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Abstract

Several recent papers have considered the problem of how large a subset of integers
can be without containing any 3-term geometric progressions. This problem has also
recently been generalized to rings of integers in quadratic number fields and polynomial
rings over finite fields. We study the analogous problem in the Hurwitz quaternion order
to see how non-commutativity affects the problem. We compute an exact formula for
the density of a 3-term geometric-progression-free set of Hurwitz quaternions arising
from a greedy algorithm and derive upper and lower bounds for the supremum of upper
densities of 3-term geometric-progression-free sets of Hurwitz quaternions.

1 Introduction

In 1961, Rankin [9] introduced the problem of finding large sets of positive integers which
avoid 3-term geometric progressions. An obvious example of such a set is the set of square-
free positive integers which has asymptotic density 6/72 ~ 0.607927. Rankin constructed a
higher density geometric-progression-free set, which we denote as G%(N, ), and obtained an
exact closed-form expression for its density in terms of the Riemann (-function

17 63"
C(2)H6(2-3”)

d(GH(NL)) = ~ 0.719745.

It was shown by Brown and Gordon [4] that G%(N,) is actually generated by a greedy
algorithm; it is formed from the singleton {1} by greedily adjoining to it integers of increasing
magnitude so long as the enlarged set still avoids 3-term geometric progressions. As such, we
refer to G5(N, ) as Rankin’s greedy set. Listing the elements of G5(N,) in increasing order
yields the sequence (1,2,3,5,6,7,...), which is OEIS A000452.

By modifying Rankin’s greedy set, McNew [6] constructed a set of positive integers
avoiding 3-term geometric progressions with asymptotic density greater than d(G3(N;)). It
remains an open problem to determine the supremum of asymptotic densities of such sets.

Variants of this problem have been studied by many authors including Riddell [10], Brown
and Gordon [4], Beiglbock, Bergelson, Hindman, and Strauss [2], Nathanson and O’Bryant
[7], and McNew [6]. More recently, Best, Huan, McNew, Miller, Powell, Tor, and Weinstein
[3] studied analogous problems in rings of integers of quadratic number fields, while Asada,
Fourakis, Manski, McNew, Miller, and Moreland [1] tackled the problems in polynomial rings
over finite fields.

The purpose of this paper is to investigate this problem in a non-commutative setting,
namely the Hurwitz quaternion order Q. (see Section 2). We take a 3-term geometric
progression of Hurwitz quaternions to mean a triple (a, ar, ar?), where a,7 € Qpuy, \ {0} and
r a non-unit. A set A C Quu avoids 3-term geometric progressions if A® does not contain
any such triples. We are interested in how large such a 3-term geometric-progression-free set
can be.



Throughout the paper, when A C N, is any set of positive integers, we denote by
S(A) = {q € Quu | Nm(q) € A} the set of Hurwitz quaternions whose norm is contained
in the set A. We also abuse this notation slightly, writing S(N) for an integer N to mean
S(N) = S([1, N]), the set of all non-zero Hurwitz quaternions whose norm is at most .

It is easy to see that if G is any set of positive integers which avoid 3-term geometric
progressions, then the set S(G) of Hurwitz quaternions is also 3-term geometric-progression-
free, in the sense above. Our first result is an exact formula for the density (see Section 3)

of S(G) in Quu when G is Rankin’s greedy set G5(N. ).

Theorem 7. The density of the set S(G5(N4.)) of Hurwitz quaternions with norm in Rankin’s
greedy set G5(N,) is

as@m) = I (10 - 122 =~ orss

p>2
prime

where

= 1
flz) = H<1+F).
i=0
This is somewhat higher than the density of Rankin’s greedy set G%(N,) in N, which is
~ 0.719745.
Our second result provides upper and lower bounds on the supremum of upper densities
(see Section 4) of sets of Hurwitz quaternions free of 3-term geometric progressions.

Theorem 14. The supremum Myy of upper densities of sets of Hurwitz quaternions that
avoid 3-term geometric progressions satisfies the following bounds:

17665627 20
0.946589 =~ 18662400 < Mgy < o1 ™ 0.952381.

In Section 2, we establish some asymptotic formulas for certain counts of Hurwitz quater-
nions which are useful for computing densities. In Section 3, we prove Theorem 7. The
approach is to first prove Theorem 5, which is a general Euler product formula for densities
of certain sets of the form S(G), and then apply it to the special case when G is Rankin’s
greedy set G5(N,). In Section 4, we prove Theorem 14. The approach is to adapt and
modify the arguments of McNew [6], which are used to produce the best bounds on upper
densities of geometric-progression-free sets of integers, to work in the quaternionic setting.
The remainder of the paper is dedicated to the quaternion greedy set G%(Quu \ {0}). A
major difference between the rational integer setting and the Hurwitz quaternion setting is
the fact that the natural analogue of Rankin’s greedy set for (Qy,, is much more difficult to
analyze. This is due to the non-commutativity of the quaternions. In Section 5 we explicate
these difficulties and in Section 6 we list open questions and ways to generalize this work.



2 Combinatorics of Hurwitz quaternions

The Hamilton quaternions H = {a + bi + ¢j + dk | a,b,c,d € R} constitute the non-
commutative algebra over the reals generated by units ¢, 7, and k satisfying

P =5 =k = ijk = -1,
ij = —ji =k, jk = —kj =i, ki = —ik = j

The norm of a quaternion Q = a+ bi+ cj + dk is Nm(Q) = a® 4+ b* + ¢* + d?. A quaternion
a+ bi+ cj + dk belongs to the Hurwitz order Quy, or is a Hurwitz quaternion, if a, b, ¢, d are
all in Z or all in Z + % The norm of a Hurwitz quaternion is always a nonnegative integer.

In this section, we compute asymptotic formulas for the number of Hurwitz quaternions
up to a certain norm excluding 0, and the subset of those whose norm is coprime to a given
number. These formulas are used in the proofs of our main results Theorem 7 and Theorem
14. For a more in-depth discussion of the Hurwitz quaternion order, see Conway and Smith
[5, Ch. 5] or Voight [12, Ch. 11].

We begin with a classical result that follows from Jacobi’s four-square theorem.

Lemma 1. The number of Hurwitz quaternions of norm N is 24 - 0oqq(N), where ooqq 1S
the sum-of-odd-divisors function

Uodd(N> = Zd

24d| N

For a complete proof of this fact see, for example, the master’s thesis of Negrini [8]. The
sequence of numbers (24 - 0oqq(N))n>0 = (24,24,96, 24,144, . ..) is OEIS A004011.
Using this lemma, we prove the following asymptotic result.

Lemma 2.

(a) The number of Hurwitz quaternions with norm less than or equal to N is

> 24-000a(n) = 7N’ + O(Nlog N).

n<N

(b) For a fized integer M, the number of Hurwitz quaternions with norm at most N and
with norm coprime to M 1s

2M
> 24 00a(n) = W2N2.“0<M >H(1—p*2)+0(N10gN).
n<N p|lM

ged(n,M)=1




Proof of (a). Making use of the fact that the sum of the first k¥ odd numbers is k%, we
compute

S () = 33 d = 3 Z -3 {%w (write m = de)

n<N m<N d|lm e<N d< e<N
2td 2J(d
1 N\? N 1 1
_ - - ) )= N2y = Nlog N
i ((F) +o(¥)) - v 0wy
e<N e<N
Lve () o (v N+N2zl (first seri to )
= — —_— O - 'St series converges 10 —
TG & e? BE5 10 7
e>N
— ﬁJ\f2+()(J\f1<)gJ\f) O

Proof of (b). We compute

D oea(m) = ), D d= > > d

n<N n<N  2{d|n e<N d<|_ J
ged(n,M)=1 ged(n,M)=1 ged(e,M)=1  §(d,20)=1
SO I S S
e<N r<2M d<
ged(e,M)=1 ged(r,2M)= 1d£r (_mod 2M)
Since
SR Sl D SIS S e
e<N r<2M N m<| N
salcan-twacann= \ L SLad, o TRk
we see
S o= Y Y Yo+ ot
n<N e<N r<2M L J
ged(n,M)=1 ged(e,M)=1 ged(r,2M)= 2M|
= p(2M) Z Z 2M -n 4+ O(NlogN)
e<N \_ J

ged(e,M)=1n< LWJ

= Me(2M) <ZN EEJQS}JH) +  O(NlogN)

[
ged(e,M)=1

w(2M) 1
= NZ2. — Nlog N).
4M 1<§<:oo 62 + O( Og )

ged(e,M)=1

ot



By the inclusion-exclusion principle, expressed with the Mobius p function, we have

1 =1 d 2 .
) 2 Z(u(d)-;W) = C(z)dwﬂfp) = €H(1—p ).

1<e<oo d|M p|lM
ged(e,M)=1
Thus,
S o) = N2 TPy oo 0
odd 24 M '
n<N p|M

ged(n,M)=1

3 Exact densities of sets of Hurwitz quaternions

Definition 3. Let A C Qpuye. The density of A in Quyur, denoted d(A), is defined to be

. |ANS(N)
d(A) = lim ———
@ = Jm s
provided the limit exists. Here, as before, S(IV) is the set of non-zero Hurwitz quaternions
of norm at most V.

Example 4. If A denotes the set of Hurwitz quaternions with norm coprime to M, then by
Lemma 2, we see that the density of A in Qyy, is

aa) = P20 o)
p|M

The purpose of this section is to compute an exact formula for the density of S(G%(Ny))
in Quu- Recall that S(G%(N,)) is the set of Hurwitz quaternions with norm in Rankin’s
greedy set G5(N,). The set G5(N.) is formed by starting with the singleton {1} and greedily
adjoining to it larger positive integers which do not form 3-term geometric progressions with
the previously included elements. Listing the elements of G5(N ) in increasing order yields
the sequence (1,2,3,5,6,7,8,10,11,...), which is OEIS A000452. Note that

G5(N;) = {n € N; | yp(n) € A5(N,) for all primes p},

where v, denotes the p-adic valuation and A%(N.) is the set formed by greedily including
non-negative integers that do not form a 3-term arithmetic progression with the previously
included elements. Brown and Gordon [4] showed that A%(N, ) is also the set of non-negative
integers whose ternary expansion does not contain the digit 2. Listing the elements of A5(N,)
in increasing order yields the sequence (0,1,3,4,9,10,12,13,...), which is OEIS A005836.
We compute the density of S(G5(N,)) in Qe using the following theorem, which pro-
vides an Euler product for densities of certain kinds of sets in Q.. We would like to thank
Emma Dinowitz for helpful discussions regarding the proof of the following theorem.
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Theorem 5. Let A C N and let G .= {n € Ny | ,(n) € A for all primes p}. Then

1 1 1 1 1

prime

Proof. For each prime p and each positive integer N, we define

Gp = {neN;y|y(n)eA} and Gy = ﬂ Gp.
pIN
p prime
For each positive integer r, write N, to denote the r*" primorial N, = pips---p,. For

convenience, write 3(N) to denote X(N) == > _y 0oaa(n). We compute

A(S(G) = tim 5" Goaa(n) - 16(n)

N=o0 32, <y Oodd(n )ngN

o 1
= Jim i, 7R 2 7eaa(m) Le, (0

o 1
- s 2 Z Poaa(m) - La, (1" -+ 1),

Since 0,qq is multiplicative, we see

UAS(@) = J%IE;OE— PRy s (7 )
S

r  nlN
vi<r,

up](n) aj

cOodd(PY" - 1) ey, (01 p)

. . 1
= ) i >(N) Y. Toaa(m)
(aj)JT:leNr mSN/p‘lllmpgr
ged(m,Ny)=1

- ooad (D1 -y ) ey, (DY PR

By Lemma 2,

2
(i) 510 b
AS@) = Y| g ) N The B
Tﬁoo(aj)rzleNr oo N%. 22 +O(NlogN)

0oad (Y Py ) Loy, (BT i)



r—00 p2“7
(a;)j—1€N"

AS(@) = m Y (”fVNT)H 1.(1—p;2>)-aodd<p‘f1---pzf)lcmpil---p;v)

J<r

L ©(2N,) 3 Toad (P -+ i) - 1ay, (DT pir)
((2) r» N, p%“l... 2ar

(aj)5_1EN"

_ % i ¢ 2N Hzaodd p] 1Gp](p])
C< e J<r k=0
: ( ) 3 Uodd(p’“) : 1c(p’“) 2 1 Todd (P")
o 1L (1-5) 2 o = 1 (1-5) 2=
C(2 p pri k=0 p C(z) p prime p keA p
Using the fact 0,qq(2%) = 1 and 0oqq(p*) = pk; — for primes p > 2, we get
1 1 1 1 1
s = o (o) T (Z - 5 5m) :
C(Q) keA2 p>2 keAp pkeAp
prime

Example 6. If A denotes the set of all Hurwitz quaternions with squarefree norm, then by
Theorem 5 and the fact that n is squarefree if and only if v,(n) € {0, 1} for all primes p, we

see
1 1 1 1 1
dA) = — (14— 14— —
<) ((2)< +22>g( TP p3)
1 14122 60
T O E T T

Now, we use Theorem 5 to compute the density of S(G%(N.)).

Theorem 7. The density of the set S(G5(N.)) of Hurwitz quaternions with norm in Rankin’s
greedy set G5(N) is

as@r) = LT (109 - T0) ~ orsos

prime

where



Proof. By Theorem 5 we see

d(S(G5(NL))) = ook | P p p*
T <@ (k:eAE(NH 2 71,]2:6 keAﬁ(NJr)pk pk@;‘ﬂ)pQ
- 1 < 1\ 19 1
- —T1(1 iRl e |l Ry
) W) )
its ( B f(p2)>
@y VP75

where in the second line we use the fact that A5(N, ) is the set of non-negative integers whose
ternary expansion do not contain the digit 2 [4].
This product converges and is estimated to be &~ 0.782643 through Mathematica. O]

4 Bounds on the supremum of upper densities
We now consider how large a set of Hurwitz quaternions can be while avoiding 3-term
geometric progressions. We make this question precise, as follows.

Definition 8. Let A C Quu.- The upper and lower densities of A in Quyu are defined as

= . |ANS(N)] .. JANS(N)|
d(A) = limsup———————— and d(A) = liminf —————,
() = twsp o) A= B s
respectively. Here, S(N) is the set of non-zero Hurwitz quaternions of norm at most N.

Question 9. What is the supremum of upper densities of sets of Hurwitz quaternions that
avoids 3-term geometric progressions?

We answer this question by obtaining upper and lower bounds for the supremum of upper
densities of sets of Hurwitz quaternions avoiding 3-term geometric progressions.

4.1 Lower bound
For each N € N, let

o= (] (o) (o (] (5 5] (5] o
By Lemma 2 we have
y [S(Tx)| = [S((N/4, N[+ [S((N/9, N/8])| + |S((IN/24, N/12])]

+|S((N/32, N/27])| + |S((N/40, N/36])| + |S((N/48, N/45])|
= Ry + 1y,



where 17665627
= —— — 72N? d = O(Nlog N).
Ry = 5662100 and 7y = O(Nlog )

17665627 2 1 N 1 1 N 1 1
18662400 42 ]2 02 122 242

n 1 1 n 1 1 . 1 1
272 322 362 402 452 482 )

Now, write S to denote

Indeed,

S = |_| Ty,, where N,;= 48 for each i € N.
i=1

McNew [6, proof of Thm. 3.1] showed that S is free of geometric progressions with integral
ratio. Thus, S(S) is a set of Hurwitz quaternions that avoids 3-term geometric progres-
sions. We compute the upper density of S(S) in Qpyr, thereby obtaining a lower bound for
the supremum of upper densities of sets of Hurwitz quaternions avoiding 3-term geometric
progressions.

Lemma 10. The upper density of S(S) in Quur is

_ 17665627
d = ———— =~ 0.9465809.
(5(5)) 18662400 09 )

Proof. By the definition of upper density and by Lemma 2, we see that

k
C L S(Tw,)

_ , 1S(8) N S(N)| | L= ST,

d(S(S)) = limsu = lim —————

(518)) = st =) A TTRA]
. RNk + Rqu + RNI@72 ot RN1 . TNy, + T'Ny_1 + TNy Rl
= lim 5 + lim 5
k=00 w2 N7 + O(NilogNy,) k—o0 w2 N7 + O(NilogNy,)

We first argue that the second limit term in the above expression is zero. Notice that
E-OQ1) < ry. 47N, +7rN,+ -4y, < k- O(NklogNk>.
Since Ny = 482", we have

k-O(1) k - O(NklogNk>
lim 5 =0 and lim 5 =0
k—00 7T2Nk + O(NklogNk) k—o00 7T2Nk + O(NkIOgNk)
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Hence,

+0

_ Ry, + Ry, + By, +---+ Ry
g 1 k k-1 k=2 -
d(S(S)) kl_{go 7T2]\/‘]3 + O(NglogNy)

. 1 1 1
- jim (1 Ty Ty T (48))
- lim B,
k=0 T2NZ + O(NilogNy)’

Notice that

1 1 1 k—1
< . <
— (4821@71)2 + (482k71+2k72)2 + + (482k71+2k72+..‘+2)2 - (482%1)2 k—s00 0,
so the first limit above converges to 1 and we find that
_ R 17665627
d(S(S)) = 1- lim Al = 0

k—oo 2N + O(NylogNy,) 18662400

4.2 Upper bound

The approach we use to obtain an upper bound is similar to the approach used by McNew
[6] in the classical setting. Namely, we identify a large collection of disjoint 3-term geometric
progressions from which at least one term of each progression must be excluded.

Definition 11. Two 3-term geometric progressions of Hurwitz quaternions (by,byry, bir?)
and (by, baro, byr3) are disjoint if

{b17 b17ﬂ17 bl?"%} N {b27 b27,.27 bZ?ng} = O.

Fix a Hurwitz quaternion R of norm 2. For example, we can take R = 1 + i. For each
n € Nand N € N, write £,(N) to denote

E,(N) = {(bR*", bR* "1 bR*™*?) | 24 Nm(b) < N/2*"?},

Note that E,(N) is empty if N < 23"*2. The cardinality of E,(N) is equal to the number of
Hurwitz quaternions with norm less than or equal to N/23"*2 and coprime to 2. By Lemma
2, for each fixed n € N,

N \? 3
|E,(N)| = =* <23n+2) I + O(NlogN).

Lemma 12. The union -
E(N) = |JE.(N)
n=0
consists of disjoint 3-term geometric progressions contained in S(N)3. Its cardinality is

(V)] = ®N?- o+ O(N(log N)?).

11



Proof. For every Hurwitz quaternion () € Quyr, there is a unique way to write Q as () = bR™
for some b € Quye with 2 4 Nm(b) and m € N. This implies that £(IV) consists of disjoint
3-term geometric progressions. The fact that £(N) C S(N)? is obvious.

Note that E,(N)N E,,(N) = @ for n # m € N. Combined with the fact that F, (N) is
empty for N < 23"+2 we see

B(N)
E(N) = | | E.(N), where B(N) = [(log,(N)—2)].

where log, N denotes the logarithm base 2. Thus,

B(N) 2
EN) = Y <w2<23ﬁ2) z - O(NlogN))

n=0

3B(N)

_ 2 A72
= mN '@Z
n=0

Lemma 13. Let A C Quu be any set of Hurwitz quaternions avoiding 3-term geometric
progressions. Then

(%)n + O(N(log N)?) = W2N2~2—11+O(N(logN)2)- =

Proof. Observe |[ANS(N)| =|S(N)|—|S(N)\ A|. Since, £(N) consists of 3-term geometric
progressions in S(N), at least one term from each element of £(N) must be contained in
S(N)\ A. Since all of the 3-term geometric progressions in £(N) are disjoint, the cardinality
of S(N)\ A is at least the cardinality of £(N). By Lemma 12,

SN\ A] > 72N2 -~ & O(N(log N)?2).

21
Thus,
~ : [ANS(N)| . [S(V)[ = [S(N) \ 4
d(A) = limsup —————— = limsup
S i 0 A 0]
mN?. L + O(N(log N)?) 20
< Rt . 21 ——
s 1 hggf N2 + O(NlogN) 21 -

We have finally arrived at our answer to Question 9.

Theorem 14. The supremum Myw of upper densities of sets of Hurwitz quaternions that
avoid 3-term geometric progressions satisfies the following bounds:

17665627 20
. N ——————— < My < 7 ~ 0 :
0.946589 18662400 = ™ 51 0.952381
Proof. Combine Lemma 10 and Lemma 13. O
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5 The quaternion greedy set

In Section 3, we computed an exact formula for the density of the set of Hurwitz quaternions
S(G%(N1)) with norm in Rankin’s greedy set G5(Ny). It is natural to consider a different
set of Hurwitz quaternions avoiding 3-term geometric progressions that is constructed by
a greedy algorithm in a different way. Namely, consider the set of Hurwitz quaternions
formed by including Hurwitz quaternions of increasing norms so long as they do not form
a geometric progression with elements of smaller norms already included in the set. This
process begins with including all the units, or Hurwitz quaternions of norm 1, and then
considers progressively larger norms. The set constructed in this way is well-defined because
including a particular quaternion of a given norm, n, does not create a geometric progression
with any other quaternions of norm n since unit ratios are not allowed. We call this set the
quaternion greedy set and denote it as G5(Quur \ {0}). The following observation is an
immediate consequence of this definition.

Proposition 15. Any Hurwitz quaternion which is not the third term of a 3-term geometric
progression is contained in the quaternion greedy set G5(Qmuur \ {0}).

Question 16. What is the (upper/lower) density of G%(Quu \ {0})?

We are not able to answer Question 16 completely. However, the following proposition
gives a lower bound for the density of G%(Qmuu: \ {0}).

Proposition 17. The quaternion greedy set G5(Quur \ {0}) contains the set of Hurwitz
quaternions whose norm is squarefree. Thus, the lower density of G(Quur \ {0}) 1 Quur is
at least

60
d(G5(Quur \ {0 > ——— ~ 0.722484.
_< B(QH \ { }>> = 77T2C(3)
Proof. 1f () is a Hurwitz quaternion whose norm is squarefree, then ) cannot be the third
term in a 3-term geometric progression, and thus by Proposition 15 must be included in the

quaternion greedy set. The lower bound for the density follows from Example 6. O

In the remainder of this section, we attempt to convince the reader that Question 16 is
hard. One may try to tackle Question 16 via the same method used to compute the density
of S(G%(N,)). However, step zero of this method would be to realize G§(Qmuur \ {0}) as the
set of Hurwitz quaternions whose norm is contained in a given set G C N,. This is not
possible, as shown by the following proposition.

Proposition 18. The quaternion greedy set is not equal to S(G) for any G C N,.

We postpone the proof of Proposition 18 to the end of this section.

Another approach to Question 16 is to try and relate the quaternion greedy set G%(Qpur \
{0}) to S(G5(N.)). One might hope that G5(Qm.:\{0}) would contain or be contained within
S(G3(NL)) (with possibly finitely many exceptions). If this were true, then one would be
able to bound the density of G%(Quu \ {0}) in terms of the already computed density of
S(G%(N,)). However, this is false, as shown by the following proposition.

13



Proposition 19. There are infinitely many Hurwitz quaternions in both complement sets
G3(Quur \ {0}) \ S(G5(Ny)) and S(G5(N4)) \ G5(Qrur \ {0}).

We postpone the proof of Proposition 19 until the end of this section. The proof provides
infinitely many such Hurwitz quaternions explicitly.

A key step in establishing both Proposition 18 and Proposition 19 is realizing that there
exist Hurwitz quaternions of norm r? > 0 that cannot be written as the square of a Hurwitz
quaternion of norm r multiplied by a unit on the left.

Proposition 20. Suppose r € Ny is a positive integer such that either
e 1 cannot be represented as the sum of three integer squares, or
e 1 is divisible by an odd integer greater than 24.

Then there exists a Hurwitz quaternion Q of norm Nm(Q) = r? such that Q cannot be written
in the form Q = UR? for any unit U € Quu and any R € Quy of norm Nm(R) = r. In the
first case, QQ = r is such a Hurwitz quaternion.

Proof when r is not a sum of 3 squares. Let r € N be such that r cannot be represented as
the sum of three integer squares. Suppose for contradiction that r = U R? for some unit U €
Qnuw and R € Quye of Nm(R) = r. Then U~ 'r = R%. Suppose that U~! = a+bi+cj+dk and

2 g2 g2 2

R = w+xi+yj+ zk. Then, solving the equation U~'r = R?, we find that a = *—"—4—,
b = 2’7{“, c = 21;’?/, d = 27“73 It is a consequence of Lagrange’s three-square theorem that
the set of integers that cannot be represented as a sum of three integer squares is closed
under multiplication by 4. Since Nm(R) = r cannot be represented as the sum of three
integer squares, we must have that w,x,y, 2 are all nonzero. Since w,x,y, 2 are nonzero,
then b, ¢, d are nonzero; moreover, as U~ = a + bi + ¢j + dk is a unit in Qp,, then a is also
nonzero, thus a,b,c,d € {j:%} Then, z = £, y = &4, and z = ;. Substituting into
w = i% and solving the equation, we find that w = j:‘/TF or w = i@. We know
that r cannot be represented as the sum of three integer squares; hence, r is not an integer
square and w # j:\/;. We also know w = i@ € ZorZ+ % if and only if r = 312 for some
[ € Z. However, this implies that r can be represented as the sum of three integer squares,

which is a contradiction. ]

Proof when r has an odd divisor > 24. By Lemma 1, the number of Hurwitz quaternions @),

which can be written as Q = UR? where U € Qe is a unit and R € Qe has norm

Nm(R) = r is < 24% - g,44(r). Thus, to show there exists Hurwitz quaternions @ of norm

Nm(Q) = r?, which cannot be written in this form, it suffices to show 24-0,44(r) < 0oqa(r?).
Let D be the greatest odd divisor of r. By hypothesis, D > 24. Thus, we have

24 000a(r) < Y D-d < Y d = ooualr?),

2td|r 2td|r?

as required. 0
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Proposition 21. Let p be a rational prime number. Suppose Q) is a Hurwitz quaternion
of norm Nm(Q) = p? such that Q cannot be written in the form Q = UR? for any unit
U € Quu and any R € Quu: of norm Nm(R) = p. Then Q € G5(Quu \ {0}) \ S(G5(N,))
and Q* € S(G5(N4)) \ G3(Qnur \ {0}).

Proof. In light of Proposition 15, in order to prove that Q € G5(Qmuu \ {0}), it suffices
to prove that @) is not the third term of any 3-term geometric progression. Suppose for
contradiction that @ = br? for some b,7 € Quy \ {0} with r a non-unit. Then we would
have p? = Nm(Q) = Nm(b) - Nm(r)?. Since p is prime, Nm(b), Nm(r) € N, and Nm(r) > 1,
we see Nm(r) = p and Nm(b) = 1. Thus, b is a unit, and r has norm p, contradicting the
supposition that @ cannot be written in the form @ = UR?. Thus, Q € G%(Quu \ {0}).

To show that @ € G5(Quuw \ {0}) \ S(G5(N,)), it remains to prove @Q ¢ S(G5(N,)). Since
Nm(Q) = p?, and 2 € A5(N,), we know Q ¢ S(G35(N,)).

The norm of Q% is Nm(Q?) = p* and 4 € A5(N,), so Q* € S(G5(N,)). We already
know @ € G%5(Quu \ {0}). Since both the first and second terms of the 3-term geometric
progression (1,Q, Q%) are in G5(Quu \ {0}), we see that Q* € G%(Quu \ {0}). Thus,
Q% € S(G5(N,) \ G3(Quu \ {0}). .

Armed with Proposition 20 and Proposition 21, we can now prove Proposition 18 and
Proposition 19.

Proof of Proposition 18. Since 7 is not a sum of three squares, we know by Proposition 20
and Proposition 21 that 7 € G5(Quu \ {0}). Note @ = 2+ i+ j + k is a Hurwitz quaternion
of norm 7. By Proposition 17, @ € G%(Qmuu \{0}). Since both 1 and @ are in G§(Quu \ {0}),
the third term Q? of the 3-term geometric progression (1, Q, @*) cannot be in G3(Quu: \{0}).
Thus, G5(Qmu \ {0}) contains some Hurwitz quaternions of norm 72, but not all. Therefore,
G5 (Quur \ {0}) cannot be S(G) for some G C N;. O

Proof of Proposition 19. This follows from Proposition 20 and Proposition 21. Note that as p
ranges over the infinitely many primes that cannot be represented as the sum of three integer
squares, Proposition 20 and Proposition 21 imply that p € G(Quu \ {0}) \ S(G%(N4)) and
p? € S(G5(NL)) \ G5(Qmur \ {0}). This provides an explicit list of infinitely many examples
in both complements. O

In conclusion, there is no clear relationship between G%(Quu \ {0}) and S(G%(N.)).
One may try to systematically describe the inclusions and exclusions necessary to transform
S(G3(Z)) to G5(Quue \ {0}), but this appears to be hard to predict or keep track of. Conse-
quently, we do not know whether the density of G5(Qpuur \ {0}) in Quy, is greater than or less
than the density of S(G%(N})) in Qpuu. We also cannot make any computational estimate
of the density of the quaternion greedy set as we do not even have a quick way of testing
whether a given Hurwitz quaternion is included in G%(Quu \ {0}).
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6 Future work

As discussed in Section 5, the nature of the quaternion greedy set G%(Qmuu: \ {0}) is quite
mysterious. Fundamentally, it is the non-commutativity of the Hurwitz quaternions which
makes the quaternion greedy set so difficult to analyze. We record here several questions
about G%(Qmuyu \ {0}) that remain open.

Question 22. Does G5(Quur \ {0}) have an asymptotic density?
Question 23. Is the (lower/upper) density of G5(Quur \ {0}) greater than d(S(G5(N,)))?

Question 24. Is there an alternative characterization of the quaternion greedy set? Is there
an efficient algorithm that tests membership in G%(Qmur \ {0})?

Next, we introduce a general framework in which questions about avoiding geometric
progressions can be studied. Let B be a cancellative, normed monoid. This means B is
a monoid which satisfies the cancellation property, and B comes equipped with a monoid
homomorphism N : B — N, which we call the norm. Suppose that for each N € N, the
set Sp(IV) of elements in B with norm < N is finite. We define the asymptotic density of a
set A C B in B to be AN Sp(N)]

: B
= TS, ))
if it exists. The upper density dg(A) is defined similarly, except lim is replaced with lim sup.

Let U(B) be the universal enveloping group. This is the group with generators given
by the elements of B and relations given by the full multiplication table of B. Since B is
cancellative, the natural monoid homomorphism B — U(B) is injective, and we regard B
as a subset of U(B) via this map. The norm N : B — N, naturally extends to a group
homomorphism U(N) : U(B) — Q,, which we also call the norm.

Let R C U(B) be a subset. A k-term geometric progression in B with ratio in R is a
k-tuple (b, by, -+ ,b) € B*, where

bilby = bylbs = ... = b b, €R.

A set S C B is said to avoid k-term geometric progressions with ratio in R if S* does not
contain any such k-tuples. Now we define the constants

mi(B,R) = sup { dp(S) ‘ S C B avoids k-term geometric progressions } and

with ratio in R, and dp(9S) exists
my(B,R) = sup {dg(9) | S C B avoids k-term geometric progressions with ratio in R} .

It is clear from the definitions that my(B, R) < my(B, R). Moreover, both my(B, R) and
mi(B, R) are increasing with respect to k and decreasing with respect to R.

Question 25. What is the value of my (B, R) and m(B, R) for different choices of length
k, normed monoid B and forbidden ratio set R?

16



In this paper, we obtained upper and lower bounds for my(B, R) and m(B, R) when
k=3, B=Quu \{0} and R = Quy \ S(1). Indeed, we have

0.782643 < mpy = Mm3(Quur \ {0}, Quur \ S(1)), and (Theorem 7)
0.946589 < Mgy = is(Qpur \ {0}, Quur \ S(1)) < 0.952381. (Theorem 14)

For any G C N, write Sg(G) to denote the set of elements of B with norm in G. Since
G;(N,) avoids k-term geometric progressions with rational ratio, we get that Sp(Gj(N4))
avoids k-term geometric progressions with ratio in R for any forbidden ratio set R C U(B).
Thus, if dg(Sp(G;(N4))) exists, it serves as a lower bound for my(B, R) for all possible
forbidden ratio sets R.

Question 26. Does Sp(G;(N;)) have an asymptotic density in B? If yes, compute it.

Theorem 7 answers Question 26 when k = 3 and B = Quy, \ {0}.

Now we generalize the definition of the quaternion greedy set. Suppose R is a subset of
U(B) that avoids elements of norm 1. We define a greedy set of elements of B avoiding k-
term geometric progressions with ratio in R as follows. Start with the set Sg(1) of elements
of B of norm 1 and adjoin to it elements of B of increasing norm so long as the enlarged
set continues to avoid k-term geometric progressions with ratio in R. This is a well-defined
procedure because R does not contain any elements of norm 1. The resulting greedy set is
denoted by Gj(B, R). Note G§(N;) = G5(N;,N5;) = G5(N,Q~1), as observed by Brown
and Gordon [4] and G3(Quur \ {0}) = G35(Qnur \ {0}, Qe \ S(1)).

Question 27. Repeat Questions 22 - 24 with G%(Qmuyu \ {0}) and S(G3(N,)) replaced by
G;(B, R) and Sp(G;(N,)) respectively.

It would be interesting to study all the above questions when B = O\ {0} where O is a
maximal order in the octonions O, as this is a non-associative setting. Even in the Hurwitz
quaternion setting B = Quy, \ {0}, it would be interesting to vary the forbidden ratio set R

from Quu \ S(1) to N2y, Q% or {@Q € H* | Nm(Q) > 1}.
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