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Abstract

In order to mitigate the sample complexity of real-world reinforcement learning,
common practice is to first train a policy in a simulator where samples are cheap,
and then deploy this policy in the real world, with the hope that it generalizes
effectively. Such direct sim2real transfer is not guaranteed to succeed, however,
and in cases where it fails, it is unclear how to best utilize the simulator. In
this work, we show that in many regimes, while direct sim2real transfer may
fail, we can utilize the simulator to learn a set of exploratory policies which
enable efficient exploration in the real world. In particular, in the setting of
low-rank MDPs, we show that coupling these exploratory policies with simple,
practical approaches—Ileast-squares regression oracles and naive randomized
exploration—yields a polynomial sample complexity in the real world, an
exponential improvement over direct sim2real transfer, or learning without access
to a simulator. To the best of our knowledge, this is the first evidence that
simulation transfer yields a provable gain in reinforcement learning in settings
where direct sim2real transfer fails. We validate our theoretical results on several
realistic robotic simulators and a real-world robotic sim2real task, demonstrating
that transferring exploratory policies can yield substantial gains in practice as well.

1 Introduction

Over the last decade, reinforcement learning (RL) techniques have been deployed to solve a variety of
real-world problems, with applications in robotics, the natural sciences, and beyond [27, 54, 52, 26,
46, 23]. While promising, the broad application of RL methods has been severely limited by its large
sample complexity—the number of interactions with the environment required for the algorithm to
learn to solve the desired task. In applications of interest, it is often the case that collecting samples
is very costly, and the number of samples required by RL algorithms is prohibitively expensive.

In many domains, while collecting samples in the desired deployment environment may be very
costly, we have access to a simulator where the cost of samples is virtually nonexistent. As a concrete
example, in robotic applications where the goal is real-world deployment, directly training in the
real world typically requires an infeasibly large number of samples. However, it is often possible
to obtain a simulator—derived from first principles or knowledge of the robot’s actuation—which
provides an approximate model of the real-world deployment environment. Given such a simulator,
common practice is to first train a policy to accomplish the desired task in the simulator, and then
deploy it in the real world, with the hope that the policy generalizes effectively from the simulator
to the goal deployment environment. Indeed, such “sim2real” transfer has become a key piece in the
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Figure 1: Left: Overview of our approach compared to standard sim2real transfer on puck pushing
task. Standard sim2real transfer first trains a policy to solve the goal task in sim and then transfers this
policy to real. This policy may fail to solve the task in real due to the sim2real gap, and furthermore
may not provide sufficient data coverage to successfully learn a policy that does solve the goal task in
real. In contrast, our approach trains a set of exploratory policies in sim which achieve high-coverage
data when deployed in real, even if they are unable to solve the task 0-shot. This high-coverage data
can then be used to successfully learn a policy that solves the goal task in real. Right: Quantitative
results running our approach on the puck pushing task illustrated on left, compared to standard
sim2real transfer. Over 6 real-world trials, our approach solves the task 6/6 times while standard
sim2real transfer solves the task 0/6 times.

application of RL to robotic settings, as well as many other domains of interest such as the natural
sciences [12, 15], and is a promising approach towards reducing the sample complexity of RL in
real-world deployment [19, 4, 18].

Effective sim2real transfer can be challenging, however, as there is often a non-trivial mismatch
between the simulated and real environments. The real world is difficult to model perfectly, and some
discrepancy is inevitable. As such, directly transferring the policy trained in the simulator to the real
world often fails, the mismatch between sim and real causing the policy—which may perfectly solve
the task in sim—to never solve the task in real. While some attempts have been made to address
this—for example, utilizing domain randomization to extend the space of environments covered
by simulator [60, 49], or finetuning the policy learned in sim in the real world [50, 73]—these
approaches are not guaranteed to succeed. In settings where such methods fail, can we still utilize
a simulator to speed up real-world RL?

In this work we take steps towards developing principled approaches to sim2real transfer that
addresses this question. Our key intuition is that it is often easier to learn to explore than to learn
to solve the goal task. While solving the goal task may require very precise actions, collecting
high-quality exploratory data can require significantly less precision. For example, successfully
solving a complex robotic manipulation task requires a particular sequence of motions, but obtaining
a policy that will interact with the object of interest in some way, providing useful exploratory data
on its behavior, would require significantly less precision.

Formally, we show that, in the setting of low-rank MDPs where there is a mismatch in the dynamics
between the “sim” and “real” environments, even when this mismatch is such that direct sim2real
transfer fails, under certain conditions we can still effectively transfer a set of exploratory policies
from sim to real. In particular, we demonstrate that access to such exploratory policies, coupled
with random exploration and a least-squares regression oracle—which are insufficient for efficient
learning on their own, but often still favored in practice due to their simplicity—enable provably
efficient learning in real. Our results therefore demonstrate that simulators, when carefully applied,
can yield a provable—exponential—gain over both naive sim2real transfer and learning without
a simulator, and enable algorithms commonly used in practice to learn efficiently.

Furthermore, our results motivate a simple, easy-to-implement algorithmic principle: rather than
training and transferring a policy that solves the task in the simulator, utilize the simulator to train
a set of exploratory policies, and transfer these, coupled with random exploration, to generate high



quality exploratory data in real. We show experimentally—through a realistic robotic simulator and
real-world sim2real transfer problem on the Franka robot platform—that this principle of transferring
exploratory policies from sim to real yields a significant practical gain in sample efficiency, often
enabling efficient learning in settings where naive transfer fails completely (see Figure 1).

2 Related Work

Provable Transfer in RL. Perhaps the first theoretical result on transfer in RL is the “simulation
lemma”, which transforms a bound on the total-variation distance between the dynamics to a bound
on policy value [24, 25, 6, 22]—we argue that we can do significantly better with exploration transfer.
More recent work has considered transfer in the setting of block MDPs [34], but requires relatively
strong assumptions on the similarity between source and target MDPs, or the meta-RL setting [69],
but only consider tabular MDPs, and assume the target MDP is covered by the training distribution.
Perhaps most relevant to this work is the work of [36], which presents several lower bounds showing
that efficient transfer in RL is not feasible in general. In relation to this work, our work can be seen
as providing a set of sufficient conditions that do enable efficient transfer; the lower bounds presented
in [36] do not hold in the low-rank MDP setting we consider. Several other works exist, but either
consider different types of transfer than what we consider (e.g., observation space mismatch), or
only learn a policy that has suboptimality bounded by the sim2real mismatch [37, 56, 58]. Another
somewhat tangential line of work considers representation transfer in RL, where it is assumed the
source and target tasks share a common representation [35, 10, 2]. We remark as well that the formal
sim2real setting we consider is a special case of the MF-MDP setting of [53].

Simulators and Low-Rank MDPs. Several existing works show that there are provable benefits
to training a policy in “simulation” due to the ability to reset on command [67, 33, 5, 68, 70, 42].
These works do not consider the transfer problem, however. The setting of linear and low-rank MDPs
which we consider has seen a significant amount of attention over the last several years, and many
provably efficient algorithms exist [21, 1, 62, 63, 43, 41]. These works typically assume access to
powerful oracles which enable efficient learning; we only consider access to a simple regression
oracle. Beyond the theory literature, recent work has also shown that low-rank MDPs can effectively
model a variety of standard RL settings in practice [72].

Sim2Real Transfer in Practice. The sim2real literature is vast and we only highlight particularly
relevant works here; see [74] for a full survey. To mitigate the inconsistency between the simulator and
real world’s physical parameters and modeling, domain randomization creates a variety of simulated
environments with randomized properties to develop a robust policy [60, 49, 44, 8, 39]. Domain
adaptation instead constructs encoding of deployment conditions (e.g., physical condition or past
histories) and adapts to the deployment environment by matching the encoding [29, 9, 66, 55, 38, 40].
In contrast, our work assumes a fundamental sim2real mismatch where we do not expect the real
system to match the simulator for any parameter settings. A related line of work shows that policies
trained with robust exploration strategies generalize better to disturbed or unseen environments
[13, 20]. Our work is complimentary to this work in that our goal is not to transfer a policy that
solves the task in new environment, but rather explores the environment.

3 Preliminaries

We let A x denote the set of distributions over set X, [H] := {1,2,...,H}, and ||P — Q||Tv the
total-variation distance between distributions P and Q.

Markov Decision Processes. We consider the setting of episodic Markov Decision Processes
(MDPs). An MDP is denoted by a tuple M = (S, A, {P, }HL,, {rn}L |, s1, H), where S denotes
the set of states, A the set of actions, P, : S x A — Ag the transition function, rp, : S x A — [0, 1]
the reward (which we assume is deterministic and known), s; the initial state, and H the horizon.
We assume A is finite and denote A := |.A|. Interaction with an MDP starts from state s;, the agent
takes some action a1, transitions to state s ~ P;(- | s1, a1), and receives reward 71 (s1, a1). This
process continues for H steps at which points the episode terminates, and the process resets.

The goal of the learner is to find a policy 7 = {m,}}_ |, 7, : S = A 4, that achieves maximum
reward. We can quantify the reward received by some policy 7 in terms of the value and ()-value



functions. The Q-value function is defined as Q7 (s, a) := E”[Zgzhrhr(sh/, ap’) | sp = s,ap =
a], and value function is defined in terms of the Q-value function as V7' (s) := Eqr, (|5 [@F (5, @)].
The value of policy , its expected reward, is denoted by Vi := V{"(s1), and the value of the optimal
policy, the maximum achievable reward, by V" := sup,. V.

In this work we are interested in the setting where we wish to solve some task in the “real” envi-
ronment, represented as an MDP, and we have access to a simulator which approximates the real
environment in some sense. We denote the real MDP as M2 and the simulator as M5™. We
assume that M and M5™ have the same state and actions spaces, reward function, and initial state,
but different transition functions, Preal and PS™. We denote value functions in M and M™ as
Vb7 (5) and V™7 (s), respectively. We make the following assumption.

Assumption 1. Forall (s,a,h) € S x A x [H] and some €4y, > 0, we have:
||Pi;ea|(. ‘ s,a) - }slim(. | Sva)HTV < €sim-

We do not assume that the value of ey, is known, simply that there exists some such ey .

Function Approximation. In order to enable efficient learning, some structure on the MDPs of
interest is required. We will assume that M@ and MS™ are low-rank MDPs, as defined below.
Definition 3.1 (Low-Rank MDP). We say an MDP is a low-rank MDP with dimension d if there
exists some featurization ¢ : S x A — R? and measure p : [H] x S — R? such that:

Ph(. | Saa) = <¢<57a)7l~1‘h(')>7 vs7a7 h.
We assume that [|¢p(s, a)||l2 < 1 for all (s,a), and for all &, [[|pen|(S)ll2 = || [,cg [dpen(s)]]l2 < V.

Formally, we make the following assumption on the structure of M>™ and M.

Assumption 2. Both M5™ and M satisfy Definition 3.1 with feature maps and measures (¢°, %)
and (¢, "), respectively. Furthermore, ¢° is known, but all of p®°, @, and pu" are unknown.

In the literature, MDPs satisfying Definition 3.1 but where ¢ is known are typically referred to as
“linear” MDPs, while MDPs satisfying Definition 3.1 but with ¢ unknown are typically referred to as
“low-rank” MDPs. Given this terminology, we have that M™ is a linear MDP?, while Mrelis a
low-rank MDP. We assume the following reachability condition on M>™.

Assumption 3. There I\’ > 0 with miny sup,, )\min(EMSim’"[cﬁs(sh, an)®*(sn,an)']) > A

min min -’
Assumption 3 posits that each direction in the feature space in our simulator can be activated by some
policy, and can be thought of as a measure of how easily each direction can be reached. Similar
assumptions have appeared before in the literature on linear and low-rank MDPs [71, 3, 2]. Note that
we only require this reachability assumption in M*'™. We also assume we are given access to function
classes Fp, : S x A — [0, H] and let F := F; X Fa X ... x Fpg. Since no reward is collected in the
(H + 1)th step we take fi+1 = 0. Forany f: S x A — R, we let ﬂ,fl(s) = argmax,c 4 fr(s,a).
We define the Bellman operator on some function f 11 : S x A — Ras:

T frri(s,a) :=rp(s,a) + Egop,(s,a) [H}f}x Shga(s',a")].
We make the following standard assumption on F.

Assumption 4 (Bellman Completeness). For all fr 11 € Fpy1, we have Treal frn+1, Tsim fr+1 € Fn,
where T and T5™ denote the Bellman operators on M™ and M>™, respectively.

PAC Reinforcement Learning. Our goal is to find a policy 7 that achieves maximum reward in
M Formally, we consider the PAC (Probably-Approximately-Correct) RL setting.

Definition 3.2 (PAC Reinforcement Learning). Given some € > 0 and § > 0, with probability at
least 1 — 4 identify some policy 7 such that: V"7 > V> _ ¢

We will be particularly interested in solving the PAC RL problem with the aid of a simulator, using
the minimum number of samples from M"?' possible, as we will formalize in the following. As
we will see, while it is straightforward to achieve this objective using M*™ if € = O(€gm ), naive
transfer methods can fail to achieve this completely if € < €gi,. As such, our primary focus will be
on developing efficient sim2real methods in this regime.

The assumption that ¢° is known is for simplicity only—similar results could be obtained were ¢° also
unknown using more complex algorithmic tools in M*™.



4 Theoretical Results

In this section we provide our main theoretical results. We first present two negative results: in
Section 4.1 showing that “naive exploration”—utilizing only a least-squares regression oracle and
random exploration approaches such as ¢ -greedy3—i_s provably inefficient, and in Section 4.2 showing
that directly transferring the optimal policy from M=™ to M is unable to efficiently obtain a policy
with suboptimality better than O(eg;,,,) in real. Then in Section 4.3 we present our main positive result,
showing that by utilizing the same oracles as in Sections 4.1 and 4.2—a least-squares regression oracle,
simulator access, and the ability to take actions randomly—we can efficiently learn an e-optimal
policy for € < g, in M by carefully utilizing the simulator to learn exploration policies.

4.1 Naive Exploration is Provably Inefficient

While a variety of works have developed provably efficient methods for solving PAC RL in low-rank
MDPs [1, 62, 43, 41], these works typically either rely on complex computation oracles or carefully
directed exploration strategies which are rarely utilized in practice. In contrast, RL methods utilized in
practice typically rely on “simple” computation oracles and exploration strategies. Before considering
the sim2real setting, we first show that such “simple” strategies are insufficient for efficient PAC RL.
To instantiate such strategies, we consider a least-squares regression oracle, often available in practice.

Oracle 4.1 (Least-Squares Regression Oracle). We assume access to a least-squares regres-
sion oracle such that, for any h and dataset ® = {(s,a’,y")}];, we can compute

. T
arg minge r, > (f(sha") — y')?.

We couple this oracle with “naive exploration”, which here we use to refer to any method that explores
by randomly perturbing the action recommended by the current estimate of the optimal policy. While
a variety of instantiations of naive exploration exist (see e.g. [11]), we consider a particularly common
formulation, ¢-greedy exploration.

Protocol 4.1 ({-Greedy Exploration). Given access to a regression oracle, any ¢ € [0, 1], and time
horizon T, consider the following protocol:

1. Interact with M for T episodes. At every step of episode ¢ + 1, play W}{t (s) with
probability 1 — ¢, and a ~ unif (A) otherwise, where:

. t ’ ’ ’ ’
fi= argmin; r, Sy (f(sh,al) — 7}, — maxy f}i+1(sz+1,a’))2.

2. Using collected data in any way desired, propose a policy 7.

Protocol 4.1 forms the backbone of many algorithms used in practice. Despite its common application,
as existing work [11] and the following result show, it is provably inefficient.

Proposition 1. Forany H > 1, ¢ € [0, 1], and ¢ < 1/6, there exist some M™" and M2 such

that both M and M2 satisfy Assumptions 2 and 4, and unless T > Q21 / 2), when running
Protocol 4.1 we have:

real real real ~
Suereale{Mreal,l)Mreal,2} EM [VOM * VbM 77‘-] > 0/32.

Proposition 1 shows that, in a minimax sense, (-greedy exploration is insufficient for provably
efficient reinforcement learning: on one of M1 and M2, (-greedy exploration will only be
able to find a policy that is suboptimal by a constant factor, unless we take an exponentially large
number of samples. While we focus on (-greedy exploration in Proposition 1, this result extends
to other types of naive exploration, for example, those given in [11]. See Section 5.2 for further
discussion of the construction for Proposition 1.

4.2 Understanding the Limits of Direct sim2real Transfer

Proposition | shows that in general utilizing a least-squares regression oracle with (-greedy explo-
ration is insufficient for provably efficient RL. Can this be made efficient with access to a simulator

3Throughout this paper, we use “C-greedy” to refer to the method more commonly known as “e-greedy” in
the literature, to avoid ambiguity between this € and the € in our definition of PAC RL, Definition 3.2.



MS™? In practice, standard sim2real methodology typically trains a policy to accomplish the goal
task in M®™, and then transfers this policy to M"?!. We refer to this methodology as direct sim2real
transfer. The following canonical result, usually referred to as the “simulation lemma” [24, 25, 6, 22],
provides a sufficient guarantee for direct sim2real transfer to succeed under Assumption 1.

Proposition 2 (Simulation Lemma). Let 78m* denote an optimal policy in M®™. Then under
Assumption 1 we have Voreal’ﬂ > Voreal’* —2H%egp.

Proposition 2 shows that, as long as € > 2H 2e4im. direct sim2real transfer succeeds in obtaining
an e-optimal policy in M. While this justifies direct sim2real transfer in settings where Ms™
and M are sufficiently close, we next show that given access only to 7™* and a least-squares
regression oracle—even when coupled with random exploration—we cannot hope to efficiently
obtain a policy with suboptimality less than O (g, ) on M2 using naive exploration. To formalize
this, we consider the following interaction protocol.

Protocol 4.2 (Direct sim2real Transfer with Naive Exploration). Given access to 7SM* an optimal
policy in M*™ any ¢ € [0, 1], and time horizon T', consider the following protocol:

1. Interact with M for T episodes, and at each step h and state s play Wijm’*(~ | s) with
probability 1 — ¢, and a ~ unif(.A) with probability (.

2. Using collected data in any way desired, propose a policy 7.

Protocol 4.2 is a standard instantiation of direct sim2real transfer commonly found in the literature,
and couples playing the optimal policy from M*™ with naive exploration. We have the following.

Proposition 3. With the same choice of ML and M2 as in Proposition 1, there exists some
MS™ such that both M1 and M2 satisfy Assumption 1 with M™ for g, < ¢, Assumptions 2
to 4 hold, and unless T > Q(2H ) when running Protocol 4.2, we have:

real ARl Ml
SUD ppreal e { Areal. 1, AMreal,2} EM [VO -V Tr} > Esim/32~

Proposition 3 shows that there exists a setting where there are two possible M™ satisfying
Assumption 1 with M®™, and where, using direct policy transfer, unless we interact with M for
exponentially many episodes (in H), we cannot determine a better than (e, )-optimal policy for
the worst-case Me?!, Together, Propositions 2 and 3 show that, while we can utilize direct sim2real
transfer to learn a policy that is O (g )-optimal in M if our goal is to learn an e-optimal policy
for € < €4, direct sim2real transfer is unable to efficiently achieve this.

4.3 Efficient sim2real Transfer via Exploration Policy Transfer

Does there exist some way to utilize M*™ and a least-squares regression oracle to enable efficient
learning in M"?', even when € < €4, ? Our key insight is that, rather than transferring the policy that
optimally solves the task in M*™, we should instead transfer policies that explore effectively in M5™,
While learning to solve a task may require very precise actions, we can often obtain sufficiently rich
data with relatively imprecise actions—it is easier to learn to explore than learn to solve a task. In
such settings, directly transferring a policy to solve the task will likely fail due to imprecision in the
simulator, but it may be possible to still transfer a policy that generates exploratory data. To formalize
this, we consider the following access model to M>'™.

Oracle 4.2 (M®™ Access). We may interact with M*™ by either:

1. (Trajectory Sampling) For any policy m, sampling a trajectory {(sp, an,7h, Snt1) }iL
generated by playing 7 on MM,

2. (Policy Optimization) For any reward 7, computing a policy 75™ (7) maximizing 7~ on M*™,

While access to such a policy optimization oracle is unrealistic in ./\/l'ea',_where we want to minimize

the number of samples collected, given cheap access to samples in M*™, such an oracle can often

be (approximately) implemented in practice*. Note that under Oracle 4.2 we only assume black-box

*While for simplicity we assume that the truly optimal policy can be computed, our results easily extend to
settings where we only have access to an oracle which can compute an approximately optimal policy.



access to our simulator—rather than allowing the behavior of the simulator to be queried at arbitrary
states, we are simply allowed to roll out policies on M*>™, and compute optimal policies. Given Ora-
cle 4.2, as well as our least-squares regression oracle, Oracle 4.1, we propose the following algorithm.

Algorithm 1 sim2real Exploration Policy Transfer

1: input: budget 7', confidence J, simulator Msim
// Learn policies I, which cover feature space in M®™

2: 1", + LEARNEXPPOLICIES(MS™ 5, 4% 1) (Algorithm 5) for all h € [H]

exp H
3: HQXP  {Texp * Texp Plays Texp UP to step h, then plays actions randomly, V7ex, € Hé}xp

// Explore in Mre vig Texp
4: Play Texp ~ unif ({unif (I, ) }/Z,) for T'/2 episodes in M™', add data to D

// Estimate optimal policy on collected data
forh=H H—-1,...,1do

foargmingc 737 oyen (fals,a) —r —maxg fria (s, a'))?
Compute 7™* via Oracle 4.2

. . . ~ | sim, x
Play 75'™* for T'/4 episodes in real, compute average return V;**""

= . . PN F
Play 7/ for T'/4 episodes in real, compute average return Voreal”T

@Y *®» 3 20

f}real ™
)

return 7 <— arg MaX, o7 im e} Vo

Algorithm 1 first calls a subroutine LEARNEXPPOLICIES, which learns a set of policies that provide
rich data coverage on M>®™—precisely, LEARNEXPPOLICIES returns policies {Hﬁxp} he[#] Which

induce covariates with lower-bounded minimum eigenvalue on M®™ and relies only on Oracle 4.2
(as well as knowledge of the featurization of M*™, ¢°) to find such policies. Algorithm 1 then plays
these exploration policies in M, coupled with random exploration, and applies the regression
oracle to the data they collect. Finally, it estimates the value of the policy learned by the regression
oracle and 78™*, and returns whichever is best. We have the following.

Theorem 1. If Assumptions 1 to 4 hold and

*

)‘min
Esim S 64dH A3’ (4’1)
then as long as
d*H16 H|F
T>c- - log 7] ,
€8 1)

with probability at least 1 — 6, Algorithm I returns a policy 7 such that V{®"* — Vorealﬁ < and
Oracles 4.1 and 4.2 are invoked at most poly(d, H, e~ 1, log %) times.

Theorem 1 shows that, as long as e, satisfies (4.1), utilizing a simulator and least-squares regression
oracle, Oracles 4.1 and 4.2, allows for efficient learning in M, achieving a complexity scaling
polynomially in problem parameters. This yields an exponential improvement over learning without a
simulator using naive exploration or direct sim2real transfe—which Propositions 1 and 3 show have
complexity scaling exponentially in the horizon—despite utilizing the same practical computation
oracles. To the best of our knowledge, this result provides the first theoretical evidence that sim2real
transfer can yield provable gains in RL beyond trivial settings where direct transfer succeeds.

Note that the condition in (4.1) is independent of e—unlike direct sim2real transfer, which requires
€ = O(€sim ), we simply must assume €y, is small enough that (4.1) holds, and Theorem 1 shows
that we can efficiently learn an e-optimal policy in M for any € > 0. In Appendix B.4, we also
present an extended version of Theorem 1, Theorem 3, which utilizes data from M*™ to reduce
the dependence on log | F|. In particular, instead of scaling with log ||, it only scales with the
log-cardinality of functions that are (approximately) Bellman-consistent on M*™. To illustrate the
effectiveness of Theorem 1, we return to the instance of Propositions 1 and 3, where naive exploration

and direct sim2real transfer fails. We have the following.

Proposition 4. In the setting of Propositions 1 and 3 and assuming that €gi, < 81% . %, running
Algorithm I will require poly(H, e~ 1) - log % samples from M in order to identify an e-optimal
policy in M with probability at least 1 — 8, for any € > 0.



Note that the condition required by Proposition 4 is simply that e, << 1/H—as long as our simulator
satisfies this condition, we can efficiently transfer exploration policies to learn an e-optimal policy,
for any e > 0, while naive methods would be limited to only obtaining an Q(1/H )-optimal policy.

Remark 4.1 (Necessity of Random Exploration). Algorithm 1 achieves efficient exploration in Mred!
by learning policies HQXP in M*®™ that span the feature space of M*™ (Line 2), and then playing

these policies in M, coupled with random exploration (Line 4). This use of random exploration
is critical to obtaining Theorem 1. As we show in Proposition 5, if we omit the random exploration,

Assumption 1 is not sufficient to guarantee ngp explores effectively in M"™?! even when (4.1) holds.

Remark 4.2 (Computational Efficiency). Algorithm 1, as well as its main subroutine LEARNEXP-
POLICIES, relies only on calls to Oracle 4.1 and Oracle 4.2. Thus, assuming we can efficiently
implement these oracles, which is often the case in problem settings of interest, Algorithm 1 can be
run in a computationally efficient manner.

5 Practical Algorithm and Experiments

We next validate the effectiveness of our proposal in practice: can a set of diverse exploration
policies obtained from simulation improve the efficiency of real-world reinforcement learning? We
start by showing that this holds for a simple, didactic, tabular environment in Section 5.2. From
here, we consider several more realistic task domains: simulators inspired by real-world robotic
manipulation tasks (sim2sim transfer, Section 5.3); and an actual real-world sim2real experiment
on a Franka robotic platform (sim2real transfer, Section 5.4). Further details on all experiments,
including additional baselines, can be found in Appendix E. Before stating our experimental results,
we first provide a practical instantiation of Algorithm | that we can apply with real robotic systems
and neural network function approximators.

5.1 Practical Instantiation of Exploration Policy Transfer

The key idea behind Algorithm 1 is quite simple: learn a set of exploratory policies in Msim_—
policies which provide rich data coverage in M*™—and transfer these policies to M"?', coupled
with random exploration, using the collected data to determine a near-optimal policy for Mre_a'.
Algorithm 1 provides a particular instantiation of this principle, learning exploratory policies in M*™
via the LEARNEXPPOLICIES subroutine, which aims to cover the feature space of MM and utilizing
a least-squares regression oracle to compute an optimal policy given the data collected in M"?'. In
practice, however, other instantiations of this principle are possible by replacing LEARNEXPPOLICIES
with any procedure which generates exploratory policies in M*™, and replacing the regression oracle
with any RL algorithm able to learn from off-policy data. We consider a general meta-algorithm
instantiating this in Algorithm 2.

Algorithm 2 Practical sim2real Exploration Policy Transfer Meta-Algorithm

1: Input: Simulator MS™ real environment M'?!| simulator budget T, real budget T', algorithm
to generate exploratory policies in sim 2ey,, algorithm to solve policy optimization in real 24,
// Learn exploratory policies in M°™

2: Run ey, for Tgim steps in MS™ to generate set of exploratory policies Ieyp
// Deploy exploratory policies in M

3:fort=1,2,...,7/2do

Draw ey, ~ unif (Tlexp ), play in M for one episode, add data to replay buffer of 2,

5: Run 2, for one episode // optional if %A,, learns fully offline

»

In practice, oxp and 2, can be instantiated with a variety of algorithms. For example, we might
take Rexp to be an RND [7] or bootstrapped Q-learning-style [45, 31] algorithm, or any unsupervised
RL procedure [48, 14, 32, 47], and 2, to be an off-policy policy optimization algorithm such as
soft actor-critic (SAC) [16] or implicit ()-learning (IQL) [28].

For the following experiments, we instantiate Algorithm 2 by setting 2o, to an algorithm inspired
by recent work on inducing diverse behaviors in RL [14, 30], and 2l,,, to SAC. In particular, 2y,

simultaneously trains an ensemble of policies Iley, = {Wéxp » . and a discriminator dy : S X

[n] — R, where dj is trained to discriminate between the behaviors of each policy wéxp, and ﬂéxp
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Figure 2: Left: Illustration ofCombination Lock Example. Right: Results on Combination Lock.
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is optimized on a weighting of the true task reward and the exploration reward induced by the

exp(dg(s,i)) . .. .
o 5P (de (57" As shown in existing work [14, 30], this simple

training objective effectively induces diverse behavior with temporally correlated exploration while
remaining within the vicinity of the optimal policy, using standard optimization techniques. Note
that the particular choice of algorithm is less critical here than abiding by the recipes laid out in the
meta-algorithm (Algorithm 2). The particular instantiation that we run for our experiments is detailed
in Algorithm 6, along with further details in Appendix E.2.

discriminator, re(s,7) := log 5=
J

5.2 Didactic Combination Lock Experiment

We first consider a variant of the construction used to prove Propositions 1 and 3, itself a variant
of the classic combination lock instance. We illustrate this instance in Figure 2. Unless noted, all
transitions occur with probability 1, and rewards are 0. Here, in M*™ the optimal policy, 7"™*,
plays action ay for all steps h < H — 1, while in M"?!, the optimal policy plays action a; at every
step. Which policy is optimal is determined by the outgoing transition from s; at the (H — 1)th
step and, as such, to identify the optimal policy, any algorithm must reach s; at the (H — 1)th
step. As s; will only be reached at step H — 1 by playing a; for H — 1 consecutive times, any
algorithm relying on naive exploration will take exponentially long to identify the optimal policy.
Furthermore, playing 75m* coupled with random exploration will similarly take an exponential
number of episodes, since 7°'™* always plays as. As such, both direct sim2real policy transfer as
well as ()-learning with naive exploration (Protocol 4.1) will fail to find the optimal policy in mreal,
However, if we transfer exploratory policies from M®™, since M*™ and M behave identically up
to step H — 1, these policies can efficiently traverse M|, reach s; at step H — 1, and identify the
optimal policy. We compare our approach of exploration policy transfer to these baselines methods
and illustrate the performance of each in Figure 2. As this is a simple tabular instance, we implement
Algorithm 1 directly here. As Figure 2 shows, the intuition described above leads to real gains in
practice—exploration policy transfer quickly identifies the optimal policy, while more naive approach
fail completely over the time horizon we considered.

5.3 Realistic Robotics sim2sim Experiment

To test the ability of our proposed method to scale to more complex problems,
we next experiment on a sim2sim transfer setting with a realistic robotic
simulator. We consider TychoEnv, a simulator of the 7DOF Tycho robotics
platform introduced by [73], and shown in Figure 3. We test sim2sim transfer
on a reaching task where the goal is to touch a small ball hanging in the air
with the tip of the chopstick end effector. The agent perceives the ball and its
own end effector pose and outputs a delta in its desired end effector pose as
a command. We set M*™ and M" to be two instances of TychoEnv with
slightly different parameters to model real-world sim2real transfer. Precisely,
we change the action bounds and control frequency from MM to M2,

We aim to compare our approach of exploration policy transfer with direct Figure 3: TychoEnv
sim2real policy transfer. To this end, we first train a policy in M®™ that Reach Task Setup
solves the task in M®™, 7'™* and then utilize this policy in place of Ilcyp

in Algorithm 2. We instantiate our approach of exploration policy transfer as outlined above. Our
aim in this experiment is to illustrate how the quality of the data provided by direct policy transfer
vs. exploration policy transfer affects learning. As such, for both approaches we simply initialize
our SAC agent in Mreal 0, from scratch, and set the reward in M@ (o be sparse: the agent
only receives a non-zero reward if it successfully touches the ball. For each approach, we repeat the
process of training in M®™ four times, and for each of these run them for two trials in M,



We illustrate our results in Figure 4. As this figure illustrates, direct e P e g
policy transfer fails to learn completely, while exploration policy =~ qf 7 PrectPeley Tenster
transfer successfully solves the task. Investigating the behavior of
each method, we find that the policies transferred via exploration
policy transfer, while failing to solve the task with perfect accu-
racy, when coupled with naive exploration are able to successfully
make contact with the ball on occasion. This provides sufficiently
rich data for SAC to ultimately learn to solve the task. In contrast, 0

direct policy transfer fails to collect any reward when run in M2, 0 Yocteps e
and, given the sparse reward nature of the task, SAC is unable to
locate any reward and learn.We include an additional sim2sim ex-
periment on the Franka Emika Panda Robot Arm in Appendix E.4.

Figure 4: Results on sim2sim
Transfer in TychoEnv Simulator

5.4 Real-World Robotic sim2real Experiment

Finally, we demonstrate our algorithm for actual sim2real policy transfer for a manipulation task
on a real-world Franka Emika Panda robot arm [17] with a parallel gripper. Our task is to push a
75mm diameter cylindrical “puck” from the center to the edge of the surface, as shown in Figure 1,
with the arm initialized at random locations. The observed state $ = [pPec, pobj] € R* consists of
the planar Cartesian coordinate of the end effector p.. along with the center of mass of the puck p,p;.
Our policy outputs planar end effector position deltas a = Ape. € R?, evaluated at 8 Hz, which are
passed into a lower-level joint position PID controller. We use an Intel Realsense D435 depth camera
to track the location of the puck. Our reward function is a sum of a success indicator (indicating
when the puck has been pushed to the edge of the surface) and terms which give negative reward
if the distance from the end effector to the puck, or puck to the goal, are too large (see (E.1)); in
particular, a reward greater than 0 indicates success.

We run the instantiation of Algorithm 2 outlined above. In particular, we train an ensemble of n = 15
exploration policies, training for 20 million steps in MS™ In addition, we train a policy that solves
the task in M™'™, 7'™*. We use a custom simulator of the arm, where during training the friction of
the table is randomized and noise is added to the observations.

We observe a substantial sim2real gap between our simulator and the real robot, with policies trained
in simulation failing to complete the pushing task zero shot in real, even when trained with domain
randomization. We compare direct sim2real policy transfer against our method of transferring
exploration policies. For direct policy transfer, we simply run SAC to finetune 7%'™* in the real world,
using the current policy to collect data. For exploration policy transfer, we instead utilize IIcyy,, our
ensemble of exploration policies, to collect data in the real world. We run this in tandem with an SAC
agent, feeding the data from the exploration policies into the SAC agent’s replay buffer. Unlike in
Section 5.3, rather than initializing the SAC policy from scratch, we set the initial policy as 7°'™*, and
fine-tune from this on the data collected from playing Il..,,. See Appendix E.5 for additional details.

Our results are shown on the right side of Figure 1. Statistics are computed over 6 runs for each
method. Direct policy transfer with finetuning is unable to solve the task in real in each of the 6 runs,
and converges to a suboptimal solution. However, our method is able to solve the task successfully
each time and achieve a substantially higher reward.

6 Discussion

In this work, we have demonstrated that simulators can make naive exploration efficient even in
settings where direct sim2real transfer fails, if they are used to train a set of exploration policies. We
highlight several limitations of this work, which we believe are interesting future research questions:

* Our focus is purely on dynamics shift—where the dynamics of sim and real differ, but the environ-
ments are otherwise the same. While dynamics shift is common in many scenarios, other types of
shift can exist as well, for example perceptual shift. How can we best handle these types of shift?

» How can we utilize a simulator in sim2real transfer if we can reset it arbitrarily, rather than just al-
lowing for black-box access? Does the ability to reset allow us to improve sample efficiency further?

* Is the reachability condition, Assumption 3, necessary for successful exploration transfer?
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A Technical Results

We denote the state-visitations for some policy 7 as wf (s, a) := P™[(sp,ap) = ( a)l, wi(Z) :=
P™[(sn,an) € Z], for Z C S x A. For X C R%, we denote w] (X) := P™[¢(sp,an) € X], for ¢
the featurization of the environment.

Lemma A.1. Consider MDPs M and M with transition kernels P and P. Assume that both M and
M start in the same state sy and that, for each (s,a, h):

1Pu(- | s,a) = Pu(- | 5,0)|lv < €sim- (A1)

Consider some reward function r such that Zle rh(sh,an) < R for all possible sequences
{(sh,an)HL . Then it follows that, for any 7 and (s, a, h),

QN (5,0) = Q) (5,0)] < HR - 6sim.

Proof. We prove this by induction. First, assume that for some /4 and all s, a, we have |Q2ﬁ71r (s,a) —
th\z’f(s, a)| < €p+1. By definition we have

hM’ﬂ(s, a) =rp(s,a) + ]EM’”[Q%:T(S;LH, apt1) | sp = s,ap = aj
and similarly for QhJrl (s,a). Thus:
QI (s,a) — QY™ (5.0)]

(2 B [Q00T (Sha1, anst) | sn = s,an = a] — EM’”[Q%ﬁT(ShH’ an+1) | sn = s,an = al|
+EM TN (she1, an1) — Q%’T(Shﬂ, ant1)| | sn = s,an = a

< B Q)T (Sha1s ansr) | sn = s,ap, = a] — EM TN (Sharsansr) | s = s,an = a]| + ensa

where (a) follows from the triangle inequality and (b) follows from the inductive hypothesis. Under
(A.1), we can bound

|EM’ﬂ[Q;JLVi7{(Sh+17 ap+1) | sp = s,ap = a]—EM’ﬂ[QhMﬂ(ShH, an+1) | sn = 8,an = al| < €im-R.

It follows that for any (s, a), M’”(s, a) — Q%’W(s, a)| < e =: €simPBR + €py1-

The base case follows trivially with ez = 0 since for any MDP we have that Q%’”(s,a)

rg(s,a) = ]\Hzﬂ(s,a). O

Lemma A.2. Under the same setting as Lemma A.1 and for any h, w, and Z C S x A, we have
wy"™(2) = wy""(2)] < Heésim.

Proof. This is an immediate consequence of Lemma A.l since, setting the reward r,/(s,a) =

1{(s,a) € Z,h’ = h}, we can set R = 1 and have V;"""™ = w,"™ (Z2). O

Lemma A.3 (Proposition 2). Under Assumption 1, we have that

real, %

| 1. sim, x . . s
Voo — V=™ < 2H%egy, and Vi ™ = Vg™ < 2H egim.

Proof. We prove the result for real—the result for sim follows analogously. We have

real,x real, 7™ *  + real x> sim,rreeh* sim, el sim,7sm* sim, M * real, ;5™ *
Vo =V =W -V +V -V +Vo -V
<0
real,ﬂreal’* sim,ﬂrea"* sim,ﬂ'S“"’* real,rrSir"’*
<V -V |+ Vo - .
The result then follows by applying Lemma A.1 to bound each of these terms by H?ei,. O
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Lemma A.4. Forany f € F,

H-1
f
Vo=V < E?H}X g Z 2|E™[fr(shyan) — T fas1(sn,an)]| -
me{nl he0

Proof. We write

Vo — Voﬂf =Vy - max fo(so,a)+ max fo(so,a) — VO’Tf

(a) (b)
and then bound each of these terms separately. By Lemma 5 of [57] we have

H

(@) < 30 [E™ [fn(sn an) = = max i (sn41, )|

IA
mb‘
ol

B [fi(sn, an) = Elrn + max fus1 (sns1,0') | snsanl]|

Il
i

Similarly, by Lemma 4 of [57] we have
Holoo
(b) < E™ [fn(sh,an) —rn — m%}th+1(5h+1,a/)]’
h=0 ¢
Holo
= E™ [fn(sn, an) = El[rn + max frv1(sny1,a) | Sh,ah]]‘ .
h=0 )

B Proof of Main Results

In Appendix B.1 we first provide a general result on learning in real when collecting data via a fixed
set of exploration policies, given a particular coverage assumption. Then in Appendix B.2, we show
that by playing a set of policies which induce full-rank covariates in sim, these policies provide
sufficient coverage for learning in real. Finally in Appendices B.3 and B.4, we use these results
to prove Theorems | and 3. Throughout the appendix we develop the supporting lemmas for our
more general result, Theorem 3, which utilizes the simulator to restrict the version space (i.e. the
dependence on | F]) in addition to utilizing the simulator to aid in exploration.

Throughout this and the following section we assume that Assumption 4 holds. We also assume that
Ir € [0, Vinax] instead of f}, € [0, H], for some Viax > 0. For any f € F, we denote the Bellman
residual as

gh(f)(sa CL) = Tf}L+1(Sa CL) - fh(57 a’)'
Note that by assumption on F, we have &, (f)(s,a) € [—Vinaxs Vinax]-

For any policy m, we denote A3, = ES™7 (% (s1,, an )@ (sn,ar) '] and AL, =
Ereal’w[d)r(sh, ah)¢r(3ha ah)T}'

Necessity of Random Exploration. Algorithm 1 achieves efficient exploration in M2 by first
learning a set of policies H(’j’xp in M®™ that span the feature space of M*>™ (Line 2), achieving

Nvin (17 e, BN (5 00)6% (50 an) 1) 2 N (B.1)

and then playing these policies in M"?', coupled with random exploration (Line 4). In particular,
Algorithm [ plays policies from ﬁgxp, where each Texp, € ﬁé"xp is defined as the policy which plays
SOME Trexp € ngp up to step h, and then for steps b’ = h + 1,..., H chooses actions uniformly
at random. This use of random exploration is critical to obtaining Theorem 1. Indeed, under our
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transfer model, condition (4.1) of Theorem 1 is not strong enough to ensure that policies satisfying
(B.1) collect rich enough data in M"?' to allow for learning a near-optimal policy. While (4.1) is

sufficient to guarantee that playing Hf;xp on M collects data which spans the feature space of

MM __that is, satisfying (B.1) but with the expectation over M*™ replaced by an expectation of
M3 this is insufficient for learning, as the following result shows.

Proposition 5. For any e, < 1/2, there exist some MS™, M1 and M2 such that:
1. Both M™! and M2 satisfy Assumption 1 with MS™ and Assumptions 2 to 4 hold.

2. There exists some policy Texp, such that )\min(EMSimvﬂeXp [0°(sn, an)®*(sn,an)']) = 1/2,
Vh € [H], and for any T > 0, if we play Texp on M™ for T steps, we have:

. real real real ~
infz SUP pfreal g { Mreal, 1 pgreal 2} EM™ mexp [VOM i %M ’Tr] > €sim-

Proposition 5 holds because two MDPs may be “close” in the sense of Assumption 1 but admit very
different feature representations. As a result, transferring a policy that covers the feature space of
MS™ is not necessarily sufficient for covering the feature space of M, which ultimately means
that data collected from 7, is unable to identify the optimal policy in M Our key technical
result, Lemma B.4, shows, however, that under Assumption 1 and (4.1), policies which achieve
high coverage in M*™ (i.e. satisfy (B.1)) are able to reach within a logarithmic number of steps
of relevant states in M. While the sample complexity of random exploration typically scales
exponentially in the horizon, if the horizon over which we must explore is only logarithmic, the
total complexity is then only polynomial. Theorem 1 critically relies on these facts—by playing
policies in ngp up to step h and then exploring randomly, and repeating this for each h € [H], we

show that sufficiently rich data is collected in M for learning an e-optimal policy.

B.1 Learning in real with Fixed Exploration Policies

Algorithm 3 sim2real transfer with fixed exploration policies (EXPLOREREAL)

1: input: exploration policies {ngp}hH:I, budget T, sim date Dy, sim regularization -y

2: Play ey, = unif ({m/,,}2,) for T episodes in real, add data to D
3:forh=H,H—1,...,1do
4:

Focagmin Y (u(sia) — r — max fn (0
fer (s,a,r,s’)EDL “

sim

focargmin 3" (fils,0) = 7 — max i (s, 0)?

fer (s,a,r,s")ED},
' - 2 (B.2)
S.t. W Z (fh(saa) 7.fh(570’)) S Y
"M (s,a)eDl,

5: return 7rfA

Lemma B.1. Consider running Algorithm 3. Assume that D, was generated as in Assumption 5,
via the procedure of Lemma C.3 run with some parameter (3, and -y satisfies

og 8

212
dH  ~

2
max Csim +

43V2 B2 8H|F
rnaxﬁ -1 g | h‘ +6V2

dH 0O, 5 maxﬁ

Furthermore, assume that there exists some €, € > 0 such that, for any w, h € [H|, and Z' C S x A,
we have:

W2 £ €t (E) e ®3)
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Then with probability at least 1 — 26, the policy g generated by Algorithm 3 satisfies

log(4H|F (x| /)

256V;2 sm
T + 4HVipaxe

‘/0* _ ‘/'OTrf S 4Q:H\/ max

for
F(asmy = {f € F : E™ 5 [(fu(sn, an) — T far1(sn, an))?] < 29, Vh € [H]}.

Proof. Let £ denote the good event of Lemma B.2, which holds with probability at least 1 — 24. By
Lemma A.4 we have
H—-1

F ~ ~
Voreal,* _ Vorealﬂr < max Z 9 ‘Eureal,‘:r[fh(sh7 ah) _ Trealfh+1(3h7 ah)]
TrE{Trf,ﬂ"'eal’*} h=0

H-1
< max ) 2B ER () (sn, an)].
h=0

Let
Zni = 1{(s,0) = IEF())(5,0)] € [Vinax - 27", Vinax - 277}
Then we have, for any 7,

B P (s, an)l] < D0 wf T (Zn0) - Vinas2

=1
b .
< €Y W (Z0,) - Vinax2 T+ 2Vinaxe
i=1
< 2€- B mee 1€ (£) (sn, an)|] + 2Vinaxe

where the second inequality follows from (B.3). On £, by Lemma B.2 and Jensen’s inequality, we
have

exp

2H|Fi (nsim)|
5 :

~ ~ 1
B (€5 () ()] € B €759 o, an)?] < \/ T 256V log

As this holds for each h and 7, we have therefore shown that

2H | Fy (wsim)|

H-1
F 1 ex
Vofeala* _ V'O"ealvﬂ'f < 4¢ - g — . 256V2 log 5 P + 4}I‘/max€
h=0

T max

2H|F(rsim
log 2H|F ()| f;re"p)' S AHV, e,

1
< 4€H\/T - 256V2, .
This proves the result. O

Lemma B.2. With probability at least 1 — 20, for each h € [H| simultaneously, as long as the
conditions on vy given in Lemma B.3 hold, we have

~ - 1 ~
Ereb e [( fr(sn, an) — T fata (sn, an))?] < T 256V 70 10g (2H | Fn (mEy )1 /),

and fh € .7-'h(7r5im ) for all h € [H], where

exp

Fu(mdm) i= {fun € Fu : 3fn1 € Fugr st B0 ](fi (s, an) — T fra (s, an))?) < 293

Proof. Let ]?h denote the feasible set of (B.2) at step h. By Lemma B.3, with probability at least

1-0, F fL - fh, and, furthermore, that T’ea'fhﬂ is feasible. The result then follows from Lemma 3
of [57], since the constraint on the regression problem restricts the version space. O
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Lemma B.3. Assume that data in Dy, is generated as in Assumption 5 via the procedure of
Lemma C.3 run with some parameter (3, and y satisfies

43V2, 5% | 8H|Fy| log 2721
2V2 max”_ ] +6V2 — % <.
max Slm + dH Og 6 maxﬂ dH — ,7

Then with probability at least 1 — § we have, for each h € [H|:

1. Treal‘]/c\h+1 is feasible for (B.2).
2. The set of feasible f for (B.2) is a subset of

{feF « B [(fu(shyan) — T Fara (s, an))?] < 243

Proof. By Lemma C.1, we have that with probability at least 1 — §/2H,

o= 512V;2 8H|F 2log 7570
ah) fh(shv ah)) < 2Vn21ax €sim + L log | h| + V1121ax & :
=1 T5|m 0 Tsim
By Lemma C.3, we have 125‘12H < Tsim, which implies
Tsim 4H|]:h|
1 real 7 ~ r ~ 43Vn?1 x/82 8H“Fh‘ IOg 5
Tsim ;(T lfh/+1 (‘é{z" a;l/) - fh (§$L7 a’;’L)) < 2V112]¢3,X blIIl + d];’ : log 6 ‘/1'1'213,)(/8 Tﬁ'

Part 1 then follows given our assumption on 7.

To bound the feasible set for (B.2) we appeal to Lemma C.2 which states that with probability at least
1 — 0/2H we have that the feasible set of (B.2) is a subset of

o sim D log 8H|Fn|
fh S ]:h : ESIm,ﬂ-eXp[(fh(sha Clh) - TSImfh-l—l(Sha a’h))Q] S v + 18Vn21ax Tig
sim
Again using that 12dH < Tim, We have have that this is a subset of
) 8H|Fn|
sim, 2™ im 7 2 2 log S
fo € Fno o BT [(fi(snyan) = T2 fag1(sn, an))”] < v + 18V B “2dH

C {fh € Fin + BN (f(sn, an) — T Frga (s, an))?] < 27}

where the inclusion follows from our assumption on . The result then follows from a union
bound. O

B.2 Performance of Full-Rank sim Policies in real

Lemma B.4. Consider policies {! ,}I_ |, and assume that

Amm( :, h) > Amin, VA € [H] (B.4)

exp’

and that )\, , plays actions uniformly at random for h' > h. Let meyp, = unif ({7, [ }fL,). Then, for
anym, k> 0,7>0, h € [H], and Z2' CS§ x A, we have
4HyAF 2
w;beal,rr (Z/) < i . w;beal,ﬂexp (Z/) + 4,17
K

where

o A d . logl/k
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Proof. Denote
Zper={(s,0) : @'(s,0) (AL 30) "9 (5,0) > 7}

for some v > 0. We have

real nh

h =
Wyl exp (Zh-i-l) — [ErealTexp [H{(Sh—i-h ah+1) S Zh,-‘rl}]

(a) h ¢r(5h+1aah+1)T(A;—gxwh_t,_l)il(pr(sh—l-laah—l—l) -
“{(sht1,an41) € Zpya}

S Ereal,ﬂ'exp
Y

h+1> 1¢r(3h+17 ah+1)]

pr’

~y

h
< Ereal,ﬂ'exp

[W(Shﬂ’ any1) " (AL,

h
tr (Erea"”e*pkﬁ'(shﬂaah+1)¢r(8h+17ah+1)T}(A nonin)” 1)

LR 2=

where (a) follows since for all (s,a) € Z,,1, we have 1 < ¢' (s, a)T (AL, h+1)’1qbr(s, a)/v. By
exp?
Lemma A.2, we then have that

| Tr d
wizl P (Zpg1) < — 5 + Hégim- (B.5)

Let Spy1 = {s : Jas.t (s,a) € 2,41} and note that

w:Jn:lﬂ'exp (Zh+1 E5|m Wexp /S Z Wexp(a | S, h + 1)dP5Im(S | Sh, ah)
h+1

a:(s,a)€Zpn 41

/g dps, ()T ¢ (sm, an)

]Esim,ﬂg’xp

>

o
B Ten [P (Shpr | sns an)]

h> HMH | -

]ESIm Trgxp [PSIm(ShJ’_l ‘ Sh’ah/) ]
where we have used the fact that exp(a | s,h+1) =1/Aforall (s,a) by assumption, and define
Ps'm(ShH | s,a) := P¥™[s;41 € Sh+1 | sp = s,ap = a] = f§;+1 dps, (s )Tq_’)s(s a), where the

last equality follows from the definition of a linear MDP. Letting p h(5h+1 = [z S dpsj,(s), note
that:

1 . n L~ 1 ~ ~
Z BT [P (She | sy an)?] = ZNZ(ShH)T]ES'm oo [ (sn, an) % (snr an) | 1185 (She)

1 - -
= ZNZ(Sh+1)TAjrgxp,hN71(Sh+1)
>\mln

145, (Sn+1) 13-

where the last inequality follows from (B.4). Comblmng this with (B.5), we have

>

min

d
S+ Hesim 2 Huh(Sh+1)||2

Now note that, for any z € S x A:

:
B8 | 2) = /S ap, S'm<s|z>=</$~ duz<s>) (=) < 115 (Snin) 2
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and we also have that Pgim(§h+1 | z) > P,'fa'(ghﬂ | 2) — €sim under Assumption 1. Putting this
together we have that for all z € S x A:

~ A d
P}s,eal(sh+1 | Z) S \/;\ < + HESim) + €sim-
Y

min

Note that we can always take €4, < 1, and will always have Amin < 1. This implies that €4, <

A (d
\/Am;n (; + Hﬁsim>- Thus,

S A d
P}rleiﬂ(Sh-‘rl | Z) S 2\/)\ - <,7 =+ HGsim) = g

Coverage of 7oy, inreal. Let k* := Hgi i//gl so that £ < k. Let 2, := (S x A)\ Z,. Fix some

2! C (S x A), h € [H], and policy 7.

Consider some z € Z},, and some S’ C S. Then note that’

PRI | 2) = i (ST 9 () = i ()T (AL, ) VA(AD, )28 (2)
<S8 lea,,

Texp
< VAl (S)ar,

Texp

where the last inequality follows from the definition of Zj,. Note, though, that

A = EE [ (S) T ¢ (24))%] = BT [P(S | 24)2).

27, (S")]

This implies that for all z € Zj,,

Ereal,ﬂg;pl [P’;eal(sl | Zh)Q} > . P}rleal(S/ | 2)2.

=~

For h' < h, define
Spi={s : WPT(Z' | s = s) € 2711, 27%))

for wj ™ (Z | spr = ) := P72, € Z | 55 = s]. Note that we then have Wi (2" | Spy) €
2—%+1 2-%) By what we have just shown, we have that for z € Zj,/
y J

h'—1 1
Ee2 Texp [Pre/al(shfﬂ,i | Zh')Q} z 5 .Pfrﬁal(shurl,i | 2)2
which implies that
h' -1 1
B e [Pr(Sprgi | 2n)] > 5 P (Snri | 2)% (B.6)

SIf A;h,l N is not invertible, we can repeat this argument with A;h,l Wt A and take A — 0.
exp exp »
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Fix z € Z5,. Note that
real, W(Z | Shig1 = S)]

UJ;LeaLTr(Z/ | Zh = Z) = Engrea'(~\z)[wh

= ZESNPreaI (o [w WP (2" | sprga = s) - 1{s € Swrpi}]

< erlpﬂsal(sh’ﬂ,i | 2)

=1

llog4/k]
N P S | 2) k
=1

Llog4/f~”~J

< Y 2P (Shan | 2)  { PR (Sha | 2) > k) A+ 3k

=1

[log4/x]

<2 Z B [} (2 | sprs1 = )| P8 (Swrsri | 2) - WP (Swsi | 2) > 6} + 36

forany \; € Ag,, ., .. Note also that, since chp ! plays randomly for all 2" > h/, we have:
real,m, ol 1 real,

whea = (Z/ | Sh/41 = 5) > = S Wy, . (Z/ | Spry1 = 3),

since with probability 1/A"~ " on any given episode, chp ! will play the same sequence of actions

as 7 from steps h’ to h. It follows that we can bound the above as:

[log 4/x]
<24 Z Egon, [y e (2" | w1 = )P (Shrgni | 2) - I{PE (Shrgi | 2) > £} 435
L10g4/f€J
n'
BT Texe ™ [Pre Sy i | 2w )P (Swrgri | 2) > K} + 36

Ah h/ real wexp ’
E ESN)\ (Z | Sp/41 = S

2’)’Ah7h/ |_10g 4/HJ real real
Trex Trex
S 7’% . ESN)W [wh P (Z/ | Sh/4+1 = 5)] . ’LUh,+1 P (Sh’+1,i) —+ 3:%
=1
_p |log4/k] W
(v) 2yAP" Yy Il Ll
= T . w;:a Tr P (Z ‘ Spr41 = S)UJ;:,:I P (S) + 3K

i=1 sESh,/_HJ

T o
S 77 . w;jal exp (Z/) + 3k
K
where ( ) follows from (B.6) and since P/$*(Sy/; | z) > k, and (b) follows choosing \;(s) =

I, ! L -
w;f,‘irfaxp (s )/w;jif”p (Sh+1,) - I{s € Spr41,:}. We therefore have that, for all z € Zj:

2 Ah h rea 7T —1
WP (E | = 2) < T T (2 3 (B.7)

Controlling events. Consider events £ := {2, € Z'} and &, := {2}y € Z},»}. We then have

wreal,ﬂ (Z/) _ Preal,ﬂ [5]

h
=P EN ] + PETENES ]
h h—1 h—1
= > PN N [ EIHPCTENE ke [) &
h'=h—k*+1 i=h' i=h—k*
h h—1
< D) PETENE A+ PRTENE 0 () &
h'!=h—k*+1 i=h—k*
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We now analyze each of these terms. First, note that

]P)real,‘/r[g N gh’—l} _ Preal,ﬂ[g | 5h’—1]Preal’ﬂ[5h/—1] < ]P;realm[g ‘ gh/fl] real W(Z/ | 21 € Zh/ 1)
We can then bound

2 Ah_h/_l rea 7(' —-2
reaIW(Z/ ‘ Zhi—1 € Zh/ 1) < % S Wy, bTexp (Zl) + 3K

where the inequality follows from (B.7). For the second term, we have

h—1 h—1
Preal,ﬂ'[g NEh_pr_10 ﬂ gﬂ < Preal,ﬂ-[g N m gzc]
i=h—k* i=h—k*
h—j—1
_ IP;reaI 71' ﬂ gc H Preal 7r gh . ‘ ﬂ EC
i=h—k* i=h—k*

Note, however, that P27 [£ | !, £¢] < Eand P [gr | (1277, &5] < & forall j. We
therefore can bound the above as

é—k‘*-'rl < K.
Altogether, then, we have that
h ’
2y Ah—h -1 I,mh! =2
A CIEID DI
h'=h—k*+1 kK

. . real 7rhx |, Tox
Furthermore, since 7oy, = unif({7” 1 ) we have w e (Z < Hw, e (21, so we
p expJh=1 h h
conclude that

4H~yAF 2 .
w;beal,ﬂ-(zl) < i . w;beal, exp (Z/) + 4k,
K
O
B.3 Proof of Unconstrained Upper Bound
Theorem 2. Assume that one of the two conditions is met:
1. For each h, 7Texp plays actions uniformly at random for h' > h,
)\min (AS h h) Z S\min, (BS)
and
4 472 A2(k*—2)
T>e. VioaxH A A _ 1og(2H|}'\/5)
€ 6Sln’l
for
1 64H Viax 2HA
k* = (OgA < L §:2 N * €sim-

)\min

log, 1/

2. €sim < €/4H? and

. 16H?log
- 62 .

real, " *

Then with probability at least 1 — 6, Algorithm I returns a T such that V, - Voreal’ﬁ <e

Proof. We consider each of the conditions above.
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Condition 1. First, note that by our assumption on 7y, and applying Lemma B.4 with x =

e _ _d ,
64H Vinax and vy = Heaim’ forany 7 and Z' C S x A, we have

256dH Vi AP 2 | €
< max . real, Texp Z/
= cCuim “n )+ Temv

k*:[IOgA64H2/I[)ax_| §:2 %HA.€~
logA 1/5 , )\min s

By Lemma B.1 we then have that, with probability at least 1 — &°,

w;zeal,fr(z/)

for

real, %

real, 7 real, 7w
Vo -%

k*—2 2
- 2560 H Vinax AV 2 \/256Vmax log(2H | F|/6)

a +e/4

€€sim

<e/2

where the last inequality follows under our condition on 7T'.

Condition 2. By Lemma A3, we have that V" — V™" < 9F2¢ . Thus, if g < ¢/4H2,
we have V@ — preab ™™ < /9.

Concluding the Proof. By what we have shown, as long as one of our conditions is met, we will

have that with probability at least 1 — §/2, there exists m € {7rf , 7™+ such that V& — V@™ <
€/2. Denote this policy as 7.

Note that Vg™ = Erea'v”[ZhH;()l rp,] and that ZhH;()l rp, € [0, H] almost surely. Consider playing 7
for T'/4 episodes in real and let R denote the total return of the ith episode. Let

T/4

‘70” = % Z R’
i=1

By Hoeffding’s inequality we have that, with probability at least 1 — 6 /4:

- [4log 4
|Vb7r_‘/0real,7r| SH (’}g(s.

16H?log 4
Tzw’

Thus, if

(B.9)

€

we have that |V — V*"™| < ¢/2. Union bounding over this for both 7 € {rf, 7M1 we have
that with probability at least 1 — §/2:

Vo T > VT —e/A > Vi —e/a > Vg —¢/2.
It follows that
yrealx _ VOl’eaL% < prealx _ Vbrealﬁ +e/2<e

The proof follows from a union bound and our condition on 7" (note that (B.9) is satisfied in both
cases).

O

SNote that, while Lemma B.1 applies to the constrained regression setting, this is equivalent to the uncon-
strained regression setting considered here if we choose y large enough so that the constraint is vacuous.
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Proof of Theorem 1. We first assume that ¢ < “"“ , for ¢ the input regularization value glven to

Algorithm 5 by Algorithm 1, and Condition 1 of Theorem 2, and show that in this case A*" 2 is at
most polynomial in problem parameters.

First, by Lemma C.7 we have that, under the assumption that { < Z‘[}“ the policy 7rex given by
the uniform mixture of policies returned by Algorithm 5 will, with probability at least 1 — §, satisfy

)‘mln(Ajrg h) > )‘g‘é“ under Assumption 3. Plugging Amin — )‘m’“ into Theorem 2, we have that

Xp?

E=2,/ 1§LEHA - €sim- NOW note that

log 4 64H Vinax /€ <64vaax ) 1/logs 1/€

Ak*72 <A logyg 1/€
€

It then suffices that we show 1/log 4 1/§ <1 <= 1/A > £. However, this is clearly met by our
condition on €gy,. Thus, as long as

V6

6 72
T>e. o Hd*log(2HT|F|/)

6.2
€ €im

i

by Theorem 2 we have that 7 is e-optimal.

2
Now, if €5, < €¢/4H 2and T > M, we also have that 7 is e-optimal, by Theorem 2. Thus,
in the first case, we at most will require

V6

T e 6 H?d?log(2HT|F|/5)

€8

to produce a policy that is e-optimal, since otherwise we will be in the second case.

It remains to justify the assumption that ¢ < “"“ . Note that the condition of (4.1) is only required in

the first case. Furthermore, if €4, < €/4H 2 We W111 be in the second case. Thus, in the first case, we
will have

*
mm

€
12 S S G A

Rearranging this we obtain that, to be in the first case, we have

16dA%
H >\l’l'llIl

By our choice of { = 4A €, we then have that ¢ < "““ . By Lemma C.7 and our choice of {, we have

that Oracle 4.2 is called at most poly(d, H, e, log 5) times, and we call the oracle of Oracle 4.1
only H times. The result the follows from a union bound and rescaling 4. O

B.4 Reducing the Version Space

As we noted, in general, given that we do not assume that ¢" is unknown, log | 7| could be significantly
greater than the dimension. One might hope that, given access to M>'™, we can reduce this dependence
somewhat. We next show that this is possible given access to the following constrained regression
oracle.

Oracle B.1 (Constrained Regression Oracle). We assume access to a regression oracle such that, for

any h and datasets {(s?,a’,y*)}L_; and {(3!,at, Nt)}t 1» We can compute:
T

T
fo=argminy (f(s'a') —y")? st D (fE.@) -7 <.
FE€Fn t=1 t=1

While in general the oracle of Oracle B.1 cannot be reduced to the oracle of Oracle 4.1, under certain
conditions on F this is possible. Given this oracle, we have the following result.

26



A5 .
Theorem 3. Assume that €sim < g7 5855 Then if

_ 2 [y16 HIF
Tz(’)(d 5 -log |]:>,
€ )

real, x =~
with probability at least 1 — 8, Algorithm 4 returns policy 7 such that Voreal’7r - V}Jreal’” <

= {f €F ¢ sup ("™ [fu(sn,an) — T fri1(sn,an)]))® < a- Efim}

where

fora = o (AdH? Jog? M) Furthermore, the computation oracles of Oracle 4.2 and Oracle B. 1

are called at most poly(d, A, H,e~!,log o |) times.

Theorem 3 shows that, rather than paying for the full complexity of ./, we can pay only for the
of F that is Bellman-consistent on M*®™.

B.4.1 Algorithm and Proof

subset

Algorithm 4 sim-to-real transfer via simulated exploration (SIM2EXPLORE)

1: input: tolerance ¢, confidence §, budget 7', )-value function class F

" + LEARNEXPPOLICIES(M®™ 4, 4‘}‘;5,h) forall h € [H]

exp
t < O(log, 7‘/‘“3"‘4‘”{)

for(=1,2,..., % do
el 2l Tl T/21,~v" + 10V2, (¢%)?

max

12
- r
20V2 . 1og TTZT to obtain DY |

ma.

7t = EXPLOREREAL ({unif (I exp)}he[H T D5 2 )(Algonthm 3)
VO < average return runnmg 7t in real T*/2 times

Run exploration procedure of Lemma C.3 with 8y <

R A A S i

return 7 < arg maxye[,] VO

Theorem 4. Assume that one of the two conditions is met:

1. For each h, ngp plays actions uniformly at random for h' > h,

)\min ( wh Lh ) > Xmina

P’

and

VA HAd2 A2 =2),10g(16H | F|/6)
T>c- 1.2 ’

€7 €

for
1 [logA 84H Ve 1, e=2 2HA
R B = <~ ' €sim
logA 1/5 Amin

and

_ {f € F - sup (™[ fy (51 an) — T5™ fopr (snr an)])?

max sim

log 22H1F] 48 log 22117
<c<logc€/g‘s AdHV?, log BT 2 }

2
maX€blIIl Vmaxesim

2. €im < €/16H? and

HQL IOg 16c

T>c- 5

€

real, x
Then with probability at least 1 — 8, Algorithm 4 returns a policy 7 such that Vi®"™ "~ — V"

Proof. We break the proof into two cases.
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Case 1: €5, > ¢/16H%. Let £ = |log, eblélj and note that < in this case and that this is

a deterministic quantity. Further, note that v* € [10V2, €2 ,40V2 | and e e [€sim , 2€sim]-

max 51m7 max sun

Note that by our assumption on 7exp, and applying Lemma B.4 with k = g77— and v = oo
for any m and Z' C S x A, we have
256d H Vipax AF ~2 €
real, / max real, mox /
Z') < . Texp (7 I
e s T e,
for
log « S4H Vinax 9OH A
k*:|— Ba y ) 622 < * €sim -
logA 1/5 )\min
By Lemma B.1, as long as BZ and ’yz satisfy
43Ve B2 8H|Fy| log 3817ul
2V; L] + 6V, — %<4t B.11
max€sim + dH og 5 maxﬂ[ dH =7, ( )

we have that with probability at least 1 — 26,

e 256dH Vi AP 2 \/ 256V2,, log(4H|F?|/5)

real,
‘/E) T[

+e/4

€€sim
where
.7':@ = {f eF : ]ESim’Wer[(fh(Sh7ah> — Tsimfh+1(5h,ah))2} < 2767Vh € [HH

However, since V.2, _eqm < -=~%, and by our choice of 8¢ = 77, we see that (B.11) is
max S 107 y 20V2 8HI|F|
5

max

met, so the conclusion holds. Note that, by Lemma C.5, we have that W1th probability at least 1 — §:

Flc {f € F : sup (E"™" [fn(sn,an) — T°™ fri1(sn, an)])?

(410g6[+6) A-

{f € F : sup (E™7([f1,(sn,an) — T fas1(sn, an)])?

log 8HIZ|
c <log B0 1) AdHV?

max
Vmﬂxesim

48d 48d
48dH log —- - 2+% + Vrﬁax\/ 96dH log —-log ﬁe] }
/Be BZ

N

" Csim

48dlog 2171
log st S € }

2
Vmﬂxesim

_F

where the second inclusion follows from our setting of /37, and bounds on 72 .
Since T* < T /2, it follows that if

CdPHAV AXF 2 log(4H | F/5)

2 )
sim

T>c¢

el
~0
then we have that V™ — 1T < ¢/,

Case 2: ¢y, < e/16H2. By Lemma B.5 and our choice of T5|m’
least 1 — 6,

” 20V,2,, log #2171 960dV;2, log 22171
Vbreal,* _ VOreaI,Tr < 6H (2 10 max 108 +3]1- 192AdH IOg max 108 Syt 4 4H2€sim~
v

we have that with probability at

L

(€)% =10V2,, -272*, we can bound

max

By our choice of « = O(log,
‘/Oreal,* _ Voreal,ﬂ" < 6/2

and since v* = 10V2

max

Viax AdH
%)
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Completing the Proof. In either case, we have that with probability at least 1 — 4, there exists
some i € [¢] such that Vj®"* — Voreal’ﬁz <e/2.

Note that V"™ = frealm [Zf;ol rp,] and that Zf;ol rp, € [0, H] almost surely. Consider playing 7
for n episodes in real and let R’ denote the total return of the ith episode. Let

-3
n-
=1
By Hoeffding’s inequality we have that, with probability at least 1 — §/¢:
2
log %
ot

o real,
Vo =Vo I <

Thus, if

16H2 1log 2
n > 70&57
> 2

we have that [V — V{®"™| < ¢/2. However, as we run each 7 € 11’ T;/2 = T//2. times, and in

either case we assume 7' > <. : log , this will be met. Union bounding over this for all 7¢, we

have that with probability at least 1-— 5

Vgealﬁ > ‘70% . 6/4 > "}Oﬁi _ 6/4 > Vbreal,%q, - 6/2.
It follows that
yrealx _ Vorealﬁf < prealx _ Voreal,ﬁ? Ye/2<e

The result then follows from a union bound and rescaling J. [

Proof of Theorem 3. The argument follows analogously to the proof of Theorem 1, but using Theo-
rem 4 in place of Theorem 2. The bound on the number of oracle calls follows from Lemma C.3 and
our choice of (3. O

Lemma B.5. With probability at least 1 — 0, for some £, we have

. 20V2,  log 371 960dV2,, log 1
Vam _eEm R < 6H ( 21og w98 5 3 ) .\ 1924 log maxe .4,

Z
Y Y
- 20V2,, log 247! 960dV;2,, log 7]
| A ) (2 log =1 o 3] 4/1924dH log e i S Y-

Proof. By Lemma C.4 we have, with probability at least 1 — &,

8H|F]|

. o 48d
|/ Vos'm’”g <2H (2 log — 5 ) . [54\/512V§13XA10g + \/96AdH log 5 -yt
¢

48d 2
+ 4| 24V2, .1 /96dH log —5 log = - Bg]
57 d

20V2,, log 22171 960dV;2, log 2171
< 6H | 2log / +3 ] -4/192AdH log 7 -yt
g gl

where the second inequality holds by our setting of /3.
We have

sim, % sim, x . sim, x H sim, %

real,* real, 7t 1, real,x real, real, 7 sim, 7 sim, 7 sim, &t sim, &t real, 7wt
Vo il =W =V =% + Vo -V + Vo -V +% -V :
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By Lemma A.3, we can bound

real,x real,7r5m* 2
VO - VE) < 2H €sim

and by Lemma A.1 we can bound

sim, x sim,

real, sim, 7 2 sim, 7’ real, 7 2
VQ - V() < H?€gim, VE) - V() < H €5im.

. Y
Combining this with our bound on V5"™™* — V5'™™  gives the result. O

C Learning in sim

In this section we provide additional supporting lemmas for our main results and in particular, we
focus on linear in sim. In Appendix C.1 we provide several technical results critical to showing that
sim can be utilized to restrict the version space, as is done in Theorem 4. In order to restrict the
version space using sim, sufficiently rich data must be collected from sim, and in Appendix C.2 we
provide results on this data collection. Finally, in Appendix C.3 we provide a procedure to compute
the exploration policies in sim which we ultimately transfer to real.

In Appendices C.1 and C.2, we let hypothesis fand fbe defined recursively as:

Tsim

~ 1 B -
fr = argmin — > " (fu (5}, @},) — 7 — max fui1(5h11,0))%
fn€Fn Asim i @

and fh € Fp, some hypothesis satisfying
Tim N

(fu(3hsan) — fa(3h,an)® < v
t=1

1
Tsi m

for parameter v > 0.

In Appendix C.1 we make the following assumption on the data generating process.

Assumption 5. Consider the dataset Dgm = { (34, @b, T, ..., 841, A1, 7o 1) }2m. We assume

that episode t in Dgm was generated by playing an F_1-measurable policy %éxp, and denote
i _ : ~t Tsim

Wzl)rcrp]) - unlf({ﬂ-exp t=1)'

We provide a specific instantiation of 71'21;;) in Appendix C.2. In Appendix C.3, we provide a procedure

for learning a set of policies which induce full-rank covariates in sim, a crucial piece in obtaining
good exploration performance in real.

C.1 Regularizing with Data from sim

Lemma C.1. With probability at least 1 — §:

Tsim 2|-7:h|
1 n ~ = ~ 512V2 4|1 F 2log ==
T. (Trealchrl(?l‘/'m (LZ) - fh(ggm G“Z))z < 2Vn21ax6§im + T‘max : log |6h| Vn21ax jgw : :
sim 47 sim sim

Proof. First, note that T'ea'th € Fy, by Assumption 4.

By Azuma-Hoeffding and a union bound, we have that, with probability at least 1 — §, for each
f7 f/ 6 -Fhs

1 ZTsim 1 ZTS" 2log | Fu| /0
~ ~ sim, 7! ~ ~ ~ ~ h
T (fh(gi“ClZ) _f}/l(gzaa;z))2 < - E> exp[(fh(shvah) _f;ll(S}“U/h))ﬂ +VH21aX T
sim 4=, sim 1 sim

: sim 21
= ESIm7ﬂexP[(fh(8h7ah) - f;z(sh,ah))g] + Vr?lax“ w
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In particular, this implies that

1 = real 7 ~t ~t ot =t \\2 sim, 7S real 7 ra 2 2 IOg |‘Fh‘/5
7 > (T i1 (5, ah) — fu(3h,a3))> < BT (T fiir (sny an) — fa(sny an))®] + Vi —
sim 4 sim

‘We can bound
ESEm,WZi)Tp [(Trealﬁri-l(sh? ah) — ,}Th(sha Clh))Q] < 2E5im,7rzi;1p[(Trea|ﬁb+1(5h’ ah) — Tsimﬁ+1(8h7 ah))z]
(a)
+ 2]Esim,7r§rp [(TsimﬁJrl(sm ah) — ]?;L(S}u ah))Q] :
(v)

To bound (a), we note that
T Frga (snyan) — fu(sn,an) = Erea'[ﬂz%tx Fnsa(s',d) | s,a] ESIm[H}I‘C}X Frsa(s',d)) | s,a]
= > (B | s,0) = PE™(s | 5,0)) - max faia (s, d)
< Vinax - > |PE!(s' | 5,0) = Pi™(s' | 5,0)]

S ‘/maxesim

where the last inequality follows under Assumption 1. This gives that (a) < 2V;2, €2 . To bound
(b), we apply Lemma 3 of [57], which gives that with probability at least 1 — 4,
512V;2 4|Fp|
b max . 1 .
(b) = =72 - log =
Combining these with a union bound gives the result. O
Lemma C.2. Consider the set
1 TSIm -
Fn = {thfh : Ts.mz fn (3] )fh(%vaZ))2§’7}~
Then with probability 1 — 26 we have
fa . sim ) log 74|]:h|
Fn CR fn € Fn + E¥™ e [(f1,(snyan) — T°™ fag1(sn,an))?] < v+ 18V2, Tié
sim

Proof. By Azuma-Hoeffding, we have that with probability at least 1 — ¢, for each fy, f; € Fp,

Ty
im.csim 210g ]:h 1) 1 ol ~
E¥™ e [(fh(sn, an) *f};(smah)) ] - Vn21ax % =T (3% @) ff/z(gfzaafz))Q
sim sim t= 1
which implies in particular that, for any f}, € Fy,
Tyim
o ~ 2log | Fp|/0
BT [ (s an) — (s )] — Vi | 2B 0 T 2 U)o

TSIm

We can write

B [(fu (s an) — Fa(sno an))?)
= B (i (5hy an) — T Fua (sn, an))?] + 5™ [(F(sny an) — T Faga (sn, an))?]
— 2B [(f (sny an) — T Fura (s, an)) (fa (s an) = T Fagr (sns an))]
> ]ESIm”Tj’TP[(fh(sh,ah) — T fus1 (sny an))?]

sim

— 2B [(f(5n, an) — T Fuga(sn, an)) (Fa(sns an) = T5™ fraa (sny an))]-
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By Lemma 3 of [57], with probability at least 1 — 4,

Cm N 25612 2|F
BT (o (sny an) — To™ fria (s, an))?] < T log |6h|'
sim

We can therefore bound the final term as
ES™% [( i (shy an) — T fur1 (shy an)) (fa(shy an) — T fus (s, an)))]
S Vmax . Esim,‘fr:',':‘p “ﬁl(slu ah) - TSimfh-‘rl(Sh; ah)H

< Vinax - \/ESim’ﬂg’T"[(ﬁ(Sm an) = T fri1 (s, an))?)

25612 2| Fil
< Vinax - max | | .
- \/ TSIm Og 5

Altogether then we have shown that, for any f;, € Fj,, with probability at least 1 — 24:

o3

1 ~ ~ r ~ sim,7r5m im 7 log 2| F31/6
T (fu(3hs @) = fa(3hsan))? = ™ o [(fr(shy an) = T2 fasr(shy an))?] — 18Vimax 7gjl. /e,
sim t=1 sim
Thus, if
1 Tsim _
T (fh(ggwaz>_fh(§§waﬁz))2 S’Yv
sim t=1
then
. sim . ~ ]. 2 6
ES™ 7 exo [( fr (s, an) — T2 fag1 (sny an))?] < v + 18V2,, og%i.
sim
The result follows from a union bound. O

C.2 Data Collection with CoverTraj

Lemma C.3. Consider running the COVERTRALJ algorithm of [65] for each h € [H] with parameters
m < [log, 1/8] and ~; < 2- 3 for some 3 € [0, 1], and with REGMIN set to the policy optimization
oracle of Oracle 4.2. Then this procedure collects

m

24d 48d
Z ’721 BQ 21 . 62-‘

episodes, calls the policy optimization oracle at most Ty times, and produces covariates Ay, ; and
sets Xy, ; such that, for each i € [m],

sup W™ (Xni) <27 and @A P < 2% 52 Vg € Ay,

and sup, wi™" (BI\ U, X,;) < B. Furthermore, we have

12dH 48dH 48d
7 < Tem < Tlogﬁ.

Proof. Instantiating REGMIN with the oracle of Oracle 4.2, we have that Definition 5.1 of [65] is
met with C; = Co = 0. Therefore, we have that at each stage 7 we collect exactly (using the precise
form for K; given in the appendix of [65])

. 24d 48 - 2'd
Ki=[2"—5log ]
eh 7
episodes. The result then follows by Theorem 3 of [65]. O
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Lemma C.4. Consider running the procedure of Lemma C.3 to collect data. Then with probability
at least 1 — 26, we have

484
ysmes _ysimal opp (210g +3) { B/512 maXAlog(4H|f|/5)+\/96AdH10g52 g

48d 1
+ ZAVHZ]aX \/96dH log ﬁ IOg g . ﬁ:| .

Proof. By Lemma A .4:

7 H-1
‘/Omm,* _ V05|m,7r < max E 2

= Tre{wf’ﬂ,sim,*} h—0

]ESim’ﬂ[ﬁL(Sha ah) — Tsimﬁ+1(8ha ah)]

< max Z 2ES™ [ |fh(8h,ah) TSimJ?thl(shaah)\}

7.{.6{7.‘.f grsim, *} h—0

Denote g(z1) := |fn(sn,an) — T5™ fas1(sn,an) and Ap_y = S Ay + I, for Ay, ; collected
as in Lemma C.3, and note that

ES™ (g (zn)] = ES““’”[/ 9(2)dPi (= | 2n-1)]
= ESm7 // m(a | s)dadus, 1 (s)" ¢ (zn_1)]

_ sma| / / m(a | s)dadp,_; ()T Ay A2 (2] (S
<z [ / $)dadss,_ (a6 n)lp.1 |
1 [ [ otermtal dadu(5)la, B )

We bound each of these terms separately. First, we have

m

ESim7ﬂ.[||¢s(zh_1)HA;11] < quergﬁx ||¢)||A]:11 .supESEm,w[H{¢5(zh_1) € Xh_l,i}]
v i=1 v—1,1 - s

a —1 - sup BS™T [{ % (2_1) € X1
sy, NPlaz, s BTG (o) € X))
(a)

< Z’y 27

< (2m +1)p
where (a) follows from Lemma C.3 and since ||¢|| 71, < lalways.
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We turn now to bounding the first term. Note that

| [ [ s@ntal aadus, y(s)la,

_ 3 / [ ot@rmtal adu_ ()76,

Tsim

= > Erlgan) | 2,

Tsim

<\ZEW Zh2|zh 1}

((l) Slm
2 A4S e )

,I‘swm

=4 mep (Fa(snran) = T fuga(snran))? | 2]

< 24 - Z]Eﬂ'exr)’ fh Shaah) TSim}'\thl(Sh,ah)) |Zh 1 +2A ZEﬂ'sxp fh Shaah) ﬁl(sh’ah))z | Z;L—l]
(b) < , -
< | P12V2, Alog(4H|F|/6) + 24> Emse [(fu (s, an) — fu(snsan))? | 24

t=1

where (a) uses the fact that 7/ o plays actions randomly at step h and (b) holds with probability at
least 1 — § by Lemma C.6. By Azuma-Hoeffding, we have with probability 1 — ¢:

Tsim Tsim

h—1,t -~ ~
E Eeo " [(fu(snyan) — Fu(snyan))? | zh_1] < E (fn(sh,ap) — Fu $ha1,))* + V/2Vih i Tam log 1/6
t=1 t=1

< Ts|m'7 + \/2 max sim IOg 1/6

where the last inequality follows from the definition of fh

Altogether then we have shown that, with probability at least 1 — 26:

Vet — Vet < 9B (2m 4 1)8 - \/512V2, Alog(4H|F|/6) + 2ATymy + 2AVZ, \/2Tam log 1/0.

Using that T, < 48dH log 484 45 given in Lemma C.3, we can bound this as

< 2H(2m + 1) {5\/512 V2, Alog(4H|F|/8) + \/96AdHlog 4ﬁ8d o

48d 1
+ 2AVn%ax\/96dH log —- i log - 5 ﬂ}
The result follows. O

Lemma C.5. Assume that

ES™ 7S5 [(f sy an) — To™ fasr (sn, an))?] < 7.
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Then this implies that, with probability at least 1 — §,
sup (B*™ " [fn(sn, an) — T fui1(sn, an)))?

1
< [(4log— + 6) A-
( B
Therefore,

{feF: ESim’”zi’Tp[(fh(Sh, an) = T°™ fria(sn,an))?] < v}
c {f € F + sup (B {fu (s, an) — T5™ fopn (s, a1)])’

< <4log;+6>A-

Proof. We follow a similar argument as the proof of Lemma C.4. Denoting g(zp,) := fi(sn,an) —
T5™ fr11(sh, ap), by the same calculation as (C.1) we have

48d
48dlog % -y 4+ Vmax\/%d log — 3

48d 1
5 log ﬁ]

4 4 1
48dH log ;f Vflax\/ 96dH log ;d log = B] }

mnlga)) < | [ [ o@)na] 9daduh(5)lar, B¢y )
and as in the proof of Lemma C.4, we can bound

(@ (zn1) s ] < (2m o+ 1B

and
Tsim

n / / m(a | s)dadp_y ()an < | A= S B [(fulsn an) — T foaa (s, 00))2 | 24 ]
t=1

By Azuma-Hoeffding, with probability at least 1 — § we can then bound

Tsim

ZEWCX" (Fn(sn an) = T Fuia(snran))? | 2] < Tam - B [(Fu(sm, an) — T fria (s, an))?]

+ \/2 max 5|m IOg 1/6
< Ts|m'7 + \/2 max sim IOg 1/5

where the last inequality follows by assumption, and where WZiTp = unif ({nggl’t Timy. Altogether
then, for all 7, we have

ESim"”[fh(Sh, ah) - TSEmfh-i-l(Shz ah)] < (2m + 1)6 ’ \/ATsim'V + AVH%&X QTSim 1Og 1/5'

Using that T, < 48dH log 484 45 given in Lemma C.3, we can bound this as

< (2m+ 1)\/48AdH log 4;—5

The result follows from some algebra. O

48d 1
v+ (2m+1) AVHQMX\/96dHlog 58 log§ .

Lemma C.6. With probability at least 1 — 0, for each h € [H| simultaneously, we have
TSIm . ~
ZES'm o [(Fusmr an) = T Fria(snyan))? | shoy, ahy] < 256V2, log(4H|F|/6).

Proof. This follows from Lemma 3 of [57]. O
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Algorithm 5 Learn Exploration Policies in M*™ (LEARNEXPPOLICIES)

1: input: environment M, confidence §, regularization (, step h
Ax <+ policy optimization oracle of Oracle 4.2

forj =1,2,3,.. .,O(logz(% log L+ ¢ - 10g*? 1)) do
Nj « |—2j/3~| - 17Kj — |—22j/3-|7Tj — (NJ + )KJ75J — 4%
// DynamicOED algorithm from [64]

S

50 Xj,II; < DYNAMICOED(®, N;, K, 85, Ag) for ®(Ap) < tr((Ap +¢-1)7)
6 if Ain(Z) > 12544dlog 8 and T; > ¢ ¢ -1og®? 211 then

7: break

8: return II;

C.3 Learning Full-Rank Policies

We consider running the MINEIG algorithm (Algorithm 6) of [64] in sim. For a fixed h, we instantiate
the setting of Appendix C of [64] with (T) = ¢(sn,an)P(sn,an) ", D = 1, and Ax the policy
optimization oracle of Oracle 4.2 (and so Cr = 0), and set N = 1 for MINEIG. We note that this
algorithm is computationally efficient, given a policy optimization oracle.

Lemma C.7. For M < M®™, Algorithm 5 will call Oracle 4.2 at most (5( d . Jog $+¢9 log®/? 1)

times, and with probability at least 1 — 6, under Assumption 3 and if { < X‘(f‘, will return policies 11
such that

Amin <|H| Z ) mm (C.2)
mell

and each 7 € 11 plays actions randomly for ' > h.

Proof. We first argue that, if ( < %d‘“, then with probability at least 1 — d, (C.2) holds. Let £

denote the success event of each call to DYNAMICOED, and note that by our choice of J;, we have

P[E] > 1 — §/2. Let j* denote the minimal value of j such that

4 + 64T}
)

By Lemma C.4 of [64] and if { < r“j“ we then have that, on &, A\pin (3;+) > )‘ignTj*, which
implies that the termination criteria of Algorithm 5 will be met. By Lemma C 5 of [64], it follows that

with probability at least 1 — §/2, we have /\min(ln—l_*| Z‘n’EH . A;’h) > mln (since Tj» = |IL;+)),
the desired conclusion. '

. T
%ﬂén T; > 12544d log and T; >c-¢7-log?/? JTJ (€.3)

Assume that Algorithm 5 terminates for some j < j*. This implies that Jmin T < 12544dlog —— 4+64T .

Howeyver, in this case, we then have that

4 + 64T} )\*
min (25) > 12544d 1 > mlnT
Amin ( J) 5 og 5 4d
From Lemma C.5 of [64], it then follows that with probability at least 1 — J/2, we have

Auin (157 Crem, A%n) = 285

It follows that, assuming 7 is large enough that (C.3) is met, and we are in the case when ¢ <
%‘3“ holds, then Algorithm 5 will terminate and return a set of policies satisfying (C.2), with
probability at least 1 — ¢. Note that T; = O(27). Given that Algorithm 5 does not terminate
until j = O(logy(¢ - log 5 +¢ 7 - log®2 1) > O(log, (54— o log 24+ ¢79 - log?? 1)), we will
have that T); will be large enough that (C.3) is met, if { < % The proof then follows since
DYNAMICOED calls Oracle 4.2 at most T} times at round j, and the total sum of T} is bounded
as (5(% -log % +¢79 logg/2 %) by the maximum of j, and since the actions chosen by 7 € II for
h' > h are irrelevant for the operation of DYNAMICOED, so they can be set to random. O
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D Lower Bound Proofs

D.1 Proof of Propositions 1, 3 and 4

Construction. Consider the following variation of the combination lock. We let the action space
A = {1, 2}, and assume there are two states, S = {s1, s2}, and horizon H. We start in state s1. The
sim dynamics are given as:

Vh<H—1: Pi™(s;|s1,a1) =1, P§™(sq],51,a2) =1
PR (s1 | s1,a1) = PRy (s2 | s1,a1) = PR™y(s1 | s1,a0) = PTy(s2 | s1,a2) = 1/2
Vhe[H]: Pi™(sy|s9,a) =1,a € {ay,az}.
We define two real instances, M; := M"h1 and My := M2 where for both we have:
Vh<H—1: P&'(s;|s1,a1)=1, Pr'(sq],51,a9) =1
Vhe[H]: Pf=(sy|s2,a)=1,a€ {al,as}

for M:
P]r;a,ll(sl | 51,01) = 1/2 +€sim;P]§i|1(52 I Sl,al) = 1/2 — €sim,
P (s1 ] s1,a2) = 1/2 — €5im, PR (52 | 81,02) = 1/2 + €5im,
and for Ms:

P]I}Ea_ll<81 | slaal) - 1/2 - 65‘.im;131fl}ea_|1(32 I Slaal) - 1/2+€sima
P;?i'l(sl | s1,a2) =1/2+ esim,Pﬁill(SQ | 51,a2) =1/2 — €gim-

Note then that M, My, and sim only differ at step H — 1 in state s;. Furthermore, it is easy to
see that both M7 and M, satisfy Assumption 1 with misspecification e4,,,. It is easy to see that
Assumption 2 holds as well with d = 4 since this is a tabular MDP, and furthermore Assumption 3
also holds with A%, = 1/4. We define the reward function as (note that this is deterministic, and the

same for all instances):
Vh e [H]: rp(s1,a2) =1/24 €im(1/2 — h/4H)
ra(si,a) =1,a € {ay,as},

and all other rewards are taken to be 0.

In sim, we see that the optimal policy always plays as. In both M and M, the optimal policy plays
ay forall h < H — 1, for M1 plays a; at H — 1, and for M, plays ay at H — 1. Note that for both
My and My, we have Vi = 1/2 + €gim.

The most natural choice of F would be the set of all tabular (Q-value functions, however, this set
is infinite, and would require a covering argument to incorporate. For simplicity, consider F the
set of functions mapping to {0, 1}, and F}, the set of functions mapping to a finite set containing
{0,1/2 — €5im, 1/2 4 €sim} U {1/2 + €5m(1/2 — B/ /4H)}E_,. Note that such a set satisfies
Assumption 4 and we can construct it such that log | F| < O(H).

Lower Bound for Direct Policy Transfer (Proposition 3). We consider direct sim?2real transfer
with randomized exploration. In particular, as noted, the optimal policy in sim always plays as,
so we consider the (-greedy policy that at every state plays ay with probability 1 — (, and plays
unif({a1, as}) with probability ¢. Denote this policy as 7. We then wish to lower bound:

inf sup EMoT VMo — MO
T ie{1,2}

after running our procedure for T episodes. Note that on M, regardless of the actions 7 chooses in
other states, we have

Vg — VoMlﬁ > Lsém (1—=7g—1(a1 | s1)),
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since the only way 7 can achieve a reward of 1/2 + egy, is by playing a; in s at step H — 1, and all
other sequences of actions obtain a reward of at most 1/2 + €, /2. Similarly for Mo we have

VM T 2 SR (1= Ry (as | ).

Using this, and replacing the max over ¢ € {1, 2} with the average of them, we obtain

sim 1 71 Esim ~
inf sup EM:T [VM“* V0 “”] > 1nf EM1 ”[6 (1 -7g_1(ar | s1))] + fIEMWT[—6 (1—7g—_1(az | s1))]
T ie{1,2} 2 2 2

€sim 1 T TR
=3 [1 — 5 sup (EMI’ [Fr-1(ar | s1)] + BV @1 (az | 81)])} '

Since %H_l(al | 81) =1- %H_l(ag | 81), we have

EMOT Ry _1(ay | 51)] + BN T [Rp_i(az | s1)] = 1+ EMYT @y i(ay | s1)] — M7 [Rg_1(as | s1))]
< 14 TV(PMET, pMeT)

1 ~ -
<14/ SKLErF | Prer)

where TV denotes the total-variation distance, KL the KL-divergence, and the last inequality follows
from Pinsker’s inequality. We therefore have

N ~ €sim 1 _ _
inf sup ]EM“”[VOM“* — VOM“”] > Ssim 1 \/KL(IP’MMT | PM2.7) |
s iE{l,Q} 4 2

Now note that, since M7 and M5 only differ at state s; and step H — 1, we have
KLEPMT | PMET) = EMUT [Ty (s1,a0)JKLOPAY (- s1,a0) || P2 (| s1,ar)
+EMUT [Ty (s1, a2)]KL(P Y (- [ 51, a9) || Py (- | s1,a2)),

where T _1(s1, a;) denotes the total number of visits to (s1,a;) at step H — 1 after T" episodes (see
e.g. [59]). We have

KL(Py", (- | s1,a1) || P2 (- | s1,a1)) = KL(PZ\{AH(' | Slaaz) | P (- | s1,a2))
4, 1 3/ _3

1
8374718755

where the last inequality holds as long as g, < 1/6. Note that the only way for a policy to reach
s1 at step H — 1 is to play action a; H — 1 consecutive times. Since 7 only plays a; at any given
step with probability /2, it follows that the probability that 7 reaches s; at step H — 1 on any given
episode is only (¢/2)7~1. Thus,

KL || PAT) < 2 (BN T[T (s1,00)] + M7 [Ty (1, 00)])

EMUT [Ty (s1)]

Ul ol w ot w

‘We thus have:

~ . 3 /¢ H-1
inf ]E./\/liﬁ ‘rMi,* o ‘7Mz‘,7f > s 1— —_ (2 L
E Z-ES{IE} Vo T 4 10 \ 2

and we therefore have infz sup;c(; o3 EM: A [y Mix — VOM“%] > €gim/8 unless

5 /2\771
7> (c) .
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Lower Bound for (-Greedy Without sim (Proposition 1). In order to quantify the performance of

a (-greedy algorithm, we must specify how it chooses f when it has not yet observed any samples
from a given (s, a, h). Following the lead of Theorem 2 of [11], to avoid an overly optimistic or
pessimistic initialization, we assume that the replay buffer is initialized with a single sample from
each (s, a, h). Note that the conclusion would hold with other initializations, however, e.g. initializing

fh(& a) = 0 or randomly if we have no observations from (s, a, h).

Assume that the observation from (s1,a;, H — 1) transitions to so, which occurs with probability

at least 1/4. In this case, we then have that, for each h, fh(Sl,ag) > fh(sl,al) Thus, following
the (-greedy policy, we have that 7Th((11 | s1) < 1/2. Denote this event on &. Furthermore, the

only way we will have fh (s1,a2) < fh(sl, aq) is if we visit (s1, a1, H — 1) again and observe a
transition to s;. For this to occur, however, we must play action a; H — 1 times consecutively which,
in this case, will occur with probability at most max{1/2,¢/2}# -1 < 1/2H-1,

Following the argument in the direct policy transfer case, we have

—— A 1o e N
inf sup EMOT[VEMT — VT > dnf sup SEMOT[VEM - VM| &)
™ 1e{1,2} T ie{1,2}

sim 3
= 616 (1 B \/10EM1[TH 1(s1) | 50])

where EM1 [Ty (s1) | €] is the expected number of visitations to (s1, H — 1) after T' episodes of
running the (-greedy policy. We can rewrite

EMI[TH 1(81 |50 ZEMI H{SH 1 —51} | 50]
t=1

Let £ be the event that we have reached (s, H — 1) in the first T rounds. Then,

EMi[I{sg_1 = s1} | Eo] = EM I{sg_1 = 51} | £, E)PM[E | &) + EM [I{spr_1 = 51} | £, EJPMI[EC | &]
<PME| &) +EMI{sy_1 = s1} | €5, &).

By what we have just argued, we have PM1[€ | &] < T QH—l_l and EM[{sy 1 =51} | £°,&)] <

si—r. Thus, EM [Ty _1(s1) | &) < QQHT r. It follows that,

7 ; . € 3 2T2
inf sup EMivﬂ VM“* _ VM“ sim
T ie{1,2} Vo 0 0 2H
and we therefore have infz sup; ¢y 23 FEMi, [VM“ — yMe ?r | > e /32 unless

5
T>4/<-2H-L
— V8

Upper Bound for Exploration Policy Transfer (Proposition 4). To obtain an upper bound for
Algorithm 1, we can apply Theorem 1, so long as

*
IDII]

Csim S G AS

Note that in our setting we have d = 4, A = 2, X% . = 1/4, so this condition reduces t0 €5im < g1o377-

Taking F to simply be the set of Q-functions deﬁned above (so Vipnax = H), Theorem 1 then gives that
with probability at least 1 — &, Algorithm 1 learns an e-optimal policy as long as T > ¢ - g~ . log & 5

D.2 Proof of Proposition 5

We define three MDPs: M®™, and two possible real MDPs, M := M1 and My := M2 In
all cases we have states S = {s1, s2}, actions A = {a1, a2, a3, a4}, and H = 2, and set the starting
state to s;. We define

Pfim(sl | s1,a1) =1, Pfim(sl | s1,a) = Pfim(SQ | s1,a) =1/2,a € {az,a3,a4}.
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For both M and M5, we have:

Preal(sy | s1,a1) =1, Pl (sy | s1,a4) = P (55 | s1,04) = 1/2
for My, we have
Preal(sy | s1,a2) = 14 €gim, P (s1 | 51, a2) = 1 — €gim, Pr (s1 | s1,a3) = P (s5 | 51,a3) = 1/2
and for Mo,
Preal(sy | s1,a3) = 14 €gim, P (51 | 51,a3) = 1 — €gim, Pr(s1 | s1,a2) = P (sy | 51,00) = 1/2.
We take the reward to be 0 everywhere, except r2(s2,a) = 1 for all a.

Note that each of these can be represented as a linear MDP in d = 2 dimensions, so Assumption 2
holds. In particular, for M*™ we can take:

$(s,a1) = e1,@°(s,a) = e2,a € {as,a3,a4},5 € S,
pi(s1) = [1,1/2], pi(s2) = [0,1/2].
For M we can instead take:
¢'(s,a1) =e1, @' (s,a) =[1/2,1/2],a € {a3,as},s € S,
d'(s,a2) = [1/2 — €5im, 1/2 + €sim], s € S,
pi(s1) = [1,0], wi(s2) = [0,1].
M, follows similarly with the role of as and a3 flipped.

It is easy to see that Assumption 1 is met on this instance for both choices of M2/, On M®™, the
policy ey, which in every states plays action a; with probability 1/2 and action a4 with probability
1/2 satisfies Apin (ES™exe [@9°(sp,, ap)@°(sh, an) T]) > 1/2 (which shows that Assumption 3 holds).

Note, however, that 7.y, does not play action ay or as. As M; and M differ only on ay and a3,
playing mey, will not allow for M, and M, to be distinguished. As a, is the optimal action on M,
and a3 the optimal action on M, it follows that playing 7y, will not allow for the identification of
the optimal policy on M, and M. This can be formalized identically to Appendix D.1, yielding the
stated result.

E Experimental Details

E.1 Didactic Tabular Example

Consider the following variation of the combination lock. We let the action space A = {1, 2}, and
assume there are two states, S = {s1, $2}, and horizon H. We start in state s;. The sim dynamics
are given as:

Vh<H-—1: Pi™(sy|s1,a1)=1, P5M(sy|,51,0a2) =1
P™y(s1 ] s1,a1) = 1/4, PE™ (52 | s1,a1) = 3/4, PE™(s2 | s1,02) = 1
Vhe[H]: Pi™(sz|s2,a)=1,a € {a1,az},

and the real dynamics are given as:
Vh<H—1: P'(sy|s1,a1) =1, P'(sq],51,a2) =1
P (s | s1,a1) = 3/4, PR (55| 51,a1) = 1/4, PR (55 | s1,a0) = 1
Vhe[H]: Pr\(sy|s9,a)=1,ac {a,az}.

Note that these only differ on (s1,a1) at h = H — 1, and we have ey, = 1/2. We define the reward
function as (note that this is deterministic, and the same for both sim and real):

Vhe[H]: rn(s1,a2) =1/8 —h/8H
rg(s1,a) =1/5,a € {a1,as},

and all other rewards are taken to be 0.
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The intuition for this example is as follows. In both sim and real, the only way the agent can get
reward is to either end up in state s; at step H, or to take action as in state s; at any point. In sim,
the probability of ending up in state s; at step H, even if the optimal sequence of actions to do this
is taken, is only 1/4, due to the final transition, and thus the average reward obtained by the policy
which aims to end up in s; is only 1/4. In contrast, if we take action a5 in s1, we will always collect
reward of at least 3/8 (and the earlier we take action ay the more reward we collect, up to 1/2). Thus,
in sim the optimal thing to do in s is always to play as. However, if we play as even once, we will
transition out of s; and never return, so there is no chance we will reach s; at step H.

In real, the transitions at the final step are flipped, so that now the probability of finishing in s, if
we take the optimal sequences of actions to do this, is 3/4, and the expected reward for this is then
also 3/4. Since the reward for taking as in s; does not change, and is bounded as 1/2, then in real the
optimal policy is to seek to end up in s; at the final step.

The challenge with ending up in s; at the end is that it requires playing action a; at every step. In this
sense it is then a classic combination lock instance, and randomized exploration will fail, requiring
(21 episodes to reach the final state (since the probability of randomly taking a; at every state
decreases exponentially with the horizon). Similarly, if we transfer the optimal policy from sim to
real, it will never take action a;, so will never reach s; at the end, and if we transfer the optimal
policy from sim with some random exploration, it will fail for the same reason random exploration
from scratch fails.

However, note that we can transfer a policy from sim that is able to reach s; at the second-to-last step
with probability 1, i.e. the policy that takes action a; at every step. Thus, if in sim we aim to learn
exploration policies that can traverse the MDP, and we transfer these exploration policies, they will
transfer, and will allow us to easily reach s; at the final step, and quickly determine that it is indeed
the optimal thing in real.

We provide additional experimental results on this instance in Appendix E.1.

0 20 80 100 0 20 60 80 100 10 15 20 25 30 35 40 45 50
H

40 60 40
Number of States Number of Actions

(a) Varying Number of States (b) Varying Number of Actions (c) Varying Horizon

Figure 5: Performance of Exploration Policy Transfer on instance from Section 5.2, varying
number of states, actions, and horizon. We plot the number of samples required to achieve
areward of 0.35, which is approximately solving the task. All results are averaged across
20 trials. When increasing the number of states, we add additional O-reward states (i.e.
states given in yellow in Figure 2), and when adding additional actions we add additional
low-reward actions (i.e. actions that have the same behavior as action as in Figure 2). We
observe that increasing the number of states and horizon increases the number of samples
needed, while increasing the number of actions does not substantially. We emphasize,
however, that this is for a particular example, and this scaling may not be the same for all
examples—Theorem 1, however, gives an upper bound on all examples.

E.2 Practical Algorithm Details

The core of our work is to decouple the optimal policy training from exploration strategies in
reinforcement learning fine-tuning. Specifically, we propose a framework that uses a set of diverse
exploration policies to collect samples from the environment. These exploration policies are fixed
while we run off policy RL updates on the collected samples to extract an optimal policy. Our
theoretical derivation suggests that this decoupling can improve sample efficiency and overall learning
performance.
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Algorithm 6 sim2real transfer using OS for exploration and SAC for optimization

1: Input: Simulator M>™, real environment M simulator training budget IV, exploration
reward balancing «, reward threshold €, exploration set size n.

2: Pre-train Exploration Policies in M5™:

3: Initialize [Ty, = {mo(-|2)|z € {1...n}}

4: Initialize discriminator D

5: fori=1to N do > Learn diverse exploration policies
6: Sample latent z ~ unif(1,n) and initial state s.

7: for ¢ = 1 to max_steps_per_episode do

8: Sample action a; ~ mg(a|st, z).

9: Step environment: ;41 ~ p(Sey1|S¢, ar)-
10: Compute discriminator score d; = D($¢41, 2)
11: Compute exploration reward 7, (s;11, 2) = log %.
12: if R, > ¢ then ’
13: Compute reward ry = 7(s¢, at) + - 7e(Sp41, 2).
14: else
15: Compute reward r; = 7(s¢, at)
16: Let D + DU {(s¢, at,7t, St4+1,2) }-
17: Update my to maximize J, with SAC.

18: Update ¢ to maximize J,,, ¢ < ¢ + nVyEs .p [log Dy(s, 2)]

19: Compute R =, 14

20: Explore in M and Estimate Optimal Policy :

21: Initialize SAC agent (either from scratch or to weights of optimal sim policy).

22: while not converged do

23: Sample z ~ unif(1,n), play m(- | z) in M, add data to replay buffer of SAC.
24: Roll out SAC policy for one step, perform standard SAC update.

Our framework is complementary to (a) RL works on diversity or exploration that generate diverse
policies and (b) off policy RL algorithms that optimize for policies. One can plug in (a) to extract
a set of exploration policy from a simulator and use them for data collect in the real world but use
(b) to optimize for the final policy. The design choice to use simulator to extract a set of exploration
policies where each policy is not necessarily optimizing for the task at hand marks our distinction
from previous works in (a) and (b).

We provide a practical instantiation of our framework using an approach inspired by One Solution
is Not All You Need (OS) [30] to extract exploration policies and Soft Actor Critic (SAC) [30]
to optimize for the optimal policy. We details the instantiation in Algorithm 6. OS trains a set of
policy to optimize not only the task reward but also a discriminator reward where the discriminator
encourages each policy to achieve different state. Unlike OS which carefully balances the task and
exploration rewards to ensure all policies have a chance at solving the desired task, we emphasize
only on having diverse policies. With a known sim2real gap, we posit that some sub-optimal policies
that are not solving the task in the simulator is actually helpful for exploration in the real world,
which allows us to simplify the balance between task and exploration. We uses standard off-shelf
SAC update to optimize for the policy.

E.3 TychoEnv sim2sim Experiment Details

For the TychoEnv experiment we run a variant of Algorithm 6. We set n = 20, and set the reward to
r% = (1 — oy)r + ;7. where we vary «; from 0 to 0.5. While we use a sparse reward in Ml o
speed up training in MS™ we use a dense reward that penalizes the agent for its distance to the target.
We train in M®'™ for 7M steps to obtain exploration policies. Rather than simply transferring the
converged version of the exploration policies trained in M*™, we found it most effective to save the
weights of the policies throughout training, and transfer all of these policies. As the majority of these
policies do not collect any reward in M*™, we run an initial filtering stage where we identify several
policies from this set that find reward (this can be seen in Figure 4 with the initial region of 0 reward).
We then run SAC in M2 initialized from scratch, feeding in the data collected by these refined
exploration policies into the replay buffer. We found it most effective to only inject data from the
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Hyperarameter [ Value

reward balance o (0S) | {4ki — 55 : i=1,2,...,20}

learning rate 0.0003

Q update magnitude 7 0.005

discount y 0.99

batch size 2048

steps per episode 45

replay buffer size 5 x 106
training steps N (in M) 7 x 107

Table 1: Hyperparameters used in Tycho training and finetuning

201 = Exploration Policy Transfer (Ours)
DIAYN Exploration Policy Transfer

—— Direct Policy Transfer
15{ == From Scratch in Real \./-/

(B —

2 3
Steps x10°

Figure 6: Additional results on Tycho, including baselines training from scratch in M"?!, and training
exploration policies in M®™ with reward as stated above but with a; = 1 (which is equivalent to
simply training exploration policies with DIAYN [14]). As can be seen, while training from scratch
in M"? is able to learn, it learns at a much slower rate than exploration policy transfer, and achieves
a much lower final value. Furthermore, training the exploration policies to maximize a mix of the
task and diversity reward yields a substantial gain over simply training them to be diverse.

exploration policies in the replay buffer on episodes where they observe reward. We run vanilla SAC
with UTD = 3 and target entropy of -3. We rely on the implementation of SAC from stable-baselines3
[51].

For direct policy transfer, we train a policy to convergence in MS™ that solves the task (using SAC),
and then transfer this single policy, otherwise following the same procedure as above.

In M"™? our reward is chosen to have a value of 50 if the end effector makes contact with the ball,
and otherwise 0. If the robot successfully makes contact with the ball the episode terminates. To
generate a realistic transfer environment, we change the control frequency (doubling it in M"2") and
the action bounds.

For both methods, we run the M*™ training procedure 4 times, and then with each of these run it in
M twice. Error bars in our plot denote one standard error.

All experiments were run on two Nvidia V100 GPUs, and 32 Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz CPUs. Additional hyperparameters in given in Table 1.

We provide results on several additional baselines for the Tycho setup in Figure 6.

0 __/—"’\"/\A

B2 —— Exploration Policy Transfer (Ours)
g _40 Direct Policy Transfer
g From scratch

0.0 0.2 0.4 0.6 0.8 1.0
Steps x10%

Figure 7: Results on Franka sim2real experiment, comparing to training from scratch in real.
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Hyperarameter | Value
reward balance o  (OS) 0.5
reward threshold ¢ (OS) -16

learning rate 0.0003
Q update magnitude T 0.005
discount y 0.99
batch size 256
steps per episode 45
replay buffer size 1 x 108
training steps N 2 x 107

Table 2: Hyperparameters used in Franka training and finetuning

= Exploration Policy Transfer (Ours)
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Figure 8: Franka Hammering
Task Setup

Figure 9: Results on sim2sim
Transfer in Franka Simulator

E.4 sim2sim Transfer on Franka Emika Panda Robot Arm

We next turn to the Franka Emika Panda robot arm [17], for which we use a realistic custom simulator
built using the MuJoCo simulation engine [61]. We consider a hammering task, where the Franka arm
holds a hammer, and the goal is to hammer a nail into the board (see Figure 8). Success is obtained
when the nail is fully inserted. We simulate sim2real transfer by setting M"™?' to be a version of the
simulator with nail location and stiffness significantly beyond the range seen during training in M*'™.

We compare exploration policy transfer with direct sim2real policy transfer. Unlike the Tycho
experiment, where we trained policies from scratch in M and simply used the policies trained
in M®™ to explore, here we initialize the task policy in M to 75™*, which we then finetune on
the data collected in /\/l_rea' by running SAC. For direct sim2real transfer, we collect data in A"
by simply rolling out 7™ * and feeding this data to the replay buffer of SAC. For exploration policy
transfer, we train an ensemble of n = 10 exploration policies in M*™ and run these policies in
M again feeding this data to the replay buffer of SAC to finetune 75™*. During training in M5™,
we utilize domain randomization for both methods, randomizing nail stiffness, location, radius, mass,
board size, and damping.

The results of this experiment are shown in Figure 9. We see that, while direct policy transfer is able
to learn, it learns at a significantly slower rate than our exploration policy transfer approach, and
achieves a much smaller final success rate.

E.5 Franka sim2real Experiment Details

We use Algorithm 6 to train a policy on the Franka robot with n = 15.
The reward of the pushing task is given by:

7ﬂ(sta at) = *”pcc - pobj||2 - ”pobj - pg031”2 + ]Ipobj—Pgoa1§0~025 - I[PobJ'Of'ftablC (E.1)
where pgoa s the desired position of the puck by the edge of the surface.

The network architecture of the actor and critic networks are identical, consisting of a 2-layer MLP,
each of size 256 and ReLLU activations.

We use stable-baselines3 [51] for our SAC implementation, using all of their default hyperparameters.
The implemention of OS is built on top of this SAC implementation. Values of hyperparameters
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are shown in Table 2. Gaussian noise with mean 0 and standard deviation 0.005 meters is added in
simulation to the position of the puck. Hyperparameters are identical between exploration policy
transfer and direct transfer methods.

For finetuning in real, we start off by sampling exclusively from the buffer used during simulation.
Then, as finetuning proceeds, we gradually start taking more samples from the real buffer, with the
proportion of samples taken from sim equal to 1 — /3000, where s is the current number of steps.
After 3000 steps, all samples are taken from the real buffer.

Experiments were run using a standard Nvidia RTX 4090 GPU. Training in simulation takes about 3
hours, while finetuning was ran for about 90 minutes.

In Figure 7, we provide results on this setup running the additional baseline of training a policy from
scratch in real. As can be seen, this is significantly worse than either transfer method.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We validate all our claims with theoretical results and experiments.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All results are precisely proved in the supplemental, and all assumptions
clearly stated.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To the extent possible, given that we are working with real-world systems, we
have described our setup and implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We have not currently released our code but hope to in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have stated all parameters and algorithm details to the best of our knowledge
(please see Experimental Details section in supplemental).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all our experimental results, we provide error bars corresponding to 1
standard error.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Experimental Details section in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper does not violate any ethical guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is work is related to the advancement of our fundamental understanding
of machine learning. As such, we do not believe there are any direct societal impacts from
this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing high-risk models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the creators of the code used in this project.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve human subjects research.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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