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ABSTRACT. Significance: Accurate identification between pathologic (e.g., tumors) and healthy

brain tissue is a critical need in neurosurgery. However, conventional surgical

adjuncts have significant limitations toward achieving this goal (e.g., image guidance

based on pre-operative imaging becomes inaccurate up to 3 cm as surgery pro-

ceeds). Hyperspectral imaging (HSI) has emerged as a potential powerful surgical

adjunct to enable surgeons to accurately distinguish pathologic from normal tissues.

Aim: We review HSI techniques in neurosurgery; categorize, explain, and summa-

rize their technical and clinical details; and present some promising directions for

future work.

Approach: We performed a literature search on HSI methods in neurosurgery

focusing on their hardware and implementation details; classification, estimation,

and band selection methods; publicly available labeled and unlabeled data; image

processing and augmented reality visualization systems; and clinical study

conclusions.

Results: We present a detailed review of HSI results in neurosurgery with a dis-

cussion of over 25 imaging systems, 45 clinical studies, and 60 computational meth-

ods. We first provide a short overview of HSI and the main branches of

neurosurgery. Then, we describe in detail the imaging systems, computational meth-

ods, and clinical results for HSI using reflectance or fluorescence. Clinical implemen-

tations of HSI yield promising results in estimating perfusion and mapping brain

function, classifying tumors and healthy tissues (e.g., in fluorescence-guided tumor

surgery, detecting infiltrating margins not visible with conventional systems), and

detecting epileptogenic regions. Finally, we discuss the advantages and disadvan-

tages of HSI approaches and interesting research directions as a means to encour-

age future development.

Conclusions: We describe a number of HSI applications across every major

branch of neurosurgery. We believe these results demonstrate the potential of

HSI as a powerful neurosurgical adjunct as more work continues to enable rapid

acquisition with smaller footprints, greater spectral and spatial resolutions, and

improved detection.
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1 Introduction

Optical imaging approaches have transformed surgery via improved intraoperative detection of

both normal and diseased tissues.1–5 Technologies that jointly leverage optics, computational

methods, and visualization tools have facilitated this unparalleled transformation, with several

successful commercial technologies in areas such as surgical robotics6–8 and image-2,3,5 and fluo-

rescence-guided9,10 surgery. Image-guided surgery allows for the clinical deployment of optical

imaging systems that are non-invasive and non-ionizing, which in turn can be used for intra-

operative computer vision,11 tactile sensing,12 manipulation, and tracking algorithms13 that have

a relatively compact footprint and allow for rapid acquisition.

As an example, images acquired via a surgical endoscope, processed through computer

vision pipelines,14 have been used for post-surgical analysis of the surgical workflow,15,16 includ-

ing recognizing surgical goals, predicting the current task being performed, segmenting and rec-

ognizing relevant landmarks during surgery, evaluating the difficulty of the surgical plan, and

surgeon skill.11 In addition, visual instrument detection and tracking methods for minimally inva-

sive surgeries have been developed and validated on surgical videos.13 Autonomous, high-

precision, and dexterous surgical instrument manipulation for surgery and remote telesurgery

has been made possible6,17–19 through deep learning methods at precisions previously thought

impractical.8 Recently developed image-guided surface sensing systems, such as the GelSight

sensor,20 can provide joint micron-scale topography (2.5-dimensional depth data) and tactile

feedback more sensitive than human skin.21 The demonstrated effectiveness of these approaches

suggests exciting potential prospects for intraoperative applications.

A promising approach in image-guided surgery is hyperspectral imaging (HSI),22–25 which

captures wide-field, spectrally resolved images of the surgical field. HSI systems have been

deployed successfully for applications in remote sensing, astronomy, agriculture, and

surveillance.26–28 Hyperspectral data can be interpreted as an “optical fingerprint” of the material

being analyzed (e.g., diffuse reflectance properties) and can be used for material recognition and

classification.29–32 Therefore, HSI can enhance visualization of tissue structure and composition

in image-guided surgery, aiding in guiding diagnosis and treatment.

In this paper, we review the applications of HSI in neurosurgery, focusing on specific HSI

techniques and their medical implementations and benefits in clinical practice. Specifically, we

provide the reader with an up-to-date review of how HSI has been implemented clinically and,

thus, focus on HSI systems and techniques used in clinical studies only. We begin with prelimi-

naries (Sec. 2), which include an overview of the major subspecialities in neurosurgery

(Sec. 2.1), followed by a short review of current HSI techniques (Sec. 2.2). We then discuss

the benefits and challenges of HSI in neurosurgery (Secs. 2.3 and 2.4). Next, we proceed with

an in-depth review of HSI technologies and their clinical applications for imaging under white

light in reflectance mode (Sec. 3) and for imaging fluorescence in fluorescence-guided surgery

(Sec. 4). We have broken up Secs. 3 and 4 into technological subsections—imaging hardware

and software (Secs. 3.1 and 4.1), datasets (Sec. 3.2), and visualization tools (Sec. 3.3)—and

followed them up with clinical implementations of and results from these HSI technologies

(Secs. 3.4 and 4.2). By separating each section into technological and clinical subsections, the

readers will be able to refer to more detailed technological aspects of HSI (e.g., imaging systems,

computational methods, datasets, and visualization techniques) or the clinical results and imple-

mentations of these technologies in the various subspecialties of neurosurgery. We also provide

in-depth tables that summarize the technological and clinical subsections for ease of reference.

Finally, we discuss future perspectives on HSI as a novel tool with the potential to become a

standard adjunct in image-guided neurosurgery (Sec. 5).
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2 Preliminaries

2.1 Neurosurgery
Neurosurgery is the branch of medicine that treats disorders of the central nervous system (CNS)

or peripheral nervous system (PNS) by physical manipulation, modification, or modulation of

anatomical (e.g., the subthalamic nucleus for deep brain stimulation) and pathological (e.g.,

aneurysm clipping and resection of brain tumors) structures.33–35 In terms of research and clinical

techniques, neurosurgery is among the most rapidly developing subspecialties of medicine,36

propelled by the interdisciplinary integration of tools from imaging, molecular biology, cancer

neuroscience, electrophysiology, brain mapping, neuroengineering, computational biology, bio-

informatics, and robotics. Clinically, neurosurgery is composed of the following subspecialties:

“Neurosurgical oncology” is the surgical branch of neuro-oncology focused on the diagno-

sis, treatment, and long-term management of tumors of the CNS and PNS. Surgical resection is

the primary course of treatment for a large set of tumors. The success of tumor resection is one of

the most important initial predictors of overall survival and quality of life.37,38 Therefore, the goal

of tumor surgery is to maximize the extent of tumor resection (EOR) while preserving the func-

tional brain to ensure high post-operative functional outcomes (i.e., achieving an oncofunctional

balance39–44). However, rates of EOR can be as low as 30% as reported by post-operative,45

standard-of-care magnetic resonance imaging (MRI) using conventional surgical techniques.

Conventional resections are performed under white light illumination with or without mag-

nification (e.g., using microscopes or surgical loupes). In these procedures, the surgeon uses the

cues from visual white light and tactile feedback to determine which tissue to resect and which to

preserve.41 However, because brain tumors often appear visually similar to normal brain tissue,

residual tumors often remain unresected, leading to low rates of maximal EOR. This is especially

problematic in infiltrative areas of the most aggressive malignant tumors, such as glioblastomas

(GBMs).41 Surgical adjuncts such as intraoperative MRI (iMRI), intraoperative ultrasound (US),

and neuronavigation can improve visualization and intraoperative surgical decision-making.

Despite their benefits, these tools have limitations including disruption of the surgical workflow,

inaccurate spatial information due to brain shift, low contrast (normal tissue versus pathology),

and high costs.46 Therefore, there is an acute need for real-time, high-resolution technologies that

accurately delineate tumors from normal brain tissue in neurosurgical oncology.47–52

“Vascular neurosurgery” is the branch of neurosurgery focused on the diagnosis and surgical

treatment of blood vessel pathologies of the nervous system.33 This encompasses a variety of

conditions including aneurysms, arteriovenous malformations (AVMs), stroke, and hemorrhage.

The primary aims of surgical treatments include restoring normal blood flow to the brain, pre-

venting blood clot formation and stroke, repairing vascular pathologies (e.g., aneurysms and

fistulas), and resecting vascular lesions (e.g., AVMs and cavernomas). Given that the spatial

scale of vascular structures in the nervous system is of the order of millimeters, submillimeter

precision and real-time intraoperative feedback are critical to safely treat pathologies while pre-

serving normal vasculature. Although intraoperative three-dimensional (3D) digital subtraction

angiography provides visualization of the neurovasculature in 3D as well as differentiates its

venous and arterial components,53 it does not provide direct intraoperative visualization of vas-

culature and pathology at the tissue level. Intraoperative Doppler US can detect blood flow,54 but

it is constrained in resolution (i.e., millimeters) and field of view (i.e., single point detection) and

is sensitive to patient motion. Intraoperative indocyanine green (ICG) fluorescence angiography

provides real-time intraoperative feedback with surface visualization of vasculature using ICG

fluorescence, which accumulates in the blood vessels.55 However, visualization of vasculature

and pathologies is transient (i.e., ICG signal washes out shortly after administration), is useful

only for surface imaging, and is not specific to pathologies as it accumulates in all normal and

abnormal vasculature.56 Therefore, there is an acute need for real-time, non-transient, and highly

specific intraoperative imaging technologies that can distinguish between normal and pathologi-

cal neurovasculature for visual feedback in vascular neurosurgery.

“Functional neurosurgery” is the surgical branch of neurosurgery that treats various chronic

neurologic disorders of the brain through functional modification. These disorders include epi-

lepsy, movement disorders, pain, spasticity, and psychiatric illnesses.33 One example of func-

tional neurosurgery is the treatment of intractable epilepsy via surgically resecting the
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epileptogenic area, which is the area of the brain where seizures are believed to originate. The

goal of this surgery is to eliminate or decrease the frequency and severity of seizures.57 In epi-

lepsy surgery it is important to map out the affected area of the brain, typically with intraoperative

electrocorticography (ECoG).58During this procedure, a grid of electrodes is placed on the cortex

to measure electrical activity and identify regions with abnormal signals that might indicate seiz-

ure origin. However, intraoperative ECoG interrupts the surgical workflow by requiring electrode

placement, signal measurement, signal interpretation, electrode removal, and co-registration of

electrode locations with signal origins on the brain. In addition, recordings can take a few

minutes to complete and interpret. The resolution of ECoG is dependent on the intrinsic spacing

within the electrode array, with spatial resolutions of up to a centimeter using conventional grids.

There is also a risk of infection associated with the use of such an electrode array with long-term

monitoring. As such, imaging techniques that provide visualization of the epileptogenic regions

would enable real-time feedback and ideally more accurate identification of the seizure-causing

regions. Overall, there is a need for imaging technologies that provide functional neurosurgeons

with real-time and highly specific identification of normal and abnormal functions in the nervous

system.

“Spine surgery” is the surgical branch of neurosurgery that treats disorders affecting the

spinal cord.33 Spine surgery can address issues such as spinal deformity, nerve compression,

pain, and neurological deficits due to disorders of the spinal cord and nerves. Surgical navigation

has become critical in spine surgery to perform accurate manipulation of bony structures while

preventing damage to the spinal cord and its surrounding neural elements. Such navigation is

typically done with fiducial markers placed on the skin and spine, but these can get obscured,

deformed, or displaced during surgery,59 compromising accurate real-time guidance. It is there-

fore clear that to enhance the accuracy and safety of spine surgery, there is a pressing need for

non-invasive real-time tracking systems and algorithms. These advanced technologies will pro-

vide better guidance during surgical procedures, ensuring more effective treatment of spinal dis-

orders and improved patient outcomes.

“Other subspecialties” of neurosurgery include trauma and peripheral nerve surgery.

However, there has been no clinical work with HSI in these subspecialties, so we will not discuss

them here.

2.2 Hyperspectral Imaging
HSI is the acquisition of high-resolution spectra over a wide field of view. HSI allows for captur-

ing a 3D hyperspectral cube of size H ×W × N, where H and W are the height and width of

images in the cube, respectively, and N is the number of wavelength channels [Fig. 1(a)]. The

value of N roughly distinguishes it from multispectral imaging, a spectrally resolved imaging

paradigm that uses fewer, broader spectral bins. Here, we define a multispectral system to have

less than 10 wavelength channels (N < 10) and a hyperspectral system to have more than 10

(N > 10). Each H ×W channel in the cube is equivalent to a two-dimensional (2D) image that

would be captured by placing an appropriate bandpass spectral filter in front of the camera.

Capturing spectral data in addition to spatial information can be used to determine the compo-

sition of the contents of the imaged scene.31,32,60 An in-depth review of the construction and

properties of such systems can be found in the literature,31,32 and we discuss only the essentials

here. HSI technologies relevant to neurosurgery and their general specifications are illustrated in

Fig. 1. Acquisition of a 3D hyperspectral image cube with a 2D camera sensor, however, is not

straightforward. Thus, several techniques for the capture of hyperspectral image cubes have been

developed, each with its own unique advantages and pitfalls.61,62

“Point scanning methods” (also referred to as whiskbroom scanners) operate using a single

detector or a small array of detectors to sequentially scan the scene, capturing spectral data pixel

by pixel. Although this method provides high spectral resolution, the point-scanning approach

needs M ¼ HW acquisitions, which for megapixel-sized images is time-consuming and limits

their use to imaging static scenes and/or small fields of view [Fig. 1(b)].

“Line scanning methods” (also referred to as pushbroom scanners) encode spectral data in

one spatial dimension, allowing parallel measurement of the other spatial dimension. Typically,

these methods use a linear array of detectors aligned perpendicular to the scanning direction (say,

along the H dimension), capturing spectral data row by row. This approach reduces the number
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of acquisitions to M ¼ W, which significantly reduces acquisition time compared with point

scanners. However, the acquisition of thousands of line scans still comes at a high time cost.

These are the most widely available systems63–66 used abundantly in HSI applications [Fig. 1(c)].

“Spectral scanning methods” image one spectral channel (i.e., one waveband) in the hyper-

spectral cube at a time and employ a tunable bandpass spectral filter to capture sequentially 2D

images at each spectral channel. Spectral scanners offer the flexibility to acquire cubes over a

programmable set of wavelengths with selectable spectral resolution. High-spectral-resolution

cubes come at a high time cost, especially when considering their use in the dynamic, fast-paced

surgical setting. Typical tunable filters used are liquid crystal tunable filters (LCTFs)67 and

acousto-optic tunable filters68 [Fig. 1(d)].

“Snapshot methods”69–71 capture a hyperspectral cube with complete spatial and spectral

information in a single exposure. Snapshot acquisition is achieved by space division multiplexing

of the sensor over the spatial and spectral dimensions, similar to a plenoptic camera.72 In this

approach, the sensor area is distributed over a number of parts equal to the number of spectral

channels. Each of these parts images a wide-field image corresponding to one spectral channel,

and these parts are stacked together to form the hyperspectral cube. This technology is facilitated

by new optical designs incorporating lenslet arrays70,71,73,74 and varying filtering and dispersion

strategies. This rapid acquisition enables the use of snapshot systems in applications requiring

real-time hyperspectral feedback, such as in intraoperative image guidance, where long scan

times or bulky scanning hardware can interfere with the surgical workflow. However, space divi-

sion multiplexing requires a trade-off between spatial and spectral resolutions for equivalent

acquisition times—as we increase the number of parts, the sensor is segmented into fewer pixels

available for each part [Fig. 1(e)].

“Snapscan systems” combine the benefits of snapshot and line scanning hyperspectral sys-

tems. Such systems are built with mosaic filter arrays as in snapshot systems but employ internal

Snapshot

(a) (b) (c) (d) (e)

Hyperspectral cubeypyy Point scanning Line scanning Spectral scanning

number of captures
number of pixels in 

2D image ( )

number of rows ( ) 

in spatial dimension

number of 

wavebands ( ) 

in the dimension
1

spatial resolution 2–5 µm (pixel pitch) 2–5 µm (pixel pitch) 2–5 µm (pixel pitch) 20–50 µm

spectral resolution ~1 nm (fixed) 2–5 nm (fixed) 3–20 nm (selectable) 4–15 nm

acquisition time > minutes - hours 5–80 s 0.5–25 s 30 ms−1 s

size considerations compact
bulky due to 

dispersion optics

bulky due to tunable 

filter

very compact color 

filter array

W × H

H
N

Fig. 1 Hyperspectral imaging technologies used in neurosurgery. (a) Hyperspectral image cube is

an array of sizeW × H × N , whereW andH are the width and height, respectively, of images in the

cube along the x and y spatial dimensions, and N is the number of wavelength channels along the

λ dimension. EachW × H channel in the cube is equivalent to an image that would be captured by

placing an appropriate bandpass spectral filter in front of the camera. (b) Point scanning methods

acquire a complete spectrum at a single ðx; yÞ pixel coordinate (i.e., “point”), scanning along the

x and y spatial dimensions to reconstruct the full 3D hyperspectral cube. (c) Line scanning meth-

ods acquire 2D data of size W × N along one x spatial dimension, scanning along the y spatial

dimension (i.e., “line”) to reconstruct the full 3D hyperspectral cube. (d) Spectral scanning methods

acquire 2D data images of size W × H at one λ wavelength channel, scanning along the λ wave-

length dimension (i.e., “spectral”) to reconstruct the full 3D hyperspectral cube. (e) Snapshot meth-

ods acquire the full 3D hyperspectral image cube of size W × H × N with each single acquisition

(i.e., “snapshot”).
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scanning of the mosaic and computational reconstructions to yield fast, high-resolution hyper-

spectral cubes.75

“Compressed sensing methods” exploit the regularity in natural signals to obtain an approxi-

mation to the hyperspectral cube.76 An example of such regularity is the sparsity of individual

spectral channels in the spatial frequency domain, which is the subject of a classic signal process-

ing technique called compressed sensing. Such systems have the capability to provide video-rate

hyperspectral acquisition with high spatial resolution for scenes that follow its assumptions.77 In

addition, such methods can also implement programmable spectral filters78 in addition to band-

pass filters, which allow for matched filtering of spectral signals for classification and segmen-

tation applications.

2.3 Benefits of HSI in Neurosurgery
As mentioned before, the spectrum in one pixel of the hyperspectral cube contains the optical

signature or “optical fingerprint” of the imaged scene point at that spatial coordinate (Fig. 2).

This fingerprint can include fluorophores [e.g., protoporphyrin IX (PpIX)] and/or chromophores

(e.g., oxy- and deoxyhemoglobin) that differentially accumulate in tissues. This fingerprint is

representative of the tissue composition of the imaged scene point—typically, bulk brain tissue,

arterial blood vessels, venous blood vessels, various types of tumors, and background. HSI is

particularly useful when classifying these kinds of tissue because reflectance and fluorescence

spectra obtained with the hyperspectral cubes have high discriminative power that has been

widely characterized.79–83

As an example of this high discriminative power in the context of vascular neurosurgery,

consider a pixel consisting of a blood vessel. The main chromophores involved in the reflectance

spectrum of this pixel are oxyhemoglobin and deoxyhemoglobin. The reflectance spectra of

deoxyhemoglobin and oxyhemoglobin, which are equal at 545 nm, change rapidly in opposite

directions between 545 and 560 nm. Therefore, spectrally resolved imaging in the visible range

of the spectrum allows for highly accurate estimates of the relative concentrations of deoxyhe-

moglobin and oxyhemoglobin, allowing optical measurements of oxygen saturation.

In addition to pixel-wise classification of tissue constituents, hyperspectral data enable other

kinds of optical characterization across the surgical field of view. The rich data encoded in each

hyperspectral cube offer the potential to extract optical features that would otherwise be impos-

sible to detect visually with the naked eye or with a conventional color image.67,84 For example,

spectrally resolved wide-field data have been shown to correct for the distorting effects of tissue

optical properties on emitted fluorescence signals,85 which opens the possibility for using HSI to

Fig. 2 Spectra of fluorophores, chromophores, and reflectance in the visible to near-infrared (NIR)

used in HSI for neurosurgery. HSI in neurosurgery has used both exogenous agents, such as

5-aminolevulinic acid that leads to the production of protoporphyrin IX (PpIX), and ICG as key

fluorescence biomarkers in fluorescence guided surgery (FGS), with their fluorescence spectra

shown in black. Other endogenous fluorophores (e.g., FAD, NADH) are shown in blue, and

PpIX photoproducts as well as tissue reflectance and chromophores (e.g., oxy- and deoxyhemo-

globin) are shown in red. The y -axis shows the intensity of fluorescence emission, reflectance, or

absorption in arbitrary units, and the x -axis shows the wavelength λ, in nanometers.
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evaluate the surgical field of view and provide quantitative, objective measures of fluorescence

and therefore absolute fluorophore molar concentrations.67

Putting all these capabilities together with modern acquisition techniques from optics and

computational imaging, advances in computational methods and hardware, and segmentation

and classification with artificial intelligence,86 HSI has the potential to be a powerful tool for

real-time intraoperative guidance.

2.4 Challenges in Current Neurosurgical HSI Approaches
Translating an optical system for clinical use into the neurosurgical operating room presents

unique challenges not encountered in traditional benchtop imaging settings for pre-clinical

studies87 (Fig. 3). The fundamental principle for translation of a novel HSI system into the oper-

ating room is that any system and imaging process must not significantly interfere with or inter-

rupt the neurosurgical workflow; it should enable ease of integration, safety, and efficiency for

dynamic intraoperative use. A major practical consideration is the size of the imaging system.

The spatial footprint of the optical setup must be as small as possible to seamlessly integrate and

“fit” into the already instrument-dense neurosurgical operating room (consisting of, for example,

the surgical microscope, US imager, ultrasonic aspirator, neuronavigation, drill, and suction

control).

Next, the hyperspectral image captured by the system should be as high-quality as possible,

while being as close to real-time as possible (∼10 Hz), consistent with other intraoperative im-

aging modalities such as US imaging, neuronavigation feedback, microscope visualization, and

3D exoscope imaging. For the hyperspectral data to be useful for surgical guidance, it must fulfill

certain basic constraints in addition to real-time acquisition. First, structures in the brain visu-

alized intraoperatively are of the order of millimeters. Therefore, submillimeter resolution over a

surgical field of view of the order of centimeters is critical. Second, the spectral bandwidth of the

fluorescence peaks of commonly used fluorophores may be as narrow as nanometers, requiring

spectral resolutions of a few nanometers. Lastly, as light is split into spectral channels in the

already light-starved conditions of fluorescence imaging, the hyperspectral system sensor should

have high quantum efficiency, high bit depth, and low dark noise to enable short exposure times.

The speed of hyperspectral acquisition is constrained by the space–spectrum–sensitivity

trade-off. Therefore, these conditions are all difficult to satisfy together. The most common,

line-scan hyperspectral imagers provide high spectral and spatial resolutions in one spatial

dimension [Fig. 3(a)]. However, providing equivalent resolution in the second spatial dimension

for surgically relevant scales is time-consuming (typically tens to hundreds of seconds). To be

more sensitive to low-intensity fluorescence signals, existing spectral scanning methods

(a) (b) (c) (d)

Fig. 3 HSI systems in neurosurgery. (a) HELICoiD system uses an exoscope with two line-scan

hyperspectral cameras mounted in a confocal configuration. The HELICoiD system fits within a

60 × 60 × 90 cm bounding and requires removing the surgical microscope for acquisition, thus

interrupting the surgical workflow. (b) Small footprint handheld HSI snapshot system does not

require removing the surgical microscope but does not provide the same field of view as seen

from the surgeon’s oculars. (c) and (d) HSI systems [spectral scanning in panel (c) and snapscan

in panel (d)] mounted on one of the side ports of the surgical microscope enable the acquisition of

3D hyperspectral image cubes co-registered with the surgeon’s field of view with a small physical

footprint to seamlessly integrate into the already space-constrained neurosurgical operating room.

(a) Adapted from Leon et al.,88 under CC-BY 4.0. (b) Adapted from MacCormac et al.,89 under CC-

BY 4.0. (c) Reproduced from Valdés et al.,67 under CC-NC-SA 3.0. (d) Adapted from Kifle et al.,90

under CC-BY 4.0.
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[Fig. 3(c)] typically increases exposure times, decreasing hyperspectral cube acquisition rates.

Snapshot and snapscan HSI systems70,71,75,91 [Figs. 3(b) and 3(d)] can potentially provide fast

frame rates for hyperspectral acquisition.67,87,92–94 However, they sacrifice spatial resolution to do

so, also increasing exposure if increased sensitivity is needed. Managing this balance among the

imaging parameters to construct clinically practical and effective systems is one of the most

important open problems in neurosurgical HSI.

3 Neurosurgical HSI in Reflectance Mode

Traditionally, neurosurgery has been performed under white-light illumination provided by

xenon or halogen lamps.95 The spectral distributions of such illumination extend across the vis-

ible-near-infrared (VIS-NIR) range of the optical spectrum, where the optical properties and

reflectance spectra of various types of brain tissue, intracranial structures (e.g., arteries, veins,

and nerves), pathologies (e.g., tumors, aneurysms, hemorrhages, and abscess), and their molecu-

lar constituents (e.g., oxyhemoglobin and deoxyhemoglobin) have been well-characterized.79–83

Therefore, HSI systems can be used across subspecialties in neurosurgery to serve a common

purpose—to determine the composition of what the surgeon sees in the surgical field of view.

For example, in neurosurgical oncology, the aim is to determine the presence or absence of

tumor in the field of view, to classify tumor type, and to identify background tissue (Fig. 4). In

vascular neurosurgery, the aim is to image blood perfusion and oxygen saturation. In functional

neurosurgery, the aim is to identify the epileptiform regions by measuring neurovascular cou-

pling. In spine surgery, the aim is to track surgical field skin features for intraoperative navigation

without the use of fiducial markers. Here, we provide a detailed presentation of the optical

designs of HSI systems that have been implemented in the neurosurgical operating room.

These systems along with their parameters are discussed in Sec. 3.1 and summarized in Table 1.

To process, interpret, and visualize the hyperspectral data captured with these HSI systems,

accompanying computational methods have been developed. For example, in neurosurgical

oncology, a number of classification and segmentation algorithms label every pixel in the surgical

field as normal tissue, tumor (primary or secondary),96 necrosis,97 blood vessel (artery or vein),98

Fig. 4 Reflectance spectra of normal brain and brain tumors. (a) and (b) Reflectance spectra of

normal tissue (NT) and tumor tissue (TT) and blood vessels (BVs) are significantly different in the

visible-NIR regime. (c)–(f) Significant differences are observed in the reflectance spectra from dif-

ferent grades of primary tumors (low grade, high grade, grade 1, grade 2, grade 3, and grade 4) as

well as in metastases (i.e., secondary). These differences in reflectance spectra enable the clas-

sification of the field of view into the brain parenchyma, blood vessels, and tumor tissue, along with

subclassification into arteries, veins, and various tumor types and grades. The y -axis shows the

reflectance of tissue in arbitrary units, and the x -axis shows the wavelength λ in nanometers.

Adapted from Leon et al.,88 under CC-BY 4.0.
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Table 1 Technical specifications of current hyperspectral imaging systems in neurosurgery (as applied in individual work).

HIS system Clinical application HIS tech
Sensor
tech

Wavelength
range

Spectral
bands

Spectral
resolution

Field of
view

Pixel
resolution

Spatial
resolution

Frame
rate

per line/
channel)

Total
time

Neurosurgical oncology—reflectance

Headwall
Hyperspec®

VNIR A-series,
Headwall
Hyperspec®

NIR 100/U

Tumor segmentation
from normal tissue,
blood, and back-
ground112–115,146,147

Line detection,
scanned
manually on a
translation stage

Silicon
CCD,
InGaS

400 to
1000 nm
900 to

1700 nm

826
172

2 to 3 nm
5 nm

230 mm
(max) ×
129 mm
230 mm
(max) ×
153 mm

1787 (max) ×
1004

479 (max) ×
320

129 μm
480 μm

90 fps
100 fps

80 s
40 s

Specim
ImSpector VNIR
V10-E spectrograph

Brain tissue
classification97

Pushbroom CCD 400 to
1000 nm

1040 2.8 nm N/S N/S N/S N/S N/S

Headwall
Hyperspec®

VNIR A-series
(only)

Tumor segmentation
from normal tissue,
blood, and
background88,96,99,116,119,

122,127,131,132,140,148,174

Line detection,
scanned
manually on a
translation stage

Silicon
CCD

400 to
1000 nm

826 2 to 3 nm 230 mm
(max) ×
129 mm

1787 (max) ×
1004

129 μm 90 fps 80 s

IMEC snapshot
multispectral SM5x5

Brain tissue
classification234

Snapshot CMOS 676 to
954 nm

25 12 nm
(inf.)

N/S 410 × 216 N/S N/A N/S

Ximea MQ022HG-
IM-SM5X5-NIR

Brain tissue
classification98,150

Snapshot CMOS 665 to
975 nm

25 14 nm
(inf.)

N/S 409 × 217 N/S 170 fps 70 ms

TIVITA tissue
camera

Brain tissue
classification87

Pushbroom CMOS 500 to
1000 nm

100 5 nm 60 mm ×

70 mm
640 × 480 110 to

125 μm (inf.)
100 fps ∼6 s

IMEC snapscan
VNIR 150

Brain tumor
identification93,141

Snapscan CMOS 470 to
900 nm

150 10 to
15 nm

N/S 3600 × 2048 N/S N/A 2 to 20 s

BaySpec OCITM-D-
2000Ultra-compact
hyperspectral

Brain tumor
identification90

Snapshot N/S 475 to
875 nm

35 to 40 12 to
15 nm

N/S 500 × 270 N/S 50 fps 20 μs − 1 s
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Table 1 (Continued).

HIS system Clinical application HIS tech
Sensor
tech

Wavelength
range

Spectral
bands

Spectral
resolution

Field of
view

Pixel
resolution

Spatial
resolution

Frame
rate

per line/
channel)

Total
time

Cubert Ultris X50 Evaluation of snapshot
hyperspectral imaging in
neurosurgery89

Snapshot CMOS 350 to
1000 nm

155 4 nm N/S 570 × 570 N/S 1.5 fps 0.67 s

Neurosurgical oncology—fluorescence

Custom
multispectral
system

Residual brain tumor
detection209

Spectral
scanning

CCD 495 to
720 nm

5 20 nm 3 cm
diameter

755 × 484 150 μm N/S 15 s

CRi VariSpec
LCTF + PhotonMax

Brain tumor
identification107

Spectral
scanning

CCD 400 to
720 nm

33 20 nm at
550 nm

25.4 mm 512 × 512 200 μm 6 s 120 s

CRi VariSpec
LCTF + pco.pixelfly

PpIX concentration
estimation67,84

Spectral
scanning

CCD 400 to
720 nm

55 (WL)
75 (FL)

5 nm (WL)
3 nm (FL)

10 to 50mm×

7.5 to 40 mm
696 × 520 N/S N/S 4 to 16 s

CRi VariSpec
LCTF + pco.edge

PpIX concentration
estimation211,219

Spectral
scanning

CMOS 400 to
720 nm

N/S N/S N/S 2560 × 2160 N/S 50 ms 10 to 30 s

CRi VariSpec
LCTF + hNü
EMCCD

PpIX concentration
estimation217

Spectral
scanning

EMCCD 400 to
720 nm

52 (WL)
52 (FL)

3 nm (WL)
3 nm (FL)

20 cm2 512 × 512 N/S 10 to
100 ms

1.04 to
10.4 s

CRi VariSpec
LCTF + ORCA-
Flash4.0

PpIX concentration
estimation221

Spectral
scanning

EMCCD 400 to
720 nm

33 (WL)
33 (FL)

10 nm N/S 1024 × 1024 N/S >100 ms 26.4 s

CRi VariSpec
LCTF + Sony
IMX252

PpIX concentration
estimation94,198,199,201,

202,222,223,226

Spectral
scanning

sCMOS 420 to
730 nm

63 (WL)
104 (FL)

5 nm (WL)
3 nm (FL)

N/S ∼2048×∼2048

(variable
across work)

N/S >100 ms N/S
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Table 1 (Continued).

HIS system Clinical application HIS tech
Sensor
tech

Wavelength
range

Spectral
bands

Spectral
resolution

Field of
view

Pixel
resolution

Spatial
resolution

Frame
rate

per line/
channel)

Total
time

Senop HSC-2 PpIX concentration visual
versus machine threshold
comparison206

Spectral
scanning

CMOS 510 to
635 nm

4 20 nm N/S 1024 × 1024 N/S 65.9 ms 0.46 s

Vascular neurosurgery

Eba Japan
HSC1700

Oxygenation
mapping101,156

Pushbroom CCD 400 to
800 nm

81 5 nm N/S 640 × 480 N/S 30 fps 5 to 16 s

IMEC snapshot
multispectral

Distinguishing blood
and blood vessels157

Snapshot CCD 480 to
630 nm

16 15 nm 13 cm2 256 × 512 100 μm 20 fps <50 ms

Functional neurosurgery

CRi VariSpec LCTF
+ pco.pixelfly

Imaging epileptiform
regions104

Spectral
scanning

CCD 480 to
660 nm

4 N/S N/S 1392 × 1024 N/S N/S N/S

IMEC snapshot
multispectral

Imaging neurovascular
coupling92,160

Snapshot CMOS 480 to
630 nm

16 15 nm 13 cm2 256 × 512 100 μm 10 to
20 fps

25 to
95 ms

Ximea MQ022HG-
IM-SM5X5-NIR

Intraoperative brain
mapping152,163

Snapshot CMOS 665 to
960 nm

25 13 nm
(inf.)

N/S 409 × 217 N/S 170 fps 14 fps

Spine surgery

Quest Medical
Imaging BV Hyperea

Markerless positioning
during spine surgery59

Snapshot Silicon
CCD

450 to
950 nm

41 ∼12 nm 15×15 cm 500 × 250 30 μm (inf.) 16 fps N/S

IMEC snapscan
VNIR, Photonfocus
(MV0-D2048x1088-
C01-HS02-160-G2)

Tissue classification
in spine surgery167

Snapscan
Snapshot

CCD 470 to
900 nm
665 to
975 nm

150+25 10 to
15 nm
15 nm

N/SN/S 3650 × 2048
409 × 217

N/S
N/S

N/S
50 fps

2 to 40 s
1 s

N/S, not specified; N/A, not applicable; WL, white light; FL, fluorescence
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dura mater,98 hypervascularized tissue,99 skull,100 or background. Similarly, spectral fitting meth-

ods process HSI data captured during vascular and functional neurosurgery to yield perfusion and

oxygenation maps.92,101–105Along with details on optical hardware, we also present a brief review

of these computational methods in Sec. 3.1 and summarize their pipelines, validation methods,

and best results in Table 2. For a more detailed review of such computational methods, please

refer to Massalimova et al.106

3.1 Imaging Hardware and Software

3.1.1 Neurosurgical oncology

HSI for use in neurosurgical oncology was introduced by Gebhart et al.107 in 2007 with the use

of a Varispec VIS-20 LCTF from Cambridge Research Instruments, Inc.108 coupled with a

512 × 512 PhotonMax electron multiplying charge-coupled device (EMCCD) camera109

mounted on a surgical microscope to measure intraoperative autofluorescence and diffuse reflec-

tance spectra with acquisition times of 5 min. Here, the authors did not solely use reflectance but

rather both reflectance and autofluorescence measurements to determine a reflectance/autofluor-

escence ratio for optimal identification of tumor tissue. Similar to the previous approach, Valdés

et al.67 used a Varispec LCTF coupled with a pco.pixelfly charge-coupled device (CCD)

camera110 on a surgical microscope (Zeiss OPMI Pentero) [Fig. 3(c)] to measure the reflectance

and fluorescence spectra in a fluorescence correction algorithm to enable more accurate meas-

urement of tissue fluorophores during brain tumor resection. Here, both approaches did not

solely use reflectance measurements for tissue identification. Instead, they coupled their reflec-

tance measurements with fluorescence to enable tumor tissue identification, which will be dis-

cussed in more detail later (see Sec. 4). It was not until 2016 with the kickoff of the European

Hyperspectral Imaging Cancer Detection (HELICoiD) project111 and the development of the

HELICoiD demonstrator by Salvador et al.112 and Fabelo et al.,113 where HSI of reflectance was

used solely for tumor tissue identification.

The HELICoiD demonstrator consists of a pair of line sensor hyperspectral cameras

mounted on a custom optical breadboard in the operating room [Fig. 3(a)]. These cameras,

bought off-the-shelf from Headwall Photonics,64 are the CCD-based Hyperspec® VNIR A-series

operating in the VIS-NIR wavelength range (400 to 1000 nm, 826 spectral bands, 2- to 3-nm

resolution, 90 frames∕s) and the InGaS-based Hyperspec® NIR 100/U operating in the NIR

short-wave infrared (SWIR) wavelength range (900 to 1700 nm, 172 spectral bands, 5-nm res-

olution, 100 frames∕s). The cameras are set up in a confocal stereo configuration with matched

fields of view, at an imaging distance of 40 cm and surgical field clearance of 29 cm. The entire

imaging assembly is mounted on a translation stage to implement pushbroom scanning

[Fig. 1(c)]. The demonstrator system uses a 150-W quartz–tungsten–halogen (QTH) bulb with

a spectral range of 400 to 2200 nm, passed through an optical fiber to a cold light emitter. This

ensures that the heat from the QTH bulb is not transmitted to the tissue to avoid tissue damage.

Follow-up work in the HELICoiD project used other hyperspectral line cameras, such as the

Specim ImSpector® VNIR V10-E spectrograph66 (400 to 1000 nm, 2.8-nm resolution) by

Madroñal et al.97 and the Headwall Hyperspec® NIR X-Series63 (900 to 1700 nm, 166 spectral

bands, 100 frames∕s) by Ravi et al.114 in linear scanning configurations to capture hyperspectral

datasets.

In the initial HELICoiD pilot study, several pixel-wise classification algorithms were used

on the data collected with the HELICoiD demonstrator to test the potential of reflectance spectra

in tumor resection. These include support vector machines (SVMs), multilayer perceptrons

(MLPs), and random forests (RFs) implemented on parallel processing platforms such as the

Headwall Hyperspec® Data Processing Unit112,113 (31 images from 22 procedures on primary

glioblastomas and 135k labeled spectra from the HELICoiD demonstrator) and the Kalray

MPPA-256-N HPC device96 (13 images from 13 procedures on glioblastomas and metastases

and 25k labeled spectra from the HELICoiD demonstrator). The training data consisted of

mixed-patient pixel-wise spectra from intraoperative hyperspectral cubes with pathologist-

labeled ground truth classification labels. These were tested on data from both HELICoiD

cameras separately, and the VIS-NIR data were shown to be most effective with the RF classifier,

providing cross-validated accuracy, sensitivity, and specificity greater than 99% for mixed-

Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. . .
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Table 2 Computational methods developed for hyperspectral imaging in neurosurgery.

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Neurosurgical oncology—reflectance

Tumor
identification,
Fabelo et al.113

A. Spatial non-uniformity
correction
B. Dark frame subtraction
and flat-fielding
C. Denoising
D. Spectral normalization

Pixel-
wise

Classes: tumor
tissue, normal
tissue, and
background

SVM Tumor
histopathology
results from regions
of interest

Tenfold cross-
validation on
mixed-patient
pixel spectra

87% overall accuracy
78% tumor sensitivity

N/A Hyperspec®

Data
Processing
Unit

MLP 97% overall accuracy
93% tumor sensitivity

RF 99% overall accuracy
99% tumor sensitivity

Tumor
identification
and type
prediction,
Fabelo et al.96

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
cropping
D. Spectral normalization

Pixel-
wise

Classes: tumor
tissue and normal
tissue
Subclasses:
primary tumor and
metastasis

RF Visual assessment
and tumor
histopathology
results from region
of interest

Tenfold cross-
validation on
mixed-patient
pixel spectra

99.7% overall accuracy
99.7% tumor sensitivity
99.6% subclass
accuracy
100% subclass
sensitivity

N/A Kalray many-
core
processor

Tumor
identification
speedup,
Madroñal97

A. Cropping of regions of
interest
B. Automatic specularity
and background removal

Pixel-
wise

Classes: tumor
tissue, normal
tissue, and
necrosis

SVM Ex vivo Tenfold cross-
validation on
mixed-sample
pixel spectra

N/S 2.3 Hz Kalray
massively
parallel
processor
array MPPA-
256-N

Dimensionality
reduction with
semantic tumor
segmentation,
Ravi et al.114

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
cropping
D. Spectral normalization
E. Novel deep learning–
based embedding (FR-t-
SNE)

Cube Classes: tumor
tissue and normal
tissue
Subclasses: primary
tumor and their
types and
metastasis and their
origin (nine total)

Discrete cosine
transform–based
semantic texton
forest

Visual assessment
and tumor
histopathology
results from region
of interest

Sixfold cross-
validation

72% overall accuracy
53% tumor sensitivity
(due to inter-patient
variability)
92% tumor specificity

40 s/cube Intel Xeon
E7-8890
v424 cores
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Tumor and
blood
vessel
identification,
Fabelo et al.122

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
cropping
D. Spectral normalization
E. FR-t-SNE embedding

Cube Classes: tumor
tissue, normal
tissue, blood
vessel, and
background

Mixed supervised–
unsupervised
pipeline

Visual assessment
and tumor
histopathology
results from region
of interest

Tenfold cross-
validation

99% to 100% overall
accuracy 98% to 100%
tumor sensitivity

1 min/cube Kalray
MPPA-
256-N

Tumor and
blood vessel
identification,
tumor type
prediction, and
speedup,
Fabelo et al.115

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
cropping
D. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue, and blood
vessel
Subclasses: primary
tumors, metastasis,
and their origin
(eight total)

Mixed supervised–
unsupervised
pipeline

Visual assessment
and tumor
histopathology
results from region
of interest

Tenfold cross-
validation

98% overall accuracy
Unspecified sensitivity

1 min/cube Kalray
MPPA
EMB01
board

Brain tissue
classification,
Fabelo et al.131

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
cropping
D. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

Combined 1D DNN
and 2D CNN

Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

80% overall accuracy
42% tumor accuracy

1 min/cube NVIDIA
Quadro
K2200
GPU

Cube 2D deep
convolutional neural
network

77% overall accuracy
42% tumor accuracy

1 min/cube

Pixel-
wise

1D deep neural
network

77% overall accuracy
40% tumor accuracy

10 s/cube

Hyperspectral
band selection,
Martinez et al.99

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral cropping and
normalization
D. Spectral resampling

Pixel-
wise

Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

SVM Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

With the top 2.5% most
significant spectral
bands:
77% overall accuracy
57% tumor sensitivity

N/S Algorithm
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Brain tissue
classification,
Fabelo et al.174

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing
and cropping
D. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

2D deep
convolutional
neural network

Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

85% overall accuracy
41% tumor sensitivity

1 min/cube NVIDIA
Titan-XP
GPU

Pixel-
wise

1D deep neural
network

84% overall accuracy
42% tumor sensitivity

10 s/cube NVIDIA
Quadro
K2200
GPU

Tumor and
blood vessel
identification,
Manni et al.132

A. Dark frame subtraction
and flat-fielding
B. Spectral cropping
C. Spectral band selection

Pixel-
wise

Classes: tumor
tissue, normal
tissue, blood vessel,
and background

SVM Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

76% overall accuracy
43% tumor sensitivity

N/S N/S

Cube 2D convolutional
neural network

72% overall accuracy
14% tumor sensitivity

NVIDIA
Titan-XP
GPUCube 2D–3D hybrid

convolutional neural
network

80% overall accuracy
68% tumor sensitivity

Pixel-
wise

1D deep neural
network

78% overall accuracy
19% tumor sensitivity

Tumor
identification,
Martínez-
González
et al.119

A. Dark frame subtraction
and flat-fielding
B. Spectral smoothing
C. Spectral band selection

Pixel-
wise

Classes: tumor
tissue and normal
tissue

Linear scalar
SVM

Visual assessment
and tumor
histopathology
results from region
of interest

Unspecified
data split

89% overall sensitivity <1 s Intel
Core i5

Gray–white matter
classification,
Lai et al.234

Dark frame subtraction
and flat-fielding

Pixel-
wise

Classes: gray
matter and white
matter

SVM Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

96% overall sensitivity
89% overall specificity

N/S N/S
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Brain tissue
classification,
Cruz-Guerrero
et al.116

Dark frame subtraction
and flat-fielding

Pixel-
wise

Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

Blind linear unmixing
with end-member
estimation
(EBEAE)144,235

Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

67% to 76% overall
accuracy
30% to 50% tumor
sensitivity

29 to 32
s/cube

Algorithm

Tumor and blood
vessel identification
and tumor type
prediction, Ruiz
et al.98

A. Dark frame subtraction
and flat-fieldingB. Spectral
correction and
normalization

Pixel-
wise

Classes: tumor
tissue, normal
tissue, venous
blood vessel,
arterial blood
vessel, and
dura mater

SVM Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

75% to 97% overall
median accuracy

N/S N/S

RF 55% to 97% overall
median accuracy

Hyperspectral
cube fusion,
Leon et al.147

A. Dark frame subtraction
and flat-fieldingB. Spatial
denoisingC. Spatial
upsampling for NIR image

Cube Fused
hyperspectral
image

Spatial registration
using SURF and
MSER detectors
via a projective
transform

N/A Structural
similarity index
(SSIM) among
gray
reconstructions
from transformed
cubes

0.78 SSIM
21% accuracy
improvement

N/S N/S

Brain tissue
classification,
Hao et al.135

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
band selection
D. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

CNN Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

97% overall accuracy
91% tumor sensitivity

N/S NVIDIA
GeForce
RTX 2080Ti
GPU

K
o
tw
a
l
e
t
a
l.:

H
y
p
e
rs
p
e
c
tra

l
im

a
g
in
g
in

n
e
u
ro
s
u
rg
e
ry
:
a
re
v
ie
w

o
f
s
y
s
te
m
s
...

J
o
u
rn
a
l
o
f
B
io
m
e
d
ic
a
l
O
p
tic
s

0
2
3
5
1
2
-1
6

F
e
b
ru
a
ry

2
0
2
5

•
V
o
l.
3
0
(2
)



Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Hyperspectral
band selection,
Baig et al.118

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral smoothing and
downsampling
D. Spectral normalization

Pixel-
wise

Classes: tumor
tissue and normal
tissue

Empirical mode
decomposition

Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

88% overall accuracy
for the top
2.5% most significant
bands

N/S Algorithm

Brain tissue
classification,
Urbanos et al.150

A. Dark frame subtraction
and flat-fielding
B. Spectral correction and
normalization

Pixel-
wise

Classes: tumor
tissue, normal
tissue, venous blood
vessel, arterial blood
vessel, and dura
mater

SVM Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

60% overall accuracy
20% tumor sensitivity

N/S N/S

Pixel-
wise

RF 53% overall accuracy
11% tumor sensitivity

Cube CNN 49% overall accuracy
32% tumor sensitivity

Hyperspectral
image denoising,
Sun et al.236

N/S Cube Denoised image TV-regularized
denoising

N/A N/A N/A N/S N/S

Brain tissue
classification,
Ayaz et al.136

A. Dark frame subtraction
and flat-fielding
B. Spectral dimensionality
reduction and sensitivity
correction

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

3D CNN Visual assessment
and tumor
histopathology
results from region
of interest

80:10:10 data
split

>99% overall accuracy
99% tumor sensitivity

N/S NVIDIA
GeForce
RTX 5000
GPU

Brain tissue
classification,
Wang et al.134

A. Dark frame subtraction
and flat-fielding
B. Spectral dimensionality
reduction and sensitivity
correction

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

CNN Visual assessment
and tumor
histopathology
results from region
of interest

500:1 data split >99% overall accuracy
99% tumor accuracy

N/S N/S
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Brain tissue
classification,
Cebrián et al.137

N/S Cube Classes: tumor
tissue, normal
tissue, blood, and
meninges

Deep recurrent
neural network

Visual assessment
and tumor
histopathology
results from region
of interest

Fivefold cross-
validation

>99% overall
AUC
>99% tumor
AUC

N/S N/S

Brain tissue
classification, La
Salvia et al.140

A. Dark frame subtraction
and flat-fieldingB. Spectral
band selection

Cube Classes: tumor
tissue, normal
tissue,
hypervascularized
tissue, and
background

CNNUNet++,
DeepLabV3+
architectures

Visual assessment
and tumor
histopathology
results from region
of interest

Leave-one-
patient-out
cross-validation

76% tumor accuracy
76% tumor sensitivity

0.29 s NVIDIA
GeForce
RTX 2080
GPU

Testing deep
learning and
classical machine
learning algorithms
for low-grade
gliomas,
Giannantonio
et al.141

Spectral band selection Pixel-
wise

Classes: tumor
tissue and normal
tissue

SVM Visual assessment 75:25 data
split

91% overall accuracy
92% overall sensitivity

N/S NVIDIA
GeForce
RTX 3090
GPUPixel-

wise
RF 86% overall accuracy

88% overall sensitivity

Pixel-
wise

MLP 92% overall accuracy
91% overall sensitivity

Cube CNN 81% overall accuracy
80% overall sensitivity

Hyperspectral
band selection,
Zhang et al.145

A. Dark frame subtraction
and flat-fielding
B. Spectral normalization

Pixel-
wise

Classes: tumor
tissue, normal
tissue, blood vessel,
and background

Data gravitation and
weak correlation

Visual assessment
and tumor
histopathology
results from region
of interest

Fivefold cross-
validation

90% to 98% overall
accuracy

1 s Algorithm
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Tumor and
blood vessel
identification,
Leon et al.88

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral cropping,
smoothing, and
downsampling
D. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue, blood vessel,
and background

Mixed supervised–
unsupervised
pipeline

Visual assessment
and tumor
histopathology
results from region
of interest

60:20:20
data split
Fivefold cross-
validation

87% overall accuracy
58% tumor accuracy

N/S N/S

Pediatric tumor
identification,
Kifle et al.90

None Pixel-
wise

Classes: tumor
tissue and normal
tissue

RF Visual assessment 70:30 data
split

83% to 85% overall
accuracy

N/S N/S

Tumor and blood
vessel identification,
Sancho et al.152

A. Dark frame subtraction
and flat-fielding
B. Spectral normalization
and correction

Cube Classes: tumor
tissue, normal
tissue, blood vessel,
and dura mater

Mixed supervised–
unsupervised
pipeline

Visual assessment
and tumor
histopathology
results from region
of interest

80:20 data
split

95% overall AUC
95% tumor
AUC

14 fps NVIDIA
GeForce
RTX 3090
GPU

Brain tissue
classification,
Martín-Pérez
et al.100

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral cropping and
correction
D. Spectral normalization

Pixel-
wise

Classes: tumor
tissue (with
subclasses), normal
tissue, arterial and
venous blood
vessels, dura mater,
and skull

RF Visual assessment
and tumor
histopathology
results from region
of interest

80:15:5 data
split

57% tumor AUC (with
snapshot HSI)
65% tumor AUC (with
line scan HSI)

N/S N/S

HSI-MR registration,
Villa et al.173

None Cube MRI-HSI fusion Depth-based 3D
registration

Actuator position N/A ∼4 mm registration
error

5 s N/S

Brain tissue
classification,
Zhang et al.142

A. Dark frame subtraction
and flat-fielding
B. Spectral normalization

Cube Classes: tumor
tissue, normal
tissue, blood vessel,
and background

CNN Visual assessment
and tumor
histopathology
results from region
of interest

Unspecified
data split

97% overall
accuracy

90 to
100 s

N/S
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Neurosurgical oncology—fluorescence

PpIX concentration
estimation, Valdés
et al.67 and Valdés
et al.84

Spectral interpolation Pixel-
wise

PpIX
concentrations

Fitting to known
fluorophore mixture
spectra and empirical
correction
algorithm

Liquid tissue-
mimicking
phantoms

Phantom
correction
accuracy

24% PpIX concentration
accuracy
20 ng/ml detection
threshold

4 to 8 s N/A

PpIX concentration
estimation, Valdés
et al.211

Spectral interpolation Pixel-
wise

PpIX
concentrations

Empirical correction
algorithm

Liquid tissue-
mimicking
phantoms

Phantom
correction
accuracy

6% PpIX concentration
accuracy
20 ng/ml detection
threshold

1 to 2 s N/A

PpIX concentration
estimation, Jermyn
et al.217

Spectral interpolation Pixel-
wise

PpIX
concentrations

Empirical correction
algorithm

Liquid tissue-
mimicking
phantoms

Phantom
correction
accuracy

Best corrected
fluorescence fit
R2 ¼ 0.931 ng∕ml
detection threshold

N/S N/A

PpIX concentration
estimation, Xie
et al.221

Dark frame
subtraction and
flat-fielding

Cube PpIX
concentrations

Spatially
regularized
reconstruction

Liquid tissue-
mimicking
phantoms

Phantom
correction
accuracy

Best corrected
fluorescence fit
R2 ¼ 0.9310 ng∕ml
detection threshold

N/S N/A

PpIX concentration
estimation, Bravo
et al.219

Dark frame subtraction
and flat-fielding

Pixel-
wise

PpIX
concentrations

Fitting to known
fluorophore mixture
spectra and empirical
correction algorithm

Liquid tissue-
mimicking
phantoms

Phantom
correction
accuracy

Ground truth to estimate
linear fit
R2 ¼ 0.9814 ng∕ml
detection threshold

N/S N/A

Fluorescence
component spectra
identification,
Black et al.199

Dark frame
subtraction and
flat-fielding

Pixel-
wise

Significance
of auto-
fluorescence

Fitting to
autofluorescence
and PpIX spectra

Fluorescence
spectra from
biopsies

Spectral
unmixing fit
quality

In weakly fluorescing
areas, 82% lower error
for five-component
spectral fitting as
opposed to PpIX 635
peak only

N/A N/A
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Tumor property
classification,
Black et al.222

A. Dark frame subtraction
and flat-fielding
B. Spectrally constrained
dual-band normalization

Pixel-
wise

Tumor type, grade,
glioma margins,
and IDH mutation
prediction

RF and multilayer
perceptron

Fluorescence
spectra from
biopsies

Fivefold cross-
validation

87% tumor type
accuracy
96% tumor grade
accuracy
86% margin accuracy
93% IDH margin
accuracy

N/A N/S

Joint correction
and unmixing of
fluorescence
spectra, Black
et al.226

N/S Cube Corrected
fluorescence
spectra

1D convolutional
neural network in a
mixed supervised–
unsupervised
framework

Liquid tissue-
mimicking
phantoms/pig brain
homogenates

Pearson
correlation
coefficients
between known
and predicted
concentrations

r ¼ 0.997 for phantoms
r ¼ 0.990 for pig brain
homogenates

N/A N/S

Fluorescence
component spectra
identification and
significance, Black
et al.223

A. Dark frame subtraction
and flat-fielding
B. Spectrally constrained
dual-band normalization

Pixel-
wise

Fluorescence
spectrum library

Sparse non-negative
Poisson regression

Fluorescence
spectra from
biopsies, simulated
data

Data distribution
analysisSpectral
component
abundances

Data distribution is 82%
closer to Poisson than
Gaussian in terms of KL
divergenceEach library
component is present in
>7% of the dataset

N/A N/A

Vascular neurosurgery

Cerebral
oxygenation
mapping, Mori
et al.101

A. Spectral smoothing and
cropping
B. Spectral normalization

Pixel-
wise

Oxygen saturation Fitting to known
hemoglobin and
oxyhemoglobin
spectra

N/A N/A N/A 10 s/cube N/A

Distinguishing blood
and blood vessels,
Laurence et al.157

A. Dark frame subtraction
and flat-fielding
B. Denoising
C. Spatial registration to
account for breathing

Pixel-
wise

Oxygen saturation
temporal dynamics

Fitting to known
hemoglobin and
oxyhemoglobin
spectra and Fourier
transform

Electro-
corticography
recordings

Visual overlay
comparison

N/A 25 s/cube N/A
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Diagnosing
cerebral
hyperperfusion,
Iwaki et al.156

ROI selection and outlier
rejection

Pixel-
wise

Oxygen saturation Fitting to known
hemoglobin and
oxyhemoglobin
spectra

Visual assessment
and co-registered
SPECT images

Comparison
against SPECT

85% hyperperfusion
sensitivity

N/S N/A

Co-designing
hemodynamic and
brain mapping,
Caredda et al.165

N/A Pixel-
wise

Oxygen saturation
and cytochrome-c-
oxidase
concentration

Fitting to known
hemoglobin,
cytochrome-c-
oxidase, and
oxyhemoglobin
spectra and Monte
Carlo light transport
simulation

Ground truth from
light transport
simulation

Comparison
against ground
truth

Concentration
estimation errors:
0.5% oxyhemoglobin
4.4% hemoglobin
15% oxCCO

N/A N/A

Functional neurosurgery

Imaging seizures
within surgery,
Noordmans
et al.104

A. Dark frame subtraction
and flat-fielding
B. Spectral normalization

Pixel-
wise

Oxygen saturation
temporal dynamics

Fitting to known
hemoglobin and
oxyhemoglobin
spectra

Electro-
corticography
recordings

Visual overlay
comparison

N/A N/S N/A

Imaging
neurovascular
coupling, Pichette
et al.92

A. Dark frame subtraction
and flat-fielding
B. Spectral filter response
linear correction
C. Spatial registration to
account for breathing
D. Spatial cropping to
region of interest

Pixel-
wise

Oxygen saturation
temporal dynamics

Fitting to known
hemoglobin and
oxyhemoglobin
spectra

N/A N/A N/A N/S N/A
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Table 2 (Continued).

Objective Pre-processing
Input
format Target Algorithm

Validation
standard

Validation
method

Best validation
metrics/results Speed

Hardware/
algorithm

Metabolic brain
mapping, Caredda
et al.163

A. Spatial registration to
account for breathing
B. Spectral smoothing

Pixel-
wise

Oxygen saturation
and cytochrome-c-
oxidase
concentration

Fitting to known
hemoglobin and
oxyhemoglobin
spectra

Electrical brain
stimulation data

Visual overlay
comparison and
normalized
cross-correlation
coefficient

Correlation coefficients
over time range of
interest:
0.76 oxyhemoglobin
0.86 hemoglobin
0.84 oxCCO

N/S Intel Core
i5-7200U

Imaging
hemodynamic
response to
interictal
epileptiform
discharges,
Laurence et al.160

A. Dark frame subtraction
and flat-fielding
B. Spatial registration to
account for breathing
C. Spatial cropping to
region of interest
D. Outlier rejection

Pixel-
wise

Oxygen
saturation

Fitting to known
hemoglobin and
oxyhemoglobin
spectra

Electro-
corticography
recordings

Visual overlay
comparison

N/A N/S N/A

Spine surgery

Positioning
feedback and
navigation,
Manni et al.59

A. Dark frame subtraction
and flat-fielding
B. Spatial denoising
C. Spectral band selection

SURF/
DELF/
MSER
featur-
es237–239

Feature
displacement

k -nearest
neighbors

Fiducial
markers

Comparison
between
detected and
actual marker
locations

250 μm marker
localization error

N/S N/A

N/S, not specified; N/A, not applicable; WL, white light; FL, fluorescence; SURF, speeded up robust features; MSER, maximally stable extremal regions; SSIM, structural similarity index measure; KL,
Kullback–Leibler; SPECT, single-photon emission computed tomography.
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patient pixel-wise three-class classification.96,113 Subsequently, this classification scheme with a

larger dataset (36 cubes from 22 patients, >375 k labeled spectra from the HELICoiD demon-

strator) has been integrated into a mixed supervised–unsupervised framework to provide fast

intraoperative visualization115 with a total per-frame acquisition and processing time of 1 min

at an overall accuracy greater than 98% for five-class classification (including blood vessels).

Further work has extended and improved these results with techniques such as blind linear

unmixing116,117 and empirical mode decomposition,118 shown SVMs effective for identifying

malignant tumor phenotypes,119 and demonstrated estimation of the molecular composition

of brain tissues in real time.120

Further, to ease the time and computational complexity of working with high-dimensional

hyperspectral data (hundreds of wavelength channels across millions of pixels) and improve the

semantic consistency of segmentation, dimensionality reduction with manifold embedding has

been employed.114 This method uses a deep learning–based modified version of the T-distributed

stochastic neighbor (t-SNE) manifold embedding algorithm,121 called fixed-reference t-SNE

(FR-t-SNE). This non-linear embedding method attempts to preserve local spatial regularity

(nearby pixels represent the same class with high probability) while still capturing high-level

global features (pixel classes). The possibility for generalization of this method was evaluated

by testing the model on patient data from a different set of individuals, with around 72% overall

accuracy and 53% tumor sensitivity for four-class classification (33 images from 18 patients,

captured with the HELICoiD demonstrator). A combination of the above pixel-wise and dimen-

sionality-reduced classifiers to create a joint spatio-spectral classifier has been shown by Fabelo

et al.122 to have an overall accuracy greater than 99%, with a speed-up of >4.5 to 8.5× achieved

with hardware acceleration (five cubes from five patients and 45k labeled spectra from

HELICoiD demonstrator).

Various hardware acceleration platforms have been explored to speed up the classification

computation by individually optimizing the components of these classifiers. The linear kernel

SVM113 has been sped up 3 to 5× on massively parallel processor arrays97 and system-on-chip

architectures123,124 and 90× on graphics processing unit (GPUs);125 dimensionality reduction

with principal component analysis (PCA) for data preprocessing115 has been sped up 36× using

multiple central processing unit (CPU) compute cores;126 k-nearest neighbor classifi-

cation115,122,127 has been sped up 30 to 66× on GPUs; and k-means clustering115,122 has been

sped up 150× on GPUs.128 Jointly implementing the entire pipeline with PCA on a multi-

GPU129 platform has resulted in a total speed-up of 180× over the serial platforms, resulting

in processing times being reduced from several hundreds of seconds to tens of seconds.129

The effect of optimizing the data-type representation of the hyperspectral images and their stor-

age in memory has been explored for lower-throughput processing.130

Recently, deep learning has been applied to tumor identification in both deep fully connected

per-pixel and convolutional spatio-spectral configurations.131,132 This generalizes the hyperspec-

tral data embedding and classification features for the embedded data while allowing for fast

computation on the GPU. In combination with unsupervised clustering techniques and minimal

user guidance, these accuracies rise to 77% to 78% for one-dimensional (1D) spectral deep neural

networks (DNNs),131,132 72% to 77% for 2D convolutional neural networks (CNNs),131,132 80%

for a combination of 1D DNN and 2D CNN,131 and 80% for 3D spatio-spectral CNNs132 (with

datasets consisting of eight cubes from six patients and 82k labeled spectra;131 12 cubes from 12

patients and 116k spectra,132 both from the HELICoiD). Other deep learning architectures133–143

have also produced comparable results with the potential for fast hyperspectral brain structure

classification. Figure 5 shows examples of the HELICoiD demonstrator during brain tumor sur-

gery for tissue classification using unmixing methods and deep neural networks.

Manual initial feature engineering has also been attempted to provide better pre-processed

data as input for classification algorithms. For example, by selecting the most relevant spectral

bands using iterative combinatorial optimization algorithms,99 correlation-based ranking,145 and

deep learning.141 In addition, registered pairs of VIS-NIR and NIR images from the HELICoiD

demonstrator have been analyzed for spectral similarities between classes to ignore non-distinc-

tive samples.146

The two data streams from the visible and near-infrared (VNIR) and NIR cameras in the origi-

nal HELICoiD setup112,113 need to be fused to create a single hyperspectral cube146 to add more

Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. . .
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useful data to the computational methods described above. Therefore, a new version of the dem-

onstrator has been proposed by Leon et al.,147where the confocal stereo configuration is changed to

make the camera axes parallel. This changes the transformation between the two camera view-

points from a projection to a translation, allowing for less spatial and radiometric distortion of

the captured spectra. Combined with spatial and spectral upsampling, hyperspectral cubes are gen-

erated at the original spatial resolution and twowavelength ranges (641 spectral bands between 435

and 901 nm and 144 spectral bands between 956 and 1638 nm), resulting in a 21% accuracy

increase as compared with using just the VNIR camera on a synthetic material database.

Because the HELICoiD system is mounted on a platform separate from the surgical

microscope, it interrupts the surgical workflow due to the need for physical translation of the

HELICoiD system prior to data acquisition [Fig. 3(a)]. To prevent such movement, Mühle et al.87

designed a workflow with a TIVITA® VIS-NIR tissue hyperspectral camera (500 to 1000 nm,

100 spectral bands, 5-nm spectral resolution, 640 × 480 output pixels, ∼100 frames∕s,

∼6 s∕cube)65 mounted onto surgical microscope oculars. However, as the cameras used in the

above projects can capture only one-dimensional spatial slices, physical scanning of the cameras

in one dimension across the surgical field of view is required to capture the entire hyperspectral

cube. Thus, this system can capture nanometer-resolution megapixel intraoperative surgical

Fig. 5 Classifying brain tissue types based on reflectance spectra. Left to right: intraoperative

hyperspectral reflectance imaging on four patients with glioma grades 2 and 4 using the

HELICoiD system (patient 1 in row 1, patient 2 in rows 2 and 4, patient 3 in row 3, and patient

4 in row 5), white-light synthetic RGB image reconstructed from the hyperspectral cube with tumor

regions marked in yellow and biopsy sites with black circles, ground truth–labeled pixels and pixel

classifications using linear unmixing methods [extended blind end-member and abundance extrac-

tion (EBEAE)],117,144 and a two-layer pixel-wise DNN.131 The four classes are NT, TT, BV, and BG.

EBEAE yields around 60% overall accuracy, 30% tumor sensitivity, and 85% tumor specificity,

whereas the DNN yields 85% overall accuracy, 65% tumor sensitivity, and 95% tumor specificity

with fivefold cross-validation on mixed-patient pixel-wise data. GBM, glioblastoma; OD, oligode-

drogioma; A, astrocytoma. Adapted from Leon et al.,88 under CC-BY 4.0.

Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. . .
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datasets (comparable with previous systems88,122,147,148) at the cost of ∼5 s per capture. Data

captured from this system yields 99% accuracy and greater than 98% sensitivity for tumor detec-

tion (one patient, 29k labeled spectra). However, given the time requirement for data acquisition

of a single hyperspectral cube, it has had limited utility for routine clinical use as it significantly

interrupts the surgical workflow, which precludes performing the resection under continuous

feedback from the HSI system.

Therefore, snapshot HSI systems such as the Ximea Corporation MQ022HG-IM-SM5X5-

NIR (665 to 975 nm, 25 spectral bands, 409 × 217 pixels, 170 frames∕s)149 based on the

IMEC SM5x5 NIR sensor, the Cubert Ultris X50 (350 to 1000 nm, 155 spectral bands,

570 × 570 pixels, 1.5 frames∕s),91 the Senop HSC-2 (freely selectable bandwidths and resolu-

tions)73 and the BaySpec OCI-2000 Series snapshot hyperspectral imagers (475 to 875 nm, 35

to 40 spectral bands, 50 frames∕s)74 have been explored as potential alternatives89,90,98,150–154

[Fig. 1(d)]. These can be mounted either by themselves89,98,150–152 or coupled to a surgical

microscope90,93,153,154 to minimize disturbance to the surgical workflow [Fig. 3(d)]. In addition,

systems that fuse the advantages of snapshot and line scanning hyperspectral acquisition, called

snapscan systems (such as the IMEC Snapscan VNIR,75,93 470 to 900 nm, 150 spectral bands,

3600 × 2048 pixels, 2- to 20-s acquisition), coupled with surgical microscopes have been used

for intraoperative imaging.141 These systems have been used to develop machine learning-based

classification (e.g., SVM, decision tree, and RF classifiers90,93,98,151) and convolutional neural net-

works,153with similar results—for instance, a system with the Senop HSC-2 camera reported accu-

racies around 98%.153

3.1.2 Vascular neurosurgery

A major goal in vascular neurosurgery is to restore healthy blood flow to structures in the brain

and prevent ischemia (i.e., oxygen-starved), clots, and bleeding. Healthy blood flow leads to an

adequate supply of oxyhemoglobin to tissue. Therefore, oxygen saturation (i.e., ratio of oxy-

hemoglobin to total hemoglobin) in bulk tissue is used as a measure of tissue health and adequate

oxygen delivery to tissues.

Hyperspectral oxygen saturation estimation was first used for intraoperative imaging of the

cerebral cortex in the superficial temporal artery (STA)–middle cerebral artery (MCA) bypass by

Mori et al.101 Hyperspectral cubes were acquired with a standalone HSC1700 line scanning camera

originally developed for the TAIKI Hyperspectral EO Mission (400 to 800 nm, 81 spectral bands,

640 × 480 pixels, 5- to 16-s acquisition).155 A mixed spectrum consisting of hemoglobin, deox-

yhemoglobin, and bulk tissue scattering was fit,102 and oxygen saturation was estimated from these

proportions. This study found that the STA-MCA anastomosis increased the oxygen saturation

distal to the anastomosis corresponding to MCA territory brain regions in two patients with moya-

moya disease and two with occlusion of the internal carotid artery. Further, Iwaki et al.156 also

found that HSI could detect cerebral hyperperfusion following this anastomosis in five patients

with moyamoya disease. These results showcased the potential of hyperspectral data in vascular

neurosurgery for hemodynamic imaging (i.e., imaging of blood flow and tissue perfusion).

Fu et al.103 developed an LCTF-based HSI system coupled with a Zeiss surgical microscope

tested to predict cerebral ischemia in rats. Unlike the prior work which fit spectra to estimate

oxygen saturation, the authors used an empirical measure to estimate oxygen saturation and tis-

sue perfusion. This work showed that the ratio of tissue reflectance around 545 nm to reflectance

around 560 nm could identify early brain ischemia in a rat stroke model. Their method works

using the reflectance of deoxyhemoglobin and oxyhemoglobin, which are equal at 545 nm but

change rapidly in opposite directions between 545 and 560 nm, yielding a high predictive power

for estimating low oxygen saturation.

Further, a snapshot hyperspectral system from IMEC with filters mosaiced on a CCD sensor

(480 to 630 nm, 16 spectral bands, 256 × 512 pixels, 20 frames∕s) was used by Laurence et al.157

to distinguish between blood vessels and bleeding in the cortex in three patients. Diffuse reflec-

tance spectra measured by the camera are fit to a model consisting of a combination of

oxyhemoglobin, deoxyhemoglobin, and tissue absorption.102 The estimated oxyhemoglobin pro-

portion is Fourier-transformed to calculate its temporal frequency distribution. It was inferred

that the healthy regions where the oxygen saturation is driven by the respiratory rate (cortex

and blood vessels) had a first harmonic temporal frequency of around 0.23 Hz, with a significant
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second harmonic at 0.46 Hz. Meanwhile, bleeding varied more significantly than the heart rate at

a frequency of around 1.3 Hz, which allowed for accurate identification of the vessels.

Noordmans et al.158 used intraoperative HSI and found that these slow, sinusoidal hemodynamic

oscillations displayed a stable and reproducible frequency in four epilepsy patients, which

included non-lesional, focal cortical dysplasia and dysembryoplastic neuroepithelial tumor,

emphasizing the possibility to generalize this method.

3.1.3 Functional neurosurgery

Epilepsy surgery requires the mapping of metabolically active brain regions, including

epileptogenic regions, that demand more oxygen and blood. This link between neuronal activity

and changes in blood flow and oxygenation is commonly referred to as neurovascular

coupling.159 As seizures result from intense, uncontrolled neuronal activity, regions of the brain

exhibiting seizure activity are highly metabolically active and as such display differences in their

neurovascular coupling compared with regions not exhibiting seizure activity.

The first use of HSI for evaluating neurovascular coupling dynamics in epilepsy intraoper-

atively was in 2013 by Noordmans et al.,104 where one patient with intractable sensorimotor

seizures of the left hand was imaged using an LCTF-based system (Varispec VIS108 filter with

a pco.pixelfly camera,110 1392 × 1024 pixels) coupled to a Zeiss Pentero surgical microscope

(Fig. 6). In this work, the entire cerebral cortex was imaged over the span of 7 min, and the

Fig. 6 HSI to map seizures intraoperatively. (a) Local increase in oxygenation during seizure:

oxygenation changes estimated from oxyhemoglobin concentration during a seizure. (b) Area

matched to a photo of the cortex: overlay of oxygenation changes on an RGB image of the brain

cortex, which correlates with electrical recordings of seizure activity measured via electrocorticog-

raphy. Position 20 corresponds to the sensory cortex of the hand where positive seizure activity

was recorded and HSI measured higher oxygenation. Reproduced from Noordmans et al.,104 with

permission from John Wiley & Sons, Inc. (c) Relative concentration as a function of time.
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area of increased oxyhemoglobin at the start of seizure activity matched the epileptogenic zone.

Subsequently, Laurence et al.105 further validated this finding in 12 epilepsy patients, which

included non-lesional, focal cortical dysplasia type and heterotopia. The authors found that

regions of seizure activity were isolated with an intraoperative HSI system.

Further, a snapshot hyperspectral system from IMEC with filters mosaiced on a CCD sensor

(480 to 630 nm, 16 spectral bands, 256 × 512 pixels, 10 to 20 frames∕s) coupled with a Zeiss

Pentero microscope was used for intraoperative hemodynamic imaging on one patient under-

going epilepsy surgery resection by Pichette et al.92 at video rates. Laurence at al.160 tested this

system to measure the interictal discharges in eight patients with non-lesional or subcortical het-

erotopias undergoing epilepsy surgery, where unsupervised clustering of oxygenation correlated

well with direct electrical measurements of the imaged cortex.

Lastly, HSI has been used for intraoperative optical functional brain mapping with a three-

chromophore [oxyhemoglobin, deoxyhemoglobin, and oxygenated cytochrome-c-oxidase

(oxCCO)161,162] system by Caredda et al.163 Incorporating oxCCO into the model introduces

a direct measure of cellular metabolism. This work used a Ximea Corporation MQ022HG-

IM-SM5X5-NIR hyperspectral camera (665 to 960 nm, 25 spectral bands, 409 × 217 pixels,

14 frames∕s)149 to measure the tissue reflectance spectra while the patient was repetitively

clenching his fist. These reflectance spectra were fit to the model, and the resulting concentration

maps were thresholded to identify areas of high oxygenation and metabolism, which were found

to strongly correlate with those identified with gold standard direct electric brain stimulation. In

addition to incorporating oxCCO, Caredda et al.164 have demonstrated blind unmixing using non-

negative matrix factorization to account for two metabolic biomarkers strongly correlating with

direct electrical brain stimulation on 12 patients undergoing resection for a brain tumor near the

motor cortex.

HSI techniques in vascular and functional neurosurgery have both used oxygen saturation

and hemodynamics. Therefore, optimal schemes for measuring the two simultaneously have

been studied in Caredda et al.165 with Monte Carlo simulations of hemodynamic signals follow-

ing neuronal firings. These schemes select specific combinations of NIR spectral bands from the

hyperspectral image to ensure minimal errors in estimating the proportions of oxyhemoglobin,

deoxyhemoglobin, and oxCCO, therefore seeking to achieve accurate metabolic and hemo-

dynamic inferences. Simulations for the specific system designed and implemented in previous

work166 augmented with a Ximea MQ022HG-IM-SM5X5-NIR hyperspectral camera149 were

performed considering the effect of realistic factors such as spectral cross-talk and Gaussian

noise on the estimation error. This study found that 21 to 22 spectral bands were enough to

compute tissue chromophore proportions accurately (0.5% error for oxyhemoglobin, 4.4% error

for deoxyhemoglobin, and 15% error for oxCCO), whereas 10 to 12 spectral bands provided a

similar performance. The general approach implemented with this Monte Carlo simulation can

potentially be used outside hemodynamic imaging in neurosurgical oncology and spine surgery

to determine the optimal spectral signatures for tissue identification tasks using HSI.

3.1.4 Spine surgery

HSI has been hypothesized to be useful in spine surgery as another form of surgical navigation

to enable surgeons to operate without causing injury to surrounding neural elements. To dem-

onstrate the utility of HSI in non-invasive patient positioning and navigation, a Hyperea

snapshot hyperspectral camera from Quest Medical Imaging BV (450 to 950 nm, 41 spectral

bands, 500 × 250 pixels, 16 frames∕s) has been used to track skin features pre-operatively

by Manni et al.59 Based on hyperspectral data collected from 17 healthy volunteers with breath-

ing-based motion, submillimeter feature tracking was demonstrated using both handcrafted fea-

tures and deep learning.

The first demonstration of intraoperative HSI in spine surgery was on a single patient under-

going spinal fusion by Ebner et al.167 This work showed the utility of both a stand-alone snapscan

system from IMEC (470 to 900 nm, 150 spectral bands, 3650 × 2048 pixels, 2 to 40 s acquis-

ition)75 and a stand-alone Photonfocus MV0-D2048x1088-C01-HS02-160-G2 NIR snapshot

camera (665 to 975 nm, 25 spectral bands, 409 × 217 pixels, 50 frames∕s)168 separately.

These systems were used to capture video-rate hyperspectral reflectance data for tissue types
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and implant materials encountered in spinal surgery (skin, fat, muscle, bone, connective tissue,

dura, and screws) in a bovine calf cadaver. The experience of the surgical team using this system

intraoperatively was that it integrated smoothly into the surgical workflow.

3.2 Datasets
The HSI systems described in Sec. 3.1 have produced rich datasets of intraoperative hyper-

spectral data. Some of this data are available in the public domain for use by researchers who

do not have access to or do not have the resources for constructing and deploying their own HSI

systems. We describe publicly available datasets, including those captured for individual

projects.

3.2.1 Neurosurgical oncology

The HELICoiD project has produced the following datasets available169 by contacting the

authors.

• HELICoiD Sample In-Vivo HS Human Brain Database: This dataset from Fabelo et al.122

contains five VIS-NIR hyperspectral cubes of grade IV glioblastoma multiforme (GBMs)

taken during procedures on five different adult patients with a Hyperspec® VIS-NIR A-

series camera. These acquisitions took place at the University Hospital Doctor Negrin of

Las Palmas de Gran Canaria (Spain) and the University Hospital of Southampton (United

Kingdom). These cubes are 1004 × 1010 in spatial dimension and contain 826 spectral

bands between 400 and 1000 nm. A subset of 44,555 marked pixels from these images

with types identified with high confidence by the operating neurosurgeon has been labeled

in one of four categories: normal tissue, tumor tissue, blood vessel, and background with a

biopsy smear of their corresponding tissue. To reduce human error, this entire gold standard

labeling process was done in a computer-assisted manner with a custom-built graphical unit

interface and a programmable angle threshold from known tissue-type spectra with the

spectral angle mapper algorithm.170 This data can be downloaded from the authors’

webpage.169

• HELICoiD Full In-Vivo HS Human Brain Database: This extended version of the previous

dataset from Fabelo et al.148 contains 36 hyperspectral cubes from 22 patients with the same

VIS-NIR camera, cropped to the region of interest (ROI). It contains data not only on

GBMs but also on grade II and III oligodendrogliomas, meningiomas, and metastases from

renal, lung, and breast carcinomas. The gold standard labeling was done in the same semi-

automatic way as in the previous database. The password for this repository can be

obtained by contacting the authors.169

• HELICoiD Enhanced In-Vivo HS Human Brain Database (Benchmark): These data from

Leon et al.88 were captured, processed, and labeled with the previously described method

in the process of validating a mixed supervised-unsupervised classification technique.

It contains a total of 61 cubes captured from 34 adult patients for the same kinds of

tumors as above. The password for this repository can be obtained by contacting the

authors.169

Later work by Puustinen et al.154 attempted to establish a systematic design for a micro-

surgical hyperspectral database. The architecture of the database was modeled to consider multi-

ple characteristics of captured cubes such as patient information, raw data, red–green–blue

(RGB) reconstructions, imaging parameters, manual annotations, pre-operative MRI, regions

of interest, calibration standards, and labeled classes. This database is currently access-restricted

to their collaborators but is projected to be publicly available in 2024.154

Lastly, the Southwest University Longitudinal Imaging Multimodal (SLIM) Brain Database

of hyperspectral data has been recently introduced by Martín-Pérez et al.100 This dataset contains

multimodal data from one line scan hyperspectral camera (Headwall Hyperspec® VIS-NIR E-

series, 400 to 1000 nm, 369 effective spectral bands), one snapshot hyperspectral camera (Ximea

Corporation MQ022HG-IM-SM5X5-NIR, 665 to 960 nm, 25 spectral bands, 409 × 217 pixels,

170 frames∕s) and an RGB-depth light detection and ranging (LiDAR) (Azure Kinect DK,
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3840 × 2160 pixels, 8-bit depth). The data captured for 193 patients (and counting) at the

Hospital Universitario 12 de Octubre in Madrid, Spain, encompasses over a million-pixel spectra

labeled semi-automatically by neurosurgeons into five classes: normal (2 subclasses), tumor (10

subclasses), blood (4 subclasses), meninges (2 subclasses), and skull. In addition to raw images,

the database contains pre-processed data that remove the effects of depth and noise, hyperspectral

cubes cropped to region of interest, generated pseudo-RGB images, and pixel-wise labels. The

dataset is available on the database webpage after seeking permission from the authors.171 Data

from this setup coupled and fused with MRI reconstructions are also available.172,173

3.2.2 Vascular and functional neurosurgery

The data used for hemodynamic imaging in vascular and functional neurosurgery consist of

hyperspectral video captured during surgery. One such dataset, captured for imaging interictal

epileptiform discharges, exists. This dataset, captured at the Centre Hospitalier de l’Université de

Montréal by Laurence et al.,160 consists of 8- to 15-m recordings of eight patients aged 24 to 35

treated for epilepsy. Each hyperspectral cube in the video is 256 × 512 pixels, with 16 spectral

channels between 480 and 630 nm. In addition, the data contain intraoperative ECoG recordings

from an electrode grid that was manually time-synced with the hyperspectral video, which can be

used as the gold standard. These data are available upon request from the authors.160

3.2.3 Spinal surgery

Hyperspectral data captured by Ebner et al.167 from a bovine calf cadaver in the spinal fusion

study described above are available. This dataset was acquired at the Balgrist University

Hospital, Zurich, and consists of aligned hyperspectral snapscan (470 to 900 nm, 150 spectral

bands, 3650 × 2048 pixels) and snapshot (665 to 975 nm, 25 spectral bands, 409 × 217 pixels)

cubes. The relevant parts of the hyperspectral cubes were labeled manually by a neurosurgeon.

The labels include the various tissue types and implant materials encountered in spinal surgery

(skin, fat, muscle, bone, connective tissue, dura, and screws) and are available from the authors

upon request.

3.3 Visualization Techniques

3.3.1 Neurosurgical oncology

The standard technique for visualizing pixel-wise tissue classification from hyperspectral data is

by superimposing a segmentation map (e.g., map of tumor versus normal tissue) over a synthetic

RGB (i.e., anatomic) image created from the hyperspectral cube.113,115,131 However, as classifi-

cation algorithms that use pixel-wise data do not enforce that neighboring pixels have the same

class with high probability (i.e., the classification map is piecewise constant), generating a real-

istic map requires integrating spatial information. Therefore, several methods from the

HELICoiD project115,122,128,129,131,174 [Figs. 3(a), 4, and 5] use a mixed pixel-wise wide-field

approach that makes use of both spatial and spectral information. This approach uses a k-nearest

neighbor-based algorithm based on matching and averaging non-local neighborhoods175 to com-

bine pixel-wise supervised classification outputs (e.g., with SVM or RF) with locality informa-

tion from a single-channel representation of the hyperspectral data (generated with spectral

dimensionality reduction). This yields a spatio-spectrally inferred pixel-wise classification map.

Further, spectral similarity information is incorporated using a majority voting approach176

between this spatio-spectral map and a segmentation map generated with k-means clustering.

The result of this pipeline is then overlaid upon a synthetic RGB (anatomic) image to yield

a visualization that is faithful to both the spectral and spatial properties of the measured hyper-

spectral data.

Recently, sophisticated methods to visualize, reconstruct, refocus, and project hyperspectral

data and segmentation maps have been developed. Augmented reality-based co-projection of

HSI-generated RGB data and neural network-based segmentation labels was implemented on

a HoloLens AR headset by Huang et al.177 and successfully tested in phantom resection proce-

dures. Although the projection quality was excellent, the frame rate was restricted due to an
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unoptimized software implementation. Other approaches have explored low-level image process-

ing and imaging operations such as hyperspectral image demosaicing to generate synthetic RGB

images consistent with the response of the human eye,178 hyperspectral image refocusing to

tackle depth variation in the surgical field,179 and synthetic white balancing to correct for illu-

mination spectrum variability.180

“Vascular, functional, and spine neurosurgery” all use digital overlays of the results of their

data analysis on an RGB reconstruction of the surgical field.92,101,104,156,157,160,163,181

3.4 Clinical Results
Clinical studies using the optical systems and computational methods described above have

shown the potential for surgical utility of HSI in reflectance mode for neurosurgery. Here,

we review the results from clinical studies performed and present a summary of their statistics

and findings in Table 3.

3.4.1 Neurosurgical oncology

Clinical studies using HSI in reflectance mode for neurosurgical oncology have focused on

brain tissue classification during brain tumor resection (16 studies from 2016 to 2024).

These studies have implemented classification algorithms, ranging from classical machine

learning (RFs, SVMs, and MLPs)88,90,96,98–100,112,115,116,119,122,150,171 to modern deep learning

architectures (CNNs and recurrent NNs)136,141,150 (Figs. 4 and 5) with the imaging systems

described in Table 1. These algorithms have been shown to be highly accurate, sensitive, and

specific for identifying tumors. Some algorithms have been optimized to provide results within

∼1 min97,119,152 (three studies from 2016 to 2023). Accurate segmentation of a large range of

primary tumors, including high-grade gliomas to low-grade gliomas, metastases, and healthy

tissue types, has been shown using reflectance hyperspectral data. Further, work toward dimen-

sionality reduction and spectral band selection (two studies from 2017 to 2021) has sought to

further reduce data processing and acquisition time to enable real-time feedback for the

surgeon.99,114 In addition, clinical studies have calculated the objective measures for this

separability based on reflectance spectral similarity between the components (2021)146 that

tested the ease of integration of these methods into the surgical flow (three studies from

2020 to 2023)87,89,93 and tested the possibility of augmented reality visualization of the hyper-

spectral outputs (2023).152 To facilitate further development with HSI (e.g., novel applications

of machine learning algorithms), several of these studies have made their data either publicly

available88,89,100,122,147,148 or available upon request.150

3.4.2 Vascular and functional neurosurgery

Clinical studies have explored the application of HSI for imaging of brain hemodynamics, neuro-

vascular coupling, and vascular or functional pathologies using the hyperspectral systems

detailed in Table 1. Vascular neurosurgery clinical studies (three studies from 2014 to 2020)

have shown HSI can provide accurate estimates of cerebral oxygenation,101 the potential for

HSI to diagnose brain bleeding,157 and estimating hyperperfusion156 from hyperspectral data.

Using these oxygenation mapping techniques, four studies between 2013 and 2022 demonstrated

how intraoperative HSI can be used to detect seizure activity and map functional areas of the

brain using principles of neurovascular coupling160 and validation with electrocorticography

(Fig. 6). One study160 has made their data available upon request to facilitate further algorithmic

research.182

3.4.3 Spine surgery

As a first translational experience using HSI intraoperatively in spine surgery, Ebner et al.167

measured full-field spectra of various components in the scene of a patient undergoing spinal

fusion (data available upon request). In addition, there has been clinical evidence of HSI-based

skin feature tracking as a useful tool for intraoperative navigation in spine surgery.59
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Table 3 Clinical validation of hyperspectral imaging systems for neurosurgical applications.

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Neurosurgical oncology—reflectance

Tumor identification,
Salvador et al.112 and
Fabelo et al.113

Primary tumors 31 cubes from
22 procedures

19k tumor spectra
104k background
12k normal spectra

Intraoperative
(craniotomy)

Pixel-wise hyperspectral data accurately
delineates the primary tumor from normal
tissue with high sensitivity

No

Tumor detection and type
identification, Fabelo et al.96

Grade IV
glioblastomasLung and
renal metastases

13 patients 10k primary tumor spectra
2k metastasis spectra
13k normal spectra

Intraoperative
(craniotomy)

Pixel-wise hyperspectral data accurately
delineates the primary tumor and metastasis
from normal tissue with
high sensitivity

No

Tumor identification
speedup, Madroñal et al.97

Primary tumors 1 patient 19k total spectra Ex vivo
imaging

Near real-time SVM classification can be
achieved with parallel processing

No

Dimensionality reduction
with semantic tumor
segmentation, Ravi et al.114

Mix primary tumors and
metastases

33 cubes from
18 patients

66k tumor spectra
57k normal spectra

Intraoperative
(craniotomy)

Fast deep learning–based embedding can
effectively reduce dimensionality for
semantic segmentation

No

Tumor and blood vessel
identification, Fabelo et al.122

Grade IV glioblastomas 5 cubes from
5 patients

9k tumor spectra
11k normal spectra
17k blood spectra
8k background

Intraoperative
(craniotomy)

Mix spatial–spectral classification with a
supervised–unsupervised approach can
yield accurate segmentation at surgical frame
rates, and a public database can promote
further research

Public

Tumor and blood vessel
identification and tumor type
prediction, Fabelo et al.115

Grade III and IV primary
tumorsRenal, lung, and
breast metastases

36 cubes from
22 patients

14k primary tumor spectra
2k metastasis spectra
117k normal spectra
57k blood vessel spectra
186k background spectra

Intraoperative
(craniotomy)

Mix spatial–spectral classification with a
supervised–unsupervised approach can
yield accurate segmentation at surgical frame
rates

No

Tumor identification,
Ayaz et al.136

Grade IV glioblastomas 26 cubes from
16 patients

11k tumor spectra
102k normal spectra
39k blood vessel spectra
106k background spectra

Intraoperative
(craniotomy)

Deep learning techniques have promise in
tumor identification and 1D per-pixel DNNs
perform comparably with 2D full-field CNNs

No
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Hyperspectral band
selection, Martinez et al.99

Grade IV glioblastomas 26 cubes from
16 patients

11k tumor spectra
102k normal spectra
38k blood vessel spectra
118k background spectra

Intraoperative
(craniotomy)

Combinatorial optimization can help select
the most informative channels for tumor
identification with minimal measurements

No

Tumor and blood vessel
identification and tumor type
prediction, Fabelo et al.148

Grade III and IV primary
tumorsRenal, lung, and
breast metastases

36 cubes from
22 patients

16k tumor spectra
117k normal spectra
58k blood vessel spectra
186k background (semi-
automatically labeled)

Intraoperative
(craniotomy)

A robust, labeled database of spectra from
various kinds of primary and secondary
tumors enables further research where
clinical studies cannot be conducted

Public

Tumor and blood vessel
identification and phenotype
prediction, Martínez-
González et al.119

Grade IV glioblastomas 13 cubes from
13 patients

124k spectra
602k spectra

Intraoperative
(craniotomy)
In vitro H&E

Hyperspectral imaging can potentially
delineate tumor phenotypes in the operating
room

No

Brain tissue classification,
Cruz-Guerrero et al.116

Glioblastoma
multiforme

11 cubes from
8 patients

74k spectra Intraoperative
(craniotomy)

Blind linear unmixing-based approaches can
speed up hyperspectral tissue classification
by 400×

No

Brain tissue classification,
Ruiz et al.98

Glioblastoma
multiforme

4 cubes from
4 patients

6k tumor spectra
11k normal spectra
1.6k venous spectra
600 arterial spectra
4.3k dura spectra (semi-
automatically labeled)

Intraoperative
(craniotomy)

Hyperspectral imaging shows the potential to
segment normal tissue and background into
subclasses

No

Testing the surgical
feasibility of a hyperspectral
imaging workflow, Mühle
et al.87

N/A N/A N/A Intraoperative
(craniotomy)

A surgical microscope-mounted snapshot
sensor can be readily integrated into the
surgical workflow with minimal disturbance to
the staff

N/A

VNIR-NIR data fusion,
Leon et al.147

Primary tumors N/S 2.6M spectra Intraoperative
(craniotomy)

Spatial registration methods for parallel VNIR
and NIR cameras have the potential to
extend VNIR classification features by
incorporating NIR information

Public
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Tissue component
reflectance spectra
similarities in VNIR and
NIR ranges, Leon et al.146

Primary tumors 6 cubes from
4 patients

8k tumor spectra
10k normal spectra
10k blood vessel spectra

Intraoperative
(craniotomy)

VNIR and NIR camera spectra have
statistically significant differences between
normal and tumor tissues in certain
wavelength bands

No

Brain tissue classification,
Urbanos et al.150

High-grade gliomas 13 cubes from
4 patients

15k tumor spectra
28k normal spectra
3.7k venous spectra
1.3k arterial spectra
15k dura spectra (semi-
automatically labeled)

Intraoperative
(craniotomy)

Various supervised machine learning
algorithms (especially RFs) have the
potential to accurately predict subclasses of
healthy tissue and background

Request

Testing the surgical
feasibility of a light-field
hyperspectral system in
neurosurgery, MacCormac
et al.89

N/A 1 patient N/A Intraoperative
(craniotomy)

A surgical microscope-mounted light-field
snapshot sensor running at 1 Hz can be
readily integrated into the surgical workflow

Public

Testing deep learning and
classical machine learning
algorithms for low-grade
gliomas, Giannantonio
et al.141

Low-grade gliomas 15 cubes from
5 patients

8671 total tiles—40 × 40
each

Intraoperative
(craniotomy)

RFs, radial basis SVMs, and CNNs have the
potential to accurately delineate low-grade
gliomas from healthy tissue

No

Benchmarking existing
algorithms with a new
dataset, Leon et al.88

Primary tumors and
metastases

62 cubes from
34 patients

N/S Intraoperative
(craniotomy)

Previously proposed classification machine
learning algorithms have been tested with a
new dataset, showing the potential of
hyperspectral imaging for real-time decision-
making

Public

Tumor identification,
Kifle et al.90

Primary tumors 364 cubes from
4 patients

N/S Intraoperative
(craniotomy)

Snapshot HSI systems can potentially
accurately delineate tumors from healthy
tissue for pediatric neurosurgery

No
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Low-grade glioma
identification, Vandebriel
et al.93

Low-grade gliomas 5 patients (and
counting)

N/S Intraoperative
(craniotomy)

Snapscan HSI systems integrate easily into
the surgical workflow and are potentially
useful for segmenting low-grade gliomas
from healthy tissue

No

Tumor identification and
augmented reality
visualization, Sancho et al.152

Glioblastoma
multiforme

5 video sequences
from 5 patients

N/S Intraoperative
(craniotomy)

Hyperspectral classification results can be
obtained in real time and projected onto a 3D
point cloud for tumor visualization

No

Tumor identification and
augmented reality
visualization, Martín-
Pérez et al.100,171

Primary tumors and
metastases

193 patients N/S Intraoperative
(craniotomy)

A joint hyperspectral 3D LiDAR database can
facilitate research into augmented reality
applications for visualizing tumor delineation

Public

Neurosurgical oncology—fluorescence

Residual tumor detection
via Photofrin, Yang et al.209

Primary tumors 6 patients N/A Intraoperative
(craniotomy)

Multispectral imaging can delineate residual
tumor during PDT

No

Tumor identification,
Gebhart et al.107

Primary tumors 1 patient N/A Intraoperative
(craniotomy)

Fluorescence and diffuse reflectance spectra
can be distinctive between normal and
diseased tissues

No

PpIX concentration
estimation, Valdés et al.67

and Valdés et al.84

Glioblastoma
multiforme

12 patients N/A Intraoperative
(craniotomy)

Diffuse reflectances can be used to correct
fluorescence spectra for tissue optical
properties, enabling absolute PpIX
concentration estimation

No

PpIX concentration
estimation, Xie et al.221

Glioblastoma
multiforme

1 specimen from
1 patient

N/A Ex vivo
imaging

Spatial regularization can improve detection
threshold and PpIX concentration estimate
accuracies

No
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

PpIX concentration
estimation, Bravo et al.219

Primary tumors N/S N/A Intraoperative
(craniotomy)

Hyperspectral data processing improves
the PpIX limit of detection and concentration
estimate accuracy

Request

PpIX pharmacokinetics
in malignant gliomas,
Kaneko et al.202

Malignant gliomas 201 biopsies
from 68 patients

N/A Ex vivo
imaging

Fluorescence in malignant gliomas peaks 7
to 8 h after 5-ALA hydrochloride
administration

No

PpIX pharmacokinetics in
low-grade gliomas, Kaneko
et al.201

Low-grade gliomas 81 biopsies from
25 patients

N/A Ex vivo
imaging

Fluorescence in low-grade gliomas peaks 7
to 8 h after 5-ALA hydrochloride
administration

No

Fluorescence component
spectra identification, Black
et al.199

Primary tumors 275 biopsies from
128 patients

2692 spectra Ex vivo
imaging

Including autofluorescence and PpIX
secondary peak spectra in unmixing
increases sensitivity to PpIX concentration
and ratio of PpIX peaks may predict tumor
grade

No

Tumor type, grade, glioma
margins, and IDH mutation
prediction, Black et al.222

Primary tumors and
metastases

891 cubes from
184 patients

100 to 1000 spectra per
biopsy

Ex vivo
imaging

Corrected tumor fluorescence spectra can
predict tissue type, tumor margin, WHO
grade, and IDH type accurately

No

Joint correction and
unmixing of fluorescence
spectra, Black et al.226

Primary tumors and
metastases

891 cubes from
184 patients

555,666 total spectra Ex vivo
imaging

Semi-supervised or unsupervised learning
can successfully correct for light–tissue
interaction and predict absolute PpIX
concentrations

No

Fluorescence component
spectra identification,
Black et al.223

Primary tumors and
metastases

891 cubes from
184 patients

555,666 total spectra Ex vivo
imaging

A Poisson noise model combined with a
spectral library of nine fluorophores fits tumor
spectra well without overfitting

Spectral
library
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Vascular neurosurgery

Cerebral oxygenation
mapping, Mori et al.101

Ischemic regions N/S N/S Intraoperative
(craniotomy)

Hyperspectral imaging is a promising
technique for monitoring intraoperative
hemodynamics

No

Distinguishing blood and
blood vessels,
Laurence et al.157

Bleeding 9600 cubes
from 1 patient

N/A Intraoperative
(craniotomy)

Hyperspectral imaging can be effective in
monitoring intraoperative bleeding

No

Diagnosing cerebral
hyperperfusion,
Iwaki et al.156

Cerebral
hyperperfusion

29 patients N/A Intraoperative
(craniotomy)

Hyperspectral imaging can be effective in
predicting hyperperfusion

No

Functional neurosurgery

Imaging seizures
intraoperatively, Noordmans
et al.104

Epileptiform regions 280 cubes (inf.)
from 1 patient

N/A Intraoperative
(craniotomy)

Hyperspectral imaging can delineate
epileptiform regions by providing
oxygenation and blood volume data

No

Imaging neurovascular
coupling, Pichette et al.92

Epileptogenic focus 480 cubes from
1 patient

N/A Intraoperative
(craniotomy)

Temporal hemodynamics can be measured
in real time through a surgical microscope
with hyperspectral imaging

No

Metabolic brain mapping,
Caredda et al.163

N/A 1 patient N/A Intraoperative
(craniotomy)

Hyperspectral imaging can produce
accurate, high-resolution functional maps
correlating well with those acquired with
electrical stimulation

No

Imaging hemodynamic
response to interictal
epileptiform discharges,
Laurence et al.160

Epileptiform regions 8 to 15 min from
12 patients

N/A Intraoperative
(craniotomy)

Hyperspectral imaging can provide accurate
optical feedback about interictal epileptiform
discharges

Request

Spine surgery
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Table 3 (Continued).

Clinical aim Target pathologies
Number of
acquisitions Total labeled samples Imaging setup Findings Data

Positioning feedback and
navigation, Manni et al.59

N/A 17 volunteers N/S In vivo imaging Hyperspectral imaging can be used for
markerless feature tracking for positioning
guidance and navigation

No

Tissue classification, Ebner
et al.167

N/A 1 patient N/S Intraoperative
(craniotomy)

Hyperspectral imaging integrates into spinal
surgical workflow seamlessly and provides
reliable spectra meeting surgical constraints

Request

N/S, not specified; N/A, not applicable
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4 Neurosurgical HSI in Fluorescence Mode

Reflectance-based hyperspectral systems provide excellent pixel-wise tissue classification capa-

bilities. However, as observed in previous studies, the reflectance spectra of normal and tumor

tissues can be very similar.146 Although these similarities can be tolerated in regions of predomi-

nantly healthy tissue or bulk tumor, they can be problematic in areas of diffusely infiltrative

tumor, which is the case especially in the margins of gliomas,41 where residual tumor is likely

to lead to tumor recurrence.

In addition, inter-patient and inter-system variability in the reflectance spectra has shown

limited generalization of trained models. For instance, mixed-patient pixel-wise data give high

classification metrics (∼99% accuracy and sensitivity).112,113 However, these metrics drop to as

low as 80% accuracy and 40% sensitivity131 when data are divided patient-wise for classification.

Fig. 7 In vivo hyperspectral fluorescence imaging of PpIX in a glioblastoma patient. Intraoperative

images using a spectral scanning system [Fig. 4(b)] were captured during the resection of glio-

blastoma with images at the beginning (a)–(c), near end (e)–(g), and end of the surgery (i)–(k). The

first three columns show (from left to right) RGB images reconstructed from the hyperspectral cube

(white light), co-registered fluorescence images using the conventional fluorescence surgical

microscope (conventional fluorescence), and PpIX concentration maps estimated from hyperspec-

tral cubes (hyperspectral quantitative fluorescence). (d) In vivo fluorescence spectra acquired from

three locations and marked by different colored crosses (+) in panel (a) with a high-intensity PpIX

spectrum, and peak in red (+) matches the visible pink fluorescence in the center of tumor (b); an

intermediate intensity PpIX spectrum and peak in blue (+) with no visible pink fluorescence is close

to tumor in panel (b); and no PpIX spectrum and peak in green (+) matching no visible pink fluo-

rescence far from tumor in panel (b). (h) In vivo fluorescence spectra acquired from one location

and marked by a blue colored cross (+) in panel (e) show an intermediate intensity PpIX spectrum

and peak in blue (+), no visible pink fluorescence in panel (f), high estimated PpIX concentrations

in panel (g), and are validated with pathology as tumor-infiltrated tissue in panel (l). In panels

(d) and (h), the y -axis shows the intensity of fluorescence emission in arbitrary units, and the

x -axis shows the wavelength λ in nanometers. vFI, visible fluorescence with the conventional

microscope; qFI, quantitative fluorescence imaging estimates of PpIX. Reproduced from

Valdés et al.,67 under CC-NC-SA 3.0.
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Such a significant drop in accuracy and sensitivity highlights the current limitations in general-

izing these reflectance-based HSI techniques across patients for guiding brain tumor resections.

Fluorescence-guided surgery (FGS) was introduced as a standard of care technique for high-

grade gliomas almost 20 years ago and has been shown to be a safe and effective surgical adjunct

to delineate tumor tissue intraoperatively.9,183 FGS “extends” the surgeon’s vision by increasing

the contrast between healthy and tumor tissues.5,45,184–186 Clinically approved fluorophores for

FGS include 5-aminolevulinic acid (ALA)-induced PpIX,187–189 fluorescein sodium (FS),190,191

and ICG192,193 (Fig. 2). These fluorophores selectively accumulate in tumor tissue through vari-

ous cellular mechanisms194 and fluoresce when illuminated with excitation light having an appro-

priate wavelength. PpIX and FS are typically excited with violet and blue light at 405 and

494 nm, respectively, and fluoresce in the VIS spectrum with emission maxima at 635 nm188

and 520 nm,190 respectively.195 ICG is excited at ∼780 nm and fluoresces with its peak in the

NIR at 815 nm.193 However, it has been shown to produce significant fluorescence contrast

beyond 1000 nm, allowing for imaging in the SWIR range.196

5-ALA-induced PpIX fluorescence has been extensively studied,197,198 validated,45 charac-

terized,199–202 and established as a standard in surgery.195,203 PpIX is an intermediate in the hemo-

globin synthesis pathway. The mechanisms of PpIX accumulation in tumor tissue are

multifactorial (e.g., increased tumor metabolism, tumor proliferation, enzymatic or cellular trans-

porter modifications, and blood–brain barrier breakdown204). Studies have clearly demonstrated

its utility in guiding resections with excellent diagnostic metrics for tumor tissue identification.

PpIX accumulates in tumors to produce significant fluorescence after an oral dose of its precur-

sor, 5-ALA (20 mg∕kg)205 2 to 3 h before surgery. Further, PpIX has its largest excitation maxi-

mum at 405 nm,188 with a broad (>200 nm) Stokes shift between the 405-nm excitation maxima

and its emission maximum at 635 nm.188 This large Stokes shift allows for effective filtering of

excitation light without loss of fluorescence emissions. Further, most of its fluorescence spectrum

lies in the domain where tissue scatters light with low hemoglobin absorption and low

autofluorescence.200 Thus, HSI has been used to isolate PpIX fluorescence from autofluores-

cence, other fluorescent markers and noise via spectral fitting, and correction for attenuation

due to tissue optical properties. The use of spectral-based processing capable with HSI has

enabled the detection of “invisible tumors” due to the ability to measure lower levels of

PpIX below the visible threshold of conventional clinical systems67,199 (Fig. 7). This increase

in sensitivity and preservation of specificity for PpIX fluorescence has been quantified

systematically.206 We will next discuss HSI systems that leverage these advantages along with

associated computational methods.

4.1 Imaging Hardware and Software
The first demonstration of multispectral fluorescence imaging in neurosurgical oncology was in

2003 using a wide-field five-band (bandpass spectral filters from Omega Optical207 at 495-, 543-,

600-, 640-, and 720-nm center wavelengths; 20-nm bandwidth, 755 × 484 DVC CCD

detector208) multispectral system. Here, the authors imaged a fluorescent tumor after exogenous

administration of the fluorescent agent, Photofrin,209 with a total acquisition time of 15 s. This

study concluded that multispectral imaging has the capability to separate Photofrin fluorescence

from a background with a 10:1 signal-to-background ratio. Further, it hypothesized that multi-

spectral data could estimate Photofrin concentrations, with a detection limit of 50 to 100 ng∕ml

at 0.5-mm depth inside tissue-mimicking phantoms. However, this work assumed that tissue is

homogeneous, causing these estimates to be accurate only when tissue optical properties

matched the validation phantoms.

As noted before, the first hyperspectral fluorescence imaging was in 2007, where Gebhart

et al.107 developed an HSI system that consisted of a Varispec VIS-20 LCTF from Cambridge

Research Instruments, Inc.108 coupled with a 512 × 512 PhotonMax EMCCD camera109 mounted

on a surgical microscope to measure intraoperative autofluorescence and diffuse reflectance

spectra in one patient. The authors found that a value less than 1.25 for the ratio of autofluor-

escence at 460 nm to diffuse reflectance at 700 nm was highly diagnostic for tumor tissue.

Valdés et al.67 developed a similar hyperspectral system and implemented the first intrao-

perative approach to correct fluorescence signals for the distorting and attenuating effects of

tissue optical properties in 12 patients with brain tumors [Fig. 3(c)]. They imaged the diffuse

Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. . .
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reflectance at excitation and emission wavelengths and fluorescence, followed by implementa-

tion of a correction algorithm67,210,211 (i.e., a spectrally constrained dual-band normalization algo-

rithm) for use in 5-ALA-PpIX FGS. Similar to the work by Gebhart et al.,107 this approach used a

Varispec LCTF coupled to a pco.pixelfly camera and custom optical adapter110 unto a surgical

microscope modified for fluorescence imaging (Zeiss OPMI Pentero). The surgical field was

imaged under white light and 405-nm illumination respectively67,84,211 to measure fluorescence

spectra and reflectance with a total maximum acquisition time of <16 s. The measured fluores-

cence spectrum FrawðλÞ was corrected by an empirical factor inversely proportional to the exci-

tation reflectance Rexc and power law proportional to the emission reflectance Rem.

EQ-TARGET;temp:intralink-;sec4.1;117;628FcorrðλÞ ¼ Ω
FrawðλÞ

RexcR
−0.7
em

.

The corrected fluorescence spectrum was fit to a weighted sum of basis spectra for fluo-

rophores of interest (e.g., PpIX, fluorescein sodium, and tissue autofluorescence) to isolate only

PpIX or FS fluorescence. Thus, the estimated corrected PpIX values were found to be directly

proportional to absolute PpIX concentrations. This correction allowed the detection of PpIX

concentrations as low as 20 ng∕ml, which was significantly lower than the lowest concentrations

of 600 to 1000 ng∕ml found in visually fluorescent (i.e., red-pink visual fluorescence through

surgical oculars) high-grade glioma tissues. Further, these results were encouraging as they

indicate the ability to detect low yet diagnostically significant PpIX concentrations to identify

low-grade glioma and infiltrative margins that are usually “invisible” with conventional

techniques49,51,67,189,212–214 (Fig. 7). This work concluded that a threshold of 100 ng∕ml had

a positive predictive power of >90% for tumor tissues. The HSI approach by Valdés et al.67

was further validated in additional studies demonstrating improved detection capabilities in clini-

cal ALA-PpIX FGS.84 In further work by Valdés et al.,211 a more sensitive pco.edge camera215

allowed lower acquisition times of 1 to 2 s with the same detection limit. An even more sensitive

EMCCD camera216 from Nüvü cooled to −85°C further decreased the limit of detection to

1 ng∕ml, comparable to point spectroscopy methods217 at a maximum total acquisition time

of 5 s. This correction method was further applied to pediatric brain tumors, where the limit

of visual detection was determined to be 200 ng∕ml,218 and the lower limit of detection for

PpIX was 20 ng∕ml. These were all validated with tissue-mimicking phantoms consisting of

a solution of PpIX mixed with an absorber (e.g., hemoglobin and yellow food dye) and a scatterer

(e.g., intralipid emulsion).67 Known fluorophore concentrations in these phantoms can be used to

map the corrected fluorescence to absolute PpIX concentrations and evaluated for accuracy met-

rics such as linearity (i.e., R2 value and mean percentage errors).

Spectrally constrained dual-band normalization has been systematically evaluated for its

accuracy in correcting the raw fluorescence signal for tissue optical properties, its highly sensi-

tive estimates of fluorophore concentrations (i.e., PpIX),67,210,211,219,220 its reproducibility by dif-

ferent clinical and research teams and HSI systems,94,221–223 and its diagnostic utility with greater

sensitivity, negative predictive values, and overall accuracy for tumor detection compared with

visual expert evaluation. Specifically, Lehtonen et al.206 found that visual assessments yielded

63% accuracy, 48% sensitivity, 92% specificity, and 340 ng∕ml minimum limit of detection for

PpIX. Meanwhile, an HSI system based on a standalone Senop HSC-2 camera (500 to 900 nm,

up to 1000 spectral bands, 1024 × 1024 pixels, 150 frames∕s)224 yielded 96% accuracy, 100%

sensitivity, and 86% specificity, and 16 ng∕ml minimum limit of detection (16 samples with

PpIX and eight control samples; number of patients not specified).

Bravo et al.219 have shown in three patients that corrected concentration estimates (with

spectral fitting to isolate PpIX) correlate strongly with point spectroscopy estimates220 (linear

fit r ¼ 0.98) when compared with uncorrected estimates (linear fit r ¼ 0.91 accounting for other

fluorophores, linear fit r ¼ 0.82 not accounting for other fluorophores) (Fig. 8).

Xie et al.221 developed a Bayesian reconstruction method based on spatial regularization and

tested it on one tissue specimen from a glioblastoma patient. This approach defines reconstruc-

tion in terms of a total variation-regularized minimization problem

Kotwal et al.: Hyperspectral imaging in neurosurgery: a review of systems. . .
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EQ-TARGET;temp:intralink-;sec4.1;114;390Ĉðx; yÞ ¼ arg min
Cðx;yÞ

�

X

x;y;λ

ðFrawðx; y; λÞ

− Ωð1 − Rexcðx; y; λÞÞR
2.6
emðx; y; λÞCðx; yÞÞ

2 þΓk∇Cðx; yÞk1

�

:

The first term here, based on previous point spectroscopy analysis,85 attempts to make the

reconstruction of Cðx; yÞ faithful to the measurement of FrawðλÞ. Here, Ω is a factor that maps

corrected fluorescence intensity to concentration, and Γ is a regularization factor that decides the

smoothness of the reconstruction. This reconstruction lowers the detection limit to 10 ng∕ml

using an uncooled ORCA-Flash4.0 EMCCD sensor from Hamamatsu Photonics with 26 s of

total acquisition and processing time. Such low detection levels would be particularly useful

for detecting low, but diagnostically significant PpIX levels in low-grade gliomas.220 Further

computational work used an unspecified sCMOS camera225 with the Sony IMX252 sensor

by Black et al.199 and a pco.edge camera (14 ng∕ml minimum detection limit).94,219,226

Finally, Black et al.222 used machine learning–based approaches on the unmixed fluorophore

contributions to predict the following tumor properties in 891 hyperspectral measurements from

184 patients with multiple brain tumor histology types: tumor type (12 categories, test accuracy

85%), tumor margin location (tumor bulk, infiltrative margin, and healthy tissue altered due to

tumor, test accuracy 96%), isocitrate dehydrogenase enzyme (IDH) gene mutation type (mutated

and normal, test accuracy 86%), and tumor grade (II–IV, test accuracy 93%). In addition, PCA

variation analysis revealed that the five fluorophores mentioned above were the most likely com-

ponents explaining the dataset spectra under the assumption of Gaussian noise.222 Incorporating

the more physically accurate Poisson unmixing model, with a dataset containing 555,666 spectra,

allowed Black et al.223 to unmix fluorophores previously impossible due to their small proportion

and thus building up a “spectral library” containing PpIX620 (see next paragraph), PpIX634,

reduced nicotinamide-adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), flavins,

lipofuscin, melanin, elastin, and collagen as its members. Finally, deep learning–based

Fig. 8 Comparison of HSI to point spectroscopy. Point spectroscopy provides gold standard spec-

trally resolved measurements and PpIX concentration estimates that can be used to validate the

estimates from hyperspectral processing. HSI extends the applicability of fluorescence guidance to

WHO grade III anaplastic oligoastrocytomas (AOA) (a)–(e) and meningiomas (MEN) (f)–(j), where

the PpIX concentration is significantly less than the limit for visual fluorescence. (k) Fluorescence

spectra fit and estimated PpIX concentrations from HSI (top) and point spectroscopy measure-

ments (bottom). MR texture map = matching MRI 2D image; Zeiss—white = white-light image from

a conventional Zeiss microscope; Zeiss—blue = fluorescence image from a conventional Zeiss

microscope; integrated fluorescence = map of fluorescence calculated from the area under the

fluorescence spectrum from 620 to 650 nm; quantitative PpIX = map of PpIX concentration esti-

mates. Reproduced from Bravo et al.,219 under CC-BY 4.0.
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architectures have incorporated the non-linear wavelength-dependent effects not taken into

account by the previous algorithms to correct and unmix fluorescence spectra with a semi-super-

vised architecture.226 This approach yielded more realistic and smooth estimates of PpIX con-

centration maps as well as removing imaging artifacts such as specularities.

As mentioned above, correction methods, such as spectrally constrained dual-band normali-

zation, commonly undergo validation using fluorescent tissue-mimicking liquid phantoms.

However, a recent study by Suero Molina et al.227 has proposed a photostate of PpIX that con-

tributes a fluorescence spectrum shifted to a peak at 620 nm that likely occurs naturally in tissue,

but not in such phantoms. The presence of this photostate (called PpIX620 as opposed to the usual

PpIX634) impacts the accuracy of conventional linear fitting models which use the basis spectra of

PpIX634, PpIX photoproducts and autofluorescence from NADH, lipofuscin, and flavins.

Therefore, incorporation of the PpIX620 spectrum into linear fitting models has been proposed

to improve the accuracy of the spectral fit in dimly fluorescent areas (e.g., low-grade gliomas and

infiltrative regions of high-grade gliomas). This also lowers false positives by removing the spu-

rious contribution of PpIX620, yielding the true PpIX634 spectrum and therefore accurate, lower

PpIX634 estimates.199 Further, additional studies have noted the proportion of the two photostates

(i.e., the overall blue shift of the PpIX spectrum) correlates with tumor grades of tissues.214

This LCTF design provided a small footprint to enable HSI with high spatial resolution at

user-defined spectral resolutions and acquisition times in the order of seconds. Although this

HSI design and subsequent implementations have been translated into the operating room given

their integration with commercial surgical microscopes, they suffer from one major limitation for

widespread surgical use: image acquisition from these systems requires spectral scanning (i.e., an

image for every wavelength of interest with a finite amount of camera exposure for each wave-

length to reconstruct a full hyperspectral cube). As such, these HSI systems have limited intra-

operative utility for widespread use because they do not provide real-time surgical guidance. To

address this limitation, a recent snapshot HSI system that used a series of birefringent crystals

was developed by Marois et al.228 to capture 64 spectral channels at a time. This system achieved

a frame rate of 4 to 6 frames∕s over a broad wavelength range (425 to 825 nm, 64 spectral bands,

600 × 400 pixels) and subsequently implemented a spectrally constrained dual-band normaliza-

tion technique as well.

4.2 Clinical Results
Clinical studies using HSI in FGS have focused mostly on tissue classification for improving

tumor detection (Table 3). The first study sought to detect residual tumors with a limited num-

ber of (multispectral) images209 coupled to visual inspection of these channels. The first quan-

titative clinical studies, carried out by Valdés et al.,67 performed unmixing of fluorescent

components of tissue via fluorescence spectrum fitting and correction of PpIX fluorescence

intensity for attenuation due to light-tissue interaction to estimate absolute pixel-wise tissue

concentrations67,84 on 12 patients undergoing brain tumor resection (Fig. 7). Subsequent work

from this group showed improvements in accuracy and sensitivity for PpIX detection.219 These

corrections were further incorporated into a spatially regularized optimization for smooth and

accurate estimates of PpIX concentration maps.221,226 Further, the autofluorescence properties

of tissue were characterized in two studies to incorporate them into the unmixing algorithms,

using an increasing number of components and known compounds (e.g., PpIX photoproducts

and differing PpIX states)—one analyzing 2692 in vivo spectra from 128 patients199 and one

building a spectral endmember library from 555,666 fluorescence spectra measured from 891

ex vivo sample measurements.223 The coefficients of the resulting fluorescence spectrum fit

were shown to be useful for predicting properties of tumors such as type, margin, grade, and

IDH mutation status222 in 891 spectra from 184 patients. Further, to optimize the dose and

administration time of 5-ALA, hyperspectral studies were performed to estimate the phar-

maco-kinetics of PpIX inside tissue—one with 81 spectra from 25 patients for low-grade

gliomas201 and one with 201 spectra from 68 patients for malignant gliomas.202 These studies

showed an optimal post-dose time of 7 to 8 h at which PpIX tumor fluorescence signal peaks.

The results of these studies point toward the potential for HSI to enhance fluorescence feed-

back to serve as an improved surgical adjunct. One of these HSI studies has made its dataset

available upon request,219 whereas another offers the spectral library constructed during its
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analysis223 to facilitate further research. Exact PpIX concentrations, which are determined by

correcting its fluorescence spectrum from the distorting effects of tissue optical properties and

unmixed from autofluorescent and other fluorescent components in tissue, can increase the accu-

racy of predicting tumor presence, whereas the unmixed autofluorescent parts predict tumor

properties with machine learning. This, combined with the optical functional and vasculature

mapping from the previous section, will allow for all-optical joint visualization of anatomy and

tumor for safe and accurate tumor resection.

5 Future Perspectives

As discussed in the previous sections, there is substantial evidence supporting the potential of

HSI for intraoperative visual feedback. HSI systems, particularly those utilizing snapshot and

snapscan techniques, are convenient for clinical deployment due to their small footprint and

near-real-time acquisition capabilities. Co-developed computational methods have demonstrated

excellent results in the accurate delineation of tumor pathology and normal tissue. These systems

have also enabled non-invasive ECoG-style brain mapping of metabolically active tissue to visu-

alize functional connectivity and hemodynamic inference of molecular metabolic parameters

such as oxyhemoglobin, oxCCO concentrations, and oxygen saturation. Prototype augmented

reality systems have shown promise in accurately projecting hyperspectral results onto the sur-

gical field in 3D. Integrating these capabilities together can create a powerful, unified, non-inva-

sive, optical 3D visualization system that seamlessly integrates into the existing surgical

hardware and workflow. Such a system will provide the surgeon with information far richer than

can be done with traditional visual methods or with an RGB camera displayed on 2D monitors.

However, there are areas that need improvement to enhance these guidance techniques. The

most critical aspect is the framerate of the final hyperspectral outputs. The pipeline leading to

these outputs involves acquisition, processing, and projection, each of which needs optimization.

By individually or jointly refining these components, the final framerate can be brought closer to

real-time, significantly improving the system’s utility in surgical settings.

Among the variety of HSI implementations discussed in Sec. 2.2, snapshot and snapscan

hyperspectral systems70,71,92 coupled with a surgical microscope seem to be the most practical

for immediate clinical translation. Even with these solutions, more work needs to be done to

increase the spatial resolution of the hyperspectral cube. One possible approach in this direction

is upsampling the low-spatial-resolution hyperspectral cube with bilateral upsampling229 and

pansharpening230 algorithms. To make the more commonly used line-scan hyperspectral imaging

systems practical for surgical guidance, their quantum efficiency needs to be increased and noise

floor needs to be decreased—both of which can be achieved using cooled emCCD cameras,216

among other systems.

Another potential direction of acquisition speedup is dimensionality reduction. Because

hyperspectral channels have certain spatial regularity (nearby pixels of nearby channels have

close intensity values with high probability), not all the entries in the hyperspectral cube are

fully independent. Therefore, it is possible to measure subsets of the hyperspectral cube, or

an approximation to it, while still extracting the required information. Examples of this approach

are selecting specific, most important spectral channels;90,99,118,145,147 implementing pre-calcu-

lated programmable spectral filters matched with the combination of tissue components

needed;78 and measuring low-rank approximations to the hyperspectral cube.76 Even with these

existing methods, selecting the free parameters—number of channels to use, filter shapes, and

rank of the approximation—remains an open problem, requiring an analysis of the statistics of

the hyperspectral data and the propagation and noise model of the imaging system.160 However, a

balance needs to be achieved among speed (e.g., real-time imaging), quality of HSI data (e.g.,

high spatial resolution, high spectral resolution, and high signal to noise), and/or cost (e.g., light-

field technologies) that would be of clinical value. HSI is still in its infancy as an intraoperative

imaging modality, and as newer systems are translated into clinical use for specific applications

(e.g., HSI for FGS of gliomas), the right balance among speed, data quality to provide clinical

value, and costs will likely determine the impact HSI will have as an intraoperative imaging

modality.
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Current computational algorithms and their implementations need significant work to bring

them up to the required speeds. Condensed data input from imaging systems as described above,

combined with parallel computational implementations of optimized algorithms on platforms

such as field-programmable gate arrays,125 can allow for this acceleration. Improved classifica-

tion algorithms, optimized for sensitivity to the pathology under consideration and modified to

use the condensed data above, can lessen the required computational load. The ability to process

hyperspectral images fast would imply that it is possible to also process hyperspectral videos,

opening up avenues for applying previously developed computer vision techniques for instru-

ment and feature tracking, manipulation, and guidance. To incorporate these results into a com-

fortable 3D display equipped for surgery or telesurgery, optimized implementations of

augmented reality projection methods prototyped in the literature177 need to be developed.

Lastly, to jointly optimize all the components above, methods to simulate the entire pipeline—

emission at the light source, propagation through the scene and image formation at the camera—

must be developed to ease the requirement of prototyping the corresponding HSI systems.162,165

Due to the narrow focus of existing clinical studies on certain kinds of pathologies, each

clinical study suffers from a low number of patients.113,115,141,221,231 The need for larger and ulti-

mately randomized controlled clinical studies—in terms of pathologies and imaged tissue

properties90,96,119,145,150,151,222,223 and demographics156,160 is an essential step forward in establish-

ing hyperspectral imaging as a standard in intraoperative guidance. Further, clinical HSI studies

have not reported on non-randomized patient outcomes (e.g., overall survival, progression free

survival, and rates of seizure freedom). In addition, it is vital to standardize the protocol of such

clinical studies so that results are reproducible and comparable across studies,160,231 to standard-

ize data formats and schematics so that they can be parsed and re-utilized easily, and to set spe-

cific goals to be achieved with each clinical approach.89 These studies must include in them an

analysis of inter-patient data and statistics variabilities125 and methods to counter them to ensure

consistent results across time. In addition, it is necessary for clinical studies to also consider the

ease and complexity of use of the studied system and to note the experience of the operating room

(OR) team post-study for further refinement.89,167

As a result of the relatively few clinical studies and privacy concerns, as noted in previous

work,90,99,113,115,141,152,222,231,232 there is a lack of publicly labeled hyperspectral data to enable the

development of computational techniques at venues of high expertise in artificial intelligence,

where clinical studies cannot be conducted. This is especially the case with rare tumors and

vascular and functional disorders. The available datasets are all semi-automatically labeled with

input from a neurosurgeon or a pathologist, which has the possibility of human error. Therefore,

there is a need for fusing HSI with other, more established imaging modalities, such as MRI, for

automatic labeling of hyperspectral images.172,173 In addition, in infiltrative tumors, where it is

impossible to draw a sharp boundary between tumor and healthy tissues, a method for fuzzy

margins is needed to perform accurate labeling,222 which can be achieved with co-registered

MRI data and MRI classification algorithms. Fusion with MRI also allows for estimation of

brain shift and joint intraoperative feedback from both modalities.59

Furthermore, all the HSI systems described here image light in the visible, NIR, and SWIR

ranges of the electromagnetic spectrum. Light in this range has limited penetration depth.

Therefore, these HSI systems have limited ability for imaging deep in tissues,233 typically lesser

than a centimeter of depth. Meanwhile, techniques such as MRI, US, and intraoperative neuro-

navigation provide 3D information deeper inside brain tissue. A fusion of these techniques will

allow the surgeon to interpret these sources of complementary information—in vivo surface/sub-

surface molecular information from HSI, in vivo subcentimeter structural information from US,

3D structural information at one time point during surgery from intraoperative MRI, and cor-

respondences with 3D pre-operative information with intraoperative neuronavigation.46

The widespread adoption of intraoperative HSI depends on the success of the aspects of

future work listed above and the practicality of the resulting optimized methods. The success

of these developed HSI methods in pre-clinical work and clinical studies opens up possibilities

for commercial miniaturization, cost reduction, and integration into existing surgical micro-

scopes and visualization software and hardware and will drive further research with large-scale

funded projects such as the HELICoiD.113 If effective enough, techniques developed in neuro-

surgical HSI can be applied to minimally invasive procedures, procedures in other surgical
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subspecialties, and data generation for education and surgical training tools. In summary, sup-

ported by modern techniques from imaging, computation, and visualization, and driven by

clinical interest, hyperspectral imaging has the potential to be a clinical standard of care in

neurosurgery.
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