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Abstract

We provide a Lyapunov convergence analysis for time-inhomogeneous variable coefficient
stochastic differential equations (SDEs). Three typical examples include overdamped, ir-
reversible drift, and underdamped Langevin dynamics. We first formulate the probability
transition equation of Langevin dynamics as a modified gradient flow of the Kullback-
Leibler divergence in the probability space with respect to time-dependent optimal trans-
port metrics. This formulation contains both gradient and non-gradient directions depend-
ing on a class of time-dependent target distribution. We then select a time-dependent rela-
tive Fisher information functional as a Lyapunov functional. We develop a time-dependent
Hessian matrix condition, which guarantees the convergence of the probability density
function of the SDE. We verify the proposed conditions for several time-inhomogeneous
Langevin dynamics. For the overdamped Langevin dynamics, we prove the O(t−1/2) conver-
gence in L1 distance for the simulated annealing dynamics with a strongly convex potential
function. For the irreversible drift Langevin dynamics, we prove an improved convergence
towards the target distribution in an asymptotic regime. We also verify the convergence
condition for the underdamped Langevin dynamics. Numerical examples demonstrate the
convergence results for the time-dependent Langevin dynamics.
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1. Introduction

Time-inhomogeneous (time-dependent) stochastic dynamics are an essential class of equa-
tions, which are widely used in modeling engineering problems, designing Bayesian sampling
algorithms of a target distribution, and approximating global optimization problems with
applications in machine learning (Chiang et al., 1987; Geman and Hwang, 1986; Ma et al.,
2021; Tang and Zhou, 2021). An important example is the stochastic dynamics from the sim-
ulated annealing method (Cerny, 1985; Kirkpatrick et al., 1983). It finds a global minimizer
of a function with a time-dependent diffusion constant. The diffusion constant converges to
zero when time approaches infinity. Eventually, the solution of stochastic dynamics will be
a global minimizer of such a function. In recent years, general time-dependent stochastic
dynamics have also been designed to maintain desired invariant distributions, such as the
nonreversible Langevin sampler (Duncan et al., 2016, 2017; Zhang et al., 2022). The dis-
cretized stochastic dynamics are useful stochastic algorithms in practice. In these studies,
a key consideration is the rate at which these stochastic dynamics converge to their station-
ary distributions. The convergence analysis can be leveraged to design and refine sampling
algorithms that exhibit faster convergence.

This paper presents the convergence analysis for time-inhomogeneous stochastic dynam-
ics, including three equations: overdamped, nonreversible drift, and underdamped Langevin
dynamics. We use the time-dependent Fisher information as a Lyapunov functional to study
convergence behaviors of the probability density functions of stochastic dynamics. Applying
some convex analysis tools in generalized Gamma calculus (Feng and Li., 2023, 2021), we
derive a time-dependent Hessian matrix condition to characterize convergence behaviors of
time-dependent stochastic dynamics in Theorem 6. Lastly, we present three examples for
the proposed convergence analysis. We first study the Lyapunov analysis of time-dependent
overdamped Langevin dynamics based on the continuous limit of simulated annealing algo-
rithms. When the potential function is strongly convex, we show that the Fisher information
converges at a rate of O(1

t ) when the diffusion coefficient is O( 1
log t), where t > 0 is a time

variable. We then analyze the time-dependent Langevin dynamics with nonreversible drift
and a nondegenerate diffusion matrix. We prove the speed-up of the convergence near the
global minimizer of the potential function. Lastly, we study the convergence analysis for
the inhomogeneous underdamped Langevin dynamics. Several numerical experiments are
provided to justify our theoretical results.

In literature, the convergence study of time-dependent stochastic dynamics is an emerg-
ing area for stochastic algorithms in machine learning (Chizat, 2022). In this direction,
the continuous-time simulated annealing based on time-dependent overdamped Langevin
dynamics was first studied in Geman and Hwang (1986). It was shown in Chiang et al.
(1987); Geman and Hwang (1986) that the correct order of diffusion constant for the time-
dependent Lanvegin dynamics to converge to the global minimum of the objective function
V is of order (log t)−1. Recent works (Chizat, 2022; Monmarché, 2018; Menz et al., 2018;
Tang and Zhou, 2021) have shown polynomial convergence in both L1 distance and tail
probability. The state-dependent overdamped Langevin dynamics version of simulated an-
nealing was studied in Fang et al. (1997); Gao et al. (2020).
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Compared to previous results, we focus on the convergence analysis using time-dependent
Fisher information functional for general time-inhomogeneous Langevin dynamics. This al-
lows us to derive a Hessian matrix condition in establishing the convergence rates. As a
special example, in time-dependent overdamped Langevin dynamics, we obtain a O(t−

1
2 )

convergence in L1 distance under the strongly convex assumption of the potential func-
tion. On the other hand, analysis on the time-dependent Fisher information dissipation in
nonreversible and underdamped Langevin dynamics is still a work in progress. This paper
initializes the convergence analysis of these stochastic dynamics.

The paper is organized as follows. We formulate the main results in sections 2 and 3.
Using the decay of a time-dependent Fisher information functional, we state the condition
for the convergence of general stochastic differential equations. We then present several
examples of convergence analysis. Section 4 provides the detailed convergence analysis
for simulating annealing dynamics with a strongly convex potential function. Section 5
presents the convergence analysis for the Langevin dynamics with an irreversible drift and
nondegenerate diffusion matrices. Section 6 shows the convergence analysis of underdamped
Langevin dynamics. Several numerical examples are provided to verify the convergence
analysis.

2. Setting

In this section, we provide the main setting of this paper. We consider the general time-
dependent stochastic differential equation. We also formulate its Fokker-Planck equation,
for which we develop a time-dependent decomposition of gradient and non-gradient direc-
tions in the probability density space. We then introduce the time-dependent relative Fisher
information functional, which will be used in the convergence analysis of the solution of the
Fokker-Planck equation.

2.1 General setting

Consider degenerate Itô type stochastic differential equations (SDEs) in Rn+m as follows:

dXt = b(t,Xt)dt+
√

2a(t,Xt)dBt. (1)

For m,n ∈ Z+, we assume that a ∈ C∞(R+ × Rn+m;R(n+m)×n) is a degenerate (i.e. rect-
angular) time-dependent diffusion matrix, b ∈ C∞(R+×Rn+m;Rn+m) is a time-dependent
vector field, and Bt is a standard Rn-valued Brownian motion. We denote n as the num-
ber of the columns and n + m as the number of the rows for the diffusion matrix a. In
what follows, we shall assume the rank of diffusion matrix a to be n, and its codimen-
sion to be m. We denote a(t, x)T as the transpose of matrix a(t, x), and a(t, x)a(t, x)T as
the standard matrix multiplication. For i = 1, · · · , n, we denote aTi = (a(t, x)T)i as the
row vectors of a(t, x)T, and a·i = a(t, x)·i as the column vectors of a(t, x), i.e. aT

îi
= aîi,

for î = 1, · · · , n + m. For each row vector aTi ∈ Rn+m with i = 1, · · · , n, we denote
Ai(t, x) :=

∑n+m
î=1

aT
îi

∂
∂xî

as the corresponding vector fields for each row vector aTi . Sim-

ilarly, we denote A0(t, x) :=
∑n+m

î=1
bî(t, x) ∂

∂xî
as the vector field associated to the drift
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term b. In this paper, we assume Hörmander like conditions (Hörmander, 1967) for the
vector fields such that the probability density function p(t, x) for the diffusion process Xt

exists and is smooth. In the current time inhomogeneous setting, such conditions may
include the Hörmander condition (Cattiaux and Mesnager, 2002), weak Hörmander condi-
tion (Höpfner et al., 2017), the UFG (uniformly finitely generated) condition (Cass et al.,
2021), and the restricted Hörmander’s hypothesis (Chaleyat-Maurel and Michel, 1984). De-
note [Ai(t, x),Aj(t, x)], for i, j ∈ {0, · · · , n}, as the Lie bracket of two vector fields. The
Hörmander type condition means that the Lie algebra generated by Ai(t, x), 1 ≤ i ≤ n,
and A0(t, x) + ∂

∂t has full rank. For all (t, x), we assume

Span Lie
{

A0(t, x) +
∂

∂t
,A1(t, x), · · · ,An(t, x)

}
= Rn+m.

Under the above assumptions, p(t, x), which is the probability density function for Xt,
satisfies the following Fokker-Planck equation of the SDE (1),

∂tp(t, x) = −∇ · (p(t, x)b(t, x)) +
n+m∑
i=1

n+m∑
j=1

∂2

∂xi∂xj

((
a(t, x)a(t, x)T

)
ij
p(t, x)

)
, (2)

with the following initial condition

p0(x) = p(0, x), p0 ∈ P .

Here we denote P as a probability density space supported on Rn+m, defined as

P =
{
p ∈ L1(Rn+m) :

∫
Rn+m

p(x)dx = 1, p ≥ 0
}
.

2.2 Time-dependent Gradient and Non-gradient decompositions

To study the convergence of the probability density function p(t, x) towards the invariant
distribution or the reference distribution π(t, x). We make the following decomposition of
Fokker-Planck equation (2). We assume that π(t, x) ∈ C2,2(R+×Rn+m;R) has an explicit
analytical formula. If π(t, x) indeed solves the equation,

−∇x · (π(t, x)b(t, x)) +

n+m∑
i=1

n+m∑
j=1

∂2

∂xi∂xj

((
a(t, x)a(t, x)T

)
ij
π(t, x)

)
= ∂tπ(t, x) = 0,

then π(t, x) = π(x) is the invariant distribution. Otherwise, we use π(t, x) as a reference
distribution for the probability density function p(t, x) at each time t.

The Fokker-Planck equation (2) can be decomposed into a gradient and a non-gradient
part by introducing a non-gradient vector field γ(t, x) : R+ × Rn+m → R. The same
decomposition has been used in Feng and Li. (2021), where the non-gradient vector field
γ(x) does not depend on the time variable. For self-consistency, we show the decomposition
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below for the time-dependent vector fields. We first introduce the following notation, for
t ≥ 0,

∇ ·
(
a(t, x)a(t, x)T

)
=
( n+m∑
j=1

∂

∂xj

(
a(t, x)a(t, x)T

)
ij

)n+m

i=1
∈ Rn+m. (3)

We then have the following decomposition.

Proposition 1 (Decomposition) For the Fokker-Planck equation (2) and a reference
distribution density function π(t, x), we define a non-gradient vector field γ(t, x) : R+ ×
Rn+m → Rn+m as

γ(t, x) :=
(
a(t, x)a(t, x)T

)
∇ log π(t, x)− b(x) +∇ ·

(
a(t, x)a(t, x)T

)
.

Then the Fokker-Planck equation (2) is equivalent to the following equation:

∂tp(t, x) = ∇ ·
(
p(t, x)

(
a(t, x)a(t, x)T

)
∇ log

p(t, x)

π(t, x)

)
+∇ · (p(t, x)γ(t, x)). (4)

Proof The proof is based on a direct calculation. For simplicity of notations, we skip the
variables (t, x) below. We note

n+m∑
i=1

n+m∑
j=1

∂2

∂xi∂xj

((
aaT

)
ij
p
)

=

n+m∑
i=1

∂

∂xi

n+m∑
j=1

∂

∂xj

((
aaT

)
ij
p(t, x)

)

=
n+m∑
i=1

∂

∂xi

n+m∑
j=1

( ∂

∂xj

(
aaT

)
ij
p+

(
aaT

)
ij

∂

∂xj
p
)

=

n+m∑
i=1

∂

∂xi

(
p
∂

∂xj

n+m∑
j=1

(
aaT

)
ij

)
+

n+m∑
i,j=1

∂

∂xi

((
aaT

)
ij

∂

∂xj
p
)

=
n+m∑
i=1

∂

∂xi

(
p
∂

∂xj

n+m∑
j=1

(
a(x)a(x)T

)
ij

)
+

n+m∑
i,j=1

∂

∂xi

((
aaT

)
ij
p
∂

∂xj
log p

)
,

where we used the fact ∂
∂xj

p = p ∂
∂xj

log p. From the definition of γ and the above observation,

we show that the R.H.S. of the Fokker-Planck equation (2) can be written as

−∇ · (pb) +
n+m∑
i=1

n+m∑
j=1

∂2

∂xi∂xj

(
(aaT)ijp

)

=−∇ · (pb) +

n+m∑
i,j=1

∂

∂xi

(
p
∂

∂xj
(aaT)ij

)
+∇ · (p(aaT)∇ log p)

=−∇ · (pb) +
n+m∑
i,j=1

∂

∂xi
·
(
p
∂

∂xj
(aaT)ij

)
+∇ · (p(aaT)∇ log π)

−∇ · (p(aaT)∇ log π) +∇ · (p(aaT)∇ log p)

=∇ ·
(
p(−b+∇ · (aaT) + aaT∇ log π)

)
+∇ · (paaT∇ log

p

π
)

=∇ · (pγ) +∇ ·
(
p(aaT)∇ log

p

π

)
,

5



Feng and Zuo and Li

where we used the definition of γ and the fact that ∇ log p
π = ∇ log p−∇ log π.

Remark 2 The time-dependent hypoelliptic operator −∇ · (paaT∇) is a “modified gradient
operator in the Wasserstein-2 type metric space” (Villani et al., 2009). And the vector
field γ is not a gradient direction (Villani, 2009). Interested readers may look for relevant
discussions in the time-homogenous case (Feng and Li., 2021).

2.3 Lyapunov functionals

To measure the distance between p(t, x) and π(t, x), as well as the corresponding convergence
rate towards π(t, x), we define the Kullback–Leibler (KL) divergence

DKL(p(t, ·)‖π(t, ·)) :=

∫
Rn+m

p(t, x) log
p(t, x)

π(t, x)
dx. (5)

For t ≥ 0, and a diffusion matrix a(t, x) ∈ C∞(R+×Rn+m;R(n+m)×n) associated with SDE
(1) with rank n, we introduce a complementary matrix, defined as,

z(t, x) ∈ C∞(R+ × Rn+m;R(n+m)×m), (6)

such that, for all t ≥ 0,

Rank
(
a(t, x)a(t, x)T + z(t, x)z(t, x)T

)
= n+m, for all x ∈ Rn+m. (7)

Adapted from the previous notation, we denote aT and zT as the transpose of matrices
a(t, x) and z(t, x). We denote {aTi }ni=1 and {zTj }mj=1 as the row vectors of aT and zT. Here

the matrix z is selected in a way such that the full rank of aaT (with rank n) and zzT (with
rank m) equals to n + m. Thus, the matrix aaT + zzT can be used as a non-degenerate
metric for the entire space Rn+m. The condition (7) means that the linear span of the row
vectors {aTi }ni=1 and {zTj }mj=1 generate the entire space Rn+m for all t ≥ 0. Furthermore, to
ensure that the Bochner’s formula (Feng and Li., 2021, Theorem 1) holds, we assume that,
for 0 ≤ k ≤ m, 0 ≤ i ≤ n,

Zk(t, x)Ai(t, x) ∈ Span{Aj(t, x), 0 ≤ j ≤ n}, for all t ≥ 0, and x ∈ Rn+m, (8)

where we denote Zk(t, x) as the corresponding vector field for each row vector zTk . For
a smooth function f ∈ C∞(Rn+m), we denote the gradient vector field ∇f as a column
vector,

∇f(x) =
( ∂f

∂x1,
· · · , ∂f

∂xn+m

)T
. (9)

We keep the following notation throughout the paper. A standard multiplication of a row
vector and a column vector has the following form,

aTk∇f =
n+m∑
k′=1

aTkk′
∂f

∂xk′
. (10)
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Similarly, we denote

aTk∇aTi ∇f = aTk (∇aTi )∇f =
n+m∑
k′,i′=1

aTkk′
∂aTii′

∂xk′

∂f

∂xi′
, (11)

where the gradient is always applied to the function next to it. Given matrices a(t, x),
z(t, x), and the reference measure π(t, x) as above, we introduce the following relative
Fisher information functionals as our Lyapunov functionals. Denote 〈u, v〉 =

∑n+m
i=1 uivi,

for any vectors u, v ∈ Rn+m.

Definition 3 (Fisher information functionals) Define a functional Ia : P → R+ as

Ia(p(t, ·)‖π(t, ·)) :=

∫
Rn+m

〈
∇ log

p(t, x)

π(t, x)
, a(t, x)a(t, x)T∇ log

p(t, x)

π(t, x)

〉
p(t, x)dx, (12)

Define an auxiliary functional Iz : P → R+ as

Iz(p(t, ·)‖π(t, ·)) :=

∫
Rn+m

〈
∇ log

p(t, x)

π(t, x)
, z(t, x)z(t, x)T∇ log

p(t, x)

π(t, x)

〉
p(t, x)dx. (13)

3. Time-dependent Fisher information decay

In this section, we present the main theoretical analysis. We use the time-dependent original
and auxiliary Fisher information functionals as Lyapunov functionals for the convergence
of the Fokker-Planck equation in Theorem 6.

We shall derive the dissipation of KL divergence and Fisher information along time-
inhomogenous equations. We first show the relation between the KL divergence and the
Fisher information functional in this time-dependent setting.

Proposition 4 For t ≥ 0, we have

∂tDKL(p‖π) =−
∫
Rn+m

〈∇ log
p(t, x)

π(t, x)
, aaT∇ log

p(t, x)

π(t, x)
〉p(t, x)dx

−
∫
Rn+m

R(t, x, π)p(t, x)dx,

(14)

where we define the correction term R(t, x, π) : R+ × Rn+m × P → R as below,

R(t, x, π) :=
∂tπ(t, x)−∇ · (π(t, x)γ(t, x))

π(t, x)
. (15)

Remark 5 Note that if π(t, x) = π(x) is the invariant measure, we have ∇·(πγ) = 0, hence
R(t, x, π) = 0. However, in the more general setting, ∇ · (π(t, x)γ(t, x)) 6= 0 for a general
reference measure π(t, x). Thus, we introduce the correction term R(t, x, π) in (15), which is
equivalent to ∂t log π(t, x)−〈∇ log π(t, x), γ〉−∇·(γ). The first and second terms correspond
to the time and spacial derivatives of log π(t, x), while the third term coppresponds to the
non-reversible vector field γ.
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For simplicity of notation in all proofs, we shall denote
∫
Rn+m as

∫
. We also skip the

variables (t, x) to simplify the notation.

Proof We derive the entropy dissipation as below,

∂tDKL(p‖π) =

∫
∂tp log

p

π
dx+

∫
p∂t log pdx−

∫
p∂t log πdx

=

∫ [
∇ · (pγ) +∇ · (paaT∇ log

p

π
)
]

log
p

π
dx+

∫
∂tpdx−

∫
p∂t log πdx

= −
∫
〈∇ log

p

π
, aaT∇ log

p

π
〉pdx+

∫
∇ · (pγ) log

p

π
dx−

∫
p∂t log πdx.

Furthermore, we have∫
∇ · (pγ) log

p

π
dx = −

∫
〈∇ log

p

π
, γ〉pdx

= −
∫
〈∇p, γ〉dx+

∫
〈∇ log π, γ〉pdx

=

∫
(∇ · γ + 〈∇ log π, γ〉)pdx

=

∫
p

π
[(∇ · γ)π + 〈∇π, γ〉]dx

=

∫
∇ · (πγ)

π
pdx.

Combining the above terms, we complete the proof.

3.1 Fisher information decay

In this subsection, we first present the Fisher information functional dissipation result. The
proof will be postponed to Section 3.3, and Section 3.4. To simplify our notation, we define

Ia,z(t) = Ia(p‖π) + Iz(p‖π). (16)

Theorem 6 (Fisher decay) We define R(t, x) : R+ × Rn+m → R(n+m)×(n+m) as the
corresponding time-dependent Hessian matrix function, which is defined in the Appendix A.
Assume that

R(t, x)− 1

2
∂t(aa

T + zzT)(t, x) � λ(t)[aaT + zzT](t, x), (17)

for all x ∈ Rn+m, and for all t ≥ 0. We have

Ia,z(t) ≤ e
−2

∫ t
t0
λ(r)dr

(∫ t

t0

2[A(r) + Z(r)]e
2
∫ r
t0
λ(τ)dτ

dr + Ia,z(t0)
)
,

8
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where the correction term R(·, ·, ·) is introduced in (15). And

A(r) =

∫
Rn+m

[
∇ · (aaT∇R) + 〈∇R, aaT∇ log π〉

]
p(r, x)dx,

Z(r) =

∫
Rn+m

[
∇ · (zzT∇R) + 〈∇R, zzT∇ log π〉

]
p(r, x)dx.

Proof From the definition, we have Ia,z(t) = Ia,z(p‖π) = Ia(p‖π) + Iz(p‖π). According to
Proposition 10 in the next section, and Assumption (17), we have

∂tIa,z(p‖π) ≤ −2λ(t)Ia,z(p‖π) + 2[A(t) + Z(t)].

We next construct a function Q(t), such that

∂tQ(t) + 2λ(t)Q(t) = 2[A(t) + Z(t)].

Let F (t) = −2
∫ t
t0
λ(r)dr. We obtain Q(t) = Q(t0)eF (t) + eF (t)

∫ t
t0

2[A(s) + Z(s)]e−F (s)ds,
which implies

∂t(Ia,z(t)−Q(t)) ≤ −2λ(t)(Ia,z(t)−Q(t)).

From Gronwall’s inequality, we have

Ia,z(t) ≤ Q(t) + (Ia,z(t0)−Q(t0))e
−2

∫ t
t0
λ(r)dr

= Q(t0)e
−2

∫ t
t0
λ(r)dr

+ e
∫ λ
t0

(r)dr
∫ t

t0

2[A(r) + Z(r)]e
∫ r
t0

2λ(τ)dτ
dr

+(Ia(t0)−Q(t0))e
−2

∫ t
t0
λ(r)dr

= e
−2

∫ t
t0
λ(r)dr

(∫ t

t0

2[A(r) + Z(r)]e
2
∫ r
t0
λ(τ)dτ

dr + Ia,z(t0)
)
.

This finishes the proof.

3.2 Information Gamma calculus

To derive the dissipation of the Fisher information functional, we first introduce the infor-
mation Gamma calculus in the current setting. These information Gamma operators are
generalized from the Carrè du champ operators, see Bakry and Émery (2006) for elliptic
operator setting, and Baudoin and Garofalo (2016) for hypoelliptic operator setting. We
refer to Feng and Li. (2023, 2021); Bayraktar et al. (2024) for more motivations and detailed
discussions on these operators. We follow closely the notations as in Feng and Li. (2021,
Definition 2) below. Following the decomposition in Proposition 1, the diffusion operator L
associated with SDE (1) is defined in the following form, for smooth function f : Rn+m → R,

Lf = L̃f − 〈γ(t, x),∇f〉, (18)

9
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where we define the reversible component of the diffusion operator L as below,

L̃f = ∇ · (a(t, x)a(t, x)T∇f) + 〈a(t, x)a(t, x)T∇ log π(t, x),∇f〉. (19)

For the diffusion matrix function a(t, x), we construct a matrix z(t, x) ∈ C∞(R+ × Rn+m;
R(n+m)×m) such that conditions (7), (8), and the Hörmander condition hold true. We then
introduce the following z-direction differential operator as

L̃zf = ∇ · (z(t, x)z(t, x)T∇f) + 〈z(t, x)z(t, x)T∇ log π(t, x),∇f〉.

The Gamma one bilinear forms ( also known as Carrè du champ operators) for the matrices
a(t, x) and z(t, x) are defined as below, Γ1,Γ

z
1 : C∞(Rn+m)× C∞(Rn+m)→ C∞(Rn+m) as

Γ1(f, f) = 〈a(t, x)T∇f, a(t, x)T∇f〉Rn , Γz1(f, f) = 〈z(t, x)T∇f, z(t, x)T∇f〉Rm . (20)

Definition 7 (Time-dependent Information Gamma operators) For operators L̃ and
L̃z, we define the following Information Gamma operators.

(i) Gamma two operator:

Γ̃2(f, f) :=
1

2
L̃Γ1(f, f)− Γ1(L̃f, f).

(ii) Generalized Gamma z operator:

Γ̃z,π2 (f, f) :=
1

2
L̃Γz1(f, f)− Γz1(L̃f, f)

+divπz

(
Γ1,∇(aaT)(f, f)

)
− divπa

(
Γ1,∇(zzT)(f, f)

)
.

Here divπa , divπz are divergence operators defined by

divπa(F ) :=
1

π
∇ · (πaaTF ), divπz (F ) :=

1

π
∇ · (πzzTF ),

for any smooth vector field F ∈ Rn+m, and Γ1,∇(aaT), Γ1,∇(zzT) are vector Gamma one
bilinear forms defined by

Γ1,∇(aaT)(f, f) := 〈∇f,∇(aaT)∇f〉 = (〈∇f, ∂

∂xk̂
(aaT)∇f〉)n+m

k̂=1
,

Γ1,∇(zzT)(f, f) := 〈∇f,∇(aaT)∇f〉 = (〈∇f, ∂

∂xk̂
(zzT)∇f〉)n+m

k̂=1
.

Definition 8 ( Irreversible Gamma operator)

ΓIa(f, f) + ΓIz(f, f) := (L̃f + L̃zf)〈∇f, γ〉 − 1

2
〈∇
(
Γ1(f, f) + Γz1(f, f)

)
, γ〉.

10



Fisher information dissipation

Remark 9 One key difference in the current setting compared to (Feng and Li., 2021) is
the fact ∇ · (π(t, x)γ(t, x)) can be non-zero. Due to the decomposition of operator L in
(18), the time-dependent vector field γ(t, x) does not make a difference for the second order
operators Γ̃2 and Γ̃z,π2 . Thus the Bochner’s formula for Γ̃2 and Γ̃z,π2 remains the same as in
(Feng and Li., 2021), we postpone the Bochner’s formula to the Appendix. The expressions
for ΓIa(f, f) and ΓIz(f, f) are different, see Lemma 14 and Lemma 17 below.

By using the time-dependent Information Gamma operator defined above, we have the
following estimates for the first order dissipation of the Fisher Information functional.

Proposition 10

∂t[Ia(p‖π) + Iz(p‖π)]

≤− 2

∫
R(∇ log

p

π
,∇ log

p

π
)pdx+

∫
〈∇ log

p

π
, ∂t(aa

T + zzT)∇ log
p

π
〉pdx

+

∫ [
2∇ · ((aaT + zzT)∇R) + 2〈∇R, (aaT + zzT)∇ log π〉

]
pdx,

(21)

where the correction term R(t, x, π) is defined in (15). And the Hessian matrix R(t, x) is
defined in the Appendix A.

Proof Combining Proposition 11 and Proposition 15 below, we have

∂t[Ia(p‖π) + Iz(p‖π)]

=− 2

∫ [
Γ̃2(log

p

π
, log

p

π
)
]
pdx+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(aaT)∇ log

p

π
〉〉pdx+ 2

∫
〈aaT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

− 2

∫
Γ̃z,π2 (log

p

π
, log

p

π
)pdx+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(zzT)∇ log

p

π
〉〉pdx+ 2

∫
〈zzT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

+

∫ [
2∇ · ((aaT + zzT)∇R) + 2〈∇R, (aaT + zzT)∇ log π〉

]
pdx

=− 2

∫ [
Γ̃2(log

p

π
, log

p

π
)
]
pdx− 2

∫
Γ̃z,π2 (log

p

π
, log

p

π
)pdx

+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(aaT)∇ log

p

π
〉〉pdx+ 2

∫
〈aaT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(zzT)∇ log

p

π
〉〉pdx+ 2

∫
〈zzT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

+

∫ [
2∇ · ((aaT + zzT)∇R) + 2〈∇R, (aaT + zzT)∇ log π〉

]
pdx.

(22)

11



Feng and Zuo and Li

Applying the Information Bochner’s formula from Proposition 32 in the Appendix, for the
first term in (22), we have

− 2

∫ [
Γ̃2(log

p

π
, log

p

π
)
]
pdx− 2

∫
Γ̃z,π2 (log

p

π
, log

p

π
)pdx

=− 2

∫ (
‖Hessβf‖2F + (Ra + Rz + Rπ)(∇ log

p

π
,∇ log

p

π
)
)
pdx,

(23)

Note that

−
∫
〈γ, 〈∇ log

p

π
,∇(aaT + zzT)∇ log

p

π
〉〉pdx+ 2

∫
〈(aaT + zzT)∇ log

p

π
,∇γ∇ log

p

π
〉pdx

= −2

∫
(Rγa + Rγz)(∇ log

p

π
,∇ log

p

π
)pdx.

(24)

Plugging (23) and (24) into (22), we finish the proof, since ‖Hessβf‖2F ≥ 0.

3.3 Dissipation of Ia(p‖π)

Now we are ready to present the following technical lemmas for first order dissipation of
Ia(p‖π).

Proposition 11

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
)
]
pdx+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(aaT)∇ log

p

π
〉〉pdx+ 2

∫
〈aaT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

+

∫ [
2∇ · (aaT∇R) + 2〈∇R, aaT∇ log π〉

]
pdx.

Proof The proof of Proposition 11 follows from Lemma 13 and Lemma 14. According to
Lemma 14, we have∫

Γ̃Ia(f, f)pdx =
1

2

∫
〈γ, 〈∇f,∇(aaT)∇f〉〉pdx−

∫
〈aaT∇f,∇γ∇f〉pdx

+

∫
∇ · (πγ)

π
Γ1(f, f)pdx.

Plugging into Lemma 13 with f = log p
π , we prove the results.

Remark 12 The extra term in Lemma 14 involving ∇ · (πγ) is canceled by the extra term
in Lemma 13. This makes it possible to define the tensor Rγa the same as in the time
independent setting (Feng and Li., 2021).
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Lemma 13

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)
]
pdx (25)

+

∫
〈∇ log

p

π
, [∂t(aa

T) + 2aaT
∇ · (πγ)

π
]∇ log

p

π
〉pdx

+

∫ [
2∇ · (aaT∇R) + 2〈∇R, aaT∇ log π〉

]
pdx.

Proof

∂tIa(p‖π) = 2

∫
〈∇∂t log

p

π
, aaT∇ log

p

π
〉pdx+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx

+

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉∂tpdx

= 2

∫
〈∇∂t log p, aaT∇ log

p

π
〉pdx+

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉∂tpdx

+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx− 2

∫
〈∇∂t log π, aaT∇ log

p

π
〉pdx.

We first observe that,

2

∫
〈∇∂t log p, aaT∇ log

p

π
〉pdx+

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉∂tpdx

=

∫
Γ1(log

p

π
, log

p

π
)∂tp− 2

∇ · (paaT∇ log p
π )

p
∂tpdx

=

∫
Γ1(log

p

π
, log

p

π
)∂tp− 2

(
〈∇ log p, aaT∇ log

p

π
〉+∇ · (aaT∇ log

p

π
)
)
∂tpdx

=

∫
Γ1(log

p

π
, log

p

π
)∂tp− 2

(
〈∇ log

p

π
, aaT∇ log

p

π
〉+ L̃ log

p

π

)
∂tpdx

= −2

∫ {1

2
Γ1(log

p

π
, log

p

π
)∂tp+ L̃ log

p

π
∂tp
}
dx

= −2

∫ { 1

2
Γ1(log

p

π
, log

p

π
)∇ · (pγ) + L̃ log

p

π
∇ · (pγ)

+
1

2
Γ1(log

p

π
, log

p

π
)L̃∗p+ L̃ log

p

π
L̃∗p

}
dx

= −2

∫ {
− 1

2
〈∇Γ1(log

p

π
, log

p

π
), γ〉+ L̃ log

p

π
〈∇ log

p

π
, γ〉+ L̃ log

p

π

∇ · (πγ)

π

+
1

2
L̃Γ1(log

p

π
, log

p

π
)− Γ1(L̃ log

p

π
, log

p

π
)
}
pdx

= −2

∫
[Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)]pdx− 2

∫
L̃ log

p

π

∇ · (πγ)

π
pdx.

13
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In the second last equality, we apply the following fact p∇ log p = ∇p, π∇ log π = ∇π,
such that

∇ · (pγ) = p
(
〈∇ log p, γ〉+∇ · γ

)
= p

(
〈∇ log p, γ〉+

∇ · (πγ)

π
− 〈∇ log π, γ〉

)
= p〈∇ log

p

π
, γ〉+ p

∇ · (πγ)

π
. (26)

We then have,

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)
]
pdx− 2

∫
L̃ log

p

π

∇ · (πγ)

π
pdx

+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx− 2

∫
〈∇∂t log π, aaT∇ log

p

π
〉pdx.

Observing the following equality, we have

−2

∫
〈∇∂t log π, aaT∇ log

p

π
〉pdx

= 2

∫
∂t log π

∇ · (paaT∇ log p
π )

p
pdx

= 2

∫ [
∇ · (aaT∇ log

p

π
) + 〈∇ log

p

π
, aaT∇ log

p

π
〉+ 〈∇ log π, aaT∇ log

p

π
〉
]
∂t log πpdx

= 2

∫ [
L̃ log

p

π
+ 〈∇ log

p

π
, aaT∇ log

p

π
〉
]
∂t log πpdx, (27)

which implies

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)
]
pdx+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx

+2

∫
L̃ log

p

π

∂tπ −∇ · (πγ)

π
pdx+ 2

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉∂t log πpdx.

We also have

2

∫
L̃ log

p

π
Rpdx

= 2

∫
∇ · (aaT∇ log

p

π
)Rpdx+ 2

∫
〈∇ log π, aaT∇ log

p

π
〉Rpdx

= −2

∫
〈∇(Rp), aaT∇ log

p

π
〉dx+ 2

∫
〈∇ log π, aaT∇ log

p

π
〉Rpdx

= −2

∫
〈∇R, aaT∇ log

p

π
〉pdx− 2

∫
〈∇p, aaT∇ log

p

π
〉Rdx+ 2

∫
〈∇ log π, aaT∇ log

p

π
〉Rpdx

= −2

∫
〈∇R, aaT∇ log

p

π
〉pdx− 2

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉Rpdx.

14



Fisher information dissipation

Combining the above terms, we have

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)
]
pdx

+

∫
〈∇ log

p

π
, [∂t(aa

T) + 2aaT∂t log π]∇ log
p

π
〉pdx

−2

∫
〈∇R, aaT∇ log

p

π
〉pdx− 2

∫
〈∇ log

p

π
, aaT∇ log

p

π
〉Rpdx.

Note that,

−
∫
〈∇R, aaT∇ log

p

π
〉pdx = −

∫
〈∇R, aaT∇p〉dx+

∫
〈∇R, aaT∇ log π〉pdx

=

∫
∇ · (aaT∇R)pdx+

∫
〈∇R, aaT∇ log π〉pdx.

We conclude with

∂tIa(p‖π) = −2

∫ [
Γ̃2(log

p

π
, log

p

π
) + Γ̃Ia(log

p

π
, log

p

π
)
]
pdx

+

∫
〈∇ log

p

π
, [∂t(aa

T) + 2aaT∂t log π − 2aaTR]∇ log
p

π
〉pdx

+

∫ [
2∇ · (aaT∇R) + 2〈∇R, aaT∇ log π〉

]
pdx.

And the results follow the fact ∂t log π −R = ∇·(πγ)
π .

Recall that the irreversible Gamma operator associated with a is defined as

Γ̃Ia(f, f) = L̃f〈∇f, γ〉 − 1

2
〈∇Γ1(f, f), γ〉.

We next show the following equivalence identity in a weak form for the irreversible Gamma
operator.

Lemma 14 Denote f = log p
π , we have∫

Γ̃Ia(f, f)pdx =
1

2

∫
〈γ, 〈∇f,∇(aaT)∇f〉〉pdx−

∫
〈aaT∇f,∇γ∇f〉pdx

+

∫
∇ · (πγ)

π
Γ1(f, f)pdx.

Proof We first observe that,

∇ · (pγ)

p
= 〈∇ log p, γ〉+∇ · γ = 〈∇ log

p

π
, γ〉+ 〈∇ log π, γ〉+∇ · γ = 〈∇f, γ〉+

∇ · (πγ)

π
.
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According to the definition of the information Gamma operator, we have∫
Γ̃Ia(f, f)pdx

=

∫
[L̃f〈∇f, γ〉 − 1

2
〈∇Γ1(f, f), γ〉]pdx

=

∫ [
∇ · (aaT∇f)〈∇f, γ〉+ 〈aaT∇ log π,∇f〉〈∇f, γ〉

]
pdx+

1

2

∫
∇ · (pγ)Γ1(f, f)dx

=

∫ [
∇ · (aaT∇f)〈∇f, γ〉+ 〈aaT∇ log π,∇f〉〈∇f, γ〉

]
pdx

+
1

2

∫
[〈∇f, γ〉+

∇ · (πγ)

π
]Γ1(f, f)pdx

=

∫ [
− 〈aaT∇f,∇ log p〉〈∇f, γ〉+ 〈aaT∇ log π,∇f〉〈∇f, γ〉

]
pdx+

1

2

∫
〈∇f, γ〉Γ1(f, f)pdx

−
∫

[〈aaT∇f,∇2fγ〉 − 〈aaT∇f,∇γ∇f〉]pdx+
1

2

∫
∇ · (πγ)

π
Γ1(f, f)pdx

= −1

2

∫
〈∇f, γ〉Γ1(f, f)pdx−

∫
[〈aaT∇f,∇2fγ〉 − 〈aaT∇f,∇γ∇f〉]pdx+

1

2

∫
∇ · (πγ)

π
Γ1(f, f)pdx

= −1

2

∫
〈∇p, γ〉Γ1(f, f)dx+

1

2

∫
〈∇ log π, γ〉Γ1(f, f)pdx

−
∫

[〈aaT∇f,∇2fγ〉 − 〈aaT∇f,∇γ∇f〉]pdx+
1

2

∫
∇ · (πγ)

π
Γ1(f, f)pdx

=
1

2

∫
〈γ, 〈∇f,∇(aaT)∇f〉〉pdx−

∫
〈aaT∇f,∇γ∇f〉pdx+

∫
∇ · (πγ)

π
Γ1(f, f)pdx.

The last equality follows from the fact that

−1

2

∫
〈∇p, γ〉Γ1(f, f)dx =

1

2

∫
∇ · (γΓ1(f, f))pdx

=
1

2

∫
∇ · γΓ1(f, f)pdx+

∫
〈aaT∇f,∇2fγ〉pdx+

1

2

∫
〈γ, 〈∇f,∇(aaT)∇f〉〉pdx,

and

∇ · (πγ)

π
= 〈∇ log π, γ〉+∇ · γ.

3.4 Dissipation of auxillary Fisher information

Similar to the first-order dissipation of the Fisher information functional, we have the
following decay for the auxiliary Fisher information functional.
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Proposition 15

∂tIz(p‖π) = −2

∫
Γ̃z,π2 (log

p

π
, log

p

π
)pdx+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx

−
∫
〈γ, 〈∇ log

p

π
,∇(zzT)∇ log

p

π
〉〉pdx+ 2

∫
〈zzT∇ log

p

π
,∇γ∇ log

p

π
〉pdx

+

∫ [
2∇ · (zzT∇R) + 2〈∇R, zzT∇ log π〉

]
pdx. (28)

The proof follows from the following Lemma 16 and Lemma 17.

Lemma 16

∂tIz(p‖π) = −2

∫ [
Γ̃z,π2 (log

p

π
, log

p

π
) + ΓIz(log

p

π
, log

p

π
)
]
pdx (29)

+

∫
〈∇ log

p

π
, [∂t(zz

T) + 2zzT
∇ · (πγ)

π
]∇ log

p

π
〉pdx

+

∫ [
2∇ · (zzT∇R) + 2〈∇R, zzT∇ log π〉

]
pdx.

Proof

∂tIz(p‖π) = 2

∫
〈∇∂t log

p

π
, zzT∇ log

p

π
〉pdx+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx

+

∫
〈∇ log

p

π
, zzT∇ log

p

π
〉∂tpdx

= 2

∫
〈∇∂t log p, zzT∇ log

p

π
〉pdx+

∫
〈∇ log

p

π
, zzT∇ log

p

π
〉∂tpdx

+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx− 2

∫
〈∇∂t log π, zzT∇ log

p

π
〉pdx.

Similar to the derivation for Ia(p‖π), we first observe the following the fact,∫
Γz1(log

p

π
, log

p

π
)∂tp+ 2Γz1(

∂tp

p
, log

p

π
)pdx

=

∫
Γz1(log

p

π
, log

p

π
)∂tp− 2

∇ · (pzzT∇ log p
π )

p
∂tpdx

=

∫
Γz1(log

p

π
, log

p

π
)∂tp− 2

(
〈∇ log p, zzT∇ log

p

π
〉+∇ · (zzT∇ log

p

π
)
)
∂tpdx

=

∫
Γz1(log

p

π
, log

p

π
)∂tp− 2

(
〈∇ log

p

π
, zzT∇ log

p

π
〉+ L̃z log

p

π

)
∂tpdx

= −2

∫ {1

2
Γz1(log

p

π
, log

p

π
)∂tp+ L̃z log

p

π
∂tp
}
dx

= −2

∫ { 1

2
Γz1(log

p

π
, log

p

π
)∇ · (pγ) + L̃z log

p

π
∇ · (pγ)

+
1

2
Γz1(log

p

π
, log

p

π
)L̃∗p+ L̃z log

p

π
L̃∗p

}
dx

17
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= −2

∫ {
Γ̃Iz(log

p

π
, log

p

π
) +

1

2
L̃zΓ1(log

p

π
, log

p

π
)− Γ1(L̃z log

p

π
, log

p

π
)
}
pdx

−2

∫
L̃z log

p

π

∇ · (πγ)

π
pdx,

where we apply the equality in (26) for ∇· (pγ). Now applying [Proposition 5.11](Feng and
Li., 2023) (see also [Proposition 8](Feng and Li., 2021)), we have the following equality∫ {1

2
L̃zΓ1(log

p

π
, log

p

π
)− Γ1(L̃z log

p

π
, log

p

π
)
}
pdx =

∫
Γ̃z,π2 (log

p

π
, log

p

π
)pdx. (30)

We then have,

∂tIz(p‖π) = −2

∫ [
Γ̃z,π2 (log

p

π
, log

p

π
) + Γ̃Iz(log

p

π
, log

p

π
)
]
pdx− 2

∫
L̃z log

p

π

∇ · (πγ)

π
pdx

+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx− 2

∫
〈∇∂t log π, zzT∇ log

p

π
〉pdx.

Observing the following equality, we have

−2

∫
〈∇∂t log π, zzT∇ log

p

π
〉pdx

= 2

∫
∂t log π

∇ · (pzzT∇ log p
π )

p
pdx

= 2

∫ [
∇ · (zzT∇ log

p

π
) + 〈∇ log

p

π
, zzT∇ log

p

π
〉+ 〈∇ log π, zzT∇ log

p

π
〉
]
∂t log πpdx

= 2

∫ [
L̃z log

p

π
+ 〈∇ log

p

π
, zzT∇ log

p

π
〉
]
∂t log πpdx, (31)

which implies

∂tIz(p‖π) = −2

∫ [
Γ̃z,π2 (log

p

π
, log

p

π
) + Γ̃Iz(log

p

π
, log

p

π
)
]
pdx+

∫
〈∇ log

p

π
, ∂t(zz

T)∇ log
p

π
〉pdx

+2

∫
L̃z log

p

π

∂tπ −∇ · (πγ)

π
pdx+ 2

∫
〈∇ log

p

π
, zzT∇ log

p

π
〉∂t log πpdx.

We also have

2

∫
L̃z log

p

π
Rpdx

= 2

∫
∇ · (zzT∇ log

p

π
)Rpdx+ 2

∫
〈∇ log π, zzT∇ log

p

π
〉Rpdx

= −2

∫
〈∇R, zzT∇ log

p

π
〉pdx− 2

∫
〈∇ log

p

π
, zzT∇ log

p

π
〉Rpdx.

Combining the above terms, we have

∂tIz(p‖π) = −2

∫ [
Γ̃z,π2 (log

p

π
, log

p

π
) + Γ̃Iz(log

p

π
, log

p

π
)
]
pdx

+

∫
〈∇ log

p

π
, [∂t(zz

T) + 2zzT∂t log π]∇ log
p

π
〉pdx

−2

∫
〈∇R, zzT∇ log

p

π
〉pdx− 2

∫
〈∇ log

p

π
, zzT∇ log

p

π
〉Rpdx.

18
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Note that,

−2

∫
〈∇R, zzT∇ log

p

π
〉pdx = −2

∫
〈∇R, zzT∇p〉dx+ 2

∫
〈∇R, zzT∇ log π〉pdx

= 2

∫
∇ · (zzT∇R)pdx+ 2

∫
〈∇R, zzT∇ log π〉pdx.

We conclude with

∂tIz(p‖π) = −2

∫ [
Γ̃z,π2 (log

p

π
, log

p

π
) + Γ̃Iz(log

p

π
, log

p

π
)
]
pdx

+

∫
〈∇ log

p

π
, [∂t(zz

T) + 2zzT∂t log π − 2zzTR]∇ log
p

π
〉pdx

+

∫ [
2∇ · (zzT∇R) + 2〈∇R, zzT∇ log π〉

]
pdx,

and the result follows the fact ∂t log π −R = ∇·(πγ)
π .

The irreversible Gamma operator associated with matrix z has the following equivalent
form.

Lemma 17 Denote f = log p
π . We have

∫
Γ̃Iz(f, f)pdx =

1

2

∫
〈γ, 〈∇f,∇(zzT)∇f〉〉pdx−

∫
〈zzT∇f,∇γ∇f〉pdx

+

∫
∇ · (πγ)

π
Γz1(f, f)pdx.

Proof We will use the following fact again

∇ · (pγ)

p
= 〈∇ log p, γ〉+∇ · γ = 〈∇ log

p

π
, γ〉+ 〈∇ log π, γ〉+∇ · γ = 〈∇f, γ〉+

∇ · (πγ)

π
.
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We have∫
Γ̃Iz(f, f)pdx

=

∫
[L̃zf〈∇f, γ〉 −

1

2
〈∇Γz1(f, f), γ〉]pdx

=

∫ [
∇ · (zzT∇f)〈∇f, γ〉+ 〈zzT∇ log π,∇f〉〈∇f, γ〉

]
pdx+

1

2

∫
∇ · (pγ)Γz1(f, f)dx

=

∫ [
∇ · (zzT∇f)〈∇f, γ〉+ 〈zzT∇ log π,∇f〉〈∇f, γ〉

]
pdx

+
1

2

∫
[〈∇f, γ〉+

∇ · (πγ)

π
]Γz1(f, f)pdx

=

∫ [
− 〈zzT∇f,∇ log p〉〈∇f, γ〉+ 〈zzT∇ log π,∇f〉〈∇f, γ〉

]
pdx+

1

2

∫
〈∇f, γ〉Γz1(f, f)pdx

−
∫

[〈zzT∇f,∇2fγ〉 − 〈zzT∇f,∇γ∇f〉]pdx+
1

2

∫
∇ · (πγ)

π
Γz1(f, f)pdx

= −1

2

∫
〈∇f, γ〉Γz1(f, f)pdx−

∫
[〈zzT∇f,∇2fγ〉 − 〈zzT∇f,∇γ∇f〉]pdx+

1

2

∫
∇ · (πγ)

π
Γz1(f, f)pdx

= −1

2

∫
〈∇p, γ〉Γz1(f, f)dx+

1

2

∫
〈∇ log π, γ〉Γz1(f, f)pdx

−
∫

[〈zzT∇f,∇2fγ〉 − 〈zzT∇f,∇γ∇f〉]pdx+
1

2

∫
∇ · (πγ)

π
Γz1(f, f)pdx

=
1

2

∫
〈γ, 〈∇f,∇(zzT)∇f〉〉pdx−

∫
〈zzT∇f,∇γ∇f〉pdx+

∫
∇ · (πγ)

π
Γz1(f, f)pdx.

The last equality follows from the fact that

−1

2

∫
〈∇p, γ〉Γz1(f, f)dx =

1

2

∫
∇ · (γΓz1(f, f))pdx

=
1

2

∫
∇ · γΓz1(f, f)pdx+

∫
〈zzT∇f,∇2fγ〉pdx+

1

2

∫
〈γ, 〈∇f,∇(zzT)∇f〉〉pdx,

and ∇·(πγ)
π = 〈∇ log π, γ〉+∇ · γ.

4. Example I: reversible SDE

This example considers an inhomogeneous stochastic differential equation (SDE).

dXt =
(
− α(t,Xt)α(t,Xt)

T∇V (Xt) + β(t)∇ ·
(
α(t,Xt)α(t,Xt)

T
))
dt

+
√

2β(t)α(t,Xt)dBt,
(32)

where n = d, m = 0, Xt ∈ Rd, Bt is a standard d-dimensional Brownian motion, β(t) ∈ R1
+

is a positive, twice continuously differentiable, decreasing function, V ∈ C2(Rd;R) and
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α(t, x) ∈ Rd×d is a positive definite matrix function with at least twice differentiable in x
and differentiable in t. We denote a(t, x) =

√
β(t)α(t, x). And we assume that a satisfies

the uniform non-degenerate condition (see, e.g., (Kusuoka and Stroock, 1984)). Hence there
exists a smooth density function for the solution Xt, denoted as p(t, x). Furthermore, we
denote π(t, x) ∈ R+ as a time-dependent probability density function with

π(t, x) :=
1

Z(t)
e
−V (x)
β(t) , (33)

where we assume that the normalization constant is finite, i.e., Z(t) =
∫
Rd e

−V (y)
β(t) dy < ∞.

We note that π(t, x) is not the stationary distribution of the SDE (32).

Remark 18 In non-convex optimization, (32) is of great importance. Generally speaking,
finding the global minimum of a non-convex convex function is much more difficult than if
the function is convex/strongly convex. One popular method for non-convex optimization is
simulated annealing (SA) Pincus (1970); Khachaturyan et al. (1979, 1981); van Laarhoven
and Aarts (1987). The SA process generally consists of a proposal step, an accept/reject
step and a cooling scheme. At each iteration, a new move is proposed. This new move will
be accepted with some probability that depends the temperature. The lower the temperature,
the lower the acceptance rate. At the end of this iteration, temperature is cooled further
according to the cooling scheme. The hope is that with appropriate cooling speed, the system
will be able to explore enough landscape and escape local minima before settling down near the
global minimum. Geman and Hwang (1986) proposed to view (32) as the continuous-time
version of simulated annealing. Indeed, if β(t) → 0 as t → ∞, then π(t, x) (33) converges
in distribution to the delta measure supported on the global minimum of V . It was shown
by Geman and Hwang (1986); Chiang et al. (1987) that the correct cooling scheme β(t) for
the process (32) to converge to the global minimum is log(t)−1.

4.1 Convergence analysis

As a special case of Proposition 11, with γ ≡ 0 and z(t, x) ≡ 0, we have the following
lemma.

Lemma 19 For any t ≥ 0, consider p(t, x) as the probability density function of SDE (32).
Denote

Ia(p‖π) =

∫
(∇ log

p

π
, aaT∇ log

p

π
)pdx.

We have

∂tIa(p‖π) = −2

∫
Γ̃2(log

p

π
, log

p

π
)pdx+

∫
〈∇ log

p

π
, ∂t(aa

T)∇ log
p

π
〉pdx (34)

+2

∫ [
∇ · (aaT∇∂t log π) + 〈∇∂t log π, aaT∇ log π〉

]
pdx.

As a special case of Proposition 10, following Lemma 19, we have

Γ̃2(log
p

π
, log

p

π
) ≥ R(∇ log

p

π
,∇ log

p

π
),
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where R (as defined in Appendix A) denotes the Ricci curvature tensor in this example
with γ(t, x) ≡ 0, z(t, x) ≡ 0, and a(t, x) =

√
β(t)α(t, x). We then have the following Fisher

information functional decay for Ia(t) := Ia(p(t, ·)‖π(t, ·)).

Theorem 20 Consider p(t, x) as the probability density function of SDE (32). Suppose R
is defined in Appendix A. Assume that there exists a positive function λ(t) > 0, such that

R− 1

2
∂t(aa

T) � λ(t)aaT, (35)

for t ≥ t0 with some constant t0 > 0. Then we have

Ia(t) ≤ e
−2

∫ t
t0
λ(r)dr

(∫ t

t0

2A(r)e
2
∫ r
t0
λ(τ)dτ

dr + Ia(t0)
)
,

where A(t) is a function depending on the time variable, such that

A(t) :=

∫ [
∇ · (aaT∇∂t log π) + 〈∇∂t log π, aaT∇ log π〉

]
pdx. (36)

Proof The proof follows from Theorem 6 with R = ∂t log π, and our choice of parameters
for SDE (32).

4.2 Time-dependent overdamped Langevin dynamics

In this section, we present an explicit example of the convergence result in Theorem 20.
Consider the overdamped Langevin dynamics

dXt = −∇V (Xt) +
√

2β(t)dBt. (37)

And the diffusion matrix a(t, x) ∈ Rd×d has the following form,

a(t, x) =
√
β(t)I, (38)

where I ∈ Rd×d is an identity matrix.

Corollary 21 Let β(t) = C
log t for some constant C > 0, and t ≥ t0 > e for some con-

stant t0 > 0. Assume ∇2
xxV � λ0I, for some constant λ0 > 0, and

∫
Rd(‖∇xV ‖

2 +
|∆xV |)p(t, x)dx ≤ C̄, for some constant C̄ > 0. Denote

Ia(p(t, ·)‖π(t, ·)) := β(t)

∫
‖∇ log

p(t, x)

π(t, x)
‖2p(t, x)dx.

Then there exists a constant C0 > 0, such that

Ia(p(t, ·)‖π(t, ·)) ≤ C0

t
.
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Proof The matrix function R defined in Appendix (A) is simply R = β(t)∇2
xxV (x) for

equation (37). Applying Theorem 20, the Assumption (35) in Theorem 20 is then reduced
to the following condition,

β(t)∇2
xxV (x)− 1

2
∂tβ(t)I � λ(t)β(t)I. (39)

For β(t) = C
log t , the above condition is equivalent to

C

log t
∇2
xxV +

1

2

C/t

(log t)2
I � λ(t)

C

log t
I.

Based on assumption ∇2
xxV � λ0I with λ0 > 0, for t ≥ t0, and we let λ(t) ≡ λ0, then

∇2
xxV +

1

2t log t
I � (λ0 +

1

2t log t
)I � λ0I = λ(t)I. (40)

Now we turn to the estimate for A(t) in Theorem 20. Plugging in β(t) = C
log t , we obtain

∇ · (aaT∇∂t log π) + 〈∇∂t log π, aaT∇ log π〉 = β∆(∂t log π) + β〈∇∂t log π,∇ log e−V/β〉

=
∂tβ

β
∆xV −

∂tβ

β2
‖∇xV ‖2.

Applying the assumption that
∫
Rd(‖∇xV ‖

2 + |∆xV |)p(t, x)dx ≤ C, we get

A(t) = 2

∫
[
∂tβ

β
∆xV −

∂tβ

β2
‖∇xV ‖2]pdx ≤ 2C(|∂tβ

β
|+ |∂tβ

β2
|)

≤ 2C(| 1

t log t
|+ | 1

Ct
|) ≤ CA

t
,

where we denote CA as the upper bound of A(t) for t > t0 > e. Following the proof of
Theorem 20, we have

d

dt
Ia(t) ≤ −2λ0Ia(t) +

CA
t
.

Hence

Ia(t) ≤e−2λ0(t−t0)
(∫ t

t0

2
CA
r
e2λ0(r−t0)dr + Ia(t0)

)
=e−2λ0(t−t0)Ia(t0) + 2CAe

−2λ0t

∫ t

t0

e2λ0r

r
dr.

We notice that

lim
t→+∞

e−2λ0t
∫ t
t0
e2λ0r

r dr
1
t

= lim
t→+∞

t
∫ t
t0
e2λ0r

r dr

e2λ0t
= lim

t→+∞

∫ t
t0
e2λ0r

r dr + e2λ0t

2λ0e2λ0t
=

1

2λ0
.

For a sufficient small ε > 0, there exists a constant T > 0, such that when t > T ,

e−2λ0t

∫ t

t0

e2λ0r

r
dr ≤ (

1

2λ0
+ ε)

1

t
.
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Denote M = supt∈[0,T ] e
−2λ0t

∫ t
t0
e2λ0r

r dr. Thus, when t0 ≤ t ≤ T , we have

e−2λ0t

∫ t

t0

e2λ0r

r
dr ≤M =

M

T
T ≤ MT

t
.

Thus, there exists a constant C0 > 0, such that

Ia(t) ≤ e−2λ0(t−t0)Ia(t0) + 2
CA
t

max{ 1

2λ0
+ ε,MT} ≤ C0

t
.

This finishes the proof.

Following the Fisher information decay in Corollary 21, we get the decay of the KL diver-
gence of the density for the dynamics (37) as below.

Corollary 22 Under the assumptions in Theorem 20, for any τ ≥ t0, we have

DKL(p(τ)‖π(τ)) ≤ 1

2λ0
Ia(p(τ)‖π(τ)) ≤ C0

2λ0τ
,

and ∫
Rd
|p(τ, x)− π(τ, x)|dx ≤

√
C0

λ0τ
.

Proof For any fixed τ ≥ t0, we consider the standard overdamped Langevin dynamics:

dXτ
t = −∇V (Xτ

t )dt+
√

2β(τ)dBt,

which is equipped with the invariant measure π(x; τ) = 1
Z e
−V (x)
β(τ) . Denote p(t; τ) as the

density for Xτ
t . Since V is strongly convex, i.e. ∇2

xxV � λ0I, we have the classical log-
Sobolev inequality, such that

DKL(p(τ)‖π(τ)) ≤ 1

2λ0
Ia(p(τ)‖π(τ)) ≤ C0

2λ0τ
,

where the last inequality follows from Corollary 21. From Pinsker’s inequality, we have∫
Rd
|p(τ, x)− π(τ, x)|dx ≤

√
2DKL(p(τ)‖π(τ)) ≤

√
C0

λ0τ
.

Remark 23 When we use the upper bound of λ(t) in (40) as 1
2t log t , A(t) can be infinity.

Thus, the current convergence analysis does not work. In other words, the choice of β = C
log t

is essential for the current convergence proof, as discussed in Tang and Zhou (2021).
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Figure 1: Convergence rate of two strongly convex functions in one-dimension. Here y-axis
represents the logarithm of the KL divergence between the empirical distribution
and the invariant measure π(t, x) given by (33). And the x-axis is log(t). We have
also added a dotted line representing t−1 on a logarithmic scale for comparison.

4.3 Numerics

In this section, we perform numerical experiments to demonstrate the convergence rate in
Corollary 22.

We consider V : Rd → R, d = 1, 2, and β(t) = C
log(t) for some choices of constant C.

We would like to compare the KL divergence between the invariant measure π(t, x) given
by (33) and the sample distribution of Xt that follows (37) for different choices of V (x)
and β(t). We first sample M = 106 particles from N (0, 1). Then we evolve (37) using the
Euler-Maruyama scheme shown below for N = 10000 steps with a step size of h = 0.002:

Xn+1 = Xn − h∇V (Xn) +

√
2C

log(nh+ t0)
Bn , (41)

where Bn ∼ N (0,
√
h), and t0 = e. During each iteration, we compute the discrete KL

divergence between the empirical distribution of the M particles and the invariant measure
π(t, x) given by (33). The KL divergence between two discrete distributions is given by
DKL(p‖q) =

∑
pi log(pi/qi). At each iteration, we can use the histogram of the empirical

distribution to get pi for i = 1, ...,K. Here K is the number of bins of the histogram and we
choose K = 50 in our numerical experiment. Let xi denote the location (midpoint between
the left and right bin edge) of each of the bins. Then at the n-th iteration, we can compute

qi = 1
Z exp(− V (xi)

β(nh+t0)), where Z =
∫
R exp(− V (x)

β(nh+t0))dx is the normalization constant and

can be estimated numerically. The results are plotted (on a logarithmic scale) in Fig. 1 for
strongly convex V (x) and Fig. 2 for non-convex function V (x) with different constant C in
the expression of β(t).

In the strongly-convex setting (Fig. 1), we see that the KL divergence between empirical
distribution and π decreases at a rate faster than O(1/t) for all choices of C. In the non-
convex setting (Fig. 2), we observe a convergence rate faster than O(1/t) at the beginning
which then drops to O(1/t) as t becomes larger. In two-dimension (Fig. 3), we observe the
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O(1/t) convergence in both the strongly convex examples (3a and 3b) and the non-convex
example (3c). In our two-dimensional examples, we used M = 106 particles, N = 10000
steps with a stepsize of h = 0.001. We have 50 bins in both x and y direction which gives
a total of 2500 bins.
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Figure 2: Convergence rate of two non-convex functions in one-dimension.
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Figure 3: Convergence rate of two strongly convex functions (A) and (B), and a non-convex
function (C) in two dimensions.

5. Example II: non-degenerate, non-reversible SDEs

In this section, we apply Theorem 6 to study the following non-degenerate and non-reversible
SDE,

dXt =
(
− α(t,Xt)α(t,Xt)

T∇V (Xt) + β(t)∇ ·
(
α(t,Xt)α(t,Xt)

T
)
− γ(t,Xt)

)
dt

+
√

2β(t)α(t,Xt)dBt.
(42)

Again, we have d = n, m = 0. The above SDE is a variant of SDE (32) by adding a smooth
irreversible vector field γ(t, x) ∈ Rd, which is assumed to satisfy

∇ · (e−V (x)γ(t, x)) = 0.
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Remark 24 Besides overdamped and underdamped Langevin dynamics, there is one other
class of SDEs known as non-reversible Langevin dynamics that can also be used for sampling
(we refer our readers to the beginning of 6 for a short literature review on sampling a
posterior distribution using overdamped and underdamped Langevin dynamics). It has been
noted in several papers (Duncan et al., 2017, 2016; Hwang et al., 2015; Lelievre et al.,
2013; Rey-Bellet and Spiliopoulos, 2015; Wu et al., 2014) that adding an appropriate non-
reversible component to the SDE (32) could be beneficial. In particular, the non-reversible
component could help speed up the convergence to the target distribution and reduce the
asymptotic variance.

In the current setting, we focus on a special case with a(t, x) =
√
β(t)α(t, x). In

particular, we consider the diffusion matrix a in a special form, which satisfies aii(t, x) =
aii(t, xi) =

√
β(t)αii(xi) > 0, for all xi ∈ R, i = 1, · · · , n, with

α(x) =


α11(x1) 0 · · · 0

0 α22(x2) · · · 0
0 0 · · · 0
0 · · · 0 αnn(xn)

 . (43)

Proposition 25 The Hessian matrix R for the above time-dependent non-reversible SDE
(42) has the following form,

R− 1

2
∂t(aa

T) = Ra + Rγa −
1

2
∂t(aa

T),

where
Ra,ii = β(t)α3

ii∂xiαii∂xiV (x) + β(t)α4
ii∂

2
xixiV (x)− β2(t)α3

ii∂
2
xixiαii, i = 1, · · · , n;

Ra,ij = β(t)α2
iiα

2
jj∂

2
xixjV (x), i, j = 1, · · · , n, i 6= j;

Rγa,ii = β(t)γiαii∂xiαii − β(t)∂xiγi(αii)
2, i = 1, · · · , n;

Rγa,ij = −1
2β(t)[∂xiγj(αjj)

2 + ∂xjγi(αii)
2], i, j = 1, · · · , n, i 6= j.

(44)

Proof Following Feng and Li. (2021, Proposition 2), we have
Ra,ii = −a3

ii∂xiaii∂xi log π − a4
ii∂

2
xixi log π − a3

ii∂
2
xixiaii, i = 1, · · · , n;

Ra,ij = −a2
iia

2
jj∂

2
xixj log π, i, j = 1, · · · , n, i 6= j;

Rγa,ii = γiaii∂xiaii − ∂xiγi(aii)2, i = 1, · · · , n;

Rγa,ij = −1
2 [∂xiγj(ajj)

2 + ∂xjγi(aii)
2], i, j = 1, · · · , n, i 6= j.

Plugging in the matrix a(t, x) =
√
β(t)α(x), we derive the desired matrix R.

As in the previous section, if there exists a constant λ > 0, such that

R− 1

2
∂t(aa

T) � λaaT,

then the Fisher information decay in Theorem 6 holds.
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5.1 Time-dependent non-reversible Langevin dynamics

In this section, we consider a special case with n = 2, α ≡ I, and γ = 1
β(t)J∇V , where the

matrix J has the following form, for some smooth function c(t) : R+ → R

J =

(
0 β(t)c(t)

−β(t)c(t) 0

)
, i.e. γ(t, x) =

(
c(t)∂x2V (x)
−c(t)∂x1V (x)

)
.

It is easy to check that ∇ · (π(t, x)γ(t, x)) = 0 (e.g.: see (47) below). Applying Proposition
25, we have

R = β(t)

(
∂x1x1V − c(t)∂x1x2V ∂x1x2V − c(t)1

2(−∂x1x1V + ∂x2x2V )
∂x2x1V − c(t)1

2(−∂x1x1V + ∂x2x2V ) ∂x2x2V + c(t)∂x2x1V

)
=: β(t)B(t, x). (45)

Comparing with the Corollary 21 and Corollary 22, the irreversible vector field γ(t, x) only
changes the matrix R, but does not change the estimate of A(t). If the smallest eigenvalue of
B(t, x) is bigger than the smallest eigenvalue of ∇2

xxV for a proper choice of the function c(t),
the convergence of stochastic dynamics (42) can be faster than the underdamped Langevin
dynamics (32).

Variable matrices J. We also study a case with the variable coefficient anti-symmetric
vector field. Consider a two-dimensional stochastic differential equation:

dXt = (−∇V (Xt)− J(t,Xt)∇V (Xt)− β(t)∇ · J(t,Xt))dt+
√

2β(t)dBt, (46)

where we define

J =

(
0 c(t, x)

−c(t, x) 0

)
,

and

γ(t, x) = aaT∇ log π − b+ β(t)(
∂

∂xj
(ααT)ij)

n
i=1

=

(
c(t, x)∂x2V (x)
−c(t, x)∂x1V (x)

)
+ β(t)

(
−∂x2c(t, x)
∂x1c(t, x)

)
.
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Here π(t, x) = 1
Z(t)e

−V (x)
β(t) . We also have the fact that ∇ · (πγ) = 1

Z∇ · (e
−V γ) = 0, since

∇ · (πγ) = ∇ ·
(
π

(
c(t, x)∂x2V (x)
−c(t, x)∂x1V (x)

)
+ πβ

(
−∂x2c(t, x)
∂x1c(t, x)

))
= 〈∇π,

(
c(t, x)∂x2V (x)
−c(t, x)∂x1V (x)

)
+ β

(
−∂x2c(t, x)
∂x1c(t, x)

)
〉

+π∇ ·
(( c(t, x)∂x2V (x)
−c(t, x)∂x1V (x)

)
+ β

(
−∂x2c(t, x)
∂x1c(t, x)

))
= −π

β

〈(∂x1V
∂x2V

)
,

(
c(t, x)∂x2V (x)
−c(t, x)∂x1V (x)

)
+ β

(
−∂x2c(t, x)
∂x1c(t, x)

)〉
+π∂x1 [c(t, x)∂x2V − β∂x2c(t, x)] + π∂x2 [−c(t, x)∂x1V + β∂x1c(t, x)]

= −π
β

(c∂x1V ∂x2V − c∂x1V ∂x2V ) + π(∂x1V ∂x2c− ∂x2V ∂x1c)

+π[∂x1c∂x2V + c∂x1x2V − β∂x1x2c− ∂x2c∂x1V − c∂x1x2V + β∂x1x2c]

= 0. (47)

For the matrix R, with γ1 = c(t, x)∂x2V−β(t)∂x2c(t, x), and γ2 = −c(t, x)∂x1V+β(t)∂x1c(t, x),
we have

R = β

(
∂x1x1V ∂x1x2V
∂x2x1V ∂x2x2V

)
− β

(
∂x1γ1

1
2(∂x1γ2 + ∂x2γ1)

1
2(∂x1γ2 + ∂x2γ1) ∂x2γ2

)
= β

(
∂x1x1V ∂x1x2V
∂x2x1V ∂x2x2V

)
−β
(
∂x1c∂x2V + c∂x1x2V − β∂x1x2c Rγ,12

Rγ,12 −∂x2c∂x1V − c∂x2x1V + β∂x2x1c

)
,

where Rγ,12 = 1
2 [c(∂x2x2V − ∂x1x1V ) + β(−∂x2x2c+ ∂x1x1c) + ∂x2c∂x2V − ∂x1c∂x1V ].

Example 1 Let us consider an example where V is a two dimensional quadratic form with

∇2
xxV =

(
a 0
0 b

)
,

such that a > b > 0. This implies that ∇2
xxV is positive definite. We assume that the

minimum of V is at (0, 0). Let c(t, x) = c(x) be another quadratic form such that it has the
same global minimum as V . Denote by c′′ij = ∂xixjc. We now consider the neighbourhood
near the global minimum, so that all first-order partial derivatives of V can be neglected,
and c ≈ 0. Then the matrix R is approximated by

R ≈ β
(

a+ βc′′12 −1
2β(c′′11 − c′′22)

−1
2β(c′′11 − c′′22) b− βc′′12

)
.

There are many choices of c to make the smallest eigenvalues of R larger than that of V .
For instance, take c′′11 = c′′22 = 0, c′′12 = (b− a)/2β(t). In this case, the smallest eigenvalue
is (a + b)/2 whereas the smallest eigenvalue of V is b. A visualization is shown Fig. 4
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Figure 4: Eigenvalue comparison between V (x) and R(x) for x ∈ [−0.5, 0.5] × [−0.5, 0.5].
The parameters are chosen as in Example 1. The yellow surface represents the
smallest eigenvalue of R(x) and the purple surface represents the smallest eigen-
value of V (x). The global minimum of V is marked with a blue asterisk. As
shown in the figure, the smallest eigenvalue of R is larger than that of V near the
global minimum.

when a = 2, b = 0.1, β = 1. Now let us consider β(t) = 1
t0+t for t0 = 1. We use the

Euler-Maruyama scheme to run (37) and (46) with a step size of dt = 5× 10−5 for 3 ∗ 105

iterations. We use 104 particles initially sampled from a standard Gaussian distribution for
our comparison. The result is demonstrated in Fig. 5. We observe that equation (46) yields
a faster convergence towards the global minimum than equation (37).

6. Example III: underdamped Langevin dynamics

In this section, we consider an underdamped Langevin dynamics with variable diffusion
coefficients: {

dxt =vtdt

dvt =(−r(t, xt)vt −∇xV (xt))dt+
√

2r(t, xt)dBt,
(48)

where n = m = 1, d = n+m = 2, Xt = (xt, vt) ∈ R2 is a two dimensional stochastic process,
V ∈ C2(R1) is a Lipschitz potential function with assumption

∫
R1 e

−V (x)dx < +∞, Bt is
a standard Brownian motion in R, and r : R+ × R2 → R+ is a positive smooth Lipschitz
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Figure 5: Convergence comparison between (37) and (46) in Example 1. x-axis represents
time. y-axis represents the average distance of the particles to the global minimum
using the two SDEs.

function. Indeed, the reference measure π(t, x, v) = π(x, v) is the invariant measure, defined
as

π(x, v) =
1

Z
e−H(x,v), H(x, v) =

v2

2
+ V (x),

where Z =
∫
R2 e

−H(x,v)dxdv < +∞ is a normalization constant. Following the definition of
diffusion matrix a, the vector field γ and the correction term R, we have

a =

(
0√
r(t, x)

)
, γ =

(
−v
∇V (x)

)
, and R(t, x, π) = 0, (49)

since ∂tπ(x, v) = 0, and ∇ · (πγ) = 0.

Remark 26 Sampling from a posterior distribution has numerous applications in scien-
tific computing, including Bayesian inference (Gelman et al., 1995; Newman and Barkema,
1999), inverse problems (Stuart, 2010; Dashti and Stuart, 2013), as well as Bayesian ma-
chine learning and Bayesian neural network (Welling and Teh, 2011; Andrieu et al., 2003;
Izmailov et al., 2021). To sample a distribution of the form exp(−V )/Z, one popular choice
is to use the overdamped Langevin dynamics (37) with β(t) = β. In a seminal work, Jor-
dan et al. (1998) showed that the Kolmogorov forward equation of the overdamped Langevin
dynamics corresponds to the gradient flow of the relative entropy functional in the space of
measures with the Wasserstein metric. On the other hand, the Kolmogorov forward equa-
tion of the underdamped Langevin dynamics corresponds to the accelerated gradient flow (Su
et al., 2016) of the relative entropy functional. Following this idea, researchers have been
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trying to prove the accelerated convergence speed and designing better numerical implemen-
tations of underdamped Langevin dynamics (Ma et al., 2021; Cao et al., 2023; Cheng et al.,
2018; Zhang et al., 2023; Shen and Lee, 2019) .

Note that the diffusion matrix a(t, x) has rank n = 1. Following from the Condition in
(7), we construct matrix z(t, x) such that z(t, x) also has rank 1, and Condition (7) holds

true. Under this consideration, we can select a time-dependent vector field z =

(
z1(t, x)
z2(t, x)

)
in

the most general form satisfying the above assumptions. We have the following proposition.
The derivation follows similar studies in the time-independent case as shown in (Feng and
Li., 2021). We skip the details here.

Proposition 27 For the time-dependent underdamped Langevin dynamics (48), the time-
dependent Hessian matrix function R(t, x) : R+ × R2 → R2×2 has the following form,

R = Ra + Rz + Rπ −MΛ + Rγa + Rγz ,

where a21 =
√
r, and

Ra =

(
0 0

0 −∂2 log π
∂v2

|a21|4

)
, Rπ =

(
0 0
0 Cπ

)
,

Rz =
1

2

[( 0

−zT1∇((a21)2 ∂ log π
∂v )

)
zT1 + z1

(
0 −zT1∇((a21)2 ∂ log π

∂v )
) ]
,

Rγa =
1

2
γ1∇1(aaT)− 1

2

[
(∇γ)TaaT + aaT∇γ

]
,

Rγz =
1

2
γ1∇1(zzT)− 1

2

[
(∇γ)TzzT + zzT∇γ

]
, MΛ =

1

(a21)2
KT(aaT + zzT)−1K,

with

Cπ = 2
[
zT1 z

T
1∇2a21a21 + (zT1∇a21)2 + (zT1∇ log π)[zT1∇a21a21]

]
,

K =

(
0 2z2

1∂x[a21]a21 − 1
2βγ1(a21)2

−z2
1∂x[a21]a21 + 1

2βγ1(a21)2 z1z2∂x[a21]a21

)
.

If there exists a constant λ > 0, such that

R− 1

2
∂t(aa

T + zzT) � λ(aaT + zzT),

then the Fisher information decay in Theorem 6 holds.

In the following, we consider a special case where we choose r(t, x) = r(t), and z =

(
z1

z2

)
,

for some constants z1, z2 ∈ R. For such a constant matrix z, it is easily verified that
conditions (7) and (8) hold true for positive constants z1 and z2.

In this case, the matrix R(t, x) is simplified into the following form,

R = Ra + Rz + Rγa + Rγz ,

32



Fisher information dissipation

where we have

Ra =

(
0 0
0 (r(t))2

)
, Rz = r(t)

(
0 z1z2

2
z1z2

2 z2
2

)
,

Rγa = r(t)

(
0 1

2
1
2 0

)
, Rγz =

(
z1z2

1
2(z2

2 − z2
1∇2

xxV )
1
2(z2

2 − z2
1∇2

xxV ) −z1z2∇2
xxV

)
.

Proposition 28 (Sufficient conditions) In the above example,

R− 1

2
∂t(aa

T)

=

(
z1z2

1
2 [r(t) + r(t)z1z2 + z2

2 − z2
1∇2

xxV (x)]
1
2 [r(t) + r(t)z1z2 + z2

2 − z2
1∇2

xxV (x)] (r(t))2 + r(t)z2
2 − z1z2∇2

xxV (x)− 1
2∂tr(t)

)
.

Assume that 0 < λ ≤ ∂2
xxV ≤ λ, and there exist constants z2 ∈ (0,

r(t)+
√
r(t)2+4r(t)

2 ), for all
t ≥ t0, such that λ, λ satisfy the following conditions:

−λ2
+ [2(r(1 + z2)− z2

2)]λ− [(1− z2)r + z2
2 ]2 − 2z2∂tr > 0, r2 + rz2

2 − λz2 −
1

2
∂tr > 0.(50)

Then there exists a function λ(t) > 0, for t > t0, such that

R− 1

2
∂t(aa

T) � λ(aaT + zzT). (51)

Proof For notation convenience, we take r = r(t). It is sufficient to prove det(R) > 0 for
z1z2 > 0 and r2 + rz2

2 − ∂2
xxV z1z2 − 1

2∂tr > 0, which is equivalent to

z1z2(r2 + rz2
2 − ∂2

xxV z1z2 −
1

2
∂tr)−

1

4
(rz1z2 + z2

2 − ∂2
xxV z

2
1 + r)2 > 0.

It is equivalent to the following inequality:

−z4
1(∂2

xxV )2 + [2(r(1 + z1z2)− z2
2)z2

1 ]∂2
xxV − [(1− z1z2)r + z2

2 ]2 − 2z1z2∂tr > 0. (52)

According to the assumption of ∂2
xxV , it is sufficient to prove the following conditions:{

z1z2 > 0, r2 + rz2
2 − λz1z2 − 1

2∂tr > 0, (r(1 + z1z2)− z2
2) > 0;

−z4
1λ

2
+ [2(r(1 + z1z2)− z2

2)z2
1 ]λ− [(1− z1z2)r + z2

2 ]2 − 2z1z2∂tr > 0.
(53)

Let z1 = 1, then (50) is equivalent to (53). We complete the proof.

The next corollary estimates λ in (51) under some specific choices of parameters.

Corollary 29 If z2 = z1 = 1, λ > 1
2λ + λ

2 + 1, β ≥ λ/2, we have R − 1
2∂t(aa

T) � 0 as

t→∞. Suppose further that β = λ/2, and λ ≥ λ+ 2, then we have λ = O(2λ

λ
− 1

λ
2 ).
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Proof Since r(t) = β +C/ log t, we have that r(t)→ β and ∂tr → 0 as t→∞. Denote by
u(x) = ∂2

xxV (x) and let β = λ/2. We directly compute

det(R− 1

2
∂t(aa

T)) =
λ

2

4
+
λ

2
− u(x)− 1

4
(λ+ 1− u(x))2

=
λu(x)

2
− u(x)

2
− u(x)2

4
− 1

4
, (54)

which is a quadratic function in u(x). One can check that since 0 < λ ≤ u(x) ≤ λ for all x,
we have det(R− 1

2∂t(aa
T)) > 0 as long as

λ > max{ 1

2λ
+
λ

2
+ 1, 1 +

√
2} =

1

2λ
+
λ

2
+ 1 .

Now let β = λ
2 . We want to find the largest λ, such that

R− 1

2
∂t(aa

T)− λ(aaT + zzT) =

(
1− λ 1

2(λ+ 1− u(x))− λ
1
2(λ+ 1− u(x))− λ λ

2

4 + λ
2 − u(x)− (1 + λ

2 )λ

)
� 0,

as t→∞. This translates to

1− λ ≥ 0, (55)

λ
2

4
+
λ

2
− u(x)− (1 +

λ

2
)λ ≥ 0, (56)

−1 + 2(λ− 1)u(x)− u(x)2 − λ(λ− 2λ)λ ≥ 0. (57)

Define f(u, λ) = −1 + 2(λ− 1)u(x)− u(x)2− λ(λ− 2λ)λ. It is clear that when λ is fixed, f
is quadratic in u and peaks at u = λ− 1. We also have that by definition of u(x), we have
λ ≤ u(x) ≤ λ for all x. Therefore,

min
u
f(u, λ) = min{f(λ, λ), f(λ, λ), f(λ− 1, λ)} .

When λ ≥ λ+ 2, the above implies minu f(u, λ) = f(λ, λ). Thus (57) is satisfied as long as
f(λ, λ) ≥ 0. We would like to maximize λ subject to the constraints f(λ, λ) ≥ 0 together
with (55) and (56). From (56) we have that

λ ≤ λ

2
− λ

1 + λ/2
.

Using our assumption λ ≥ λ+ 2 we get that

λ

2
− λ

1 + λ/2
> 1 .

Therefore, (55) and (56) together imply λ ≤ 1. Observe that f(λ, λ) is a quadratic function
of λ, which produces two roots. It is straightforward to check that the larger root of f is
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greater than 1. Hence, we conclude that λ cannot be larger than the smaller root of f . We
have

λmax =
λ

4
− 1

4

√
8

λ
+ λ

2
+ 16

λ

λ
− 16λ+ 8

λ2

λ
(58)

≈ λ

4
− 1

4

√
8

λ
+ λ

2 − 16λ

≈ 2λ

λ
− 1

λ
2 ,

where our approximation holds when λ/λ� 1.

6.1 Numerics

We plot the convergence of (48) in Fig. 6 for strongly convex functions and in Fig. 7 for
non-convex functions. We have also plotted the KL divergence for x variable only in Fig. 8
and Fig. 9. We used the same experiment setting as described in Section 4.3. And we
use the Euler-Maruyama discretization for underdamped Langevin dynamics. In all of our
numerical experiments, we observe that the KL divergence converges to 0. Comparing Fig. 1
with Fig. 8, we observe that the convergence speed of the underdamped Langevin dynamics
(48) has a greater dependence on the constant than overdamped Langevin dynamics (37)
does (recall that there is a constant C in β(t) in (37) and a constant β in r(t) in (48)). If
the constant is chosen appropriately, the underdamped Langevin dynamics could converge
much faster to the invariant measure than the overdamped Langevin dynamics. In both
Fig. 8 and Fig. 9, we observe oscillations of the error, which is a typical phenomenon in
accelerated convex optimization methods (Attouch et al., 2020, 2021; Zuo et al., 2023).
Designing the optimal constant β in r(t) with fast convergence speed is a delicate issue that
is left for future studies.

1.0 1.5 2.0 2.5 3.0
log(t)

8

7

6

5

4

3

2

1

lo
g(

KL
)

=0.25
=0.5
=1.0
=2.0
=4.0

(a) V (x) = (x−1)2

8

1.0 1.5 2.0 2.5 3.0
log(t)

8

7

6

5

4

3

2

1

lo
g(

KL
)

=0.25
=0.5
=1.0
=2.0
=4.0

(b) V (x) = (x+1)2

2 − cos(x)
2

Figure 6: Convergence rate of two strongly convex functions in one-dimension for (48) with
r(t) = β + 1/ log(t), where we measure the KL divergence in both x and v.
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Figure 7: Convergence rate of two non-convex functions in one-dimension for (48) with
r(t) = β + 1/ log(t), where we measure the KL divergence in both x and v
variables.
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Figure 8: Convergence rate of two strongly convex functions in one-dimension for (48),
where we only measure the KL divergence in the x variable.

Remark 30 We briefly review some theoretical efforts on proving the algorithmic dimen-
sional dependence of Langevin dyanmics for sampling. Note that dimensional dependence
stems from discretization schemes of the continuous SDEs. The first non-asymptotic anal-
ysis of unadjusted Langevin algorithm (ULA) is performed by Dalalyan (2017) in which
the author proved that in order to achieve a total variation error less than ε, one needs
O(d/ε2) iterations, where d is the dimension of the problem. Then Durmus and Moulines
(2016) obtained the same complexity for Wasserstein-2 distance. Cheng et al. (2018) pro-
posed a discretization scheme for underdamped Langevin dynamics based on Hamiltonian
Monte Carlo (HMC) (Simon et al., 1987; Neal, 2010), that is able to achieve an ε error
in Wasserstein-2 distance in O(d1/2/ε) steps. Later Shen and Lee (2019) proposed a ran-
domized midpoint method for discretizing underdamped Langevin dynamics based on Cheng
et al. (2018) that is able to improve the dimensional dependence further to O(d1/3). As
discretization is not the focus of this paper, we only demonstrate an Gaussian example in
higher dimensions using the Euler-Maruyama discretization of underdamped Langevin dy-
namics in Fig. 10. The y-axis is log(KL/d). Error curves representing different dimensions
seem to coincide with each other. This implies that for our quadratic potential, the KL di-
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Figure 9: Convergence rate of two non-convex functions in one-dimension for (48), where
we only measure the KL divergence in the x variable.
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Figure 10: Quadratic potential in higher dimensions. For each example, we fix the smallest
and largest eigenvalues of the covariance to be 0.05 and 100. The rest of the
eigenvalues are uniformly spaced between 0.05 and 100. We choose β = 0.1. We
use M = 105 particles, and step size h = 0.02. The KL divergence is measaured
only in the x variable.

vergence depends linearly on the dimension when we fix the smallest and largest eigenvalues
of the target covariance matrix and use an Euler-Maruyama discretization. We leave more
detailed study of discretization schemes to future works.

7. Discussion

This paper studies the convergence analysis of time-dependent stochastic dynamics. We
obtain a time-dependent Hessian matrix condition, which characterizes the convergence
behavior of stochastic dynamics in terms of generalized Fisher information functionals.
Examples of convergence speeds are shown, including over-damped, irreversible drift and
degenerate diffusion, and underdamped Langevin dynamics. We also present several numer-
ical experiments to verify the current convergence analysis of general stochastic dynamics.
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In future work, we shall investigate the “optimal” choice of time-dependent matrix
function a and vector field γ to find the global minimizer of a non-convex function V .
Here, the “optimal” is in the sense of fast convergence speed towards the global minimizer.
However, as we see in this paper, the convergence analysis for stochastic algorithms is more
delicate than their deterministic counterparts. This requires us to estimate the general
Hessian matrix, a.k.a. Ricci curvature lower bound, from both diffusion matrices a and non-
gradient vector from γ. They depend on the second derivatives of coefficients in stochastic
dynamics. The other practical issue is the estimation of step sizes in the Euler-Maruyama
scheme (41). The related discrete-time convergence analysis of stochastic algorithms is left
in future studies.
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Appendix A.

The time-independent version of the Hessian matrix is first introduced in Feng and Li. (2021,
Definition 1). For completeness of this paper, we introduce the time-dependent version of
it for matrices a(t, x) and z(t, x), and we take the interpolation parameter β = 0 for Feng
and Li. (2021, Definition 1), since we do not always have ∇ · (π(t, x)γ(t, x)) = 0, which can
be seen in Lemma 14 and Lemma 17. This is a major difference compared to Feng and
Li. (2021, Proposition 9). Note that, both Γ̃2 and Γ̃z,π2 only involve spacial derivatives,
thus the following Bochner’s formula (Feng and Li., 2021, Theorem 3) holds true. We first
introduce the information Hessian matrix.

Definition 31 (Hessian matrix) Let matrices a(t, x) and z(t, x) satisfy the Hörmander
like condtion, and conditions (7), (8). We define a bilinear form associated with SDE (1),
and matrices a, z as below, for a smooth vector field U ∈ C∞(Rn+m;Rn+m),

R(U,U) = (Ra + Rz + Rπ + Rγa + Rγz)(U,U)− ΛT
1 Λ1 − ΛT

2 Λ2 + DTD + ETE. (59)

We define R(t, x) : R+ × Rn+m → R(n+m)×(n+m) as the corresponding time-dependent
matrix function such that

UTR(x)U = R(U,U), (60)

for all vector fields U. The bilinear forms in (59) are defined as below.

Ra(U,U) =
n∑

i,k=1

aTi ∇aTi ∇aTkU(aTkU) +
n∑

i,k=1

aTi a
T
i ∇2aTkU(aTkU)

−
n∑

i,k=1

aTk∇aTi ∇aTi U(aTkU)−
n∑

i,k=1

aTk a
T
i ∇2aTi U(aTkU)

+
n∑
i=1

n+m∑
k̂=1

[
(aaT∇ log π)k̂∇k̂a

T
i U− aTi ∇(aaT∇ log π)k̂Uk̂

]
aTi U

+∇a ◦
( n∑
k=1

[
aT∇aTkU− aTk∇aTU)

]
aTkU

)
− 〈
(
aT∇2a ◦ (aTU)

)
, aTU〉Rn ,

Rz(U,U) =

n∑
i=1

m∑
k=1

aTi ∇aTi ∇zTk U(zTk U) +
n∑

i,k=1

aTi a
T
i ∇2zTk U(zTk U)

−
n∑
i=1

m∑
k=1

zTk∇aTi ∇aTi U(zTk U)−
n∑

i,k=1

zTk a
T
i ∇2aTi U(zTk U)

+
m∑
k=1

n+m∑
k̂=1

[
(aaT∇ log π)k̂∇k̂z

T
k U− zTk∇(aaT∇ log π)k̂Uk̂

]
zTk U

+∇a ◦
( m∑
k=1

[
aT∇zTk U− zTk∇aTU)

]
zTk U

)
− 〈
(
zT∇2a ◦ (aTU)

)
, zTU〉Rm ,
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Rπ(U,U) = 2

m∑
k=1

n∑
i=1

[
∇zTk zTk∇aTi UaTi U + zTk∇zTk∇aTi UaTi U + zTk z

T
k∇2aTi Ua

T
i U
]

+2

m∑
k=1

n∑
i=1

[
(zTk∇aTi U)2 + (zT∇ log π)k

[
zTk∇aTi UaTi U

] ]
−2

m∑
j=1

n∑
l=1

[
∇aTl aTl ∇zTj UzTj U + aTl ∇aTl ∇zTj UzTj U + aTl a

T
l ∇2zTj Uz

T
j U
]

−2

m∑
j=1

n∑
l=1

[
(aTl ∇zTj U)2 + (aT∇ log π)l

[
aTl ∇zTj UzTj U

]]
,

Rγa(U,U) =
1

2

n+m∑
k̂=1

γk̂〈U,∇k̂(aa
T)U〉 − 〈∇γU, aaTU〉Rn+m ,

Rγz(U,U) =
1

2

n+m∑
k̂=1

γk̂〈U,∇k̂(zz
T)U〉 − 〈∇γU, zzTU〉Rn+m .

We define vector functions D : Rn+m → Rn2×1, and E : Rn+m → R(n×m)×1 as below,

Dik =
n+m∑
î,k̂=1

aT
îi
∂xîa

T
kk̂
Uk̂, Eik =

n+m∑
î,k̂=1

aT
îi
∂xîz

T
kk̂
Uk̂. (61)

For β ∈ R, the vector functions Λ1 : Rn+m → Rn2×1 and Λ2 : Rn+m → R(n×m)×1 are
defined as, for i, l ∈ {1, · · · , n},

(Λ1)il =
n∑
k=1

[
n+m∑
i′=1

aTii′λ
i′k
l −

n+m∑
k′=1

aTkk′λ
k′i
l ]aTkU +

m∑
k=1

( n+m∑
i′=1

aTii′ω
i′k
l −

n+m∑
k′=1

zTkk′λ
k′i
l

)
zTk U

−
m∑
k=1

n+m∑
i′=1

aTii′ω
i′k
l zTk U−

β

2
αl(a

T
i U) +

β

2
〈U, γ〉1{i=l} + Dil,

and for i ∈ {1, · · · , n}, l ∈ {1, · · · ,m},

(Λ2)il =

n∑
k=1

[

n+m∑
i′=1

aTii′λ
i′k
l+n −

n+m∑
k′=1

aTkk′λ
k′i
l+n]aTkU +

m∑
k=1

( n+m∑
i′=1

aTii′ω
i′k
l+n −

n+m∑
k′=1

zTkk′λ
k′i
l+n

)
zTk U

+

n∑
k=1

n+m∑
k′=1

zTlk′λ
k′k
i aTkU + zTl ∇aTi U−

m∑
k=1

n+m∑
i′=1

aTii′ω
i′k
l+nz

T
k U− aTi ∇zTl U−

β

2
αl+n(aTi U) + Eil.

For each indices i, k, k̂, assume that there exist smooth functions λi
′k
l , ωi

′k
l and αl for l =

1, · · · , n+m,

∇i′aTkk̂ =
n∑
l=1

λi
′k
l aT

lk̂
+

m∑
l=1

λi
′k
l+nz

T
lk̂
, ∇i′zTkk̂ =

n∑
l=1

ωi
′k
l aT

lk̂
+

m∑
l=1

ωi
′k
l+nz

T
lk̂
,

and γk̂ =
∑n

l=1 αla
T
lk̂

+
∑m

l=1 αl+nz
T
lk̂

. For a vector function γ ∈ Rn+m, we define ∇γ ∈
R(n+m)×(n+m) with (∇γ)ij = ∇iγj.
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Proposition 32 (Information Bochner’s formula) If the Assumption in (8) is satis-
fied, then the following decomposition holds. For any f = log p

π ∈ C
∞(Rn+m,R) and β = 0,∫ [

Γ̃2(f, f) + Γ̃z,π2 (f, f)
]
pdx =

∫ [
‖Hessβf‖2F + (Ra + Rz + Rπ)(∇f,∇f)

]
pdx.

We denote

‖Hessβf‖2F = [QX + Λ1]T[QX + Λ1] + [PX + Λ2]T[PX + Λ2],

where R, Λ1, Λ2 are defined in Definition 31. And we define matrices Q and P by

Q = aT ⊗ aT ∈ Rn
2×(n+m)2 , P = aT ⊗ zT ∈ R(nm)×(n+m)2 , (62)

with Qikîk̂ = aT
îi
aT
kk̂

and Pikîk̂ = aT
îi
zT
kk̂

. More precisely, for each row (resp. column) of

Q, the row (resp. column) indices of Qikîk̂ follow the double summation
∑n

i=1

∑n
k=1 (resp.∑n+1

î=1

∑n+m

k̂=1
). For any smooth function f : Rn+m → R, we define X ∈ R(n+m)2×1 by the

vectorization of the Hessian matrix for function f with

Xîk̂ =
∂2f

∂xî∂xk̂
, for î, k̂ = 1, · · · , n+m.

Proof For self-consistence, we present the key steps to prove the above Information
Bochner’s formulas. For any vector field U ∈ C∞(Rn+m), we define vectors C,F,G ∈
R(n+m)2×1 as below. For î, k̂ = 1, · · · , n+m,

Cîk̂ =

n∑
i,k=1

(
aT
îi
aTi ∇aTkk̂ − a

T
ik̂
aTk∇aTîi

)
aTkU, Fîk̂ =

n∑
i=1

m∑
k=1

(
aT
îi
aTi ∇zTkk̂ − z

T
k∇aTîia

T
ik̂

)
zTk U,

Gîk̂ =

n∑
i=1

m∑
k=1

[(
zT
kk̂
zTk∇aTîia

T
i U + aT

îi
zT
kk̂
zTk∇aTi U

)
−
(
aT
îi
aTi ∇zTkk̂z

T
k U + zT

kk̂
aT
îi
aTi ∇zTk U

)]
.

For the Information Gamma operators defined in Definition 7, following from (Feng and
Li., 2021, Proposition 11), we have

Γ̃2(f, f) = (QX + D)T(QX + D) + 2CTX + Ra(∇f,∇f),

Γ̃z2(f, f) = (PX + E)T(PX + E) + 2FTX + Rz(∇f,∇f),

divπz (Γ∇(aaT)f, f)− divπa(Γ∇(zzT)f, f) = Rπ(∇f,∇f) + 2GTX.

Here we denote Γ̃z2(f, f) = 1
2 L̃Γz1(f, f)− Γz1(L̃f, f). Thus, we end up with∫ [

Γ̃2(f, f) + Γ̃z,π2 (f, f)
]
pdx

=

∫ [
(QX + D)T(QX + D) + 2CTX + Ra(∇f,∇f)

]
pdx

+

∫ [
(PX + E)T(PX + E) + 2FTX + Rz(∇f,∇f) + Rπ(∇f,∇f) + 2GTX

]
pdx.
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Fisher information dissipation

By completing the squares for the above quadratic form, we have

(QX + D)T(QX + D) + (PX + E)T(PX + E) + 2CTX + 2FTX + 2GTX

= [QX + Λ1]T[QX + Λ1] + [PX + Λ2]T[PX + Λ2]− ΛT
1 Λ1 − ΛT

2 Λ2 + DTD + ETE.

This follows from the Assumption in (8). The above equality is a special case for (Feng and
Li., 2021, Proof of Theorem 3) with β = 0. Combining the above terms, we complete the
proof. Note here, we do not include the irreversible Gamma operators ΓIa and ΓIz above,
since they are separately discussed in Lemma 14 and Lemma 17.
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