
Overcoming the Sim-to-Real Gap: Leveraging
Simulation to Learn to Explore for Real-World RL

Andrew Wagenmaker∗
University of California, Berkeley

Kevin Huang
University of Washington

Liyiming Ke
University of Washington

Kevin Jamieson
University of Washington

Abhishek Gupta
University of Washington

Abstract

In order to mitigate the sample complexity of real-world reinforcement learning,
common practice is to first train a policy in a simulator where samples are cheap,
and then deploy this policy in the real world, with the hope that it generalizes
effectively. Such direct sim2real transfer is not guaranteed to succeed, however,
and in cases where it fails, it is unclear how to best utilize the simulator. In
this work, we show that in many regimes, while direct sim2real transfer may
fail, we can utilize the simulator to learn a set of exploratory policies which
enable efficient exploration in the real world. In particular, in the setting of
low-rank MDPs, we show that coupling these exploratory policies with simple,
practical approaches—least-squares regression oracles and naive randomized
exploration—yields a polynomial sample complexity in the real world, an
exponential improvement over direct sim2real transfer, or learning without access
to a simulator. To the best of our knowledge, this is the first evidence that
simulation transfer yields a provable gain in reinforcement learning in settings
where direct sim2real transfer fails. We validate our theoretical results on several
realistic robotic simulators and a real-world robotic sim2real task, demonstrating
that transferring exploratory policies can yield substantial gains in practice as well.

1 Introduction

Over the last decade, reinforcement learning (RL) techniques have been deployed to solve a variety of
real-world problems, with applications in robotics, the natural sciences, and beyond [27, 54, 52, 26,
46, 23]. While promising, the broad application of RL methods has been severely limited by its large
sample complexity—the number of interactions with the environment required for the algorithm to
learn to solve the desired task. In applications of interest, it is often the case that collecting samples
is very costly, and the number of samples required by RL algorithms is prohibitively expensive.

In many domains, while collecting samples in the desired deployment environment may be very
costly, we have access to a simulator where the cost of samples is virtually nonexistent. As a concrete
example, in robotic applications where the goal is real-world deployment, directly training in the
real world typically requires an infeasibly large number of samples. However, it is often possible
to obtain a simulator—derived from first principles or knowledge of the robot’s actuation—which
provides an approximate model of the real-world deployment environment. Given such a simulator,
common practice is to first train a policy to accomplish the desired task in the simulator, and then
deploy it in the real world, with the hope that the policy generalizes effectively from the simulator
to the goal deployment environment. Indeed, such “sim2real” transfer has become a key piece in the

∗Correspondance to: ajwagen@berkeley.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

St
an

da
rd

 S
im

2R
ea

l
O

ur
 A

pp
ro

ac
h

Train exploratory
policies in sim

Collect high-coverage
data in real

Use data to learn
to solve task

Train policy that
solves task in sim

Collect low-coverage
data in real

Unable to
solve task

Figure 1: Left: Overview of our approach compared to standard sim2real transfer on puck pushing
task. Standard sim2real transfer first trains a policy to solve the goal task in sim and then transfers this
policy to real. This policy may fail to solve the task in real due to the sim2real gap, and furthermore
may not provide sufficient data coverage to successfully learn a policy that does solve the goal task in
real. In contrast, our approach trains a set of exploratory policies in sim which achieve high-coverage
data when deployed in real, even if they are unable to solve the task 0-shot. This high-coverage data
can then be used to successfully learn a policy that solves the goal task in real. Right: Quantitative
results running our approach on the puck pushing task illustrated on left, compared to standard
sim2real transfer. Over 6 real-world trials, our approach solves the task 6/6 times while standard
sim2real transfer solves the task 0/6 times.

application of RL to robotic settings, as well as many other domains of interest such as the natural
sciences [12, 15], and is a promising approach towards reducing the sample complexity of RL in
real-world deployment [19, 4, 18].

Effective sim2real transfer can be challenging, however, as there is often a non-trivial mismatch
between the simulated and real environments. The real world is difficult to model perfectly, and some
discrepancy is inevitable. As such, directly transferring the policy trained in the simulator to the real
world often fails, the mismatch between sim and real causing the policy—which may perfectly solve
the task in sim—to never solve the task in real. While some attempts have been made to address
this—for example, utilizing domain randomization to extend the space of environments covered
by simulator [60, 49], or finetuning the policy learned in sim in the real world [50, 73]—these
approaches are not guaranteed to succeed. In settings where such methods fail, can we still utilize
a simulator to speed up real-world RL?

In this work we take steps towards developing principled approaches to sim2real transfer that
addresses this question. Our key intuition is that it is often easier to learn to explore than to learn
to solve the goal task. While solving the goal task may require very precise actions, collecting
high-quality exploratory data can require significantly less precision. For example, successfully
solving a complex robotic manipulation task requires a particular sequence of motions, but obtaining
a policy that will interact with the object of interest in some way, providing useful exploratory data
on its behavior, would require significantly less precision.

Formally, we show that, in the setting of low-rank MDPs where there is a mismatch in the dynamics
between the “sim” and “real” environments, even when this mismatch is such that direct sim2real
transfer fails, under certain conditions we can still effectively transfer a set of exploratory policies
from sim to real. In particular, we demonstrate that access to such exploratory policies, coupled
with random exploration and a least-squares regression oracle—which are insufficient for efficient
learning on their own, but often still favored in practice due to their simplicity—enable provably
efficient learning in real. Our results therefore demonstrate that simulators, when carefully applied,
can yield a provable—exponential—gain over both naive sim2real transfer and learning without
a simulator, and enable algorithms commonly used in practice to learn efficiently.

Furthermore, our results motivate a simple, easy-to-implement algorithmic principle: rather than
training and transferring a policy that solves the task in the simulator, utilize the simulator to train
a set of exploratory policies, and transfer these, coupled with random exploration, to generate high

2

quality exploratory data in real. We show experimentally—through a realistic robotic simulator and
real-world sim2real transfer problem on the Franka robot platform—that this principle of transferring
exploratory policies from sim to real yields a significant practical gain in sample efficiency, often
enabling efficient learning in settings where naive transfer fails completely (see Figure 1).

2 Related Work

Provable Transfer in RL. Perhaps the first theoretical result on transfer in RL is the “simulation
lemma”, which transforms a bound on the total-variation distance between the dynamics to a bound
on policy value [24, 25, 6, 22]—we argue that we can do significantly better with exploration transfer.
More recent work has considered transfer in the setting of block MDPs [34], but requires relatively
strong assumptions on the similarity between source and target MDPs, or the meta-RL setting [69],
but only consider tabular MDPs, and assume the target MDP is covered by the training distribution.
Perhaps most relevant to this work is the work of [36], which presents several lower bounds showing
that efficient transfer in RL is not feasible in general. In relation to this work, our work can be seen
as providing a set of sufficient conditions that do enable efficient transfer; the lower bounds presented
in [36] do not hold in the low-rank MDP setting we consider. Several other works exist, but either
consider different types of transfer than what we consider (e.g., observation space mismatch), or
only learn a policy that has suboptimality bounded by the sim2real mismatch [37, 56, 58]. Another
somewhat tangential line of work considers representation transfer in RL, where it is assumed the
source and target tasks share a common representation [35, 10, 2]. We remark as well that the formal
sim2real setting we consider is a special case of the MF-MDP setting of [53].

Simulators and Low-Rank MDPs. Several existing works show that there are provable benefits
to training a policy in “simulation” due to the ability to reset on command [67, 33, 5, 68, 70, 42].
These works do not consider the transfer problem, however. The setting of linear and low-rank MDPs
which we consider has seen a significant amount of attention over the last several years, and many
provably efficient algorithms exist [21, 1, 62, 63, 43, 41]. These works typically assume access to
powerful oracles which enable efficient learning; we only consider access to a simple regression
oracle. Beyond the theory literature, recent work has also shown that low-rank MDPs can effectively
model a variety of standard RL settings in practice [72].

Sim2Real Transfer in Practice. The sim2real literature is vast and we only highlight particularly
relevant works here; see [74] for a full survey. To mitigate the inconsistency between the simulator and
real world’s physical parameters and modeling, domain randomization creates a variety of simulated
environments with randomized properties to develop a robust policy [60, 49, 44, 8, 39]. Domain
adaptation instead constructs encoding of deployment conditions (e.g., physical condition or past
histories) and adapts to the deployment environment by matching the encoding [29, 9, 66, 55, 38, 40].
In contrast, our work assumes a fundamental sim2real mismatch where we do not expect the real
system to match the simulator for any parameter settings. A related line of work shows that policies
trained with robust exploration strategies generalize better to disturbed or unseen environments
[13, 20]. Our work is complimentary to this work in that our goal is not to transfer a policy that
solves the task in new environment, but rather explores the environment.

3 Preliminaries

We let △X denote the set of distributions over set X , [H] := {1, 2, . . . ,H}, and ∥P − Q∥TV the
total-variation distance between distributions P and Q.

Markov Decision Processes. We consider the setting of episodic Markov Decision Processes
(MDPs). An MDP is denoted by a tupleM = (S,A, {Ph}Hh=1, {rh}Hh=1, s1, H), where S denotes
the set of states, A the set of actions, Ph : S ×A → △S the transition function, rh : S ×A → [0, 1]
the reward (which we assume is deterministic and known), s1 the initial state, and H the horizon.
We assume A is finite and denote A := |A|. Interaction with an MDP starts from state s1, the agent
takes some action a1, transitions to state s2 ∼ P1(· | s1, a1), and receives reward r1(s1, a1). This
process continues for H steps at which points the episode terminates, and the process resets.

The goal of the learner is to find a policy π = {πh}Hh=1, πh : S → △A, that achieves maximum
reward. We can quantify the reward received by some policy π in terms of the value and Q-value

3

functions. The Q-value function is defined as Qπ
h(s, a) := Eπ[

∑H
h′=hrh′(sh′ , ah′) | sh = s, ah =

a], and value function is defined in terms of the Q-value function as V π
h (s) := Ea∼πh(·|s)[Q

π
h(s, a)].

The value of policy π, its expected reward, is denoted by V π
0 := V π

1 (s1), and the value of the optimal
policy, the maximum achievable reward, by V ⋆

0 := supπ V
π
0 .

In this work we are interested in the setting where we wish to solve some task in the “real” envi-
ronment, represented as an MDP, and we have access to a simulator which approximates the real
environment in some sense. We denote the real MDP asMreal, and the simulator asMsim. We
assume thatMreal andMsim have the same state and actions spaces, reward function, and initial state,
but different transition functions, P real and P sim. We denote value functions inMreal andMsim as
V real,π
h (s) and V sim,π

h (s), respectively. We make the following assumption.
Assumption 1. For all (s, a, h) ∈ S ×A× [H] and some ϵsim > 0, we have:

∥P real
h (· | s, a)− P sim

h (· | s, a)∥TV ≤ ϵsim.

We do not assume that the value of ϵsim is known, simply that there exists some such ϵsim.

Function Approximation. In order to enable efficient learning, some structure on the MDPs of
interest is required. We will assume thatMreal andMsim are low-rank MDPs, as defined below.
Definition 3.1 (Low-Rank MDP). We say an MDP is a low-rank MDP with dimension d if there
exists some featurization ϕ : S ×A → Rd and measure µ : [H]× S → Rd such that:

Ph(· | s, a) = ⟨ϕ(s, a),µh(·)⟩, ∀s, a, h.
We assume that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a), and for all h, ∥|µh|(S)∥2 = ∥

∫
s∈S |dµh(s)|∥2 ≤

√
d.

Formally, we make the following assumption on the structure ofMsim andMreal.
Assumption 2. BothMsim andMreal satisfy Definition 3.1 with feature maps and measures (ϕs,µs)
and (ϕr,µr), respectively. Furthermore, ϕs is known, but all of µs,ϕr, and µr are unknown.

In the literature, MDPs satisfying Definition 3.1 but where ϕ is known are typically referred to as
“linear” MDPs, while MDPs satisfying Definition 3.1 but with ϕ unknown are typically referred to as
“low-rank” MDPs. Given this terminology, we have thatMsim is a linear MDP2, whileMreal is a
low-rank MDP. We assume the following reachability condition onMsim.

Assumption 3. There ∃λ⋆
min > 0 with minh supπ λmin(EMsim,π[ϕs(sh, ah)ϕ

s(sh, ah)
⊤]) ≥ λ⋆

min.

Assumption 3 posits that each direction in the feature space in our simulator can be activated by some
policy, and can be thought of as a measure of how easily each direction can be reached. Similar
assumptions have appeared before in the literature on linear and low-rank MDPs [71, 3, 2]. Note that
we only require this reachability assumption inMsim. We also assume we are given access to function
classes Fh : S ×A → [0, H] and let F := F1 ×F2 × . . .×FH . Since no reward is collected in the
(H + 1)th step we take fH+1 = 0. For any f : S ×A → R, we let πf

h(s) := argmaxa∈A fh(s, a).
We define the Bellman operator on some function fh+1 : S ×A → R as:

T fh+1(s, a) := rh(s, a) + Es′∼Ph(·|s,a)[max
a′

fh+1(s
′, a′)].

We make the following standard assumption on F .
Assumption 4 (Bellman Completeness). For all fh+1 ∈ Fh+1, we have T realfh+1, T simfh+1 ∈ Fh,
where T real and T sim denote the Bellman operators onMreal andMsim, respectively.

PAC Reinforcement Learning. Our goal is to find a policy π̂ that achieves maximum reward in
Mreal. Formally, we consider the PAC (Probably-Approximately-Correct) RL setting.
Definition 3.2 (PAC Reinforcement Learning). Given some ϵ > 0 and δ > 0, with probability at
least 1− δ identify some policy π̂ such that: V real,π̂

0 ≥ V real,⋆
0 − ϵ.

We will be particularly interested in solving the PAC RL problem with the aid of a simulator, using
the minimum number of samples fromMreal possible, as we will formalize in the following. As
we will see, while it is straightforward to achieve this objective usingMsim if ϵ = O(ϵsim), naive
transfer methods can fail to achieve this completely if ϵ≪ ϵsim. As such, our primary focus will be
on developing efficient sim2real methods in this regime.

2The assumption that ϕs is known is for simplicity only—similar results could be obtained were ϕs also
unknown using more complex algorithmic tools in Msim.

4

4 Theoretical Results

In this section we provide our main theoretical results. We first present two negative results: in
Section 4.1 showing that “naive exploration”—utilizing only a least-squares regression oracle and
random exploration approaches such as ζ-greedy3—is provably inefficient, and in Section 4.2 showing
that directly transferring the optimal policy fromMsim toMreal is unable to efficiently obtain a policy
with suboptimality better thanO(ϵsim) in real. Then in Section 4.3 we present our main positive result,
showing that by utilizing the same oracles as in Sections 4.1 and 4.2—a least-squares regression oracle,
simulator access, and the ability to take actions randomly—we can efficiently learn an ϵ-optimal
policy for ϵ≪ ϵsim inMreal by carefully utilizing the simulator to learn exploration policies.

4.1 Naive Exploration is Provably Inefficient

While a variety of works have developed provably efficient methods for solving PAC RL in low-rank
MDPs [1, 62, 43, 41], these works typically either rely on complex computation oracles or carefully
directed exploration strategies which are rarely utilized in practice. In contrast, RL methods utilized in
practice typically rely on “simple” computation oracles and exploration strategies. Before considering
the sim2real setting, we first show that such “simple” strategies are insufficient for efficient PAC RL.
To instantiate such strategies, we consider a least-squares regression oracle, often available in practice.
Oracle 4.1 (Least-Squares Regression Oracle). We assume access to a least-squares regres-
sion oracle such that, for any h and dataset D = {(st, at, yt)}Tt=1, we can compute
argminf∈Fh

∑T
t=1(f(s

t, at)− yt)2.

We couple this oracle with “naive exploration”, which here we use to refer to any method that explores
by randomly perturbing the action recommended by the current estimate of the optimal policy. While
a variety of instantiations of naive exploration exist (see e.g. [11]), we consider a particularly common
formulation, ζ-greedy exploration.
Protocol 4.1 (ζ-Greedy Exploration). Given access to a regression oracle, any ζ ∈ [0, 1], and time
horizon T , consider the following protocol:

1. Interact with Mreal for T episodes. At every step of episode t + 1, play πft

h (s) with
probability 1− ζ, and a ∼ unif(A) otherwise, where:

f t
h = argminf∈Fh

∑t
t′=1(f(s

t′

h , a
t′

h)− rt
′

h −maxa′ f t
h+1(s

t′

h+1, a
′))2.

2. Using collected data in any way desired, propose a policy π̂.

Protocol 4.1 forms the backbone of many algorithms used in practice. Despite its common application,
as existing work [11] and the following result show, it is provably inefficient.
Proposition 1. For any H > 1, ζ ∈ [0, 1], and c ≤ 1/6, there exist someMreal,1 andMreal,2 such
that bothMreal,1 andMreal,2 satisfy Assumptions 2 and 4, and unless T ≥ Ω(2H/2), when running
Protocol 4.1 we have:

supMreal∈{Mreal,1,Mreal,2} EMreal

[V Mreal,⋆
0 − V Mreal,π̂

0] ≥ c/32.

Proposition 1 shows that, in a minimax sense, ζ-greedy exploration is insufficient for provably
efficient reinforcement learning: on one ofMreal,1 andMreal,2, ζ-greedy exploration will only be
able to find a policy that is suboptimal by a constant factor, unless we take an exponentially large
number of samples. While we focus on ζ-greedy exploration in Proposition 1, this result extends
to other types of naive exploration, for example, those given in [11]. See Section 5.2 for further
discussion of the construction for Proposition 1.

4.2 Understanding the Limits of Direct sim2real Transfer

Proposition 1 shows that in general utilizing a least-squares regression oracle with ζ-greedy explo-
ration is insufficient for provably efficient RL. Can this be made efficient with access to a simulator

3Throughout this paper, we use “ζ-greedy” to refer to the method more commonly known as “ϵ-greedy” in
the literature, to avoid ambiguity between this ϵ and the ϵ in our definition of PAC RL, Definition 3.2.

5

Msim? In practice, standard sim2real methodology typically trains a policy to accomplish the goal
task inMsim, and then transfers this policy toMreal. We refer to this methodology as direct sim2real
transfer. The following canonical result, usually referred to as the “simulation lemma” [24, 25, 6, 22],
provides a sufficient guarantee for direct sim2real transfer to succeed under Assumption 1.
Proposition 2 (Simulation Lemma). Let πsim,⋆ denote an optimal policy in Msim. Then under
Assumption 1 we have V real,πsim,⋆

0 ≥ V real,⋆
0 − 2H2ϵsim.

Proposition 2 shows that, as long as ϵ ≥ 2H2ϵsim, direct sim2real transfer succeeds in obtaining
an ϵ-optimal policy inMreal. While this justifies direct sim2real transfer in settings whereMsim

andMreal are sufficiently close, we next show that given access only to πsim,⋆ and a least-squares
regression oracle—even when coupled with random exploration—we cannot hope to efficiently
obtain a policy with suboptimality less than O(ϵsim) onMreal using naive exploration. To formalize
this, we consider the following interaction protocol.
Protocol 4.2 (Direct sim2real Transfer with Naive Exploration). Given access to πsim,⋆, an optimal
policy inMsim, any ζ ∈ [0, 1], and time horizon T , consider the following protocol:

1. Interact withMreal for T episodes, and at each step h and state s play πsim,⋆
h (· | s) with

probability 1− ζ, and a ∼ unif(A) with probability ζ.

2. Using collected data in any way desired, propose a policy π̂.

Protocol 4.2 is a standard instantiation of direct sim2real transfer commonly found in the literature,
and couples playing the optimal policy fromMsim with naive exploration. We have the following.
Proposition 3. With the same choice ofMreal,1 andMreal,2 as in Proposition 1, there exists some
Msim such that bothMreal,1 andMreal,2 satisfy Assumption 1 withMsim for ϵsim ← c, Assumptions 2
to 4 hold, and unless T ≥ Ω(2H) when running Protocol 4.2, we have:

supMreal∈{Mreal,1,Mreal,2} EMreal

[V Mreal,⋆
0 − V Mreal,π̂

0] ≥ ϵsim/32.

Proposition 3 shows that there exists a setting where there are two possible Mreal satisfying
Assumption 1 withMsim, and where, using direct policy transfer, unless we interact withMreal for
exponentially many episodes (in H), we cannot determine a better than Ω(ϵsim)-optimal policy for
the worst-caseMreal. Together, Propositions 2 and 3 show that, while we can utilize direct sim2real
transfer to learn a policy that is O(ϵsim)-optimal inMreal, if our goal is to learn an ϵ-optimal policy
for ϵ≪ ϵsim, direct sim2real transfer is unable to efficiently achieve this.

4.3 Efficient sim2real Transfer via Exploration Policy Transfer

Does there exist some way to utilizeMsim and a least-squares regression oracle to enable efficient
learning inMreal, even when ϵ≪ ϵsim? Our key insight is that, rather than transferring the policy that
optimally solves the task inMsim, we should instead transfer policies that explore effectively inMsim.
While learning to solve a task may require very precise actions, we can often obtain sufficiently rich
data with relatively imprecise actions—it is easier to learn to explore than learn to solve a task. In
such settings, directly transferring a policy to solve the task will likely fail due to imprecision in the
simulator, but it may be possible to still transfer a policy that generates exploratory data. To formalize
this, we consider the following access model toMsim.
Oracle 4.2 (Msim Access). We may interact withMsim by either:

1. (Trajectory Sampling) For any policy π, sampling a trajectory {(sh, ah, rh, sh+1)}Hh=1

generated by playing π onMsim.

2. (Policy Optimization) For any reward r̃, computing a policy πsim(r̃) maximizing r̃ onMsim.

While access to such a policy optimization oracle is unrealistic inMreal, where we want to minimize
the number of samples collected, given cheap access to samples inMsim, such an oracle can often
be (approximately) implemented in practice4. Note that under Oracle 4.2 we only assume black-box

4While for simplicity we assume that the truly optimal policy can be computed, our results easily extend to
settings where we only have access to an oracle which can compute an approximately optimal policy.

6

access to our simulator—rather than allowing the behavior of the simulator to be queried at arbitrary
states, we are simply allowed to roll out policies onMsim, and compute optimal policies. Given Ora-
cle 4.2, as well as our least-squares regression oracle, Oracle 4.1, we propose the following algorithm.

Algorithm 1 sim2real Exploration Policy Transfer
1: input: budget T , confidence δ, simulatorMsim

// Learn policies Πh
exp which cover feature space in Msim

2: Πh
exp ← LEARNEXPPOLICIES(Msim, δ, 4A3ϵ

H , h) (Algorithm 5) for all h ∈ [H]

3: Π̃h
exp ← {π̃exp : π̃exp plays πexp up to step h, then plays actions randomly, ∀πexp ∈ Πh

exp}
// Explore in Mreal via Π̃exp

4: Play πexp ∼ unif({unif(Π̃h
exp)}Hh=1) for T/2 episodes inMreal, add data to D

// Estimate optimal policy on collected data
5: for h = H,H − 1, . . . , 1 do
6: f̂h ← argminf∈F

∑
(s,a,r,s′)∈D(fh(s, a)− r −maxa′ f̂h+1(s

′, a′))2

7: Compute πsim,⋆ via Oracle 4.2
8: Play πsim,⋆ for T/4 episodes in real, compute average return V̂ real,πsim,⋆

0

9: Play πf̂ for T/4 episodes in real, compute average return V̂ real,πf̂

0

10: return π̂ ← argmaxπ∈{πf̂ ,πsim,⋆} V̂
real,π
0

Algorithm 1 first calls a subroutine LEARNEXPPOLICIES, which learns a set of policies that provide
rich data coverage onMsim—precisely, LEARNEXPPOLICIES returns policies {Πh

exp}h∈[H] which
induce covariates with lower-bounded minimum eigenvalue onMsim and relies only on Oracle 4.2
(as well as knowledge of the featurization ofMsim, ϕs) to find such policies. Algorithm 1 then plays
these exploration policies inMreal, coupled with random exploration, and applies the regression
oracle to the data they collect. Finally, it estimates the value of the policy learned by the regression
oracle and πsim,⋆, and returns whichever is best. We have the following.
Theorem 1. If Assumptions 1 to 4 hold and

ϵsim ≤ λ⋆
min

64dHA3 , (4.1)

then as long as

T ≥ c · d
2H16

ϵ8
· log H|F|

δ
,

with probability at least 1− δ, Algorithm 1 returns a policy π̂ such that V real,⋆
0 − V real,π̂

0 ≤ ϵ, and
Oracles 4.1 and 4.2 are invoked at most poly(d,H, ϵ−1, log 1

δ) times.

Theorem 1 shows that, as long as ϵsim satisfies (4.1), utilizing a simulator and least-squares regression
oracle, Oracles 4.1 and 4.2, allows for efficient learning inMreal, achieving a complexity scaling
polynomially in problem parameters. This yields an exponential improvement over learning without a
simulator using naive exploration or direct sim2real transfer—which Propositions 1 and 3 show have
complexity scaling exponentially in the horizon—despite utilizing the same practical computation
oracles. To the best of our knowledge, this result provides the first theoretical evidence that sim2real
transfer can yield provable gains in RL beyond trivial settings where direct transfer succeeds.

Note that the condition in (4.1) is independent of ϵ—unlike direct sim2real transfer, which requires
ϵ = O(ϵsim), we simply must assume ϵsim is small enough that (4.1) holds, and Theorem 1 shows
that we can efficiently learn an ϵ-optimal policy inMreal for any ϵ > 0. In Appendix B.4, we also
present an extended version of Theorem 1, Theorem 3, which utilizes data fromMsim to reduce
the dependence on log |F|. In particular, instead of scaling with log |F|, it only scales with the
log-cardinality of functions that are (approximately) Bellman-consistent onMsim. To illustrate the
effectiveness of Theorem 1, we return to the instance of Propositions 1 and 3, where naive exploration
and direct sim2real transfer fails. We have the following.
Proposition 4. In the setting of Propositions 1 and 3 and assuming that ϵsim ≤ 1

8192 ·
1
H , running

Algorithm 1 will require poly(H, ϵ−1) · log 1
δ samples fromMreal in order to identify an ϵ-optimal

policy inMreal with probability at least 1− δ, for any ϵ > 0.

7

Note that the condition required by Proposition 4 is simply that ϵsim ≲ 1/H—as long as our simulator
satisfies this condition, we can efficiently transfer exploration policies to learn an ϵ-optimal policy,
for any ϵ > 0, while naive methods would be limited to only obtaining an Ω(1/H)-optimal policy.

Remark 4.1 (Necessity of Random Exploration). Algorithm 1 achieves efficient exploration inMreal

by learning policies Πh
exp inMsim that span the feature space ofMsim (Line 2), and then playing

these policies inMreal, coupled with random exploration (Line 4). This use of random exploration
is critical to obtaining Theorem 1. As we show in Proposition 5, if we omit the random exploration,
Assumption 1 is not sufficient to guarantee Πh

exp explores effectively inMreal, even when (4.1) holds.
Remark 4.2 (Computational Efficiency). Algorithm 1, as well as its main subroutine LEARNEXP-
POLICIES, relies only on calls to Oracle 4.1 and Oracle 4.2. Thus, assuming we can efficiently
implement these oracles, which is often the case in problem settings of interest, Algorithm 1 can be
run in a computationally efficient manner.

5 Practical Algorithm and Experiments

We next validate the effectiveness of our proposal in practice: can a set of diverse exploration
policies obtained from simulation improve the efficiency of real-world reinforcement learning? We
start by showing that this holds for a simple, didactic, tabular environment in Section 5.2. From
here, we consider several more realistic task domains: simulators inspired by real-world robotic
manipulation tasks (sim2sim transfer, Section 5.3); and an actual real-world sim2real experiment
on a Franka robotic platform (sim2real transfer, Section 5.4). Further details on all experiments,
including additional baselines, can be found in Appendix E. Before stating our experimental results,
we first provide a practical instantiation of Algorithm 1 that we can apply with real robotic systems
and neural network function approximators.

5.1 Practical Instantiation of Exploration Policy Transfer

The key idea behind Algorithm 1 is quite simple: learn a set of exploratory policies in Msim—
policies which provide rich data coverage inMsim—and transfer these policies toMreal, coupled
with random exploration, using the collected data to determine a near-optimal policy for Mreal.
Algorithm 1 provides a particular instantiation of this principle, learning exploratory policies inMsim

via the LEARNEXPPOLICIES subroutine, which aims to cover the feature space ofMsim, and utilizing
a least-squares regression oracle to compute an optimal policy given the data collected inMreal. In
practice, however, other instantiations of this principle are possible by replacing LEARNEXPPOLICIES
with any procedure which generates exploratory policies inMsim, and replacing the regression oracle
with any RL algorithm able to learn from off-policy data. We consider a general meta-algorithm
instantiating this in Algorithm 2.

Algorithm 2 Practical sim2real Exploration Policy Transfer Meta-Algorithm
1: Input: SimulatorMsim, real environmentMreal, simulator budget Tsim, real budget T , algorithm

to generate exploratory policies in sim Aexp, algorithm to solve policy optimization in real Apo

// Learn exploratory policies in Msim

2: Run Aexp for Tsim steps inMsim to generate set of exploratory policies Πexp

// Deploy exploratory policies in Mreal

3: for t = 1, 2, . . . , T/2 do
4: Draw πexp ∼ unif(Πexp), play inMreal for one episode, add data to replay buffer of Apo

5: Run Apo for one episode // optional if Apo learns fully offline

In practice, Aexp and Apo can be instantiated with a variety of algorithms. For example, we might
take Aexp to be an RND [7] or bootstrapped Q-learning-style [45, 31] algorithm, or any unsupervised
RL procedure [48, 14, 32, 47], and Apo to be an off-policy policy optimization algorithm such as
soft actor-critic (SAC) [16] or implicit Q-learning (IQL) [28].

For the following experiments, we instantiate Algorithm 2 by setting Aexp to an algorithm inspired
by recent work on inducing diverse behaviors in RL [14, 30], and Apo to SAC. In particular, Aexp

simultaneously trains an ensemble of policies Πexp = {πi
exp}ni=1 and a discriminator dθ : S ×

[n] → R, where dθ is trained to discriminate between the behaviors of each policy πi
exp, and πi

exp

8

0.0 0.5 1.0 1.5
Steps ×103

0.10
0.15
0.20
0.25
0.30
0.35

Re
wa

rd Exploration Policy Transfer (Ours)
Direct Policy Transfer
Q-Learning with Naive Exploration

Figure 2: Left: Illustration ofCombination Lock Example. Right: Results on Combination Lock.

is optimized on a weighting of the true task reward and the exploration reward induced by the
discriminator, re(s, i) := log exp(dθ(s,i))∑

j∈[n] exp(dθ(s,j))
. As shown in existing work [14, 30], this simple

training objective effectively induces diverse behavior with temporally correlated exploration while
remaining within the vicinity of the optimal policy, using standard optimization techniques. Note
that the particular choice of algorithm is less critical here than abiding by the recipes laid out in the
meta-algorithm (Algorithm 2). The particular instantiation that we run for our experiments is detailed
in Algorithm 6, along with further details in Appendix E.2.

5.2 Didactic Combination Lock Experiment

We first consider a variant of the construction used to prove Propositions 1 and 3, itself a variant
of the classic combination lock instance. We illustrate this instance in Figure 2. Unless noted, all
transitions occur with probability 1, and rewards are 0. Here, inMsim the optimal policy, πsim,⋆,
plays action a2 for all steps h < H − 1, while inMreal, the optimal policy plays action a1 at every
step. Which policy is optimal is determined by the outgoing transition from s1 at the (H − 1)th
step and, as such, to identify the optimal policy, any algorithm must reach s1 at the (H − 1)th
step. As s1 will only be reached at step H − 1 by playing a1 for H − 1 consecutive times, any
algorithm relying on naive exploration will take exponentially long to identify the optimal policy.
Furthermore, playing πsim,⋆ coupled with random exploration will similarly take an exponential
number of episodes, since πsim,⋆ always plays a2. As such, both direct sim2real policy transfer as
well as Q-learning with naive exploration (Protocol 4.1) will fail to find the optimal policy inMreal.
However, if we transfer exploratory policies fromMsim, sinceMsim andMreal behave identically up
to step H − 1, these policies can efficiently traverseMreal, reach s1 at step H − 1, and identify the
optimal policy. We compare our approach of exploration policy transfer to these baselines methods
and illustrate the performance of each in Figure 2. As this is a simple tabular instance, we implement
Algorithm 1 directly here. As Figure 2 shows, the intuition described above leads to real gains in
practice—exploration policy transfer quickly identifies the optimal policy, while more naive approach
fail completely over the time horizon we considered.

5.3 Realistic Robotics sim2sim Experiment

Figure 3: TychoEnv
Reach Task Setup

To test the ability of our proposed method to scale to more complex problems,
we next experiment on a sim2sim transfer setting with a realistic robotic
simulator. We consider TychoEnv, a simulator of the 7DOF Tycho robotics
platform introduced by [73], and shown in Figure 3. We test sim2sim transfer
on a reaching task where the goal is to touch a small ball hanging in the air
with the tip of the chopstick end effector. The agent perceives the ball and its
own end effector pose and outputs a delta in its desired end effector pose as
a command. We setMsim andMreal to be two instances of TychoEnv with
slightly different parameters to model real-world sim2real transfer. Precisely,
we change the action bounds and control frequency fromMsim toMreal.

We aim to compare our approach of exploration policy transfer with direct
sim2real policy transfer. To this end, we first train a policy in Msim that
solves the task inMsim, πsim,⋆, and then utilize this policy in place of Πexp

in Algorithm 2. We instantiate our approach of exploration policy transfer as outlined above. Our
aim in this experiment is to illustrate how the quality of the data provided by direct policy transfer
vs. exploration policy transfer affects learning. As such, for both approaches we simply initialize
our SAC agent in Mreal, Apo, from scratch, and set the reward in Mreal to be sparse: the agent
only receives a non-zero reward if it successfully touches the ball. For each approach, we repeat the
process of training inMsim four times, and for each of these run them for two trials inMreal.

9

0 1 2 3
Steps ×106

0

5

10

15

20

Re
wa

rd

Exploration Policy Transfer (Ours)
Direct Policy Transfer

Figure 4: Results on sim2sim
Transfer in TychoEnv Simulator

We illustrate our results in Figure 4. As this figure illustrates, direct
policy transfer fails to learn completely, while exploration policy
transfer successfully solves the task. Investigating the behavior of
each method, we find that the policies transferred via exploration
policy transfer, while failing to solve the task with perfect accu-
racy, when coupled with naive exploration are able to successfully
make contact with the ball on occasion. This provides sufficiently
rich data for SAC to ultimately learn to solve the task. In contrast,
direct policy transfer fails to collect any reward when run inMreal,
and, given the sparse reward nature of the task, SAC is unable to
locate any reward and learn.We include an additional sim2sim ex-
periment on the Franka Emika Panda Robot Arm in Appendix E.4.

5.4 Real-World Robotic sim2real Experiment

Finally, we demonstrate our algorithm for actual sim2real policy transfer for a manipulation task
on a real-world Franka Emika Panda robot arm [17] with a parallel gripper. Our task is to push a
75mm diameter cylindrical “puck" from the center to the edge of the surface, as shown in Figure 1,
with the arm initialized at random locations. The observed state s = [pee,pobj] ∈ R4 consists of
the planar Cartesian coordinate of the end effector pee along with the center of mass of the puck pobj.
Our policy outputs planar end effector position deltas a = ∆pee ∈ R2, evaluated at 8 Hz, which are
passed into a lower-level joint position PID controller. We use an Intel Realsense D435 depth camera
to track the location of the puck. Our reward function is a sum of a success indicator (indicating
when the puck has been pushed to the edge of the surface) and terms which give negative reward
if the distance from the end effector to the puck, or puck to the goal, are too large (see (E.1)); in
particular, a reward greater than 0 indicates success.

We run the instantiation of Algorithm 2 outlined above. In particular, we train an ensemble of n = 15
exploration policies, training for 20 million steps inMsim. In addition, we train a policy that solves
the task inMsim, πsim,⋆. We use a custom simulator of the arm, where during training the friction of
the table is randomized and noise is added to the observations.

We observe a substantial sim2real gap between our simulator and the real robot, with policies trained
in simulation failing to complete the pushing task zero shot in real, even when trained with domain
randomization. We compare direct sim2real policy transfer against our method of transferring
exploration policies. For direct policy transfer, we simply run SAC to finetune πsim,⋆ in the real world,
using the current policy to collect data. For exploration policy transfer, we instead utilize Πexp, our
ensemble of exploration policies, to collect data in the real world. We run this in tandem with an SAC
agent, feeding the data from the exploration policies into the SAC agent’s replay buffer. Unlike in
Section 5.3, rather than initializing the SAC policy from scratch, we set the initial policy as πsim,⋆, and
fine-tune from this on the data collected from playing Πexp. See Appendix E.5 for additional details.

Our results are shown on the right side of Figure 1. Statistics are computed over 6 runs for each
method. Direct policy transfer with finetuning is unable to solve the task in real in each of the 6 runs,
and converges to a suboptimal solution. However, our method is able to solve the task successfully
each time and achieve a substantially higher reward.

6 Discussion

In this work, we have demonstrated that simulators can make naive exploration efficient even in
settings where direct sim2real transfer fails, if they are used to train a set of exploration policies. We
highlight several limitations of this work, which we believe are interesting future research questions:

• Our focus is purely on dynamics shift—where the dynamics of sim and real differ, but the environ-
ments are otherwise the same. While dynamics shift is common in many scenarios, other types of
shift can exist as well, for example perceptual shift. How can we best handle these types of shift?

• How can we utilize a simulator in sim2real transfer if we can reset it arbitrarily, rather than just al-
lowing for black-box access? Does the ability to reset allow us to improve sample efficiency further?

• Is the reachability condition, Assumption 3, necessary for successful exploration transfer?

10

Acknowledgements

The work of AW and KJ was partially supported by the NSF through the University of Washington
Materials Research Science and Engineering Center, DMR-2308979, and awards CCF 2007036 and
CAREER 2141511. The work of LK was partially supported by Toyota Research Institute URP.

References
[1] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural

complexity and representation learning of low rank mdps. Advances in neural information
processing systems, 33:20095–20107, 2020.

[2] Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang.
Provable benefits of representational transfer in reinforcement learning. In The Thirty Sixth
Annual Conference on Learning Theory, pages 2114–2187. PMLR, 2023.

[3] Naman Agarwal, Syomantak Chaudhuri, Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli.
Online target q-learning with reverse experience replay: Efficiently finding the optimal policy
for linear mdps. arXiv preprint arXiv:2110.08440, 2021.

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube
with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[5] Philip Amortila, Nan Jiang, Dhruv Madeka, and Dean P Foster. A few expert queries suffices for
sample-efficient rl with resets and linear value approximation. Advances in Neural Information
Processing Systems, 35:29637–29648, 2022.

[6] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

[7] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[8] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real
world experience. In ICRA, 2019.

[9] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit Agrawal.
Visual dexterity: In-hand reorientation of novel and complex object shapes. Science Robotics, 8
(84):eadc9244, 2023.

[10] Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of
multitask representation learning in reinforcement learning. Advances in Neural Information
Processing Systems, 35:31741–31754, 2022.

[11] Chris Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, and Karthik Sridharan. Guaran-
tees for epsilon-greedy reinforcement learning with function approximation. In International
conference on machine learning, pages 4666–4689. PMLR, 2022.

[12] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):
414–419, 2022.

[13] Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

[14] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[15] Raj Ghugare, Santiago Miret, Adriana Hugessen, Mariano Phielipp, and Glen Berseth. Search-
ing for high-value molecules using reinforcement learning and transformers. arXiv preprint
arXiv:2310.02902, 2023.

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

11

[17] Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon Gabl, Florian Walch,
Mohamadreza Sabaghian, Christoph Jähne, Lukas Hausperger, and Simon Haddadin. The
franka emika robot: A reference platform for robotics research and education. IEEE Robotics &
Automation Magazine, 29(2):46–64, 2022. doi: 10.1109/MRA.2021.3138382.

[18] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian, Florian
Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2real in robotics
and automation: Applications and challenges. IEEE transactions on automation science and
engineering, 18(2):398–400, 2021.

[19] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation networks. arxiv e-prints,
page. arXiv preprint arXiv:1812.07252, 2018.

[20] Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On the importance of exploration for
generalization in reinforcement learning. arXiv preprint arXiv:2306.05483, 2023.

[21] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[22] Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state spaces. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
306–312, 2003.

[23] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

[24] Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored mdps. In
IJCAI, volume 16, pages 740–747, 1999.

[25] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49:209–232, 2002.

[26] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[27] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[28] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[29] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation
for legged robots. arXiv preprint arXiv:2107.04034, 2021.

[30] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all
you need: Few-shot extrapolation via structured maxent rl. Advances in Neural Information
Processing Systems, 33:8198–8210, 2020.

[31] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference
on Machine Learning, pages 6131–6141. PMLR, 2021.

[32] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Rus-
lan Salakhutdinov. Efficient exploration via state marginal matching. arXiv preprint
arXiv:1906.05274, 2019.

[33] Gen Li, Yuxin Chen, Yuejie Chi, Yuantao Gu, and Yuting Wei. Sample-efficient reinforcement
learning is feasible for linearly realizable mdps with limited revisiting. Advances in Neural
Information Processing Systems, 34:16671–16685, 2021.

[34] Yao Liu, Dipendra Misra, Miro Dudík, and Robert E Schapire. Provably sample-efficient rl with
side information about latent dynamics. Advances in Neural Information Processing Systems,
35:33482–33493, 2022.

[35] Rui Lu, Gao Huang, and Simon S Du. On the power of multitask representation learning in
linear mdp. arXiv preprint arXiv:2106.08053, 2021.

12

[36] Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. When is generalizable reinforcement
learning tractable? Advances in Neural Information Processing Systems, 34:8032–8045, 2021.

[37] Timothy A Mann and Yoonsuck Choe. Directed exploration in reinforcement learning with
transferred knowledge. In European Workshop on Reinforcement Learning, pages 59–76.
PMLR, 2013.

[38] Gabriel B Margolis, Xiang Fu, Yandong Ji, and Pulkit Agrawal. Learning physically grounded
robot vision with active sensing motor policies. In CoRL, 2023.

[39] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In CoRL, 2020.

[40] Marius Memmel, Andrew Wagenmaker, Chuning Zhu, Patrick Yin, Dieter Fox, and Abhishek
Gupta. Asid: Active exploration for system identification in robotic manipulation. arXiv
preprint arXiv:2404.12308, 2024.

[41] Zak Mhammedi, Adam Block, Dylan J Foster, and Alexander Rakhlin. Efficient model-free
exploration in low-rank mdps. Advances in Neural Information Processing Systems, 36, 2024.

[42] Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. The power of resets in online
reinforcement learning. arXiv preprint arXiv:2404.15417, 2024.

[43] Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-
free representation learning and exploration in low-rank mdps. Journal of Machine Learning
Research, 25(6):1–76, 2024.

[44] Fabio Muratore, Michael Gienger, and Jan Peters. Assessing transferability from simulation
to reality for reinforcement learning. IEEE transactions on pattern analysis and machine
intelligence, 2019.

[45] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

[46] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[47] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-
aware abstraction. arXiv preprint arXiv:2310.08887, 2023.

[48] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[49] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.

[50] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784,
2020.

[51] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[52] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[53] FL Silva, Jiachen Yang, Mikel Landajuela, Andre Goncalves, Alexander Ladd, Daniel Faissol,
and Brenden Petersen. Toward multi-fidelity reinforcement learning for symbolic optimization.
Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United
States), 2023.

[54] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

13

[55] Rohan Sinha, James Harrison, Spencer M Richards, and Marco Pavone. Adaptive robust
model predictive control with matched and unmatched uncertainty. In 2022 American Control
Conference (ACC), 2022.

[56] Yuda Song, Aditi Mavalankar, Wen Sun, and Sicun Gao. Provably efficient model-based policy
adaptation. arXiv preprint arXiv:2006.08051, 2020.

[57] Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint
arXiv:2210.06718, 2022.

[58] Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew Cohen, and Furong Huang. Transfer rl across
observation feature spaces via model-based regularization. arXiv preprint arXiv:2201.00248,
2022.

[59] Andrea Tirinzoni, Matteo Pirotta, and Alessandro Lazaric. A fully problem-dependent regret
lower bound for finite-horizon mdps. arXiv preprint arXiv:2106.13013, 2021.

[60] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

[61] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

[62] Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and
offline rl in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

[63] Andrew Wagenmaker and Kevin G Jamieson. Instance-dependent near-optimal policy identifi-
cation in linear mdps via online experiment design. Advances in Neural Information Processing
Systems, 35:5968–5981, 2022.

[64] Andrew Wagenmaker, Guanya Shi, and Kevin Jamieson. Optimal exploration for model-based
rl in nonlinear systems. arXiv preprint arXiv:2306.09210, 2023.

[65] Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson.
Reward-free rl is no harder than reward-aware rl in linear markov decision processes. In
International Conference on Machine Learning, pages 22430–22456. PMLR, 2022.

[66] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[67] Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and Csaba
Szepesvári. On query-efficient planning in mdps under linear realizability of the optimal
state-value function. In Conference on Learning Theory, pages 4355–4385. PMLR, 2021.

[68] Gellért Weisz, András György, Tadashi Kozuno, and Csaba Szepesvári. Confident approxi-
mate policy iteration for efficient local planning in qπ-realizable mdps. Advances in Neural
Information Processing Systems, 35:25547–25559, 2022.

[69] Haotian Ye, Xiaoyu Chen, Liwei Wang, and Simon Shaolei Du. On the power of pre-training
for generalization in rl: provable benefits and hardness. In International Conference on Machine
Learning, pages 39770–39800. PMLR, 2023.

[70] Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient
local planning with linear function approximation. In International Conference on Algorithmic
Learning Theory, pages 1165–1192. PMLR, 2022.

[71] Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably
efficient reward-agnostic navigation with linear value iteration. Advances in Neural Information
Processing Systems, 33:11756–11766, 2020.

[72] Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, and
Bo Dai. Making linear mdps practical via contrastive representation learning. In International
Conference on Machine Learning, pages 26447–26466. PMLR, 2022.

[73] Yunchu Zhang, Liyiming Ke, Abhay Deshpande, Abhishek Gupta, and Siddhartha Srinivasa.
Cherry-picking with reinforcement learning. arXiv preprint arXiv:2303.05508, 15, 2023.

14

[74] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pages 737–744. IEEE, 2020.

15

A Technical Results

We denote the state-visitations for some policy π as wπ
h(s, a) := Pπ[(sh, ah) = (s, a)], wπ

h(Z) :=
Pπ[(sh, ah) ∈ Z], for Z ⊆ S × A. For X ⊆ Rd, we denote wπ

h(X) := Pπ[ϕ(sh, ah) ∈ X], for ϕ
the featurization of the environment.
Lemma A.1. Consider MDPs M and M̃ with transition kernels P and P̃ . Assume that both M and
M̃ start in the same state s0 and that, for each (s, a, h):

∥Ph(· | s, a)− P̃h(· | s, a)∥TV ≤ ϵsim. (A.1)

Consider some reward function r such that
∑H

h=1 rh(sh, ah) ≤ R for all possible sequences
{(sh, ah)}Hh=1. Then it follows that, for any π and (s, a, h),

|QM,π
h (s, a)−QM̃,π

h (s, a)| ≤ HR · ϵsim.

Proof. We prove this by induction. First, assume that for some h and all s, a, we have |QM,π
h+1(s, a)−

QM̃,π
h+1 (s, a)| ≤ ϵh+1. By definition we have

QM,π
h (s, a) = rh(s, a) + EM,π[QM,π

h+1(sh+1, ah+1) | sh = s, ah = a]

and similarly for QM̃,π
h+1 (s, a). Thus:

|QM,π
h (s, a)−QM̃,π

h (s, a)|
(a)

≤ |EM,π[QM,π
h+1(sh+1, ah+1) | sh = s, ah = a]− EM̃,π[QM,π

h+1(sh+1, ah+1) | sh = s, ah = a]|

+ EM̃,π[|QM,π
h+1(sh+1, ah+1)−QM̃,π

h+1 (sh+1, ah+1)| | sh = s, ah = a]

(b)

≤ |EM,π[QM,π
h+1(sh+1, ah+1) | sh = s, ah = a]− EM̃,π[QM,π

h+1(sh+1, ah+1) | sh = s, ah = a]|+ ϵh+1

where (a) follows from the triangle inequality and (b) follows from the inductive hypothesis. Under
(A.1), we can bound

|EM,π[QM,π
h+1(sh+1, ah+1) | sh = s, ah = a]−EM̃,π[QM,π

h+1(sh+1, ah+1) | sh = s, ah = a]| ≤ ϵsim·R.

It follows that for any (s, a), |QM,π
h (s, a)−QM̃,π

h (s, a)| ≤ ϵh =: ϵsimR+ ϵh+1.

The base case follows trivially with ϵH = 0 since for any MDP we have that QM,π
H (s, a) =

rH(s, a) = QM̃,π
H (s, a).

Lemma A.2. Under the same setting as Lemma A.1 and for any h, π, and Z ⊆ S ×A, we have

|wM,π
h (Z)− wM̃,π

h (Z)| ≤ Hϵsim.

Proof. This is an immediate consequence of Lemma A.1 since, setting the reward rh′(s, a) =

I{(s, a) ∈ Z, h′ = h}, we can set R = 1 and have V M,π
0 = wM,π

h (Z).

Lemma A.3 (Proposition 2). Under Assumption 1, we have that

V real,⋆
0 − V real,πsim,⋆

0 ≤ 2H2ϵsim and V sim,⋆
0 − V sim,πreal,⋆

0 ≤ 2H2ϵsim.

Proof. We prove the result for real—the result for sim follows analogously. We have

V real,⋆
0 − V real,πsim,⋆

0 = V real,πreal,⋆

0 − V sim,πreal,⋆

0 + V sim,πreal,⋆

0 − V sim,πsim,⋆

0︸ ︷︷ ︸
≤0

+V sim,πsim,⋆

0 − V real,πsim,⋆

0

≤ |V real,πreal,⋆

0 − V sim,πreal,⋆

0 |+ |V sim,πsim,⋆

0 − V real,πsim,⋆

0 |.

The result then follows by applying Lemma A.1 to bound each of these terms by H2ϵsim.

16

Lemma A.4. For any f ∈ F ,

V ⋆
0 − V πf

0 ≤ max
π∈{πf ,π⋆}

H−1∑
h=0

2 |Eπ[fh(sh, ah)− T fh+1(sh, ah)]| .

Proof. We write

V ⋆
0 − V πf

0 = V ⋆
0 −max

a
f0(s0, a)︸ ︷︷ ︸

(a)

+max
a

f0(s0, a)− V πf

0︸ ︷︷ ︸
(b)

and then bound each of these terms separately. By Lemma 5 of [57] we have

(a) ≤
H∑

h=0

∣∣∣Eπ⋆

[fh(sh, ah)− rh −max
a′

fh+1(sh+1, a
′)]
∣∣∣

=
H−1∑
h=0

∣∣∣Eπ⋆

[fh(sh, ah)− E[rh +max
a′

fh+1(sh+1, a
′) | sh, ah]]

∣∣∣ .
Similarly, by Lemma 4 of [57] we have

(b) ≤
H−1∑
h=0

∣∣∣Eπf

[fh(sh, ah)− rh −max
a′

fh+1(sh+1, a
′)]
∣∣∣

=

H−1∑
h=0

∣∣∣Eπf

[fh(sh, ah)− E[rh +max
a′

fh+1(sh+1, a
′) | sh, ah]]

∣∣∣ .

B Proof of Main Results

In Appendix B.1 we first provide a general result on learning in real when collecting data via a fixed
set of exploration policies, given a particular coverage assumption. Then in Appendix B.2, we show
that by playing a set of policies which induce full-rank covariates in sim, these policies provide
sufficient coverage for learning in real. Finally in Appendices B.3 and B.4, we use these results
to prove Theorems 1 and 3. Throughout the appendix we develop the supporting lemmas for our
more general result, Theorem 3, which utilizes the simulator to restrict the version space (i.e. the
dependence on |F|) in addition to utilizing the simulator to aid in exploration.

Throughout this and the following section we assume that Assumption 4 holds. We also assume that
fh ∈ [0, Vmax] instead of fh ∈ [0, H], for some Vmax > 0. For any f ∈ F , we denote the Bellman
residual as

Eh(f)(s, a) := T fh+1(s, a)− fh(s, a).

Note that by assumption on F , we have Eh(f)(s, a) ∈ [−Vmax, Vmax].

For any policy π, we denote Λs
π,h := Esim,π[ϕs(sh, ah)ϕ

s(sh, ah)
⊤] and Λr

π,h :=

Ereal,π[ϕr(sh, ah)ϕ
r(sh, ah)

⊤].

Necessity of Random Exploration. Algorithm 1 achieves efficient exploration inMreal by first
learning a set of policies Πh

exp inMsim that span the feature space ofMsim (Line 2), achieving

λmin

(
1

|Πh
exp|

∑
π∈Πh

exp
EMsim,π[ϕs(sh, ah)ϕ

s(sh, ah)
⊤]
)
≳ λ⋆

min, (B.1)

and then playing these policies inMreal, coupled with random exploration (Line 4). In particular,
Algorithm 1 plays policies from Π̃h

exp, where each π̃exp ∈ Π̃h
exp is defined as the policy which plays

some πexp ∈ Πh
exp up to step h, and then for steps h′ = h + 1, . . . ,H chooses actions uniformly

at random. This use of random exploration is critical to obtaining Theorem 1. Indeed, under our

17

transfer model, condition (4.1) of Theorem 1 is not strong enough to ensure that policies satisfying
(B.1) collect rich enough data inMreal to allow for learning a near-optimal policy. While (4.1) is
sufficient to guarantee that playing Πh

exp onMreal collects data which spans the feature space of
Msim—that is, satisfying (B.1) but with the expectation overMsim replaced by an expectation of
Mreal— this is insufficient for learning, as the following result shows.

Proposition 5. For any ϵsim ≤ 1/2, there exist someMsim,Mreal,1, andMreal,2 such that:

1. BothMreal,1 andMreal,2 satisfy Assumption 1 withMsim and Assumptions 2 to 4 hold.

2. There exists some policy πexp such that λmin(EMsim,πexp [ϕs(sh, ah)ϕ
s(sh, ah)

⊤]) = 1/2,
∀h ∈ [H], and for any T ≥ 0, if we play πexp onMreal for T steps, we have:

inf π̂ supMreal∈{Mreal,1,Mreal,2} EMreal,πexp [V Mreal,⋆
0 − V Mreal,π̂

0] ≥ ϵsim.

Proposition 5 holds because two MDPs may be “close” in the sense of Assumption 1 but admit very
different feature representations. As a result, transferring a policy that covers the feature space of
Msim is not necessarily sufficient for covering the feature space ofMreal, which ultimately means
that data collected from πexp is unable to identify the optimal policy inMreal. Our key technical
result, Lemma B.4, shows, however, that under Assumption 1 and (4.1), policies which achieve
high coverage inMsim (i.e. satisfy (B.1)) are able to reach within a logarithmic number of steps
of relevant states inMreal. While the sample complexity of random exploration typically scales
exponentially in the horizon, if the horizon over which we must explore is only logarithmic, the
total complexity is then only polynomial. Theorem 1 critically relies on these facts—by playing
policies in Πh

exp up to step h and then exploring randomly, and repeating this for each h ∈ [H], we
show that sufficiently rich data is collected inMreal for learning an ϵ-optimal policy.

B.1 Learning in real with Fixed Exploration Policies

Algorithm 3 sim2real transfer with fixed exploration policies (EXPLOREREAL)
1: input: exploration policies {πh

exp}Hh=1, budget T , sim date Dsim, sim regularization γ

2: Play πexp = unif({πh
exp}Hh=1) for T episodes in real, add data to D

3: for h = H,H − 1, . . . , 1 do
4:

f̃h ← argmin
f∈F

∑
(s,a,r,s′)∈Dh

sim

(fh(s, a)− r −max
a′

f̂h+1(s
′, a′))2

f̂h ← argmin
f∈F

∑
(s,a,r,s′)∈Dh

(fh(s, a)− r −max
a′

f̂h+1(s
′, a′))2

s.t.
1

|Dsim|
∑

(s,a)∈Dh
sim

(fh(s, a)− f̃h(s, a))
2 ≤ γ

(B.2)

5: return πf̂

Lemma B.1. Consider running Algorithm 3. Assume that Dsim was generated as in Assumption 5,
via the procedure of Lemma C.3 run with some parameter β, and γ satisfies

2V 2
maxϵ

2
sim +

43V 2
maxβ

2

dH
· log 8H|Fh|

δ
+ 6V 2

maxβ

√
log 8H|Fh|

δ

dH
≤ γ.

Furthermore, assume that there exists some C, ϵ > 0 such that, for any π, h ∈ [H], and Z ′ ⊆ S ×A,
we have:

wreal,π
h (Z ′) ≤ C · wreal,πexp

h (Z ′) + ϵ. (B.3)

18

Then with probability at least 1− 2δ, the policy πf̂ generated by Algorithm 3 satisfies

V ⋆
0 − V πf̂

0 ≤ 4CH

√
256V 2

max log(4H|F̃(πsim
exp)|/δ)

T
+ 4HVmaxϵ

for

F̃(πsim
exp) := {f ∈ F : Esim,πsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] ≤ 2γ, ∀h ∈ [H]}.

Proof. Let E denote the good event of Lemma B.2, which holds with probability at least 1− 2δ. By
Lemma A.4 we have

V real,⋆
0 − V real,πf̂

0 ≤ max
π∈{πf̂ ,πreal,⋆}

H−1∑
h=0

2
∣∣∣Ereal,π[f̂h(sh, ah)− T realf̂h+1(sh, ah)]

∣∣∣
≤ max

π

H−1∑
h=0

2Ereal,π[|E realh (f̂)(sh, ah)|].

Let

Zh,i := {(s, a) : |E realh (f̂)(s, a)| ∈ [Vmax · 2−i, Vmax · 2−i+1)}.

Then we have, for any π,

Ereal,π[|E realh (f̂)(sh, ah)|] ≤
∞∑
i=1

wreal,π
h (Zh,i) · Vmax2

−i+1

≤ C ·
∞∑
i=1

w
real,πexp

h (Zh,i) · Vmax2
−i+1 + 2Vmaxϵ

≤ 2C · Ereal,πexp [|E realh (f̂)(sh, ah)|] + 2Vmaxϵ

where the second inequality follows from (B.3). On E , by Lemma B.2 and Jensen’s inequality, we
have

Ereal,πexp [|E realh (f̂)(sh, ah)|] ≤
√
Ereal,πexp [E realh (f̂)(sh, ah)2] ≤

√
1

T
· 256V 2

max log
2H|F̃h(πsim

exp)|
δ

.

As this holds for each h and π, we have therefore shown that

V real,⋆
0 − V real,πf̂

0 ≤ 4C ·
H−1∑
h=0

√
1

T
· 256V 2

max log
2H|F̃h(πsim

exp)|
δ

+ 4HVmaxϵ

≤ 4CH

√
1

T
· 256V 2

max log
2H|F̃(πsim

exp)|
δ

+ 4HVmaxϵ.

This proves the result.

Lemma B.2. With probability at least 1 − 2δ, for each h ∈ [H] simultaneously, as long as the
conditions on γ given in Lemma B.3 hold, we have

Ereal,πexp [(f̂h(sh, ah)− T realf̂h+1(sh, ah))
2] ≤ 1

T
· 256V 2

max log(2H|F̃h(π
sim
exp)|/δ),

and f̂h ∈ F̃h(π
sim
exp) for all h ∈ [H], where

F̃h(π
sim
exp) := {fh ∈ Fh : ∃fh+1 ∈ Fh+1 s.t. Esim,πsim

exp [(fh(sh, ah)− T simfh+1(sh, ah))
2] ≤ 2γ}.

Proof. Let F̂h denote the feasible set of (B.2) at step h. By Lemma B.3, with probability at least
1− δ, F̂ t

h ⊆ F̃h, and, furthermore, that T realf̂h+1 is feasible. The result then follows from Lemma 3
of [57], since the constraint on the regression problem restricts the version space.

19

Lemma B.3. Assume that data in Dsim is generated as in Assumption 5 via the procedure of
Lemma C.3 run with some parameter β, and γ satisfies

2V 2
maxϵ

2
sim +

43V 2
maxβ

2

dH
· log 8H|Fh|

δ
+ 6V 2

maxβ

√
log 8H|Fh|

δ

dH
≤ γ.

Then with probability at least 1− δ we have, for each h ∈ [H]:

1. T realf̂h+1 is feasible for (B.2).

2. The set of feasible f for (B.2) is a subset of

{f ∈ F : Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] ≤ 2γ}.

Proof. By Lemma C.1, we have that with probability at least 1− δ/2H ,

1

Tsim

Tsim∑
t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ 2V 2
maxϵ

2
sim +

512V 2
max

Tsim
· log 8H|Fh|

δ
+ V 2

max

√
2 log 4H|Fh|

δ

Tsim
.

By Lemma C.3, we have 12dH
β2 ≤ Tsim, which implies

1

Tsim

Tsim∑
t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ 2V 2
maxϵ

2
sim +

43V 2
maxβ

2

dH
· log 8H|Fh|

δ
+ V 2

maxβ

√
log 4H|Fh|

δ

6dH
.

Part 1 then follows given our assumption on γ.

To bound the feasible set for (B.2) we appeal to Lemma C.2 which states that with probability at least
1− δ/2H we have that the feasible set of (B.2) is a subset offh ∈ Fh : Esim,πsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] ≤ γ + 18V 2

max

√
log 8H|Fh|

δ

Tsim

 .

Again using that 12dH
β2 ≤ Tsim, we have have that this is a subset offh ∈ Fh : Esim,πsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] ≤ γ + 18V 2

maxβ

√
log 8H|Fh|

δ

12dH


⊆
{
fh ∈ Fh : Esim,πsim

exp [(fh(sh, ah)− T simf̂h+1(sh, ah))
2] ≤ 2γ

}
where the inclusion follows from our assumption on γ. The result then follows from a union
bound.

B.2 Performance of Full-Rank sim Policies in real

Lemma B.4. Consider policies {πh
exp}Hh=1, and assume that

λmin

(
Λs

πh
exp,h

)
≥ λ̄min, ∀h ∈ [H] (B.4)

and that πh
exp plays actions uniformly at random for h′ > h. Let πexp = unif({πh

exp}Hh=1). Then, for
any π, κ > 0, γ > 0, h ∈ [H], and Z ′ ⊆ S ×A, we have

wreal,π
h (Z ′) ≤ 4HγAk⋆−2

κ
· wreal,πexp

h (Z ′) + 4κ,

where

ξ := 2

√
A

λ̄min

(
d

γ
+Hϵsim

)
and k⋆ := ⌈ log 1/κ

log 1/ξ
⌉.

20

Proof. Denote

Z̃h+1 := {(s, a) : ϕr(s, a)⊤(Λr
πh
exp,h+1)

−1ϕr(s, a) > γ}

for some γ > 0. We have

w
real,πh

exp

h+1 (Z̃h+1) = Ereal,πh
exp [I{(sh+1, ah+1) ∈ Z̃h+1}]

(a)

≤ Ereal,πh
exp

[
ϕr(sh+1, ah+1)

⊤(Λr
πh
exp,h+1)

−1ϕr(sh+1, ah+1)

γ
· I{(sh+1, ah+1) ∈ Z̃h+1}

]

≤ Ereal,πh
exp

[
ϕr(sh+1, ah+1)

⊤(Λr
πh
exp,h+1)

−1ϕr(sh+1, ah+1)

γ

]

=
1

γ
· tr
(
Ereal,πh

exp [ϕr(sh+1, ah+1)ϕ
r(sh+1, ah+1)

⊤](Λr
πh
exp,h+1)

−1
)

=
d

γ

where (a) follows since for all (s, a) ∈ Z̃h+1, we have 1 < ϕr(s, a)⊤(Λr
πh
exp,h+1)

−1ϕr(s, a)/γ. By
Lemma A.2, we then have that

w
sim,πh

exp

h+1 (Z̃h+1) ≤
d

γ
+Hϵsim. (B.5)

Let S̃h+1 := {s : ∃a s.t. (s, a) ∈ Z̃h+1} and note that

w
sim,πh

exp

h+1 (Z̃h+1) = Esim,πh
exp

∫
S̃h+1

∑
a:(s,a)∈Z̃h+1

πh
exp(a | s, h+ 1)dP sim

h (s | sh, ah)


≥ 1

A
Esim,πh

exp

[∫
S̃h+1

dµs
h(s)

⊤ϕs(sh, ah)

]

=
1

A
Esim,πh

exp [P sim
h (S̃h+1 | sh, ah)]

≥ 1

A
Esim,πh

exp [P sim
h (S̃h+1 | sh, ah)2]

where we have used the fact that πh
exp(a | s, h+ 1) = 1/A for all (s, a) by assumption, and define

P sim
h (S̃h+1 | s, a) := Psim[sh+1 ∈ S̃h+1 | sh = s, ah = a] =

∫
S̃h+1

dµs
h(s)

⊤ϕs(s, a), where the

last equality follows from the definition of a linear MDP. Letting µs
h(S̃h+1) :=

∫
S̃h+1

dµs
h(s), note

that:
1

A
Esim,πh

exp [P sim
h (S̃h+1 | sh, ah)2] =

1

A
µs

h(S̃h+1)
⊤Esim,πh

exp [ϕs(sh, ah)ϕ
s(sh, ah)

⊤]µs
h(S̃h+1)

=
1

A
µs

h(S̃h+1)
⊤Λs

πh
exp,h

µs
h(S̃h+1)

≥ λ̄min

A
∥µs

h(S̃h+1)∥22,

where the last inequality follows from (B.4). Combining this with (B.5), we have

d

γ
+Hϵsim ≥

λ̄min

A
∥µs

h(S̃h+1)∥22.

Now note that, for any z ∈ S ×A:

P sim
h (S̃h+1 | z) =

∫
S̃h+1

dP sim
h (s | z) =

(∫
S̃h+1

dµs
h(s)

)⊤

ϕs(z) ≤ ∥µs
h(S̃h+1)∥2

21

and we also have that P sim
h (S̃h+1 | z) ≥ P real

h (S̃h+1 | z) − ϵsim under Assumption 1. Putting this
together we have that for all z ∈ S ×A:

P real
h (S̃h+1 | z) ≤

√
A

λ̄min

(
d

γ
+Hϵsim

)
+ ϵsim.

Note that we can always take ϵsim ≤ 1, and will always have λ̄min ≤ 1. This implies that ϵsim ≤√
A

λ̄min

(
d
γ +Hϵsim

)
. Thus,

P real
h (S̃h+1 | z) ≤ 2

√
A

λ̄min

(
d

γ
+Hϵsim

)
=: ξ.

Coverage of πexp in real. Let k⋆ := ⌈ log 1/κ
log 1/ξ ⌉, so that ξk

⋆ ≤ κ. Let Z̄h := (S ×A)\Z̃h. Fix some
Z ′ ⊆ (S ×A), h ∈ [H], and policy π.

Consider some z ∈ Z̄h, and some S ′ ⊆ S . Then note that5

P real
h (S ′ | z) = µr

h(S ′)⊤ϕr(z) = µr
h(S ′)⊤(Λr

πh−1
exp ,h

)1/2(Λr
πh−1
exp ,h

)−1/2ϕr(z)

≤ ∥µr
h(S ′)∥Λr

π
h−1
exp ,h

∥ϕr(z)∥(Λr

π
h−1
exp ,h

)−1

≤ √γ∥µr
h(S ′)∥Λr

π
h−1
exp ,h

where the last inequality follows from the definition of Z̄h. Note, though, that

∥µr
h(S ′)∥2Λr

π
h−1
exp ,h

= Ereal,πh−1
exp [(µr

h(S ′)⊤ϕr(zh))
2] = Ereal,πh−1

exp [P real
h (S ′ | zh)2].

This implies that for all z ∈ Z̄h,

Ereal,πh−1
exp [P real

h (S ′ | zh)2] ≥
1

γ
· P real

h (S ′ | z)2.

For h′ < h, define

Sh′,i := {s : wreal,π
h (Z ′ | sh′ = s) ∈ [2−i+1, 2−i)}

for wreal,π
h (Z | sh′ = s) := Preal,π[zh ∈ Z | sh′ = s]. Note that we then have wreal,π

h (Z ′ | Sh′,i) ∈
[2−i+1, 2−i). By what we have just shown, we have that for z ∈ Z̄h′

Ereal,πh′−1
exp [P real

h′ (Sh′+1,i | zh′)2] ≥ 1

γ
· P real

h′ (Sh′+1,i | z)2

which implies that

Ereal,πh′−1
exp [P real

h′ (Sh′+1,i | zh′)] ≥ 1

γ
· P real

h′ (Sh′+1,i | z)2. (B.6)

5If Λr

πh−1
exp ,h

is not invertible, we can repeat this argument with Λr

πh−1
exp ,h

+ λI and take λ → 0.

22

Fix z ∈ Z̄h′ . Note that

wreal,π
h (Z ′ | zh′ = z) = Es∼P real

h′ (·|z)[w
real,π
h (Z ′ | sh′+1 = s)]

=
∞∑
i=1

Es∼P real
h′ (·|z)[w

real,π
h (Z ′ | sh′+1 = s) · I{s ∈ Sh′+1,i}]

≤
∞∑
i=1

2−i+1P real
h′ (Sh′+1,i | z)

=

⌊log 4/κ⌋∑
i=1

2−i+1P real
h′ (Sh′+1,i | z) + κ

≤
⌊log 4/κ⌋∑

i=1

2−i+1P real
h′ (Sh′+1,i | z) · I{P real

h′ (Sh′+1,i | z) ≥ κ}+ 3κ

≤ 2

⌊log 4/κ⌋∑
i=1

Es∼λi [w
real,π
h (Z ′ | sh′+1 = s)]P real

h′ (Sh′+1,i | z) · I{P real
h′ (Sh′+1,i | z) ≥ κ}+ 3κ

for any λi ∈ △Sh′+1,i
. Note also that, since πh′−1

exp plays randomly for all h′′ ≥ h′, we have:

w
real,πh′−1

exp

h (Z ′ | sh′+1 = s) ≥ 1

Ah−h′ · wreal,π
h (Z ′ | sh′+1 = s),

since with probability 1/Ah−h′
on any given episode, πh′−1

exp will play the same sequence of actions
as π from steps h′ to h. It follows that we can bound the above as:

≤ 2Ah−h′
·
⌊log 4/κ⌋∑

i=1

Es∼λi
[w

real,πh′−1
exp

h (Z ′ | sh′+1 = s)]P real
h′ (Sh′+1,i | z) · I{P real

h′ (Sh′+1,i | z) ≥ κ}+ 3κ

(a)

≤ 2Ah−h′
γ

κ
·
⌊log 4/κ⌋∑

i=1

Es∼λi
[w

real,πh′−1
exp

h (Z ′ | sh′+1 = s)]Ereal,πh′−1
exp [P real

h′ (Sh′+1,i | zh′)]I{P real
h′ (Sh′+1,i | z) ≥ κ}+ 3κ

≤ 2γAh−h′

κ
·
⌊log 4/κ⌋∑

i=1

Es∼λi [w
real,πh′−1

exp

h (Z ′ | sh′+1 = s)] · wreal,πh′−1
exp

h′+1 (Sh′+1,i) + 3κ

(b)
=

2γAh−h′

κ
·
⌊log 4/κ⌋∑

i=1

∑
s∈Sh′+1,i

w
real,πh′−1

exp

h (Z ′ | sh′+1 = s)w
real,πh′−1

exp

h′+1 (s) + 3κ

≤ 2γAh−h′

κ
· wreal,πh′−1

exp

h (Z ′) + 3κ

where (a) follows from (B.6) and since P real
h′ (Sh′,i | z) ≥ κ, and (b) follows choosing λi(s) =

w
real,πh′−1

exp

h′+1 (s)/w
real,πh′−1

exp

h′+1 (Sh′+1,i) · I{s ∈ Sh′+1,i}. We therefore have that, for all z ∈ Z̄h′ :

wreal,π
h (Z ′ | zh′ = z) ≤ 2γAh−h′

κ
· wreal,πh′−1

exp

h (Z ′) + 3κ. (B.7)

Controlling events. Consider events E := {zh ∈ Z ′} and Eh′ := {zh′ ∈ Z̄h′}. We then have

wreal,π
h (Z ′) = Preal,π[E]

= Preal,π[E ∩ Eh−1] + Preal,π[E ∩ Ech−1]

=
h∑

h′=h−k⋆+1

Preal,π[E ∩ Eh′−1 ∩
h−1⋂
i=h′

Eci] + Preal,π[E ∩ Eh−k⋆−1 ∩
h−1⋂

i=h−k⋆

Eci]

≤
h∑

h′=h−k⋆+1

Preal,π[E ∩ Eh′−1] + Preal,π[E ∩ Eh−k⋆−1 ∩
h−1⋂

i=h−k⋆

Eci].

23

We now analyze each of these terms. First, note that

Preal,π[E ∩ Eh′−1] = Preal,π[E | Eh′−1]Preal,π[Eh′−1] ≤ Preal,π[E | Eh′−1] = wreal,π
h (Z ′ | zh′−1 ∈ Z̄h′−1).

We can then bound

wreal,π
h (Z ′ | zh′−1 ∈ Z̄h′−1) ≤

2γAh−h′−1

κ
· wreal,πh′−2

exp

h (Z ′) + 3κ

where the inequality follows from (B.7). For the second term, we have

Preal,π[E ∩ Eh−k⋆−1 ∩
h−1⋂

i=h−k⋆

Eci] ≤ Preal,π[E ∩
h−1⋂

i=h−k⋆

Eci]

= Preal,π[E |
h−1⋂

i=h−k⋆

Eci] ·
k⋆∏
j=1

Preal,π[Ech−j |
h−j−1⋂
i=h−k⋆

Eci].

Note, however, that Preal,π[E |
⋂h−1

i=h−k⋆ Eci] ≤ ξ and Preal,π[Ech−j |
⋂h−j−1

i=h−k⋆ Eci] ≤ ξ for all j. We
therefore can bound the above as

ξk
⋆+1 ≤ κ.

Altogether, then, we have that

wreal,π
h (Z ′) ≤

h∑
h′=h−k⋆+1

2γAh−h′−1

κ
· wreal,πh′−2

exp

h (Z ′) + 4κ.

Furthermore, since πexp = unif({πh
exp}Hh=1), we have w

real,πh′−2
exp

h (Z ′) ≤ Hw
real,πexp

h (Z ′), so we
conclude that

wreal,π
h (Z ′) ≤ 4HγAk⋆−2

κ
· wreal,πexp

h (Z ′) + 4κ.

B.3 Proof of Unconstrained Upper Bound

Theorem 2. Assume that one of the two conditions is met:

1. For each h, πh
exp plays actions uniformly at random for h′ > h,

λmin

(
Λs

πh
exp,h

)
≥ λ̄min, (B.8)

and

T ≥ c · V
4
maxH

4d2A2(k⋆−2) log(2H|F|/δ)
ϵ4ϵ2sim

,

for

k⋆ = ⌈
logA

64HVmax

ϵ

logA 1/ξ
⌉, ξ = 2

√
2HA

λ̄min
· ϵsim.

2. ϵsim ≤ ϵ/4H2 and

T ≥
16H2 log 4

δ

ϵ2
.

Then with probability at least 1− δ, Algorithm 1 returns a π̂ such that V real,πreal,⋆

0 − V real,π̂
0 ≤ ϵ.

Proof. We consider each of the conditions above.

24

Condition 1. First, note that by our assumption on πexp and applying Lemma B.4 with κ =
ϵ

64HVmax
and γ = d

Hϵsim
, for any π and Z ′ ⊆ S ×A, we have

wreal,π
h (Z ′) ≤ 256dHVmaxA

k⋆−2

ϵϵsim
· wreal,πexp

h (Z ′) +
ϵ

16HVmax

for

k⋆ = ⌈
logA

64HVmax

ϵ

logA 1/ξ
⌉, ξ = 2

√
2HA

λ̄min
· ϵsim.

By Lemma B.1 we then have that, with probability at least 1− δ6,

V real,πreal,⋆

0 − V real,π̂
0 ≤ 256dHVmaxA

k⋆−2

ϵϵsim
· 4H

√
256V 2

max log(2H|F|/δ)
T

+ ϵ/4

≤ ϵ/2

where the last inequality follows under our condition on T .

Condition 2. By Lemma A.3, we have that V real,⋆
0 −V real,πsim,⋆

0 ≤ 2H2ϵsim. Thus, if ϵsim ≤ ϵ/4H2,
we have V real,⋆

0 − V real,πsim,⋆

0 ≤ ϵ/2.

Concluding the Proof. By what we have shown, as long as one of our conditions is met, we will
have that with probability at least 1− δ/2, there exists π ∈ {πf̂ , πsim,⋆} such that V real,⋆

0 − V real,π
0 ≤

ϵ/2. Denote this policy as π̃.

Note that V real,π
0 = Ereal,π[

∑H−1
h=0 rh] and that

∑H−1
h=0 rh ∈ [0, H] almost surely. Consider playing π

for T/4 episodes in real and let Ri denote the total return of the ith episode. Let

V̂ π
0 :=

4

T

T/4∑
i=1

Ri.

By Hoeffding’s inequality we have that, with probability at least 1− δ/4:

|V̂ π
0 − V real,π

0 | ≤ H

√
4 log 4

δ

T
.

Thus, if

T ≥
16H2 log 4

δ

ϵ2
, (B.9)

we have that |V̂ π
0 − V real,π

0 | ≤ ϵ/2. Union bounding over this for both π ∈ {πf̂ , πsim,⋆}, we have
that with probability at least 1− δ/2:

V real,π̂
0 ≥ V̂ π̂

0 − ϵ/4 ≥ V̂ π̃
0 − ϵ/4 ≥ V real,π̃

0 − ϵ/2.

It follows that

V real,⋆ − V real,π̂
0 ≤ V real,⋆ − V real,π̃

0 + ϵ/2 ≤ ϵ.

The proof follows from a union bound and our condition on T (note that (B.9) is satisfied in both
cases).

6Note that, while Lemma B.1 applies to the constrained regression setting, this is equivalent to the uncon-
strained regression setting considered here if we choose γ large enough so that the constraint is vacuous.

25

Proof of Theorem 1. We first assume that ζ ≤ λ⋆
min

4d , for ζ the input regularization value given to
Algorithm 5 by Algorithm 1, and Condition 1 of Theorem 2, and show that in this case Ak⋆−2 is at
most polynomial in problem parameters.

First, by Lemma C.7 we have that, under the assumption that ζ ≤ λ⋆
min

4d , the policy πh
exp given by

the uniform mixture of policies returned by Algorithm 5 will, with probability at least 1− δ, satisfy
λmin(Λ

s
πh
exp,h

) ≥ λ⋆
min

8d under Assumption 3. Plugging λ̄min ← λ⋆
min

8d into Theorem 2, we have that

ξ = 2
√

16dHA
λ⋆
min
· ϵsim. Now note that

Ak⋆−2 ≤ A
logA 64HVmax/ϵ

logA 1/ξ =

(
64HVmax

ϵ

)1/ logA 1/ξ

.

It then suffices that we show 1/ logA 1/ξ ≤ 1 ⇐⇒ 1/A ≥ ξ. However, this is clearly met by our
condition on ϵsim. Thus, as long as

T ≥ c · V
6
maxH

6d2 log(2HT |F|/δ)
ϵ6ϵ2sim

,

by Theorem 2 we have that π̂ is ϵ-optimal.

Now, if ϵsim ≤ ϵ/4H2 and T ≥ 16H2 log 4/δ
ϵ , we also have that π̂ is ϵ-optimal, by Theorem 2. Thus,

in the first case, we at most will require

T ≥ c · V
6
maxH

10d2 log(2HT |F|/δ)
ϵ8

to produce a policy that is ϵ-optimal, since otherwise we will be in the second case.

It remains to justify the assumption that ζ ≤ λ⋆
min

4d . Note that the condition of (4.1) is only required in
the first case. Furthermore, if ϵsim ≤ ϵ/4H2 we will be in the second case. Thus, in the first case, we
will have

ϵ

4H2
≤ ϵsim ≤

λ⋆
min

64dHA3
.

Rearranging this we obtain that, to be in the first case, we have

16dA3ϵ

H
≤ λ⋆

min

By our choice of ζ = 4A3ϵ
H , we then have that ζ ≤ λ⋆

min

4d . By Lemma C.7 and our choice of ζ , we have
that Oracle 4.2 is called at most poly(d,H, ϵ−1, log 1

δ) times, and we call the oracle of Oracle 4.1
only H times. The result the follows from a union bound and rescaling δ.

B.4 Reducing the Version Space

As we noted, in general, given that we do not assume thatϕr is unknown, log |F| could be significantly
greater than the dimension. One might hope that, given access toMsim, we can reduce this dependence
somewhat. We next show that this is possible given access to the following constrained regression
oracle.

Oracle B.1 (Constrained Regression Oracle). We assume access to a regression oracle such that, for
any h and datasets {(st, at, yt)}Tt=1 and {(s̃t, ãt, ỹt)}T̃t=1, we can compute:

f̂h = argmin
f∈Fh

T∑
t=1

(f(st, at)− yt)2 s.t.
T̃∑

t=1

(f(s̃t, ãt)− ỹt)2 ≤ γ.

While in general the oracle of Oracle B.1 cannot be reduced to the oracle of Oracle 4.1, under certain
conditions on F this is possible. Given this oracle, we have the following result.

26

Theorem 3. Assume that ϵsim ≤ λ⋆
min

64dHA3 . Then if

T ≥ Õ

(
d2H16

ϵ8
· log H|F̃ |

δ

)
,

with probability at least 1− δ, Algorithm 4 returns policy π̂ such that V real,πreal,⋆

0 −V real,π̂
0 ≤ ϵ, where

F̃ :=

{
f ∈ F : sup

π
(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])

2 ≤ α · ϵ2sim
}

for α = Õ(AdH3·log2 log |F|/δ
ϵsim

). Furthermore, the computation oracles of Oracle 4.2 and Oracle B.1

are called at most poly(d,A,H, ϵ−1, log |F|
δ) times.

Theorem 3 shows that, rather than paying for the full complexity of F , we can pay only for the subset
of F that is Bellman-consistent onMsim.

B.4.1 Algorithm and Proof

Algorithm 4 sim-to-real transfer via simulated exploration (SIM2EXPLORE)
1: input: tolerance ϵ, confidence δ, budget T , Q-value function class F
2: Πh

exp ← LEARNEXPPOLICIES(Msim, δ, 4A3ϵ
H , h) for all h ∈ [H]

3: ι← O(log2 VmaxAdH
ϵ)

4: for ℓ = 1, 2, . . . , ι do
5: ϵ̄ℓ ← 2−ℓ, T ℓ ← T/2ι, γℓ ← 10V 2

max(ϵ̄
ℓ)2

6: Run exploration procedure of Lemma C.3 with βℓ ← γℓ

20V 2
max log

8H|F|
δ

to obtain Dℓ
sim

7: π̂ℓ ← EXPLOREREAL ({unif(Πh
exp)}h∈[H], T

ℓ,Dℓ
sim, γ

ℓ) (Algorithm 3)
8: V̂ π̂ℓ

0 ← average return running π̂ℓ in real T ℓ/2 times
9: return π̂ ← argmaxℓ∈[ι] V̂

π̂ℓ

0

Theorem 4. Assume that one of the two conditions is met:

1. For each h, πh
exp plays actions uniformly at random for h′ > h,

λmin

(
Λs

πh
exp,h

)
≥ λ̄min, (B.10)

and

T ≥ c · V
4
maxH

4d2A2(k⋆−2)ι log(16H|F̃ |/δ)
ϵ4ϵ2sim

,

for

k⋆ = ⌈
logA

64HVmax

ϵ

logA 1/ξ
⌉, ξ = 2

√
2HA

λ̄min
· ϵsim

and

F̃ :=

{
f ∈ F : sup

π
(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])

2

≤ c

(
log

log 32H|F|
δ

Vmaxϵ2sim
+ 1

)
AdHV 2

max log
48d log 32H|F|

δ

Vmaxϵ2sim
· ϵ2sim

}
.

2. ϵsim ≤ ϵ/16H2 and

T ≥ c ·
H2ι log 16ι

δ

ϵ2
.

Then with probability at least 1− δ, Algorithm 4 returns a policy π̂ such that V real,πreal,⋆

0 −V real,π̂
0 ≤ ϵ.

Proof. We break the proof into two cases.

27

Case 1: ϵsim ≥ ϵ/16H2. Let ℓ̄ = ⌊log2 ϵ−1
sim⌋ and note that ℓ̄ ≤ ι in this case and that this is

a deterministic quantity. Further, note that γ ℓ̄ ∈ [10V 2
maxϵ

2
sim, 40V

2
maxϵ

2
sim] and ϵ̄ℓ̄ ∈ [ϵsim, 2ϵsim].

Note that by our assumption on πexp and applying Lemma B.4 with κ = ϵ
64HVmax

and γ = d
Hϵsim

,
for any π and Z ′ ⊆ S ×A, we have

wreal,π
h (Z ′) ≤ 256dHVmaxA

k⋆−2

ϵϵsim
· wreal,πexp

h (Z ′) +
ϵ

16HVmax

for

k⋆ = ⌈
logA

64HVmax

ϵ

logA 1/ξ
⌉, ξ = 2

√
2HA

λ̄min
· ϵsim.

By Lemma B.1, as long as β ℓ̄ and γ ℓ̄ satisfy

2V 2
maxϵ

2
sim +

43V 2
maxβ

2
ℓ̄

dH
· log 8H|Fh|

δ
+ 6V 2

maxβℓ̄

√
log 8H|Fh|

δ

dH
≤ γ ℓ̄, (B.11)

we have that with probability at least 1− 2δ,

V real,πreal,⋆

0 − V real,π̂ℓ̄

0 ≤ 256dHVmaxA
k⋆−2

ϵϵsim
· 4H

√
256V 2

max log(4H|F̃ ℓ̄|/δ)
T ℓ

+ ϵ/4

where

F̃ ℓ̄ := {f ∈ F : Esim,πsim
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2] ≤ 2γ ℓ̄, ∀h ∈ [H]}.

However, since V 2
maxϵsim ≤ 1

10γ
ℓ̄, and by our choice of β ℓ̄ = γℓ̄

20V 2
max log

8H|F|
δ

, we see that (B.11) is

met, so the conclusion holds. Note that, by Lemma C.5, we have that with probability at least 1− δ:

F̃ ℓ̄ ⊆
{
f ∈ F : sup

π
(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])

2

≤
(
4 log

1

βℓ̄

+ 6

)
A ·

[
48dH log

48d

β2
ℓ̄

· 2γ ℓ̄ + V 2
max

√
96dH log

48d

β2
ℓ̄

log
1

δ
· βℓ̄

]}
⊆
{
f ∈ F : sup

π
(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])

2

≤ c

(
log

log 8H|F|
δ

Vmaxϵ2sim
+ 1

)
AdHV 2

max log
48d log 8H|F|

δ

Vmaxϵ2sim
· ϵ2sim

}
=: F̃

where the second inclusion follows from our setting of βℓ̄, and bounds on γ ℓ̄.

Since T ℓ ← T/2ι, it follows that if

T ≥ c · d
2H4V 4

maxA
2(k⋆−2)ι log(4H|F̃ |/δ)
ϵ4ϵ2sim

,

then we have that V real,πreal,⋆

0 − V real,π̂ℓ̄

0 ≤ ϵ/2.

Case 2: ϵsim ≤ ϵ/16H2. By Lemma B.5 and our choice of T ℓ
sim, we have that with probability at

least 1− δ,

V real,⋆
0 − V real,π̂ι

0 ≤ 6H

(
2 log

20V 2
max log

8H|F|
δ

γι
+ 3

)
·

√
192AdH log

960dV 2
max log

8H|F|
δ

γι
· γι + 4H2ϵsim.

By our choice of ι = O(log2 VmaxAdH
ϵ) and since γι = 10V 2

max(ϵ̄
ι)2 = 10V 2

max ·2−2ι, we can bound
V real,⋆
0 − V real,π̂ι

0 ≤ ϵ/2.

28

Completing the Proof. In either case, we have that with probability at least 1 − δ, there exists

some î ∈ [ι] such that V real,⋆
0 − V real,π̂î

0 ≤ ϵ/2.

Note that V real,π
0 = Ereal,π[

∑H−1
h=0 rh] and that

∑H−1
h=0 rh ∈ [0, H] almost surely. Consider playing π

for n episodes in real and let Ri denote the total return of the ith episode. Let

V̂ π
0 :=

1

n

n∑
i=1

Ri.

By Hoeffding’s inequality we have that, with probability at least 1− δ/ι:

|V̂ π
0 − V real,π

0 | ≤ H

√
log 2ι

δ

n
.

Thus, if

n ≥
16H2 log 2ι

δ

ϵ2
,

we have that |V̂ π
0 − V real,π

0 | ≤ ϵ/2. However, as we run each π ∈ Π̂ℓ Tℓ/2 = T/2ι times, and in
either case we assume T ≥ cιH2

ϵ2 · log
4ι
δ , this will be met. Union bounding over this for all π̂ℓ, we

have that with probability at least 1− δ:

V real,π̂
0 ≥ V̂ π̂

0 − ϵ/4 ≥ V̂ π̂î

0 − ϵ/4 ≥ V real,π̂î

0 − ϵ/2.

It follows that

V real,⋆ − V real,π̂
0 ≤ V real,⋆ − V real,π̂î

0 + ϵ/2 ≤ ϵ.

The result then follows from a union bound and rescaling δ.

Proof of Theorem 3. The argument follows analogously to the proof of Theorem 1, but using Theo-
rem 4 in place of Theorem 2. The bound on the number of oracle calls follows from Lemma C.3 and
our choice of βℓ.

Lemma B.5. With probability at least 1− δ, for some ℓ, we have

V sim,⋆
0 − V sim,π̂ℓ

0 ≤ 6H

(
2 log

20V 2
max log

8H|F|
δ

γℓ
+ 3

)
·

√
192AdH log

960dV 2
max log

8H|F|
δ

γℓ
· γℓ,

V real,⋆
0 − V real,π̂ℓ

0 ≤ 6H

(
2 log

20V 2
max log

8H|F|
δ

γℓ
+ 3

)
·

√
192AdH log

960dV 2
max log

8H|F|
δ

γℓ
· γℓ + 4H2ϵsim.

Proof. By Lemma C.4 we have, with probability at least 1− δ,

V sim,⋆
0 − V sim,π̂ℓ

0 ≤ 2H

(
2 log

1

βℓ
+ 3

)
·
[
βℓ

√
512V 2

maxA log
8H|F|

δ
+

√
96AdH log

48d

β2
ℓ

· γℓ

+

√√√√2AV 2
max

√
96dH log

48d

β2
ℓ

log
2

δ
· βℓ

]

≤ 6H

(
2 log

20V 2
max log

8H|F|
δ

γℓ
+ 3

)
·

√
192AdH log

960dV 2
max log

8H|F|
δ

γℓ
· γℓ

where the second inequality holds by our setting of βℓ.

We have

V real,⋆
0 − V real,π̂t

0 = V real,⋆
0 − V real,πsim,⋆

0 + V real,πsim,⋆

0 − V sim,πsim,⋆

0 + V sim,πsim,⋆

0 − V sim,π̂t

0 + V sim,π̂t

0 − V real,π̂t

0 .

29

By Lemma A.3, we can bound

V real,⋆
0 − V real,πsim,⋆

0 ≤ 2H2ϵsim

and by Lemma A.1 we can bound

V real,πsim,⋆

0 − V sim,πsim,⋆

0 ≤ H2ϵsim, V sim,π̂ℓ

0 − V real,π̂ℓ

0 ≤ H2ϵsim.

Combining this with our bound on V sim,⋆
0 − V sim,π̂ℓ

0 gives the result.

C Learning in sim

In this section we provide additional supporting lemmas for our main results and in particular, we
focus on linear in sim. In Appendix C.1 we provide several technical results critical to showing that
sim can be utilized to restrict the version space, as is done in Theorem 4. In order to restrict the
version space using sim, sufficiently rich data must be collected from sim, and in Appendix C.2 we
provide results on this data collection. Finally, in Appendix C.3 we provide a procedure to compute
the exploration policies in sim which we ultimately transfer to real.

In Appendices C.1 and C.2, we let hypothesis f̃ and f̂ be defined recursively as:

f̃h := argmin
fh∈Fh

1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− r̃th −max

a′
f̂h+1(s̃

t
h+1, a

′))2.

and f̂h ∈ Fh some hypothesis satisfying

1

Tsim

Tsim∑
t=1

(f̂h(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ γ

for parameter γ > 0.

In Appendix C.1 we make the following assumption on the data generating process.

Assumption 5. Consider the dataset Dsim = {(s̃t0, ãt0, r̃t0, . . . , s̃tH−1, ã
t
H−1, r̃

t
H−1)}

Tsim
t=1. We assume

that episode t in Dsim was generated by playing an Ft−1-measurable policy π̃t
exp, and denote

πsim
exp = unif({π̃t

exp}
Tsim
t=1).

We provide a specific instantiation of πsim
exp in Appendix C.2. In Appendix C.3, we provide a procedure

for learning a set of policies which induce full-rank covariates in sim, a crucial piece in obtaining
good exploration performance in real.

C.1 Regularizing with Data from sim

Lemma C.1. With probability at least 1− δ:

1

Tsim

Tsim∑
t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ 2V 2
maxϵ

2
sim +

512V 2
max

Tsim
· log 4|Fh|

δ
+ V 2

max

√
2 log 2|Fh|

δ

Tsim
.

Proof. First, note that T realf̂h+1 ∈ Fh by Assumption 4.

By Azuma-Hoeffding and a union bound, we have that, with probability at least 1 − δ, for each
f, f ′ ∈ Fh,

1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f ′

h(s̃
t
h, ã

t
h))

2 ≤ 1

Tsim

Tsim∑
t=1

Esim,π̃t
exp [(fh(s̃h, ãh)− f ′

h(s̃h, ãh))
2] + V 2

max

√
2 log |Fh|/δ

Tsim

= Esim,πsim
exp [(fh(sh, ah)− f ′

h(sh, ah))
2] + V 2

max

√
2 log |Fh|/δ

Tsim
.

30

In particular, this implies that

1

Tsim

Tsim∑
t=1

(T realf̂h+1(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ Esim,πsim
exp [(T realf̂h+1(sh, ah)− f̃h(sh, ah))

2] + V 2
max

√
2 log |Fh|/δ

Tsim
.

We can bound

Esim,πsim
exp [(T realf̂h+1(sh, ah)− f̃h(sh, ah))

2] ≤ 2Esim,πsim
exp [(T realf̂h+1(sh, ah)− T simf̂h+1(sh, ah))

2]︸ ︷︷ ︸
(a)

+ 2Esim,πsim
exp [(T simf̂h+1(sh, ah)− f̃h(sh, ah))

2]︸ ︷︷ ︸
(b)

.

To bound (a), we note that

T realf̂h+1(sh, ah)− f̃h(sh, ah) = Ereal[max
a′

f̂h+1(s
′, a′) | s, a]− Esim[max

a′
f̂h+1(s

′, a′) | s, a]

=
∑
s′

(P real
h (s′ | s, a)− P sim

h (s′ | s, a)) ·max
a′

f̂h+1(s
′, a′)

≤ Vmax ·
∑
s′

|P real
h (s′ | s, a)− P sim

h (s′ | s, a)|

≤ Vmaxϵsim

where the last inequality follows under Assumption 1. This gives that (a) ≤ 2V 2
maxϵ

2
sim. To bound

(b), we apply Lemma 3 of [57], which gives that with probability at least 1− δ,

(b) ≤ 512V 2
max

Tsim
· log 4|Fh|

δ
.

Combining these with a union bound gives the result.

Lemma C.2. Consider the set

F̂h :=

{
fh ∈ Fh :

1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ γ

}
.

Then with probability 1− 2δ we have

F̂h ⊆

fh ∈ Fh : Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] ≤ γ + 18V 2
max

√
log 4|Fh|

δ

Tsim

 .

Proof. By Azuma-Hoeffding, we have that with probability at least 1− δ, for each fh, f
′
h ∈ Fh,

Esim,πsim
exp [(fh(sh, ah)− f ′

h(sh, ah))
2]− V 2

max

√
2 log |Fh|/δ

Tsim
≤ 1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f ′

h(s̃
t
h, ã

t
h))

2

which implies in particular that, for any fh ∈ Fh,

Esim,πsim
exp [(fh(sh, ah)− f̃h(sh, ah))

2]− V 2
max

√
2 log |Fh|/δ

Tsim
≤ 1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2.

We can write

Esim,πsim
exp [(fh(sh, ah)− f̃h(sh, ah))

2]

= Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] + Esim,πsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))

2]

− 2Esim,πsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))]

≥ Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2]

− 2Esim,πsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))].

31

By Lemma 3 of [57], with probability at least 1− δ,

Esim,πsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))

2] ≤ 256V 2
max

Tsim
· log 2|Fh|

δ
.

We can therefore bound the final term as

Esim,πsim
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))(fh(sh, ah)− T simf̂h+1(sh, ah))]

≤ Vmax · Esim,πsim
exp [|f̃h(sh, ah)− T simf̂h+1(sh, ah)|]

≤ Vmax ·
√
Esim,πsim

exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))2]

≤ Vmax ·

√
256V 2

max

Tsim
· log 2|Fh|

δ
.

Altogether then we have shown that, for any fh ∈ Fh, with probability at least 1− 2δ:

1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≥ Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2]− 18V 2
max

√
log 2|Fh|/δ

Tsim
.

Thus, if

1

Tsim

Tsim∑
t=1

(fh(s̃
t
h, ã

t
h)− f̃h(s̃

t
h, ã

t
h))

2 ≤ γ,

then

Esim,πsim
exp [(fh(sh, ah)− T simf̂h+1(sh, ah))

2] ≤ γ + 18V 2
max

√
log 2|Fh|/δ

Tsim
.

The result follows from a union bound.

C.2 Data Collection with CoverTraj

Lemma C.3. Consider running the COVERTRAJ algorithm of [65] for each h ∈ [H] with parameters
m← ⌈log2 1/β⌉ and γi ← 2i ·β for some β ∈ [0, 1], and with REGMIN set to the policy optimization
oracle of Oracle 4.2. Then this procedure collects

Tsim := H ·
m∑
i=1

⌈
24d

2i · β2
log

48d

2i · β2

⌉
episodes, calls the policy optimization oracle at most Tsim times, and produces covariates Λh,i and
sets Xh,i such that, for each i ∈ [m],

sup
π

wsim,π
h (Xh,i) ≤ 2−i+1 and ϕ⊤Λ−1

h,iϕ ≤ 22i · β2, ∀ϕ ∈ Xh,i,

and supπ w
sim,π
h (Bd\ ∪mi=1 Xh,i) ≤ β. Furthermore, we have

12dH

β2
≤ Tsim ≤

48dH

β2
log

48d

β2
.

Proof. Instantiating REGMIN with the oracle of Oracle 4.2, we have that Definition 5.1 of [65] is
met with C1 = C2 = 0. Therefore, we have that at each stage i we collect exactly (using the precise
form for Ki given in the appendix of [65])

Ki = ⌈2i ·
24d

γ2
i

log
48 · 2id

γ2
i

⌉

episodes. The result then follows by Theorem 3 of [65].

32

Lemma C.4. Consider running the procedure of Lemma C.3 to collect data. Then with probability
at least 1− 2δ, we have

V sim,⋆
0 − V sim,πf̂

0 ≤ 2H

(
2 log

1

β
+ 3

)
·
[
β
√
512V 2

maxA log(4H|F|/δ) +

√
96AdH log

48d

β2
· γ

+

√√√√2AV 2
max

√
96dH log

48d

β2
log

1

δ
· β
]
.

Proof. By Lemma A.4:

V sim,⋆
0 − V sim,πf̂

0 ≤ max
π∈{πf̂ ,πsim,⋆}

H−1∑
h=0

2
∣∣∣Esim,π[f̂h(sh, ah)− T simf̂h+1(sh, ah)]

∣∣∣
≤ max

π∈{πf̂ ,πsim,⋆}

H−1∑
h=0

2Esim,π[|f̂h(sh, ah)− T simf̂h+1(sh, ah)|].

Denote g(zh) := |f̂h(sh, ah)− T simf̂h+1(sh, ah)| and Λh−1 =
∑m

i=1 Λh,i + I , for Λh,i collected
as in Lemma C.3, and note that

Esim,π[g(zh)] = Esim,π[

∫
g(z)dPπ

h (z | zh−1)]

= Esim,π[

∫ ∫
g(z)π(a | s)dadµs

h−1(s)
⊤ϕs(zh−1)]

= Esim,π[

∫ ∫
g(z)π(a | s)dadµs

h−1(s)
⊤Λ

1/2
h−1Λ

−1/2
h−1 ϕ

s(zh−1)]

≤ Esim,π[∥
∫ ∫

g(z)π(a | s)dadµs
h−1(s)∥Λh−1

· ∥ϕs(zh−1)∥Λ−1
h−1

]

= ∥
∫ ∫

g(z)π(a | s)dadµs
h−1(s)∥Λh−1

· Esim,π[∥ϕs(zh−1)∥Λ−1
h−1

].

(C.1)

We bound each of these terms separately. First, we have

Esim,π[∥ϕs(zh−1)∥Λ−1
h−1

] ≤
m∑
i=1

max
ϕ∈Xh−1,i

∥ϕ∥Λ−1
h−1
· sup

π
Esim,π[I{ϕs(zh−1) ∈ Xh−1,i}]

+ max
ϕ∈Bd\∪m

i=1Xh−1,i

∥ϕ∥Λ−1
h−1
· sup

π
Esim,π[I{ϕs(zh−1) ∈ Xh−1,i}]

(a)

≤
ι∑

i=1

γi · 2−i+1 + β

≤ (2m+ 1)β

where (a) follows from Lemma C.3 and since ∥ϕ∥Λ−1
h−1
≤ 1 always.

33

We turn now to bounding the first term. Note that

∥
∫ ∫

g(z)π(a | s)dadµs
h−1(s)∥Λh−1

=

√√√√Tsim∑
t=1

(

∫ ∫
g(z)π(a | s)dadµs

h−1(s)
⊤ϕt

h−1)
2

=

√√√√Tsim∑
t=1

Eπ[g(zh) | zth−1]
2

≤

√√√√Tsim∑
t=1

Eπ[g(zh)2 | zth−1]

(a)

≤

√√√√A ·
Tsim∑
t=1

Eπh−1,t
exp [g(zh)2 | zth−1]

=

√√√√A ·
Tsim∑
t=1

Eπh−1,t
exp [(f̂h(sh, ah)− T simf̂h+1(sh, ah))2 | zth−1]

≤

√√√√2A ·
Tsim∑
t=1

Eπh−1,t
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))2 | zth−1] + 2A ·

Tsim∑
t=1

Eπh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))2 | zth−1]

(b)

≤

√√√√512V 2
maxA log(4H|F|/δ) + 2A ·

Tsim∑
t=1

Eπh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))2 | zth−1]

where (a) uses the fact that πh−1,t
exp plays actions randomly at step h and (b) holds with probability at

least 1− δ by Lemma C.6. By Azuma-Hoeffding, we have with probability 1− δ:

Tsim∑
t=1

Eπh−1,t
exp [(f̃h(sh, ah)− f̂h(sh, ah))

2 | zth−1] ≤
Tsim∑
t=1

(f̃h(s
t
h, a

t
h)− f̂h(s

t
h, a

t
h))

2 +
√

2V 4
maxTsim log 1/δ

≤ Tsimγ +
√

2V 4
maxTsim log 1/δ

where the last inequality follows from the definition of f̂h.

Altogether then we have shown that, with probability at least 1− 2δ:

V sim,⋆
0 − V sim,πf̂

0 ≤ 2H(2m+ 1)β ·
√
512V 2

maxA log(4H|F|/δ) + 2ATsimγ + 2AV 2
max

√
2Tsim log 1/δ.

Using that Tsim ≤ 48dH
β2 log 48d

β2 as given in Lemma C.3, we can bound this as

≤ 2H(2m+ 1)

[
β
√
512V 2

maxA log(4H|F|/δ) +

√
96AdH log

48d

β2
· γ

+

√√√√2AV 2
max

√
96dH log

48d

β2
log

1

δ
· β
]
.

The result follows.

Lemma C.5. Assume that

Esim,πsim
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2] ≤ γ.

34

Then this implies that, with probability at least 1− δ,

sup
π

(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])
2

≤
(
4 log

1

β
+ 6

)
A ·

[
48d log

48d

β2
· γ + Vmax

√
96d log

48d

β2
log

1

δ
· β

]
.

Therefore,

{f ∈ F : Esim,πsim
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2] ≤ γ}

⊆
{
f ∈ F : sup

π
(Esim,π[fh(sh, ah)− T simfh+1(sh, ah)])

2

≤
(
4 log

1

β
+ 6

)
A ·

[
48dH log

48d

β2
· γ + V 2

max

√
96dH log

48d

β2
log

1

δ
· β

]}
.

Proof. We follow a similar argument as the proof of Lemma C.4. Denoting g(zh) := fh(sh, ah)−
T simfh+1(sh, ah), by the same calculation as (C.1) we have

Esim,π[g(zh)] ≤ ∥
∫ ∫

g(z)π(a | s)dadµs
h−1(s)∥Λh−1

· Esim,π[∥ϕs(zh−1)∥Λ−1
h−1

]

and as in the proof of Lemma C.4, we can bound

Esim,π[∥ϕs(zh−1)∥Λ−1
h−1

] ≤ (2m+ 1)β

and

∥
∫ ∫

g(z)π(a | s)dadµs
h−1(s)∥Λh−1

≤

√√√√A ·
Tsim∑
t=1

Eπh−1,t
exp [(fh(sh, ah)− T simfh+1(sh, ah))2 | zth−1]

By Azuma-Hoeffding, with probability at least 1− δ we can then bound

Tsim∑
t=1

Eπh−1,t
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2 | zth−1] ≤ Tsim · Eπsim
exp [(fh(sh, ah)− T simfh+1(sh, ah))

2]

+
√

2V 4
maxTsim log 1/δ

≤ Tsimγ +
√

2V 4
maxTsim log 1/δ

where the last inequality follows by assumption, and where πsim
exp = unif({πh−1,t

exp }Tsim
t=1). Altogether

then, for all π, we have

Esim,π[fh(sh, ah)− T simfh+1(sh, ah)] ≤ (2m+ 1)β ·
√
ATsimγ +AV 2

max

√
2Tsim log 1/δ.

Using that Tsim ≤ 48dH
β2 log 48d

β2 as given in Lemma C.3, we can bound this as

≤ (2m+ 1)

√
48AdH log

48d

β2
· γ + (2m+ 1)

√√√√AV 2
max

√
96dH log

48d

β2
log

1

δ
· β.

The result follows from some algebra.

Lemma C.6. With probability at least 1− δ, for each h ∈ [H] simultaneously, we have

Tsim∑
t=1

Esim,πh−1,t
exp [(f̃h(sh, ah)− T simf̂h+1(sh, ah))

2 | sth−1, a
t
h−1] ≤ 256V 2

max log(4H|F|/δ).

Proof. This follows from Lemma 3 of [57].

35

Algorithm 5 Learn Exploration Policies inMsim (LEARNEXPPOLICIES)
1: input: environmentM, confidence δ, regularization ζ, step h
2: AR ← policy optimization oracle of Oracle 4.2
3: for j = 1, 2, 3, . . . ,O(log2(dζ · log

1
δ + ζ−9 · log3/2 1

δ)) do
4: Nj ← ⌈2j/3⌉ − 1,Kj ← ⌈22j/3⌉, Tj ← (Nj + 1)Kj , δj ← δ

4j2

// DynamicOED algorithm from [64]
5: Σj ,Πj ← DYNAMICOED(Φ, Nj ,Kj , δj ,AR) for Φ(Λh)← tr((Λh + ζ · I)−1)

6: if λmin(Σj) ≥ 12544d log
4+64Tj

δ and Tj ≥ c · ζ−9 · log3/2 jTj

δ then
7: break
8: return Πj

C.3 Learning Full-Rank Policies

We consider running the MINEIG algorithm (Algorithm 6) of [64] in sim. For a fixed h, we instantiate
the setting of Appendix C of [64] with ψ(τ) = ϕ(sh, ah)ϕ(sh, ah)

⊤, D = 1, and AR the policy
optimization oracle of Oracle 4.2 (and so CR = 0), and set N = 1 for MINEIG. We note that this
algorithm is computationally efficient, given a policy optimization oracle.

Lemma C.7. ForM←Msim, Algorithm 5 will call Oracle 4.2 at most Õ(dζ · log
1
δ +ζ−9 · log3/2 1

δ)

times, and with probability at least 1− δ, under Assumption 3 and if ζ ≤ λ⋆
min

4d , will return policies Π
such that

λmin

(
1

|Π|
∑
π∈Π

Λs
π,h

)
≥ λ⋆

min

8d
(C.2)

and each π ∈ Π plays actions randomly for h′ > h.

Proof. We first argue that, if ζ ≤ λ⋆
min

4d , then with probability at least 1 − δ, (C.2) holds. Let E
denote the success event of each call to DYNAMICOED, and note that by our choice of δj , we have
P[E] ≥ 1− δ/2. Let j⋆ denote the minimal value of j such that

λ⋆
min

4d
Tj ≥ 12544d log

4 + 64Tj

δ
and Tj ≥ c · ζ−9 · log3/2 jTj

δ
. (C.3)

By Lemma C.4 of [64] and if ζ ≤ λ⋆
min

4d , we then have that, on E , λmin(Σj⋆) ≥ λ⋆
min

4d Tj⋆ , which
implies that the termination criteria of Algorithm 5 will be met. By Lemma C.5 of [64], it follows that
with probability at least 1 − δ/2, we have λmin(

1
|Πj⋆ |

∑
π∈Πj⋆

Λs
π,h) ≥

λ⋆
min

8d (since Tj⋆ = |Πj⋆ |),
the desired conclusion.

Assume that Algorithm 5 terminates for some j < j⋆. This implies that λ⋆
min

4d Tj < 12544d log
4+64Tj

δ .
However, in this case, we then have that

λmin(Σj) ≥ 12544d log
4 + 64Tj

δ
≥ λ⋆

min

4d
Tj .

From Lemma C.5 of [64], it then follows that with probability at least 1 − δ/2, we have
λmin(

1
|Πj |

∑
π∈Πj

Λs
π,h) ≥

λ⋆
min

8d .

It follows that, assuming Tj is large enough that (C.3) is met, and we are in the case when ζ ≤
λ⋆
min

4d holds, then Algorithm 5 will terminate and return a set of policies satisfying (C.2), with
probability at least 1 − δ. Note that Tj = O(2j). Given that Algorithm 5 does not terminate
until j = O(log2(dζ · log

1
δ + ζ−9 · log3/2 1

δ) ≥ O(log2(
d2

λ⋆
min
· log 1

δ + ζ−9 · log3/2 1
δ)), we will

have that Tj will be large enough that (C.3) is met, if ζ ≤ λ⋆
min

4d . The proof then follows since
DYNAMICOED calls Oracle 4.2 at most Tj times at round j, and the total sum of Tj is bounded
as Õ(dζ · log

1
δ + ζ−9 · log3/2 1

δ) by the maximum of j, and since the actions chosen by π ∈ Π for
h′ > h are irrelevant for the operation of DYNAMICOED, so they can be set to random.

36

D Lower Bound Proofs

D.1 Proof of Propositions 1, 3 and 4

Construction. Consider the following variation of the combination lock. We let the action space
A = {1, 2}, and assume there are two states, S = {s1, s2}, and horizon H . We start in state s1. The
sim dynamics are given as:

∀h < H − 1 : P sim
h (s1 | s1, a1) = 1, P sim

h (s2 |, s1, a2) = 1

P sim
H−1(s1 | s1, a1) = P sim

H−1(s2 | s1, a1) = P sim
H−1(s1 | s1, a2) = P sim

H−1(s2 | s1, a2) = 1/2

∀h ∈ [H] : P sim
h (s2 | s2, a) = 1, a ∈ {a1, a2}.

We define two real instances,M1 :=Mreal,1 andM2 :=Mreal,2, where for both we have:

∀h < H − 1 : P real
h (s1 | s1, a1) = 1, P real

h (s2 |, s1, a2) = 1

∀h ∈ [H] : P real
h (s2 | s2, a) = 1, a ∈ {a1, a2}

forM1:

P real
H−1(s1 | s1, a1) = 1/2 + ϵsim, P

real
H−1(s2 | s1, a1) = 1/2− ϵsim,

P real
H−1(s1 | s1, a2) = 1/2− ϵsim, P

real
H−1(s2 | s1, a2) = 1/2 + ϵsim,

and forM2:

P real
H−1(s1 | s1, a1) = 1/2− ϵsim, P

real
H−1(s2 | s1, a1) = 1/2 + ϵsim,

P real
H−1(s1 | s1, a2) = 1/2 + ϵsim, P

real
H−1(s2 | s1, a2) = 1/2− ϵsim.

Note then thatM1,M2, and sim only differ at step H − 1 in state s1. Furthermore, it is easy to
see that bothM1 andM2 satisfy Assumption 1 with misspecification ϵsim. It is easy to see that
Assumption 2 holds as well with d = 4 since this is a tabular MDP, and furthermore Assumption 3
also holds with λ⋆

min = 1/4. We define the reward function as (note that this is deterministic, and the
same for all instances):

∀h ∈ [H] : rh(s1, a2) = 1/2 + ϵsim(1/2− h/4H)

rH(s1, a) = 1, a ∈ {a1, a2},

and all other rewards are taken to be 0.

In sim, we see that the optimal policy always plays a2. In bothM1 andM2, the optimal policy plays
a1 for all h < H − 1, forM1 plays a1 at H − 1, and forM2 plays a2 at H − 1. Note that for both
M1 andM2, we have V ⋆

0 = 1/2 + ϵsim.

The most natural choice of F would be the set of all tabular Q-value functions, however, this set
is infinite, and would require a covering argument to incorporate. For simplicity, consider FH the
set of functions mapping to {0, 1}, and Fh the set of functions mapping to a finite set containing
{0, 1/2 − ϵsim, 1/2 + ϵsim} ∪ {1/2 + ϵsim(1/2 − h′/4H)}Hh′=0. Note that such a set satisfies
Assumption 4 and we can construct it such that log |F| ≤ O(H).

Lower Bound for Direct Policy Transfer (Proposition 3). We consider direct sim2real transfer
with randomized exploration. In particular, as noted, the optimal policy in sim always plays a2,
so we consider the ζ-greedy policy that at every state plays a2 with probability 1 − ζ, and plays
unif({a1, a2}) with probability ζ. Denote this policy as π̃. We then wish to lower bound:

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0]

after running our procedure for T episodes. Note that onM1, regardless of the actions π̂ chooses in
other states, we have

V M1,⋆
0 − V M1,π̂

0 ≥ ϵsim
2

(1− π̂H−1(a1 | s1)),

37

since the only way π̂ can achieve a reward of 1/2 + ϵsim is by playing a1 in s1 at step H − 1, and all
other sequences of actions obtain a reward of at most 1/2 + ϵsim/2. Similarly forM2 we have

V M2,⋆
0 − V M2,π̂

0 ≥ ϵsim
2

(1− π̂H−1(a2 | s1)).

Using this, and replacing the max over i ∈ {1, 2} with the average of them, we obtain

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0] ≥ inf
π̂

1

2
EM1,π̃[

ϵsim
2

(1− π̂H−1(a1 | s1))] +
1

2
EM2,π̃[

ϵsim
2

(1− π̂H−1(a2 | s1))]

=
ϵsim
2

[
1− 1

2
· sup

π̂

(
EM1,π̃[π̂H−1(a1 | s1)] + EM2,π̃[π̂H−1(a2 | s1)]

)]
.

Since π̂H−1(a1 | s1) = 1− π̂H−1(a2 | s1), we have

EM1,π̃[π̂H−1(a1 | s1)] + EM2,π̃[π̂H−1(a2 | s1)] = 1 + EM1,π̃[π̂H−1(a1 | s1)]− EM2,π̃[π̂H−1(a1 | s1)]
≤ 1 + TV(PM1,π̃,PM2,π̃)

≤ 1 +

√
1

2
KL(PM1,π̃ ∥ PM2,π̃)

where TV denotes the total-variation distance, KL the KL-divergence, and the last inequality follows
from Pinsker’s inequality. We therefore have

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0] ≥ ϵsim
4

(
1−

√
1

2
KL(PM1,π̃ ∥ PM2,π̃)

)
.

Now note that, sinceM1 andM2 only differ at state s1 and step H − 1, we have

KL(PM1,π̃ ∥ PM2,π̃) = EM1,π̃[TH−1(s1, a1)]KL(PM1

H−1(· | s1, a1) ∥ P
M2

H−1(· | s1, a1))
+ EM1,π̃[TH−1(s1, a2)]KL(PM1

H−1(· | s1, a2) ∥ P
M2

H−1(· | s1, a2)),

where TH−1(s1, ai) denotes the total number of visits to (s1, ai) at step H − 1 after T episodes (see
e.g. [59]). We have

KL(PM1

H−1(· | s1, a1) ∥ P
M2

H−1(· | s1, a1)) = KL(PM1

H−1(· | s1, a2) ∥ P
M2

H−1(· | s1, a2))

=
1

4
log

1/4

3/4
+

3

4
log

3/4

1/4
≤ 3

5

where the last inequality holds as long as ϵsim ≤ 1/6. Note that the only way for a policy to reach
s1 at step H − 1 is to play action a1 H − 1 consecutive times. Since π̃ only plays a1 at any given
step with probability ζ/2, it follows that the probability that π̃ reaches s1 at step H − 1 on any given
episode is only (ζ/2)H−1. Thus,

KL(PM1,π̃ ∥ PM2,π̃) ≤ 3

5

(
EM1,π̃[TH−1(s1, a1)] + EM1,π̃[TH−1(s1, a2)]

)
=

3

5
EM1,π̃[TH−1(s1)]

=
3

5

(
ζ

2

)H−1

· T.

We thus have:

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0] ≥ ϵsim
4

1−

√
3

10

(
ζ

2

)H−1

· T


and we therefore have inf π̂ supi∈{1,2} EMi,π̃[V Mi,⋆

0 − V Mi,π̂
0] ≥ ϵsim/8 unless

T ≥ 5

6
·
(
2

ζ

)H−1

.

38

Lower Bound for ζ-Greedy Without sim (Proposition 1). In order to quantify the performance of
a ζ-greedy algorithm, we must specify how it chooses f̂ when it has not yet observed any samples
from a given (s, a, h). Following the lead of Theorem 2 of [11], to avoid an overly optimistic or
pessimistic initialization, we assume that the replay buffer is initialized with a single sample from
each (s, a, h). Note that the conclusion would hold with other initializations, however, e.g. initializing
f̂h(s, a) = 0 or randomly if we have no observations from (s, a, h).

Assume that the observation from (s1, a1, H − 1) transitions to s2, which occurs with probability
at least 1/4. In this case, we then have that, for each h, f̂0

h(s1, a2) ≥ f̂0
h(s1, a1). Thus, following

the ζ-greedy policy, we have that π0
h(a1 | s1) ≤ 1/2. Denote this event on E0. Furthermore, the

only way we will have f̂0
h(s1, a2) < f̂0

h(s1, a1) is if we visit (s1, a1, H − 1) again and observe a
transition to s1. For this to occur, however, we must play action a1 H − 1 times consecutively which,
in this case, will occur with probability at most max{1/2, ζ/2}H−1 ≤ 1/2H−1.

Following the argument in the direct policy transfer case, we have

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0] ≥ inf
π̂

sup
i∈{1,2}

1

4
EMi,π̃[V Mi,⋆

0 − V Mi,π̂
0 | E0]

≥ ϵsim
16

(
1−

√
3

10
EM1 [TH−1(s1) | E0]

)
where EM1 [TH−1(s1) | E0] is the expected number of visitations to (s1, H − 1) after T episodes of
running the ζ-greedy policy. We can rewrite

EM1 [TH−1(s1) | E0] =
T∑

t=1

EM1 [I{sH−1 = s1} | E0].

Let E be the event that we have reached (s1, H − 1) in the first T rounds. Then,

EM1 [I{sH−1 = s1} | E0] = EM1 [I{sH−1 = s1} | E , E0]PM1 [E | E0] + EM1 [I{sH−1 = s1} | Ec, E0]PM1 [Ec | E0]
≤ PM1 [E | E0] + EM1 [I{sH−1 = s1} | Ec, E0].

By what we have just argued, we have PM1 [E | E0] ≤ T · 1
2H−1 , and EM1 [I{sH−1 = s1} | Ec, E0] ≤

1
2H−1 . Thus, EM1 [TH−1(s1) | E0] ≤ 2T 2

2H−1 . It follows that,

inf
π̂

sup
i∈{1,2}

EMi,π̃[V Mi,⋆
0 − V Mi,π̂

0] ≥ ϵsim
16

(
1−

√
3

10

2T 2

2H−1

)
and we therefore have inf π̂ supi∈{1,2} EMi,π̃[V Mi,⋆

0 − V Mi,π̂
0] ≥ ϵsim/32 unless

T ≥
√

5

8
· 2H−1.

Upper Bound for Exploration Policy Transfer (Proposition 4). To obtain an upper bound for
Algorithm 1, we can apply Theorem 1, so long as

ϵsim ≤
λ⋆
min

64dHA3
.

Note that in our setting we have d = 4, A = 2, λ⋆
min = 1/4, so this condition reduces to ϵsim ≤ 1

8192H .
TakingF to simply be the set of Q-functions defined above (so Vmax = H), Theorem 1 then gives that
with probability at least 1− δ, Algorithm 1 learns an ϵ-optimal policy as long as T ≥ c · H

17

ϵ8 · log
H
δ .

D.2 Proof of Proposition 5

We define three MDPs:Msim, and two possible real MDPs,M1 :=Mreal,1 andM2 :=Mreal,2. In
all cases we have states S = {s1, s2}, actions A = {a1, a2, a3, a4}, and H = 2, and set the starting
state to s1. We define

P sim
1 (s1 | s1, a1) = 1, P sim

1 (s1 | s1, a) = P sim
1 (s2 | s1, a) = 1/2, a ∈ {a2, a3, a4}.

39

For bothM1 andM2, we have:

P real
1 (s1 | s1, a1) = 1, P real

1 (s1 | s1, a4) = P real
1 (s2 | s1, a4) = 1/2

forM1, we have

P real
1 (s2 | s1, a2) = 1 + ϵsim, P

real
1 (s1 | s1, a2) = 1− ϵsim, P

real
1 (s1 | s1, a3) = P real

1 (s2 | s1, a3) = 1/2

and forM2,

P real
1 (s2 | s1, a3) = 1 + ϵsim, P

real
1 (s1 | s1, a3) = 1− ϵsim, P

real
1 (s1 | s1, a2) = P real

1 (s2 | s1, a2) = 1/2.

We take the reward to be 0 everywhere, except r2(s2, a) = 1 for all a.

Note that each of these can be represented as a linear MDP in d = 2 dimensions, so Assumption 2
holds. In particular, forMsim we can take:

ϕs(s, a1) = e1,ϕ
s(s, a) = e2, a ∈ {a2, a3, a4}, s ∈ S,

µs
1(s1) = [1, 1/2],µs

1(s2) = [0, 1/2].

ForM1 we can instead take:

ϕr(s, a1) = e1,ϕ
r(s, a) = [1/2, 1/2], a ∈ {a3, a4}, s ∈ S,

ϕr(s, a2) = [1/2− ϵsim, 1/2 + ϵsim], s ∈ S,
µr

1(s1) = [1, 0],µr
1(s2) = [0, 1].

M2 follows similarly with the role of a2 and a3 flipped.

It is easy to see that Assumption 1 is met on this instance for both choices ofMreal. OnMsim, the
policy πexp which in every states plays action a1 with probability 1/2 and action a4 with probability
1/2 satisfies λmin(Esim,πexp [ϕs(sh, ah)ϕ

s(sh, ah)
⊤]) ≥ 1/2 (which shows that Assumption 3 holds).

Note, however, that πexp does not play action a2 or a3. AsM1 andM2 differ only on a2 and a3,
playing πexp will not allow forM1 andM2 to be distinguished. As a2 is the optimal action onM1

and a3 the optimal action onM2, it follows that playing πexp will not allow for the identification of
the optimal policy onM1 andM2. This can be formalized identically to Appendix D.1, yielding the
stated result.

E Experimental Details

E.1 Didactic Tabular Example

Consider the following variation of the combination lock. We let the action space A = {1, 2}, and
assume there are two states, S = {s1, s2}, and horizon H . We start in state s1. The sim dynamics
are given as:

∀h < H − 1 : P sim
h (s1 | s1, a1) = 1, P sim

h (s2 |, s1, a2) = 1

P sim
H−1(s1 | s1, a1) = 1/4, P sim

H−1(s2 | s1, a1) = 3/4, P sim
H−1(s2 | s1, a2) = 1

∀h ∈ [H] : P sim
h (s2 | s2, a) = 1, a ∈ {a1, a2},

and the real dynamics are given as:

∀h < H − 1 : P real
h (s1 | s1, a1) = 1, P real

h (s2 |, s1, a2) = 1

P real
H−1(s1 | s1, a1) = 3/4, P real

H−1(s2 | s1, a1) = 1/4, P real
H−1(s2 | s1, a2) = 1

∀h ∈ [H] : P real
h (s2 | s2, a) = 1, a ∈ {a1, a2}.

Note that these only differ on (s1, a1) at h = H − 1, and we have ϵsim = 1/2. We define the reward
function as (note that this is deterministic, and the same for both sim and real):

∀h ∈ [H] : rh(s1, a2) = 1/8− h/8H

rH(s1, a) = 1/5, a ∈ {a1, a2},

and all other rewards are taken to be 0.

40

The intuition for this example is as follows. In both sim and real, the only way the agent can get
reward is to either end up in state s1 at step H , or to take action a2 in state s1 at any point. In sim,
the probability of ending up in state s1 at step H , even if the optimal sequence of actions to do this
is taken, is only 1/4, due to the final transition, and thus the average reward obtained by the policy
which aims to end up in s1 is only 1/4. In contrast, if we take action a2 in s1, we will always collect
reward of at least 3/8 (and the earlier we take action a2 the more reward we collect, up to 1/2). Thus,
in sim the optimal thing to do in s1 is always to play a2. However, if we play a2 even once, we will
transition out of s1 and never return, so there is no chance we will reach s1 at step H .

In real, the transitions at the final step are flipped, so that now the probability of finishing in s1, if
we take the optimal sequences of actions to do this, is 3/4, and the expected reward for this is then
also 3/4. Since the reward for taking a2 in s1 does not change, and is bounded as 1/2, then in real the
optimal policy is to seek to end up in s1 at the final step.

The challenge with ending up in s1 at the end is that it requires playing action a1 at every step. In this
sense it is then a classic combination lock instance, and randomized exploration will fail, requiring
Ω(2H) episodes to reach the final state (since the probability of randomly taking a1 at every state
decreases exponentially with the horizon). Similarly, if we transfer the optimal policy from sim to
real, it will never take action a1, so will never reach s1 at the end, and if we transfer the optimal
policy from sim with some random exploration, it will fail for the same reason random exploration
from scratch fails.

However, note that we can transfer a policy from sim that is able to reach s1 at the second-to-last step
with probability 1, i.e. the policy that takes action a1 at every step. Thus, if in sim we aim to learn
exploration policies that can traverse the MDP, and we transfer these exploration policies, they will
transfer, and will allow us to easily reach s1 at the final step, and quickly determine that it is indeed
the optimal thing in real.

We provide additional experimental results on this instance in Appendix E.1.

(a) Varying Number of States (b) Varying Number of Actions (c) Varying Horizon

Figure 5: Performance of Exploration Policy Transfer on instance from Section 5.2, varying
number of states, actions, and horizon. We plot the number of samples required to achieve
a reward of 0.35, which is approximately solving the task. All results are averaged across
20 trials. When increasing the number of states, we add additional 0-reward states (i.e.
states given in yellow in Figure 2), and when adding additional actions we add additional
low-reward actions (i.e. actions that have the same behavior as action a2 in Figure 2). We
observe that increasing the number of states and horizon increases the number of samples
needed, while increasing the number of actions does not substantially. We emphasize,
however, that this is for a particular example, and this scaling may not be the same for all
examples—Theorem 1, however, gives an upper bound on all examples.

E.2 Practical Algorithm Details

The core of our work is to decouple the optimal policy training from exploration strategies in
reinforcement learning fine-tuning. Specifically, we propose a framework that uses a set of diverse
exploration policies to collect samples from the environment. These exploration policies are fixed
while we run off policy RL updates on the collected samples to extract an optimal policy. Our
theoretical derivation suggests that this decoupling can improve sample efficiency and overall learning
performance.

41

Algorithm 6 sim2real transfer using OS for exploration and SAC for optimization
1: Input: Simulator Msim, real environment Mreal, simulator training budget N , exploration

reward balancing α, reward threshold ϵ, exploration set size n.
2: Pre-train Exploration Policies inMsim:
3: Initialize Πexp = {πθ(·|z)|z ∈ {1 . . . n}}
4: Initialize discriminator Dϕ

5: for i = 1 to N do ▷ Learn diverse exploration policies
6: Sample latent z ∼ unif(1, n) and initial state s0.
7: for t = 1 to max_steps_per_episode do
8: Sample action at ∼ πθ(at|st, z).
9: Step environment: st+1 ∼ p(st+1|st, at).

10: Compute discriminator score dt = D(st+1, z)

11: Compute exploration reward re(st+1, z) = log exp(dt)∑
z′ exp(d(st+1,z′)) .

12: if Rπ ≥ ϵ then
13: Compute reward rt = r(st, at) + α · re(st+1, z).
14: else
15: Compute reward rt = r(st, at)

16: Let D ← D ∪ {(st, at, rt, st+1, z)}.
17: Update πθ to maximize Jπ with SAC.
18: Update ϕ to maximize Ju, ϕ← ϕ+ η∇ϕEs,z∼D [logDϕ(s, z)]

19: Compute Rπ =
∑

t rt
20: Explore inMreal and Estimate Optimal Policy :
21: Initialize SAC agent (either from scratch or to weights of optimal sim policy).
22: while not converged do
23: Sample z ∼ unif(1, n), play πθ(· | z) inMreal, add data to replay buffer of SAC.
24: Roll out SAC policy for one step, perform standard SAC update.

Our framework is complementary to (a) RL works on diversity or exploration that generate diverse
policies and (b) off policy RL algorithms that optimize for policies. One can plug in (a) to extract
a set of exploration policy from a simulator and use them for data collect in the real world but use
(b) to optimize for the final policy. The design choice to use simulator to extract a set of exploration
policies where each policy is not necessarily optimizing for the task at hand marks our distinction
from previous works in (a) and (b).

We provide a practical instantiation of our framework using an approach inspired by One Solution
is Not All You Need (OS) [30] to extract exploration policies and Soft Actor Critic (SAC) [30]
to optimize for the optimal policy. We details the instantiation in Algorithm 6. OS trains a set of
policy to optimize not only the task reward but also a discriminator reward where the discriminator
encourages each policy to achieve different state. Unlike OS which carefully balances the task and
exploration rewards to ensure all policies have a chance at solving the desired task, we emphasize
only on having diverse policies. With a known sim2real gap, we posit that some sub-optimal policies
that are not solving the task in the simulator is actually helpful for exploration in the real world,
which allows us to simplify the balance between task and exploration. We uses standard off-shelf
SAC update to optimize for the policy.

E.3 TychoEnv sim2sim Experiment Details

For the TychoEnv experiment we run a variant of Algorithm 6. We set n = 20, and set the reward to
rit = (1− αi)r + αire where we vary αi from 0 to 0.5. While we use a sparse reward inMreal, to
speed up training inMsim we use a dense reward that penalizes the agent for its distance to the target.
We train inMsim for 7M steps to obtain exploration policies. Rather than simply transferring the
converged version of the exploration policies trained inMsim, we found it most effective to save the
weights of the policies throughout training, and transfer all of these policies. As the majority of these
policies do not collect any reward inMsim, we run an initial filtering stage where we identify several
policies from this set that find reward (this can be seen in Figure 4 with the initial region of 0 reward).
We then run SAC inMreal, initialized from scratch, feeding in the data collected by these refined
exploration policies into the replay buffer. We found it most effective to only inject data from the

42

Hyperarameter Value

reward balance α (OS) { 1
38 i−

1
38 : i = 1, 2, . . . , 20}

learning rate 0.0003
Q update magnitude τ 0.005

discount γ 0.99
batch size 2048

steps per episode 45
replay buffer size 5× 106

training steps N (inMreal) 7× 107

Table 1: Hyperparameters used in Tycho training and finetuning

0 1 2 3
Steps ×106

0

5

10

15

20

Re
wa

rd

Exploration Policy Transfer (Ours)
DIAYN Exploration Policy Transfer
Direct Policy Transfer
From Scratch in Real

Figure 6: Additional results on Tycho, including baselines training from scratch inMreal, and training
exploration policies inMsim with reward as stated above but with αi = 1 (which is equivalent to
simply training exploration policies with DIAYN [14]). As can be seen, while training from scratch
inMreal is able to learn, it learns at a much slower rate than exploration policy transfer, and achieves
a much lower final value. Furthermore, training the exploration policies to maximize a mix of the
task and diversity reward yields a substantial gain over simply training them to be diverse.

exploration policies in the replay buffer on episodes where they observe reward. We run vanilla SAC
with UTD = 3 and target entropy of -3. We rely on the implementation of SAC from stable-baselines3
[51].

For direct policy transfer, we train a policy to convergence inMsim that solves the task (using SAC),
and then transfer this single policy, otherwise following the same procedure as above.

InMreal, our reward is chosen to have a value of 50 if the end effector makes contact with the ball,
and otherwise 0. If the robot successfully makes contact with the ball the episode terminates. To
generate a realistic transfer environment, we change the control frequency (doubling it inMreal) and
the action bounds.

For both methods, we run theMsim training procedure 4 times, and then with each of these run it in
Mreal twice. Error bars in our plot denote one standard error.

All experiments were run on two Nvidia V100 GPUs, and 32 Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz CPUs. Additional hyperparameters in given in Table 1.

We provide results on several additional baselines for the Tycho setup in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×104

80

60

40

20

0

Re
wa

rd Exploration Policy Transfer (Ours)
Direct Policy Transfer
From scratch

Figure 7: Results on Franka sim2real experiment, comparing to training from scratch in real.

43

Hyperarameter Value

reward balance α (OS) 0.5
reward threshold ϵ (OS) -16

learning rate 0.0003
Q update magnitude τ 0.005

discount γ 0.99
batch size 256

steps per episode 45
replay buffer size 1× 106

training steps N 2× 107

Table 2: Hyperparameters used in Franka training and finetuning

Figure 8: Franka Hammering
Task Setup

0 1 2 3 4 5
Steps ×103

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

Exploration Policy Transfer (Ours)
Direct Policy Transfer

Figure 9: Results on sim2sim
Transfer in Franka Simulator

E.4 sim2sim Transfer on Franka Emika Panda Robot Arm

We next turn to the Franka Emika Panda robot arm [17], for which we use a realistic custom simulator
built using the MuJoCo simulation engine [61]. We consider a hammering task, where the Franka arm
holds a hammer, and the goal is to hammer a nail into the board (see Figure 8). Success is obtained
when the nail is fully inserted. We simulate sim2real transfer by settingMreal to be a version of the
simulator with nail location and stiffness significantly beyond the range seen during training inMsim.

We compare exploration policy transfer with direct sim2real policy transfer. Unlike the Tycho
experiment, where we trained policies from scratch inMreal and simply used the policies trained
inMsim to explore, here we initialize the task policy inMreal to πsim,⋆, which we then finetune on
the data collected inMreal by running SAC. For direct sim2real transfer, we collect data inMreal

by simply rolling out πsim,⋆ and feeding this data to the replay buffer of SAC. For exploration policy
transfer, we train an ensemble of n = 10 exploration policies inMsim and run these policies in
Mreal, again feeding this data to the replay buffer of SAC to finetune πsim,⋆. During training inMsim,
we utilize domain randomization for both methods, randomizing nail stiffness, location, radius, mass,
board size, and damping.

The results of this experiment are shown in Figure 9. We see that, while direct policy transfer is able
to learn, it learns at a significantly slower rate than our exploration policy transfer approach, and
achieves a much smaller final success rate.

E.5 Franka sim2real Experiment Details

We use Algorithm 6 to train a policy on the Franka robot with n = 15.

The reward of the pushing task is given by:

r(st, at) = −∥pee − pobj∥2 − ∥pobj − pgoal∥2 + Ipobj−pgoal≤0.025 − Ipobjofftable (E.1)

where pgoal is the desired position of the puck by the edge of the surface.

The network architecture of the actor and critic networks are identical, consisting of a 2-layer MLP,
each of size 256 and ReLU activations.

We use stable-baselines3 [51] for our SAC implementation, using all of their default hyperparameters.
The implemention of OS is built on top of this SAC implementation. Values of hyperparameters

44

are shown in Table 2. Gaussian noise with mean 0 and standard deviation 0.005 meters is added in
simulation to the position of the puck. Hyperparameters are identical between exploration policy
transfer and direct transfer methods.

For finetuning in real, we start off by sampling exclusively from the buffer used during simulation.
Then, as finetuning proceeds, we gradually start taking more samples from the real buffer, with the
proportion of samples taken from sim equal to 1− s/3000, where s is the current number of steps.
After 3000 steps, all samples are taken from the real buffer.

Experiments were run using a standard Nvidia RTX 4090 GPU. Training in simulation takes about 3
hours, while finetuning was ran for about 90 minutes.

In Figure 7, we provide results on this setup running the additional baseline of training a policy from
scratch in real. As can be seen, this is significantly worse than either transfer method.

45

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We validate all our claims with theoretical results and experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

46

Justification: All results are precisely proved in the supplemental, and all assumptions
clearly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To the extent possible, given that we are working with real-world systems, we
have described our setup and implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

47

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have not currently released our code but hope to in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have stated all parameters and algorithm details to the best of our knowledge
(please see Experimental Details section in supplemental).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all our experimental results, we provide error bars corresponding to 1
standard error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

48

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Experimental Details section in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not violate any ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is work is related to the advancement of our fundamental understanding
of machine learning. As such, we do not believe there are any direct societal impacts from
this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

49

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing high-risk models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the creators of the code used in this project.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

50

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

51

	Introduction
	Related Work
	Preliminaries
	Theoretical Results
	Naive Exploration is Provably Inefficient
	Understanding the Limits of Direct sim2real Transfer
	Efficient sim2real Transfer via Exploration Policy Transfer

	Practical Algorithm and Experiments
	Practical Instantiation of Exploration Policy Transfer
	Didactic Combination Lock Experiment
	Realistic Robotics sim2sim Experiment
	Real-World Robotic sim2real Experiment

	Discussion
	Technical Results
	Proof of Main Results
	Learning in real with Fixed Exploration Policies
	Performance of Full-Rank sim Policies in real
	Proof of Unconstrained Upper Bound
	Reducing the Version Space
	Algorithm and Proof

	Learning in sim
	Regularizing with Data from sim
	Data Collection with CoverTraj
	Learning Full-Rank Policies

	Lower Bound Proofs
	Proof of prop:epsgreedysubopt,prop:directtransfersubopt,prop:upperhardex
	Proof of prop:randexpnecessary

	Experimental Details
	Didactic Tabular Example
	Practical Algorithm Details
	TychoEnv sim2sim Experiment Details
	sim2sim Transfer on Franka Emika Panda Robot Arm
	Franka sim2real Experiment Details

