Small cancellation and outer automorphisms of Kazhdan
groups acting on hyperbolic spaces
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Abstract

We show that every finite group realizes as the outer automorphism group of a
hyperbolic group with Kazhdan property (T) and trivial finite radical. This result
complements the well-known theorem of Paulin stating that the outer automorphism
group of every hyperbolic group with property (T) is finite. We also show that, for every
countable group @, there exists an acylindrically hyperbolic group G with property (T)
such that Out(G) = @. The proofs employ strengthened versions of some previously
known results in small cancellation theory.
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1 Introduction

It has long been known that the combination of hyperbolic geometry and property (T)
implies rigidity of the algebraic structure of the group. The ultimate manifestation of this
phenomenon is the following theorem.

Theorem 1.1 (Paulin, [Pau]). The outer automorphism group of a hyperbolic group with
property (T) is finite.

Informally speaking, Paulin shows that every group G admitting infinitely many “suf-
ficiently distinct” isometric actions on a hyperbolic space also acts on an R-tree without
globally fixed points. For a hyperbolic group G, these “sufficiently distinct” actions can be
constructed by precomposing the natural action of G on its Cayley graph with elements
of Out(G). The relevance of property (T) in this context stems from the observation that
every action of a Kazhdan group on an R-tree has a fixed point (see [HV]).

Recall that every hyperbolic group G contains a unique maximal finite normal subgroup
denoted by K(G) and called the finite radical of G (see, for example, [01s93]). It is natural
to ask the following question reminiscent of the inverse Galois problem.

Question 1.2. Which finite groups can be realized as Out(G) for a hyperbolic group G with
property (T) and trivial finite radical?

Without the condition K(G) = {1}, Question 1.2 admits an easy answer since every finite
group can be realised as the group of outer automorphisms of another finite group [Cor].
One can also consider direct products of the form G = K x H, where K is an appropriate
finite group and H is a non-trivial, torsion-free, hyperbolic group with property (T) such
that Out(H) = {1}. Obviously, we have Out(G) = Out(K) in this case. However, these
examples are not satisfactory since the outer automorphisms of such a group G do not
reflect the symmetries of its “truly hyperbolic” part.

We give a complete answer to Question 1.2 by proving the following.

Theorem 1.3. For every finite group Q, there exists a hyperbolic group G with property
(T) and trivial finite radical such that Out(G) = Q.

Another natural question prompted by Paulin’s theorem and its generalizations to rel-
atively hyperbolic groups [BS, DS] is whether the existence of a “nice” action of a group G
on a hyperbolic space imposes any restrictions on Out(G). We address this question for the
class of acylindrically hyperbolic groups, which was introduced in [Osil6] and received con-
siderable attention in recent years (see [Osil8] and references therein). Informally, a group
G is acylindrically hyperbolic if it admits a non-elementary action on a hyperbolic space S
such that the induced action of G on S x S satisfies a certain properness assumption. For
the precise definition, we refer the reader to Section 2.3.

Theorem 1.4. For every countable group Q, there exists a finitely generated acylindrically
hyperbolic group G with property (T) such that Out(G) = Q.
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Remark 1.5. Every acylindrically hyperbolic group also contains a unique maximal finite
normal subgroup [DGO, Theorem 2.24]. The same terminology and notation as in the
hyperbolic case is used here. Our approach allows us to additionally ensure that the group
G from Theorem 1.4 has trivial finite radical (see Theorem 4.6). Note, however, that
Theorem 1.4 (unlike Theorem 1.3) is new even without the condition K(G) = {1}.

Theorem 1.4 strengthens several previously known results, all of which were obtained
using some sort of small cancellation theory. Minasyan [Min] prowed that every countable
group realizes as Out(G) for a property (T) group G. However, groups constructed in
[Min] are far from being acylindrically hyperbolic. Ollivier and Wise [OW] showed that
every countable group @ embeds in Out(G) for some acylindrically hyperbolic group G
with property (T). (Although acylindrical hyperbolicity is not mentioned in [OW], groups
constructed in [OW] satisfy a small cancellation condition, which implies acylindrical hy-
perbolicity by the work of Gruber and Sisto [GS].) In addition, one can ensure that @ is
of finite index in Out(G) if @ is finitely generated using the approach suggested in [BO].
However, the technique used in [BO] is not sufficient to prove the equality Out(G) = Q. A
significant part of this paper is devoted to the development an improved version of small
cancellation theory that allows us to obtain a more precise result. Since our work in this
direction is likely to have other applications, we discuss it below in more detail.

The classical small cancellation theory studies quotient groups of the form

G = F(X)/{R),

where F'(X) is the free group with basis X and R is a set of reduced words in the alphabet
X u X! with “small overlaps”. The central result about such groups is the Greendlinger
lemma stating that every reduced word in X U X ! representing the identity in G contains
a “long” subword of some relation R € R.

A generalization of this theory to quotients of groups acting on hyperbolic spaces was
suggested by Gromov [Gro] and elaborated by Olshanskii [O1s93]. The main technical tools
and ideas employed in [Ols93] go back to the geometric method of studying groups via van
Kampen diagrams developed by Olshanskii in the late 1970s and early 1980s, which enabled
him to construct examples of groups with unexpected properties and to give a short proof
of the Novikov-Adyan theorem [Adi] on groups of finite exponent. For more details, we
refer to [Ols91] and references therein.

Although the paper [O1s93] only deals with hyperbolic groups, many results obtained
there hold for relatively hyperbolic and, more generally, acylindrically hyperbolic groups
with little modifications, see [Hull, Osil0]. In these settings, the Greendlinger lemma is no
longer true and is replaced with a weaker conclusion, which is formalized using the key notion
of a contiguity subdiagram suggested by Olshanskii [O1s91, Ols93]. In Section 3.4, we propose
a new small cancellation condition, which allows us to eliminate contiguity subdiagrams and
obtain a stronger result similar to the original Greendlinger lemma (see Proposition 3.18).
At the core of our approach are hyperbolically embedded collections of subgroups and a
new notion of an attracting geodesic, which seems to be of independent interest. We also
take the opportunity to generalize and strengthen some results of [Hull, Ols93, Osil0].
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The paper is organized as follows. In the next section, we review the necessary back-
ground on hyperbolic groups and their generalizations. In Section 3, we develop the small
cancellation toolbox necessary for proving Theorems 1.3, and 1.4. The proofs of the latter
two theorems are given in Section 4.

Acknowledgments. 1. Chifan was supported by the NSF grants DMS-1854194 and DMS-
2154637. A. Ioana was supported by the NSF grants DMS-1854074 and DMS-2153805, and
a Simons Fellowship. D. Osin was supported by the NSF grant DMS-1853989.

2 Preliminaries

2.1 Hyperbolic spaces

Recall that metric space S with a distance function d is said to be geodesic, if every two
points a,b € S can be connected by a path of length d(a,b). A geodesic metric space S is
d-hyperbolic for some ¢ > 0 if, for any geodesic triangle A in .S, every side of A is contained
in the union of the closed d-neighborhoods of the other two sides [Gro].

For a path p in a metric space, we denote by p_ and p, its origin and terminal point,
respectively. If p is rectifiable, we denote by £(p) its length. We will need the following
standard results about geodesic polygons in hyperbolic spaces.

Lemma 2.1. Let (S,d) be a §-hyperbolic space, Q = pqrs a quadrilateral in S with geodesic
stdes p, q, r, S.

(a) Every side of Q belongs to the union of the closed 2d-neighborhoods of the other three
sides.

(b) For any point x € p, we have d(x,r) < 20 + max{{(q), ¢(s)}.

(c) Suppose that €(p) > £(q) + {(s) +40. Then there exists a subpath t of p such that
(t) = 1) — (g) — 1(s) — 45
and max{d(t_,r),d(t;,r)} < 24.

Proof. The first part can be easily derived from the definition of a hyperbolic space by
drawing a diagonal in Q). Part (b) follows from (a) by the triangle inequality. To prove (c),
it suffices to take the subpath ¢ of p such that d(p—,t_) = 20+ 4(q) and d(p+,t+) = 25 +£(s)
(see Fig. 1). Since £(p) > 4(q) + ¢(s) + 49, the distances from ¢_ and ¢, to the union
of the interiors of s and ¢ is greater than 2§. Combining this with part (a), we obtain
max{d(t_,r),d(ts,r)} < 24. O

The next lemma can be thought of as a generalization of the previous one to more
general polygons. It is a simplification of [Ols93, Lemma 10].
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Figure 1: Proof of Lemma 2.1 (c).

Lemma 2.2 (Olshanskii). Let (S,d) be a §-hyperbolic space. Suppose that the set of all
sides of a geodesic polygon P = pipa...pn is partitioned into two subsets A and B. Let
a (respectively ) denote the sum of lengths of sides from A (respectively B). Assume, in
addition, that a > max{cn, 1038} for some ¢ = 3-10%6. Then there exist two distinct sides
pi,pj € A and a subpath t of p; of length greater than 10~3¢ such that

max{d(t_,p;),d(t+,p;)} < 134.

Throughout this paper, we often think of graphs as metric spaces. Given a connected
graph T', we identify every open edge of I with (0, 1) and define the distance between two
points a,b € I' to be the length of the shortest path in I' connecting a to b.

Remark 2.3. If T is a hyperbolic graph, we can (and will) always assume that its hyper-
bolicity constant is a non-negative integer. Further, if the sides of the geodesic polygons
considered in Lemma 2.1 and Lemma 2.2 are (combinatorial) paths starting and ending
at some vertices of I', elementary arguments show that we can additionally require the
endpoints of the path ¢ in each of these lemmas to be vertices of I' as well.

A group G is hyperbolic if it is generated by a finite set X and its Cayley graph I'(G, X)
is a hyperbolic metric space. This definition is independent of the choice of a particular
finite generating set X. A hyperbolic group is called elementary if it contains a cyclic
subgroup of finite index. For examples and basic properties of hyperbolic groups, we refer
the reader to Chapters IIL.H and IILT of [BH]

2.2 Relative hyperbolicity and hyperbolically embedded subgroups

Hyperbolically embedded collections of subgroups play a crucial role in our paper. To
formulate the definition, it is convenient to work with generating alphabets instead of gen-
erating sets of groups. By a generating alphabet A of a group G we mean an abstract set
given together with a map A — G whose image generates G; to simplify our notation, we
do not distinguish between elements of A and their images in G whenever no confusion is
possible.

By the Cayley graph of G with respect to a generating alphabet A, denoted I'(G, A), we
mean a graph with the vertex set G and the set of edges defined as follows. For every a € A
and every g € GG, there is an oriented edge e going from ¢ to ga in I'(G, .A) and labelled by
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a. Given a combinatorial path p in T'(G, A), we denote by Lab(p) its label and by p~! the
combinatorial inverse of p. We use the notation d4 and |- |4 to denote the standard metric
on I'(G, A) and the length function on G with respect to the (image of) A.

In our paper, this terminology will be used in the following situation. Suppose that we
have a group G, a collection of subgroups {H;};e; of G, and a subset X < G such that X and
the union of all H; together generate GG. In this case we say that X is a relative generating
set of G with respect to {H;};er. We think of X and the subgroups H; as abstract sets and
consider the disjoint unions

H=||H and A=XuUH. (1)
i€l
Let A* denote the free monoid on A, i.e., the set of all words in the alphabet A. For a word

W e A*, let |W/| denote its length. Given a word a; ...ax € A*, we say that it represents
an element ge G if g =a;---ag in G.

Convention 2.4. Henceforth, we assume that all generating sets and relative generating
sets are symmetric, i.e., closed under inversion.

This convention implies that the alphabet A defined in (1) is also symmetric since so is
X and each H; is a subgroup. To take care of the possible ambiguity arising from the fact
that distinct letters of A may represent the same element of G, we agree to think of a~! as
a letter from X (respectively, from H;) if a € X (respectively, a € H;). Thus every element
of G can be represented by a word from A*.

In the settings described above, we can think of the Cayley graphs I'(H;, H;) as sub-
graphs of I'(G, A). For every i € I, we introduce a (generalized) metric

dpy,: H; x H; — [0, +00]
as follows.

Definition 2.5. Given g, h € H;, let aHz (g, h) be the length of a shortest path in T'(G, A)
that connects g to h and contains no edges of I'(H;, H;). If no such a path exists, we set
dm,(h, k) = o0.

Clearly 8H1 satisfies the triangle inequality (with addition extended to [0, +oo] in the
natural way). We are now ready to define hyperbolically embedded collections of subgroups
introduced in [DGO].

Definition 2.6. A collection of subgroups {H;}ier of G is hyperbolically embedded in G with
respect to a subset X < G, denoted {H;}ier —n (G, X), if the group G is generated by the
alphabet A defined by (1) and the following conditions hold.

(a) The Cayley graph I'(G, A) is hyperbolic.

(b) For every n € N and every i € I, the set {h € H; | 8H1(1, h) < n} is finite.

6
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g 'h
g ;' xg
T(H, H) T (H, H)

Figure 2: A path of length 3 in the Cayley graph I'(G,.A), where G = {(z) x H and
A = {z} u H, connecting any elements g, h € H and avoiding edges of I'(H, H)

Further, we say that {H,}ier is hyperbolically embedded in G and write {H;}ier —p G if
{Hi}ier —n (G, X) for some X € G.

To help the reader become familiar with these notions, we discuss three elementary
examples.

Example 2.7. (a) For any group G we have G <} G. Indeed we can take X = J in
this case. Then I'(G, A) = I'(G, G) and dg(g, h) = o for any g # h.

(b) If H is a finite subgroup of a group G, then H <, G. Indeed, it is straightforward to
check that H —, (G, X) for X = G.

(c) Let G = HxZ,let X = {x}, where z is a generator of Z, and let A = {z}uH. It is easy
to see that the graph I'(G, A) is quasi-isometric to a line and hence it is hyperbolic.
However, every two elements g,h € H can be connected by a path of length at most
3 in I'(G, .A) that avoids edges of I'(H, H) (see Fig. 2). Thus dg(g,h) < 3 and H is
not hyperbolically embedded in G with respect to X whenever H is infinite.

Hyperbolically embedded collection of subgroups generalize peripheral structures of rel-
atively hyperbolic groups. Indeed, we have the following proposition. Readers unfamiliar
with relative hyperbolicity can regard it as a definition.

Proposition 2.8 ([DGO, Proposition 4.28]). A group G is hyperbolic relative to a finite
collection of subgroups {H;}ier if and only if {H;}ier —n (G,X) for some (equivalently,
any) finite subset X < G.

If G is hyperbolic relative {H;};er, the subgroups H; are called the peripheral subgroups
of G. For more on relative hyperbolicity, we refer to [Osi06a] and references therein.

We now turn to properties of hyperbolically embedded subgroups. An elaborated version

of the argument from Example 2.7 (c) can be used to derive the following.

Proposition 2.9 ([DGO, Proposition 4.33]). Let G be a group, {H;}ier a hyperbolically
embedded collection of subgroups of G.
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(a) For any i€ I and any g € G\H;, we have |H; n g~ ' H;g| < oo.

(b) For any distinct i, j € I and any g € G, we have |H; n g 'H;g| < .

We mention one useful corollary. Recall that a group G is said to have infinite conjugacy
classes (abbreviated ICC) if the conjugacy class of every non-trivial element of G is infinite.

Corollary 2.10. Let G be a group containing two subgroups Hy, Hy such that {Hy, Ha} <,
G and Hy n Hy = {1}. Suppose that S < G and S n H; is infinite for i = 1,2. Then, for
every g € G\{1}, the set g° = {s 'gs | s € S} is infinite. In particular, S is ICC.

Proof. If ¢° is finite, then g commutes with a finite index subgroup of S. Since both S n H
and S N Hy are infinite, Proposition 2.9 implies that g € H; n Hy = {1}. O

The following result allows one to modify collections of hyperbolically embedded sub-
groups.

Proposition 2.11 ([DGO, Theorem 4.35]). Let G be a group, {H;}icr a finite collection of
subgroups of G. Suppose that {H;}ier —n (G, X) for some X € G and, for each i € I, there
is a collection of subgroups {Ki;}jes; of Hi and a subset Y; © H; such that {K;j}ies, —n
(H;,Y;). Then we have | J;c{Kij}jes, —=n (G, Z), where

ZZXU(UYZ). (2)

el

Note that the set Z defined by (2) is finite whenever so are X, I, and all ¥;. Combining
this with Proposition 2.8, we obtain the following.

Corollary 2.12. Let G be a group hyperbolic relative to a finite collection of subgroups
{H,}ier.- Suppose that each H; is hyperbolic relative to a finite collection of subgroups
{Kij}jes,- Then G is hyperbolic relative to | J,c;{Kij}jes, -

Further, let G be a group generated by a finite set X. Note that the empty collection of
subgroups is hyperbolically embedded in G with respect to X if and only if G is a hyperbolic
group. Thus, hyperbolic groups can always be excluded from finite hyperbolically embedded
collections. More precisely, we have the following.

Corollary 2.13. Let G be a group, {H;}ier, {Kj}jer two finite collections of subgroups of G.
Suppose that {H;}ier  {K;}jes —n (G, X) for some X < G. Assume also that each subgroup
H; is hyperbolic and let Y; denote a finite generating set of H;. Then {Kj}jes —n (G,Z),
where Z is defined by (2).

Proof. We apply the proposition to the empty collection of subgroups of each H; and the
subgroups K; <, (Kj, ) for je J. O

Using Proposition 2.8, we obtain the following corollary for relatively hyperbolic groups
(see [Osi06a, Theorem 2.40] for a direct proof.)
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Corollary 2.14. Let G be a group hyperbolic relative to a finite collection of subgroups
{H;}ierv{K;}jes. If H; is hyperbolic for every i € I, then G is hyperbolic relative to {K;}jes.
In particular, a group hyperbolic relative to a finite collection of hyperbolic subgroups is itself
hyperbolic.

2.3 Acylindrical hyperbolicity

An isometric action of a group G on a metric space S is said to be acylindrical if, for every
e > 0, there exist R, N > 0 such that, for every two points z,y € S with d(z,y) > R, there
are at most IV elements g € G satisfying the inequalities

d(z,gr) <e and d(y,gy) <e.
Informally, one can think of this condition as a kind of properness of the action on § x §

minus a “thick diagonal”.

We begin with a classification of acylindrical group actions on hyperbolic spaces. Recall
that an action of a group G on a hyperbolic space S is non-elementary if the limit set of
G on the Gromov boundary 0S5 has infinitely many points. The following classification of
acylindrical actions is a simplification of [Osil6, Theorem 1.1].

Theorem 2.15. Let G be a group acting acylindrically on a hyperbolic space. Then G
satisfies exactly one of the following three conditions.

(a) G has bounded orbits.
(b) G has unbounded orbits and is virtually cyclic.

(¢) The action of G is non-elementary.

Thus, an acylindrical action of a group G on a hyperbolic space is non-elementary if
and only if G is not virtually cyclic and has infinite orbits. Readers unfamiliar with the
notions of Gromov’s boundary and the limit set, can accept this as the definition of a
non-elementary action.

The following theorem relates hyperbolically embedded subgroups to acylindrical ac-
tions. It can be easily derived from results of [Osil6] as explained below.

Theorem 2.16. Let G be a group, {H;}ier a finite collection of subgroups of G such that
{H;}icr —n (G, X) for some X € G. Let also H and A be the alphabets defined by (1).

(a) There exists Y < G such that X € Y, {H;}ier —n (G,Y), and the action of G on
(G, HuY) is acylindrical.

(b) If |X| < o0, then the action of G on I'(G,.A) is acylindrical.

(c) Suppose that the action of G on I'(G,A) is acylindrical and there exists i € I such
that H; is infinite and H; # G. Then the action of G on T'(G,.A) is non-elementary.

3 Aug 2023 14:37:24 PDT
230414-0sin Version 2 - Submitted to Algebr. Geom. Topol.



Proof. We explain how to derive (a)—(c) from results in the literature. Part (a) is [Osil6,
Theorem 5.4]. It is worth noting that enlarging the relative generating set in part (a) is
necessary as the action of G on I'(G,.A) may not be acylindrical if X is infinite (see the
discussion before Theorem 5.4 in [Osil6]).

By Proposition 2.8, G is hyperbolic relative to {H;}ier if |X| < co. This allows us to
apply [Osil6, Proposition 5.2] which gives us (b).

Finally, part (c) can be proved as follows. Suppose that H; is infinite and H; # G for
some i € I. Let a € G\H;. By Proposition 2.9, we have |a~*H;a n H;| < . The existence
of such an element a and the assumption |H;| = o allow us to apply [DGO, Theorem 6.11],
which implies that the group G contains an element acting on I'(G,.A) with unbounded
orbits. Furthermore, the assumptions |H;| = o0 and H; # G imply that G contains a non-
cyclic free subgroup by [DGO, Theorem 2.24 (c)]). In particular, G is not virtually cyclic.
Therefore, the action of G on I'(G, A) is non-elementary by Theorem 2.15. O

Every group has an acylindrical action on a hyperbolic space, namely the trivial action
on the point. For this reason, we want to avoid elementary actions in the definition below.

Definition 2.17. A group G is acylindrically hyperbolic if admits a non-elementary acylin-
drical action on a hyperbolic space.

We mention some equivalent characterizations.

Theorem 2.18 ([Osil6, Theorem 1.2]). For any group G, the following conditions are
equivalent.

(A1) G is acylindrically hyperbolic.

(A2) There exists a (possibly infinite) generating set X of G such that the Cayley graph
['(G, X) is hyperbolic and the action of G on T'(G, X) is non-elementary and acylin-
drical.

(As) G contains a proper infinite hyperbolically embedded subgroup.

The class of acylindrically hyperbolic groups includes all non-elementary hyperbolic
and relatively hyperbolic groups, mapping class groups of closed surfaces of non-zero genus,
Out(F,,) for n > 2, non-virtually cyclic groups acting properly on proper C'AT(0) spaces
and containing a rank-1 element, groups of deficiency at least 2, most 3-manifold groups,
automorphism groups of some algebras (e.g., the Cremona group of birational transforma-
tions of the complex projective plane) and many other examples. For more details we refer
to the survey [Osil8].

The next result will be used several times in our paper. It is a simplification of [Osil6,
Lemma 7.1].

Lemma 2.19. Let G be a group acting acylindrically and non-elementarily on a hyperbolic
space S. For any infinite normal subgroup N <1 G, the induced action of N on S is non-
elementary; in particular, N is acylindrically hyperbolic.

10
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Sizes of finite normal subgroups in every acylindrically hyperbolic group are uniformly
bounded. Moreover, we have the following.

Definition 2.20. Every acylindrically hyperbolic group contains a unique maximal finite
normal subgroup (see the first part of [DGO, Theorem 2.24]). We denote it by K(G) and
call it the finite radical of G.

Theorem 2.21 ([DGO, Theorem 2.35]). An acylindrically hyperbolic group G is ICC if
and only if K(G) = {1}.

We conclude this section with the definition of a loxodromic element and examples of
hyperbolically embedded subgroups, which will be used many times in our paper.

Definition 2.22. An element g of a group G acting on a hyperbolic space S is called
loxodromic if it acts as a translation along a bi-infinite quasi-geodesic in S. If the action of
G on S is acylindrical, this is equivalent to the requirement that (g) has unbounded orbits
(see [Bow, Lemma 2.2]).

If G is hyperbolic relative to a finite collection { H;};c; and X is a finite relative generating
set of G with respect to {H;}ier, then the action of G on I'(G,.A) (where A is defined by
(1)) is acylindrical by Proposition 2.8 and part (b) of Theorem 2.16. In these settings, an
element g € G is loxodromic if and only if g has infinite order and is not conjugate to an
element of one of the peripheral subgroups (see [Osi06a, Theorem 4.23]). Thanks to this
characterization, whether or not an element of a relatively hyperbolic group G is loxodromic
is independent of the choice of a particular finite relative generating set of G. Thus we can
simply talk about loxodromic elements of a relatively hyperbolic group if the peripheral
collection is understood.

If G is hyperbolic, it is hyperbolic relative to the trivial subgroup and every infinite
order element is loxodromic with respect to this collection. For more details on loxodromic
elements, we refer the reader to Section 6 of [Osil6].

The following is proved in [DGO, Lemma 6.5].

Lemma 2.23. Suppose that a group G acts acylindrically on a hyperbolic space S. Then
every lozodromic element g € G is contained in a unique maximal virtually cyclic subgroup

of G.

Definition 2.24. In the settings of Lemma 2.23, we denote the unique maximal virtually
cyclic subgroup of G containing g by E(g).

Recall also that two elements a, b of a group G are said to be commensurable if some
non-zero powers of a and b are conjugate in GG. The following theorem was proved in
[AMS, Corollary 3.12] (it is worth noting that the WPD condition assumed there follows
immediately from acylindricity of the action). Similar but less precise statements were also
proved in [DGO, Hull].

11
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Theorem 2.25 (Antolin-Minasyan—Sisto). Let G be a group, {H;}ier a finite collection
of subgroups of G such that {H;}ier —n (G,X) for some X < G. Let also A be the
alphabet defined by (1). Suppose that the action of G on I'(G,.A) is acylindrical. Then
for any collection of pairwise non-commensurable loxodromic (with respect to the action on
I'(G, A)) elements g1,...,gn € G, we have {E(g1),...,E(gn)} v {Hi}tier —n (G, X).

Combining Theorem 2.25 with Proposition 2.8, Theorem 2.16 (b), Lemma 2.23, and the
characterization of loxodromic elements of relatively hyperbolic groups discussed above, we
obtain the following particular case. For a direct proof see [OsiO6b].

Corollary 2.26. Let G be a group hyperbolic relative to a collection of subgroups {H;}ier.
Suppose that g1,...,9n € G are pairwise non-commensurable elements of infinite order
that are not conjugate to elements of the peripheral subgroups. Then every g; is contained
in a unique mazimal virtually cyclic subgroup E(g;) of G and G is hyperbolic relative to

{Hi}ier v {E(g91),....E(gn)}.

3 Small cancellation in groups with hyperbolically embedded
subgroups

3.1 Olshanskii’s small cancellation conditions

We begin by reviewing the necessary background from [Ols93]. Let G be a group generated
by an alphabet A. Consider any presentation

G={(A|O). (3)

We do not assume that this presentation is finite; in particular, we can take O to be the set of
all words in A representing the identity in G. We write W7 = W5 to express letter-for-letter
equality of two words Wy, Wy € A*.

In what follows, we use the standard terms wertices, edges, and faces for 0-cells, 1-
cells, and 2-cells of planar CW-complexes. Recall that a van Kampen diagram A over
(3) is a finite, oriented, connected, simply-connected, planar C'W-complex endowed with a
labelling function Lab: E(A) — A, where E(A) denotes the set of edges of A, such that
Lab(e ') = (Lab(e)) ! for all e € E(A).

Given a face II of A, we denote by 0II the boundary of II; similarly, 0A denotes the
boundary of A. The labels of JIT and 0A are defined up to a cyclic permutation. An
additional requirement is that for any face IT of A the boundary label Lab(¢dII) is equal to
(a cyclic permutation of) a word P*!, where P € O.

By the van Kampen lemma, a word w in the alphabet A represents the identity in the
group G given by (3) if and only if there exists a van Kampen diagram A over (3) such that
Lab(0A) = W.

Given a set of words R in the alphabet A, we consider the quotient group of G given by
G=G/{R)=(A|OUR). (4)
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To analyze properties of the quotient group G we will make use of a simplified ver-
sion of the C(u,e,\, ¢, p) and Cy(p, e, A, ¢, p) small cancellation conditions introduced in
[O1s93]. The difference is that we require the relators to be geodesic rather than (\,c)-
quasi-geodesic. Thus, the conditions C(u, ¢, p) and Cy(u, &, p) correspond to C(u, e, 1,0, p)
and C1(u, ¢, 1,0, p), respectively, in the notation used in [O1s93] and the subsequent papers
[Hull, HO, Osil0].

More precisely, we say that a word W in the alphabet A is (G, .A)-geodesic if any path in
the Cayley graph I'(G, A) labeled by W is geodesic. Recall that R is said to be symmetric
if for any R € R, R contains all cyclic shifts of R*!. If a word W € A* decomposes as
W = UV for some U,V € A*, we say that U is an initial subword of W. The length of a
word W e A* (i.e., the number of letters in W) is denoted by |W].

Definition 3.1. A symmetric set of words R satisfies the C(e, u, p)—condition for some
€ 2 0 and p, p > 0, if the following conditions hold.

(a) All words in R are (G, A)-geodesic and have length at least p.
(b) Suppose that words R, R’ € R have initial subwords U and U’, respectively, such that
max{|[U], |[U’|[} = pmin{| R], | R’} (5)
and U' = YUZ in G for some words Y, Z of length
max{[[Y], |Z]} <e. (6)
Then YRY ' = R in G.

Further, we say that R satisfies the C(e, u, p)—condition if, in addition to (a) and (b), we
have the following.

(¢) Suppose that a word R € R contains two disjoint subwords U and U’ such that
U =YUZor U =YU 'Z in G for some words Y, Z and the inequality (6) holds.
Then

max{|[U], |[U"|[} < p|R|.

Let A be a van Kampen diagram over (4). A face in A is called an R-face if its boundary
label is a word from R. Suppose that p is a subpath of dA and there is a simple closed path

C = 51415242 (7)
in A, where ¢ is a subpath of 0II, ¢2 is a subpath of p, and
max{/(s1), {(s2)} < ¢ (8)

for some constant € > 0. Let I" denote the subdiagram of A bounded by c. If T contains
no R-faces, we say that I' is an e—contiguity subdiagram of Il to the segment p of dA. The
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Figure 3: A contiguity subdiagram
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Iy
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D3

Figure 4:

ratio £(qq1)/¢(011) is called the contiguity degree of II to A and is denoted by (II,T',0A).
Since I' contains no R-faces, it can be considered a diagram over (3).

The analogue of the classical Greendlinger lemma for small cancellation quotients of
hyperbolic groups was proved by Olshanskii in [Ols93, Lemma 6.6]. As observed in [OsilO0,
Lemma 4.4], the same proof works in the more general context of groups with hyperbolic (but
not necessarily locally finite) Cayley graphs. Below we reproduce a simplified version of the
latter result replacing the more general C(e, i, A, ¢, p) condition considered in [O1s93, Osil0)]
with the stronger condition C'(g, u, p).

Lemma 3.2 (Olshanskii). Suppose that the Cayley graph T'(G, A) of a group G given by
the presentation (3) is hyperbolic. Then for every p € (0,1/16], there exist e,p > 0 such
that the following holds.

Let R be a symmetric set of words in the alphabet A satisfying C(e, u, p). Assume that
W = WiWoW3Wy is a word in the alphabet A representing 1 in G = G/{R) such that
each of the words Wy, ..., Wy is (G, A)-geodesic and W # 1 in G. Then there exist a
van Kampen diagram A over (4) with boundary 0A = pipapsps, where Lab(p;) = W; for
i=1,...,4, an R-face 11 of A, and e-contiguity subdiagrams T'; of I1 to the segments p; of

O0A (see Fig. 4) such that
4

DAL Ty, pi) > 1 — 13
i=1
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Figure 5: The proof of Lemma 3.4

Remark 3.3. The lemma can be proved for the concatenation of n geodesic words for any
n € N. However, the case n = 4 is sufficient for most applications.

3.2 Centralizers in small cancellation quotients

In this section, we study centralizers of elements in small cancellation quotients of groups
acting on hyperbolic spaces. Our main result is Lemma 3.4 below. It plays an important
role in the proofs of Theorem 1.3 and Theorem 1.4. We begin with an auxiliary result.

Lemma 3.4. Let G be a group given by presentation (3) such that the Cayley graph T'(G,.A)
is d-hyperbolic for some § = 0. For any € > 46, any u,p > 0, and any set of words R
satisfying the Ci(e, p, p) condition, the following holds.

Let U and V' be disjoint subwords of some R € R, and let p be a geodesic path in T'(G, A).
Suppose that a1bicidy and asbacads are quadrilaterals in T'(G, A) such that Lab(b) = U,
Lab(by) = VE!, dy, dy are subpaths of p, and {(a;),£(c;) < e fori =1,2. Then the overlap
between dy and dy has length less than p|R| + 10e.

Proof. Let o denote the overlap of dy and dy (see Fig. 5). Assume that £(0) > u|R|| + 10e.

By Lemma 2.1 (b), we can choose points x1, y; on by, such that
max{d(o—,y1),d(o4,x1)} < 20 + max{l(ai),l(c1)} <25 +¢e < 1.5e. 9)

Similarly, we choose xg and y2 on by satisfying d(oy,z2) < 1.5e and d(o_,y2) < 1.5e.
(If the quadrilaterals aibicid; and asbecads are positioned as shown on Fig. 5, we can
take y1 = (c1)—, 2 = (a2)+, and improve the upper bounds for d(o_,y;) and d(o4+,x2)
to e; however, we choose to make our proof independent of the relative position of the
quadrilaterals at the cost of a slight increase of the constants.)
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By the triangle inequality, we have d(x1,x2) < 3¢ and d(y1,y2) < 3e. Since p is geodesic,
so is 0. Using (9), we obtain

d(z1,91) = £(0) = d(04,21) — d(o—,41) = p|R| + Te = p| R + d(z1, 22) + d(y1, y2) + 49,

Applying Lemma 2.1 (c) to the geodesic quadrilateral with the consecutive vertices =1, yi,
Y2, T, We obtain a subpath ¢ of b%rl such that d(t4,be) < 20 < e and

0(t) = d(z1,y1) — d(z1, w2) — d(y1, y2) — 40 = p||R|.

Since Lab(b;) = U and Lab(by) = V! are disjoint subwords of R, this contradicts the
Cy (e, p, ) small cancellation condition. O

Lemma 3.5. Let G be a group given by the presentation (3) such that the Cayley graph
I'(G,.A) is hyperbolic. For any N > 0, there exist €,p > 0 such that the following holds.

Let R be a set of words in the alphabet A satisfying the C1(g,1/100, p) small cancellation

condition, G the quotient group defined by (4). For any g € G of length |g|4 < N, we have
Ca(7(9)) = v(Cqlg)), where v: G — G is the natural homomorphism.

Proof. For hyperbolic groups, the lemma was proved in [Ols93]. For relatively hyperbolic
groups, this result can be derived from [HO, Lemma 5.5]. Our proof is based on the same
idea as the proof of [HO, Lemma 5.5].

Fix some N € N and let ¢ = 1/100. Note that the C(e, p, p) condition becomes stronger
as € and p increase. Therefore, we can choose a sufficiently large value of € and then
a sufficiently large value of p such that the conclusions of Lemma 3.2 and Lemma 3.4
simultaneously hold and, in addition,

p =100(2¢ + N). (10)

In particular, we have ¢/p < 1/200.

Let g € G be an element of length |gj4 < N and let U be a (G,.A)-geodesic word
representing ¢ in G. The inclusion v(Cg(g)) < Cg(v(g)) is trivial, we only need to prove
the inclusion Cz(7(9)) < 7(Ca(g)). Let c€ Cx(v(g)) and let V' be a (G, A)-geodesic word
representing ¢ in G (in particular, V' is (G, .A)-geodesic). We will show that

c € v(Calg))- (11)

Clearly, the word UVU 'V ~! represents 1 in G. To prove the lemma, it suffices to show
that UVU 'V ~! = 1 in G. Indeed, then V represents an element of Cg(g) and we obtain
(11).

Arguing by contradiction, assume that UVU'V~! # 1 in G. By Lemma 3.2, there
exist a van Kampen diagram A over (4) whose boundary decomposes as 0A = p1qipy 1q5 L
where

Lab(p;) = Lab(ps) = U, Lab(q1) = Lab(¢) =V,
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Figure 6: The diagrams A and 2.

an R-face IT of A, and e-contiguity subdiagrams I'y, I’y (respectively, 31,39) of II to the
segments pi, pa (respectively, g1, g2) of A such that

2 2
DAL T p) + (LS5, i) > 1 — 13 = 0.87 (12)
=1 =1
(see Fig. 6 (a)).

Since Lab(dIl) is (G, .A)-geodesic, the length of the common segment of I'; and IT is
bounded from above by the sum of lengths of the other three sides of I'y, which is at most
2e + {(p1) < 2e + N. Hence, (IL,T1,p1) < (26 + N)/p < 1/100 by (10). Similarly, we have
(I1, T3, p2) < 1/100. Combining these inequalities with (12), we obtain

2

DI, %, qi) = 0.85. (13)
=1

For i = 1,2, let ¢; = r;s;t;, where s; is the common segment of ¥; and ¢;. We claim that
£(s;) = 0.3]011] (14)

for i = 1,2. Indeed, suppose that £(s1) < 0.3|0ll|. Since Lab(dIl) is (G, .A)-geodesic and
|0I1] = p = 200e by (10), we have (II, X1, ¢q1) < (0.3|01I| 4 2¢)/|01I| < 0.31. Using (13), we
obtain (II, $g,q2) = 0.85 — (II, X1, q1) > 0.54. Since V is (G, A)-geodesic, the path go is
geodesic in A; therefore, so is s;. Comparing the length of sy to the path going along the
“e-sides” of Yo and around the face II, we obtain

((s2) < 2¢ + |T|(1 — (1, By, ¢2)) < 2¢ + 0.46|0T1] < 0.47|0TT].
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Figure 7: A c-attracting geodesic

Recall that the sides of A are (G, A)-geodesic. Applying the triangle inequality to the sides
of ¥y, we obtain

((s) = |OI|(IT, £a, g2) — 2¢ > 0.54|A1] — 2 > 0.53|1],

which contradicts the previous inequality. Thus, ¢(s;) > 0.3|0ll] and similarly ¢(s2) >
0.3/011].

Let A’ denote a copy of A; we use primes to distinguish between parts of A’ and the
corresponding to parts of A. E.g., p} will denote the path in A’ corresponding to the path
p1 in A, 3} will denote the subdiagram of in A’ corresponding to 1, etc. Consider the
van Kampen diagram 2 formed by gluing A and A’ along ¢; and ¢4 (see Fig. 6 (b)). For
definiteness, we will assume that

f(?‘g) < 6(7'1) (15)

(the other case is similar). By Lemma 3.4, the overlap between s; and s in € is at most
0.01|0I1] + 10e < 0.06|011|. Using (13), (15), and (14), we obtain that the length of the path
z highlighted in red on Fig. 6 (b) satisfies

0(z) < L(r2) +e+ 015|010 + € + (s1t1) + £(p2) <
2e + 0.15|011] + £(q2) — (¢(s2) — 0.06]011]) + £(p2) <
2e + 0.15|011] + £(g2) — 0.24|011| + N <

(q2) +2e + N —0.090 < {(q2).

This contradicts the assumption that V is (G, .A)-geodesic since Lab(z) and Lab(q) =V
represent the same element of G. O

3.3 Attracting geodesics

In this section we introduce the notion of an attracting geodesic, which is crucial for the
proof of Proposition 3.18. By abuse of terminology, we identify a paths p: [0,1] — S in
a metric space S with its image. Given a path p, we denote by p_, p, its origin and the
terminal point, respectively. The inverse path is denoted by p~!. By d(s,p) we denote the
distance from a point s € S to the path p defined in the usual way. We say that two paths
p and ¢ share an unoriented segment r if p = arb and ¢ = crtld.
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Definition 3.6. Let I" be a graph. We say that a (combinatorial) geodesic path p in T is ¢-
attracting for some c € [0, 00) if for any vertices z, y of I" such that d(z, y)—d(x, p) —d(y, p) =
¢, every geodesic in I' going from x to y shares an unoriented segment of length at least
d(z,y) — d(z,p) — d(y,p) — ¢ with p. (By definition, a segment of length 0 is a point.)

This definition is motivated by the obvious fact that in a tree, all geodesics are 0-
attracting. Omn the other hand, in hyperbolic graphs and even in quasi-trees, long c-
attracting geodesics may not exist (note that every geodesic of length less than ¢ in any
graph is c-attracting though).

Our next goal is to construct arbitrarily long 2-attracting geodesics in Cayley graphs
associated to hyperbolically embedded collections of subgroups. Throughout the rest of this
section, we make the following assumptions.

(%) G is a group, {H;}ier is a collection of subgroups of G, X is a relative generating set
of G with respect to {H;}ier-

We keep the notation A and d i, introduced in Section 2.2 (see (1)). In addition, we assume
that

(#x) TI'(G,A) is hyperbolic.

Note that, in this section, we do not require {H;};er to be hyperbolically embedded in G
with respect to X.

We make use of the following terminology introduced in [DGO] (in the particular case
of relatively hyperbolic groups it goes back to [Osi06al).

Definition 3.7. Let p be a path in the Cayley graph I'(G, . A). A subpath g of p is called
an H;-component (or simply a component) of p for some i € I, if ¢ has at least one edge, the
label of ¢ is a word in the alphabet H; € A, and ¢ is not contained in any longer subpath
of p with these properties. Two H;-components g1, qo of p are connected if all vertices of
g1 and g2 belong to the same coset of H; in G. An H;-component ¢ of a path p is called
isolated if no distinct H;-component of p is connected to q.

Geometrically, the fact that H;-components ¢i, g of p are connected means that any
two vertices u and v of ¢; and gq, respectively, can be connected by an edge of I'(G, .A)
labelled by an element of H;.

Remark 3.8. If p is a geodesic in I'(G, A), then every H;-component of p is isolated in p
and consists of a single edge. This observation will be used many times in this section.

By a geodesic n-gon in a metric space we mean a loop consisting of n geodesic segments.
The lemma below is a simplification of [DGO, Proposition 4.14].

Lemma 3.9. Under the assumptions () and (xx), there exists a constant D satisfying the
following condition. Let p be a geodesic n-gon in I'(G,.A). Then for every i € I and every
1solated Hi-component q of p, the element h € H; represented by the label of q satisfies
dm,(1,h) < Dn.

We will need the following result, which is an improved version of [DGO, Lemma 4.21].
Recall that the length of a word u € A* is denoted by |u].
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Figure 8: Proof of Lemma 3.11. Red edges are labelled by elements of Hj;y.

Lemma 3.10. Suppose that p is a path in I'(G,A) such that
Lab(p) = UlalUQGQ e UnanUnH,
and the following conditions hold.

(a) For every j = 1,...,n, a; is a letter in Hy;y for some i(j) € I and we have
aHi(j)(l,aj) > 5D, where D is the constant provided by Lemma 3.9.
(b) For everyj=1,...,n+1, U; is a (possibly empty) word in the alphabet A such that

for any element g € G satisfying H;;_1ygH;(jy = Hyj—1)U;jHy(jy, we have |Uj| < |g|a-
Here we assume H;gy = Hinp1y = {1} for convenience.

(c) If Uj is the empty word for some j = 2,...,n, then Hy;_1y # H.

Then p is geodesic.

Proof. Arguing by contradiction, we fix the minimal n € N such that there is a non-geodesic
path p satisfying all the assumptions. We fix the following notation for the segments of p:

P = p1€1P2€2 . . . Pn€nPn+1,

where

Lab(p;) = U;, and Lab(e;) = a;
for all j (if U; is the empty word, p; is the trivial path). We will first prove the following.

Lemma 3.11. For every j, e; is an isolated H; ;) -component of p.

Proof. That each e; is an H;(;)-component of p follows immediately from (b) and (c). Let us
prove that it is isolated. By the way of contradiction assume that e; is connected to another
H;(j-component f of p. For definiteness, let p = r1e;72fr3 (see Fig. 8). Let also g denote
the edge of T'(G, A) labelled by an element of H;(;y and going from (e;)+ to f-. Without
loss of generality we can assume that the pair e;, f is chosen in such a way that £(rp) is
minimal possible. If ry contains e; 1, then e;y1 cannot be isolated in the bigon rog~ ! by
(a) and Lemma 3.9 and we get a contradiction with the choice of e; and f. Therefore, ry is

an initial subpath of p;;1. Reading the label of the bigon rog~ ! we obtain

Lab(Tg) € Hl(]) (16)
If f is an edge of Ujy1, (16) contradicts (b); if f = ej41, then Uy = 9 is empty by (16) and
(b), which contradicts (c). O
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Figure 9: Proof of Lemma 3.10.

We now return to the proof of Lemma 3.10. Let ¢ be a geodesic in I'(G, .A) connecting
p_ to py. By our assumption, the subpath pses...ppenpni1 of p is geodesic. Thus we
can think of pg~! as a geodesic quadrilateral with sides p1, e1, p2€s . ..pnenpnei, and gL
By Lemma 3.9 and condition (a), the H;(1)-component e; cannot be isolated in pqt; by
Lemma 3.11, it is connected to a component f; of ¢ (see Fig. 9).

Furthermore, let ¢ = ¢1 f1¢' and let g be an edge of T'(G,.A) connecting (f1) to (e1) .
Arguing as above, we conclude that eo cannot be isolated in the geodesic pentagon with
sides g, p2, €2, g3€3 . .. qnénPni1, (¢)~'. By Lemma 3.11, ey is connected to a component fo
of ¢’. Thus, q decomposes as q; f1q2 f2¢”. Continuing this process, we get a decomposition

qg=qfi2f2. . @nfnn+1,

where each f; is an H,j-component connected to e;. Note that every g; has length at least
U(pj) = |Uj| by (b) as H,(;_yyLab(q;)H;y = Hij_1)UjHy(;y. It follows that £(q) > £(p),
which contradicts the assumption that p is not geodesic. ]

Proposition 3.12. Let p be a path in T'(G, A). Suppose that Lab(p) € H* and the following
conditions hold for all i,7 € I.

(a) If a letter a € H; occurs in Lab(p), then aHi(l,a) > 5D, where D is the constant
provided by Lemma 3.9.

(b) If a € H; and b e H; are labels of two consecutive edges in p, then H; n H; = {1} (in
particular, i # j).

Then p is a 2-attracting geodesic.

Proof. Tt is easy to see that conditions (a) and (b) imply all the assumptions of Lemma
3.10 (paths p; are trivial in this case). Thus, p is geodesic.

To show that p is 2-attracting, let x,y € G be any vertices of I'(G, .A) such that

da(z,y) —da(z,p) —da(y,p) > 2. (17)

Let ¢ be a geodesic going from z to y. Let u, v be vertices on p such that

da(r,u) =da(r,p) and da(y,v) =da(y,p) (18)
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Figure 10: Proof of Proposition 3.12. Edges of the same color are labeled by letters from
the same H;.

Without loss of generality, we can assume that p first passes through u and then through
v; we denote by pg the segment of p between v and v. Furthermore, we assume that u and
v are chosen among all vertices satisfying (18) so that ¢(pg) = d4 (u,v) is minimal. We
denote by s and ¢ geodesics in I'(G, .A) connecting z to u and y to v, respectively.

Note that every edge of pg is an H;-component for some %, which cannot be isolated in
the geodesic quadrilateral spot 'q ! by (a). Since p is geodesic, every component of py is
isolated in pg. Further, suppose that a component e of pg is connected to a component g
of s. Then dg(g9—,es+) < 1 < dy(g9—,u) and, consequently, d4 (z,u) = dy4 (z,es), which
contradicts our assumption that the choice of w and v minimizes ¢(pg). Therefore, no
component of pg is connected to a component of s. Similarly, we show that no component
of pg is connected to a component of .

Let
Po = €1€2...€n,

where every e; is an edge. Note that

da(z,y) <da(z,u) +da(u,v) +da(v,y) =da(z,p) +n+da(yp).

Combining with (17) we obtain

n=da(z,y) —da(z,p) —da(y,p) = 2. (19)

As explained in the previous paragraph, e; is a component of pg connected to a certain
component f; of q. Assume for definiteness that e;, fi are H;,-components for some i; € I
and let ¢; denote the edge of I'(G, A) labelled by a letter from H;, that connects (f1)+ to
(e1)+-

Let ¢ = ¢’ f1q1. The edge es is a component of p, which cannot be isolated in the geodesic
quadrilateral ci(ez...e,)t *(q1) ! by (a). Obviously, e cannot be connected to ¢; by (b).
As we showed above, es cannot be connected to a component of ¢ either. Therefore, e
is connected to a component fy of ¢;. Note that there exist edges in I'(G,.A) connecting
(f1)= to (e1)+ = (e2)— and (e1)+ = (e2)— to (f2)+ (see Fig. 10). Therefore, we have
da((f1)—-,(f2)+) = 2. Since q is geodesic, fo must be the first edge of ¢;. Assume for
definiteness that es and fo are H;,-components for some i € I. Since e; is connected to
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f1 and eg is connected to fa, the vertices a = (e1); = (e2)— and b = (f1)+ = (f2)— belong
to the same left H; -coset and the same left H;,-coset of G. Therefore, a='b € H; n H,,.
Using (b), we obtain a = b.

If n > 2, we argue as above and show that es is connected to the edge f3 of ¢ next to fo
and fo shares its endpoints with es. The latter condition means es = fy. Continuing this
way, we obtain a decomposition

q=dqf1 . fad",

where for each 2 < j <n — 1, we have f; = e;. Thus, p and ¢ share a common subpath of
length at least

n—22=da(z,y) —da(z,p) —daly,p) —2
(see (19)). -

3.4 The W({,0) small cancellation condition

Constructing words satisfying the C(u, e, p) and Ci(p, €, p) small cancellation conditions
discussed in Section 3.1 is not an easy task. Following [Osil0], we now introduce an easily
verifiable combinatorial condition that implies C}(u, ¢, p).

Throughout this section, we fix a group G, a hyperbolically embedded collection of
subgroups {H;}ier, and some X € G such that {H;}ier <5 (G, X). Note that the latter
assumption is stronger that condition () from the previous section. Furthermore, we let
H and A denote the alphabets defined by (1). We say that two letters a, b of a word
W e A* are cyclically consecutive if they are consecutive or if a (respectively, b) is the last
(respectively, first) letter of W.

Definition 3.13. A set of words R © H™* satisfies the W({, o) condition for some &,0 > 0
if the following hold.

(W1) If @ € H; and b € Hj are cyclically consecutive letters of some word from R, then
Hi M Hj = {1}

(W3) If a letter a € H; occurs in some word from R, then aHl.(l, a) = &.

(W3) For each letter a € H, there is at most one occurrence of a*! in all words from R.
More precisely, let R, S € R. Suppose that R = RijaRy and S = 5145, for some
a€H, Ri,R,51,5% € A, and ¢ = +1. Thene =1, and R; = §; for i = 1,2; in
particular, R = S.

(W4) For every R € R, we have ||R| > o.

Remark 3.14. Although the condition W (¢, o) makes sense for all groups with hyperbolically
embedded subgroups, it is not really useful for groups with non-trivial finite radical. Indeed,
in non-degenerate cases (e.g., if all H; are infinite), one can use Corollary 2.10, (W1), and
(W4) to derive that the existence on a non-empty set R satisfying W (¢, o) for some £ > 1
and o > 2 implies K(G) = {1}.
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We consider a particular example. Suppose that {H;}ier = {A,B,...}, An B = {1},
and there exist infinite order elements a € A and b € B. For any m,n € N, we think of a™
and b™ as single letters from the alphabet H that belong to A and B, respectively. For any
¢ e N, let P(£) denote the set of all words

Pi — a’ierlb’ierlaierQbi@JrQ o aierfbierf, ieN. (20)

Lemma 3.15. For every £,0 > 0, there exists N € N such that for any integer £ > N, the
set P(¢) satisfies the W (&, o) condition.

Proof. Conditions (W) and (W3) obviously hold for each P;. Since {H;}ier <5 G and the
orders of a and b are infinite, we have

T}gIgodA(laa ) = nh_r)rolodB(lvb ) =
by part (b) of Definition 2.6. Therefore, we can ensure that (W3) holds for any given £ > 0

by taking ¢ large enough. Clearly, | P;|| = 2¢. Thus we can also ensure (Wy) for any given
o by taking ¢ > 0 /2. O

The following theorem relates W (£, o) to the small cancellation conditions defined in
Definition 3.1. Recall that a set of words in some alphabet is said to be symmetric if it is
closed under taking inverses and cyclic shifts. The symmetrization of a set of words R is
the smallest symmetric set of words containing R; clearly, it coincides with the set of all
cyclic shifts of R € R and their inverses.

Lemma 3.16. For any positive constants €, u, and p, there exist positive & and o such
that, for any set of words W = {W;}je; S A* satisfying W (&, 0), the following hold.

(a) The symmetrization of W satisfies C1(g, u, p).

(b) For every j € J, suppose that the first (respectively, last) letter of W; belongs to
Hj, (respectively, Hj,) for some ji,jo € J. Let {x;}jes be a set of letters from X
such that the element represented by x; in G does not belong to Hj,H; . Then the
symmetrization of the set {x;W;}jer satisfies Ci(e, , p).

Remark 3.17. Recall that Ci (e, y, p) implies C(e, p, p). Thus, the sets described in (a) and
(b) also satisfy C'(e, u, p).

Proof. We first prove (a). Let ¢, u, and p be any positive numbers. Let £ be any constant
satisfying
&>5D, (21)

where D is the constant from Lemma 3.9. Further, we choose large enough ¢ so that

2 2
U>max{ £t ,p}. (22)
o
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Figure 11: The proof of the implication W (¢, o) = Ci(g, u, p).

Let W be as above and let R denote the symmetrization of W. Conditions (Wy), (W2),
and inequality (21) ensure that every path in I'(G, A) labeled by a word R € R satisfies the
assumptions of Proposition 3.12. Therefore, every such R is (G, .A)-geodesic. Combining
this with the inequality ¢ > p and (Wy), we conclude that condition (a) from Definition
3.1 holds.

Further, suppose that there are two relations R, R’ € R such that R=UV, R =U'V’,
U' =YUZ in G for some words Y, Z € A*, and inequalities (5), (6) hold. Without loss of

generality, we can assume that |U’|| = |U|; therefore, (5) can be rewritten as

U’ = pmin{|R], |R']]}- (23)
Translating these assumptions to geometric language, we can find paths p and p’ in I'(G, A)
such that
Lab(p) = U, Lab(p)=U’,
and

max{d (p_,p"),da (p+,p,)} <e

(see Fig. 11 (a)). By (Wi), (W2), and Proposition 3.12, p is a 2-attracting geodesics.
Therefore, p’ and p share a common subpath p” of length at least

(p") = L) —dalpl,p) —day,p) —2>
(24)
[U'| — 2 —2 = pmin{|R|, |R||} —26 —2 > po —2e — 2 > 0.
(We use (23) and (22) here.)

Let Lab(p”) = U”, Lab(p) = R1U" Ry, Lab(p') = R {U"R), (see Fig. 11 (b)). Condition
(W3) implies that the cyclic shifts of R and R’ starting from U” coincide; that is, we have
U"RVR) = U'RLV'R). Reading the label of the leftmost triangle on Fig. 11 (b), we
obtain YR; = R} in G. Therefore,

YR =YRU"R)V = RIU"R; VR R;' = RIU"RL,V'R|R; ' = R'Y.

in G. Thus, YRY ! = R’ in G and R satisfies condition (b) in Definition 3.1.

Finally, suppose that some word R € R contains two disjoint subwords U and U’ such
that U' = YUZ or U' = YU 'Z in G for some words Y, Z and (5), (6) hold. Arguing as
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above, we can find two disjoint occurrences of the same word U” in R, which contradicts
(W3). Thus, condition (c) in Definition 3.1 holds.

To prove (b), we increase the parameter o so that, in addition to (22), it satisfies
op > 1+ max{10®(2¢ + 2), 8¢}, (25)
where ¢ is the hyperbolicity constant of I'(G,.A) and

¢ = max{103(266 + 2), 3 - 10%5}.

Let S denote the symmetrization of the set {x;W;};e;. We first observe that every
S € S satisfies the assumptions of Lemma 3.10 (note that x; ¢ H;, H;, guarantees condition
(b) of the lemma). Therefore, every S € S is (G, .A)-geodesic.

Further, suppose that there are two relations S, S’ € S such that
S=U0Vv, S'=U'V,

U' =YUZ in G for some words Y, Z € A*, and inequalities (5), (6) hold. As above, we
assume that |U’| = |U| and rewrite (5) as in (23).

The difference with part (a) is that the words U and U’ may contain letters from the set
{z;}ier and thus the corresponding paths p and p' are not necessarily 2-attracting. However,
we can overcome this difficulty as follows. Let agb(q’)~! be a geodesic quadrilateral in
I'(G,.A) such that

Lab(q) = U, Lab(¢)=U’, Lab(a)=Y, Lab(b) = Z.

By (6), we have
max{/(a),l(b)} <e

Note that ¢ and ¢’ are geodesic. We subdivide them as follows. If U contains some x €
{CL'jil}ie], ie, U = UyzUs, we let ¢ = ¢irqa, where Lab(q;) = U;, Lab(r) = z, and
Lab(qz) = Us; otherwise, we let ¢ = ¢ and let r, ¢o be the trivial paths. Similarly, we
define a subdivision ¢’ = ¢{r'¢}, depending on whether U’ contains a letter from {x;—rl}ie 7 or
not (see Fig. 12).

Further, we divide the sides of the geodesic octagon aqirg2b(gir’ qé)*1 (some sides may

be trivial) into the sets
A= {QI7q27qll7q12}7 and B = {a,b,r,r’}

and let a (respectively, 3) denote the sum of lengths of sides from the set A (respectively,
B). By our construction, we have § < 2e + 2. By (23), (Wy), and (25), we have

a2 U¢)~1= U] 1> pminf|R], |R} — 1 > po — 1 > max{10°8, 8¢c}.

Thus, we can apply Lemma 2.2 and find two segments p and p’ of two distinct sides from
A such that
((p") > 10 3¢ = 266 + 2
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P . >
> > >

q1 1 q2

Figure 12: The geodesic octagon agirq2b(q}r'qh) ! Sides from the set B are highlighted in
red.

and
max{d(p—,p_),d(p+,p] )} < 134.

Since a letter from {x;ﬂ}ie 1 can occur in Lab(g) at most once, the word Lab(p) does not
contain any such letters. As in part (a), we obtain that p is a 2-attracting geodesic by
Proposition 3.12. Therefore, p and p’ share a common subpath p” of length at least

L")y = ') —da(p,p) —da (P, p) —2>265 +2—135 — 135 — 2 = 0.

Since ¢ and ¢’ are geodesic, p and p’ cannot simultaneously be subpaths of ¢ or ¢/. Without
loss of generality, we can assume that p is a subpath of ¢ and p’ is a subpath of ¢/. Now,
the equality YRY ! = R’ in G is derived exactly as in part (a). This gives us condition
(b) in Definition 3.1.

The proof of condition (c) in Definition 3.1 is similar. Assuming that some word S € §
contains two disjoint subwords U and V such that U’ = YUZ or U' = YU 'Z in G and
(5), (6) hold, we argue as above and find two disjoint occurrences of a certain non-empty
word in R. This contradicts (W3). O

We conclude this section with the analogue of the Greendlinger lemma for the W (¢, p)
small cancellation condition.

Proposition 3.18. Let G be a group, {H,}ier a collection of subgroups of G, X a subset
of G such that {H;}ier —n (G,X). Let H and A denote the alphabets defined by (1). For
every v > 0, there exist constants &, 0 > 0 such that the following holds.

Let R be a set of words in the alphabet H satisfying W (&, o). Suppose that a non-trivial
(G, A)-geodesic word W € A* represents the identity in G/{R). Then there exists R € R
such that a cyclic shift of R and W have a common subword U of length |U| = (1—v)|R|.

Proof. We choose any p € (0,1/16] such that p < v/13. Further, let p, € be the correspond-
ing constants provided by Lemma 3.2 for the group G. By Lemma 3.16, we can choose £
and o such that, for any set of words R in the alphabet # satisfying W (¢, o), the sym-
metrization of R satisfies C(e, i, p). Note that increasing £ and o only makes the condition
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W (&, o) stronger. Thus we can assume that & > 5D, where D is provided by Lemma 3.9,

o = p, and
de + 2

13— .
A T

(26)

We fix any presentation of GG of the form 3.

By Lemma 3.2, for every (G, A)-geodesic word W € A* representing the identity in
G/{R)), there exists a van Kampen diagram A over the presentation (4), an R-face II in
A, and an e-contiguity diagram I" of IT to dA such that (II,T",0A) > 1 — 13u. We keep the
notation introduced on Fig. 3 for the boundary sides of I'. In this notation, we have

Uq) = (IL,T,0A)((0I1) > (1 — 13p)€(oll) = (1 — v + 4=22)¢(011) >
(27)
(1 —v)l(o1I) + 4e + 2

(to derive the last two inequalities, we use (26) and (Wy)).

Recall that T' is a diagram over (3). Therefore, o' can be mapped to I'(G,.A) by a
combinatorial map preserving labels and orientation of edges. We keep the notation s1q1s2¢o
for the image of dT' in I'(G,.A). Since g9 is labelled by a subword of W, it is geodesic in
I'(G,.A). By Proposition 3.12, ¢; is a 2-attracting geodesic in I'(G,.A4). Therefore, ¢; and
gy ! share a subpath ¢ of length al least

0(q) = €(q2) — £(s1) — £(s2) — 2= L(q1) — 20(s1) — 2l(s2) — 2 = l(q1) — 4e — 2.

Combining this inequality with (27), we obtain that W and Lab(JIl) share a common
subword U = Lab(q) of length at least (1 — v)||Lab(oII)||. O

3.5 Suitable subgroups and quotients

In this section, we summarize results from [MO, Hull, Osil0] and obtain some new results
necessary to prove Theorems 1.3 and 1.4. We begin by recalling the notion of a suitable
subgroup. It was originally introduced in [Osil0] for relatively hyperbolic groups and then
generalized to groups with hyperbolically embedded subgroups in [Hull]. In our paper, we
will use this notion in both settings.

We begin with a definition from [Hull, Section 5].
Definition 3.19. Let GG be a group, A a generating alphabet such that the Cayley graph
I'(G, A) is hyperbolic. A subgroup S < G is said to be A-suitable (suitable with respect to

A in the terminology of [Hull]) if the action of S on I'(G, A) is non-elementary and S does
not normalize any non-trivial finite subgroup of G.

Recall that two elements a, b of a group are commensurable if a”" is conjugate to b" for
some non-zero integers m and n.

Lemma 3.20 ([Hull, Corollary 5.7]). Let G be a group, A a generating alphabet of G such
that T'(G, A) is hyperbolic and the action of G on T'(G, A) is acylindrical. Suppose that S is
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an A-suitable subgroup of G. Then, for everyn € N, there exist pairwise non-commensurable
elements g1, ...,gn € S such that g; acts lozodromically on I'(G,.A) and E(g;) = {gi) for all
1=1,....,n.

For relatively hyperbolic groups, there is a similar notion of suitability defined as follows
[AMO, Osil0].

Definition 3.21. Let G be a group hyperbolic relative to a collection of subgroups {H;}ier.
A subgroup S < G is suitable with respect to the peripheral collection {H;}ier if it is not
virtually cyclic, contains a loxodromic element, and does not normalize any non-trivial finite
subgroup of G.

Recall that, in the settings of Definition 3.21, an element g € G is loxodromic with
respect to the action on I'(G, A) if and only if |g| = o0 and ¢ is not conjugate to an element
of one of the peripheral subgroups. The definition of a suitable subgroup of a relatively
hyperbolic group was first formulated in [Osil0] in a slightly different way. Later it was
shown to be equivalent to Definition 3.21 in [AMO] (see Lemma 3.3 and Proposition 3.4
there). Furthermore, Definitions 3.19 and 3.21 are equivalent in the following sense.

Lemma 3.22. Let G be a group, hyperbolic relative to a finite collection of subgroups
{H,}ier, X a finite relative generating set of G with respect to {H;}ier, A the alphabet defined
by (1). A subgroup S < G is suitable with respect to the peripheral collection {H;}ier if and
only if S is A-suitable.

Proof. By Theorem 2.16, the action of G on I'(G, A) is acylindrical. If S is A-suitable, it
contains a loxodromic element by Lemma 3.20 and is not virtually cyclic because its action
on I'(G, A) is non-elementary (see Theorem 2.15). Thus, S is suitable with respect to the
peripheral collection {H;}er. Conversely, if S is suitable with respect to the peripheral
collection {H;}er, then its action on I'(G,.A) must be non-elementary by Theorem 2.15;
hence, S is A-suitable. O

The next result provides a sufficient condition for a subgroup to be suitable.

Lemma 3.23. Let G be a group and A a generating alphabet of G such that T'(G, A) is
hyperbolic and the action of G on I'(G,A) is acylindrical and non-elementary. If K(G) =
{1}, then every non-trivial normal subgroup of G is A-suitable.

Proof. Let S be a non-trivial normal subgroup of G. Since G contains no non-trivial finite
normal subgroups, S must be infinite. By Lemma 2.19, the action of S on I'(G, .A) is non-
elementary. Acylindricity of the action of G on the Cayley graph I'(G, A) allows us to apply
[Hull, Lemma 5.5], which claims the existence of a (unique) maximal finite subgroup £ < G
normalized by S. Since S is normal in G, so is E. In particular, F < K(G), which implies
E = {1}. Thus, S is A-suitable. O

Lemma 3.24. Let G be a group, {H;}ier a collection of subgroups of G, X a subset of G
such that {H;}ier —n (G, X), A an alphabet defined by (1), S a subgroup of G. Suppose that
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the action of G on T'(G, A) is acylindrical and there exist ig, jo € I such that H;ynHj, = {1}
and the intersections S n H;,, S n Hj, are infinite. Then S is A-suitable.

Proof. Let D be the constant provided by Lemma 3.9 applied to {H;}ier = (G,Y) and let
dp, be the corresponding generalized metrics on groups H;. Since the intersections S n Hj,
and S n Hj, are infinite, there exist a € S n H;,, b € S n Hj, such that dg, (1,a) > 5D

and aHjO(l,b) > 5D. By Lemma 3.10, every path in I'(G, A) labeled by (ab)™ for some
n € N is geodesic. Therefore, the action of S on I'(G, . A) has unbounded orbits. Note also
that S cannot be virtually cyclic; for otherwise, any two infinite subgroups of .S would have
non-trivial intersection, which contradicts the assumption H;, n H;, = {1}. Therefore, the
action of S on I'(G, A) is non-elementary by Theorem 2.15. Finally, we note that S does
not normalize any non-trivial finite subgroup of G by Corollary 2.10. O

To make our paper as self-contained as possible, we summarize some results from [Hull]
and [MO] used below. The first one is proved in [MO, Proposition 3.3]. We simplify it and
change the notation a bit to better fit the other results discussed below.

Lemma 3.25. Let G be a group and let {H,}ier, {A, B} be two collections of subgroups of
G. Suppose that A n B = {1} and {H;}ier v {A, B} <, (G, X) for some X € G. Then
there exists n € N and finite subsets Fa € A, Fgp S B such that the following holds.

Suppose that W = {Wp,}men is an arbitrary set of words in the alphabet X 1 A L B of
the form
Wm = xmamlbml .. amnbmn (28)

satisfying the following conditions for every m € N:
(a) zpm e X;
(b) ame € A\Fa, by € B\Fp for all 1 <l < n;

(c) if a letter c € A u B occurs in W, for some m € N, then it occurs only in Wy, and
only once; in addition, ¢~ does not occur in any word from W .

Then the restriction of v: G — G/{W)) to each H; is injective and {y(H;)}ier —n G/{V).

The next result combines Lemmas 4.4 and Lemma 4.9 from [Hull] (note that the re-
sult about relative hyperbolicity in part (b) follows form {v(H;)}ier —n (G,7(X)) and
Proposition 2.8; it was first proved in [Osil0, Lemma 5.1]). As everywhere in this paper,
we reproduce the simplified versions of the above-mentioned results for the C'(e, i, p) small
cancellation condition instead of the more general condition C'(g, u, A, ¢, p) considered in
[Hull, Osil0]. Note that, unlike in the previous proposition, the set R is assumed to be

finite here.

Lemma 3.26. Let G be a group, {H;}ier a collection of subgroups of G such that {H;}ier <
(G, X) for some X € G, A an alphabet defined by (1). There exist e = 0 and u,p > 0 such
that, for any finite symmetric set of words R in the alphabet A satisfying C(e, u, p), the
following hold.
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(a) The restriction of the natural homomorphism v: G — G = G/{R) to the set
By ={geGlgla< N} (29)

is injective. In particular, the restriction of v to | ) H; is injective.
1€l

(b) {v(H)}Yier —n (G,v(X)). In particular, if G is hyperbolic relative to {H,;}ic; and

| X| < o0, then G is hyperbolic relative to {y(H;)}ier

(c) Every finite order element of G is the image of a finite order element of G.

It is worth noting that in the statement of [Hull, Lemma 4.4], Hull only claims that
{v(H;)}ier —n G in the settings of Lemma 3.26. However, the proof (which is essentially

the same as the one of [Osil0, Lemma 5.1]) actually shows that {y(H;)}ier —n (G,v(X)).

We are now ready to state the main result of this section. It generalizes and strengthens
analogous results of [Hull, O1s93, Osil0]. Compared to [Hull], the main improvement is
that we allow the set F to be infinite. This generalization is essential for some applications,
e.g., for the proof of Theorem 1.4. The result about centralizers (part (d)) is also new in
these settings. We provide a complete proof modulo results of [Hull, MO] discussed above
to make sure that these new additions are consistent with previously known parts.

Theorem 3.27. Let G be a group, {H;}ier a collection of subgroups of G such that
{Hi}ier —n (G, X) for some X < G, A an alphabet defined by (1). Suppose that the
action of G on T'(G, A) is acylindrical. For any A-suitable subgroup S < G, any countable
subset F < X, and any N € N, there exists a subset {sy | f € F} < S such that the quotient

group
G = G/{R), where R = {fss| feF}, (30)

satisfies the following conditions.

(a) The restriction of the natural homomorphism v: G — G to the set By defined by (29)

is injective. In particular, v is injective on | J H;.
i€l

(b) {v(Hi)}tier =1 G.
(c) Every finite order element of G is the image of a finite order element of G.
(d) For every g € By, we have Cz(v(g)) = v(Ca(g)).

(e) If, in addition, the sets I, F, and X are finite, then G is hyperbolic relative to
{v(H:)}ier-

Remark 3.28. Note that, in the notation of Theorem 3.27, we have y(F) < v(S) since sy € S
for all f e F.
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Proof. By Lemma 3.20, there exist non-commensurable elements a, b € S acting loxodromi-
cally on I'(G,.A) such that E(a) = {(a), E(b) = (b). Note that E(a) n E(b) = {1} by
Proposition 2.9. Furthermore, we have {{a),{(b)} U {H;}icr —n (G, X) by Theorem 2.25.
We use the notation A = (a), and B = {b), which is consistent with Lemma 3.26.

Let F = {fi, fo,...}. Since Ci(g, u,p) implies C(e, u, p) and both conditions become
stronger as € and p increase and p decreases, we can choose sufficiently large €, p and
sufficiently large p such that the conclusions of Lemmas 3.5 and 3.26 simultaneously hold.
Further, let £ and o be the constants provided by Lemma 3.16 for the chosen values of ¢,
w, and p. By Lemma 3.15, There exists £ € N such that the set of words P(¢) = {P; | i € N}
defined by (20) satisfies W (£, o). Combining this with Lemma 3.16 (b), we conclude that
the symmetrization of the set {fi P, foPs,...} satisfies the Cy(e,u, p) small cancellation
condition. In addition, increasing £ if necessary, we can ensure that all letters in the words
P; come from the sets A\F4 and B\Fp, where F4 and F4 are provided by Lemma 3.25
(we use the condition {A, B} <>}, G and part (b) of Definition 2.6 here).

Since a,b € S, each P; represents and element of S in G. Thus, it suffices to show that
claims (a)—(e) hold for the group

G = G/KfLiPr, [2Pa, .. ).

Thanks to the choice of the parameters explained in the previous paragraph, we can apply
Lemmas 3.5, 3.25, and 3.26 to this quotient. Parts (a) and (c¢) of Lemma 3.26 give us parts
(a) and (c) of the theorem, Lemma 3.25 gives (b), and Lemma 3.5 gives (d).

Since F is finite, so is R. Therefore, G is hyperbolic relative to {H;}ier v {A, B} by
part (b) of Lemma 3.26. Since A and B are cyclic, G is hyperbolic relative to {H;}er by
Corollary 2.14. 0

4 Automorphisms of property (T) groups acting on hyper-
bolic spaces

4.1 Auxiliary groups

The main goal of this section is to construct examples of groups with certain special prop-
erties, which will be used in the proofs of Theorems 1.3 and 1.4. We begin with a variant
of the famous Rips construction [Rip]. The modification considered here is similar to those
suggested in [BO, OW].

Lemma 4.1. Let Q be a countable group, H a non-cyclic, torsion-free, hyperbolic group.
There exists a short exact sequence 1 > N — G — @ — 1 such that the following conditions
hold.

(a) G is torsion-free.

(b) N is an infinite quotient of H.
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(c) There are elements a,b € N such that {a) n {b) = {1} and {{a),{b)} —} G. In
particular, G is acylindrically hyperbolic.

(d) If, in addition, @Q is finitely presented, then G is hyperbolic relative to {{a),{b)}; in
particular, G is a hyperbolic group in this case.

Proof. Suppose that @ is given by a (possibly infinite) presentation (Y | R). The free
product P = H « F(Y'), where F(Y) is the free group with basis Y, is hyperbolic relative
to {H,F(Y)}. Since H is non-cyclic, torsion-free, and hyperbolic, it contains two non-
commensurable elements a,b such that E(a) = {(a) and E(b) = (b) (see, for example,
[O1s93, Lemma 3.8]). Applying Corollary 2.26, we obtain that H is hyperbolic relative to
{¢ay,{b)}. By Corollary 2.12, the group P is hyperbolic relative to {(a),<{b), F(Y)}.

Since a and b are non-commensurable, we have (a) n (b) = {1}. Therefore, H is a
suitable subgroup of P with respect to {{a),{(b), F(Y)} by Lemma 3.24 and Lemma 3.22.

Let X be a finite generating set of H and let
F={y tay,yzy ' |zeX,ye Y} UR.

Note that {{a),{b)} — (H,X) by Proposition 2.8. Therefore, {{(a),(b), F(Y)} < (P, X)
by Proposition 2.11. This allows us to apply Theorem 3.27 and conclude that, for every
f € F, there exists sy € H such that the quotient group

G=P/Kfsp|feF) (31)

is torsion-free, the restriction of the natural homomorphism P — G to each of the subgroups
{a), by, F(Y) is injective, and the (isomorphic) images of these subgroups are hyperbolically
embedded in G. In particular, G is acylindrically hyperbolic by Theorem 2.18. Let N be
the image of H in G. The choice of the set F ensures that N <1 H. Since N contains the
(isomorphic) image of {(a), it is infinite.

Finally, if @ is finitely presented, we can assume that ¥ and R are finite. This implies
that |F| < o. Thus, part (e) of Theorem 3.27 applies and G is hyperbolic relative to
the isomorphic images of the subgroups {a), (b), F/(Y'). Since each of these subgroups is
hyperbolic in this case (recall that |Y| < o), G is a hyperbolic group by Corollary 2.14. [J

We are now ready to prove the main result of this section. Note that any pair of groups
N < G satisfying conditions (d) and (e) (see below) has the following rigidity property:
every automorphism ¢ of N preserves the conjugacy classes of Hi, Hs in G. It follows that
¢ maps x2 and y> to their conjugates (or possibly conjugates of their inverses) in G. This
property can be used to control the outer automorphism group of appropriate quotients of

N.

Lemma 4.2. Let ) be countable group, H a mon-cyclic, torsion-free, hyperbolic group.
There exists a short exact sequence

1o N->G—-Q—1
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and subgroups
Hy ={(s,x |5 [s,2]) 2 Zy xZ and Ho = {t,y|t>, [t,y]) = Zs x Z (32)
of N satisfying the following conditions.

(a) We have Hy n Hy = {1} and {Hi,Hs} —, G. In particular, G is acylindrically
hyperbolic.

(b) N is a quotient of H.

(c) N is generated by {x?, 13}

(d) Hy = Cg(s) and Hy = Cg(t).

(e) Every finite order element of N is conjugate in G to one of the elements 1,s,t,t2.

(f) If Q is finitely presented, then G is hyperbolic relative to {Hi, Ha}; in particular, G
18 a hyperbolic group in this case.

Proof. Let 1 - Ny — Gg —» @Q — 1 be the short exact sequence provided by Lemma 4.1.
That is, Gq is torsion-free and acylindrically hyperbolic, Ny is an infinite quotient of H,
and Gy is hyperbolic whenever @ is finitely presented.

The group
P = GO * H1 * H2

is hyperbolic relative to {Go, H1, H2}. Using the standard facts about free products and
the structure of Hy, Hs, it is easy to show that the following conditions hold:

(+) Hy = Cp(s), Hy = Cp(t);

(++) every finite order element in P is conjugate to 1, s, t, or t2.

By Theorem 2.18, there exists a generating set Ag of Gy such that the Cayley graph
I'(Go, Ap) is hyperbolic, and the action of Gy on I'(Gg,.Ag) is non-elementary and acylin-
drical. Since Gy is torsion free, it contains no non-trivial finite subgroups. Therefore, Ny is
Ap-suitable in Gg by Lemma 3.23.

Let a,b € Ny be the elements provided by Lemma 4.1. Thus, we have {E(a), E(b)} <
(Go,Ap). Since {Go, Hi, Ha} <>, P, we obtain that {E(a), E(b), H1,H2} < (P,Y) for
some Y € P by Theorem 2.11. Let B =Y w E(a) u E(b) u Hy 1 Hy. By Theorem 2.16 (a),
we can assume that the action of P on I'(P, B) is acylindrical. By Lemma 3.24, we conclude
that Ng is an B-suitable subgroup of P.

Let s1,...,s, € Ny be the elements provided by Theorem 3.27 applied to the group P,
the hyperbolically embedded collection of subgroups {F(a), E(b), Hi, Hy} <, (P,Y), the
B-suitable subgroup Ny, and a finite generating set F = {f1,..., fix} of Hy * Hy. Let

Gi1 = P/{fisty-- -, fuSk)
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We keep the notation E(a), E(b), H;, Ha for the isomorphic images of these sub-
groups in (G; and denote the image of Ny in Gi by Nj. By Theorem 3.27, we have
{E(a), E(b), H1, Hy} <}, (G1,X1) for some X7 € G. We let

Ay = X7 0 E(a) uw E(b) u Hy u Hs.

As above, we can assume that the action of G7 on I'(Gy, A1) is acylindrical By Theorem
2.16 (a). Note also that

Hiy,H, < Nj. (33)
Thus, there exists a natural epimorphism ~o: Gy — (Gp. Since si1,...,8; € Ng and
fl, ..., Jk € H1 * HQ, we have Ker% < <<N0 v H1 U H2>> and ’70(<<N0 U H1 U H2>>) = Nl.

Therefore,
Gl/Nl = P/<<N0 U Hiu H2>> = Go/No = Q

By Lemma 3.24, the subgroup S = {(z2,3) < G is A;-suitable in G;. Note that Ny
is finitely generated being a quotient of H. We can apply Theorem 3.27 to the group Gy
with the collection of hyperbolically embedded subgroups {E(a), E(b), H1, Ha}, the suitable
subgroup S, and a finite set {g1,...,9¢} of generators of Nj. Let t1,...,t, € S be the
elements provided by the theorem and let

G = G1/&agit1, .- -, gete).

Let v denote the natural homomorphism G; — G and let N = ~v(Np). Since g1,...,90 € Ny
and t1,...,tp € S < Nj, we have Ker(y) < Nj. Therefore, G/N = G1/N; = Q. Our
construction can be summarized by the following commutative diagram, where all rows are
exact and all vertical maps are surjective

H
1 No Go Q 1
[
1 Ny G Q 1
P
1 N G Q 1

We claim that the short exact sequence at the bottom satisfies the conclusion of the
theorem. Indeed, the groups Hi, Hs embed in G since the restriction of v to Hy u Hy is
injective by Theorem 3.27 (a). Moreover, we have Hi, Hy < N by (33). Further, parts (a),
(d), and (e) follow from the corresponding parts of Theorem 3.27 and (+), (++). Part (b)
is obvious from the construction. Part (c¢) is ensured by passing from G; to G.

Finally, part (f) can be proved as follows. If @ is finitely presented, Gy is hyperbolic
relative to {E(a), £(b)} by Lemma 4.1 and P is hyperbolic relative to {E(a), E(b), H1, Ha}
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by Corollary 2.12. In particular, {E(a), E(b), Hi, H2} <>} (P,Y) for some finite ¥ and
the action of P on I'(P, B) is acylindrical by Proposition 2.8. Thus part (e) of Theorem
3.27 applies and we obtain that G is hyperbolic relative to (isomorphic image of the)
{E(a), E(b), H1, Ha}. Similarly, choosing finite X; allows us to conclude that G is hyperbolic
relative to {E(a), E(b), H1, H2}. Since each of the subgroups in this collection is hyperbolic,
so is G by Corollary 2.14. O

4.2 Proofs of Theorems 1.3 and 1.4

We begin by generalizing some observations used in [BO, OW].

Definition 4.3. To each short exact sequence of groups
1>N->G5Q -1, (34)
we associate homomorphisms
t: G — Aut(N) and s: @Q — Out(N)

as follows. For every g € G, i(g) is the automorphism of N given by n + gng~!. Further,
given an element q € ), let g be any preimage of ¢ under e. We define

#(q) = 1(g)Inn(N). (35)

Note that the map s is well-defined. Indeed the right side of (35) is independent of the
choice of a particular preimage g.

Lemma 4.4. In the notation of Definition 4.3, suppose that G is acylindrically hyperbolic
and K(G) = {1}. If N is non-trivial, then the maps ¢ : G — Aut(N) and s: Q — Out(N)
associated to the short exact sequence (34) are injective.

Proof. By Theorem 2.18, there exists a generating set X of G such that I'(G, X) is hyper-
bolic and the action of G on I'(G, X) is non-elementary and acylindrical. By Lemma 3.23,
N is an X-suitable subgroup of G. By Lemma 3.20 and Theorem 2.25, there exist elements
a,b € N of infinite order such that {(a),{b)} —, G.

Suppose that g € Ker(¢). Then g commutes with both a and b. By Proposition 2.9, we
have g € (a) n (b) = {1}. Thus, ¢ is injective.

Further, suppose that ¢ € Ker(s¢). This means that ¢(g) is an inner automorphism of
N for some preimage g of ¢ under €. That is, there is h € N such that ¢(g) = ¢«(h). By
injectivity of ¢, we have g = h. This implies that ¢ = e(g) = e(h) = 1. O

We are now ready to prove our main result. Theorems 1.3 and 1.4 can be easily derived
from this result as explained below.
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Theorem 4.5. For every countable group Q and every mon-cyclic torsion-free hyperbolic
group H, there exists an ICC quotient group B of H with the following properties.

(a) Out(B) = Q.

(b) The groups B and Aut(B) are acylindrically hyperbolic. Moreover, if Q is finitely
presented, then Aut(B) is hyperbolic.

Proof. Let Q be a countable group. We fix an exact sequence 1 - N —- G —» @ — 1
satisfying conditions (a)—(f) from Lemma 4.2. In particular, N is generated by the elements

a=2z? and b=1y5 (36)

By Lemma 4.2 (a), we have {H;, Ha} <, (G, X) for some X < G. We keep the standard
notation
A=X U H; uH,.

Let D be the constant provided by Lemma 3.9 applied to the hyperbolically embedded
collection {Hy, Ha} —p, G.

Since Ci(e, p,p) implies C(e, u, p) and both conditions become stronger as e and p
increase and p decreases, we can choose € and p such that the conclusions of Lemmas 3.5
and 3.26 simultaneously hold for N = 1. Further, let £ and o be the constants provided by

Lemma 3.16 for the chosen values of ¢, u, and p. Since W (£, o) becomes stronger as ¢ and
o increase, we can additionally assume (after increasing £ and o if necessary) that

¢ > 5D. (37)

and the conclusion of Proposition 3.18 holds for the group G, the collection of peripheral
subgroups {H1, Ha}, the subset X € G, and v = 1/3.

Further, by Lemma 3.15, we can choose ¢ > 5 such that the word

R= af+1b£+1a€+2bf+2 L a2€b257

where a and b are defined by (36), satisfies W (¢, o).

Let
G =G/ R)

and let B be the image of N in G. Clearly, B <G and G/B =~ G/N = Q. By the choice of
the parameters, we can apply Lemma 3.26 to the quotient group G. Thus, the restriction of
the natural homomorphism G — G to Hy u Hj is injective. Henceforth, we identify groups
Hj, Hy with their (isomorphic) images in G and keep the same notation s, t, x, y, a, b for
their elements. By part (b) of Lemma 3.26, we have {H;, Ha} <>} G. In particular, G is
acylindrically hyperbolic. Since Hy n Hy = {1} in G, we obtain that the images of H; and
Hy intersect trivially in G. Note that these images actually belong to B since Hy, Ho < N.
By Corollary 2.10, this implies that B is ICC. Further, by Lemma 3.5 (applied to N = 1)
and part (d) of Lemma 4.2, we have

H1 = C@(S) and H2 = C@(t) = Cé(til). (38)
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Finally, every element of finite order in G is conjugate to one of the elements 1, s, ¢, t~! By
Lemma 4.2 (e) and Lemma 3.26 (c).

Our next goal is to show that every automorphism of the group B is induced by conju-
gation in G. We fix any ¢ € Aut(B). Using the description of finite order elements of G, we
conclude that ¢ maps s and ¢ to some conjugates of s and t*! in G, respectively. Composing
¢ with an inner automorphism of G, we can assume that ¢(s) = s and ¢(t) = ztt12z~! for
some z € G. Combining this with (38), we obtain p(H;) = H; and ¢(Hy) = zHz~t. This
easily implies that z is mapped to ! or 2*'s and y is mapped to y*!, y=1¢, or y=1¢2 (see

(32). In all these cases, we have
@(a) =a® and ¢(b) = 2b°271,

where «, 8 = 1.

Note that if HygHs = H1zH>5 for some g € H, then z = higho, where hy € Hy, ho € Ho.
Hence, the pair (a,zbz~!) is conjugate to the pair (a,gbg~') by the element h;. Thus,
composing ¢ with another inner automorphism if necessary, we can assume that z is a
shortest element in the double coset HyzHos. It follows that z—! is a shortest element in the

double coset Hyz ' Hj.
Let U be a shortest word in the alphabet A representing z. Consider the word

R/ _ a(f-‘r1)04Ub(ﬁ-‘rl),@U—la((+2)ocUb(f+2)BU—l o G;QéanQK’BU_l. (39)

Here, as usual, we think of powers of a and b as single letters. Clearly R’ represents p(R) =1
in G. Thanks to (37) and the assumption about z explained in the previous paragraph,
we can apply Lemma 3.10 to the word R’ and conclude that R’ is (G,.A)-geodesic. By
Proposition 3.18, R' and a cyclic shift of R*! have a common subword S of length at least
(1 =v)||R| = 2|R|/3. We will show that this can happen only if U is the empty word.

Note that the letters corresponding to powers of a and b can occur inside the subwords
U*! of the word R’; the occurrences of these letters that are not inside the subwords U=!
will be called regular. Suppose first that S contains at most one regular letter. Note that
this letter must be the first or the last one in S. Indeed, otherwise S would have common
subwords with both U and U~' and hence would contain letters corresponding to both
positive and negative powers of a or b, which is impossible for a subword of R*!. Thus S
shares a subword S’ of length al least |S| —1 > 2|R||/3 — 1 with a single occurrence of
the subword U*! in R'. Since ¢ > 5, we have ||R| > 10 and 2|R|/3 — 1 > |R|/2. Thus
U = U;5'Us and there is a cyclic shift of R of the form S’S” such that |S”| < |S’|. The
word Uy (S”)~1Us is shorter than U and represents the same element of the group G as U;
this contradicts the assumption that U is the shortest word representing the element z.

Further, assume that S contains at least 2 consecutive regular letters. Note that every
letter from H; L Hy occurs in the words R, R~! at most once and no letter occurs in both.
This easily implies that S is a subword of R (not R ') and these letters must be next to
each other in R. Therefore, a = § =1, U is the empty word, and z = 1 in this case.

Thus, p(a) = a and ¢(b) = b up to conjugation in G. Being a quotient of N, the
group B is generated by a and b (see Lemma 4.2 (c)). Therefore, every automorphism
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of B is induced by a conjugation in G. Combining this with Lemma 4.4, we obtain that
Aut(B) = G and Out(B) =~ G/B. In particular, Aut(B) is acylindrically hyperbolic and
Out(B) = Q.

Finally, if @ is finitely presented, then G is hyperbolic relative to {H1, Ho} by part (f)
of Lemma 4.2. This allows us to apply the second claim in part (b) of Lemma 3.26 and
conclude that G is hyperbolic relative to (the isomorphic images of) Hy, Ha. Since Hy, Ho
are hyperbolic groups, G is hyperbolic by Corollary 2.14. O

Proof of Theorem 1.3. Let H be a nontrivial, torsion-free, hyperbolic group with property
(T). It is worth noting that such groups are abound; for example, every property (T) group is
a quotient of a torsion-free, hyperbolic, property (T) group by a result of Cornulier [Cor05].
Let also @ be a finite group. By Theorem 4.5, there exists an ICC quotient group G of H
such that Aut(G) is hyperbolic and Out(G) = Q. Since G is ICC, we have G = Inn(G).
Since @ is finite, Inn(G) has finite index in Aut(G). It is well-known that a finite index
subgroup of a hyperbolic group is hyperbolic. Thus, G is hyperbolic. It also has property
(T) being a quotient of H. O

Finally, we state and prove a more precise version of Theorem 1.4.

Theorem 4.6. For every countable group @, there exists a finitely generated acylindrically
hyperbolic group G with property (T) and trivial finite radical such that Out(G) = Q.

Proof. As above, we apply Theorem 4.5 to a torsion-free, hyperbolic group H with property
(T) and a countable group Q. Let G be the group provided by the theorem. It has
property (T) being a quotient of H. Since G is ICC, it has trivial finite radical and we
have Inn(G) =~ G. The latter equality implies that G is isomorphic to a normal subgroup
of Aut(G). The group Aut(G) is acylindrically hyperbolic by part (b) of Theorem 4.5.
Therefore, G is also acylindrically hyperbolic by Lemma 2.19. 0
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