
Automated Generation of Behavioral Signatures
for Malicious Web Campaigns

Shaown Sarker1[0009≠0000≠6700≠5824], William Melicher2[0000≠0002≠2505≠684X],
Oleksii Starov2[0000≠0002≠2796≠6345], Anupam Das1[0000≠0002≠8961≠9963], and

Alexandros Kapravelos1[0000≠0002≠8839≠8521]

1 North Carolina State University, Raleigh NC 27695, USA
{ssarker,anupam.das,akaprav}@ncsu.edu

2 Palo Alto Networks, Santa Clara CA 95054, USA
{bmelicher,ostarov}@paloaltonetworks.com

Abstract. Web-based malicious campaigns target internet users across
multiple domains to launch various forms of attacks. Extant research ex-
ploring the detection of such malicious campaigns involves applying su-
pervised or unsupervised learning techniques on targeted campaign data
producing machine learning models that are often expensive to train and
are sluggish to react to the ephemeral nature of malicious campaigns.
In this paper, we present an automated web-based malicious campaign
detection system that produces campaign signatures representing both
their static and dynamic behavior. We generated 379 campaign signa-
tures that matched 36,427 unique malicious URLs with an extremely low
false-positive rate (0.008%). We further applied our signatures on real
world user tra�c and identified 471 URLs, which were verified through
VirusTotal and manual inspection. Our results provide valuable insight
into web-based malicious campaign detection and our system could be
utilized to improve existing defenses and the relevant field of threat in-
telligence.

1 Introduction

As the internet grows, more users than ever rely on it to perform various personal
and professional activities such as communicating over social media, carrying out
financial tasks, consuming entertainment, and fulfilling professional responsibil-
ities. Unfortunately, malicious actors have evolved to target innocent victims on
the web in a wide range of malicious activities, including promoting scams [14,
21, 30], coaxing users to click on malicious ads [35, 28], eliciting their credentials
by faking a legitimate website [25], or stealthily stealing their clicks [2]. Often
these attacks are carried out at scale on multiple domains to increase their ef-
fectiveness, resulting in a web-based malicious campaign.

Defenses against such campaigns often come in the form of blocklist ser-
vices. Blocklists mark a URL and/or domain for malicious activity, causing the
adversary to simply move the campaign content to a new unmarked URL/do-
main. Thus, creating a cat and mouse game between blocklists and the malicious



campaigner. Existing work in identifying campaigns involve various supervised
and unsupervised learning or observation based on features extracted from tar-
geted data associated with the specific campaign [14, 21, 30, 25, 35, 32, 31]. The
resulting detection systems are often limited by their focus on specific type of
attacks, and/or elaborate machine learning models that are sluggish to react to
the short-lived nature of these campaign URLs.

We center our work in this paper on the observation that most malicious
campaigns on the web share either static or dynamic behavior [25, 32, 31, 35]. In
fact, recent malicious campaign detection systems rely on repeated behavior to
cluster the campaign URLs and find malicious campaigns on the web [32, 35]
using unsupervised learning. However, such learning models are often limited to
only identifying campaign URLs that belong to the targeted campaign(s), and
not campaigns of di�erent types. Furthermore the majority of the web tends to
skew towards benign content and fewer malicious URLs, making these models
often subject to stringent low false-positive requirements, which a lot of them
fail to achieve when applied to unlabeled data.

In this paper, we present an automated web-based malicious campaign de-
tection system that identifies any campaign through signatures generated from
repeating static and dynamic behaviors on URLs belonging to the campaign with
very low false-positive rate. The signatures are robust against evasive maneuvers
such as encryption and obfuscation, since they include dynamic behavior pat-
terns along with static ones. Because of their simple construction and structure,
along with the fast generation process, the generated signatures are quick to
react for further detection of campaign URLs.

In our work, we crawled 2.8 million labeled URLs and generated 379 cam-
paign signatures using our proposed approach. We were able to identify 36,427 ma-
licious URLs from our labeled data belonging to malicious campaigns. We further
applied our signatures on 431 thousand unlabeled URLs from real world user
tra�c and detected 471 unlabeled URLs belonging to 34 campaigns, which we
confirmed to be malicious through VirusTotal and manual inspection. In sum-
mary, the contribution of this paper is as follows:

– We present an automated system for large-scale detection of web-based ma-
licious campaigns through signatures of repeating behavioral patterns. Our
system aims to be generic and not focus on any particular type of campaign.

– We perform deep instrumentation of the Chromium browser for tracking dy-
namic behaviors with significant detail. We use this custom browser to crawl
our labeled URLs, and generate campaign signatures from the collected data.
Our plan is to eventually make our signature generation system available to
the research community (either by open-sourcing it, or by making it available
as a service).

– We demonstrate that our generated signatures can successfully identify ma-
licious URLs belonging to campaigns by evaluating them on both labeled
and unlabeled URLs through oracles like VirusTotal and manual vetting.
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– We compare our system against a production-ready deep learning classifier
system and demonstrate that our system can complement such systems by
identifying campaign URLs that are not detected by such systems.

2 Background

2.1 Malicious Campaigns

Malicious actors on the web replicate their attacks on multiple URLs on multiple
domains to improve e�cacy and scale of the attack. Web-based malicious cam-
paigns are coordinated attacks that display the same malicious behaviors across
URLs from multiple domains. These malicious behaviors are experienced by the
end-user in the forms of network transactions for a resource (script, stylesheet,
DOM content etc.), simple elements of the webpage, or even a particular piece
of JavaScript execution.

2.2 Behaviors & Predicates

In the context of this paper, we use the term behavior on a webpage as both static
and dynamic characteristics of the webpage that can be generalized and identified
over other webpages. We use the term predicates as the textual representatives for
these behaviors that we want to identify on a webpage. For this paper, predicates
are dictionaries of key-value pairs of length two that represent a behavior. The
first key-value pair contains the type of the behavior. The second key-value pair
contains the properties representing the behavior which is a variable-length tu-
ple consisting of text and/or number, e.g., {type: "html_url", properties:
("http://example.org")}. We give more comprehensive details of the predi-
cates used in our work in §4.

2.3 Signatures

In our work, a campaign signature is an unordered conjunction of predicates.
To apply a signature for a match, we extract our predicates from the candidate
webpage and attempt to find all the predicates in the signature in the set of
extracted predicates. We recognize a successful match when all the predicates in
the signature are found on the webpage; otherwise we declare it as a non-match
(see Figure 1).

2.4 Synthesizing Signatures

To generate campaign signatures from given labeled data, we identify the repeat-
ing behaviors that are most discriminating between malicious (positive) data and
benign (negative) data and subsequently we want to see on which URLs we ob-
served these behaviors. We synthesize a signature as the least conjunction of
behavior predicates that represents these URLs as the footprint of malicious
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Text: "Sign into your Microsoft account

Script: "http://shady.org/evil.js"

Resource: "http://trust.me/phis.css"

Script: "http://shady.org/evil.js"

Text: "Sign into your Microsoft account"

Resource: "http://trust.me/phis.css"

Resource: "http://a.com/site.css"

Script: "http://a.com/loader.js"

Text: "Copyright Site a.com"

Site A

Matched

Script: "http://cdn.org/jq.js"

Text: "Sign into your Microsoft account"

Resource: "http://b.com/menu.css"

Script: "http://b.com/menu.js"

Text: "Copyright Site b.com"

Site B

Not Matched

Signature

Fig. 1. Signature and matching process

campaign in our data. To achieve this, we take our inspiration from the domain
of learning logic programs through induction [22, 10], specifically Relative least
general generalization (rlgg) [26, 27]. The underlying settings for such learning
directives can be broadly described in the following terms. Given a set of back-
ground knowledge B, along with a set of positive examples E

+ and a set of
negative examples E

≠ each, we want to find a hypothesis consisting of predi-
cates H such that the hypothesis in conjunction with the background knowledge
explains the positive ground truths, B · H „ E

+, and does not do so for the
negative ground truth set, B · H 0 E

≠.
In our approach, we deviate from rlgg slightly by introducing our own sim-

plified variation of partial ordering of predicates to generate the hypothesis (our
signatures) that does not use substitution. However, similar to rlgg, we also
forego the use of background knowledge and simply use ground truth examples
to derive our hypothesis. We present our algorithm for synthesizing the signa-
tures in full detail in §5.

3 Signature Structure

3.1 Limitations of Static Predicates

Static predicates are usually brittle and can become obsolete quickly, as the ad-
versary is only required to minutely modify the static content of the page to evade
signatures generated from static predicates solely. Furthermore, with the rise of
techniques like HTML smuggling to generate the static content on the webpage
dynamically [20], static predicate extraction is often hindered. To circumvent
this, we complement static predicates with dynamic behavior predicates. Even
if an adversary can take evasive measures to stem static predicate extraction or
identification, predicates deduced from the dynamic execution of scripts on the
webpage make the signatures robust enough to identify the malicious activity.
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Fig. 2. Predicate extraction and collection from crawled webpages

3.2 Tool for Dynamic Predicates

Taking inspiration from prior research in the field of binary malware detec-
tion [10, 6, 15], we focused on browser API calls from script execution traces
for our source of dynamic behavior predicates. Similar to system calls, browser
API calls interact with the underlying system, in our case - the browser itself,
to read or modify the state of it. Thus, like system calls, browser API calls can
also contribute to the signature generation through dynamic behavior predicates
representing the intent of JS-based malware. To get all browser API calls from
dynamic execution, we leverage VisibleV8 [11], an open-source tool that logs all
standardized browser API calls within the Chromium browser

VisibleV8 traces all invoked API calls along with JavaScript object property
access or modification. For our work, we focused exclusively on browser API
calls. However, VisibleV8 in its current state only gives the name of the browser
API call being invoked and the script source code location where it was invoked
from. To enhance the information gained from a browser API call, we wanted
to include the parameter names and the corresponding argument values to the
browser API call in our dynamic predicate. We extended the existing code-base of
VisibleV8 by further instrumenting the V8 runtime library for our requirements.
We built Chromium version 91.0.4472.101 with our instrumented V8. To counter
API calls being invoked inside a loop, we extracted only unique API calls and
argument tuples from a single webpage, without recording the same API call
invocation with the same argument more than once.

4 Data Collection
4.1 Crawler

We designed a crawler based on the instrumented Chromium browser with our
enhanced VisibleV8 variant (Figure 2). The crawler pulls a single URL from a
queue and proceeds to visit the webpage of the URL using our instrumented
browser. During each visit we collect all network requests made, the responses
received along with the headers and bodies of all HTTP resources downloaded,
all alert dialog types and their corresponding text (before being silently squashed
for resuming page visit), and finally the rendered DOM-document along with the
dynamic API call predicates. The static content is subsequently forwarded to a
content analyzer and the API call predicates are stored via a predicate saver.
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Predicate Type Properties Extracted from Type
Tra�c URL Processed URL of originating request Responses Received Static
Tra�c Domain Host name of originating request Responses Received Static
Tra�c IP IP of the server Responses Received Static
Content Hash SHA256 hash of response body Responses Received Static
Alert Alert type, alert text Intercepted Alerts Static

HTML Attribute Language and script attribute name,
corresponding value of script tags

DOM Document
Responses Received Static

HTML URL Tag name, processed URL extracted from
specific attribute (see table 2)

DOM Document
Responses Received Static

HTML Domain Tag name, host name of URL extracted
from specific attribute (see table 2)

DOM Document
Responses Received Static

HTML Text Processed text of length between 10 and 500
for HTML text tags except script and style

DOM Document
Responses Received Static

API Call API name, [parameter name, corresponding
argument value, ...] VisibleV8 Log Dynamic

Table 1. Extracted static and dynamic predicates during data collection

4.2 Content Analyzer

The content analyzer can extract nine types of static predicates from the col-
lected static content. The predicates extracted can be divided into three cate-
gories:
Tra�c Predicates. We iterate over the collected request-response pairs, and
extract four distinct types of tra�c predicates: the URL 1 and the derived
domain name 2 from the URL of the request, and the IP address 3 of the server
that serves the response as predicates, and the SHA256 hash of the response
body 4 . To generalize the tra�c URL predicates, we breakdown the URL query
string within the predicate and replace each parameter value with a positional
placeholder value (val1, val2, val3, ...).
Alert Predicates. We extract the alert predicates 5 as the combination of the
dialog type and the dialog text before dismissing it during the visit.
HTML Predicates. We iterate over the responses received that have a status
code of 2XX and a resource type of HTML, style, and script; along with the
final DOM document to extract four predicate types. We extract the language
and script attribute values for each script tag as attribute predicates 6 . For all
textual HTML tags, we extract the text truncated to a preset bound (min 10,
max 500) as text predicates 7 . We also perform filtering of random information
within the text content such as phone number, and zip code, and replace them
with generic placeholder value. For a predetermined set of HTML tags and their
certain attribute values (see table 2), we extract the URL and the domain derived
from it as URL 8 and domain 9 predicates, respectively. The extracted URL
is similarly processed to have generalized query string parameters as in the case
of tra�c URL predicates.

Table 1 details all predicates, both static and dynamic, collected through our
pipeline.
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Table 2. HTML tags and corresponding attributes for extraction of HTML URL and
Domain predicates

Tag
Name

Attribute
Name

script src
a href
form action
img src
object data
iframe src
frame src
link href

Table 3. Crawled URLs and collected predicates by verdict

URL Verdict No. of
URLS

No. of
Predicates

Benign 1.7 million 1.2 billion
Malicious 784 thousand 183 million
Unlabeled 431 thousand 147 million
Total 2.9 million 1.5 billion

4.3 Collected Data

Using our data collection pipeline, we crawled and collected predicates from a
variety of URL sources. For benign URLs, we crawled URLs from a sample of
both Tranco [34] and Alexa [1] top 1-million sites. We crawled a portion of the
VirusTotal [36] URL feed that have high-confidence detection (VT score > 3)
for our malicious URLs.

To validate these signatures on a real user tra�c, we make use of the URL
filtering product from Palo Alto Networks. We crawled and analyzed unlabeled
URLs from real world user tra�c, which originated from web browsing, email
links, etc., along with benign labeled URLs from the internet threat intelligence
system from Palo Alto Networks.

Excluding URLs with empty content, we ended up with approximately 1.5
billion predicates from about 2.9 million URLs. Table 3 shows the breakdown
of the crawled URLs and the collected predicates from them. Out of the ~1.5
billion predicates, dynamic predicates constitute 58.50%, the rest are static. The
breakdown of collected predicates by type is shown in Table 4. The crawl of the
URLs and predicate extraction were performed from the last quarter of 2021 to
the first quarter of 2022.
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Type No. of
Predicates

Tra�c URL 95 million
Tra�c Domain 21 million
Tra�c IP 19 million
Content Hash 76 million
Alert 1 thousand
HTML Attribute 2 million
HTML URL 229 million
HTML Domain 37 million
HTML Text 162 million
API Call 907 million
Total 1.5 billion

Table 4. Collected predicates by type

5 Signature Generation

5.1 Ordering of Predicates

Our collected predicates belong to two overlapping sets - predicates from URLs
with malicious verdict (positive set), and benign verdict (negative set). We want
to order our collected predicates to determine the most prominent repeating
predicates present in our positive set, but not included in the negative set. For
each encounter of a predicate in the positive or negative set, we increase the
corresponding count by one. We filter out all such predicates with a negative
count of more than zero, and further discard predicates that do not have a certain
positive count threshold. This is followed by ordering the remaining predicates by
their positive count in descending order. We take the top predicates determined
by a cuto� threshold, and construct the set of most discriminating repeated
predicates. In essence, this process gives us the predicates that are most frequent
on the malicious URLs, but are not observed at all on the benign URLs (see
Algorithm 1). We present the process for tuning the values of the parameters
used in our algorithm in §5.3.

5.2 Generating Signatures

For each predicate present in the constructed discriminative predicate set, we
retrieve all malicious URLs with this predicate. We then retrieve the predicate
sets for each of these URLs intersecting with the set of repeating discrimina-
tive predicate set. We then generate a single signature from the intersection of
these predicate sets. The synthesized signature is essentially the minimal set of
predicates that can identify the set of malicious URLs obtained in the prior step.

Next, we want to filter the generated signatures for two particular reasons.
First, if we include signatures that can only identify a small number of webpages,
then the signature is not very useful for identifying campaigns, and we would
eventually end up with an inordinate number of signatures to apply. For this
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Algorithm 1: Ordering predicates to construct set of repeating dis-
criminative predicates

Data: P , set of predicates
Fmin, minimum positive count threshold
Ctop, top predicates count threshold

Result: D, set of discriminative predicates
D Ω ÿ;
for each p œ P do

Upos Ω {u | predicate p is observed on positive URL u};
Uneg Ω {u | predicate p is observed on negative URL u};
if |Upos| <= Fmin then

continue;
end
if |Uneg| > 0 then

continue;
end
D Ω D fl p

end
Sort D by |Upos| ascending;
D Ω {p | predicate p is in top Ctop of D ordered}

reason, we filter out any generated signatures that do not cover a minimum
number of malicious URLs (the set of URLs from whose predicates the signature
was generated).

Second, we want our generated signatures to have an certain balance. From a
basic observation, a signature with a small number of predicates is more liberal
and would match more webpages, whereas a signature with a large number of
predicates would be hard to match and thus be conservative. We also discard
signatures with a number of predicates below a certain threshold to avoid false
positives. The signature generation and the subsequent filtering is displayed in
Algorithm 2. We discuss these two filtering parameter optimization in §5.3.

5.3 Parameter Optimization

We have four parameter values in our signature generation algorithm we need
to determine before applying the algorithm on real-world data: the parameters
for determining the predicate order - the top discriminative repeating predicate
count threshold Ctop, and the minimum positive count threshold Fmin; the pa-
rameters for filtering generated signatures - the minimum URL count threshold
Umin, and the minimum predicate count threshold Pmin.
Predicate count threshold Ctop. We derived the distribution of our collected
malicious predicate frequency and found that among the approximately 56 mil-
lion malicious predicates, the frequency distribution is heavily skewed towards
the last percentile. This implies that only ≥1% of these predicates show any
form of repeating characteristics, and the rest of them are just randomly unique.
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Algorithm 2: Generate signatures from the set of discriminative re-
peating predicates

Data: D, set of discriminate predicates
Umin, minimum URL count threshold
Pmin, minimum predicate count threshold

Result: G, set of signatures generated
for each d œ D do

U Ω {u | predicate d is observed on URL u};
/* Signature to be constructed */
SG Ω ÿ;
/* URLs where predicate is observed */
OU Ω ÿ;
for each u œ U do

Pu Ω {p | predicate p is observed on URL u and p œ D};
OU Ω OU fi u;
if SG is ÿ then

SG Ω Pu;
else

SG Ω S fl Pu;
end

end
if |OU | < Umin then

continue;
end
if |SG| < Pmin then

continue;
end
G Ω G fi SG;

end

Based on this observation, we selected the value of this parameter to 50,000 ,
which is a little smaller than ≥1% of 56 million.
Minimum positive count threshold Fmin. From above, our discriminative
repeating predicates were heavily skewed towards the single top percentile, with
the highest positive frequency being 22,850 and the lowest being 4. For this
parameter, we picked the value of 10 to ensure that all the predicates selected
by the Ctop value in the previous step is considered.
Minimum URL count threshold Umin. Inspired by hyperparameter opti-
mization [9], We split our collected predicates into three distinct slices in the
chronological order they were collected (see Table 5). We applied our algorithm
with various values of this parameter while keeping all other parameters the
same on the collected predicates till the 80-th percentile to generate signatures.
We then apply the generated signatures on the next ten percentiles. The reason
for this process is to avoid introducing bias in our signatures by generating sig-
natures from data collected in the future to apply to past data. We keep the data
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Fig. 3. Determining minimum URL count threshold parameter value

Fig. 4. Determining minimum predicate count threshold parameter value

from the last ten percentiles for our final evaluation as described in §6. Table 5
shows the labeled data slices used for each purpose in this paper.

To determine the performance of our selected parameter, we used the metric
of keeping the false positive (FP) numbers as low as possible, while elevating the
true positive (TP) numbers. Figure 3 displays how the various values of Umin

a�ected the metric numbers, and based on this observation, we picked the value
of this parameter to be 50.
Minimum predicate count threshold Pmin. We followed the same strategy
as in the prior paragraph to choose the optimal value for this parameter, as
shown in Figure 4. From the observed values, we picked 5 for this parameter.

5.4 Generated Signatures

With the selected parameters from the prior section, we applied our algorithm
on our collected predicates from the beginning to the 90-th percentile by the
chronological extraction order of the predicates. During our predicates ordering
phase, we processed 1.5 billion predicates, and consumed 50,000 predicates for
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Table 5. Breakdown of labeled predicates used for each process by percentile slices
(* in unlabeled evaluation, we applied the signatures generated from labeled data to
unlabeled data)

Process Generated From
(percentiles)

Applied on
(percentiles)

Parameter selection
(see §5.3) First to 80th 81st to 90th

Labeled evaluation
(see §6.1) First to 90th 91st to 100th

Labeled evaluation -
regression (see §6.1) First to 90th First to 90th

Unlabeled evaluation
(see §6.2) First to 90th Unlabeled

data*

our signature generation phase (this number was bound by our selected param-
eters in the above section). This step using our setup took approximately 99
seconds. In our signature generation phase, we retrieved and consumed 14.5 mil-
lion URL-predicate pairs from 309,721 malicious URLs, which was the biggest
time consuming process in our case with 20 minutes and 32 seconds. After gener-
ating signatures and performing filtering, we ended up with 379 signatures from
our data.

The signatures had 24,086 predicates in total, of which 21,067 (87%) were
static, and 3,019 (13%) were dynamic API call predicates. The most specific
signature consisted of 3,761 predicates, and the least specific one had 5 predi-
cates (which was bound by our signature filtering parameter Pmin, as discussed
in §5.3), with an average of ≥64 and a median of 13 predicates per generated
signature. Of the generated signatures, 183 (48%) had at least one dynamic pred-
icate, and 196 (52%) consisted only of static predicates. There were 3 signatures
that solely contained dynamic API call predicates.

6 Evaluating Generated Signatures

6.1 Labeled Data-based Evaluation

We applied the 379 generated signatures from §5, over the last ten percentiles of
our labeled predicates (from 91th to 100th percentile by chronological order of
extraction as mentioned in §5.3). In essence, this implies how signatures synthe-
sized from previous data perform on detecting campaign URLs in unseen future
data. We found 8,067 unique URL matches over 192 signatures in our last ten
percentile data, with 41 labeled benign (from 41 matches) and 8,026 labeled ma-
licious (from 8,028 matches). If we consider the number of labeled URLs in our
application dataset, we have a false-positive rate of 0.008% and our generated
campaign signatures covered 10.26% of the labeled malicious URLs that we were
able to extract predicates from. This signature application process over this data
took 1 minute and 53 seconds.
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Table 6. Top 10 campaign signatures with highest toxicity

Rank Signature
Campaign Type

URL
Matches

1 Fake domain sale scam 8,017
2 Phishing targeting Chinese visitors 2,823
3 Malware delivery 2,768
4 Fake domain sale scam 772
5 Facebook phishing 735
6 Phishing selling software solutions 502
7 Malware delivery 483
8 Phishing selling software solutions 431
9 Prize winning scam 416

10 Malware manipulating browsing history 332

We also applied our signatures on our collected labeled data itself in a regres-
sive manner to evaluate coverage (see Table 5). While applying the signatures on
the data used for generation (from first to 90th percentile of our labeled data) re-
sulted in 28,401 unique malicious urls (from 28,470 matches) over 379 signatures,
there were no false-positives. We sorted the signatures by their detection count
to find the campaigns with the highest toxicity rate and manually examined the
top 10 signatures to determine what kind of campaigns we were detecting and
assigned them a campaign type, as shown in Table 6.

6.2 Detecting Campaign URLs in the Wild

As described in §4, along with labeled data, we also collected approximately
147 million predicates from about 431 thousand unlabeled URLs from a list
of diverse sources (see §4.3). We wanted to see how our generated signatures
perform when it comes to finding campaign URLs in the wild. After applying
the 379 signatures, we found 483 matches from 34 signatures. This signature
application process took 1 minute and 21 seconds.

We had 471 unique URLs from the matches of unlabeled data. We also per-
formed a cross-check to find that none of the 471 URLs were matched from
any of the 29 signatures that had at least one false-positive during our labeled
data-based evaluation. To further verify our detection, we used VirusTotal [36],
which provides detection results from an array of oracles. Out of the 471 URLs
submitted to VirusTotal, we got 286 URLs (60.72%) that at least one VirusTotal
oracle was able to identify having malicious activity.

Since a large portion of our detected campaigns is simply scams and phishing
sites subject to block-listing, these are often short-lived and are either quickly
taken down or moved to another random domain upon being flagged. Because of
this, for the 185 URLs where VirusTotal did not report any malicious activity, we
manually checked to confirm that all of the 185 URLs were either serving a scant
benign page, or simply not alive. To determine what kind of malicious content
they were serving during our crawling if any, we again resorted to manually
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Table 7. Breakdown of manual analysis of URLs not flagged by VirusTotal

Campaign Category URLS
Scam 124
Phishing 59
Malware Delivery 2
Total 185

inspecting the predicates of the signatures that matched them along with other
predicates collected from these URLs. We were quickly able to identify that these
URLs were indeed serving malicious contents involving various scams (credit
card mining, lottery, dating site gathering personal info, fake survey, newsletter
unsubscribe etc.), phishing (amazon card, Paypal business, Paypal pay in terms,
domain hosting etc.), and delivering malware as displayed in Table 7.

To estimate the impact of our detection in the wild, we cross-checked our
detected URLs against the enterprise customers’ URL request logs for third
quarter of the year from our partnering cybersecurity company. We found that
132 (28.03%) of our 471 unlabeled URLs detected through our signatures did
show up in the customer logs. A total of 80,472 requests from 5,136 users were
made to these 132 URLs, with an average of 609 requests per detected URL
made, and an average of 16 requests made per user to these detected URLs.
This demonstrates that the signatures for the campaigns were indeed active in
the wild and targeting real world users.

6.3 Signature Case Studies

Case study: clickjacking campaign. Listing 1.1 displays a shortened version
of our generated signature for clickjacking scams. In this particular clickjacking
campaign, the user is duped into clicking on an element that is removed soon
after, deceiving the user that the mouse click did not take place. We identified
the signature match over 4 URLs with 3 di�erent domains.

1 [
2 // Redacted for brevity
3 {
4 "type": "api_call",
5 "properties": [
6 "Window.atob",
7 "\"OTQ1NThOQVVTQ0EyMTgzMDU3NzgwNzAwMDBDSA==\""
8 ]
9 },

10 {
11 "type": "api_call",
12 "properties": [
13 "Document.getElementById",
14 "\"clickjack-button-wrapper-5\""
15 ]

14



16 },
17 {
18 "type": "api_call",
19 "properties": ["Window.setTimeout", "\"clickjack_hider()\",5000"]
20 }
21 ]

Listing 1.1. Signature identifying clickjacking campaign

Case Study: history manipulation campaign. In this particular campaign,
the webpage stu�s the users tab history while performing a number of redirects,
and eventually landing on one of the random landing pages. When the user tries
the back button on the browser, (s)he ends up visiting the corrupt URLs in her
history pushed by the initial page. We matched this particular campaign signa-
ture across 332 URLs over multiple distinct domains. The identifying signature
is displayed in shortened form in Listing 1.2

1 [
2 // Redacted for brevity.
3 {
4 "type": "api_call",
5 "properties": [
6 "Element.setAttribute",
7 "\"value\",\"http://dolohen.com/afu.php?zoneid=2468047\""
8 ]
9 },

10 {
11 "type": "html_url",
12 "properties": [
13 "form",
14 "http://dolohen.com/?z=val1\u0026syncedCookie=val2"
15 ]
16 },
17 {
18 "type": "api_call",
19 "properties": [
20 "History.pushState",
21 "#N,\"Redirect\",\"/afu.php?zoneid=2468047\u0026var=2468047\

Òæ u0026rid=3V3cJ5LEtuPAKYxz6tD_Kw%3D%3D\""
22 ]
23 },
24 {
25 "type": "traffic_url",
26 "properties": ["http://dolohen.com/afu.php?zoneid=val1"]
27 },
28 {
29 "type": "traffic_url",
30 "properties": ["http://dolohen.com/?z=val1\u0026syncedCookie=val2"]
31 },
32 { "type": "html_domain", "properties": ["form", "dolohen.com"] }
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33 ]

Listing 1.2. Signature identifying JS malware manipulating browsing history

7 Contrast with ML-based Model

To the best of our knowledge, there is no existing ML model based system that
attempts to detect web campaigns without targeting specific type of attacks
like us. Although this obviates a direct comparison against a ML model based
detection system, in this section we compare our system with a production-ready
JavaScript malware detection framework named Innocent Until Proven Guilty
(IUPG) [17].

IUPG is a static JS analysis framework that uses prototype learning to train
deep neural networks for classifying URLs with JavaScript malware. Our version
of IUPG was trained using the following dataset. For malicious data, a set of
labeled high-confidence scripts from VirusTotal [36] containing 1.5 million scripts
was used. Furthermore, similar scripts that VirusTotal tagged to belong to the
same web campaigns (same vendor and VirusTotal tags) were sampled to 10%
or at most 100 scripts to avoid over-fitting the model. For benign data, scripts
extracted from crawling webpages from the Tranco [34] top URL list for a week
were used. The trained IUPG was used to classify the same URL feed we used
for our unlabeled data source as described in §4.3.

Upon cross referencing the unlabeled URLs detected using our generated sig-
natures from the same unlabeled corporate client dataset (see 4.3), we found that
out of the 471 URLs that were detected by our signatures, only 2 URLs were
detected by IUPG. However, IUPG only classified URLs for malicious JavaScript
(either inline, embedded, or fetched). For contrast, on 403 of these 471 URLs
we were able to extract API call predicates from executed scripts. While IUPG
provides high coverage as reported in [17], we show that our signatures can pro-
vide additional detection. Thus in a co-operative ensemble detection framework,
our system can complement other systems like IUPG to improve detection rate
significantly, and models like IUPG may incorporate similar behavioral features.

8 Discussion & Future Work

Reacting to campaigns. Our signature generation process takes approxi-
mately 22 minutes in total to generate signatures from 1.5 billion predicates.
The involved and careful training process required for ML systems, such as
IUPG (§7) is considerably slower. Retraining real-world ML-models can be ex-
pensive and only be done over a certain period of time. This significantly limits
such ML-models to react to the constant shifting nature of web campaigns in the
wild. Furthermore, we can easily generate signatures periodically to extend our
signatures from newly available data - making our system react quicker to the
campaigns. This makes our generated signatures more reactive to cyber threats
compared to traditional IOCs such as hashes, domains, URLs, registry keys, etc.
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Making the predicates more abstract. Abstract predicates contribute to-
wards robust signatures. The more distinct the predicates are, the more likely
they contribute towards conservative signatures. We transformed certain HTML
text, HTML URL, and tra�c URL predicates to be more abstract (§4.3). This
can be further extended by introducing a predicate matching mechanism based
on Levenshtein distance metric [38] for certain predicates, which should increase
the coverage of the generated signatures over the missing known positive mali-
cious URLs. However, we defer this as a potential future extension of our work
as such signature generation requires its own study.

9 Related Work

There exist research works on scam campaign detection that focus on survey
scams, tech-support scams, and fraudulent scams on free live-streaming ser-
vices [14, 21, 28, 30]. SpiderWeb [33] constructs HTTP redirection graphs and
extracts features of multiple categories to feed into a Support Vector Machine
(SVM) classifier. Similarly, Surf [19] uses a J48 classifier on extracted features
from poisoned search engine redirection graphs for detecting these URLs. Warn-
ingBird [18] is based on a SVM classifier on features extracted from URLs ex-
tracted from Twitter feeds. These works rely heavily on features extracted from
behaviors that are used for training the supervised classifier. Our work in com-
parison is generating signatures using both static and dynamic behavior features
that can react faster to malicious web campaigns.

Numerous research work has explored JS-based malware identification fo-
cusing on specific behaviors such as drive-by downloads [4, 23, 24], evasive JS
malware [13, 16], obfuscated JS malware [12, 37, 8, 7], and other in-browser JS
malware detection systems [5, 29, 6]. However, these research works focus on de-
tecting JS malware rather than their campaign aspect. A handful of research
has looked into detecting campaigns at scale and the similarity of web-based
malware behavior. Prophiler [3] proposed a supervised fast filtering system for
malicious webpage categorization. Starov et al. used static behavioral analysis
to detect malicious campaigns in obfuscated JS [31]. Vadrevu et al. detected
social engineering attack campaigns in low-tier ad networks [35]. Starov et al.
identified malicious web campaigns through shared web analytic IDs among ma-
licious websites [32]. Compared to these, we are proposing an automated system
to generate signatures for malicious web campaigns of many types that does not
require any highly targeted or correlated data for training.

10 Conclusion

In this paper, we propose an automated system that generates signatures for
identifying malicious web campaigns at scale. We demonstrated that our sys-
tem can handle large volume of data, and generate signatures quickly, making
it reactive to the ever-changing campaigns. Our system can be used on its own
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to trace down domains propagating malicious campaign contents to enrich ex-
isting blocking list services for threat intelligence. Alternatively, our system can
complement other detection systems for achieving higher detection rates. From
either perspective, our work provides valuable insight into the constantly mor-
phing ecosystem of malicious web campaigns.
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