, France, and a reinterpretation of *Milonicystis kerforne*. *Palaeontographica Abteilung A*, 232: 99-132. Doi: [10.1127/pala/232/1994/99](https://doi.org/10.1127/pala/232/1994/99)

Daley P.E.J. 1992. The anatomy of the solute *Girvanicystis batheri* (?Chordata) from the Upper Ordovician of Scotland and a new species of *Girvanicystis* from the Upper Ordovician of south Wales. *Zoological Journal of the Linnean Society*, 105: 353-375. Doi: [10.1111/j.1096-3642.1992.tb01233.x](https://doi.org/10.1111/j.1096-3642.1992.tb01233.x)

Daley P.E.J. 1995. Anatomy, locomotion and ontogeny of the solute *Castericystis vali* from the Middle Cambrian of Utah. *Geobios*, 28: 585-615. Doi: [10.1016/S0016-6995\(95\)80214-2](https://doi.org/10.1016/S0016-6995(95)80214-2)

Daley P.E.J. 1996. The first solute which is attached as an adult: a Mid-Cambrian fossil from Utah with echinoderm and chordate affinities. *Zoological Journal of the Linnean Society*, 117: 405-440. Doi: [10.1006/zjls.1996.0044](https://doi.org/10.1006/zjls.1996.0044)

David B. 1993. How to study echinoderms? In: *Echinoderm Studies* (M. Jangoux & J.M. Lawrence eds), pp. 1-80. Balkema: Rotterdam. Doi: [10.1201/9781003072553-1](https://doi.org/10.1201/9781003072553-1)

David B. & Mooi R. 1996. Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. *Comptes Rendus de l'Académie des Sciences, Paris, Sciences de la vie*, 319: 577-584.

David B. & Mooi R. 1998. Major events in the evolution of echinoderms viewed by the light of embryology. In: *Echinoderms: San Francisco* (R. Mooi & M. Telford eds), pp. 21-28. Balkema: Rotterdam.

David B. & Mooi R. 1999. Comprendre les échinodermes: la contribution du modèle extraxial-axial. *Bulletin de la Société Géologique de France*, 170: 91-101.

David B. & Mooi R. 2014. How Hox genes can shed light on the place of echinoderms among the deuterostomes: *EvoDevo*, 5:22: 1-19. Doi: [10.1186/2041-9139-5-22](https://doi.org/10.1186/2041-9139-5-22)

David B. & Néraudeau D. 1994. La symétrie d'ordre cinq des échinodermes. *Revue du Palais de la Découverte*, 221: 69-79.

David B., Lefebvre B., Mooi R. & Parsley R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. *Paleobiology*, 26: 529-555. Doi: [10.1666/0094-8373\(2000\)026<0529:AHEAAF>2.0.CO;2](https://doi.org/10.1666/0094-8373(2000)026<0529:AHEAAF>2.0.CO;2)

Dehm R. 1932. Cystoideen aus dem rheinischen Unterdevon. *Neues Jahrbuch für Mineralogie, Geologie und Paläontologie*, 69: 63-93.

Dehm R. 1934. Untersuchungen an Cystoideen des rheinischen Unterdevons. *Sitzungsberichte Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung*, 1934: 19-43.

De Koninck L.G. 1869. Sur quelques échinodermes remarquables des terrains paléozoïques. *Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-arts de Belgique*, 28: 544-552.

Delpay G. 1941. Mode particulier de nutrition de certains échinodermes: l'ouverture interne de la bouche. *Bulletin de la Société Géologique de France*, 11: 87-95. Doi: [10.2113/gssgbull.S5-XI.1-3.87](https://doi.org/10.2113/gssgbull.S5-XI.1-3.87)

Dominguez P. 1999. The early evolution of echinoderms: the class Ctenocystoidea and its closest relatives revisited. In: *Echinoderm Research 1998* (M.D. Candia Carnevali & F. Bonasoro eds), pp. 263-268. Balkema: Rotterdam.

Dominguez P. 2004. Ctenocystoidea. Sistemática, anatomía, estructura y función de Ctenocystoidea (Echinodermata, Carpoidea) del Paleozoico Inferior. PhD thesis, Universidad Complutense de Madrid, Spain. 538 pp.

Dominguez P., Jacobson A.G. & Jefferies R.P.S. 2002. Paired gill slits in a fossil with a calcite skeleton. *Nature*, 417: 841-844. Doi: [10.1038/nature00805](https://doi.org/10.1038/nature00805)

Dominguez P. & Jefferies R.P.S. 2006a. Placing the carpoid groups within the deuterostomes on molecular and fossil evidence. In: *Programme and Abstracts, Journées Georges Ubags* (B. Lefebvre, B. David, E. Nardin & E. Poty eds), p. 14. Université de Bourgogne: Dijon.

Dominguez P. & Jefferies R.P.S. 2006b. A cladogram for the Deuterostomia based on molecular-biological and fossil evidence. In: *Programme and Abstracts, Journées Georges Ubags* (B. Lefebvre, B. David, E. Nardin & E. Poty eds), pp. 14-15. Université de Bourgogne: Dijon.

Dupichaud C., Lefebvre B., Milne C.H., Mooi R., Nohejlová M., Roch R., Saleh F. & Zamora S. 2023. Solutan echinoderms from the Fezouata Shale Lagerstätte (Lower Ordovician, Morocco): diversity, exceptional preservation, and palaeoecological implications. *Frontiers in Ecology and Evolution*, 11: 1290063. Doi: [10.3389/fevo.2023.1290063](https://doi.org/10.3389/fevo.2023.1290063)

Durham J.W. 1971. The fossil record and the origin of the Deuterostomata. *Proceedings of the North American Paleontological Convention (September 1969)*, H: 1104-1132.

Dzik J. 1999. Evolutionary origin of asymmetry in early metazoan animals. In: *Advances in Biochirality* (G. Palyi, C. Zucchi & L. Caglioti eds), pp. 153-190. Elsevier: Amsterdam. Doi: [10.1016/B978-008043404-9/50012-7](https://doi.org/10.1016/B978-008043404-9/50012-7)

Engle S. 2012. Ultrastructure and development of the body cavities in *Antedon bifida* (Pennant, 1777) (Comatulida, Crinoida). PhD thesis, Freien Universität Berlin, Germany. 174 pp.

Fell H.B. 1965. The early evolution of the Echinozoa. *Breviora, Museum of Comparative Zoology*, 219: 1-17.

Foerste A.F. 1914. Notes on Agelacriniidae and Lepadocystinae, with descriptions of *Thresherodiscus* and *Brockocystis*. *Bulletin of the Scientific Laboratories of Denison University*, 17: 399-487.

Fortey R.A. & Jefferies R.P.S. 1982. Fossils and phylogeny - a compromise approach. In: *Problems of Phylogenetic Reconstruction* (K.A. Joysey & A.E. Friday eds), pp. 197-234. Academic Press: London & New York.

Friedrich W.P. 1993. Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). *Beringeria*, 7: 1-190.

Friedrich W.P. 1995. Neue Nachweise mittelkambrischer Cincta (Carpoidea, Echinodermata) aus Marokko, Sardinien und Süd-Wales. *Beringeria, Special issue*, 2: 255-269.

Furlong R.F. & Holland P.W.H. 2002. Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of Cyclostomes. *Zoological Science*, 19: 593-599.  
Doi: [10.2108/zsj.19.593](https://doi.org/10.2108/zsj.19.593)

Garcia-Bellido D.C., Lee M.S.Y., Edgecombe G.D., Jago J.B., Gehling J.G. & Paterson J.R. 2014. A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group. *BMC Evolutionary Biology*, 14(214): 1-13. Doi: [10.1186/s12862-014-0214-z](https://doi.org/10.1186/s12862-014-0214-z)

Garstang W. 1928. The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. *Quarterly Journal of the Microscopical Society*, 72: 51-187.  
Doi: [10.1242/jcs.s2-72.285.51](https://doi.org/10.1242/jcs.s2-72.285.51)

Gee H. 1996. *Before the Backbone. Views on the Origin of the Vertebrates*. London, Chapman & Hall: London. 346 pp.

Gee H. 2001a. Deuterostome phylogeny: the context of the origin and evolution of the vertebrates. In: *Major Events in Early Vertebrate Evolution. Palaeontology, Phylogeny, Genetics and Development* (P.E. Ahlberg Ed.), pp. 1-14. Taylor & Francis: London.

Gee H. 2001b. On being vetulicolian. *Nature*, 414: 408-409.  
Doi: [10.1038/35106680](https://doi.org/10.1038/35106680)

Gee H. 2006. Careful with that amphioxus. *Nature*, 439: 923-924. Doi: [10.1038/439923a](https://doi.org/10.1038/439923a)

Gil Cid M.D., Domínguez P., Silván Pobes E. & Escribano Ródenas M. 1996. *Bohemiaecystis jefferiesi* n. sp.; primer Cornuta para el Ordovícico español. *Estudios Geológicos*, 52: 313-326. Doi: [10.3989/egeol.96525-6274](https://doi.org/10.3989/egeol.96525-6274)

Gill E.D. & Caster K.E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. *Bulletins of American Paleontology*, 41: 5-71.

Gislén T. 1930. Affinities between the Echinodermata, Enteropneusta and Chordonia. *Zoologiska Bidrag från Uppsala*, 12: 199-304.

Gislén T. 1947. On the Haplozoa and the interpretation of *Peridionites*. *Zoologiska Bidrag från Uppsala*, 25: 402-408.

Greene J.C. 1986. The history of ideas revisited. *Revue de Synthèse*, 107: 201-227. Doi: [10.1007/BF03189040](https://doi.org/10.1007/BF03189040)

Gregory W.K. 1935. Reduplication in evolution. *Quarterly Review of Biology*, 10: 272-290. Doi: [10.1086/394485](https://doi.org/10.1086/394485)

Grobben K. 1924. Theoretische Erörterungen betreffend die phylogenetische Ableitung der Echinodermen. *Sitzungsberichte der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse*, 132: 263-290.

Guensburg T.E. & Sprinkle J. 2000. Ecologic radiation of Cambro-Ordovician echinoderms, In: *The Ecology of the Cambrian Radiation* (A.Y. Zhuravlev & R. Riding eds), pp. 428-444. Columbia University Press: New York.  
Doi: [10.7312/zhr10612-019](https://doi.org/10.7312/zhr10612-019)

Guensburg T.E. & Sprinkle J. 2001. Earliest crinoids: new evidence for the origin of the dominant Paleozoic echinoderms. *Geology*, 29: 131-134.  
Doi: [10.1130/0091-7613\(2001\)029<0131:ECNEFT>2.0.CO;2](https://doi.org/10.1130/0091-7613(2001)029<0131:ECNEFT>2.0.CO;2)

Guensburg T.E. & Sprinkle J. 2007. Phylogenetic implications of the Protocrinidea: blastozoans are not ancestral to crinoids. *Annales de Paléontologie*, 93: 277-290.  
Doi: [10.1016/j.anpal.2007.09.005](https://doi.org/10.1016/j.anpal.2007.09.005)

Guensburg T.E., Mooi R., Sprinkle J., David B. & Lefebvre B. 2010. Pelmatozoan arms from the mid-Cambrian of Australia: bridging the gap between brachioles and brachials? Comment: there is no bridge. *Lethaia*, 43: 432-440.  
Doi: [10.1111/j.1502-3931.2010.00220.x](https://doi.org/10.1111/j.1502-3931.2010.00220.x)

Guensburg T.E., Sprinkle J., Mooi R., Lefebvre B., David B., Roux M. & Derstler K. 2020. *Athenacrinus* n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution. *Journal of Paleontology*, 94: 311-333.  
Doi: [10.1017/jpa.2019.87](https://doi.org/10.1017/jpa.2019.87)

Haeckel E. 1866. *Generelle Morphologie der Organismen*. Georg Reimer: Berlin. 574 pp. Doi: [10.1515/9783110848281](https://doi.org/10.1515/9783110848281)

Haeckel E. 1896a. *Systematische Phylogenie. Zweiter Theil: Systematische Phylogenie der Wirbellose Thiere (Invertebrata)*. Georg Reimer: Berlin. 720 pp.  
Doi: [10.1515/9783111443935](https://doi.org/10.1515/9783111443935)

Haeckel E. 1896b. *Die Amphorideen und Cystoideen. Beiträge zur Morphologie und Phylogenie der Echinodermen*. Engelmann: Leipzig. 179 pp. Doi: [10.5962/bhl.title.11404](https://doi.org/10.5962/bhl.title.11404)

Hall J. 1859. *Natural history of New York, Paleontology. Vol. III, containing descriptions and figures of the organic remains of the Lower Helderburg Group and the Oriskany Sandstone. (Part I, Text)*. Van Benthuysen: Albany. 532 pp.

Haude R. 1995. Echinodermen aus dem Unter-Devon der argentinischen Präkordillere. *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen*, 197: 37-86.  
Doi: [10.1127/njpa/197/1995/37](https://doi.org/10.1127/njpa/197/1995/37)

Haugh B.N. 1973. Water-vascular system of the Crinoidea Camerata. *Journal of Paleontology*, 47: 77-90.

Haugh B.N. 1975a. Digestive and coelomic systems of Mississippian camerata crinoids. *Journal of Paleontology*, 49: 472-493.

Haugh B.N. 1975b. Nervous systems of Mississippian camerata crinoids. *Paleobiology*, 1: 261-272.  
Doi: [10.1017/S0094837300002529](https://doi.org/10.1017/S0094837300002529)

Haugh B.N. & Bell B.M. 1980a. Fossilized viscera in primitive echinoderms. *Science*, 209: 653-657.  
Doi: [10.1126/science.209.4457.653](https://doi.org/10.1126/science.209.4457.653)

Haugh B.N. & Bell B.M. 1980b. Classification schemes. *Studies in Geology, Notes for a Short Course*, 3: 94-105.  
Doi: [10.1017/S0271164800000129](https://doi.org/10.1017/S0271164800000129)

Hecker R.F. 1940. Carpoida, Eocrinidea, i Ophiocistia nizhnego silura Leningradskoy oblasti i Estonii. *Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR*, 9: 5-82.

Hecker R.F. 1964. Klass Carpoida, Karpoidae. In: *Osnovy Paleontologii* (Y.A. Orlov ed), pp. 23-28. Nedra: Moscow.

Heider K. 1912. Über Organverlagerungen bei der Echinodermen-Metamorphose. *Verhandlungen der Deutschen Zoologischen Gesellschaft*, 22: 239-251.

Holland N.D. 1988. The meaning of developmental asymmetry for echinoderm evolution: a new interpretation. In: *Echinoderm Phylogeny and Evolutionary Biology* (C.R.C. Paul & A.B. Smith eds), pp. 13-25. Clarendon Press: Oxford.

Holland N.D. 2005. Chordates. *Current Biology*, 15: R911-R914. Doi: [10.1016/j.cub.2005.11.008](https://doi.org/10.1016/j.cub.2005.11.008)

Hotchkiss F.H.C. 1998. A 'rays-as-appendages' model for the origin of pentamerism in echinoderms. *Paleobiology*, 24: 200-214.  
Doi: [10.1666/0094-8373\(1998\)024\[0200:AMFTOO\]2.3.CO;2](https://doi.org/10.1666/0094-8373(1998)024[0200:AMFTOO]2.3.CO;2)

Jackson R.T. 1912. Phylogeny of the Echini, with a revision of the Paleozoic species. *Boston Society of Natural History, Memoirs*, 7: 1-490. Doi: [10.5962/bhl.title.4630](https://doi.org/10.5962/bhl.title.4630)

Jaekel O. 1901. Ueber Carpoiden; eine neue Classe von Pelmatozoen. *Zeitschrift der Deutschen Geologischen Gesellschaft*, 52: 661-677.

Jaekel O. 1918. Phylogenie und System der Pelmatozoen.

*Paläontologische Zeitschrift*, 3: 1-124.  
Doi: [10.1007/BF03190413](https://doi.org/10.1007/BF03190413)

Janies D. 2001. Phylogenetic relationships of extant echinoderm classes. *Canadian Journal of Zoology*, 79: 1232-1250.  
Doi: [10.1139/z00-215](https://doi.org/10.1139/z00-215)

Jefferies R.P.S. 1967. Some fossil chordates with echinoderm affinities. *Symposia of the Zoological Society of London*, 20: 163-208.

Jefferies R.P.S. 1968. The subphylum Calcichordata (Jefferies 1967) primitive fossil chordates with echinoderm affinities. *Bulletin of the British Museum (Natural History) (Geology)*, 16: 243-339. Doi: [10.5962/p.313838](https://doi.org/10.5962/p.313838)

Jefferies R.P.S. 1969. *Ceratocystis perneri* Jaekel - A Middle Cambrian chordate with echinoderm affinities. *Palaeontology*, 12: 494-535.

Jefferies R.P.S. 1973. The Ordovician fossil *Lagynocystis pyramidalis* (Barrande) and the ancestry of amphioxus. *Philosophical Transactions of the Royal Society B*, 265: 409-469. Doi: [10.1098/rstb.1973.0032](https://doi.org/10.1098/rstb.1973.0032)

Jefferies R.P.S. 1979. The origin of chordates - A methodological essay. In: *The Origin of Major Invertebrate Groups* (M.R. House Ed.), pp. 443-477. Academic Press: London & New York.

Jefferies R.P.S. 1981. In defence of the calcichordates. *Zoological Journal of the Linnean Society*, 73: 351-396.  
Doi: [10.1111/j.1096-3642.1981.tb01601.x](https://doi.org/10.1111/j.1096-3642.1981.tb01601.x)

Jefferies R.P.S. 1986. *The ancestry of the vertebrates*. British Museum (Natural History) London, 376 pp.

Jefferies R.P.S. 1988. How to characterize the Echinodermata - Some implications of the sister-group relationship between echinoderms and chordates. In: *Echinoderm Phylogeny and Evolutionary Biology*. (C.R.C. Paul & A.B. Smith eds), pp. 3-12. Clarendon Press: Oxford.

Jefferies R.P.S. 1990. The solute *Dendrocystoides scoticus* from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. *Palaeontology*, 33: 631-679.

Jefferies R.P.S. 1991. Two types of bilateral symmetry in the Metazoa: chordate and bilaterian. In: *Biological Asymmetry and Handedness* (G.R. Bock & J. Marsch eds), pp. 94-127. Wiley: Chichester. Doi: [10.1002/9780470514160.ch7](https://doi.org/10.1002/9780470514160.ch7)

Jefferies R.P.S. 1994. The echinoderm stem-group. In: *Echinoderms through Time* (B. David, A. Guille, J.P. Féral & M. Roux eds), p. 165. Balkema: Rotterdam.  
Doi: [10.1201/9781003077831-28](https://doi.org/10.1201/9781003077831-28)

Jefferies R.P.S. 1997. How chordates and echinoderms separated from each other and the problem of dorso-ventral inversion. *Paleontological Society Papers*, 3: 249-266.  
Doi: [10.1017/S1089332600000280](https://doi.org/10.1017/S1089332600000280)

Jefferies R.P.S. 2001a. Chordate and vertebrate body plans. *Encyclopedia of Life Sciences*, 0001818: 1-6.  
Doi: [10.1038/npg.els.0001818](https://doi.org/10.1038/npg.els.0001818)

Jefferies R.P.S. 2001b. The origin and early fossil history of the chordate acustico-lateralis system, with remarks on the reality of the echinoderm-hemichordate clade. In: *Major Events in Early Vertebrate Evolution, Palaeontology, Phylogeny, Genetics, and Development* (P.E. Ahlberg Ed.), pp. 40-66. Taylor & Francis: London.

Jefferies R.P.S. & Jacobson A.G. 1998. An episode in the ancestry of vertebrates: from mitrate to crown-group craniate. *Journal of Integrative Biology*, 1: 115-132.  
Doi: [10.1002/\(SICI\)1520-6602\(1998\)1:4<115:AID-INBI>3.0.CO;2-0](https://doi.org/10.1002/(SICI)1520-6602(1998)1:4<115:AID-INBI>3.0.CO;2-0)

Jefferies R.P.S. & Lewis D.N. 1978. The English Silurian fossil *Placocystites forbesianus* and the ancestry of the vertebrates. *Philosophical Transactions of the Royal Society B*, 282: 205-323. Doi: [10.1098/rstb.1978.0013](https://doi.org/10.1098/rstb.1978.0013)

Jefferies R.P.S. & Prokop R.J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. *Biological Journal of the Linnean Society*, 4: 69-115. Doi: [10.1111/j.1095-8312.1972.tb00691.x](https://doi.org/10.1111/j.1095-8312.1972.tb00691.x)

Jefferies R.P.S., Brown N.A. & Daley P.E.J. 1996. The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. *Acta Zoologica (Stockholm)*, 77: 101-122.  
Doi: [10.1111/j.1463-6395.1996.tb01256.x](https://doi.org/10.1111/j.1463-6395.1996.tb01256.x)

Jell P.A. & Sprinkle J. 2021. Revision of Whitehouse's eocrinoids *Peridionites* and *Cymbionites*, with description of the associated fauna including two new echinoderm genera, lower Middle Cambrian Thorntonia Limestone, northwestern Queensland, *Alcheringa*, 45: 1-55.  
Doi: [10.1080/03115518.2021.1913512](https://doi.org/10.1080/03115518.2021.1913512)

Kolata D.R., Frest T.J. & Mapes R.H. 1991. The youngest carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. *Journal of Paleontology*, 65: 844-855. Doi: [10.1017/S0022336000037811](https://doi.org/10.1017/S0022336000037811)

Kondo M. & Akasaka K. 2012. Current status of echinoderm genome analysis - What do we know? *Current Genomics*, 13: 134-143. Doi: [10.2174/138920212799860643](https://doi.org/10.2174/138920212799860643)

Lefebvre B. 2003. Functional morphology of stylophoran echinoderms. *Palaeontology*, 46: 511-555.  
Doi: [10.1111/1475-4983.00309](https://doi.org/10.1111/1475-4983.00309)

Lefebvre B. & Fatka O. 2003. Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 195: 73-97.  
Doi: [10.1016/S0031-0182\(03\)00303-1](https://doi.org/10.1016/S0031-0182(03)00303-1)

Lefebvre B. & Leroosey-Aubril R. 2018. Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA. *Geological Magazine*, 155: 1190-1204.  
Doi: [10.1017/S0016756817000152](https://doi.org/10.1017/S0016756817000152)

Lefebvre B. & Vizcaíno D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the Order Cornuta Jaekel 1901. *Geobios*, 32: 421-458.  
Doi: [10.1016/S0016-6995\(99\)80019-9](https://doi.org/10.1016/S0016-6995(99)80019-9)

Lefebvre B., Sumrall C.D., Shroat-Lewis R.A., Reich M., Webster G.D., Hunter A.W., Nardin E., Rozhnov S.V., Guensburg T.E., Touzeau A., Noailles F. & Sprinkle J. 2013. Palaeobiogeography of Ordovician echinoderms. In: *Early Palaeozoic Biogeography and Palaeogeography* (D.A.T. Harper & T. Servais eds). Geological Society, London, *Memoirs*, 38: 173-198. Doi: [10.1144/M38.14](https://doi.org/10.1144/M38.14)

Lefebvre B., Nardin E. & Fatka O. 2015. Body wall homologies in basal blastozoans. *Cuadernos del Museo Geominero*, 19: 87-93.

Lefebvre B., Guensburg T.E., Martin E.L.O., Mooi R., Nardin E., Nohejlová, M., Saleh F., Kouraïss K., El Hariri K. & David B. 2019. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. *Geobios*, 52: 27-36.  
Doi: [10.1016/j.geobios.2018.11.001](https://doi.org/10.1016/j.geobios.2018.11.001)

Lefebvre B., Nohejlová M., Martin E.L.O., Kašička L., Zicha O. & Gutiérrez-Marcos J.C. 2022. New Middle and Late Ordovician cornute stylophorans (Echinodermata) from Morocco and other peri-Gondwanan areas. In: *The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota*,

Morocco (A.W. Hunter, J.J. Álvaro, B. Lefebvre, P. Van Roy & S. Zamora eds). *The Geological Society, London, Special Publications*, 485: 345-522. Doi: [10.1144/SP485-2021-99](https://doi.org/10.1144/SP485-2021-99)

Littlewood D.T. 1995. Echinoderm class relationships revisited. In: *Echinoderm Research 1995* (R.H. Emson, A.B. Smith & A.C. Campbell eds), pp. 19-27. Balkema: Rotterdam.

Littlewood D.T., Smith A.B., Clough K.A. & Emson R.H. 1997. The interrelationships of the echinoderm classes: morphological and molecular evidence. *Biological Journal of the Linnean Society of London*, 61: 409-438. Doi: [10.1006/bijl.1996.0131](https://doi.org/10.1006/bijl.1996.0131)

Martí Mus M. 2002. The Ordovician cornute *Flabelliscystis rushtonii* n. gen. n. sp. (Stylophora, Echinodermata) and its phylogenetic position within the group Cornuta. *Paläontologische Zeitschrift*, 76: 99-116. Doi: [10.1007/BF02988189](https://doi.org/10.1007/BF02988189)

Matsumoto H. 1929. Outline of a classification of Echinodermata. *Science Reports of the Tohoku Imperial University, Geology*, 13: 27-33.

McMenamin M.A.S. 2019. Cambrian chordates and vetulicolians. *Geosciences*, 9:354: 1-24. Doi: [10.3390/geosciences9080354](https://doi.org/10.3390/geosciences9080354)

Meek F.B. 1872. Descriptions of new species of fossils from the Cincinnati Group of Ohio. *American Journal of Science and Arts*, 3: 423-428. Doi: [10.2475/ajs.s3-3.18.423](https://doi.org/10.2475/ajs.s3-3.18.423)

Metschnikoff V.E. 1881. Über die systematische Stellung von *Balanoglossus*. *Zoologische Anzeiger*, 4: 139-157.

Miller S.A. 1889. *North American geology and palaeontology for the use of amateurs, students, and scientists*. Press of Western Methodist Book Concern: Cincinnati. 793 pp. Doi: [10.5962/bhl.title.40666](https://doi.org/10.5962/bhl.title.40666)

Miller S.A. & Gurley F.E. 1894. New genera and species of Echinodermata. *Bulletin of the Illinois State Museum of Natural History*, 5: 5-53. Doi: [10.5962/bhl.title.141641](https://doi.org/10.5962/bhl.title.141641)

Mooi R. 2001. Not all written in stone: interdisciplinary syntheses in echinoderm paleontology. *Canadian Journal of Zoology*, 79: 1209-1231. Doi: [10.1139/cjz-79-7-1209](https://doi.org/10.1139/cjz-79-7-1209)

Mooi R. & David B. 1997. Skeletal homologies of echinoderms. *Paleontological Society Papers*, 3: 305-335. Doi: [10.1017/S1089332600000310](https://doi.org/10.1017/S1089332600000310)

Mooi R. & David B. 1998. Evolution within a bizarre phylum: homologies of the first echinoderms. *American Zoologist*, 38: 965-974. Doi: [10.1093/icb/38.6.965](https://doi.org/10.1093/icb/38.6.965)

Mooi R. & David B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. *American Zoologist*, 40: 326-339. Doi: [10.1093/icb/40.3.326](https://doi.org/10.1093/icb/40.3.326)

Mooi R. & David B. 2008. Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. *Annual Review of Ecology, Evolution, and Systematics*, 39: 43-62. Doi: [10.1146/annurev.ecolsys.39.110707.173521](https://doi.org/10.1146/annurev.ecolsys.39.110707.173521)

Mooi R., David B. & Marchand D. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: *Echinoderms Through Time* (B. David, A. Guille, J.P. Féral & M. Roux eds), pp. 87-95. Balkema: Rotterdam. Doi: [10.1201/9781003077831-15](https://doi.org/10.1201/9781003077831-15)

Mooi R., David B. & Wray G.A. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. *Evolution and Development*, 7: 542-555. Doi: [10.1111/j.1525-142X.2005.05058.x](https://doi.org/10.1111/j.1525-142X.2005.05058.x)

Mooi R., Lefebvre B., Guensburg T.E., Nohejlová M. & Dupichaud C. 2024. Approaches to understanding echinoderm origins. Part 2: Questioning conceptual models. *Cahiers de Biologie Marine*, 65: .

Müller J. 1848. Über die Larven und die Metamorphose der Ophiuren und Seeigel. *Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin*, 1846: 273-312.

Müller J. 1850. Über die Larven und die Metamorphose der Echinodermen. *Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin*, 1848: 75-109.

Müller J. 1853. Über den allgemeinen Plan in der Entwicklung der Echinodermen. *Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin*, 1852: 25-109.

Nanglu K., Cole S.R., Wright D.F. & Souto C. 2022. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. *Biological Reviews*, 98: 316-351. Doi: [10.1111/brv.12908](https://doi.org/10.1111/brv.12908)

Nardin E., Lefebvre B., David B. & Mooi R. 2009. La radiation des échinodermes au Paléozoïque inférieur, l'exemple des blastozoaires. *Comptes-Rendus Palevol*, 8: 179-188. Doi: [10.1016/j.crpv.2008.09.004](https://doi.org/10.1016/j.crpv.2008.09.004)

Nardin E., Lefebvre B., Fátka O., Nohejlová M., Kašička L., Šinágl M. & Szabad M. 2017. Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic. *Journal of Paleontology*, 91: 672-684. Doi: [10.1017/jpa.2016.157](https://doi.org/10.1017/jpa.2016.157)

Neumayr M. 1889. *Die Stämme des Thierreiches. Wirbellose Thiere*. Tempsky: Vienna & Prague. 603 pp.

Nichols D. 1967. The origin of echinoderms. *Symposia of the Zoological Society of London*, 20: 209-229.

Nichols D. 1972. The water-vascular system in living and fossil echinoderms. *Palaeontology*, 15: 519-538.

Noailles F., Lefebvre B. & Kašička L. 2014. A probable case of heterochrony in the solutan *Dendrocystites* Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938. *Bulletin of Geosciences*, 89: 451-476. Doi: [10.3140/bull.geosci.1475](https://doi.org/10.3140/bull.geosci.1475)

Northcutt R.G. 2005. The new head hypothesis revisited. *Journal of Experimental Zoology (Molecular and Developmental Evolution)*, 304B: 274-297. Doi: [10.1002/jez.b.21063](https://doi.org/10.1002/jez.b.21063)

Ou Q., Conway Morris S., Han J., Zhang Z., Liu J., Chen A., Zhang X. & Shu D. 2012. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes. *BMC Biology*, 10: 81: 1-14. Doi: [10.1186/1741-7007-10-81](https://doi.org/10.1186/1741-7007-10-81)

Parsley R.L. 1988. Feeding and respiratory strategies in Stylophora. In: *Echinoderm Phylogeny and Evolutionary Biology* (C.R.C. Paul & A.B. Smith eds), pp. 347-361. Clarendon Press: Oxford.

Parsley R.L. 1991. Review of selected North American mitrate stylorophans (Homalozoa: Echinodermata). *Bulletins of American Paleontology*, 100: 5-57.

Parsley R.L. 1997. The echinoderm classes Stylophora and Homioistelea: non Calcichordata. *Paleontological Society Papers*, 3: 225-248. Doi: [10.1017/S1089332600000279](https://doi.org/10.1017/S1089332600000279)

Patterson C. 1982. Morphological characters and homology. In: *Problems of Phylogenetic Reconstruction* (K.A. Joysey & A.E. Friday eds), pp. 21-74. Academic Press: London & New York.

Paul C.R.C. 1977. Evolution of primitive echinoderms. In: *Patterns of Evolution as Illustrated in the Fossil Record* (A. Hallam Ed.), pp. 123-158. Elsevier: Amsterdam. Doi: [10.1016/S0920-5446\(08\)70325-X](https://doi.org/10.1016/S0920-5446(08)70325-X)

Paul C.R.C. 1990. Thereby hangs a tail. *Nature*, 348: 680-681. Doi: [10.1038/348680d0](https://doi.org/10.1038/348680d0)

Paul C.R.C. & Smith A.B. 1984. The early radiation and phylogeny of echinoderms. *Biological Reviews*, 59: 443-481. Doi: [10.1111/j.1469-185X.1984.tb00411.x](https://doi.org/10.1111/j.1469-185X.1984.tb00411.x)

Peterson K.J. & Eernisse D.J. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. *Evolution & Development*, 3: 170-205. Doi: [10.1046/j.1525-142x.2001.003003170.x](https://doi.org/10.1046/j.1525-142x.2001.003003170.x)

Peterson K.J., Arenas-Mena C. & Davidson E.H. 2000. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. *Evolution & Development*, 2: 93-101. Doi: [10.1046/j.1525-142x.2000.00042.x](https://doi.org/10.1046/j.1525-142x.2000.00042.x)

Philip G.M. 1979. Carpoids - Echinoderms or chordates? *Biological Reviews*, 54: 439-471. Doi: [10.1111/j.1469-185X.1979.tb00845.x](https://doi.org/10.1111/j.1469-185X.1979.tb00845.x)

Pompeckj J.F. 1896. Die Fauna des Cambrium von Tejřovic und Skrej in Böhmen. *Jahrbuch der Kaiserlich Königlichen Geologischen Reichsanstalt*, 45: 495-614.

Prado C. de, Verneuil E., de & Barrande J. 1860. Sur l'existence de la faune primordiale de la chaîne cantabrique. *Bulletin de la Société Géologique de France*, 17: 516-554.

Rahman I.A. & Clausen S. 2009. Re-evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). *Journal of Systematic Palaeontology*, 7: 413-426. Doi: [10.1017/S1477201909990046](https://doi.org/10.1017/S1477201909990046)

Rahman I.A. & Zamora S. 2009. The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. *Zoological Journal of the Linnean Society*, 157: 420-432. Doi: [10.1111/j.1096-3642.2008.00517.x](https://doi.org/10.1111/j.1096-3642.2008.00517.x)

Rahman I.A. & Zamora S. 2024. Origin and early evolution of echinoderms. *Annual Review of Earth and Planetary Sciences*, 52: 10.1-10.26. Doi: [10.1146/annurev-earth-031621-113343](https://doi.org/10.1146/annurev-earth-031621-113343)

Rahman I.A., Jefferies R.P.S., Südkamp W.H. & Smith R.D.A. 2009. Ichnological insights into mitrate palaeobiology. *Palaeontology*, 52: 127-138. Doi: [10.1111/j.1475-4983.2008.00838.x](https://doi.org/10.1111/j.1475-4983.2008.00838.x)

Régnell G. 1945. Non-crinoid Pelmatozoa from the Paleozoic of Sweden. *Meddelanden från Lunds Geologisk-Mineralogiska Institution*, 108: 1-255.

Romer A.S. 1967. Major steps in vertebrate evolution. *Science*, 158: 1629-1637. Doi: [10.1126/science.158.3809.1629](https://doi.org/10.1126/science.158.3809.1629)

Romer A.S. 1972. The vertebrate as a dual animal-somatic and visceral. *Evolutionary Biology*, 6: 121-156. Doi: [10.1007/978-1-4684-9063-3\\_5](https://doi.org/10.1007/978-1-4684-9063-3_5)

Rozhnov S.V. & Jefferies R.P.S. 1996. A new stem-chordate solute from the Middle Ordovician of Estonia. *Geobios*, 29: 91-109. Doi: [10.1016/S0016-6995\(96\)80074-X](https://doi.org/10.1016/S0016-6995(96)80074-X)

Ruta M. 1997. A new mitrate from the Lower Ordovician of southern France. *Palaeontology*, 40: 363-383.

Ruta M. 1999. Brief review of the stylophoran debate. *Evolution & Development*, 1: 123-135. Doi: [10.1046/j.1525-142x.1999.99008.x](https://doi.org/10.1046/j.1525-142x.1999.99008.x)

Ruta M. & Bartels C. 1998. A redescription of the anomalocystitid mitrate *Rhenocystis latipedunculata* from the Lower Devonian of Germany. *Palaeontology*, 41: 771-806.

Ruta M. & Theron J.N. 1997. Two Devonian mitrates from South Africa. *Palaeontology*, 40: 201-243.

Saleh F., Lefebvre B., Dupichaud C., Martin E.L.O., Nohejlová M. & Spaccesi L. 2023. Skeletal elements controlled soft-tissue preservation in echinoderms from the Early Ordovician Fezouata Biota. *Geobios*, 81: 51-66. Doi: [10.1016/j.geobios.2023.08.001](https://doi.org/10.1016/j.geobios.2023.08.001)

Schmidt H. 1951. Whitehouse's Ur-Echinodermen aus dem Cambrium Australiens. *Paläontologische Zeitschrift*, 24: 142-145. Doi: [10.1007/BF03044564](https://doi.org/10.1007/BF03044564)

Schroeder R. 1973. Carpoideen aus dem Mittelkambrium Nordspaniens. *Palaeontographica Abteilung A*, 141: 119-142.

Schuchert C. 1904. On Siluric and Devonian Cystidea and *Camarocrinus*. *Smithsonian Miscellaneous Collection (Quarterly Issue)*, 47: 201-272.

Shu D. 2005. On the phylum Veturicola. *Chinese Science Bulletin*, 50: 2342-2354. Doi: [10.1007/BF03183746](https://doi.org/10.1007/BF03183746)

Shu D.G., Conway Morris S., Han J., Chen L., Zhang X.L., Zhang Z.F., Liu H.Q., Li Y. & Liu J.N. 2001. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). *Nature*, 414: 419-424. Doi: [10.1038/35106514](https://doi.org/10.1038/35106514)

Shu D., Conway Morris S., Han J., Zhang Z.F. & Liu J.N. 2004. Ancestral echinoderms from the Chengjiang deposits of China. *Nature*, 430: 422-428. Doi: [10.1038/nature02648](https://doi.org/10.1038/nature02648)

Smith A.B. 1982. The affinities of the Middle Cambrian Haplozoa (Echinodermata). *Alcheringa*, 6: 93-99. Doi: [10.1080/03115518208566989](https://doi.org/10.1080/03115518208566989)

Smith A.B. 1984. Classification of the Echinodermata. *Palaeontology*, 27: 431-459.

Smith A.B. 1988. Patterns of diversification and extinction in Early Palaeozoic echinoderms. *Palaeontology*, 31: 799-828.

Smith A.B. 1992. Echinoderm phylogeny: morphology and molecules approach accord. *Trends in Ecology and Evolution*, 7: 224-229. Doi: [10.1016/0169-5347\(92\)90049-H](https://doi.org/10.1016/0169-5347(92)90049-H)

Smith A.B. 2005. The pre-radial history of echinoderms. *Geological Journal*, 40: 255-280. Doi: [10.1002/gj.1018](https://doi.org/10.1002/gj.1018)

Smith A.B. 2008. Deuterostomes in a twist: the origins of a radical new body plan. *Evolution and Development*, 10: 493-503. Doi: [10.1111/j.1525-142X.2008.00260.x](https://doi.org/10.1111/j.1525-142X.2008.00260.x)

Smith A.B. & Zamora S. 2009. Rooting phylogenies of problematic fossil taxa: a case study using cinctans (stem-group echinoderms). *Palaeontology*, 52: 803-821. Doi: [10.1111/j.1475-4983.2009.00880.x](https://doi.org/10.1111/j.1475-4983.2009.00880.x)

Smith A.B. & Zamora S. 2013. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. *Proceedings of the Royal Society B*, 280: 20131197: 1-6. Doi: [10.1098/rspb.2013.1197](https://doi.org/10.1098/rspb.2013.1197)

Smith A.B., Zamora S. & Álvaro J.J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. *Nature Communications*, 4:1385: 1-7. Doi: [10.1038/ncomms2391](https://doi.org/10.1038/ncomms2391)

Spencer W.K. 1938. Some aspects of evolution in Echinodermata. In: *Evolution, Essays on Aspects of Evolutionary Biology presented to Professor E.S. Goodrich for his Seventieth Birthday* (G. R. de Beer Ed.), pp. 287-303. Clarendon Press: Oxford.

Sprinkle J. 1973. *Morphology and evolution of blastozoan echinoderms*. Museum of Comparative Zoology Harvard University: Cambridge, Massachusetts. 283 pp. Doi: [10.5962/bhl.title.66379](https://doi.org/10.5962/bhl.title.66379)

Sprinkle J. 1983. Patterns and problems in echinoderm evolution. In: *Echinoderm Studies* (M. Jangoux & J.M. Lawrence eds), pp. 1-18. Balkema: Rotterdam. Doi: [10.1201/9781003079071-1](https://doi.org/10.1201/9781003079071-1)

Sprinkle J. 1992. Radiation of Echinodermata. In: *Origin and Early Evolution of the Metazoa* (J.H. Lipps & P.W. Signor eds), pp. 375-398. Plenum Press: New York. Doi: [10.1007/978-1-4899-2427-8\\_11](https://doi.org/10.1007/978-1-4899-2427-8_11)

Sprinkle J. & Guensburg T.E. 2001. Growing a stalked echinoderm within the Extraxial-Axial Theory. In: *Echinoderms 2000* (M. F. Barker Ed.), pp. 59-65. Swets & Zeitlinger: Lisse.

Sprinkle J. & Guensburg T.E. 2004. Crinozoan, blastozoan, echinozoan, asterozoan, and homalozoan echinoderms. In: *The Great Ordovician Biodiversification Event* (B.D. Webby, F. Paris, M.L. Droser & I.G. Percival eds), pp. 266-280.

Columbia University Press: New York.  
Doi: [10.7312/webb12678-027](https://doi.org/10.7312/webb12678-027)

Sprinkle J. & Wilbur B.C. 2005. Deconstructing helicoplacoids: reinterpreting the most enigmatic Cambrian echinoderms. *Geological Journal*, 40: 281-293. Doi: [10.1002/gj.1015](https://doi.org/10.1002/gj.1015)

Stephenson D.G. 1979. The trimerous stage in echinoderm evolution: an unnecessary hypothesis. *Journal of Paleontology*, 53: 44-48.

Sumrall C.D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. In: *Geobiology of Echinoderms* (J.A. Waters & C.G. Maples eds), pp. 267-288. Paleontological Society Papers, Volume 3. Doi: [10.1017/S1089332600000292](https://doi.org/10.1017/S1089332600000292)

Sumrall C.D., Brochu C.A. & Merck J.W. 2001. Global lability, regional resolution, and majority-rule consensus bias. *Paleobiology*, 27: 254-261. Doi: [10.1666/0094-8373\(2001\)027<0254:GLRRAM>2.0.CO;2](https://doi.org/10.1666/0094-8373(2001)027<0254:GLRRAM>2.0.CO;2)

Swalla B.J. & Smith A.B. 2008. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. *Philosophical Transactions of the Royal Society B*, 363: 1557-1568. Doi: [10.1098/rstb.2007.2246](https://doi.org/10.1098/rstb.2007.2246)

Tatarinov L.P. 2011. Some problems of the origin of the Vertebrata. *Paleontological Journal*, 45: 477-482. Doi: [10.1134/S0031030111040113](https://doi.org/10.1134/S0031030111040113)

Termier G. & Termier H. 1947. Paléontologie marocaine. I. Généralités sur les invertébrés fossiles. *Notes et Mémoires du Service Géologique du Maroc*, 69: 1-391.

Termier H. & Termier G. 1973. Les échinodermes Cincta du Cambrien de la Montagne Noire (France). *Geobios*, 6: 243-265. Doi: [10.1016/S0016-6995\(73\)80019-1](https://doi.org/10.1016/S0016-6995(73)80019-1)

Thoral M. 1935. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. Imprimerie de la Charité, Montpellier. 362 pp.

Ubaghs G. 1961a. Un échinoderme nouveau de la classe des carpoïdes dans l'Ordovicien inférieur du département de l'Hérault (France). *Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, Paris*, 253: 2565-2567.

Ubaghs G. 1961b. Sur la nature de l'organe appelé tige ou pédoncule chez les carpoïdes Cornuta et Mitrata. *Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, Paris*, 253: 2738-2740.

Ubaghs G. 1963. *Cothurnocystis* Bather, *Phyllocystis* Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoïdea) in the uppermost Cambrian of Nevada. *Journal of Paleontology*, 37: 1133-1142.

Ubaghs G. 1968a. General characters of Echinodermata. In: *Treatise on Invertebrate Paleontology, part S, Echinodermata 1(1)* (R.C. Moore Ed.), pp. S3-S60. Geological Society of America: Boulder, & University of Kansas Press: Lawrence.

Ubaghs G. 1968b. Stylophora. In: *Treatise on Invertebrate Paleontology, part S, Echinodermata 1(2)* (R.C. Moore Ed.), pp. S495-S565. Geological Society of America: Boulder, & University of Kansas Press: Lawrence.

Ubaghs G. 1968c. Homostelea. In: *Treatise on Invertebrate Paleontology, part S, Echinodermata 1(2)* (R.C. Moore Ed.), pp. S565-S581. Geological Society of America: Boulder, & University of Kansas Press: Lawrence.

Ubaghs G. 1968d. *Cymbionites* and *Peridionites* - unclassified Middle Cambrian echinoderms. In: *Treatise on Invertebrate Paleontology, part S, Echinodermata 1(2)* (R.C. Moore Ed.), pp. S634-S637. Geological Society of America: Boulder, & University of Kansas Press: Lawrence.

Ubaghs G. 1969. *Les échinodermes carpoïdes de l'Ordovicien inférieur de la Montagne Noire (France)*. Editions du CNRS: Paris. 110 pp.

Ubaghs G. 1971. Diversité et spécialisation des plus anciens échinodermes que l'on connaisse. *Biological Reviews*, 46: 157-200. Doi: [10.1111/j.1469-185X.1971.tb01181.x](https://doi.org/10.1111/j.1469-185X.1971.tb01181.x)

Ubaghs G. 1975. Early Paleozoic echinoderms. *Annual Review of Earth and Planetary Sciences*, 3: 79-98. Doi: [10.1146/annurev.ea.03.050175.000455](https://doi.org/10.1146/annurev.ea.03.050175.000455)

Ubaghs G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchécoslovaquie. *Paläontologische Zeitschrift*, 53: 98-119. Doi: [10.1007/BF02987791](https://doi.org/10.1007/BF02987791)

Ubaghs G. 1981. Réflexions sur la nature et la fonction de l'appendice articulé des carpoïdes Stylophora (Echinodermata). *Annales de Paléontologie*, 67: 33-48.

Ubaghs G. 1983. Echinodermata. Notes sur les échinodermes de l'Ordovicien Inférieur de la Montagne Noire (France). In: *Calymena, Echinodermata et Hyolitha de l'Ordovicien de la Montagne Noire (France méridionale)* (R. Courtefoille, L. Marek, J. Pillet, G. Ubaghs & D. Vizcaíno eds), pp. 33-35. Société d'Etudes Scientifiques de l'Aude: Carcassonne.

Ubaghs G. 1987. Echinoderms nouveaux du Cambrien moyen de la Montagne Noire (France). *Annales de Paléontologie*, 73: 1-27.

Ubaghs G. 1991. Deux Stylophora (Homalozoa, Echinodermata) nouveaux pour l'Ordovicien inférieur de la Montagne Noire (France méridionale). *Paläontologische Zeitschrift*, 65: 157-171. Doi: [10.1007/BF02985781](https://doi.org/10.1007/BF02985781)

Ubaghs G. 1994. Echinoderms nouveaux (Stylophora, Eocrinidea) de l'Ordovicien inférieur de la Montagne Noire (France). *Annales de Paléontologie*, 80: 107-141.

Ubaghs G. 1998. Echinoderms nouveaux du Cambrien supérieur de la Montagne Noire (France méridionale). *Geobios*, 31: 809-829. Doi: [10.1016/S0016-6995\(98\)80111-3](https://doi.org/10.1016/S0016-6995(98)80111-3)

Ubaghs G. & Robison R.A. 1985. A new homostelean and a new eocrinoid from the Middle Cambrian of Utah. *University of Kansas Paleontological Contributions*, 115: 1-24.

Ubaghs G. & Robison R.A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of Western Utah. *University of Kansas Paleontological Contributions*, 120: 1-17.

Valentine J.W. 2004. *On the origin of phyla*. The University of Chicago Press: Chicago & London. 614 pp.

Vinther J., Van Roy P. & Briggs D.E.G. 2008. Machaeridians are Palaeozoic armoured annelids. *Nature*, 451: 185-188. Doi: [10.1038/nature06474](https://doi.org/10.1038/nature06474)

Vinther J., Smith M. P. & Harper D.A.T. 2011. Veturicolians from the Lower Cambrian Sirius Passett Lagerstätte, North Greenland, and the polarity of morphological characters in basal deuterostomes. *Palaeontology*, 54: 711-719. Doi: [10.1111/j.1475-4983.2011.01034.x](https://doi.org/10.1111/j.1475-4983.2011.01034.x)

Wada H. & Satoh N. 1994. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. *Journal of Molecular Evolution*, 38: 41-49. Doi: [10.1007/BF00175494](https://doi.org/10.1007/BF00175494)

Walther J. 1886. Untersuchungen über den Bau der Crinoiden. *Palaeontographica*, 32: 155-199.

Whitehouse F.W. 1941. The Cambrian faunas of north-eastern Australia. Part 4. Early Cambrian echinoderms similar to the larval stages of recent forms. *Memoirs of the Queensland Museum*, 12: 1-28.

Winchell C.J., Sullivan J., Cameron C.B., Swalla B.J. & Mallat

J. 2002. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. *Molecular Biology and Evolution*, 19: 762-776. Doi: [10.1093/oxfordjournals.molbev.a004134](https://doi.org/10.1093/oxfordjournals.molbev.a004134)

Withers T.H. 1926. *Catalogue of the Machaeridia (Turrilepas and its allies) in the Department of Geology*. London, British Museum (Natural History), 99 pp.

Woodward H. 1871. Notes on a new British cystidean. *Geological Magazine*, 8: 71-72. Doi: [10.1017/S0016756800161047](https://doi.org/10.1017/S0016756800161047)

Woodward H. 1880. Notes on the Anomalocystidae, a remarkable family of Cystoidea, found in the Silurian rocks of North America and Britain. *Geological Magazine*, 7: 193-201. Doi: [10.1017/S0016756800147521](https://doi.org/10.1017/S0016756800147521)

Zamora S. & Rahman I.A. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. *Palaeontology*, 57: 1105-1119. Doi: [10.1111/pala.12138](https://doi.org/10.1111/pala.12138)

Zamora S. & Smith A.B. 2008. A new Middle Cambrian stem-group echinoderm from Spain: palaeobiological implications of a highly asymmetric cinctan. *Acta Palaeontologica Polonica*, 53: 207-220. Doi: [10.4202/app.2008.0204](https://doi.org/10.4202/app.2008.0204)

Zamora S., Rahman I.A. & Smith A.B. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. *PLoS ONE*, 7: e38296: 1-11. Doi: [10.1371/journal.pone.0038296](https://doi.org/10.1371/journal.pone.0038296)

Zamora S., Lefebvre B., Álvaro J.J., Clausen S., Elicki O., Fatka O., Jell P., Kouchinsky A., Lin J.P., Nardin E., Parsley R.L., Rozhnov S.V., Sprinkle J., Sumrall C.D., Vizcaíno D. & Smith A.B. 2013. Cambrian echinoderm diversity and palaeobiogeography. In: *Early Palaeozoic Biogeography and Palaeogeography* (D.A.T. Harper & T. Servais eds). *Geological Society, London, Memoirs*, 38: 157-171. Doi: [10.1144/M38.13](https://doi.org/10.1144/M38.13)

Zittel K.A. von. 1900. Sub-Kingdom III. Echinodermata. In: *Text-book of Palaeontology* (C.R. Eastman ed), pp. 122-250. MacMillan: London.

Zittel K.A. von. 1903. *Grundzüge der Paläontologie (Paläozoologie)*. 1. Abteilung: Invertebrata. Oldenbourg: Munich & Berlin. 558 pp. Doi: [10.5962/bhl.title.50145](https://doi.org/10.5962/bhl.title.50145)