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1 Introduction

Every day, more than 5 billion photos are captured worldwide, comprising mul-
tiple viewpoints of every monument, skyscraper, cafe, and concert on Earth.
Neural radiance őelds (NeRFs) present an exciting opportunity to process this
massive data into immersive visual experiences at a global scale. However, most
of these images remain siloed in personal camera rolls. Less than 2% of these cap-
tured photos are ever posted on the internet [25]. Even if these personal images
were made public, learning NeRFs for billions of scenes captured daily at a global
scale in a centralized fashion is computationally intractable. Therefore, to build
immersive visual experiences at a global scale, NeRFs must be decentralized to
handle high compute needs and avoid the undesired reconstruction of personal
content by a central entity, all the while ensuring photorealism (Fig. 1(a)).

Our framework, DecentNeRF, is the őrst attempt towards decentralized NeRFs
from crowd-sourced images. Images in public spaces are often composed of global

content,e.g., a monument that we would like to share with the world and a per-

sonal content, such as a friend posing in front of the monument that we would
like to keep to ourselves. Our key insight is that often global content is static

across users, and the personal content is dynamic, i.e., varies from user to user.
This association of global as static and personal as dynamic allows our approach
to perform global-personal separation in the captured images. Our approach
enables sharing only the global scene-speciőc 3D representations across users
instead of sharing the combined (global+dynamic) image as in a conventional
NeRF pipeline. In doing so, the server avoids the cost of centrally training NeRFs
by distributing the NeRF training computation across users. It also minimizes
the reconstruction of the undesired occlusions of personal user-speciőc content
at the server.

For a particular scene, we model the multi-view visual data as a combination
of a global radiance field for the 3D scene of interest and a personal radiance field

for the user’s personal information (transient across users). We propose feder-
ated learning [15] procedure to learn the global radiance őeld across users by
aggregating only the user’s global radiance őeld model (locally trained). Instead
of uniformly averaging the users’ weights as typical in federated learning [16],
we propose a novel federation procedure where the per-user scaling is learned
implicitly to maximize visual ődelity. To prevent the server from accessing the
individual user’s global radiance őelds, we use a secure multi-party computation
(SMPC) protocol [5] for aggregation. The secure aggregation minimizes the re-
construction of personal content by the server compared to existing approaches
during initial rounds of federation.

Our proposed framework, DecentNeRF is the őrst work to analyze the decen-
tralization aspects of radiance őelds for real-world crowd-sourced images. NeRF-
W [20] achieves the high visual quality of the public global scene from in-the-wild
crowd-sourced images but requires all the personal user images to be transferred
to a central server for training. This results in personal content directly being ac-
cessed by the server and high server compute(Fig. 1(b)). We address both these
limitations in our work. Works on federated learning of NeRFs [13, 31] demon-
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strate model compression and large scene modeling capabilities but assume the
images of static scenes devoid of users’ personal information. When dealing with
crowd-sourced data, these approaches not only allow the server to access personal
information without a secure aggregation protocol but also result in inaccurate
reconstructions (Fig. 1(b)). Our approach demonstrates high visual quality in
the global content compared to existing decentralized approaches, with ∼ 104×
lower compute than the centralized approach(Fig. 1(b)).

To summarize, we make the following contributions.

ś We introduce DecentNeRF, the őrst approach to address the challenges of
learning global 3D scene representations at scale from crowd-sourced images
in a decentralized manner.

ś Our method uses public-global separation and a novel learned federation
scheme to achieve high-quality reconstruction of 3D scenes with very low
server computing compared to prior works (Fig. 1(b)).

ś Our method outperforms existing federated learning NeRF techniques on
scene reconstruction quality while requiring ∼ 104× lower compute than
centralized approaches. We demonstrate this in simulated (Table 1) and
real-world crowdsourced scenes (Table 2).

ś We provide an analysis on how secure aggregation of user’s global NeRFs
in DecentNeRF reduces the reconstruction of personal content on the server
Fig. 7 for both datasets compared to prior works.

2 Related Work

3D from Unstructured Image Collection. Generating 3D scene represen-
tations for novel-view synthesis from an extensive collection of unstructured
images [28] has been explored in [7, 18, 20, 35]. However, these prior works are
centralized by nature - all the captured images are sent to the server for training
NeRFs. Our work, DecentNeRF, diverges from traditional work by focusing on
decentralization to 1) distribute the training compute to the users and thus scale
to billions of scenes and 2) avoid aggregating users’ images, which could contain
personal details. Our vision assumes NeRFs can be trained without users’ attri-
tion of mobile devices. Recent advancements in mobile NeRF renderings, such
as [6, 8], demonstrate the promise for eventual mobile deployment.
Federated Learning. In Federated learning (FL) [15, 16], each client device
trains the model parameters on-device using its own local data. The server then
performs a weighted average of the models to obtain a global model and this
process continues till convergence. The works in [13,31] apply federated learning
in the context of NeRFs for achieving the utility of 3D scene modeling. Since,
NeRFs are 3D representations sharing them instead of raw data would still lead
to reconstruction of the personal data. We instead model the local 3D scene
representation as a combination of a global radiance őeld for the 3D scene-
speciőc detaisls and a personal radiance őeld for the user-speciőc information.
This decoupling approach is reminiscent of parameter decoupling in personal-
ized federated learning [32]. However, unlike personalized federated learning, we
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We aim to develop a decentralized approach where a server can learn a 3D rep-
resentation of the restaurant, given such a cluster of users and their captured
images. This is a challenging problem as the learned scene representation must
encode both the appearance and 3D structure of the scene while not revealing the
personal image content to the server. To create a global-level 3D representation,
we can repeat this process for millions of users and locations (restaurants, mon-
uments, etc.) which puts a compute constraint on the server learning the scene
representation. This section highlights the key insights enabling our approach
to achieve photorealistic 3D reconstruction with minimal server computing and
undesired reconstruction of personal content.
Decentralization through Federated 3D Scene Representations. Neural
radiance őelds (NeRFs) excel at encoding 3D scene information using multilayer
perceptrons (MLPs) [21]. Existing decentralized solutions collaboratively learn a
shared NeRF MLP representation with each user’s local views [13]. The users can
reőne the MLPs locally and in parallel, offloading compute from the server. The
server only needs to aggregate user MLP updates into a combined shared MLP
and transmit this back to users for further reőnement. Over multiple federation
rounds, this approach aims to reconstruct a 3D scene with the shared MLP. Such
a federated method requires orders of magnitude less server computation than
centralized approaches, aligning with our decentralization goal.
Existing Federated NeRF performs poorly on crowdsourced images.
However, existing federated NeRF approaches assume input view consistency
- that any 3D point observed from users’ images is static. The underlying as-
sumption is that all users took all images at the same instant, only capturing
the global scene content and avoiding personal data. These assumptions do not
hold for crowdsourced images taken over months and contain personal content
like users, their food, or credit cards which are transient across users. Violations
of these assumptions would hamper reconstruction quality (Fig. 5) and leak per-
sonal content from the shared MLPs (Fig. 7). We now provide key insights into
how we can exploit the structure of these violations to learn photorealistic global
3D scene content in a decentralized manner.

1. Personal-Global Content Separation. Only the global scene-speciőc
content is 3D view-consistent (static) across users such as the columns and
most of the restaurant’s interior. By deőnition, all other 3D content would
be transient across users, be it non-personal like the wait staff or personal
and sensitive like the user, their, or the credit card on the table. To leverage
the juxtaposition between scene-speciőc and user-speciőc content, we pro-
pose encoding 3D appearance between personal and global MLPs in Sec. 4.2,
capturing personal and global content, respectively. Only the global MLP is
federated at the server to form the combined global MLP. This allows for
high-quality reconstruction of global content over multiple rounds of federa-
tion as shown in Fig. 2b (bottom).

2. Learned Federation. Users likely have different data distributions - num-
ber of views, disparity, and user/scene content ratios. Naive federated av-
eraging of global MLP [16] is suboptimal as shown in Sec. 6 and Fig. 4.
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4.1 Preliminaries

We state the assumptions necessary for our approach:
1. Personal content is transient across users. We assume not all clients
have taken images at the same instant, which is a realistic assumption for crowd-
sourced images. It ensures that the personal content is transient and not static
across users like the global content. 2. Sufficient overlap in views. Our ap-
proach assumes that no single user has views that don’t overlap with another
user. We expand more on this in Sec. 6.3. 3. Known camera poses. Our
NeRF pipeline assumes known, accurate camera poses. In centralized settings,
structure from motion (SfM) on image feature descriptors like SIFT can de-
rive relative camera poses using COMLAP [27]. Decentralized SfM is an active
research area [1, 10] and beyond the scope of this work.
Threat model. From a user’s perspective, the server and other users are un-
trusted. However, we assume no collusion between users to leak more information
than possible individually. Unlike differential privacy [11], which prevents iden-
tity leakage, we focus on preventing the reconstruction of user-speciőc semantic
personal information by the server. The server can try to reconstruct a target
user’s personal information from the averaged model updates. We currently limit
our scope to honest-but-curious servers who follow protocols but attempt to re-
construct raw data based on observations, leaving other attack types for future
work.
NeRF Backbone [21] At its core, NeRF trains a multi-layer perceptron (MLP)
that takes a 5D input vector: a 3D spatial coordinate x = (x, y, z) within the
scene, and pitch θ and yaw φ parameters of the viewing direction d. The MLP
outputs a scalar density σ and an RGB color vector c = (r, g, b). NeRF rendering
synthesizes images via volume rendering, sampling predicted color and density at
many points along rays traversing the scene. For a particular ray corresponding
to a pixel, the MLP predicts a color vector c = (r, g, b) and compares it with the
ground truth RGB value, using the loss to train the MLP weights. We refer the
reader to [21] for more details.

4.2 Personal-Global Content Separation

Consider a scene with K known users. For each user k, we model the scene using
global and personal MLPs (Fig. 3) with the MLP weights denoted as gk and pk

respectively. The personal MLPs are kept native to the user’s device. In contrast,
the global MLP captures shared global content (such as the landmark) across
users via federation. Each MLP outputs its scalar density σ and an RGB color
c = (r, g, b), so the rendered image is an alpha-composite of both output images.

Our architecture is inspired by NeRF in the Wild (NeRF-W) works in [7,20],
with each user essentially running NeRF-W locally. The global and personal
MLPs are analogous to the static and transient MLPs in the context of a single
user. However, the global-personal deőnition better suits the decentralized set-
ting since NeRF-W’s transient MLP will not separate all of the personal content
from the user. Imagine a subject being recorded in front of a monument with
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send_grads() This function is similar to send_wts in its design as each user
communicates its local gradients by performing randomized obfuscation to its
gradients in a similar way it performs obfuscation of the weights.

compute_grads() This function is relatively simple where each user calculates
the update step described in equation (2) and then updates αk accordingly.

4.5 Summarizing our algorithm

Putting together the building blocks developed above, our algorithm can be
summaries as (We refer the reader to the supplementary material for pseudo-
code of the detailed algorithm):

ś Assumes random initialization of global G(0) and personal MLP weights
P(0) at all K users.

ś (On the user) For each round the users return the current gm

k
and previous

rounds global MLP along with loss gradients of previous round global MLP
weights ∂Lk

∂g(m−1) . They also calculate the gradient updates for αk.

ś (On the server) For each round the weights and previous rounds gradients
are securely aggregated and sent back to the user.

5 Experimental details

5.1 Datasets

Novel Blender Dataset. To do a controlled study of the effects of varying
occluding personal content, number of users, and overlap of user views, we in-
troduce our own synthetic dataset. We do it by adding personal content in the
form of Lego people to the original blender dataset from [21]. The equivalent of
this would be actual people/occlusions in a real-world setting. Unless mentioned
otherwise, the dataset comprises 360-degree rotation with non-IID partitioning
of 18 degrees in yaw angle rotation of 100 images distributed equally among 20
users. Each view contains six Lego people, with one static person per user’s view
representing personal content. More details and examples from the novel dataset
are shown in the supplementary.
Phototourism Dataset. To evaluate the decentralization beneőts of our ap-
proach on a real-world dataset we also evaluate 3 scenes on novel-view synthesis
from unconstrained image collections: Brandenburg Gate, Trevi Fountain, and
Sacre Couer [28]. Our setup has 20 clients each with 10 images of 2x downsam-
pled resolution. Please refer to the supplementary for more details.

5.2 Baselines

We compare our solution with a centralized approach (NeRF-W [20]) and an
existing decentralized approach (FedNeRF [13]). We also run an ablation of our
approach without the learned federation federation.
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Bradenburg Gate Trevi Fountain Sacre Coeur
Photorealism Decentralization Photorealism Decentralization Photorealism Decentralization

PSNR↑ SSIM↑ LPIPS↓ Server FLOPs↓ PSNR↑ SSIM↑ LPIPS↓ Server FLOPs↓ PSNR↑ SSIM↑ LPIPS↓ Server FLOPs↓
NeRF-W 25.18 0.901 0.1927 ≈ 200 T 21.49 0.7206 0.2866 ≈ 250 T 20.58 0.7835 0.2305 ≈ 280 T
FedNeRF 18.92 0.8158 0.3528 ≈ 0.6 B 16.55 0.5774 0.4352 ≈ 1.2 B 15.41 0.6555 0.4072 ≈ 1.5 B
DecentNeRF 24.62 0.8802 0.2571 ≈ 5 B 20.61 0.6501 0.3963 ≈ 9 B 19.22 0.7259 0.3126 ≈ 10 B

Table 2: Quantitative performance on Phototoursim dataset [29]: Best and
second best results are highlighted in blue and orange respectively. DecentNeRF is
effective for real-world crowd-sourced datasets compared to other decentralized ap-
proaches [13] while using 10

4 less compute than centralized approaches [20].

of personal content. We render views for the server-accessible MLPs which would
be users’ Global MLPs for FedNeRF and Server Global MLP for DecentNeRF.

5.4 Implementation Details

We use a PyTorch Lightning implementation of NeRF-W [17] for centralized
evaluation. We implement the secure aggregation protocol, SecAgg [4], using
Flower [3]. Our approach differs from FedNeRF [13] as we employ a Personal
MLP, appearance embedding, secure aggregation, and learned weighted averag-
ing. Please refer to our supplementary material for training and model details.

6 Results and Analysis

6.1 Ablation on Learned Federation

To demonstrate the advantage of Learned Federation of weights in terms of
photorealism we created a Blender scene with 8 users - 4 with heavy occlusion,
and 4 with less occlusion overlapping the former. In Fig. 4 we compare our novel
learned federation approach with ablation using FedAvg aggregation strategy
trained on this scene. We also compare with FedNeRF. Our learned federation
learns to weigh users with less occlusion, boosting PSNR on global content (GT).
In real-world scenarios, DecentNeRF would access clients with varying occlusion
levels and learn to weigh them explicitly, without predeőned heuristics. This
allows for better optimization than existing FedAvg.

6.2 Photorealism and Decentralization analysis

Novel Blender Dataset. We do a quantitative and qualitative analysis of
photorealism and decentralization on our novel Blender dataset in Table 1 and in
Fig 5. Our results highlight that our approach requires ∼ 105× server compute
than a centralized approach with only a minimal decrease in photorealism as
opposed to FedNeRF which breaks in the presence of occlusion/personal content.
Phototourism Dataset. We do a quantitative comparison of DecentNeRF re-
construction performance on real-world crowdsourced Phototourism Dataset for
FedNerF, NeRFW, and our approach. In Fig. 6 and Table 2 the results tell
a compelling story that we are able to perform as well as the best perform-
ing centralized approach (NeRFW) in real-world scenes while several orders of
magnitude less server compute.
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