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Abstract
(150 words)

Humans can recognize their whole-body movements even when displayed as dynamic dot
patterns. The sparse depiction of whole-body movements, coupled with a lack of visual
experience watching ourselves in the world, has long implicated non-visual mechanisms to self-
action recognition. We aimed to identify the neural systems for this ability. Using general linear
modeling and multivariate analyses on human brain imaging data from male and female
participants, we first found that cortical areas linked to motor processes, including frontoparietal
and primary somatomotor cortices, exhibit greater engagement and functional connectivity
when recognizing self-generated versus other-generated actions. Next, we show that these
regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic
visual cues using multiple regression representational similarity analysis. Last, we found the
reverse pattern for unfamiliar individuals: encoding localized to occipito-temporal visual regions.
These findings suggest that self-awareness from actions emerges from the interplay of motor
and visual processes.

Significance Statement: We report for the first time that self-recognition from visual observation of our
whole-body actions implicates brain regions associated with motor processes. On functional
neuroimaging data, we found greater activity and unique representational patterns in brain areas and
networks linked to motor processes when viewing our own actions relative to viewing the actions of
others. These findings introduce an important role of motor mechanisms in distinguishing the self from
others.
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Introduction
Self-recognition is possible even from visually minimalistic dot-displays (Johansson,

1973; Cutting & Kozlowski, 1977; Loula et al., 2005). These displays, called point-light
displays (PLDs), depict whole-body actions with around a dozen moving dots (Johansson,
1973; Cutting & Kozlowski, 1977; Loula et al., 2005). While glimpses of our whole-bodies
may be captured in videos or glass mirrors, they are far less observable than the rich
visual experiences we have seeing movements of close friends or family members. Yet,
humans recognize their own movements better than familiar others’ in PLDs (Loula et al.,
2005; Beardsworth & Buckner, 1981). This self-recognition advantage persists across
viewpoints (Jokisch et al., 2006; Prasad & Shiffrar, 2009), task judgments (Knoblich &
Flach, 2001; Bischoff et al., 2012), body parts (Frassinetti et al., 2009; Daprati & Sirigu,
2002), and action types (Burling et al., 2019; Kadambi et al., 2024), suggesting that self-
action recognition relies on modalities more than vision alone. Despite consistent
behavioral evidence, the neural mechanisms remain untested, representing a crucial gap

in understanding human self-awareness.
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Neuroimaging studies in visual neuroscience often omit the self and focus on the
neural mechanisms coding other people’s actions. These studies show that action
recognition engages a distributed network of cortical areas, termed action observation
network (AON). This network consists of occipito-temporal (OT) (posterior superior
temporal sulcus (pSTS), extrastriate body area, fusiform gyri) and frontoparietal circuits
engaged during action production, including inferior parietal lobe (IPL), premotor cortex
(PM), inferior frontal cortex (IFC), and supplementary motor area (SMA). The crucial
connection between OT and frontoparietal regions is via pSTS-IPL direct connections,
bridging action recognition via visual processing with cognitive theories of action
simulation (Urgen et al., 2019; Grézes et al., 2003).

While OT regions encode actions irrespective of identity, frontoparietal and
somatomotor regions may be critical for self-recognition. These regions are attributed
action simulation, or mirroring, functions— mapping observed actions onto one’s own
motor system. For instance, spiking activity from single and multi-units recorded first in
frontoparietal regions in macaques (Di Pellegrino et al., 1992; Fogassi et al, 2005) and
later in medial frontal cortex (likely pre-SMA) in humans (Mukamel et al., 2010) during
action observation show similar activity during action production. This correspondence in
spiking activity is further seen with systems-level activity in these regions during brain
imaging and is modulated by the observer's motor familiarity with the action (Rizzolatti &
Craighero, 2004; lacoboni, 2009; Calvo-Marino et al., 2006). Since self-generated actions
are most motorically familiar, this could be one mechanism to help differentiate self and

other actions.
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To date, few neuroimaging studies have investigated self-action recognition from
PLDs. These studies support frontoparietal involvement, but used isolated body parts
(Bischoff et al., 2012; Macuga and Frey, 2011) or actions that were not self-generated,
but associated with self-identity (Wozniak et al., 2022). Hence, the neural mechanisms
supporting self-recognition of whole-body actions remain untested. Moreover, beyond
regional univariate activity, representational markers are needed to elucidate the featural
space supporting self-recognition. Using representational similarity analysis (RSA;
Kriegeskorte et al., 2008) can be a viable tool to localize and infer the type of information
encoded in neural activity patterns.

In the present study, we asked the following: which neural systems underlie self-
recognition from whole-body actions? Does self-action recognition rely more on motor
mechanisms, even after accounting for distinctive visual features of the actions, as compared to
other identities? To address these questions, we conducted a multimodal imaging study across
two sessions. In Session 1, we motion-captured a range of actions of participants and their close
friend of the same sex. These actions were performed using both visual instruction (imitation)
and verbal instruction (freely performed). After a delay period, participants returned in Session 2
for fMRI where they underwent an identity-recognition task on PLDs of themselves, friends, and
strangers.

We hypothesized that AON would be involved during action observation for all identities
(self, friends, strangers), encoded in occipito-temporal regions. However, we expected that
frontoparietal regions associated with motor processes would greater engage for the self,
controlling for visual familiarity (friend) and person identity (stranger). Moreover, if these regions
encode motor information to achieve self-recognition, then we expected that activity patterns in
frontoparietal and motor regions would relate to motor familiarity with actions, captured over and

above visual feature contributions.
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104 Materials and Methods

105 Participants

106  Twenty right-handed undergraduate participants (Mage = 20.55, SDage = 1.73, females = 12,
107  males = 8) were recruited from around the University of California, Los Angeles area using
108 convenience sampling. All participants were provided payment for their participation. Sample
109 size was based on prior fMRI studies most similar to ours using biological motion (e.g., Saygin
110 etal.,, 2004; Chang et al., 2021; Engelen et al., 2015) and self-generated point-light displays
111  (Bischoff et al., 2012). The study was approved by the UCLA Institutional Review Board. All
112  participants were naive to the purpose of the study. Participants had normal or corrected-to-

113  normal vision and no physical disabilities.

114  Apparatus

115  The Microsoft Kinect V2.0 and Kinect SDK were used for motion-capture of actions, as in

116  previous studies on self-action recognition (Kadambi et al., 2024; Burling et al., 2019).

117  Customized software developed in our lab was used to enhance movement signals, and to carry
118  out additional processing and trimming for actions presented later in the testing phase (Van
119 Boxtel & Lu, 2013). Three-dimensional (X-Y-Z) coordinates of the key joints were extracted at a
120 rate of approximately 33 frames per second. Each action was trimmed to the start and stop of a
121  T-position signaled by the participant and normalized to scale for use in the experimental task.
122 Note that while motion capture accuracy was high, the Kinect occasionally produced noise

123  jittering in the stimuli, where frame-to-frame joints positions occasionally showed sudden jumps
124  in position. Hence, to remove noisy frame-to-frame jitter, we impinged a manual correction for

125  certain frames (i.e., replacing with the closest previous frame where the jitter was not present).
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Stimuli

Twelve actions were selected from our previous work on self-action recognition (Burling et al.,
2019; Kadambi and Lu, 2019; Kadambi et al., 2024). These actions conveyed a range of
variability in terms of action planning. Six of the actions (i.e. argue, wash windows, get attention,
hurry up, stretch, and play guitar) were categorized as “verbally instructed actions”, delineated
by a high degree of motor goal complexity as defined in our previous work (Burling et al., 2019;
Kadambi et al., 2024). These actions were verbally instructed to the participant (e.g., please
perform the action: “to argue”). The remaining six actions were visually instructed (imitation)
actions, depicting a range of simple and complex goals (i.e., jumping jacks, basketball, digging,
chopping, laughing, directing traffic). For these actions, participants observed a stick figure
performing an action without any verbal label provided and were then instructed to ‘imitate the
movements of the action.” These stick figure actions were selected from the Carnegie Mellon

Graphics (CMU) Lab Motion Capture Database available online (http://mocap.cs.cmu.edu),

generated from actors whose motions were already pre-captured. PLDs were thus created using
the above method for each participant, a sex-matched friend, and a sex-matched stranger. The
stranger's action was randomly selected from one of three possible distractors for each sex (six
total), pre-captured from actions of two of the experimenters and research assistants. The
categorization of the action types, in addition to providing variability of the action goal, allowed
us to further explore secondary analyses contrasting actions involving less motor familiarity due
to copying someone else’s motor plan (visual instruction) versus actions that involved more

motor familiarity due to freely performing the action (verbal instruction).

Procedure
Behavioral Session
In the first session, participants’ body movements were recorded using the Microsoft Kinect V2.0

and Kinect SDK in a quiet testing room. Participants were instructed to perform the actions in a


http://mocap.cs.cmu.edu/
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rectangular space, in order to provide flexibility in how to perform the action, while remaining

within recording distance. The Kinect was placed 1.5 m above the floor and 2.59 m away from
the participant. Participants were instructed to naturalistically perform 12 actions as described
above and recorded by our motion capture system. Participants signaled the start and stop of
action performance by performing an outstretched T-Pose with their arms. Participant actions

were then recorded and converted to point-light stimuli for use in the fMRI session.

Each of the 20 participants also brought a close friend of the same sex, who was also
separately recorded with the same paradigm. None of the participants were informed about the
study’s purpose on self-recognition, but were informed that this study was about general visual
action processing. We used the recordings of the close friend in the fMRI session to assess the
impact of visual familiarity. After the recording session, participants completed a few attitudinal

questionnaires including the Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001),

Schizotypal Personality Questionnaire (SPQ; Raine, 1991), and Vividness of Motor Imagery-2
(VMIQ-2; Roberts et al., 2008). These questionnaires were selected since they measure motor

simulation ability (VMIQ-2) or disturbances in sensorimotor self-recognition (SPQ, AQ).

[Fig 1.tif]

fMRI session

After a delay period of two to three weeks (mean delay days = 18.55, SD = 2.87), participants
returned for fMRI brain imaging in Session 2 (trial structure depicted in Figure 1). During brain
imaging, participants passively observed a point-light display consisting of 25 joints. These joints
included the head (head, neck, clavicle; 3 dots), arm (biceps, elbows, wrists; 6 dots), hands
(fingers; 6 dots), stomach (1 dot), hips (3 dots), knees (2 dots), leg (shin, feet; 4 dots). Each

point-light display either showed their own action (self), same-sex familiar friend, or same-sex
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stranger action for a five second duration. The same-sex stranger was selected at random (out
of two options) between participants. After the stranger was selected, this stranger was
consistently used for all actions involved in the experiment for this participant. Following the five
second observation of the action, participants were prompted to identify on the next screen
whether the action video shown was their own, friend, or stranger within a two second maximum
response period. Participants responded with their right hand by pressing one of three keys,
having the index finger on the first, the middle finger on the second, and the ring finger on the
third key. One identity was assigned to each key, and identity-key mapping was
counterbalanced across subjects. Participants’ response was followed by jittered intertrial
intervals (ITl) mean-centered at 5 seconds. There were four runs per participant, each
consisting of 36 trials (12 trials per identity condition) in an event-related design. For each run,
experimental conditions were pseudorandomized to reduce stimulus autocorrelation related to
order and sequence effects as well as correlated noise, such as scanner drift. Response
mapping of self/friend/stranger was randomized between participants to reduce effects of trial
structure or motor preparation and planning demands. Duration of the experimental task during
functional brain imaging was around 24 minutes. Total brain imaging duration lasted

approximately 45 minutes.

Experimental Design and Statistical Analysis
MRI Acquisition
The Siemens 3-Tesla Prisma Fit scanner at the Staglin IMHRO Center for Cognitive
Neuroscience was used for Magnetic resonance imaging, equipped with a 32-channel head coil.
Structural data was acquired using a T1-weighted MPRAGE protocol (1.0 mm? resolution;
repetition time = 2000 ms). Functional data was acquired utilizing T2*-weighted Gradient Recall

Echo sequence. Scanning parameters for the main task included: repetition time = 700 ms, echo
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time = 33 ms, voxel size = 2.5 mm?3voxels, field of view = 192 mm, flip angle = 70°. Four dummy
scans were acquired and discarded before each scan to account for scanner stabilization.
Participants viewed the stimuli presented on a projector through a mirror mounted on the head
cover in the scanner. Participants underwent four runs of 36 trials each. Each run lasted

approximately 360 seconds.

Imaging Analyses
Univariate Analysis

Statistical analyses were conducted using FEAT (FMRI Expert Analysis Tool) Version 6.00, part

of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) using the GLM approach. Individual

functional scans were coregistered to the high resolution structural image using boundary-based
registration (Greve and Fischl, 2009). Registration of the high-resolution structural scan to the
Montreal Neurological Institute (MNI) template was implemented using FSL’s FLIRT (Jenkinson
2001, 2002) with 12 parameter DOF affine transformation. The following pre-processing steps
were applied: motion correction using MCFLIRT (Jenkinson 2002); slice-timing correction using
Fourier-space time-series phase-shifting; non-brain tissue removal using BET (Smith 2002);
spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean scaling of the entire 4D
dataset by a single multiplicative factor; high-pass temporal filtering (Gaussian-weighted
leastsquares straight line fitting, with sigma=50.0s). Regressors were defined based on the
onsets and durations of the three identities (self, friend, stranger) across all actions. Individual
runs were aggregated into a mixed effects higher-level model using FLAME (FMRIB’s Local
Analysis of Mixed Effects) stage 1 and stage 2 (Beckmann et al., 2003; Woolrich, 2004;
Woolrich 2008) for both within-session single subject variance and between-session group level
variance. Significance testing on the statistical parametric maps was then assessed at the group
level using two approaches in FSL: (1) randomise with threshold-free cluster enhancement

(TFCE) and p < .05 FWE-corrected (Winkler et al., 2014; Smith & Nichols, 2009), TFCE-p
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threshold = .05 and (2) random-field (RFT) based thresholding at Z > 3.1, cluster corrected to a
significance level of p < .05 (Worsley 2001). Randomise served as our main approach to
significance testing given its more conservative, specific, and sensitive significance criteria
(Smith & Nichols, 2009). All figures and tables generated from the parametric RFT analysis are
reported in Extended Data 5-2, 5-4, 5-5. Conjunction analysis to localize self-specific activity

was also implemented in FSL using the easythresh_conj script (easythresh conj) on univariate

activation maps for both self > stranger and self > friend contrasts (Nichols et al., 2005; Price &
Friston, 1997). The conjunction specifically tested the “conjunction null hypothesis” as to
whether both conditions showed significant functional activation (Z > 3.1, p <.05), which were

later used as seed regions in the connectivity analyses.

Functional connectivity: Psychophysiological Interaction (PPI)
To identify a neural circuitry prioritized for self-processing, we implemented PPI (Friston et al.,
1997) to assess task-specific changes in functional connectivity. PPl examines how the
relationships between a seed region and voxels in other brain regions are modulated by the
psychological state of the participant (task-dependent). The degree to which the seed regions
and sink (other brain regions) vary as a function of the task, is measured by testing the
significance of the B coefficient of the interaction computed between the experimental contrast
vector and the sink region. As our analyses focused on identifying a self-action circuitry, we
constrained our seeds to those determined by group-level functional activations in separate
GLMs for the self (i.e., self > stranger or self > friend contrasts). We used a conjunction analysis

implemented in FSL using the easythresh_conj script (easythresh conj) on univariate activation

maps for both self > stranger and self > friend contrasts. The seed region in the left IPL was
generated from creating a sphere (8mm radius) around the peak functional activation for the
conjunction of the self > stranger and self > friend contrasts (centered at peak center-of-gravity,

X, Y, Z =-56, -44, 42). We initially focused on the IPL in the left hemisphere, since the TFCE

10
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thresholding only produced left hemispheric activity in the IPL. However, to more
comprehensively investigate IPL involvement during self-processing, we also conducted PPI
with the right hemisphere IPL seed. The seed regions were each defined in standard space and
resampled to match 2.5mm isotropic voxel resolution. The resampled masks were then inversely
transformed to native space, applied with nearest neighbor interpolation. Time courses.in the

seed region were extracted using fsimeants (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils), which

generated a vector of mean activity in the mask for each volume. This time course was then
entered as the ROI time series regressor into the PPI GLM. Thus, the full GLM consisted of the
interaction vector (PPI regressor), the main effects of the contrasts of interest (the psychological
variables), and a vector representing the seed region time course (the physiological variable, Y
regressor). At the group level, statistical parametric maps for the interaction term were

thresholded (Z > 2.3, p <.01) to compute significance of the interaction term.

Representational Similarity Analysis
Whole-brain representational dissimilarity analysis (RDA) (Haxby et al., 2014; Krieskegorte et

al., 2008) was implemented using the CoSMoMVPA toolbox (http://www.cosmomvpa.org/;

Oosterhof et al., 2016) and custom MATLAB scripts (R2020a). Regressors were defined based

on the onsets and durations of the three experimental conditions (self-actions, friend-actions, or
stranger-actions) during the action observation period of the task. Using the Least-Squares
Separate approach, beta-series parameter estimates (Rissman, Gazzaley, & D’Esposito, 2004;
Mumford et al., 2012) were iteratively estimated per trial by modeling a regressor for the event of
interest in the trial and a regressor for all other events within the run. Standard motion
parameters were also included as regressors in each GLM. Preprocessing was identical to the
univariate analysis, but no smoothing was applied. We generated multiple target
representational dissimilarity matrices (RDM)s based on differences related to spatiotemporal

movement distinctiveness (dynamic time warping), speed, acceleration, jerk, body structure

11
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consisting of limb segment length, and a theoretical RDM based on proprioceptive familiarity. To
generate neural RDMs for each participant, we extracted 36 beta weights for each run,
normalized each beta weight within run, computed the average for each of the 36 action targets
across all runs, and then demeaned the data (i.e., subtraction of the grand mean of all averaged
targets from each averaged target). All RDMs (behavioral, theoretical, and neural) were square,
symmetric, and reflected the pairwise dissimilarity between each element in the matrix. Each
RDM (proprioceptive familiarity, identity, movement distinctiveness, speed, acceleration, jerk,
body structure) was either correlated separately with neural activity (standard RDA) or entered
as input into a multiple regression RDA with other RDMs. The RDMs in the multiple regression
analysis included a subset of the prior RDMs: proprioceptive familiarity and identity (self, friend,
or stranger), and visual feature-based models related to movement distinctiveness (DTW), and
speed. Each RDM was z-transformed prior to estimating the regression coefficients in the
multiple regression analysis.

For the whole-brain searchlight RDA, each searchlight window was defined by a
Gaussian sphere of 2-mm radius. Each spherical searchlight included every voxel in the brain,
along with neighboring voxels within the window. The standard searchlight RDA was
implemented through correlating the target RDM with neural RDM in each searchlight across the
whole-brain. The correlations were then Fisher-z transformed and mapped to the center of each
searchlight to create individual similarity maps in native space as inputs to the higher-level
nonparametric analyses. For the multiple regression searchlight RDA, a multiple regression
analysis was conducted in each searchlight across the whole-brain. For each participant in
native space, the betas were mapped to the center of each searchlight to create individual
similarity maps for each predictor as inputs to the higher-level non-parametric analyses. All
individual maps were normalized to the MNI-152 template using FSL’s FLIRT functionality

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) using trilinear interpolation for group-analysis. One-

sample t-tests were computed at the group level, correcting for multiple comparisons using
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permutation-based threshold-free cluster enhancement with a corrected threshold of p < 0.01

(Smith and Nichols, 2009) with 10,000 Monte Carlo Simulations.

[Fig 2.tif]

Target Representational Dissimilarity Matrices:
Shown in Figure 2, we constructed the following representational dissimilarity matrices used as

predictors for both standard and multiple regression representational dissimilarity analyses:

Movement Distinctiveness. The behavioral RDM for movement distinctiveness was generated
using the dynamic time warping (DTW) algorithm to compare trajectory differences between a
pair of actions. DTW measures the pairwise movement dissimilarity between action time series
via an alignment procedure that accounts for variability in time series length or duration. DTW
aims to find the lowest cost function (warping path) between pairwise action time series that
stretches or shrinks the time series to reflect warped distances. Greater DTW values indicate
greater movement dissimilarity between joint trajectories. A 36 x 36 RDM was created for each
participant that computed the pairwise DTW dissimilarity between each of the 12 actions across
each identity (self, friend, stranger). The following steps were implemented for Dynamic Time

Warping (DTW) analysis in MATLAB R2020a:

(1) For each participant’s actions, 3D positions of each of the 25 joints were extracted using

the BioMotion toolbox (van Boxtel & Lu, 2013).

(2) Each joint trajectory was centered to zero in order to remove the impact of global factors

(e.g., global body displacements, limb length, etc.) on the similarity measures.

13
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3) The action DTW algorithm (Pham, Le, & Le, 2014) was implemented to search for a

temporal warping function shared across all 25 joints.

(4) After deriving the optimal warping function, the analysis computed the frame-by-frame
Euclidean distances of the temporally warped joint trajectories in actions performed by

different actors.

(%) DTW distance was computed as the sum of the distances between all joint trajectories
normalized by the number of frames of a target actor. This normalization step is required

to account for the different durations across participants performing the same action.

(6) For each participant, the dissimilarity of the target participant performing an action from
all other identities was captured by a mean DTW distance measure, computed by
averaging across pairwise DTW distances between the target participant with the other
actors (friend, stranger) in performing this action to construct the 36 x 36

representational dissimilarity matrix (RDM).

Speed, Acceleration, and Jerk Differences. To measure the contribution of movement speed
to self-recognition, we calculated a speed distinctiveness value for every participant’s individual
action in MATLAB R2020a. For each action, we computed the average 3D positional
displacement across all frames and all 25 joints (using the first-order derivative of position)
extracted from Biomotion Toolbox (Van Boxtel & Lu, 2013). We then computed the average
pairwise Euclidean distance to all other identities and actions as a measure of speed
distinctiveness to construct the 36 x 36 RDM. Acceleration and jerk were identically computed,

though taking the first and second derivative of speed respectively.

Body Structure (postural limb length). The body structure RDA was computed based on the
limb length of each of the 24 limbs (for 25 joints) of the PLD. Limb length was computed using

the 3D Euclidean distance between pairs of joints that made up each limb in the PLD. Pairwise

14
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absolute value dissimilarities were then calculated across participants for each limb and

averaged together across all limbs to comprise the 36 x 36 target RDM.

Motor familiarity. We computed a simple theoretical RDM based on the theorized motor
familiarity between each of the identities. This was based on common coding theory (Prinz,
1997), which posits a common representational platform and shared overlap between visual and
motor codes. Thus, identity for the self was coded as 0 (most familiarity due to prior motor
experience; least dissimilarity). We coded friend as 0.6 to capture the low-medium level of
familiarity, since participants had a high degree of visual familiarity with the friends’ actions,
translating to a small degree of motor familiarity. Note that the specific value of 0.6 was not
critical, as the main findings (as described in the results section) remained for a range of
possible values. Since common coding theory posits shared or overlapping visual and motor
codes, repeated visual exposure to friends’ actions could establish partial motor simulation,
where repeated observation of common movements of familiar friends activates motor circuits
even without direct execution of those actions (Rizzolatti and Craighero, 2004; Gallese 2006).
This would account for stronger neural encoding seen for friends' actions compared to
strangers. Hence, stranger was coded as 1 for all actions (no familiarity; most dissimilarity).
Within self-identity, we further weighted the actions by their motor familiarity. Specifically,
actions that were more motorically familiar to participants due to freely performing the action and
self-generating the motor plan (i.e., via verbal instruction) were coded as most similar (0).
Actions that involved copying someone else’s motor plan (i.e., imitated via visual instruction)
were coded as less familiar (.3). All other identities (friend, stranger) were computed equally
similar across actions (friend coded as 0.6, stranger coded as 1). Thus, dissimilarity was
computed between identities and weighted by motor familiarity to comprise the 36 x 36

theoretical RDM.

15



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399
400

401

402

Identity: Self (motor familiarity), Friend (visual familiarity), or Stranger. We also computed
theoretical RDMs specific to identity for either self actions, friend actions, or stranger actions.
For each identity RDM, the identity of interest (e.g., self) was coded as 0 (most similar), while
the other two identities (e.g., friend, stranger) were coded equally as dissimilar (1). Dissimilarity
was only computed between identities (and not individual actions) to comprise 36 x 36

theoretical RDMs for each identity (self RDM, friend RDM, or stranger RDM).

Results
Identity recognition from sparse actions

First, we examined whether self-recognition was possible in visually sparse point-light displays.
We found that participants could discriminate all identities (self, friend, stranger) significantly
above chance (.33), self: M = .563, SD = .180, {(19) = 5.789, p < .001, cohen’s d = 1.29; friend:
M = .483, SD = .182, {(19) = 3.754, p = .001, d = .839; stranger: M = .5052, SD = .172, {(19) =

4.554, p < .001, d = 1.01 (Figure 3).

[Fig 3.tif]

Recognition of self-generated actions (M = .563, SD = .180) was significantly higher than
friends’ actions (M= .483, SD = .182), {(19) = 2.673, pag = .049, d = .598, but not significantly

higher than correctly identifying strangers’ actions (M = .505, SD = .172), {(19) = 1.353, paqj =
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.192. Self-recognition accuracy was also modulated by motor planning, revealed by a significant
interaction effect between action type and identity F(2,19) = 7.546, p = .002, n,? = .284.
Specifically, actions that were generated by one’s own motor plan (i.e., verbally instructed; M =
.615, SD = .198) were better recognized relative to actions that were performed by copying
someone else’s motor plan (visually instructed, M = .513, SD =.189), {(19) = 3.170, paqj = .049,
d = .709. This behavioral result supports the hypothesis that motor processes are involved in
self-recognition. Motor planning did not modulate recognition accuracy for any of the other
identities, friends {(19) = .340, p = .999, nor strangers, {(19) = -2.195, p = .285. All post-hoc

comparisons were corrected using Tukey’s HSD.

As shown in the top panel of Figure 3, self-recognition was greatest for the stretch action
(M =.788, SD = .412) and lowest for digging (M = .375, SD = .487). Across all actions, no
relationships were found between self-recognition accuracy and distinctiveness related to speed
(p = .747), acceleration (p = .380), postural length (p =.410), or movement dissimilarity (p =
.174). These results confirm that action identity could be distinguished in the sparse visual

displays, with an advantage for actions generated with one’s own motor plan.

Action Observation Network is recruited for identity recognition
Our main goal was to examine the neural mechanisms underlying self-recognition from whole-
body movements. To do so, we first compared neural activity for each identity (self, friend,
stranger) relative to baseline. We found bilateral recruitment of the action observation network
for all identities (overlayed in MNI space Fig 4). The activity spanned regions classically found in
visual neuroscience, including the posterior superior temporal sulcus (pSTS) (right: x,y,z = 56,
42,10, left: x,y,z = -52, -50, 10) and lateral occipital cortices, including extrastriate body area
(EBA) (right x,y,z = 44, -60, 10; left x,y,z, =-51, -69, 10)," as well as regions with motor properties

also described in the action observation literature (Rizzolatti & Craighero, 2004; Bonini et al.,
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2022), including the bilateral supplementary motor areas (right x,y,z = 12, 6, 56; left x,y,z = 4, -8,
52), premotor cortices (right x,y,z = 39,1,53; Left x, y, z = -45, 2, 50), inferior frontal gyri (IFG)
(right x,y,z = 50, 15, 10; left x,y,z = -55, 16, 10), and inferior parietal lobules (IPL) (right x,y,z =

50, -40, 14; left x,y,z = -56, -44, 11).

[Fig 4.tif]

A frontoparietal network for self-action processing
Though visual and motor systems were involved during action observation of all identities, we
expected greater activity in motor regions when participants observed their own actions, since
self-generated actions are privileged by prior motor experience. According to common coding
theory, vision and proprioception share a degree of functional equivalence, such that action
recognition is facilitated by a matching process between these modalities (Prinz 1997; Hommel

et al., 2001).

Since visual and proprioceptive codes are most closely matched when observing our
own actions relative to observing actions of others, self-recognition should be facilitated in brain
regions with motor properties that are also active during action observation (e.g., Knoblich and
Flach, 2004; Limanowski and Blankenburg, 2016; Abdulkarim et al., 2023). Indeed, both self
contrasts of interest (self > stranger and self > friend) uniquely evoked greater activity in
frontoparietal regions with these properties. For self > stranger, activity was localized to the left
posterior supramarginal gyrus (peak x, y, z = -62, -48, 28) into the angular gyrus, as well as the
left insular cortex and the inferior frontal gyrus, pars opercularis (x,y,z = -42, 10, -8) (Figure 5). A

few small clusters in the anterior cingulate cortex (ACC) (x,y,z = -2, 20, 18; x,y,z = 4, 14, 28) and
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one small cluster in the right insular cortex (x,y,z = 40, 10 ,-2) were also observed. Self > friend
similarly recruited the left posterior SMG of the IPL (x,y,z = -54, -50, 30), spanning the angular
gyrus (Figure 5, right panel). For friend > stranger and stranger > friend, FSL’'s randomise
approach did not yield significant activity. All peak clusters from the analyses are reported in the

Extended Data Tables 5-1, 5-2, and 5-3.

[Figure 5.tif]

Coactivation in these regions does not necessarily implicate a network for self-processing. Thus,
we further measured network-related activity during self-processing using task-based functional
connectivity (PPI; Friston et al., 1997). The bilateral IPL (peak sphere from the group-level
conjunction maps for self-processing: left: x, y, z =-56, -44, 42; right: 54, -38, 40) was set as
seed regions in separate PPIs, due to the important role of the IPL in motor simulation and hub

status in action processing.

We found very similar results across both hemispheric seeds. For both seed regions, we
observed strengthened frontoparietal and parieto-visual connectivity for the self-processing
contrasts (self > stranger and self > friend). The left IPL seed for self > stranger showed the
greatest peak connectivity between parieto-visual regions: the right lateral occipital cortex (x, y,
z =54 -50, -2), and the left occipito-temporal fusiform area (x, y, z=-52, -70, -12). We also
found strengthened frontoparietal connectivity, specifically with the bilateral inferior frontal
cortices (left x, y, z=-54, 16, 30; right x, y, z = 46, 18, 20), as well as bilateral intraparietal
sulcus spanning the somatomotor cortex (left x, y, z= 26, -50, 44, right x, y, z = 32, -36, 44)
(Figure 6). For the right IPL seed, we found similar connectivity patterns to the left. For self >
friend with the right IPL seed, we found the greatest frontoparietal functional connectivity,

between the right IPL and the bilateral inferior frontal cortex (x,y,z =-36, 30, 34), extending from
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the middle frontal gyrus to the IFG pars opercularis, and spanning the primary motor cortex and
premotor cortex. Additional activity was found in the right pre-SMA (x,y,z = 4,12,58) as well as
bilateral occipotemporal regions, with peaks in the right occipital-temporal cortex (x,y,z = 46, -
56, -2) and left superior temporal sulcus (x,y,z =-62, -50, 8). For self > stranger, we observed
strengthened parieto-occipitotemporal activity, with peaks in the left lateral occipito-temporal
cortex (x,y,z = -46, -68, 12), and right fusiform area (x,y,z = 42, -40, -20). Additionally, we found
strengthened connectivity with the frontal lobe, with peaks in the bilateral inferior frontal cortex,
spanning the premotor and primary motor regions. No activity was found for friend > stranger.

All activity maps were cluster corrected at Z> 2.3, p < .01.

[Figure 6.tif]
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Table 1. PPI results with bilateral IPL seeds
Region Contrast Hemisphere Area MNI (x,y,2) Max Z = Cluste p
r Size
Left IPL
Self > Right Fusiform 54, -50, -2 4.09 2265 <.0001
Stranger Area
Left Fusiform -52,-70, - 4.09 1660 <.0001
Area 12
Right IFC 46, 18, 20 4.05 1537  <.0001
Left IFC -54, 16, 30 4.01 1932  <.0001
IPS 32, -36, 44 3.56 807 <.0001
IPS -26, -50, 44 3.74 1142  <.0001
Self > Right IFC 50, 14, 44 3.83 629 <.0001
Friend
Left IFC -50, 26, 28 3.69 1216  <.0001
Right Fusiform 42, -60, -10 3.93 1154  <.0001
Area
Left Fusiform -48, -50, - 3.57 401 .003
Area 20
Left Middle -60, -50, 4 4.02 609 <.0001
Temporal
Right IPL
Self > Left LOC -46, -68, 12 3.91 1418  <.0001
Stranger
Right Fusiform 42, -40, -20 3.57 1248  <.0001
Area
Right IFC 38, 30, 20 3.58 885 <.0001
Left IFC -44,12, 28 3.63 703 <.0001
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Left STS -62, -50, 8 3.57 781 <.0001

Right Pre-SMA 4,12, 48 3.78 576 <.0001
Right OoTC 46, -56, -2 3.32 482 .00031
Left MFG -36, 30, 34 3.43 415 .00111

Evaluating a visuomotor representational space for self-processing
Based on the strengthened frontoparietal connectivity for self-processing, the analysis below
focused on underlying representational structure. Specifically, we examined the extent to which
self-recognition relied on factors that resembled motor familiarity, while accounting for visual
signatures of the actions across the whole-brain using multiple regression RDA. We opted for
whole-brain analyses since frontoparietal regions often comprise multiple brain networks (e.g.,
action observation network, central executive network), and since additional regions associated
with motor functions also encode self-processing. If self-recognition relies on motor
mechanisms, then encoding patterns may further span other regions associated with motor
properties, such as the somatomotor cortex. Thereafter, we conducted four multiple regression
RDAs for the following predictors of interest: (1) motor familiarity and (2) for each identity: (2a)
self, (2b) friend, or (2c) stranger in separate regression models, accounting for visual features

related to speed or movement distinctiveness.

Multiple Regression Motor Familiarity RDA: somatomotor cortex and occipitotemporal regions
The motor familiarity representational dissimilarity matrix was computed based on the theorized
motor familiarity between each of the identities (self as most motorically familiar, friend as
medium, and stranger as least). Within self-identity, we further weighted the actions by their
degree of motor familiarity. Actions that were most motorically familiar to participants due to self-
generating the motor plan were coded as most similar. Actions that involved copying someone

else’s motor plan (i.e., imitated via visual instruction) were coded as less familiar.
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Shown in Figure 7, we found robust encoding in the somatomotor, frontoparietal, and
lateral-occipital cortices. Specifically, the motor familiarity multiple regression RDA (accounting
for differences in speed and movement distinctiveness) revealed the largest pattern of encoding
in the bilateral primary motor cortex (M1), spanning the primary somatosensory cortex (S1), and
showed stronger representation in the left hemisphere (left peak x,y,z = -46, -22, 50) than right
(right peak x,y,z = 52, 1, 34). Activity patterns were also found in fronto-parietal regions,
including inferior parietal (right peak x,y,z: 54, -36, 36, left peak x,y,z: 46, -66, 34), and a large
cluster spanning the anterior cingulate, mid-superior frontal areas, and supplementary motor
areas (right peak x,y,z = 11, 50, 17; left peak x,y,z = -18, 3, 41). Activity patterns were also
observed in the occipital and lateral-occipital regions, extending into the bilateral lingual gyrus,
precuneus, cuneus (right peak x,y,z = 22, -61, -2). These results together reveal a gradation of
encoding in motor-related regions using identity-based motor familiarity. Specifically, motor-
related brain regions were most strongly encoded when viewing self-generated actions, followed
by friend, and followed by stranger. An exhaustive table of all activity patterns is reported in

Extended Data Table 7-1.

[Fig 7.tif]

Multiple Regression Identity RDAS: stronger representation in somatomotor cortex and mPFC
We then measured whether the representational encoding found in these regions was

specialized for self-identity. We compared activity patterns generated from multiple regression
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RDAs that specified self-actions as the predictor of interest, as compared to multiple regression
RDAs for each other identity (friend, or stranger).

The self-identity RDA generated the largest activity patterns in the bilateral somatomotor
regions, with its peak in the left hemisphere (left peak x,y,z = -30,-23,57) and visually identified
in the right hemisphere (right peak x,y,z = 40, -12, 50) (Figure 8). We also found large activity
patterns in frontoparietal regions, spanning the IPL (left peak x,y,z = -37,-64,40; right peak x,y,z
= 60,-36,27), supplementary motor area (left peak x,y,z = -8,-7,58, right peak x,y,z = 11,15,58),
and lateral to medial-prefrontal cortices (peak x,y,z = 46,50,4) for the self-identity multiple
regression RDA. These results suggest that the somatomotor and frontoparietal regions—
associated with motor simulation—primarily encoded self-actions relative to actions of others.
Further, the strength of encoding in the somatomotor and frontoparietal cortices systematically
degraded as a function of identity. Specifically, the friend RDA produced less encoding, and the
stranger RDA produced no significant encoding in these regions. Activity patterns were also
most visually distributed for the self, followed by friend, and followed by stranger (examined at a

reduced threshold, p<.05).

Additional activity patterns unique to self-identity were also found in bilateral
parahippocampal gyri (left peak x,y,z= -16,-13,-20, right peak x,y,z= 32,-28,-4), with much
smaller activity patterns found in the left occipital pole (left peak x,y,z=-23,-98,-14), bilateral
temporal pole (right peak x,y,z= 46,4,-33, left peak x,y,z= -32,-39,16), thalamus (peak x,y,z =
14,-22,18), and precuneus (peak x,y,z= 8,-38,6). For the friend RDA, the activity patterns were
noticeably sparser and largely overlapped with self-identity, but mostly constrained to the
cortical midline. These regions spanned the precentral gyri, SMA, IPL, insula (peak x,y,z = -46, -
30, 23), the left calcarine and occipitotemporal regions (peak x,y,z =-16, -61, 16), and thalamus
(peak x,y,z =-8, 34, -0). For the stranger RDA, only sparse activity patterns were found in visual

regions: right middle temporal gyrus and occipitotemporal cortex (peak x,y,z = 62, -47, 6) at a
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reduced threshold (Z > 1.96). See Extended Data (Tables 8-1, 8-2, 8-3) for an exhaustive report

of all clusters from all RDAs, visually depicted in Figure 8.

[Fig 8.tif]

Table 2. Number of voxels in regions of interest for each main identity RDA. Table depicts a
parametric degradation in activity pattern encoding in somatomotor and frontoparietal regions as
a function of person-identity.

Area Self Friend Stranger
Somatomotor 5675 1843 0
Frontoparietal

IPL 2383 913 2
SPL 1192 481 0
IFG 860 322 0
INS 740 198 0

Abbreviations: IPL (Inferior Parietal Lobule); SPL (Superior Parietal Lobule); IFG (Inferior Frontal Gyrus);
IS (Insular Cortex). Number of voxels calculated within region of interest (ROI) masks generated from
Harvard-Oxford Cortical Atlas for each identity RDA map (self, friend: ps < 0.01, and stranger: p < 0.05).
Somatomotor mask was generated by combining precentral and postcentral gyri masks. IPL mask
determined by the combination of parietal operculum, angular gyri, and supramarginal gyri (anterior and
posterior) masks, subtracting occipito-temporal overlap (medial temporal gyri and lateral occipital cortices).
IFG mask determined by combination of IFG pars triangularis and IFG pars opercularis masks. Insula
mask determined by subtracting IFG mask from Insula ROI.

Finally, to account for any effect of motor planning of the button responses producing the
large motor cluster in the left-hemisphere for the self-RDA, we conducted an additional RDA for
self-identity that included the timing of the motor responses as a covariate in the multiple
regression analysis. The results maintained the original findings of the self-RDA. Specifically,
the largest cluster from the RDA was observed in the left somatomotor cortex (left peak x,y,z =-
42, -20, 46), and preserved the main findings. See Extended Data (Table 9-1) for an exhaustive

report of all clusters from the RDA, visually depicted in Figure 9.

[Figure 9.tif]
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Combined with results from the motor familiarity RDA, these findings lend support to
motor simulation accounts. Self-processing, due to its high degree of motor familiarity, would be
expected to have the strongest degree of motor simulation during action observation, reflected
by the largest activity patterns in motor-related regions, followed by friend, then stranger. This
aligns with prevalent accounts suggesting that action observation of others involves an.internal
simulation of the action onto our own motor systems (e.g., Rizzolatti & Craighero, 2004;

lacoboni, 2008).

Discussion
Our study investigated the neural correlates for self-recognition of our whole-body movements.
On functional brain imaging data, we report that merely observing our whole bodies in motion
evokes greater activity in neural systems traditionally construed as having motor functions, in

comparison to observing the actions of others.

While boundaries between visual and motor functions have been increasingly blurred
over the last few decades of systems neuroscience research, traditionally frontoparietal areas
are mostly conceived as having motor functions, whereas occipito-temporal areas are typically
construed as involved in visual processing. Here, we found that both areas were involved in
action observation of all identities. However, unique to self-action observation, we observed
greater activity and functional connectivity of frontoparietal regions (left inferior parietal lobule;
IPL and inferior frontal cortex; IFC), functionally connected to occipito-temporal regions. Note
that significance for all univariate subtraction contrasts was assessed using non-parametric
threshold-free cluster enhancement (TFCE), as TFCE has been shown to be more sensitive yet
less prone to false positives in the literature (Smith & Nichols, 2009). This resulted in left-
lateralized activity for self-processing. However, bilateral involvement of these regions was

clearly observed when using FSL’s standard RFT cluster correction (Z > 3.1, p <.05) as well as
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in our multivariate analyses. To avoid false positives, we interpret the non-parametric results,

but do not make strong claims on observed laterality.

Action simulation accounts posit a central role of the motor system during action
observation (Gallese & Goldman, 1998; Rizzolatti & Sinigaglia, 2010). The degree of motor
experience with actions is thought to parametrically modulate activity in these frontoparietal and
motor regions during action observation (even across modalities, e.g., Kaplan et al., 2008;
Kirsch and Cross, 2015; Blakemore & Frith, 2003). Since self-generated actions benefit from
prior motor experience, action simulation could be one candidate mechanism for the increased
activity and connectivity in these regions. However, these regions, notably frontoparietal, also
support functions beyond action simulation, including working memory (Baddeley, 2003),
cognitive control (Corbetta & Shulman, 2002), and multisensory integration (Macaluso & Driver,
2005). While we are unaware of any direct links between cognitive control and self-recognition
on a visual perception task—multisensory integration, particularly in the IPL, could be an
important mechanism to facilitate self-action recognition by combining visual and proprioceptive
information. Similarly, working memory could facilitate retention of the action in order to
differentiate identity, implicating the intraparietal sulcus and numerous occipitotemporal regions

(Wozniak et al., 2022).

It is important to note that merely observing actions may not veridically engage the same
cognitive and neural resources associated with action simulation. For instance, while action
observation can engage sensorimotor areas, it may not trigger the same internal model
mechanisms that would predict somatosensory attenuation during action production, as
expected in action simulation accounts (Kilteni et al., 2021). Conversely, other processes such
as motor imagery, can engage these mechanisms (Kilteni et al., 2018). Hence, we do not make
strong claims on positing the functional mechanism associated with these areas, but highlight

action simulation as one possible candidate.

27



665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

Strengthened connectivity was also observed between the bilateral IPL and the inferior
frontal cortex (IFC) anterior to the premotor cortex, during self-action recognition. Action
simulation accounts often implicate both the IFC and IPL, two anatomically and functionally
connected areas. Other proposals suggest that anterior parcellations of the IFC might be locally
involved in abstracted aspects of action understanding, such as goal selection, intention
inference, and semantic understanding (e.g., Liakakis et al., 2011). During self-action
recognition, the IFC (including its more anterior portions) could support the integration of action
observation with higher-order cognitive processes. Information flow may originate from
strengthened parieto-occipitotemporal functional connectivity during action processing, then
passed onto the IFC (in both anterior and posterior IFG in our data) for more conceptual action

understanding.

Our results also highlight the role of parieto-occipitotemporal regions in action
observation. These regions may distinguish fine-grained visual features that facilitate
discrimination between identities. Together with the IPL and the IFC (e.g., Kilner, 2011), this set
of areas may form an expanded action observation network for self-recognition. That is,
occipital-temporal regions first decode coarse visual identity based on low and mid-level action
features (including for person perception in the superior temporal sulcus, Isik et al., 2017), while
frontoparietal regions may process self-actions at a deeper motoric, proprioceptive, and

conceptual level (e.g., Rizzolatti et al., 2014; Rizzolatti & Craighero, 2004).

In addition to frontoparietal and occipitotemporal regions engaged during self-action
observation, the multivariate results revealed largest activity patterns in bilateral somatomotor
regions. Activity in these regions for both the motor familiarity and self-identity representational
(dis)similarity analyses (RSA)s spanned the primary motor, primary somatosensory,
supplementary motor areas, and the premotor cortices. Further, the strength of encoding in the

somatomotor and frontoparietal cortices systematically degraded as a function of identity. These
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regions most strongly encoded self-identity, moderately encoded friend-identity, and did not
encode stranger-identity, which instead revealed activity patterns in primarily occipito-temporal
regions. The relatively parametric degradation of somatomotor and frontoparietal encoding as a

function of person identity lends further support to action simulation accounts.

While neural activity in these frontoparietal and somatomotor regions is often.implicated
in motor production (e.g., Muir and Lemon, 1983) as well as control, attention, and working
memory processes as noted earlier, these regions are often functionally implicated in tasks
involving action simulation, including action observation (Gallese & Goldman, 1998; Keysers
and Gazzola, 2010), motor imagery (Schnitzler et al., 1997; Ehrsson et al., 2003; Porro et al.,
2000; Pilgramm et al., 2016; Pfurtscheller & Neuper, 1997), action prediction (Lamm, Fischer &
Decety, 2007; Blakemore and Frith, 2003), motor memory (Romo et al., 2012), and motor
planning (Gale et al., 2021). Moreover, coactivation in both premotor and posterior parietal
areas appears to depend on the match between motor and visual information that facilitates
one’s sense of body ownership (e.g., Abdulkarim et al., 2023). The greater match between
common visual and proprioceptive codes may provide the increased sense of bodily awareness
needed to facilitate self-recognition. This is reflected by the greater signal encoding in these
regions for the self, which degraded by visuomotor person familiarity (i.e., less for friend, none

for stranger).

The RSA results also revealed that the neural encoding was most distributed for self-
identity, followed by friend, and least for stranger, where it was primarily localized to occipito-
temporal regions. A substantial body of research suggests that self-processing generally
engages systems-wide and distributed activity compared to processing other identities (e.qg.,
Molnar-Szakacs & Uddin, 2013; Turk et al., 2003; Yeshurun et al., 2021). Indeed, at the

network-level, self-processing involves strong interactions between both low-level feature-based
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processing, and higher-level conceptual processing, facilitating a sense of identity due to the
wealth of information we have stored about our own identities (Molnar-Szakacs & Uddin, 2013).

Results from the self-identity RSA also revealed distributed encoding patterns in other
regions (see Extended Data Table 8-1). The activity patterns spanned regions traditionally
associated with mentalizing (Frith & Frith, 2006) and higher-order reflective and conceptual self-
and other-processing, including the bilateral posterior cingulate cortex, medial (and lateral)
prefrontal cortex, bilateral hippocampus, and the precuneus. These regions not only engage
during mentalizing for others, but also for conceptual mentalizing about oneself (Lombardo et
al., 2010; Qin and Northoff, 2011), and conscious awareness of oneself (e.g., Tacikowski et al.,
2017). Well-known action frameworks (e.g., Keysers and Gazzola, 2007) characterize a degree
of dynamic connectivity between simulative motor representations and abstracted, self-reflective
judgments. It is possible that these regions may store action representations in memory, or
motor schemas, which are later accessed as a comparison to the visual consequence during
action observation (Schmidt, 1975; Arbib 1981; Arbib, 1992). That is, rather than identifying
one’s body based solely on visual cues that we generally lack access to in daily life, we may
access stored proprioceptive schemas at a more abstract level of processing (i.e., “remembered
selves”; Neisser, 1988) that interact with action observation to facilitate the visuo-proprioceptive
match needed for self-recognition.

Finally, a cluster of activity in the anterior cingulate cortex (ACC) was also observed in
the RSA as well as a small cluster during the univariate task contrast of self > stranger actions.
While ACC engagement may be due to multiple reasons given the many functional processes it
has been associated with, a key account of ACC function is related to cognitive conflict (Braver
et al., 2001). Prior research has shown that the ACC is involved in discriminating one’s own
touch from an external touch, with the activity linked to the conflict between expected and actual
sensorimotor feedback (Blakemore et al 1998; Kilteni et al 2024; Stetson et al 2006). There may

be a similar conflict mechanism here when participants merely view their own and other people’s
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actions. The brain has well-established representations of self-generated actions, and viewing
these actions might generate conflict between the internal sensorimotor expectations and the
stimulus-driven visual feedback during action observation. This conflict should be less
pronounced, or even absent when viewing others' actions, since the internal sensorimotor

predictions for others’ actions are less accessible.

In summary, our three main analyses— univariate, functional connectivity, and RSA—
converge on a cortical ensemble of visuomotor regions, spanning frontoparietal, somatomotor,
and occipito-temporal areas, that seem prioritized for self-recognition of whole-body actions.
These regions, notably frontoparietal and somatomotor cortices, are often linked to simulative
motor functions during action observation, which may provide a functional explanation for the
increased motor-related activity we observed. Our findings together reveal an important
contribution of motoric indices to human self-awareness, helping to facilitate the basic

differentiation between ourselves and others.
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structure. For motor familiarity, identity was based on the degree of motor dissimilarity to oneself
(self-generated actions, i.e., verbal instruction: zero dissimilarity; self-imitated actions, i.e., visual
instruction: small dissimilarity, 0.3; friend actions: medium dissimilarity, 0.6; strangers: most
dissimilarity, 1). Brighter colors for all RDMs indicate more dissimilarity. Top Right Panel: Upper
triangular pairwise dissimilarity (1 — spearman’s rho) between each of the group-level RDMs.
Brighter colors indicate more dissimilarity. Bottom Right Panel: DTW figure showing movement
trajectory of one joint from one actor’s action time series (shown as red dots indicating locations)
with lines measuring similarity to the corresponding joint in another actor’s time series (shown as
green dots) to find the optimal decrease in dissimilarity over time.

Fig 3. Behavioral results of identity recognition accuracy. Top: Self-recognition performance
for different actions color coded by action type (verbal instruction: gray; visual instruction: blue).
Light gray fill indicates bar plots for verbal instruction. Light blue fill indicates bar plot for visual
instruction. Inference bands denote 95% Bayesian highest density interval with 1000 iterations.
Horizontal blue line indicates chance-level recognition accuracy (.33). Bottom left panel: depicts
confusion matrix for each identity. No significant misattributions were found for the self relative
to other identities, though friend and stranger were more confused relative to the self (~55%
increase in misattributions for friend and strangers). Bottom right panel: average recognition
accuracy for each identity. All identities were recognized significantly above chance. Self actions
were recognized significantly better than friend actions. Light gray fill indicates bar plots.
Inference bands denote 95% Bayesian highest density interval with 1000 iterations. Horizontal
blue line indicates chance-level recognition accuracy (.33). * p < .05, ** p <.01, ** p <.001.

Fig 4. Group-level activity obtained using FSL’s non-parametric permutation approach
(randomise) with TFCE, p <.05. From Left to Right: Self v baseline; friend v baseline; and
stranger v baseline.

* Large cluster sizes were obtained with TFCE due to the optimal cluster-defining threshold;
hence cluster peaks are reported with visual interpolation using manual thresholding with a
sliding scale. Abbreviations: Inferior Frontal Cortex (IFC); Superior Temporal Sulcus (STS);
Lateral Occipital Cortex (LOC); Supplementary Motor Area (SMA); Supramarginal Gyrus (SMG);
Angular Gyrus (Ang).

Fig 5. Univariate group-level activity for self > stranger (left) and self > friend (right) using
the FSL randomise permutation approach, cluster corrected with TFCE (p < .05). Violin plot
shows mean parameter estimates (PE) for the left posterior supramarginal gyrus (SMG) for all
identities. The left SMG significantly discriminated contrasts of PE for both self vs stranger (p =
.001) and self vs friend (p = .005), but not friend vs stranger (p = .821). Extended Data Figures
5-1 and 5-3 report the activity maps and peak clusters for both TFCE contrasts, as well as RFT
cluster-corrected results (Figures 5-2 and 5-5).
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Fig 6. Task-modulated functional connectivity of left and right IPL. Left IPL (top panel)
seed showed increased connectivity with bilateral occipito-temporal regions, bilateral superior
and inferior parietal areas, and bilateral inferior frontal cortex during self > stranger. For self >
friend, functional connectivity analysis revealed greater connectivity with the bilateral inferior
frontal cortices and occipito-temporal regions. Task-modulated functional connectivity of the
right IPL (bottom panel) showed a similar activity pattern to the left: strengthened fronto-parietal
and parieto-occipital connectivity for both contrasts. All activity cluster corrected at Z> 2.3, p <
.01. Abbreviations: IPL (Inferior Parietal Lobule), IPS (Intraparietal Sulcus), IFC (Inferior Frontal
Cortex), OT (Occipito-Temporal Regions), EBA (Extrastriate Body Area), STS (Superior
Temporal Sulcus).

Fig 7. Multiple regression searchlight RDA results for motor familiarity. This figure
depicts the z-transformed activity map for significant correlations between the motor
familiarity RDM and the neural RDM based on activity patterns for actions (self encoded as
least dissimilar, with action separation to account for motor familiarity between action types;
friend as medium dissimilarity, stranger as most), after accounting for speed and movement
distinctiveness (DTW). Activation map reflects brain activity after 10000 non-parametric
Monte Carlo simulations, using TFCE and p < 0.01. Regions: bilateral somato-motor cortex:
primary motor cortex, primary somatosensory cortex, superior parietal lobule; frontoparietal
cortex: inferior parietal lobule, inferior frontal cortex, medial prefrontal cortex; occipito-
temporal cortex: inferior temporal cortex, superior temporal sulcus and gyrus. All activity
patterns are reported in Extended Data Table 7-1.

Fig 8. Multiple regression searchlight RDA results for each identity (self, friend, stranger).
Activation maps reflect TFCE-corrected brain activity after 10000 non-parametric Monte Carlo
simulations, p < 0.01 for self and friend; p < .05 for stranger. Dissimilarity matrices reflect
dissimilarity based on identity across all actions. Regions: Frontoparietal: Inferior Parietal lobule;
Superior Frontal Gyrus, lateral and medial prefrontal cortices. Somatomotor: Primary Motor
Cortex (M1), Primary Somatosensory Cortex (S1). Occipito-Temporal: Superior Temporal
Sulcus, Middle Temporal Gyrus, Extrastriate Body Area. Activity patterns are reported in
Extended Data Tables 8-1, 8-2, 8-3, 8-4 and Figure 8-1.

Fig 9. Multiple regression searchlight RDA results for self identity, regressing out motor
responses. Activation maps reflect TFCE-corrected brain activity after 10000 non-parametric
Monte Carlo simulations, p< 0.01 for self. Dissimilarity matrix reflects dissimilarity based on self-
identity across all actions. Regions: Frontoparietal: Inferior Parietal lobule; Superior Frontal
Gyrus, lateral and medial prefrontal cortices. Somatomotor: Primary Motor Cortex (M1), Primary
Somatosensory Cortex (S1). Occipito-Temporal: Superior Temporal Sulcus, Middle Temporal
Gyrus, Extrastriate Body Area. Activity patterns are reported in Extended Data Table 9-1.
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