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ABSTRACT. Significance: Accurate identification between pathologic (e.g., tumors) and healthy
brain tissue is a critical need in neurosurgery. However, conventional surgical
adjuncts have significant limitations toward achieving this goal (e.g., image guidance
based on pre-operative imaging becomes inaccurate up to 3 cm as surgery pro-
ceeds). Hyperspectral imaging (HSI) has emerged as a potential powerful surgical
adjunct to enable surgeons to accurately distinguish pathologic from normal tissues.

Aim: We review HSI techniques in neurosurgery; categorize, explain, and summa-
rize their technical and clinical details; and present some promising directions for
future work.

Approach: We performed a literature search on HSI methods in neurosurgery
focusing on their hardware and implementation details; classification, estimation,
and band selection methods; publicly available labeled and unlabeled data; image
processing and augmented reality visualization systems; and clinical study
conclusions.

Results: We present a detailed review of HSI results in neurosurgery with a dis-
cussion of over 25 imaging systems, 45 clinical studies, and 60 computational meth-
ods. We first provide a short overview of HSI and the main branches of
neurosurgery. Then, we describe in detail the imaging systems, computational meth-
ods, and clinical results for HSI using reflectance or fluorescence. Clinical implemen-
tations of HSI yield promising results in estimating perfusion and mapping brain
function, classifying tumors and healthy tissues (e.g., in fluorescence-guided tumor
surgery, detecting infiltrating margins not visible with conventional systems), and
detecting epileptogenic regions. Finally, we discuss the advantages and disadvan-
tages of HSI approaches and interesting research directions as a means to encour-
age future development.

Conclusions: We describe a number of HSI applications across every major
branch of neurosurgery. We believe these results demonstrate the potential of
HSI as a powerful neurosurgical adjunct as more work continues to enable rapid
acquisition with smaller footprints, greater spectral and spatial resolutions, and
improved detection.
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1 Introduction

Optical imaging approaches have transformed surgery via improved intraoperative detection of
both normal and diseased tissues.'™ Technologies that jointly leverage optics, computational
methods, and visualization tools have facilitated this unparalleled transformation, with several
successful commercial technologies in areas such as surgical robotics®® and image->*° and fluo-
rescence-guided”'” surgery. Image-guided surgery allows for the clinical deployment of optical
imaging systems that are non-invasive and non-ionizing, which in turn can be used for intra-
operative computer vision,'! tactile sensing,'> manipulation, and tracking algorithms'? that have
a relatively compact footprint and allow for rapid acquisition.

As an example, images acquired via a surgical endoscope, processed through computer
vision pipelines,'* have been used for post-surgical analysis of the surgical workflow,'>'® includ-
ing recognizing surgical goals, predicting the current task being performed, segmenting and rec-
ognizing relevant landmarks during surgery, evaluating the difficulty of the surgical plan, and
surgeon skill.!! In addition, visual instrument detection and tracking methods for minimally inva-
sive surgeries have been developed and validated on surgical videos.'* Autonomous, high-
precision, and dexterous surgical instrument manipulation for surgery and remote telesurgery
has been made possible®!’!” through deep learning methods at precisions previously thought
impractical.® Recently developed image-guided surface sensing systems, such as the GelSight
sensor,”’ can provide joint micron-scale topography (2.5-dimensional depth data) and tactile
feedback more sensitive than human skin.?' The demonstrated effectiveness of these approaches
suggests exciting potential prospects for intraoperative applications.

A promising approach in image-guided surgery is hyperspectral imaging (HSI),>>> which
captures wide-field, spectrally resolved images of the surgical field. HSI systems have been
deployed successfully for applications in remote sensing, astronomy, agriculture, and
surveillance.’*?® Hyperspectral data can be interpreted as an “optical fingerprint” of the material
being analyzed (e.g., diffuse reflectance properties) and can be used for material recognition and
classification.””> Therefore, HSI can enhance visualization of tissue structure and composition
in image-guided surgery, aiding in guiding diagnosis and treatment.

In this paper, we review the applications of HSI in neurosurgery, focusing on specific HSI
techniques and their medical implementations and benefits in clinical practice. Specifically, we
provide the reader with an up-to-date review of how HSI has been implemented clinically and,
thus, focus on HSI systems and techniques used in clinical studies only. We begin with prelimi-
naries (Sec. 2), which include an overview of the major subspecialities in neurosurgery
(Sec. 2.1), followed by a short review of current HSI techniques (Sec. 2.2). We then discuss
the benefits and challenges of HSI in neurosurgery (Secs. 2.3 and 2.4). Next, we proceed with
an in-depth review of HSI technologies and their clinical applications for imaging under white
light in reflectance mode (Sec. 3) and for imaging fluorescence in fluorescence-guided surgery
(Sec. 4). We have broken up Secs. 3 and 4 into technological subsections—imaging hardware
and software (Secs. 3.1 and 4.1), datasets (Sec. 3.2), and visualization tools (Sec. 3.3)—and
followed them up with clinical implementations of and results from these HSI technologies
(Secs. 3.4 and 4.2). By separating each section into technological and clinical subsections, the
readers will be able to refer to more detailed technological aspects of HSI (e.g., imaging systems,
computational methods, datasets, and visualization techniques) or the clinical results and imple-
mentations of these technologies in the various subspecialties of neurosurgery. We also provide
in-depth tables that summarize the technological and clinical subsections for ease of reference.
Finally, we discuss future perspectives on HSI as a novel tool with the potential to become a
standard adjunct in image-guided neurosurgery (Sec. 5).
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2 Preliminaries

2.1 Neurosurgery

Neurosurgery is the branch of medicine that treats disorders of the central nervous system (CNS)
or peripheral nervous system (PNS) by physical manipulation, modification, or modulation of
anatomical (e.g., the subthalamic nucleus for deep brain stimulation) and pathological (e.g.,
aneurysm clipping and resection of brain tumors) structures.*~** In terms of research and clinical
techniques, neurosurgery is among the most rapidly developing subspecialties of medicine,*®
propelled by the interdisciplinary integration of tools from imaging, molecular biology, cancer
neuroscience, electrophysiology, brain mapping, neuroengineering, computational biology, bio-
informatics, and robotics. Clinically, neurosurgery is composed of the following subspecialties:

“Neurosurgical oncology” is the surgical branch of neuro-oncology focused on the diagno-
sis, treatment, and long-term management of tumors of the CNS and PNS. Surgical resection is
the primary course of treatment for a large set of tumors. The success of tumor resection is one of
the most important initial predictors of overall survival and quality of life.*”*® Therefore, the goal
of tumor surgery is to maximize the extent of tumor resection (EOR) while preserving the func-
tional brain to ensure high post-operative functional outcomes (i.e., achieving an oncofunctional
balance®~**). However, rates of EOR can be as low as 30% as reported by post-operative,*
standard-of-care magnetic resonance imaging (MRI) using conventional surgical techniques.

Conventional resections are performed under white light illumination with or without mag-
nification (e.g., using microscopes or surgical loupes). In these procedures, the surgeon uses the
cues from visual white light and tactile feedback to determine which tissue to resect and which to
preserve.*! However, because brain tumors often appear visually similar to normal brain tissue,
residual tumors often remain unresected, leading to low rates of maximal EOR. This is especially
problematic in infiltrative areas of the most aggressive malignant tumors, such as glioblastomas
(GBMs).*! Surgical adjuncts such as intraoperative MRI (iMRI), intraoperative ultrasound (US),
and neuronavigation can improve visualization and intraoperative surgical decision-making.
Despite their benefits, these tools have limitations including disruption of the surgical workflow,
inaccurate spatial information due to brain shift, low contrast (normal tissue versus pathology),
and high costs.*® Therefore, there is an acute need for real-time, high-resolution technologies that
accurately delineate tumors from normal brain tissue in neurosurgical oncology.*’~>>

“Vascular neurosurgery” is the branch of neurosurgery focused on the diagnosis and surgical
treatment of blood vessel pathologies of the nervous system.*® This encompasses a variety of
conditions including aneurysms, arteriovenous malformations (AVMs), stroke, and hemorrhage.
The primary aims of surgical treatments include restoring normal blood flow to the brain, pre-
venting blood clot formation and stroke, repairing vascular pathologies (e.g., aneurysms and
fistulas), and resecting vascular lesions (e.g., AVMs and cavernomas). Given that the spatial
scale of vascular structures in the nervous system is of the order of millimeters, submillimeter
precision and real-time intraoperative feedback are critical to safely treat pathologies while pre-
serving normal vasculature. Although intraoperative three-dimensional (3D) digital subtraction
angiography provides visualization of the neurovasculature in 3D as well as differentiates its
venous and arterial components,™ it does not provide direct intraoperative visualization of vas-
culature and pathology at the tissue level. Intraoperative Doppler US can detect blood flow,>* but
it is constrained in resolution (i.e., millimeters) and field of view (i.e., single point detection) and
is sensitive to patient motion. Intraoperative indocyanine green (ICG) fluorescence angiography
provides real-time intraoperative feedback with surface visualization of vasculature using ICG
fluorescence, which accumulates in the blood vessels.”> However, visualization of vasculature
and pathologies is transient (i.e., ICG signal washes out shortly after administration), is useful
only for surface imaging, and is not specific to pathologies as it accumulates in all normal and
abnormal vasculature.’® Therefore, there is an acute need for real-time, non-transient, and highly
specific intraoperative imaging technologies that can distinguish between normal and pathologi-
cal neurovasculature for visual feedback in vascular neurosurgery.

“Functional neurosurgery” is the surgical branch of neurosurgery that treats various chronic
neurologic disorders of the brain through functional modification. These disorders include epi-
lepsy, movement disorders, pain, spasticity, and psychiatric illnesses.” One example of func-
tional neurosurgery is the treatment of intractable epilepsy via surgically resecting the
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epileptogenic area, which is the area of the brain where seizures are believed to originate. The
goal of this surgery is to eliminate or decrease the frequency and severity of seizures.”’ In epi-
lepsy surgery it is important to map out the affected area of the brain, typically with intraoperative
electrocorticography (ECoG).*® During this procedure, a grid of electrodes is placed on the cortex
to measure electrical activity and identify regions with abnormal signals that might indicate seiz-
ure origin. However, intraoperative ECoG interrupts the surgical workflow by requiring electrode
placement, signal measurement, signal interpretation, electrode removal, and co-registration of
electrode locations with signal origins on the brain. In addition, recordings can take a few
minutes to complete and interpret. The resolution of ECoG is dependent on the intrinsic spacing
within the electrode array, with spatial resolutions of up to a centimeter using conventional grids.
There is also a risk of infection associated with the use of such an electrode array with long-term
monitoring. As such, imaging techniques that provide visualization of the epileptogenic regions
would enable real-time feedback and ideally more accurate identification of the seizure-causing
regions. Overall, there is a need for imaging technologies that provide functional neurosurgeons
with real-time and highly specific identification of normal and abnormal functions in the nervous
system.

“Spine surgery” is the surgical branch of neurosurgery that treats disorders affecting the
spinal cord.*® Spine surgery can address issues such as spinal deformity, nerve compression,
pain, and neurological deficits due to disorders of the spinal cord and nerves. Surgical navigation
has become critical in spine surgery to perform accurate manipulation of bony structures while
preventing damage to the spinal cord and its surrounding neural elements. Such navigation is
typically done with fiducial markers placed on the skin and spine, but these can get obscured,
deformed, or displaced during surgery,”® compromising accurate real-time guidance. It is there-
fore clear that to enhance the accuracy and safety of spine surgery, there is a pressing need for
non-invasive real-time tracking systems and algorithms. These advanced technologies will pro-
vide better guidance during surgical procedures, ensuring more effective treatment of spinal dis-
orders and improved patient outcomes.

“Other subspecialties” of neurosurgery include trauma and peripheral nerve surgery.
However, there has been no clinical work with HSI in these subspecialties, so we will not discuss
them here.

2.2 Hyperspectral Imaging

HSI is the acquisition of high-resolution spectra over a wide field of view. HSI allows for captur-
ing a 3D hyperspectral cube of size H X W X N, where H and W are the height and width of
images in the cube, respectively, and N is the number of wavelength channels [Fig. 1(a)]. The
value of N roughly distinguishes it from multispectral imaging, a spectrally resolved imaging
paradigm that uses fewer, broader spectral bins. Here, we define a multispectral system to have
less than 10 wavelength channels (N < 10) and a hyperspectral system to have more than 10
(N > 10). Each H x W channel in the cube is equivalent to a two-dimensional (2D) image that
would be captured by placing an appropriate bandpass spectral filter in front of the camera.
Capturing spectral data in addition to spatial information can be used to determine the compo-
sition of the contents of the imaged scene.’’**® An in-depth review of the construction and
properties of such systems can be found in the literature,’"*> and we discuss only the essentials
here. HSI technologies relevant to neurosurgery and their general specifications are illustrated in
Fig. 1. Acquisition of a 3D hyperspectral image cube with a 2D camera sensor, however, is not
straightforward. Thus, several techniques for the capture of hyperspectral image cubes have been
developed, each with its own unique advantages and pitfalls.®!¢?

“Point scanning methods” (also referred to as whiskbroom scanners) operate using a single
detector or a small array of detectors to sequentially scan the scene, capturing spectral data pixel
by pixel. Although this method provides high spectral resolution, the point-scanning approach
needs M = HW acquisitions, which for megapixel-sized images is time-consuming and limits
their use to imaging static scenes and/or small fields of view [Fig. 1(b)].

“Line scanning methods” (also referred to as pushbroom scanners) encode spectral data in
one spatial dimension, allowing parallel measurement of the other spatial dimension. Typically,
these methods use a linear array of detectors aligned perpendicular to the scanning direction (say,
along the H dimension), capturing spectral data row by row. This approach reduces the number
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Fig. 1 Hyperspectral imaging technologies used in neurosurgery. (a) Hyperspectral image cube is
an array of size W x H x N, where W and H are the width and height, respectively, of images in the
cube along the x and y spatial dimensions, and N is the number of wavelength channels along the
Adimension. Each W x H channel in the cube is equivalent to an image that would be captured by
placing an appropriate bandpass spectral filter in front of the camera. (b) Point scanning methods
acquire a complete spectrum at a single (x, y) pixel coordinate (i.e., “point”), scanning along the
x and y spatial dimensions to reconstruct the full 3D hyperspectral cube. (c) Line scanning meth-
ods acquire 2D data of size W x N along one x spatial dimension, scanning along the y spatial
dimension (i.e., “line”) to reconstruct the full 3D hyperspectral cube. (d) Spectral scanning methods
acquire 2D data images of size W x H at one 1 wavelength channel, scanning along the 1 wave-
length dimension (i.e., “spectral”) to reconstruct the full 3D hyperspectral cube. (e) Snapshot meth-
ods acquire the full 3D hyperspectral image cube of size W x H x N with each single acquisition
(i.e., “snapshot”).

of acquisitions to M = W, which significantly reduces acquisition time compared with point
scanners. However, the acquisition of thousands of line scans still comes at a high time cost.
These are the most widely available systems®~°° used abundantly in HSI applications [Fig. 1(c)].

“Spectral scanning methods” image one spectral channel (i.e., one waveband) in the hyper-
spectral cube at a time and employ a tunable bandpass spectral filter to capture sequentially 2D
images at each spectral channel. Spectral scanners offer the flexibility to acquire cubes over a
programmable set of wavelengths with selectable spectral resolution. High-spectral-resolution
cubes come at a high time cost, especially when considering their use in the dynamic, fast-paced
surgical setting. Typical tunable filters used are liquid crystal tunable filters (LCTFs)®” and
acousto-optic tunable filters®® [Fig. 1(d)].

“Snapshot methods™®®"! capture a hyperspectral cube with complete spatial and spectral
information in a single exposure. Snapshot acquisition is achieved by space division multiplexing
of the sensor over the spatial and spectral dimensions, similar to a plenoptic camera.”® In this
approach, the sensor area is distributed over a number of parts equal to the number of spectral
channels. Each of these parts images a wide-field image corresponding to one spectral channel,
and these parts are stacked together to form the hyperspectral cube. This technology is facilitated
by new optical designs incorporating lenslet arrays’"’"">"* and varying filtering and dispersion
strategies. This rapid acquisition enables the use of snapshot systems in applications requiring
real-time hyperspectral feedback, such as in intraoperative image guidance, where long scan
times or bulky scanning hardware can interfere with the surgical workflow. However, space divi-
sion multiplexing requires a trade-off between spatial and spectral resolutions for equivalent
acquisition times—as we increase the number of parts, the sensor is segmented into fewer pixels
available for each part [Fig. 1(e)].

“Snapscan systems” combine the benefits of snapshot and line scanning hyperspectral sys-
tems. Such systems are built with mosaic filter arrays as in snapshot systems but employ internal
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scanning of the mosaic and computational reconstructions to yield fast, high-resolution hyper-
spectral cubes.”

“Compressed sensing methods” exploit the regularity in natural signals to obtain an approxi-
mation to the hyperspectral cube.”® An example of such regularity is the sparsity of individual
spectral channels in the spatial frequency domain, which is the subject of a classic signal process-
ing technique called compressed sensing. Such systems have the capability to provide video-rate
hyperspectral acquisition with high spatial resolution for scenes that follow its assumptions.”” In
addition, such methods can also implement programmable spectral filters’® in addition to band-
pass filters, which allow for matched filtering of spectral signals for classification and segmen-
tation applications.

2.3 Benefits of HSI in Neurosurgery

As mentioned before, the spectrum in one pixel of the hyperspectral cube contains the optical
signature or “optical fingerprint” of the imaged scene point at that spatial coordinate (Fig. 2).
This fingerprint can include fluorophores [e.g., protoporphyrin IX (PpIX)] and/or chromophores
(e.g., oxy- and deoxyhemoglobin) that differentially accumulate in tissues. This fingerprint is
representative of the tissue composition of the imaged scene point—typically, bulk brain tissue,
arterial blood vessels, venous blood vessels, various types of tumors, and background. HSI is
particularly useful when classifying these kinds of tissue because reflectance and fluorescence
spectra obtained with the hyperspectral cubes have high discriminative power that has been
widely characterized.”*?

As an example of this high discriminative power in the context of vascular neurosurgery,
consider a pixel consisting of a blood vessel. The main chromophores involved in the reflectance
spectrum of this pixel are oxyhemoglobin and deoxyhemoglobin. The reflectance spectra of
deoxyhemoglobin and oxyhemoglobin, which are equal at 545 nm, change rapidly in opposite
directions between 545 and 560 nm. Therefore, spectrally resolved imaging in the visible range
of the spectrum allows for highly accurate estimates of the relative concentrations of deoxyhe-
moglobin and oxyhemoglobin, allowing optical measurements of oxygen saturation.

In addition to pixel-wise classification of tissue constituents, hyperspectral data enable other
kinds of optical characterization across the surgical field of view. The rich data encoded in each
hyperspectral cube offer the potential to extract optical features that would otherwise be impos-
sible to detect visually with the naked eye or with a conventional color image.®”** For example,
spectrally resolved wide-field data have been shown to correct for the distorting effects of tissue
optical properties on emitted fluorescence signals,* which opens the possibility for using HSI to

Intensity (a.u)
o
wv

0 e e——————
400 450 500 550 600 650 700 750 800 850 900
A (hm)
—PpIX —ICG NADH FAD Lipofuscin Ppp
Product Il - Product Il - Oxy hemoglobin - -Deoxy hemoglobin - - Tissue reflectance

Fig. 2 Spectra of fluorophores, chromophores, and reflectance in the visible to near-infrared (NIR)
used in HSI for neurosurgery. HSI in neurosurgery has used both exogenous agents, such as
5-aminolevulinic acid that leads to the production of protoporphyrin IX (PplX), and ICG as key
fluorescence biomarkers in fluorescence guided surgery (FGS), with their fluorescence spectra
shown in black. Other endogenous fluorophores (e.g., FAD, NADH) are shown in blue, and
PpIX photoproducts as well as tissue reflectance and chromophores (e.g., oxy- and deoxyhemo-
globin) are shown in red. The y-axis shows the intensity of fluorescence emission, reflectance, or
absorption in arbitrary units, and the x-axis shows the wavelength 4, in nanometers.
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evaluate the surgical field of view and provide quantitative, objective measures of fluorescence
and therefore absolute fluorophore molar concentrations.®’

Putting all these capabilities together with modern acquisition techniques from optics and
computational imaging, advances in computational methods and hardware, and segmentation
and classification with artificial intelligence,*® HSI has the potential to be a powerful tool for
real-time intraoperative guidance.

2.4 Challenges in Current Neurosurgical HSI Approaches

Translating an optical system for clinical use into the neurosurgical operating room presents
unique challenges not encountered in traditional benchtop imaging settings for pre-clinical
studies®’ (Fig. 3). The fundamental principle for translation of a novel HSI system into the oper-
ating room is that any system and imaging process must not significantly interfere with or inter-
rupt the neurosurgical workflow; it should enable ease of integration, safety, and efficiency for
dynamic intraoperative use. A major practical consideration is the size of the imaging system.
The spatial footprint of the optical setup must be as small as possible to seamlessly integrate and
“fit” into the already instrument-dense neurosurgical operating room (consisting of, for example,
the surgical microscope, US imager, ultrasonic aspirator, neuronavigation, drill, and suction
control).

Next, the hyperspectral image captured by the system should be as high-quality as possible,
while being as close to real-time as possible (~10 Hz), consistent with other intraoperative im-
aging modalities such as US imaging, neuronavigation feedback, microscope visualization, and
3D exoscope imaging. For the hyperspectral data to be useful for surgical guidance, it must fulfill
certain basic constraints in addition to real-time acquisition. First, structures in the brain visu-
alized intraoperatively are of the order of millimeters. Therefore, submillimeter resolution over a
surgical field of view of the order of centimeters is critical. Second, the spectral bandwidth of the
fluorescence peaks of commonly used fluorophores may be as narrow as nanometers, requiring
spectral resolutions of a few nanometers. Lastly, as light is split into spectral channels in the
already light-starved conditions of fluorescence imaging, the hyperspectral system sensor should
have high quantum efficiency, high bit depth, and low dark noise to enable short exposure times.

The speed of hyperspectral acquisition is constrained by the space—spectrum—sensitivity
trade-off. Therefore, these conditions are all difficult to satisfy together. The most common,
line-scan hyperspectral imagers provide high spectral and spatial resolutions in one spatial
dimension [Fig. 3(a)]. However, providing equivalent resolution in the second spatial dimension
for surgically relevant scales is time-consuming (typically tens to hundreds of seconds). To be
more sensitive to low-intensity fluorescence signals, existing spectral scanning methods

(d)

lntraoperative HSI |-
acquisitiongystem |

lllumination
device =<

Fig. 3 HSI systems in neurosurgery. (a) HELICoiD system uses an exoscope with two line-scan
hyperspectral cameras mounted in a confocal configuration. The HELICoiD system fits within a
60 x 60 x 90 cm bounding and requires removing the surgical microscope for acquisition, thus
interrupting the surgical workflow. (b) Small footprint handheld HSI snapshot system does not
require removing the surgical microscope but does not provide the same field of view as seen
from the surgeon’s oculars. (c) and (d) HSI systems [spectral scanning in panel (c) and snapscan
in panel (d)] mounted on one of the side ports of the surgical microscope enable the acquisition of
3D hyperspectral image cubes co-registered with the surgeon’s field of view with a small physical
footprint to seamlessly integrate into the already space-constrained neurosurgical operating room.
(a) Adapted from Leon et al.,® under CC-BY 4.0. (b) Adapted from MacCormac et al.,®® under CC-
BY 4.0. (c) Reproduced from Valdés et al.,*” under CC-NC-SA 3.0. (d) Adapted from Kifle et al.,*°
under CC-BY 4.0.
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[Fig. 3(c)] typically increases exposure times, decreasing hyperspectral cube acquisition rates.
Snapshot and snapscan HSI systems’®’"7>“! [Figs. 3(b) and 3(d)] can potentially provide fast
frame rates for hyperspectral acquisition.®”%”*>~** However, they sacrifice spatial resolution to do
s0, also increasing exposure if increased sensitivity is needed. Managing this balance among the
imaging parameters to construct clinically practical and effective systems is one of the most
important open problems in neurosurgical HSL

3 Neurosurgical HSI in Reflectance Mode

Traditionally, neurosurgery has been performed under white-light illumination provided by
xenon or halogen lamps.” The spectral distributions of such illumination extend across the vis-
ible-near-infrared (VIS-NIR) range of the optical spectrum, where the optical properties and
reflectance spectra of various types of brain tissue, intracranial structures (e.g., arteries, veins,
and nerves), pathologies (e.g., tumors, aneurysms, hemorrhages, and abscess), and their molecu-
lar constituents (e.g., oxyhemoglobin and deoxyhemoglobin) have been well-characterized.”*
Therefore, HSI systems can be used across subspecialties in neurosurgery to serve a common
purpose—to determine the composition of what the surgeon sees in the surgical field of view.

For example, in neurosurgical oncology, the aim is to determine the presence or absence of
tumor in the field of view, to classify tumor type, and to identify background tissue (Fig. 4). In
vascular neurosurgery, the aim is to image blood perfusion and oxygen saturation. In functional
neurosurgery, the aim is to identify the epileptiform regions by measuring neurovascular cou-
pling. In spine surgery, the aim is to track surgical field skin features for intraoperative navigation
without the use of fiducial markers. Here, we provide a detailed presentation of the optical
designs of HSI systems that have been implemented in the neurosurgical operating room.
These systems along with their parameters are discussed in Sec. 3.1 and summarized in Table 1.

To process, interpret, and visualize the hyperspectral data captured with these HSI systems,
accompanying computational methods have been developed. For example, in neurosurgical
oncology, a number of classification and segmentation algorithms label every pixel in the surgical
field as normal tissue, tumor (primary or secondeury),96 necrosis,”” blood vessel (artery or vein),98
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Fig. 4 Reflectance spectra of normal brain and brain tumors. (a) and (b) Reflectance spectra of
normal tissue (NT) and tumor tissue (TT) and blood vessels (BVs) are significantly different in the
visible-NIR regime. (c)—(f) Significant differences are observed in the reflectance spectra from dif-
ferent grades of primary tumors (low grade, high grade, grade 1, grade 2, grade 3, and grade 4) as
well as in metastases (i.e., secondary). These differences in reflectance spectra enable the clas-
sification of the field of view into the brain parenchyma, blood vessels, and tumor tissue, along with
subclassification into arteries, veins, and various tumor types and grades. The y-axis shows the
reflectance of tissue in arbitrary units, and the x-axis shows the wavelength 1 in nanometers.
Adapted from Leon et al.,®® under CC-BY 4.0.
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Table 1 Technical specifications of current hyperspectral imaging systems in neurosurgery (as applied in individual work).

Frame
rate

Sensor Wavelength ~ Spectral ~ Spectral Field of Pixel Spatial per line/ Total
HIS system Clinical application HIS tech tech range bands resolution view resolution resolution channel) time
Neurosurgical oncology—reflectance
Headwall Tumor segmentation Line detection, Silicon 400 to 826 2t0o 3 nm 230 mm 1787 (max) x 129 um 90 fps 80 s
Hyperspec® from normal tissue, scanned CCD, 1000 nm 172 5nm (max) x 1004 480 pym 100 fps 40 s
VNIR A-series, blood, and back- manually on a InGaS 900 to 129 mm 479 (max) x
Headwall ground'12-115.146,147 translation stage 1700 nm 230 mm 320
Hyperspec® (max) x
NIR 100/U 153 mm
Specim Brain tissue Pushbroom CCD 400 to 1040 2.8 nm N/S N/S N/S N/S N/S
ImSpector VNIR classification®” 1000 nm
V10-E spectrograph
Headwall Tumor segmentation Line detection, Silicon 400 to 826 2to 3 nm 230 mm 1787 (max) x 129 ym 90 fps 80s
Hyperspec® from normal tissue, scanned CCD 1000 nm (max) x 1004
VNIR A-series blood, and manually on a 129 mm
(only) background®:9699.116.119,  trang|ation stage

122,127,131,132,140,148,174

IMEC snapshot Brain tissue Snapshot CMOS 676 to 25 12 nm N/S 410 x 216 N/S N/A N/S
multispectral SM5x5  classification®3 954 nm (inf.)
Ximea MQO22HG-  Brain tissue Snapshot CMOS 665 to 25 14 nm N/S 409 x 217 N/S 170 fps 70 ms
IM-SM5X5-NIR classification® 150 975 nm (inf.)
TIVITA tissue Brain tissue Pushbroom CMOS 500 to 100 5nm 60 mm x 640 x 480 110 to 100 fps ~6s
camera classification®” 1000 nm 70 mm 125 um (inf.)
IMEC snapscan Brain tumor Snapscan CMOS 470 to 150 10 to N/S 3600 x 2048 N/S N/A 2t020 s
VNIR 150 identification®® 141 900 nm 15 nm
BaySpec OCITM-D- Brain tumor Snapshot N/S 475 to 35 to 40 12 to N/S 500 x 270 N/S 50fps 20us—-1s
2000Ultra-compact  identification® 875 nm 15 nm

hyperspectral
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Table 1 (Continued).

Frame
rate

Sensor Wavelength  Spectral ~ Spectral Field of Pixel Spatial per line/ Total
HIS system Clinical application HIS tech tech range bands resolution view resolution resolution channel) time
Cubert Ultris X50 Evaluation of snapshot Snapshot CMOS 350 to 155 4 nm N/S 570 x 570 N/S 1.5 fps 0.67 s

hyperspectral imaging in 1000 nm
neurosurgery®®

Neurosurgical oncology—fluorescence
Custom Residual brain tumor Spectral CCD 495 to 5 20 nm 3cm 755 x 484 150 um N/S 15s
multispectral detection®® scanning 720 nm diameter
system
CRi VariSpec Brain tumor Spectral CCD 400 to 33 20 nm at 25.4 mm 512 x 512 200 ym 6s 120 s
LCTF + PhotonMax identification'” scanning 720 nm 550 nm
CRi VariSpec PplX concentration Spectral CCD 400 to 55 (WL) 5nm(WL) 10to50 mm x 696 x 520 N/S N/S 4t016s
LCTF + pco.pixelfly estimation®”:84 scanning 720 nm 75 (FL) 3 nm (FL) 7.5t040 mm
CRi VariSpec PplIX concentration Spectral CMOS 400 to N/S N/S N/S 2560 x 2160 N/S 50 ms 10t0 30 s
LCTF + pco.edge  estimation?'!21® scanning 720 nm
CRi VariSpec PplX concentration Spectral EMCCD 400 to 52 (WL) 3nm(WL) 20 cm? 512 x 512 N/S 10 to 1.04 to
LCTF + hNu estimation®!” scanning 720 nm 52 (FL) 3 nm (FL) 100 ms 104 s
EMCCD
CRi VariSpec PpIX concentration Spectral EMCCD 400 to 33 (WL) 10 nm N/S 1024 x 1024 N/S >100 ms 26.4 s
LCTF + ORCA- estimation®?! scanning 720 nm 33 (FL)
Flash4.0
CRi VariSpec PplX concentration Spectral sCMOS 420 to 63 (WL) 5nm (WL) N/S ~2048%x~2048 N/S >100 ms N/S
LCTF + Sony estimation®* 198199201, scanning 730 nm 104 (FL) 3 nm (FL) (variable
IMX252 202,222,223,226 across work)
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Table 1 (Continued).

Frame
rate
Sensor Wavelength ~ Spectral  Spectral Field of Pixel Spatial per line/ Total

HIS system Clinical application HIS tech tech range bands resolution view resolution resolution channel) time
Senop HSC-2 PpIX concentration visual Spectral CMOS 510 to 4 20 nm N/S 1024 x 1024 N/S 65.9 ms 0.46 s

versus machine threshold scanning 635 nm

comparison®®
Vascular neurosurgery
Eba Japan Oxygenation Pushbroom CCD 400 to 81 5 nm N/S 640 x 480 N/S 30 fps 5t016's
HSC1700 mapping'®'156 800 nm
IMEC snapshot Distinguishing blood Snapshot CCD 480 to 16 15 nm 13 cm? 256 x 512 100 ym 20 fps <50 ms
multispectral and blood vessels'” 630 nm
Functional neurosurgery
CRi VariSpec LCTF Imaging epileptiform Spectral CCD 480 to 4 N/S N/S 1392 x 1024 N/S N/S N/S
+ pco.pixelfly regions'® scanning 660 nm
IMEC snapshot Imaging neurovascular Snapshot CMOS 480 to 16 15 nm 13 cm? 256 x 512 100 ym 10 to 25 to
multispectral coupling®? 160 630 nm 20 fps 95 ms
Ximea MQO22HG-  Intraoperative brain Snapshot CMOS 665 to 25 13 nm N/S 409 x 217 N/S 170 fps 14 fps
IM-SM5X5-NIR mapping 52163 960 nm (inf.)
Spine surgery
Quest Medical Markerless positioning Snapshot Silicon 450 to 41 ~12 nm 15x15 cm 500 x 250 30 um (inf.) 16 fps N/S
Imaging BV Hyperea during spine surgery®® ccD 950 nm
IMEC snapscan Tissue classification Snapscan CCD 470 to 150+25 10 to N/SN/S 3650 x 2048 N/S N/S 2t040s
VNIR, Photonfocus in spine surgery'®’ Snapshot 900 nm 15 nm 409 x 217 N/S 50 fps 1s
(MV0-D2048x1088- 665 to 15 nm
C01-HS02-160-G2) 975 nm

N/S, not specified; N/A, not applicable; WL, white light; FL, fluorescence
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Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. ..

dura mater,”® hypervascularized tissue,” skull,'™ or background. Similarly, spectral fitting meth-
ods process HSI data captured during vascular and functional neurosurgery to yield perfusion and
oxygenation maps.’>'%"=19 Along with details on optical hardware, we also present a brief review
of these computational methods in Sec. 3.1 and summarize their pipelines, validation methods,
and best results in Table 2. For a more detailed review of such computational methods, please
refer to Massalimova et al.'®

3.1 Imaging Hardware and Software
3.1.1 Neurosurgical oncology

HSI for use in neurosurgical oncology was introduced by Gebhart et al.'” in 2007 with the use
of a Varispec VIS-20 LCTF from Cambridge Research Instruments, Inc.'”® coupled with a
512x 512 PhotonMax electron multiplying charge-coupled device (EMCCD) camera'®
mounted on a surgical microscope to measure intraoperative autofluorescence and diffuse reflec-
tance spectra with acquisition times of 5 min. Here, the authors did not solely use reflectance but
rather both reflectance and autofluorescence measurements to determine a reflectance/autofluor-
escence ratio for optimal identification of tumor tissue. Similar to the previous approach, Valdés
et al.%” used a Varispec LCTF coupled with a pco.pixelfly charge-coupled device (CCD)
camera''’ on a surgical microscope (Zeiss OPMI Pentero) [Fig. 3(c)] to measure the reflectance
and fluorescence spectra in a fluorescence correction algorithm to enable more accurate meas-
urement of tissue fluorophores during brain tumor resection. Here, both approaches did not
solely use reflectance measurements for tissue identification. Instead, they coupled their reflec-
tance measurements with fluorescence to enable tumor tissue identification, which will be dis-
cussed in more detail later (see Sec. 4). It was not until 2016 with the kickoff of the European
Hyperspectral Imaging Cancer Detection (HELICoiD) project''! and the development of the
HELICoiD demonstrator by Salvador et al.!'> and Fabelo et al.,''* where HSI of reflectance was
used solely for tumor tissue identification.

The HELICoiD demonstrator consists of a pair of line sensor hyperspectral cameras
mounted on a custom optical breadboard in the operating room [Fig. 3(a)]. These cameras,
bought off-the-shelf from Headwall Photonics,** are the CCD-based Hyperspec® VNIR A-series
operating in the VIS-NIR wavelength range (400 to 1000 nm, 826 spectral bands, 2- to 3-nm
resolution, 90 frames/s) and the InGaS-based Hyperspec® NIR 100/U operating in the NIR
short-wave infrared (SWIR) wavelength range (900 to 1700 nm, 172 spectral bands, 5-nm res-
olution, 100 frames/s). The cameras are set up in a confocal stereo configuration with matched
fields of view, at an imaging distance of 40 cm and surgical field clearance of 29 cm. The entire
imaging assembly is mounted on a translation stage to implement pushbroom scanning
[Fig. 1(c)]. The demonstrator system uses a 150-W quartz—tungsten—halogen (QTH) bulb with
a spectral range of 400 to 2200 nm, passed through an optical fiber to a cold light emitter. This
ensures that the heat from the QTH bulb is not transmitted to the tissue to avoid tissue damage.
Follow-up work in the HELICoiD project used other hyperspectral line cameras, such as the
Specim ImSpector® VNIR V10-E spectrograph® (400 to 1000 nm, 2.8-nm resolution) by
Madroial et al.”” and the Headwall Hyperspec® NIR X-Series®® (900 to 1700 nm, 166 spectral
bands, 100 frames/s) by Ravi et al.''* in linear scanning configurations to capture hyperspectral
datasets.

In the initial HELICoiD pilot study, several pixel-wise classification algorithms were used
on the data collected with the HELICoiD demonstrator to test the potential of reflectance spectra
in tumor resection. These include support vector machines (SVMs), multilayer perceptrons
(MLPs), and random forests (RFs) implemented on parallel processing platforms such as the
Headwall Hyperspec® Data Processing Unit''>!"® (31 images from 22 procedures on primary
glioblastomas and 135k labeled spectra from the HELICoiD demonstrator) and the Kalray
MPPA-256-N HPC device®® (13 images from 13 procedures on glioblastomas and metastases
and 25k labeled spectra from the HELICoiD demonstrator). The training data consisted of
mixed-patient pixel-wise spectra from intraoperative hyperspectral cubes with pathologist-
labeled ground truth classification labels. These were tested on data from both HELICoiD
cameras separately, and the VIS-NIR data were shown to be most effective with the RF classifier,
providing cross-validated accuracy, sensitivity, and specificity greater than 99% for mixed-
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Table 2 Computational methods developed for hyperspectral imaging in neurosurgery.

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Neurosurgical oncology—reflectance
Tumor A. Spatial non-uniformity Pixel- Classes: tumor SVM Tumor Tenfold cross-  87% overall accuracy N/A Hyperspec®
identification, correction wise tissue, normal histopathology validation on 78% tumor sensitivity Data
Fabelo et al."'® B. Dark frame subtraction tissue, and MLP results from regions mixed-patient ~ 97% overall accuracy Processing
and flat-fielding background of interest pixel spectra 93% tumor sensitivity Unit
C. Denoising
D. Spectral normalization RF 99% overall accuracy
99% tumor sensitivity
Tumor A. Dark frame subtraction Pixel- Classes: tumor RF Visual assessment Tenfold cross- 99.7% overall accuracy N/A Kalray many-
identification and flat-fielding wise tissue and normal and tumor validation on 99.7% tumor sensitivity core
and type B. Spatial denoising tissue histopathology mixed-patient 99.6% subclass processor
prediction, C. Spectral smoothing and Subclasses: results from region pixel spectra accuracy
Fabelo et al.% cropping primary tumor and of interest 100% subclass
D. Spectral normalization metastasis sensitivity
Tumor A. Cropping of regions of Pixel- Classes: tumor SVM Ex vivo Tenfold cross- N/S 23 Hz Kalray
identification interest wise tissue, normal validation on massively
speedup, B. Automatic specularity tissue, and mixed-sample parallel
Madrofal®” and background removal necrosis pixel spectra processor
array MPPA-
256-N
Dimensionality A. Dark frame subtraction Cube Classes: tumor Discrete cosine Visual assessment Sixfold cross-  72% overall accuracy 40 s/cube Intel Xeon
reduction with and flat-fielding tissue and normal transform-based and tumor validation 53% tumor sensitivity E7-8890
semantic tumor B. Spatial denoising tissue semantic texton histopathology (due to inter-patient v424 cores
segmentation, C. Spectral smoothing and Subclasses: primary forest results from region variability)
Ravi et al.'™* cropping tumor and their of interest 92% tumor specificity

D. Spectral normalization
E. Novel deep learning-
based embedding (FR-t-
SNE)

types and
metastasis and their
origin (nine total)
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Tumor and A. Dark frame subtraction Cube Classes: tumor Mixed supervised- Visual assessment Tenfold cross- 99% to 100% overall 1 min/cube Kalray
blood and flat-fielding tissue, normal unsupervised and tumor validation accuracy 98% to 100% MPPA-
vessel B. Spatial denoising tissue, blood pipeline histopathology tumor sensitivity 256-N
identification, C. Spectral smoothing and vessel, and results from region
Fabelo et al.'?? cropping background of interest
D. Spectral normalization
E. FR-t-SNE embedding
Tumor and A. Dark frame subtraction Cube Classes: tumor Mixed supervised- Visual assessment Tenfold cross- 98% overall accuracy 1 min/cube Kalray
blood vessel and flat-fielding tissue, normal unsupervised and tumor validation Unspecified sensitivity MPPA
identification, B. Spatial denoising tissue, and blood  pipeline histopathology EMBO01
tumor type C. Spectral smoothing and vessel results from region board
prediction, and cropping Subclasses: primary of interest
speedup, D. Spectral normalization tumors, metastasis,
Fabelo et al.'’® and their origin
(eight total)
Brain tissue A. Dark frame subtraction Cube Classes: tumor Combined 1D DNN Visual assessment Leave-one- 80% overall accuracy 1 min/cube NVIDIA
classification, and flat-fielding tissue, normal and 2D CNN and tumor patient-out 42% tumor accuracy Quadro
Fabelo et al.' B. Spatial denoising Cube tissue, 2D deep histopathology cross-validation 77% overall accuracy 1 min/cube K2200
C. Spectral smoothing and hypervascularized convolutional neural results from region 42% tumor accuracy GPU
cropping tissue, and network of interest
D. Spectral normalization background
Pixel- 1D deep neural 77% overall accuracy 10 s/cube
wise network 40% tumor accuracy
Hyperspectral A. Dark frame subtraction Pixel- Classes: tumor SVM Visual assessment Leave-one- With the top 2.5% most N/S Algorithm
band selection, and flat-fielding wise  tissue, normal and tumor patient-out significant spectral
Martinez et al.®® B. Spatial denoising tissue, histopathology cross-validation bands:
C. Spectral cropping and hypervascularized results from region 77% overall accuracy
normalization tissue, and of interest 57% tumor sensitivity
D. Spectral resampling background
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Brain tissue A. Dark frame subtraction Cube Classes: tumor 2D deep Visual assessment Leave-one- 85% overall accuracy 1 min/cube NVIDIA
classification, and flat-fielding tissue, normal convolutional and tumor patient-out 41% tumor sensitivity Titan-XP
Fabelo et al.'* B. Spatial denoising tissue, neural network histopathology cross-validation GPU
C. Spectral smoothing hypervascularized results from region
and cropping . tissue, and of interest
D. Spectral normalization Pixel-  packground 1D deep neural 84% overall accuracy 10 s/cube NVIDIA
wise network 42% tumor sensitivity Quadro
K2200
GPU
Tumor and A. Dark frame subtraction Pixel- Classes: tumor SVM Visual assessment Leave-one- 76% overall accuracy N/S N/S
blood vessel and flat-fielding wise  tissue, normal and tumor patient-out 43% tumor sensitivity
identification, B. Spectral cropping tissue, blood vessel, histopathology cross-validation
Manni et al.'® C. Spectral band selection and background results from region
of interest
Cube 2D convolutional 72% overall accuracy NVIDIA
neural network 14% tumor sensitivity Titan-XP
Cube 2D-3D hybrid 80% overall accuracy GPU
convolutional neural 68% tumor sensitivity
network
Pixel- 1D deep neural 78% overall accuracy
wise network 19% tumor sensitivity
Tumor A. Dark frame subtraction Pixel- Classes: tumor Linear scalar Visual assessment Unspecified 89% overall sensitivity <1s Intel
identification, and flat-fielding wise tissue and normal SVM and tumor data split Core i5
Martinez- B. Spectral smoothing tissue histopathology
Gonzalez C. Spectral band selection results from region
et al.'® of interest
Gray-white matter Dark frame subtraction Pixel- Classes: gray SVM Visual assessment Leave-one- 96% overall sensitivity N/S N/S
classification, and flat-fielding wise  matter and white and tumor patient-out 89% overall specificity
Lai et al.23* matter histopathology cross-validation
results from region
of interest
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Brain tissue Dark frame subtraction Pixel- Classes: tumor Blind linear unmixing Visual assessment Leave-one- 67% to 76% overall 29 to 32  Algorithm
classification, and flat-fielding wise tissue, normal with end-member and tumor patient-out accuracy s/cube
Cruz-Guerrero tissue, estimation histopathology cross-validation 30% to 50% tumor
et al.'® hypervascularized (EBEAE)'#423® results from region sensitivity
tissue, and of interest
background
Tumor and blood  A. Dark frame subtraction Pixel- Classes: tumor SVM Visual assessment Leave-one- 75% to 97% overall N/S N/S
vessel identification and flat-fieldingB. Spectral wise tissue, normal and tumor patient-out median accuracy
and tumor type correction and tissue, venous RF histopathology cross-validation 55% to 97% overall
prediction, Ruiz normalization blood vessel, results from region median accuracy
et al.%® arterial blood of interest
vessel, and
dura mater
Hyperspectral A. Dark frame subtraction Cube Fused Spatial registration ~ N/A Structural 0.78 SSIM N/S N/S
cube fusion, and flat-fieldingB. Spatial hyperspectral using SURF and similarity index 21% accuracy
Leon et al.'” denoisingC. Spatial image MSER detectors (SSIM) among  improvement
upsampling for NIR image via a projective gray
transform reconstructions
from transformed
cubes
Brain tissue A. Dark frame subtraction Cube Classes: tumor CNN Visual assessment Leave-one- 97% overall accuracy N/S NVIDIA
classification, and flat-fielding tissue, normal and tumor patient-out 91% tumor sensitivity GeForce
Hao et al.'® B. Spatial denoising tissue, histopathology cross-validation RTX 2080Ti
C. Spectral smoothing and hypervascularized results from region GPU
band selection tissue, and of interest
D. Spectral normalization background

le 18 [em1oy

a5
<
o
(]
=
(2]
o
(0]
Q
o
e
3
Q
Q.
>S5
(o]
=
>
(0]
c
=
o
(7]
c
=
(o]
(]
B
Q
=3
®
=)
@
=
(]
—h
(2]
<
(]
=
(]
3
2




sondQ [esipswolg Jo jeuinop

PARIARC A

(2)0€ "IoA e G20z Aeniged

Table 2 (Continued). é
5
Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm L7
o
Hyperspectral A. Dark frame subtraction Pixel- Classes: tumor Empirical mode Visual assessment Leave-one- 88% overall accuracy N/S Algorithm g
band selection, and flat-fielding wise tissue and normal decomposition and tumor patient-out for the top E
Baig et al.'® B. Spatial denoising tissue histopathology cross-validation 2.5% most significant g
C. Spectral smoothing and results from region bands a
downsampling of interest °
_— [0}
D. Spectral normalization Q
=
Brain tissue A. Dark frame subtraction  Pixel- Classes: tumor SVM Visual assessment Leave-one- 60% overall accuracy N/S N/S i—J_
classification, and flat-fielding wise  tissue, normal and tumor patient-out 20% tumor sensitivity 3
Urbanos et al.'® B. Spectral correction and tissue, venous blood histopathology cross-validation g
normalization Pixel- Vvessel, arterial blood RF results from region 53% overall accuracy =
wise  Vvessel, and dura of interest 11% tumor sensitivity s
mater S
Cube CNN 49% overall accuracy <3D
32% tumor sensitivity g
Hyperspectral N/S Cube Denoised image TV-regularized N/A N/A N/A N/S N/S _2‘
image denoising, denoising %
Sun et al.2% S
Brain tissue A. Dark frame subtraction Cube Classes: tumor 3D CNN Visual assessment 80:10:10 data  >99% overall accuracy N/S NVIDIA 2
classification, and flat-fielding tissue, normal and tumor split 99% tumor sensitivity GeForce ‘<D
Ayaz et al.'® B. Spectral dimensionality tissue, histopathology RTX 5000 o)
reduction and sensitivity hypervascularized results from region GPU =
correction tissue, and of interest S
background %
Brain tissue A. Dark frame subtraction Cube Classes: tumor CNN Visual assessment 500:1 data split >99% overall accuracy N/S N/S @
classification, and flat-fielding tissue, normal and tumor 99% tumor accuracy =
Wang et al.® B. Spectral dimensionality tissue, histopathology m
reduction and sensitivity hypervascularized results from region
correction tissue, and of interest
background
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Brain tissue N/S Cube Classes: tumor Deep recurrent Visual assessment Fivefold cross- >99% overall N/S N/S
classification, tissue, normal neural network and tumor validation AUC
Cebrian et al.'¥” tissue, blood, and histopathology >99% tumor
meninges results from region AUC
of interest
Brain tissue A. Dark frame subtraction Cube Classes: tumor CNNUNet++, Visual assessment Leave-one- 76% tumor accuracy 0.29 s NVIDIA
classification, La and flat-fieldingB. Spectral tissue, normal DeepLabV3+ and tumor patient-out 76% tumor sensitivity GeForce
Salvia et al.'? band selection tissue, architectures histopathology cross-validation RTX 2080
hypervascularized results from region GPU
tissue, and of interest
background
Testing deep Spectral band selection Pixel- Classes: tumor SVM Visual assessment 75:25 data 91% overall accuracy N/S NVIDIA
learning and wise tissue and normal split 92% overall sensitivity GeForce
classical machine tissue RTX 3090
learning algorithms Pixel- RF 86% overall accuracy GPU
for low-grade wise 88% overall sensitivity
gliomas,
GlanTﬁntonlo Pixel- MLP 92% overall accuracy
etal. wise 91% overall sensitivity
Cube CNN 81% overall accuracy
80% overall sensitivity
Hyperspectral A. Dark frame subtraction Pixel- Classes: tumor Data gravitation and Visual assessment Fivefold cross- 90% to 98% overall 1s Algorithm
band selection, and flat-fielding wise tissue, normal weak correlation and tumor validation accuracy
Zhang et al.'*® B. Spectral normalization tissue, blood vessel, histopathology
and background results from region
of interest
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/

Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Tumor and A. Dark frame subtraction Cube Classes: tumor Mixed supervised- Visual assessment 60:20:20 87% overall accuracy N/S N/S
blood vessel and flat-fielding tissue, normal unsupervised and tumor data split 58% tumor accuracy
identification, B. Spatial denoising tissue, blood vessel, pipeline histopathology Fivefold cross-
Leon et al.®® C. Spectral cropping, and background results from region validation

smoothing, and of interest

downsampling

D. Spectral normalization
Pediatric tumor None Pixel- Classes: tumor RF Visual assessment 70:30 data 83% to 85% overall N/S N/S
identification, wise tissue and normal split accuracy
Kifle et al.®° tissue
Tumor and blood  A. Dark frame subtraction Cube Classes: tumor Mixed supervised- Visual assessment 80:20 data 95% overall AUC 14 fps NVIDIA
vessel identification, and flat-fielding tissue, normal unsupervised and tumor split 95% tumor GeForce
Sancho et al.'® B. Spectral normalization tissue, blood vessel, pipeline histopathology AUC RTX 3090

and correction and dura mater results from region GPU

of interest

Brain tissue A. Dark frame subtraction Pixel- Classes: tumor RF Visual assessment 80:15:5 data 57% tumor AUC (with N/S N/S
classification, and flat-fielding wise tissue (with and tumor split snapshot HSI)
Martin-Pérez B. Spatial denoising subclasses), normal histopathology 65% tumor AUC (with
et al.'® C. Spectral cropping and tissue, arterial and results from region line scan HSI)

correction venous blood of interest

D. Spectral normalization vessels, dura mater,

and skull
HSI-MR registration, None Cube MRI-HSI fusion Depth-based 3D Actuator position N/A ~4 mm registration 5s N/S
Villa et al.'” registration error
Brain tissue A. Dark frame subtraction Cube Classes: tumor CNN Visual assessment Unspecified 97% overall 90 to N/S
classification, and flat-fielding tissue, normal and tumor data split accuracy 100 s
Zhang et al.'*? B. Spectral normalization tissue, blood vessel, histopathology
and background results from region
of interest

'[e 18 [emioy

I
<
©

[©]

==

(2]
°

®

Q

o=

=)
=

Q
w

>
«Q

=
>

[v]

=

=

]

(2]

=

=
«Q

(0]
<

Q

=

®
="

(]

=

o

=

(2]
<

(%]

—

[©]

3

@




0c-¢15€co sondQ [edlpawiolg jo [eusnop

(2)0€ "IoA e G20z Aeniged

Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Neurosurgical oncology—fluorescence
PpIX concentration Spectral interpolation Pixel- PpIX Fitting to known Liquid tissue- Phantom 24% PplX concentraton 4t08s N/A
estimation, Valdés wise concentrations fluorophore mixture mimicking correction accuracy
et al.” and Valdés spectra and empirical phantoms accuracy 20 ng/ml detection
et al® correction threshold
algorithm

PpIX concentration Spectral interpolation Pixel- PpIX Empirical correction Liquid tissue- Phantom 6% PplX concentration 1to2s N/A
estimation, Valdés wise concentrations algorithm mimicking correction accuracy
et al.2" phantoms accuracy 20 ng/ml detection

threshold
PpIX concentration Spectral interpolation Pixel- PpIX Empirical correction Liquid tissue- Phantom Best corrected N/S N/A
estimation, Jermyn wise  concentrations algorithm mimicking correction fluorescence fit
et al.?"7 phantoms accuracy R? =0.931 ng/ml

detection threshold
PpIX concentration Dark frame Cube PpIX Spatially Liquid tissue- Phantom Best corrected N/S N/A
estimation, Xie subtraction and concentrations regularized mimicking correction fluorescence fit
et al. 2! flat-fielding reconstruction phantoms accuracy R? =0.9310 ng/ml

detection threshold
PpIX concentration Dark frame subtraction Pixel- PpIX Fitting to known Liquid tissue- Phantom Ground truth to estimate N/S N/A
estimation, Bravo  and flat-fielding wise concentrations fluorophore mixture mimicking correction linear fit
et al.2® spectra and empirical phantoms accuracy R? = 0.9814 ng/ml

correction algorithm detection threshold

Fluorescence Dark frame Pixel-  Significance Fitting to Fluorescence Spectral In weakly fluorescing N/A N/A
component spectra subtraction and wise of auto- autofluorescence spectra from unmixing fit areas, 82% lower error
identification, flat-fielding fluorescence and PplX spectra  biopsies quality for five-component

Black et al.’®

spectral fitting as
opposed to PplX 635
peak only
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Tumor property A. Dark frame subtraction Pixel- Tumor type, grade, RF and multilayer  Fluorescence Fivefold cross- 87% tumor type N/A N/S
classification, and flat-fielding wise glioma margins, perceptron spectra from validation accuracy
Black et al.?? B. Spectrally constrained and IDH mutation biopsies 96% tumor grade
dual-band normalization prediction accuracy

86% margin accuracy

93% IDH margin

accuracy
Joint correction N/S Cube Corrected 1D convolutional Liquid tissue- Pearson r = 0.997 for phantoms N/A N/S
and unmixing of fluorescence neural network in a mimicking correlation r = 0.990 for pig brain
fluorescence spectra mixed supervised— phantoms/pig brain coefficients homogenates
spectra, Black unsupervised homogenates between known
et al.??6 framework and predicted

concentrations

Fluorescence A. Dark frame subtraction Pixel-  Fluorescence Sparse non-negative Fluorescence Data distribution Data distribution is 82% N/A N/A
component spectra and flat-fielding wise  spectrum library Poisson regression spectra from analysisSpectral closer to Poisson than
identification and  B. Spectrally constrained biopsies, simulated component Gaussian in terms of KL
significance, Black dual-band normalization data abundances divergenceEach library
et al.?® component is present in

>7% of the dataset
Vascular neurosurgery
Cerebral A. Spectral smoothing and  Pixel- Oxygen saturation Fitting to known N/A N/A N/A 10 s/cube N/A
oxygenation cropping wise hemoglobin and
mapping, Mori B. Spectral normalization oxyhemoglobin
et al.’"! spectra
Distinguishing blood A. Dark frame subtraction ~ Pixel- Oxygen saturation Fitting to known Electro- Visual overlay  N/A 25 s/cube N/A
and blood vessels, and flat-fielding wise temporal dynamics hemoglobin and corticography comparison
Laurence et al.'®  B. Denoising oxyhemoglobin recordings

C. Spatial registration to
account for breathing

spectra and Fourier
transform
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/

Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Diagnosing ROI selection and outlier Pixel- Oxygen saturation Fitting to known Visual assessment Comparison 85% hyperperfusion N/S N/A
cerebral rejection wise hemoglobin and and co-registered  against SPECT sensitivity
hyperperfusion, oxyhemoglobin SPECT images
Iwaki et al.'s® spectra
Co-designing N/A Pixel- Oxygen saturation Fitting to known Ground truth from  Comparison Concentration N/A N/A
hemodynamic and wise and cytochrome-c- hemoglobin, light transport against ground estimation errors:
brain mapping, oxidase cytochrome-c- simulation truth 0.5% oxyhemoglobin
Caredda et al.®® concentration oxidase, and 4.4% hemoglobin

oxyhemoglobin 15% oxCCO

spectra and Monte

Carlo light transport

simulation
Functional neurosurgery
Imaging seizures  A. Dark frame subtraction Pixel- Oxygen saturation Fitting to known Electro- Visual overlay ~ N/A N/S N/A
within surgery, and flat-fielding wise temporal dynamics hemoglobin and corticography comparison
Noordmans B. Spectral normalization oxyhemoglobin recordings
et al."® spectra
Imaging A. Dark frame subtraction Pixel- Oxygen saturation Fitting to known N/A N/A N/A N/S N/A
neurovascular and flat-fielding wise temporal dynamics hemoglobin and

coupling, Pichette

et al.??

B. Spectral filter response
linear correction

C. Spatial registration to
account for breathing

D. Spatial cropping to
region of interest

oxyhemoglobin
spectra
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Table 2 (Continued).

Input Validation Validation Best validation Hardware/
Objective Pre-processing format Target Algorithm standard method metrics/results Speed algorithm
Metabolic brain A. Spatial registration to Pixel- Oxygen saturation Fitting to known Electrical brain Visual overlay  Correlation coefficients N/S Intel Core
mapping, Caredda account for breathing wise and cytochrome-c- hemoglobin and stimulation data comparison and over time range of i5-7200U
et al.'® B. Spectral smoothing oxidase oxyhemoglobin normalized interest:
concentration spectra cross-correlation 0.76 oxyhemoglobin
coefficient 0.86 hemoglobin
0.84 oxCCO
Imaging A. Dark frame subtraction Pixel- Oxygen Fitting to known Electro- Visual overlay ~ N/A N/S N/A
hemodynamic and flat-fielding wise  saturation hemoglobin and corticography comparison
response to B. Spatial registration to oxyhemoglobin recordings
interictal account for breathing spectra
epileptiform C. Spatial cropping to
discharges, region of interest
Laurence et al."®®  D. Outlier rejection
Spine surgery
Positioning A. Dark frame subtraction =~ SURF/ Feature k-nearest Fiducial Comparison 250 pm marker N/S N/A
feedback and and flat-fielding DELF/ displacement neighbors markers between localization error
navigation, B. Spatial denoising MSER detected and
Manni et al.>° C. Spectral band selection featur- actual marker
eg237-239 locations

N/S, not specified; N/A, not applicable; WL, white light; FL, fluorescence; SURF, speeded up robust features; MSER, maximally stable extremal regions; SSIM, structural similarity index measure; KL,

Kullback—Leibler; SPECT, single-photon emission computed tomography.
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Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. ..

patient pixel-wise three-class classification.”®!'® Subsequently, this classification scheme with a
larger dataset (36 cubes from 22 patients, >375 k labeled spectra from the HELICo0iD demon-
strator) has been integrated into a mixed supervised—unsupervised framework to provide fast
intraoperative visualization''> with a total per-frame acquisition and processing time of 1 min
at an overall accuracy greater than 98% for five-class classification (including blood vessels).
Further work has extended and improved these results with techniques such as blind linear
unmixing''®""” and empirical mode decomposition,''® shown SVMs effective for identifying
malignant tumor phenotypes,'!” and demonstrated estimation of the molecular composition
of brain tissues in real time.'*’

Further, to ease the time and computational complexity of working with high-dimensional
hyperspectral data (hundreds of wavelength channels across millions of pixels) and improve the
semantic consistency of segmentation, dimensionality reduction with manifold embedding has
been employed.''* This method uses a deep learning—based modified version of the T-distributed
stochastic neighbor (t-SNE) manifold embedding algorithm,121 called fixed-reference t-SNE
(FR-t-SNE). This non-linear embedding method attempts to preserve local spatial regularity
(nearby pixels represent the same class with high probability) while still capturing high-level
global features (pixel classes). The possibility for generalization of this method was evaluated
by testing the model on patient data from a different set of individuals, with around 72% overall
accuracy and 53% tumor sensitivity for four-class classification (33 images from 18 patients,
captured with the HELICoiD demonstrator). A combination of the above pixel-wise and dimen-
sionality-reduced classifiers to create a joint spatio-spectral classifier has been shown by Fabelo
et al.'? to have an overall accuracy greater than 99%, with a speed-up of >4.5 to 8.5x achieved
with hardware acceleration (five cubes from five patients and 45k labeled spectra from
HELICoiD demonstrator).

Various hardware acceleration platforms have been explored to speed up the classification
computation by individually optimizing the components of these classifiers. The linear kernel
SVM!''3 has been sped up 3 to 5x on massively parallel processor arrays’’ and system-on-chip
architectures'>*'** and 90x on graphics processing unit (GPUs);'* dimensionality reduction
with principal component analysis (PCA) for data preprocessing''® has been sped up 36X using
multiple central processing unit (CPU) compute cores;'”® k-nearest neighbor classifi-
cation''>1?2127 has been sped up 30 to 66x on GPUs; and k-means clustering''>'** has been
sped up 150x on GPUs.'?® Jointly implementing the entire pipeline with PCA on a multi-
GPU'? platform has resulted in a total speed-up of 180x over the serial platforms, resulting
in processing times being reduced from several hundreds of seconds to tens of seconds.'”
The effect of optimizing the data-type representation of the hyperspectral images and their stor-
age in memory has been explored for lower-throughput processing.'*

Recently, deep learning has been applied to tumor identification in both deep fully connected
per-pixel and convolutional spatio-spectral configurations.'*""!*> This generalizes the hyperspec-
tral data embedding and classification features for the embedded data while allowing for fast
computation on the GPU. In combination with unsupervised clustering techniques and minimal
user guidance, these accuracies rise to 77% to 78% for one-dimensional (1D) spectral deep neural
networks (DNNs),"*132 729% to 77% for 2D convolutional neural networks (CNNs),'*""132 80%
for a combination of 1D DNN and 2D CNN,'*! and 80% for 3D spatio-spectral CNNs'* (with
datasets consisting of eight cubes from six patients and 82k labeled spectra;'*' 12 cubes from 12
patients and 116k spectra,'*? both from the HELICoiD). Other deep learning architectures'**~!43
have also produced comparable results with the potential for fast hyperspectral brain structure
classification. Figure 5 shows examples of the HELICoiD demonstrator during brain tumor sur-
gery for tissue classification using unmixing methods and deep neural networks.

Manual initial feature engineering has also been attempted to provide better pre-processed
data as input for classification algorithms. For example, by selecting the most relevant spectral
bands using iterative combinatorial optimization algorithms,” correlation-based ranking,'** and
deep learning.'*! In addition, registered pairs of VIS-NIR and NIR images from the HELICoiD
demonstrator have been analyzed for spectral similarities between classes to ignore non-distinc-
tive samples.'*®

The two data streams from the visible and near-infrared (VNIR) and NIR cameras in the origi-
nal HELICoiD setup''>!'"® need to be fused to create a single hyperspectral cube'* to add more
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Fig. 5 Classifying brain tissue types based on reflectance spectra. Left to right: intraoperative
hyperspectral reflectance imaging on four patients with glioma grades 2 and 4 using the
HELICoiD system (patient 1 in row 1, patient 2 in rows 2 and 4, patient 3 in row 3, and patient
4 in row 5), white-light synthetic RGB image reconstructed from the hyperspectral cube with tumor
regions marked in yellow and biopsy sites with black circles, ground truth—labeled pixels and pixel
classifications using linear unmixing methods [extended blind end-member and abundance extrac-
tion (EBEAE)],""""'** and a two-layer pixel-wise DNN.'®' The four classes are NT, TT, BV, and BG.
EBEAE yields around 60% overall accuracy, 30% tumor sensitivity, and 85% tumor specificity,
whereas the DNN yields 85% overall accuracy, 65% tumor sensitivity, and 95% tumor specificity
with fivefold cross-validation on mixed-patient pixel-wise data. GBM, glioblastoma; OD, oligode-
drogioma; A, astrocytoma. Adapted from Leon et al.,®® under CC-BY 4.0.

useful data to the computational methods described above. Therefore, a new version of the dem-
onstrator has been proposed by Leon et al.,'*” where the confocal stereo configuration is changed to
make the camera axes parallel. This changes the transformation between the two camera view-
points from a projection to a translation, allowing for less spatial and radiometric distortion of
the captured spectra. Combined with spatial and spectral upsampling, hyperspectral cubes are gen-
erated at the original spatial resolution and two wavelength ranges (641 spectral bands between 435
and 901 nm and 144 spectral bands between 956 and 1638 nm), resulting in a 21% accuracy
increase as compared with using just the VNIR camera on a synthetic material database.
Because the HELICoiD system is mounted on a platform separate from the surgical
microscope, it interrupts the surgical workflow due to the need for physical translation of the
HELICoiD system prior to data acquisition [Fig. 3(a)]. To prevent such movement, Miihle et al.®’
designed a workflow with a TIVITA® VIS-NIR tissue hyperspectral camera (500 to 1000 nm,
100 spectral bands, 5-nm spectral resolution, 640 x 480 output pixels, ~100 frames/s,
~6 s/cube)®> mounted onto surgical microscope oculars. However, as the cameras used in the
above projects can capture only one-dimensional spatial slices, physical scanning of the cameras
in one dimension across the surgical field of view is required to capture the entire hyperspectral
cube. Thus, this system can capture nanometer-resolution megapixel intraoperative surgical
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datasets (comparable with previous systems®®!12>!47:148) at the cost of ~5 s per capture. Data
captured from this system yields 99% accuracy and greater than 98% sensitivity for tumor detec-
tion (one patient, 29k labeled spectra). However, given the time requirement for data acquisition
of a single hyperspectral cube, it has had limited utility for routine clinical use as it significantly
interrupts the surgical workflow, which precludes performing the resection under continuous
feedback from the HSI system.

Therefore, snapshot HSI systems such as the Ximea Corporation MQO22HG-IM-SM5X5-
NIR (665 to 975 nm, 25 spectral bands, 409 x 217 pixels, 170 frames/s)149 based on the
IMEC SM5x5 NIR sensor, the Cubert Ultris X50 (350 to 1000 nm, 155 spectral bands,
570 x 570 pixels, 1.5 frames/s),”' the Senop HSC-2 (freely selectable bandwidths and resolu-
tions)”® and the BaySpec OCI-2000 Series snapshot hyperspectral imagers (475 to 875 nm, 35
to 40 spectral bands, 50 frames/s)’* have been explored as potential alternatives%-%8:150-14
[Fig. 1(d)]. These can be mounted either by themselves®®®!%152 or coupled to a surgical
microscope’®**133154 to minimize disturbance to the surgical workflow [Fig. 3(d)]. In addition,
systems that fuse the advantages of snapshot and line scanning hyperspectral acquisition, called
snapscan systems (such as the IMEC Snapscan VNIR,”>** 470 to 900 nm, 150 spectral bands,
3600 x 2048 pixels, 2- to 20-s acquisition), coupled with surgical microscopes have been used
for intraoperative imaging.'*! These systems have been used to develop machine learning-based
classification (e.g., SVM, decision tree, and RF Classiﬁersgo’%'g&m) and convolutional neural net-
works,'>® with similar results—for instance, a system with the Senop HSC-2 camera reported accu-
racies around 98%.'%

3.1.2 Vascular neurosurgery

A major goal in vascular neurosurgery is to restore healthy blood flow to structures in the brain
and prevent ischemia (i.e., oxygen-starved), clots, and bleeding. Healthy blood flow leads to an
adequate supply of oxyhemoglobin to tissue. Therefore, oxygen saturation (i.e., ratio of oxy-
hemoglobin to total hemoglobin) in bulk tissue is used as a measure of tissue health and adequate
oxygen delivery to tissues.

Hyperspectral oxygen saturation estimation was first used for intraoperative imaging of the
cerebral cortex in the superficial temporal artery (STA)-middle cerebral artery (MCA) bypass by
Mori et al.'%! Hyperspectral cubes were acquired with a standalone HSC1700 line scanning camera
originally developed for the TAIKI Hyperspectral EO Mission (400 to 800 nm, 81 spectral bands,
640 x 480 pixels, 5- to 16-s acquisition).'>> A mixed spectrum consisting of hemoglobin, deox-
yhemoglobin, and bulk tissue scattering was fit,'> and oxygen saturation was estimated from these
proportions. This study found that the STA-MCA anastomosis increased the oxygen saturation
distal to the anastomosis corresponding to MCA territory brain regions in two patients with moya-
moya disease and two with occlusion of the internal carotid artery. Further, Iwaki et al.'*® also
found that HSI could detect cerebral hyperperfusion following this anastomosis in five patients
with moyamoya disease. These results showcased the potential of hyperspectral data in vascular
neurosurgery for hemodynamic imaging (i.e., imaging of blood flow and tissue perfusion).

Fu et al.'® developed an LCTF-based HSI system coupled with a Zeiss surgical microscope
tested to predict cerebral ischemia in rats. Unlike the prior work which fit spectra to estimate
oxygen saturation, the authors used an empirical measure to estimate oxygen saturation and tis-
sue perfusion. This work showed that the ratio of tissue reflectance around 545 nm to reflectance
around 560 nm could identify early brain ischemia in a rat stroke model. Their method works
using the reflectance of deoxyhemoglobin and oxyhemoglobin, which are equal at 545 nm but
change rapidly in opposite directions between 545 and 560 nm, yielding a high predictive power
for estimating low oxygen saturation.

Further, a snapshot hyperspectral system from IMEC with filters mosaiced on a CCD sensor
(480 to 630 nm, 16 spectral bands, 256 x 512 pixels, 20 frames/s) was used by Laurence et al."”’
to distinguish between blood vessels and bleeding in the cortex in three patients. Diffuse reflec-
tance spectra measured by the camera are fit to a model consisting of a combination of
oxyhemoglobin, deoxyhemoglobin, and tissue absorption.'?” The estimated oxyhemoglobin pro-
portion is Fourier-transformed to calculate its temporal frequency distribution. It was inferred
that the healthy regions where the oxygen saturation is driven by the respiratory rate (cortex
and blood vessels) had a first harmonic temporal frequency of around 0.23 Hz, with a significant
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second harmonic at 0.46 Hz. Meanwhile, bleeding varied more significantly than the heart rate at
a frequency of around 1.3 Hz, which allowed for accurate identification of the vessels.
Noordmans et al.'*® used intraoperative HSI and found that these slow, sinusoidal hemodynamic
oscillations displayed a stable and reproducible frequency in four epilepsy patients, which
included non-lesional, focal cortical dysplasia and dysembryoplastic neuroepithelial tumor,
emphasizing the possibility to generalize this method.

3.1.3 Functional neurosurgery

Epilepsy surgery requires the mapping of metabolically active brain regions, including
epileptogenic regions, that demand more oxygen and blood. This link between neuronal activity
and changes in blood flow and oxygenation is commonly referred to as neurovascular
coupling.'® As seizures result from intense, uncontrolled neuronal activity, regions of the brain
exhibiting seizure activity are highly metabolically active and as such display differences in their
neurovascular coupling compared with regions not exhibiting seizure activity.

The first use of HSI for evaluating neurovascular coupling dynamics in epilepsy intraoper-
atively was in 2013 by Noordmans et al.,'* where one patient with intractable sensorimotor
seizures of the left hand was imaged using an LCTF-based system (Varispec VIS'® filter with
a pco.pixelfly camera,''’ 1392 x 1024 pixels) coupled to a Zeiss Pentero surgical microscope
(Fig. 6). In this work, the entire cerebral cortex was imaged over the span of 7 min, and the
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Fig. 6 HSI to map seizures intraoperatively. (a) Local increase in oxygenation during seizure:
oxygenation changes estimated from oxyhemoglobin concentration during a seizure. (b) Area
matched to a photo of the cortex: overlay of oxygenation changes on an RGB image of the brain
cortex, which correlates with electrical recordings of seizure activity measured via electrocorticog-
raphy. Position 20 corresponds to the sensory cortex of the hand where positive seizure activity
was recorded and HSI measured higher oxygenation. Reproduced from Noordmans et al.,'%* with
permission from John Wiley & Sons, Inc. (c) Relative concentration as a function of time.
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area of increased oxyhemoglobin at the start of seizure activity matched the epileptogenic zone.
Subsequently, Laurence et al.'® further validated this finding in 12 epilepsy patients, which
included non-lesional, focal cortical dysplasia type and heterotopia. The authors found that
regions of seizure activity were isolated with an intraoperative HSI system.

Further, a snapshot hyperspectral system from IMEC with filters mosaiced on a CCD sensor
(480 to 630 nm, 16 spectral bands, 256 x 512 pixels, 10 to 20 frames/s) coupled with a Zeiss
Pentero microscope was used for intraoperative hemodynamic imaging on one patient under-
going epilepsy surgery resection by Pichette et al.”> at video rates. Laurence at al.'® tested this
system to measure the interictal discharges in eight patients with non-lesional or subcortical het-
erotopias undergoing epilepsy surgery, where unsupervised clustering of oxygenation correlated
well with direct electrical measurements of the imaged cortex.

Lastly, HSI has been used for intraoperative optical functional brain mapping with a three-
chromophore [oxyhemoglobin, deoxyhemoglobin, and oxygenated cytochrome-c-oxidase
(0xCCO)'®1162] gystem by Caredda et al.'®® Incorporating 0xCCO into the model introduces
a direct measure of cellular metabolism. This work used a Ximea Corporation MQO22HG-
IM-SM5X5-NIR hyperspectral camera (665 to 960 nm, 25 spectral bands, 409 x 217 pixels,
14 frames/s)'*’ to measure the tissue reflectance spectra while the patient was repetitively
clenching his fist. These reflectance spectra were fit to the model, and the resulting concentration
maps were thresholded to identify areas of high oxygenation and metabolism, which were found
to strongly correlate with those identified with gold standard direct electric brain stimulation. In
addition to incorporating oxCCO, Caredda et al.'** have demonstrated blind unmixing using non-
negative matrix factorization to account for two metabolic biomarkers strongly correlating with
direct electrical brain stimulation on 12 patients undergoing resection for a brain tumor near the
motor cortex.

HSI techniques in vascular and functional neurosurgery have both used oxygen saturation
and hemodynamics. Therefore, optimal schemes for measuring the two simultaneously have
been studied in Caredda et al.'® with Monte Carlo simulations of hemodynamic signals follow-
ing neuronal firings. These schemes select specific combinations of NIR spectral bands from the
hyperspectral image to ensure minimal errors in estimating the proportions of oxyhemoglobin,
deoxyhemoglobin, and oxCCO, therefore seeking to achieve accurate metabolic and hemo-
dynamic inferences. Simulations for the specific system designed and implemented in previous
work'® augmented with a Ximea MQO022HG-IM-SM5X5-NIR hyperspectral camera'* were
performed considering the effect of realistic factors such as spectral cross-talk and Gaussian
noise on the estimation error. This study found that 21 to 22 spectral bands were enough to
compute tissue chromophore proportions accurately (0.5% error for oxyhemoglobin, 4.4% error
for deoxyhemoglobin, and 15% error for oxCCO), whereas 10 to 12 spectral bands provided a
similar performance. The general approach implemented with this Monte Carlo simulation can
potentially be used outside hemodynamic imaging in neurosurgical oncology and spine surgery
to determine the optimal spectral signatures for tissue identification tasks using HSIL.

3.1.4 Spine surgery

HST has been hypothesized to be useful in spine surgery as another form of surgical navigation
to enable surgeons to operate without causing injury to surrounding neural elements. To dem-
onstrate the utility of HSI in non-invasive patient positioning and navigation, a Hyperea
snapshot hyperspectral camera from Quest Medical Imaging BV (450 to 950 nm, 41 spectral
bands, 500 x 250 pixels, 16 frames/s) has been used to track skin features pre-operatively
by Manni et al.”” Based on hyperspectral data collected from 17 healthy volunteers with breath-
ing-based motion, submillimeter feature tracking was demonstrated using both handcrafted fea-
tures and deep learning.

The first demonstration of intraoperative HSI in spine surgery was on a single patient under-
going spinal fusion by Ebner et al.'®” This work showed the utility of both a stand-alone snapscan
system from IMEC (470 to 900 nm, 150 spectral bands, 3650 x 2048 pixels, 2 to 40 s acquis-
ition)”> and a stand-alone Photonfocus MV0-D2048x1088-C01-HS02-160-G2 NIR snapshot
camera (665 to 975 nm, 25 spectral bands, 409 x 217 pixels, 50 frames/s)'®® separately.
These systems were used to capture video-rate hyperspectral reflectance data for tissue types
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and implant materials encountered in spinal surgery (skin, fat, muscle, bone, connective tissue,
dura, and screws) in a bovine calf cadaver. The experience of the surgical team using this system
intraoperatively was that it integrated smoothly into the surgical workflow.

3.2 Datasets

The HSI systems described in Sec. 3.1 have produced rich datasets of intraoperative hyper-
spectral data. Some of this data are available in the public domain for use by researchers who
do not have access to or do not have the resources for constructing and deploying their own HSI
systems. We describe publicly available datasets, including those captured for individual
projects.

3.2.1 Neurosurgical oncology

The HELICoiD project has produced the following datasets available!® by contacting the
authors.

o HELICoiD Sample In-Vivo HS Human Brain Database: This dataset from Fabelo et al.'*
contains five VIS-NIR hyperspectral cubes of grade IV glioblastoma multiforme (GBMs)
taken during procedures on five different adult patients with a Hyperspec® VIS-NIR A-
series camera. These acquisitions took place at the University Hospital Doctor Negrin of
Las Palmas de Gran Canaria (Spain) and the University Hospital of Southampton (United
Kingdom). These cubes are 1004 x 1010 in spatial dimension and contain 826 spectral
bands between 400 and 1000 nm. A subset of 44,555 marked pixels from these images
with types identified with high confidence by the operating neurosurgeon has been labeled
in one of four categories: normal tissue, tumor tissue, blood vessel, and background with a
biopsy smear of their corresponding tissue. To reduce human error, this entire gold standard
labeling process was done in a computer-assisted manner with a custom-built graphical unit
interface and a programmable angle threshold from known tissue-type spectra with the
spectral angle mapper algorithm.'”® This data can be downloaded from the authors’
webpage.'®

o HELICoiD Full In-Vivo HS Human Brain Database: This extended version of the previous
dataset from Fabelo et al.'*® contains 36 hyperspectral cubes from 22 patients with the same
VIS-NIR camera, cropped to the region of interest (ROI). It contains data not only on
GBMs but also on grade II and III oligodendrogliomas, meningiomas, and metastases from
renal, lung, and breast carcinomas. The gold standard labeling was done in the same semi-
automatic way as in the previous database. The password for this repository can be
obtained by contacting the authors.'®’

e« HELICoiD Enhanced In-Vivo HS Human Brain Database (Benchmark): These data from
Leon et al.® were captured, processed, and labeled with the previously described method
in the process of validating a mixed supervised-unsupervised classification technique.
It contains a total of 61 cubes captured from 34 adult patients for the same kinds of
tumors as above. The password for this repository can be obtained by contacting the
authors.'®’

Later work by Puustinen et al.'** attempted to establish a systematic design for a micro-

surgical hyperspectral database. The architecture of the database was modeled to consider multi-
ple characteristics of captured cubes such as patient information, raw data, red—green—blue
(RGB) reconstructions, imaging parameters, manual annotations, pre-operative MRI, regions
of interest, calibration standards, and labeled classes. This database is currently access-restricted
to their collaborators but is projected to be publicly available in 2024.'>*

Lastly, the Southwest University Longitudinal Imaging Multimodal (SLIM) Brain Database
of hyperspectral data has been recently introduced by Martin-Pérez et al.'” This dataset contains
multimodal data from one line scan hyperspectral camera (Headwall Hyperspec® VIS-NIR E-
series, 400 to 1000 nm, 369 effective spectral bands), one snapshot hyperspectral camera (Ximea
Corporation MQO22HG-IM-SMS5XS5-NIR, 665 to 960 nm, 25 spectral bands, 409 x 217 pixels,
170 frames/s) and an RGB-depth light detection and ranging (LiDAR) (Azure Kinect DK,
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3840 x 2160 pixels, 8-bit depth). The data captured for 193 patients (and counting) at the
Hospital Universitario 12 de Octubre in Madrid, Spain, encompasses over a million-pixel spectra
labeled semi-automatically by neurosurgeons into five classes: normal (2 subclasses), tumor (10
subclasses), blood (4 subclasses), meninges (2 subclasses), and skull. In addition to raw images,
the database contains pre-processed data that remove the effects of depth and noise, hyperspectral
cubes cropped to region of interest, generated pseudo-RGB images, and pixel-wise labels. The
dataset is available on the database webpage after seeking permission from the authors.'”! Data
from this setup coupled and fused with MRI reconstructions are also available.!”>!"?

3.2.2 Vascular and functional neurosurgery

The data used for hemodynamic imaging in vascular and functional neurosurgery consist of
hyperspectral video captured during surgery. One such dataset, captured for imaging interictal
epileptiform discharges, exists. This dataset, captured at the Centre Hospitalier de I’Université de
Montréal by Laurence et al.,'®" consists of 8- to 15-m recordings of eight patients aged 24 to 35
treated for epilepsy. Each hyperspectral cube in the video is 256 x 512 pixels, with 16 spectral
channels between 480 and 630 nm. In addition, the data contain intraoperative ECoG recordings
from an electrode grid that was manually time-synced with the hyperspectral video, which can be
used as the gold standard. These data are available upon request from the authors.'®

3.2.3 Spinal surgery

Hyperspectral data captured by Ebner et al.'®” from a bovine calf cadaver in the spinal fusion
study described above are available. This dataset was acquired at the Balgrist University
Hospital, Zurich, and consists of aligned hyperspectral snapscan (470 to 900 nm, 150 spectral
bands, 3650 X 2048 pixels) and snapshot (665 to 975 nm, 25 spectral bands, 409 x 217 pixels)
cubes. The relevant parts of the hyperspectral cubes were labeled manually by a neurosurgeon.
The labels include the various tissue types and implant materials encountered in spinal surgery
(skin, fat, muscle, bone, connective tissue, dura, and screws) and are available from the authors
upon request.

3.3 Visualization Techniques
3.3.1 Neurosurgical oncology

The standard technique for visualizing pixel-wise tissue classification from hyperspectral data is
by superimposing a segmentation map (e.g., map of tumor versus normal tissue) over a synthetic
RGB (i.e., anatomic) image created from the hyperspectral cube.!'*!">13! However, as classifi-
cation algorithms that use pixel-wise data do not enforce that neighboring pixels have the same
class with high probability (i.e., the classification map is piecewise constant), generating a real-
istic map requires integrating spatial information. Therefore, several methods from the
HELICoiD project!!>122128129.3L174 [Rio5 3(a) 4, and 5] use a mixed pixel-wise wide-field
approach that makes use of both spatial and spectral information. This approach uses a k-nearest
neighbor-based algorithm based on matching and averaging non-local neighborhoods'” to com-
bine pixel-wise supervised classification outputs (e.g., with SVM or RF) with locality informa-
tion from a single-channel representation of the hyperspectral data (generated with spectral
dimensionality reduction). This yields a spatio-spectrally inferred pixel-wise classification map.
Further, spectral similarity information is incorporated using a majority voting approach'”
between this spatio-spectral map and a segmentation map generated with k-means clustering.
The result of this pipeline is then overlaid upon a synthetic RGB (anatomic) image to yield
a visualization that is faithful to both the spectral and spatial properties of the measured hyper-
spectral data.

Recently, sophisticated methods to visualize, reconstruct, refocus, and project hyperspectral
data and segmentation maps have been developed. Augmented reality-based co-projection of
HSI-generated RGB data and neural network-based segmentation labels was implemented on
a HoloLens AR headset by Huang et al.'”” and successfully tested in phantom resection proce-
dures. Although the projection quality was excellent, the frame rate was restricted due to an
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unoptimized software implementation. Other approaches have explored low-level image process-
ing and imaging operations such as hyperspectral image demosaicing to generate synthetic RGB
images consistent with the response of the human eye,'”® hyperspectral image refocusing to
tackle depth variation in the surgical field,'”® and synthetic white balancing to correct for illu-
mination spectrum variability.'%

“Vascular, functional, and spine neurosurgery” all use digital overlays of the results of their
data analysis on an RGB reconstruction of the surgical field.”>!01:104156.157.160.163.181

3.4 Clinical Results
Clinical studies using the optical systems and computational methods described above have
shown the potential for surgical utility of HSI in reflectance mode for neurosurgery. Here,
we review the results from clinical studies performed and present a summary of their statistics
and findings in Table 3.

3.4.1 Neurosurgical oncology

Clinical studies using HSI in reflectance mode for neurosurgical oncology have focused on
brain tissue classification during brain tumor resection (16 studies from 2016 to 2024).
These studies have implemented classification algorithms, ranging from classical machine
learning (RFs, SVMs, and MLPs)®:20-96.98-100.112.HS.T16.19.122.150.171 o modern deep learning
architectures (CNNs and recurrent NNs)'?%!41150 (Figs 4 and 5) with the imaging systems
described in Table 1. These algorithms have been shown to be highly accurate, sensitive, and
specific for identifying tumors. Some algorithms have been optimized to provide results within
~1 min”'"%152 (three studies from 2016 to 2023). Accurate segmentation of a large range of
primary tumors, including high-grade gliomas to low-grade gliomas, metastases, and healthy
tissue types, has been shown using reflectance hyperspectral data. Further, work toward dimen-
sionality reduction and spectral band selection (two studies from 2017 to 2021) has sought to
further reduce data processing and acquisition time to enable real-time feedback for the
surgeon.”!'* In addition, clinical studies have calculated the objective measures for this
separability based on reflectance spectral similarity between the components (2021)'* that
tested the ease of integration of these methods into the surgical flow (three studies from
2020 to 2023)%7%99 and tested the possibility of augmented reality visualization of the hyper-
spectral outputs (2023).'5? To facilitate further development with HSI (e.g., novel applications
of machine learning algorithms), several of these studies have made their data either publicly
available®:89-100.122.147.148 1 ayailable upon request.'”

3.4.2 Vascular and functional neurosurgery

Clinical studies have explored the application of HSI for imaging of brain hemodynamics, neuro-
vascular coupling, and vascular or functional pathologies using the hyperspectral systems
detailed in Table 1. Vascular neurosurgery clinical studies (three studies from 2014 to 2020)
have shown HSI can provide accurate estimates of cerebral oxygenation,'®! the potential for
HSI to diagnose brain bleeding,'”’ and estimating hyperperfusion'> from hyperspectral data.
Using these oxygenation mapping techniques, four studies between 2013 and 2022 demonstrated
how intraoperative HSI can be used to detect seizure activity and map functional areas of the
brain using principles of neurovascular coupling'® and validation with electrocorticography
(Fig. 6). One study'®” has made their data available upon request to facilitate further algorithmic
research. '%?

3.4.3 Spine surgery

As a first translational experience using HSI intraoperatively in spine surgery, Ebner et al.'®’
measured full-field spectra of various components in the scene of a patient undergoing spinal
fusion (data available upon request). In addition, there has been clinical evidence of HSI-based
skin feature tracking as a useful tool for intraoperative navigation in spine surgery.”
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Table 3 Clinical validation of hyperspectral imaging systems for neurosurgical applications.

Number of
Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Neurosurgical oncology—reflectance
Tumor identification, Primary tumors 31 cubes from 19k tumor spectra Intraoperative Pixel-wise hyperspectral data accurately No
Salvador et al.''? and 22 procedures 104k background (craniotomy) delineates the primary tumor from normal
Fabelo et al."'® 12k normal spectra tissue with high sensitivity
Tumor detection and type Grade IV 13 patients 10k primary tumor spectra Intraoperative Pixel-wise hyperspectral data accurately No
identification, Fabelo et al.®® glioblastomasLung and 2k metastasis spectra (craniotomy) delineates the primary tumor and metastasis
renal metastases 13k normal spectra from normal tissue with
high sensitivity

Tumor identification Primary tumors 1 patient 19k total spectra Ex vivo Near real-time SVM classification can be No
speedup, Madrofial et al.%” imaging achieved with parallel processing
Dimensionality reduction Mix primary tumors and 33 cubes from 66k tumor spectra Intraoperative Fast deep learning-based embedding can No
with semantic tumor metastases 18 patients 57k normal spectra (craniotomy) effectively reduce dimensionality for
segmentation, Ravi et al.'™* semantic segmentation
Tumor and blood vessel Grade IV glioblastomas 5 cubes from 9k tumor spectra Intraoperative Mix spatial-spectral classification with a Public
identification, Fabelo et al.'?? 5 patients 11k normal spectra (craniotomy) supervised-unsupervised approach can

17k blood spectra yield accurate segmentation at surgical frame

8k background rates, and a public database can promote

further research

Tumor and blood vessel Grade lll and IV primary 36 cubes from 14k primary tumor spectra Intraoperative Mix spatial-spectral classification with a No
identification and tumor type  tumorsRenal, lung, and 22 patients 2k metastasis spectra (craniotomy) supervised-unsupervised approach can
prediction, Fabelo et al.'™ breast metastases 117k normal spectra yield accurate segmentation at surgical frame

57k blood vessel spectra rates

186k background spectra
Tumor identification, Grade IV glioblastomas 26 cubes from 11k tumor spectra Intraoperative Deep learning techniques have promise in No

Ayaz et al.'®®

16 patients

102k normal spectra
39k blood vessel spectra
106k background spectra

(craniotomy)

tumor identification and 1D per-pixel DNNs
perform comparably with 2D full-field CNNs
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Table 3 (Continued).

Number of

Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Hyperspectral band Grade IV glioblastomas 26 cubes from 11k tumor spectra Intraoperative Combinatorial optimization can help select No
selection, Martinez et al.*® 16 patients 102k normal spectra (craniotomy) the most informative channels for tumor

38k blood vessel spectra identification with minimal measurements

118k background spectra
Tumor and blood vessel Grade llland IV primary 36 cubes from 16k tumor spectra Intraoperative A robust, labeled database of spectra from Public
identification and tumor type  tumorsRenal, lung, and 22 patients 117k normal spectra (craniotomy) various kinds of primary and secondary
prediction, Fabelo et al.'* breast metastases 58k blood vessel spectra tumors enables further research where

186k background (semi- clinical studies cannot be conducted

automatically labeled)
Tumor and blood vessel Grade IV glioblastomas 13 cubes from 124k spectra Intraoperative Hyperspectral imaging can potentially No
identification and phenotype 13 patients 602k spectra (craniotomy) delineate tumor phenotypes in the operating
prediction, Martinez- In vitro H&E room
Gonzélez et al.'"®
Brain tissue classification, Glioblastoma 11 cubes from 74K spectra Intraoperative Blind linear unmixing-based approaches can No
Cruz-Guerrero et al.'® multiforme 8 patients (craniotomy) speed up hyperspectral tissue classification

by 400x

Brain tissue classification, Glioblastoma 4 cubes from 6k tumor spectra Intraoperative Hyperspectral imaging shows the potential to No
Ruiz et al.®® multiforme 4 patients 11k normal spectra (craniotomy) segment normal tissue and background into

1.6k venous spectra subclasses

600 arterial spectra

4.3k dura spectra (semi-

automatically labeled)
Testing the surgical N/A N/A N/A Intraoperative A surgical microscope-mounted snapshot N/A
feasibility of a hyperspectral (craniotomy) sensor can be readily integrated into the
imaging workflow, Mihle surgical workflow with minimal disturbance to
et al® the staff
VNIR-NIR data fusion, Primary tumors N/S 2.6M spectra Intraoperative Spatial registration methods for parallel VNIR Public

Leon et al.™’

(craniotomy)

and NIR cameras have the potential to
extend VNIR classification features by
incorporating NIR information
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Table 3 (Continued).

Number of

Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Tissue component Primary tumors 6 cubes from 8k tumor spectra Intraoperative VNIR and NIR camera spectra have No
reflectance spectra 4 patients 10k normal spectra (craniotomy) statistically significant differences between
similarities in VNIR and 10k blood vessel spectra normal and tumor tissues in certain
NIR ranges, Leon et al.'*® wavelength bands
Brain tissue classification, High-grade gliomas 13 cubes from 15k tumor spectra Intraoperative Various supervised machine learning Request
Urbanos et al."° 4 patients 28k normal spectra (craniotomy) algorithms (especially RFs) have the

3.7K venous spectra potential to accurately predict subclasses of

1.3k arterial spectra healthy tissue and background

15k dura spectra (semi-

automatically labeled)
Testing the surgical N/A 1 patient N/A Intraoperative A surgical microscope-mounted light-field Public
feasibility of a light-field (craniotomy) snapshot sensor running at 1 Hz can be
hyperspectral system in readily integrated into the surgical workflow
neurosurgery, MacCormac
et al.®®
Testing deep learning and Low-grade gliomas 15 cubes from 8671 total tiles—40 x 40 Intraoperative RFs, radial basis SVMs, and CNNs have the No
classical machine learning 5 patients each (craniotomy) potential to accurately delineate low-grade
algorithms for low-grade gliomas from healthy tissue
gliomas, Giannantonio
et al.™!
Benchmarking existing Primary tumors and 62 cubes from N/S Intraoperative Previously proposed classification machine Public
algorithms with a new metastases 34 patients (craniotomy) learning algorithms have been tested with a
dataset, Leon et al.®® new dataset, showing the potential of

hyperspectral imaging for real-time decision-
making

Tumor identification, Primary tumors 364 cubes from N/S Intraoperative Snapshot HSI systems can potentially No

Kifle et al.®

4 patients

(craniotomy)

accurately delineate tumors from healthy
tissue for pediatric neurosurgery
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Table 3 (Continued).

Number of

Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Low-grade glioma Low-grade gliomas 5 patients (and N/S Intraoperative Snapscan HSI systems integrate easily into No
identification, Vandebriel counting) (craniotomy) the surgical workflow and are potentially
et al.® useful for segmenting low-grade gliomas

from healthy tissue
Tumor identification and Glioblastoma 5 video sequences N/S Intraoperative Hyperspectral classification results can be No
augmented reality multiforme from 5 patients (craniotomy) obtained in real time and projected onto a 3D
visualization, Sancho et al.'®? point cloud for tumor visualization
Tumor identification and Primary tumors and 193 patients N/S Intraoperative Ajoint hyperspectral 3D LiDAR database can Public
augmented reality metastases (craniotomy) facilitate research into augmented reality
visualization, Martin- applications for visualizing tumor delineation
Pérez et al.'®®'"!
Neurosurgical oncology—fluorescence
Residual tumor detection Primary tumors 6 patients N/A Intraoperative Multispectral imaging can delineate residual No
via Photofrin, Yang et al.?®® (craniotomy) tumor during PDT
Tumor identification, Primary tumors 1 patient N/A Intraoperative Fluorescence and diffuse reflectance spectra No
Gebhart et al.'” (craniotomy) can be distinctive between normal and

diseased tissues
PpIX concentration Glioblastoma 12 patients N/A Intraoperative Diffuse reflectances can be used to correct No
estimation, Valdés et al.®” multiforme (craniotomy) fluorescence spectra for tissue optical
and Valdés et al.? properties, enabling absolute PplX

concentration estimation
PpIX concentration Glioblastoma 1 specimen from N/A Ex vivo Spatial regularization can improve detection No
estimation, Xie et al.??! multiforme 1 patient imaging threshold and PplX concentration estimate

accuracies
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Table 3 (Continued). é

3

Number of =

Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data o
o

PpIX concentration Primary tumors N/S N/A Intraoperative Hyperspectral data processing improves Request -
estimation, Bravo et al.?"° (craniotomy) the PplIX limit of detection and concentration F<E
estimate accuracy '8

e

PpIX pharmacokinetics Malignant gliomas 201 biopsies N/A Ex vivo Fluorescence in malignant gliomas peaks 7 No _('cg
in malignant gliomas, from 68 patients imaging to 8 h after 5-ALA hydrochloride Q
Kaneko et al.?%? administration ™
PpIX pharmacokinetics in Low-grade gliomas 81 biopsies from N/A Ex vivo Fluorescence in low-grade gliomas peaks 7 No é
low-grade gliomas, Kaneko 25 patients imaging to 8 h after 5-ALA hydrochloride Q,
et al 2%t administration =
Fluorescence component Primary tumors 275 biopsies from 2692 spectra Ex vivo Including autofluorescence and PplX No S
spectra identification, Black 128 patients imaging secondary peak spectra in unmixing (3,)
et al.’® increases sensitivity to PplX concentration =
and ratio of PpIX peaks may predict tumor 8

grade é

Tumor type, grade, glioma Primary tumors and 891 cubes from 100 to 1000 spectra per Ex vivo Corrected tumor fluorescence spectra can No 3
margins, and IDH mutation metastases 184 patients biopsy imaging predict tissue type, tumor margin, WHO o
prediction, Black et al.?? grade, and IDH type accurately o
B

Joint correction and Primary tumors and 891 cubes from 555,666 total spectra Ex vivo Semi-supervised or unsupervised learning No cSD_
unmixing of fluorescence metastases 184 patients imaging can successfully correct for light-tissue (ED
spectra, Black et al.?%® interaction and predict absolute PplX A
concentrations =

<

Fluorescence component Primary tumors and 891 cubes from 555,666 total spectra Ex vivo A Poisson noise model combined with a Spectral (728
spectra identification, metastases 184 patients imaging spectral library of nine fluorophores fits tumor library (BD
Black et al.??® spectra well without overfitting ®
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Table 3 (Continued).

Number of

Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Vascular neurosurgery
Cerebral oxygenation Ischemic regions N/S N/S Intraoperative Hyperspectral imaging is a promising No
mapping, Mori et al.'"! (craniotomy) technique for monitoring intraoperative

hemodynamics
Distinguishing blood and Bleeding 9600 cubes N/A Intraoperative Hyperspectral imaging can be effective in No
blood vessels, from 1 patient (craniotomy) monitoring intraoperative bleeding
Laurence et al.'”
Diagnosing cerebral Cerebral 29 patients N/A Intraoperative Hyperspectral imaging can be effective in No
hyperperfusion, hyperperfusion (craniotomy) predicting hyperperfusion
Iwaki et al.'>®
Functional neurosurgery
Imaging seizures Epileptiform regions 280 cubes (inf.) N/A Intraoperative Hyperspectral imaging can delineate No
intraoperatively, Noordmans from 1 patient (craniotomy) epileptiform regions by providing
et al.'® oxygenation and blood volume data
Imaging neurovascular Epileptogenic focus 480 cubes from N/A Intraoperative Temporal hemodynamics can be measured No
coupling, Pichette et al.®? 1 patient (craniotomy) in real time through a surgical microscope

with hyperspectral imaging
Metabolic brain mapping, N/A 1 patient N/A Intraoperative Hyperspectral imaging can produce No
Caredda et al."®® (craniotomy) accurate, high-resolution functional maps

correlating well with those acquired with

electrical stimulation
Imaging hemodynamic Epileptiform regions 8 to 15 min from N/A Intraoperative Hyperspectral imaging can provide accurate Request

response to interictal
epileptiform discharges,
Laurence et al.'®°
Spine surgery

12 patients

(craniotomy)

optical feedback about interictal epileptiform
discharges

'[e 18 [emioy

I
<
©

[©]

==

(2]
°

®

Q

o=

=)
=

Q
w

>
«Q

=
>

[v]

=

=

]

(2]

=

=
«Q

(0]
<

Q

=

®
="

(]

=

o

=

(2]
<

(%]

—

[©]

3

@




86-215£20 sondQ [esipawolg Jo [eusnop

(2)0€ "IoA e G20z Aeniged

Table 3 (Continued).

Number of
Clinical aim Target pathologies acquisitions Total labeled samples Imaging setup Findings Data
Positioning feedback and N/A 17 volunteers N/S In vivoimaging  Hyperspectral imaging can be used for No
navigation, Manni et al.®® markerless feature tracking for positioning
guidance and navigation
Tissue classification, Ebner N/A 1 patient N/S Intraoperative Hyperspectral imaging integrates into spinal Request

et al.'®”

(craniotomy)

surgical workflow seamlessly and provides
reliable spectra meeting surgical constraints

N/S, not specified; N/A, not applicable
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Fig. 7 In vivo hyperspectral fluorescence imaging of PpIX in a glioblastoma patient. Intraoperative
images using a spectral scanning system [Fig. 4(b)] were captured during the resection of glio-
blastoma with images at the beginning (a)—(c), near end (e)—(g), and end of the surgery (i)-(k). The
first three columns show (from left to right) RGB images reconstructed from the hyperspectral cube
(white light), co-registered fluorescence images using the conventional fluorescence surgical
microscope (conventional fluorescence), and PplX concentration maps estimated from hyperspec-
tral cubes (hyperspectral quantitative fluorescence). (d) /n vivo fluorescence spectra acquired from
three locations and marked by different colored crosses (+) in panel (a) with a high-intensity PpIX
spectrum, and peak in red (+) matches the visible pink fluorescence in the center of tumor (b); an
intermediate intensity PpIX spectrum and peak in blue (+) with no visible pink fluorescence is close
to tumor in panel (b); and no PpIX spectrum and peak in green (+) matching no visible pink fluo-
rescence far from tumor in panel (b). (h) In vivo fluorescence spectra acquired from one location
and marked by a blue colored cross (+) in panel (€) show an intermediate intensity PplX spectrum
and peak in blue (+), no visible pink fluorescence in panel (f), high estimated PpIX concentrations
in panel (g), and are validated with pathology as tumor-infiltrated tissue in panel (I). In panels
(d) and (h), the y-axis shows the intensity of fluorescence emission in arbitrary units, and the
x-axis shows the wavelength 1 in nanometers. vFl, visible fluorescence with the conventional
microscope; gFl, quantitative fluorescence imaging estimates of PplIX. Reproduced from
Valdés et al.,®” under CC-NC-SA 3.0.

4 Neurosurgical HSI in Fluorescence Mode

Reflectance-based hyperspectral systems provide excellent pixel-wise tissue classification capa-
bilities. However, as observed in previous studies, the reflectance spectra of normal and tumor
tissues can be very similar.'*® Although these similarities can be tolerated in regions of predomi-
nantly healthy tissue or bulk tumor, they can be problematic in areas of diffusely infiltrative
tumor, which is the case especially in the margins of gliomas,*' where residual tumor is likely
to lead to tumor recurrence.

In addition, inter-patient and inter-system variability in the reflectance spectra has shown
limited generalization of trained models. For instance, mixed-patient pixel-wise data give high
classification metrics (~99% accuracy and sensitivity).''>!'* However, these metrics drop to as
low as 80% accuracy and 40% sensitivity'>! when data are divided patient-wise for classification.
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Such a significant drop in accuracy and sensitivity highlights the current limitations in general-
izing these reflectance-based HSI techniques across patients for guiding brain tumor resections.

Fluorescence-guided surgery (FGS) was introduced as a standard of care technique for high-
grade gliomas almost 20 years ago and has been shown to be a safe and effective surgical adjunct
to delineate tumor tissue intraoperatively.”!'®> FGS “extends” the surgeon’s vision by increasing
the contrast between healthy and tumor tissues.>*!8+-1%¢ Clinically approved fluorophores for
FGS include 5-aminolevulinic acid (ALA)-induced PpIX,W‘189 fluorescein sodium (FS),'?%!"!
and ICG'*>!3 (Fig. 2). These fluorophores selectively accumulate in tumor tissue through vari-
ous cellular mechanisms'** and fluoresce when illuminated with excitation light having an appro-
priate wavelength. PpIX and FS are typically excited with violet and blue light at 405 and
494 nm, respectively, and fluoresce in the VIS spectrum with emission maxima at 635 nm'®
and 520 nm,"” respectively.'” ICG is excited at ~780 nm and fluoresces with its peak in the
NIR at 815 nm.'”> However, it has been shown to produce significant fluorescence contrast
beyond 1000 nm, allowing for imaging in the SWIR range.'*

5-ALA-induced PpIX fluorescence has been extensively studied,”'*® validated,* charac-
terized,'”*~**? and established as a standard in surgery.'*>?** PpIX is an intermediate in the hemo-
globin synthesis pathway. The mechanisms of PpIX accumulation in tumor tissue are
multifactorial (e.g., increased tumor metabolism, tumor proliferation, enzymatic or cellular trans-
porter modifications, and blood—brain barrier breakdown®**). Studies have clearly demonstrated
its utility in guiding resections with excellent diagnostic metrics for tumor tissue identification.
PpIX accumulates in tumors to produce significant fluorescence after an oral dose of its precur-
sor, 5-ALA (20 mg/kg)*” 2 to 3 h before surgery. Further, PpIX has its largest excitation maxi-
mum at 405 nm,'®® with a broad (>200 nm) Stokes shift between the 405-nm excitation maxima
and its emission maximum at 635 nm.'3® This large Stokes shift allows for effective filtering of
excitation light without loss of fluorescence emissions. Further, most of its fluorescence spectrum
lies in the domain where tissue scatters light with low hemoglobin absorption and low
autofluorescence.’” Thus, HSI has been used to isolate PpIX fluorescence from autofluores-
cence, other fluorescent markers and noise via spectral fitting, and correction for attenuation
due to tissue optical properties. The use of spectral-based processing capable with HSI has
enabled the detection of “invisible tumors” due to the ability to measure lower levels of
PpIX below the visible threshold of conventional clinical systems®”'*’ (Fig. 7). This increase
in sensitivity and preservation of specificity for PpIX fluorescence has been quantified
systematically.’’® We will next discuss HSI systems that leverage these advantages along with
associated computational methods.

4.1 Imaging Hardware and Software

The first demonstration of multispectral fluorescence imaging in neurosurgical oncology was in
2003 using a wide-field five-band (bandpass spectral filters from Omega Optical®®’ at 495-, 543-,
600-, 640-, and 720-nm center wavelengths; 20-nm bandwidth, 755 x 484 DVC CCD
detector’®®) multispectral system. Here, the authors imaged a fluorescent tumor after exogenous
administration of the fluorescent agent, Photofrin,>” with a total acquisition time of 15 s. This
study concluded that multispectral imaging has the capability to separate Photofrin fluorescence
from a background with a 10:1 signal-to-background ratio. Further, it hypothesized that multi-
spectral data could estimate Photofrin concentrations, with a detection limit of 50 to 100 ng/ml
at 0.5-mm depth inside tissue-mimicking phantoms. However, this work assumed that tissue is
homogeneous, causing these estimates to be accurate only when tissue optical properties
matched the validation phantoms.

As noted before, the first hyperspectral fluorescence imaging was in 2007, where Gebhart
et al.'"”” developed an HSI system that consisted of a Varispec VIS-20 LCTF from Cambridge
Research Instruments, Inc.'® coupled with a 512 x 512 PhotonMax EMCCD camera'® mounted
on a surgical microscope to measure intraoperative autofluorescence and diffuse reflectance
spectra in one patient. The authors found that a value less than 1.25 for the ratio of autofluor-
escence at 460 nm to diffuse reflectance at 700 nm was highly diagnostic for tumor tissue.

Valdés et al.” developed a similar hyperspectral system and implemented the first intrao-
perative approach to correct fluorescence signals for the distorting and attenuating effects of
tissue optical properties in 12 patients with brain tumors [Fig. 3(c)]. They imaged the diffuse
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reflectance at excitation and emission wavelengths and fluorescence, followed by implementa-
tion of a correction algorithm®”>!%2!! (i.e_, a spectrally constrained dual-band normalization algo-
rithm) for use in 5-ALA-PpIX FGS. Similar to the work by Gebhart et al.,'"” this approach used a
Varispec LCTF coupled to a pco.pixelfly camera and custom optical adapter''® unto a surgical
microscope modified for fluorescence imaging (Zeiss OPMI Pentero). The surgical field was
imaged under white light and 405-nm illumination respectively®’#*?!! to measure fluorescence
spectra and reflectance with a total maximum acquisition time of <16 s. The measured fluores-
cence spectrum F',, (1) was corrected by an empirical factor inversely proportional to the exci-
tation reflectance R.,. and power law proportional to the emission reflectance R,,.

Fraw (A)

Feon(4) = QW~
excftem

The corrected fluorescence spectrum was fit to a weighted sum of basis spectra for fluo-
rophores of interest (e.g., PpIX, fluorescein sodium, and tissue autofluorescence) to isolate only
PpIX or FS fluorescence. Thus, the estimated corrected PpIX values were found to be directly
proportional to absolute PpIX concentrations. This correction allowed the detection of PpIX
concentrations as low as 20 ng/ml, which was significantly lower than the lowest concentrations
of 600 to 1000 ng/ml found in visually fluorescent (i.e., red-pink visual fluorescence through
surgical oculars) high-grade glioma tissues. Further, these results were encouraging as they
indicate the ability to detect low yet diagnostically significant PpIX concentrations to identify
low-grade glioma and infiltrative margins that are usually “invisible” with conventional
techniques*’>! 67189212214 (Fjg 7). This work concluded that a threshold of 100 ng/ml had
a positive predictive power of >90% for tumor tissues. The HSI approach by Valdés et al.®’
was further validated in additional studies demonstrating improved detection capabilities in clini-
cal ALA-PpIX FGS.* In further work by Valdés et al.,>!' a more sensitive pco.edge camera®'®
allowed lower acquisition times of 1 to 2 s with the same detection limit. An even more sensitive
EMCCD camera®'® from Niivii cooled to —85°C further decreased the limit of detection to
1 ng/ml, comparable to point spectroscopy methods®!” at a maximum total acquisition time
of 5 s. This correction method was further applied to pediatric brain tumors, where the limit
of visual detection was determined to be 200 ng/ml,>'® and the lower limit of detection for
PpIX was 20 ng/ml. These were all validated with tissue-mimicking phantoms consisting of
a solution of PpIX mixed with an absorber (e.g., hemoglobin and yellow food dye) and a scatterer
(e.g., intralipid emulsion).®” Known fluorophore concentrations in these phantoms can be used to
map the corrected fluorescence to absolute PpIX concentrations and evaluated for accuracy met-
rics such as linearity (i.e., R> value and mean percentage errors).

Spectrally constrained dual-band normalization has been systematically evaluated for its
accuracy in correcting the raw fluorescence signal for tissue optical properties, its highly sensi-
tive estimates of fluorophore concentrations (i.e., PpIX),07210-211:219.220 jtg reproducibility by dif-
ferent clinical and research teams and HSI systems,”**?!2> and its diagnostic utility with greater
sensitivity, negative predictive values, and overall accuracy for tumor detection compared with
visual expert evaluation. Specifically, Lehtonen et al.>*® found that visual assessments yielded
63% accuracy, 48% sensitivity, 92% specificity, and 340 ng/ml minimum limit of detection for
PpIX. Meanwhile, an HSI system based on a standalone Senop HSC-2 camera (500 to 900 nm,
up to 1000 spectral bands, 1024 x 1024 pixels, 150 frames/s)*** yielded 96% accuracy, 100%
sensitivity, and 86% specificity, and 16 ng/ml minimum limit of detection (16 samples with
PpIX and eight control samples; number of patients not specified).

Bravo et al.”!'” have shown in three patients that corrected concentration estimates (with
spectral fitting to isolate PpIX) correlate strongly with point spectroscopy estimates®” (linear
fit r = 0.98) when compared with uncorrected estimates (linear fit = 0.91 accounting for other
fluorophores, linear fit » = 0.82 not accounting for other fluorophores) (Fig. 8).

Xie et al.”?! developed a Bayesian reconstruction method based on spatial regularization and
tested it on one tissue specimen from a glioblastoma patient. This approach defines reconstruc-
tion in terms of a total variation-regularized minimization problem
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Fig. 8 Comparison of HSI to point spectroscopy. Point spectroscopy provides gold standard spec-
trally resolved measurements and PplX concentration estimates that can be used to validate the
estimates from hyperspectral processing. HSI extends the applicability of fluorescence guidance to
WHO grade |l anaplastic oligoastrocytomas (AOA) (a)-(e) and meningiomas (MEN) (f)-(j), where
the PpIX concentration is significantly less than the limit for visual fluorescence. (k) Fluorescence
spectra fit and estimated PplX concentrations from HSI (top) and point spectroscopy measure-
ments (bottom). MR texture map = matching MRI 2D image; Zeiss—white = white-light image from
a conventional Zeiss microscope; Zeiss—blue = fluorescence image from a conventional Zeiss
microscope; integrated fluorescence = map of fluorescence calculated from the area under the
fluorescence spectrum from 620 to 650 nm; quantitative PpIX = map of PpIX concentration esti-
mates. Reproduced from Bravo et al.,2'® under CC-BY 4.0.

é(x’ y) = arg min [Z(Fraw(xv Y, ’1)
Clx.y) XY,

= Q1 = Rexe(x, 3. 4))RES (x, 3. A)C(x,¥))* + TIVC(x, y) ] | -

The first term here, based on previous point spectroscopy analysis,* attempts to make the
reconstruction of C(x, y) faithful to the measurement of F,,(4). Here, Q is a factor that maps
corrected fluorescence intensity to concentration, and I is a regularization factor that decides the
smoothness of the reconstruction. This reconstruction lowers the detection limit to 10 ng/ml
using an uncooled ORCA-Flash4.0 EMCCD sensor from Hamamatsu Photonics with 26 s of
total acquisition and processing time. Such low detection levels would be particularly useful
for detecting low, but diagnostically significant PpIX levels in low-grade gliomas.””’ Further
computational work used an unspecified SCMOS camera®”> with the Sony IMX252 sensor
by Black et al.'”” and a pco.edge camera (14 ng/ml minimum detection limit).**>!%-22¢

Finally, Black et al.??? used machine learning—based approaches on the unmixed fluorophore
contributions to predict the following tumor properties in 891 hyperspectral measurements from
184 patients with multiple brain tumor histology types: tumor type (12 categories, test accuracy
85%), tumor margin location (tumor bulk, infiltrative margin, and healthy tissue altered due to
tumor, test accuracy 96%), isocitrate dehydrogenase enzyme (IDH) gene mutation type (mutated
and normal, test accuracy 86%), and tumor grade (II-IV, test accuracy 93%). In addition, PCA
variation analysis revealed that the five fluorophores mentioned above were the most likely com-
ponents explaining the dataset spectra under the assumption of Gaussian noise.*** Incorporating
the more physically accurate Poisson unmixing model, with a dataset containing 555,666 spectra,
allowed Black et al.?** to unmix fluorophores previously impossible due to their small proportion
and thus building up a “spectral library” containing PpIX¢,, (see next paragraph), PpIXgs4,
reduced nicotinamide-adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), flavins,
lipofuscin, melanin, elastin, and collagen as its members. Finally, deep learning—based
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architectures have incorporated the non-linear wavelength-dependent effects not taken into
account by the previous algorithms to correct and unmix fluorescence spectra with a semi-super-
vised architecture.?*® This approach yielded more realistic and smooth estimates of PpIX con-
centration maps as well as removing imaging artifacts such as specularities.

As mentioned above, correction methods, such as spectrally constrained dual-band normali-
zation, commonly undergo validation using fluorescent tissue-mimicking liquid phantoms.
However, a recent study by Suero Molina et al.”*’ has proposed a photostate of PpIX that con-
tributes a fluorescence spectrum shifted to a peak at 620 nm that likely occurs naturally in tissue,
but not in such phantoms. The presence of this photostate (called PpIXg, as opposed to the usual
PpIXg34) impacts the accuracy of conventional linear fitting models which use the basis spectra of
PpIX¢34, PpIX photoproducts and autofluorescence from NADH, lipofuscin, and flavins.
Therefore, incorporation of the PpIXy,, spectrum into linear fitting models has been proposed
to improve the accuracy of the spectral fit in dimly fluorescent areas (e.g., low-grade gliomas and
infiltrative regions of high-grade gliomas). This also lowers false positives by removing the spu-
rious contribution of PpIXg,, yielding the true PpIXgs4 spectrum and therefore accurate, lower
PpIX,,,4 estimates.'” Further, additional studies have noted the proportion of the two photostates
(i.e., the overall blue shift of the PpIX spectrum) correlates with tumor grades of tissues.>'*

This LCTF design provided a small footprint to enable HSI with high spatial resolution at
user-defined spectral resolutions and acquisition times in the order of seconds. Although this
HSI design and subsequent implementations have been translated into the operating room given
their integration with commercial surgical microscopes, they suffer from one major limitation for
widespread surgical use: image acquisition from these systems requires spectral scanning (i.e., an
image for every wavelength of interest with a finite amount of camera exposure for each wave-
length to reconstruct a full hyperspectral cube). As such, these HSI systems have limited intra-
operative utility for widespread use because they do not provide real-time surgical guidance. To
address this limitation, a recent snapshot HSI system that used a series of birefringent crystals
was developed by Marois et al.?*® to capture 64 spectral channels at a time. This system achieved
a frame rate of 4 to 6 frames/s over a broad wavelength range (425 to 825 nm, 64 spectral bands,
600 x 400 pixels) and subsequently implemented a spectrally constrained dual-band normaliza-
tion technique as well.

4.2 Clinical Results
Clinical studies using HSI in FGS have focused mostly on tissue classification for improving
tumor detection (Table 3). The first study sought to detect residual tumors with a limited num-
ber of (multispectral) images®” coupled to visual inspection of these channels. The first quan-
titative clinical studies, carried out by Valdés et al.,*” performed unmixing of fluorescent
components of tissue via fluorescence spectrum fitting and correction of PpIX fluorescence
intensity for attenuation due to light-tissue interaction to estimate absolute pixel-wise tissue
concentrations®”%* on 12 patients undergoing brain tumor resection (Fig. 7). Subsequent work
from this group showed improvements in accuracy and sensitivity for PpIX detection.”'” These
corrections were further incorporated into a spatially regularized optimization for smooth and
accurate estimates of PpIX concentration maps.??!>*® Further, the autofluorescence properties
of tissue were characterized in two studies to incorporate them into the unmixing algorithms,
using an increasing number of components and known compounds (e.g., PpIX photoproducts
and differing PpIX states)—one analyzing 2692 in vivo spectra from 128 patients'® and one
building a spectral endmember library from 555,666 fluorescence spectra measured from 891
ex vivo sample measurements.’”> The coefficients of the resulting fluorescence spectrum fit
were shown to be useful for predicting properties of tumors such as type, margin, grade, and
IDH mutation status®*? in 891 spectra from 184 patients. Further, to optimize the dose and
administration time of 5-ALA, hyperspectral studies were performed to estimate the phar-
maco-kinetics of PpIX inside tissue—one with 81 spectra from 25 patients for low-grade
gliomas®®! and one with 201 spectra from 68 patients for malignant gliomas.’”> These studies
showed an optimal post-dose time of 7 to 8 h at which PpIX tumor fluorescence signal peaks.
The results of these studies point toward the potential for HSI to enhance fluorescence feed-
back to serve as an improved surgical adjunct. One of these HSI studies has made its dataset
available upon request,”'” whereas another offers the spectral library constructed during its
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analysis®*> to facilitate further research. Exact PpIX concentrations, which are determined by

correcting its fluorescence spectrum from the distorting effects of tissue optical properties and
unmixed from autofluorescent and other fluorescent components in tissue, can increase the accu-
racy of predicting tumor presence, whereas the unmixed autofluorescent parts predict tumor
properties with machine learning. This, combined with the optical functional and vasculature
mapping from the previous section, will allow for all-optical joint visualization of anatomy and
tumor for safe and accurate tumor resection.

5 Future Perspectives

As discussed in the previous sections, there is substantial evidence supporting the potential of
HSI for intraoperative visual feedback. HSI systems, particularly those utilizing snapshot and
snapscan techniques, are convenient for clinical deployment due to their small footprint and
near-real-time acquisition capabilities. Co-developed computational methods have demonstrated
excellent results in the accurate delineation of tumor pathology and normal tissue. These systems
have also enabled non-invasive ECoG-style brain mapping of metabolically active tissue to visu-
alize functional connectivity and hemodynamic inference of molecular metabolic parameters
such as oxyhemoglobin, oxCCO concentrations, and oxygen saturation. Prototype augmented
reality systems have shown promise in accurately projecting hyperspectral results onto the sur-
gical field in 3D. Integrating these capabilities together can create a powerful, unified, non-inva-
sive, optical 3D visualization system that seamlessly integrates into the existing surgical
hardware and workflow. Such a system will provide the surgeon with information far richer than
can be done with traditional visual methods or with an RGB camera displayed on 2D monitors.

However, there are areas that need improvement to enhance these guidance techniques. The
most critical aspect is the framerate of the final hyperspectral outputs. The pipeline leading to
these outputs involves acquisition, processing, and projection, each of which needs optimization.
By individually or jointly refining these components, the final framerate can be brought closer to
real-time, significantly improving the system’s utility in surgical settings.

Among the variety of HSI implementations discussed in Sec. 2.2, snapshot and snapscan
hyperspectral systems’®’"*? coupled with a surgical microscope seem to be the most practical
for immediate clinical translation. Even with these solutions, more work needs to be done to
increase the spatial resolution of the hyperspectral cube. One possible approach in this direction
is upsampling the low-spatial-resolution hyperspectral cube with bilateral upsampling®*® and
pansharpening®*® algorithms. To make the more commonly used line-scan hyperspectral imaging
systems practical for surgical guidance, their quantum efficiency needs to be increased and noise
floor needs to be decreased—both of which can be achieved using cooled emCCD cameras,>'°
among other systems.

Another potential direction of acquisition speedup is dimensionality reduction. Because
hyperspectral channels have certain spatial regularity (nearby pixels of nearby channels have
close intensity values with high probability), not all the entries in the hyperspectral cube are
fully independent. Therefore, it is possible to measure subsets of the hyperspectral cube, or
an approximation to it, while still extracting the required information. Examples of this approach
are selecting specific, most important spectral channels;”*>!18145:147 implementing pre-calcu-
lated programmable spectral filters matched with the combination of tissue components
needed;’® and measuring low-rank approximations to the hyperspectral cube.’® Even with these
existing methods, selecting the free parameters—number of channels to use, filter shapes, and
rank of the approximation—remains an open problem, requiring an analysis of the statistics of
the hyperspectral data and the propagation and noise model of the imaging system.'®° However, a
balance needs to be achieved among speed (e.g., real-time imaging), quality of HSI data (e.g.,
high spatial resolution, high spectral resolution, and high signal to noise), and/or cost (e.g., light-
field technologies) that would be of clinical value. HSI is still in its infancy as an intraoperative
imaging modality, and as newer systems are translated into clinical use for specific applications
(e.g., HSI for FGS of gliomas), the right balance among speed, data quality to provide clinical
value, and costs will likely determine the impact HSI will have as an intraoperative imaging
modality.
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Current computational algorithms and their implementations need significant work to bring
them up to the required speeds. Condensed data input from imaging systems as described above,
combined with parallel computational implementations of optimized algorithms on platforms
such as field-programmable gate arrays,'* can allow for this acceleration. Improved classifica-
tion algorithms, optimized for sensitivity to the pathology under consideration and modified to
use the condensed data above, can lessen the required computational load. The ability to process
hyperspectral images fast would imply that it is possible to also process hyperspectral videos,
opening up avenues for applying previously developed computer vision techniques for instru-
ment and feature tracking, manipulation, and guidance. To incorporate these results into a com-
fortable 3D display equipped for surgery or telesurgery, optimized implementations of
augmented reality projection methods prototyped in the literature!”” need to be developed.
Lastly, to jointly optimize all the components above, methods to simulate the entire pipeline—
emission at the light source, propagation through the scene and image formation at the camera—
must be developed to ease the requirement of prototyping the corresponding HSI systems.'%%163

Due to the narrow focus of existing clinical studies on certain kinds of pathologies, each
clinical study suffers from a low number of patients.!!3115:141.221.231 The peed for larger and ulti-
mately randomized controlled clinical studies—in terms of pathologies and imaged tissue
properties”*-06:119:143.150.151222.223 oy 4 demographics'>®'% is an essential step forward in establish-
ing hyperspectral imaging as a standard in intraoperative guidance. Further, clinical HSI studies
have not reported on non-randomized patient outcomes (e.g., overall survival, progression free
survival, and rates of seizure freedom). In addition, it is vital to standardize the protocol of such
clinical studies so that results are reproducible and comparable across studies,'****! to standard-
ize data formats and schematics so that they can be parsed and re-utilized easily, and to set spe-
cific goals to be achieved with each clinical approach.® These studies must include in them an
analysis of inter-patient data and statistics variabilities'* and methods to counter them to ensure
consistent results across time. In addition, it is necessary for clinical studies to also consider the
ease and complexity of use of the studied system and to note the experience of the operating room
(OR) team post-study for further refinement.®'¢”

As a result of the relatively few clinical studies and privacy concerns, as noted in previous
work, 2099 113.115.141.152.222.231.232 there is a lack of publicly labeled hyperspectral data to enable the
development of computational techniques at venues of high expertise in artificial intelligence,
where clinical studies cannot be conducted. This is especially the case with rare tumors and
vascular and functional disorders. The available datasets are all semi-automatically labeled with
input from a neurosurgeon or a pathologist, which has the possibility of human error. Therefore,
there is a need for fusing HSI with other, more established imaging modalities, such as MRI, for
automatic labeling of hyperspectral images.!”>!”? In addition, in infiltrative tumors, where it is
impossible to draw a sharp boundary between tumor and healthy tissues, a method for fuzzy
margins is needed to perform accurate labeling,”> which can be achieved with co-registered
MRI data and MRI classification algorithms. Fusion with MRI also allows for estimation of
brain shift and joint intraoperative feedback from both modalities.>

Furthermore, all the HSI systems described here image light in the visible, NIR, and SWIR
ranges of the electromagnetic spectrum. Light in this range has limited penetration depth.
Therefore, these HSI systems have limited ability for imaging deep in tissues,”* typically lesser
than a centimeter of depth. Meanwhile, techniques such as MRI, US, and intraoperative neuro-
navigation provide 3D information deeper inside brain tissue. A fusion of these techniques will
allow the surgeon to interpret these sources of complementary information—in vivo surface/sub-
surface molecular information from HSI, in vivo subcentimeter structural information from US,
3D structural information at one time point during surgery from intraoperative MRI, and cor-
respondences with 3D pre-operative information with intraoperative neuronavigation.*®

The widespread adoption of intraoperative HSI depends on the success of the aspects of
future work listed above and the practicality of the resulting optimized methods. The success
of these developed HSI methods in pre-clinical work and clinical studies opens up possibilities
for commercial miniaturization, cost reduction, and integration into existing surgical micro-
scopes and visualization software and hardware and will drive further research with large-scale
funded projects such as the HELICoiD.!'"? If effective enough, techniques developed in neuro-
surgical HSI can be applied to minimally invasive procedures, procedures in other surgical
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subspecialties, and data generation for education and surgical training tools. In summary, sup-
ported by modern techniques from imaging, computation, and visualization, and driven by
clinical interest, hyperspectral imaging has the potential to be a clinical standard of care in
neurosurgery.
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