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Abstract Quantization has become a mainstream compression technique for reducing model size,
computational requirements, and energy consumption for modern deep neural networks
(DNNs). With improved numerical support in recent hardware, including multiple vari-
ants of integer and floating point, mixed-precision quantization has become necessary to
achieve high-quality results with low model cost. Prior mixed-precision methods have
performed either a post-training quantization search, which compromises on accuracy, or
a differentiable quantization search, which leads to high memory usage from branching.
Therefore, we propose the first one-shot mixed-precision quantization search that elimi-
nates the need for retraining in both integer and low-precision floating point models. We
evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to
discover Pareto-optimal models. Our approach improves upon uniform precision, manual
mixed-precision, and recent integer quantization search methods. With integer models, we
increase the accuracy of ResNet-18 on ImageNet by 1.31% points and ResNet-50 by 0.90%
points with equivalent model cost over previous methods. Additionally, for the first time,
we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up
to 0.98% points compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to
simultaneously search a joint quantization and neural architecture space and improve the
ImageNet accuracy by 2.69% points with similar model cost on a MobileNetV2 search space.

1 Introduction

In recent years, deep neural networks (DNNs) have achieved state-of-the-art results on a wide
range of tasks including image classification, speech recognition, image and speech generation, and
recommendation systems. Each model iteration typically enhances quality but also tends to increase
computation, memory usage, and power consumption. These increases limit DNN adoption in
resource-constrained edge devices, worsen their latency across platforms, and expand their carbon
footprint, especially within cloud systems. DNN quantization to low-precision formats has become
the standard method for reducing model storage size, memory bandwidth, and complexity of MAC
operations [1, 2]. These formats include both integer and low-precision floating-point, which has
recently gained attention as a flexible alternative to integer formats.

At the same time, DNN accelerators have become more diverse and now support a wide range
of numerical formats. For example, the Google TPUv3 supports FP32, BF16, FP16, and INTS [3],
while the latest NVIDIA Hopper architecture supports FP32, BF16, FP8, and INT8 [4]. Furthermore,
reprogrammable systems such as FPGA devices allow arbitrary precision arithmetic such as INT5,
FP11, FP9, or FP8 for more granular accuracy-performance trade-offs [5]. While these devices
enable mixed-precision quantization, where layers take on different formats within the same model,
it is challenging to optimally assign per-layer formats since layers exhibit different quantization
characteristics. In simple cases, this assignment can be performed manually, yet with the explosion
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Figure 1: FLIQS - The explosion of model architectures, numerical support, and deployment platforms
requires automated methods for searching model configurations to utilize platform-specific
numerical formats. We establish FLIQS as the first one-shot quantization and neural archi-
tecture search framework for searching for integer and floating point formats.

of DNN architectures and accelerator designs, automated methods are more reliable, scalable, and
reproducible for achieving high accuracy and performance.

In this paper, we introduce FLoating-Point and Integer Quantization Search (FLIQS) to auto-
mate mixed-precision floating-point and integer quantization and automatically assign per-layer
formats. In addition, FLIQS can jointly optimize for quantization formats and neural architecture
to intelligently allocate compute across the kernel, channel, and bitwidth dimensions. FLIQS is a
one-shot search based on reinforcement learning (RL) and unlike expensive multi-trial searches, it
avoids training separate models for each configuration, leading to overall reduced search overhead.
Furthermore, as the search takes place during training, FLIQS can achieve higher accuracies than
post-training quantization (PTQ) searches. Coupled with additional entropy regularization, the
final model can be deployed without the need for further retraining or fine-tuning. As shown in
Figure 1(a), FLIQS accelerates the process of adapting legacy models to new hardware, co-designing
models and accelerators, and finding Pareto-optimal models on current hardware systems. We
summarize our contributions as follows:

1. Introduce the first one-shot quantization search without retraining through the addition of a
new cosine entropy regularization schedule;

2. Demonstrate state-of-the-art results for integer and low-precision floating-point quantization
search across a range of convolutional and transformer networks;

3. Perform the largest comparison of integer and floating-point mixed-precision networks;

4. Conduct the first study of quantization and neural architecture search on low-precision floating-
point networks and establish recommendations for allocating compute across bitwidth and
neural architectural dimensions.

Related Work

Low-Precision Floating Point: Low-precision floating point is being discussed as the next gen-
eration format for DNN training and inference. [6]. Companies, including AMD, Intel, NVIDIA,
and Qualcomm, have recently agreed to adopt 8-bit floating-point (FP8) in future deep learning
systems. Within these formats, recent studies generally focus on two variants: ESM2 and E4M3,
where E represents the number of exponent bits and M is the number of mantissa bits. For example,
HFP8 suggests using E4M3 for the forward pass and E5M2 for backpropagation [7]. Building upon
these uniform precision works [7, 8, 9, 10, 11], FLIQS proposes an automated approach for finding
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Figure 2: FLIQS Overview — (a) FLIQS begins with pure training to allow the reward signal to stabilize
before updating its policy. The activation quantization is delayed to allow the activation
statistics to stabilize. (b) The RL then controller proposes per-layer formats and architectural
decisions during training

mixed-precision floating-point networks, compares these to mixed-precision integer networks with
similar cost, and performs a joint floating-point quantization and neural architecture search.

Quantization Search: Prior work has explored mixed-precision integer quantization searches,
as shown in Figure 1(b). For instance, HAQ [12] and ReLeQ [13] both perform PTQ quantization
searches that utilize RL to allocate bitwidths based on the model accuracy and cost estimates.
In addition, the HAWQ series of works further develops these PTQ searches, using the Hessian
spectrum to determine layer sensitivities and constrained ILP formulations to find optimal bitwidth
configurations [14, 15, 16]. However, being PTQ-based, these methods cannot take advantage of
the higher accuracy and more accurate feedback provided by quantization-aware training (QAT)
during the search.

Other efforts perform quantization search during training, often using neural architecture search
(NAS) with super-networks or differentiable NAS [17, 18, 19, 13, 20]. For instance, MPQ uses an
adaptive one-shot method that trains models using multiple bitwidths and automatically freezes the
bitwidths of specific layers during training to improve the model convergence across bitwidths [21].
In addition, EDMIPS creates branches for each bitwidth, forms a linear combination of them, and
then alternates training the layer weights and the branch weights [22]. These differentiable searches
often have simpler formulations since the layer and branch weights are unified and trained together
with gradient descent. However, because they replicate the weights and activations, they incur
higher memory and computational costs compared to RL-based methods. In addition, both PTQ
and QAT prior works require additional retraining steps on the model after the search, while FLIQS
directly serves the final model without fine-tuning.

Quantization Neural Architecture Search (QNAS): In addition, prior work has explored joint
search spaces with quantization formats and neural architecture [23, 24, 25, 26, 27]. For example,
APQ uses knowledge distillation from a full-precision accuracy predictor to optimize neural archi-
tecture, quantization formats, and pruning policies [25]. FLIQS expands on this line of work by
jointly searching quantization formats and neural architecture and highlights trends for allocating
compute across this joint search space for high accuracy and performance.

FLIQS Framework

As a one-shot method, FLIQS employs a controller to sample per-layer formats and model archi-
tectures during training. This method allows the search and model to adapt to each other yet it
comes with certain challenges. First, the search may interfere with the original model training
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Figure 3: FLIQS Examples — In these quantization search examples, FLIQS allocates more precision
to the first and last layers and the small pointwise convolutions of ResNet-18, and to the
attention block within DeiT-B16. More configurations are listed in Appendix A.1.

process, since modifying the architecture shifts the weight and activation distributions during
training. In addition, one-shot search needs to evaluate the quality signal of different architectures
on different batches of training data to avoid lengthening the training process. This introduces noise
into the reward signal since different batches may have significantly different quality. Also, the
controller and policy model must be efficient enough to be embedded within the training graph to
not significantly increase the training time. This section addresses these challenges, while focusing
on the search space involving per-layer formats and channel widths.

As shown in Figure 2, the model first trains without search, and the architecture is sampled
uniformly at random to avoid overfitting to a single option. It uses standard fake quantization
and employs a two-phase approach that delays activation quantization to improve stability (Ap-
pendix A.2). Next, at each training step, the controller proposes a new architecture and applies it to
the model. The model then performs a standard forward and backward pass on the training data to
produce the model gradients and a forward pass on the validation data to produce a quality signal
for the controller. This quality signal is combined with the model cost in Figure 2(b) to produce
a reward and reward advantage, which the controller then uses to update its policy. After the
search and training finish, the model is directly used for inference without additional fine-tuning
or retraining.

Cost and Reward Function: FLIQS uses the quadratic cost model, bit operations (BOPs),
as described in Equation 1 where b(«) is the total bitwidth of the current layer architecture «
and MAC)(«a) represents the number of multiply-accumulates (MACs) in layer [. Quadratic cost
models, which predict power and area, are particularly useful in model-accelerator co-design where
multipliers dominate resources and scale quadratically in power and area [28].

21 Ci(a)
T 1‘ (1)

This model cost is combined with the quality signal, Q(«), in the absolute reward function
shown in Equation 1 [29]. This quality signal is model and application dependent but in the simple
case is the validation accuracy. The absolute reward function includes a cost target Cr that provides
the user control over the accuracy-performance trade off. More restrictive targets tend to result
in less compute-intensive models (as shown in Figure 3), which often have lower accuracy. This
resultant cost term is combined with the model quality using the cost scalar y, which balances the
importance of performance and quality.

RL Controller: The RL controller is in charge of choosing the model architecture at each step. It
learns a policy 7;(«) for each layer [ that represents a probability distribution over each architecture
a. At each training step, the controller samples and applies a new layer architecture a; ~ ().
The channel widths are efficiently searched by applying channel masks, which dynamically zero
out channels and reuse the underlying weights during training. This policy 7;(e) is parameterized
by 6,4, where 0, , represents the logit for the a'" decision in the I*" layer. These logits are then
passed through a softmax layer to produce the policy probability distribution.

Ci(a) = b(@)* - MAC/(a), r(@)=Q(a)+y
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Figure 4: FLIQS Analysis — (a) The switching error grows relatively large when either bitwidth is
small and affects model convergence. In addition, the optimal clipping threshold depends
on the current bitwidth, which motivates swapping thresholds. (b) Accuracy improves for
higher entropy regularization, and the entropy regularization affects the policy convergence.
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After sampling and assigning the model architecture, e, the reward r () is calculated according
to Equation 1. However, since the reward depends on the quality signal, which increases throughout
training, the difference between the running average of previous rewards, 7(«), and the current
reward is used instead: rp(a) = 7(a) — r(a). Then, the REINFORCE algorithm [30] is used to
update the policy 7;(a) by performing gradient descent on the policy loss, Lp:

Lo=-ra(e) Y log (ar ~ m(a)), 0 0+7VoLy 3)
1

m(a) = )

where 7 is the RL learning rate. This procedure is chosen due to its low complexity, and it
helps address the performance concerns with one-shot searches (analysis shown in Appendix A.6).
Other reinforcement learning methods, such as PPO, and more sophisticated policy models, such
as multi-layer perceptron models, offered no quality improvements while being more costly.

Format Search Space: For pure quantization search, this work evaluates FLIQS on two search
spaces: FLIQS-S and FLIQS-L. FLIQS-S includes the standard power-of-two formats, while FLIQS-L
includes a larger set of formats between four and eight bits. For floating point, FLIQS-L includes 16
formats, which to our knowledge is the largest quantization search performed. Full details of the
quantization search spaces can be found in Appendix A.5.

Switchable Clipping: FLIQS also introduces a switchable clipping threshold that changes based
on the current format. This is necessary since smaller bitwidths require more aggressive clipping,
and vice versa, as shown in Figure 4(a). These clipping thresholds can either be pre-computed
with synthetic data, or computed during the first phase of the search with real data. In general,
pre-computing the thresholds leads to high-quality results with less complexity, and it is used for
the experimental sections below.

FLIQS Analysis

Switching Error: The primary challenge for FLIQS is minimizing the effect of the search on the
model training. Within a pure quantization search, this effect can be formalized by introducing the
switching error. Consider the standard symmetric integer quantizer, Q(x;s) with the scale factor
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Figure 5: ImageNet FLIQS Quantization Search — FLIQS reaches higher accuracies at lower costs,
and in general FLIQS-L achieves higher accuracies. Models are evaluated at multiple widths
ranging .25X to 2X of their original channel width to generate each data point.

s = (27! = 1) /or, where oy is the clipping threshold. This gives the absolute quantization error
A(x;s), defined as:
Qx;s) = Lx-s1/s,  Alx;s) = [Q(xs5) — x| ©

For a fixed o7, Q(x;s) and A(x;s) can instead be parameterized solely by the bitwidth k. When
this varies during the search, it produces a switching error:

As(x;ki, k) = 1Q(x: k2) = Q(x: ky) ®)

As illustrated in Figure 4(a), this switching error for standard search spaces, such as integer
FLIQS-S, can be relatively large (setup details listed in Appendix A.8).

Convergence: This switching error can be viewed as an additional source of noise for the
model optimizer, typically SGD or Adam [31]. Intuitively, the expected switching error should be
proportional to the total policy entropy Hys of the model M:

Hy ==y 3 mk)logm(k), ElAs(xski ko)l o H(m) ©

leM k

That is, as the policy decreases entropy over time by settling on specific formats, the expected
switching error decreases and converges to zero as the entropy tends toward negative infinity. This
can be seen explicitly by modeling 7;(k) ~ N(k;p, o) as a Gaussian distribution, which has an
entropy H = %10g(2ﬂ'€0’2). Under these assumptions, limy—, o = lim,—,o = limy, i, and thus:

lim E[As(x;k1, k2)] = E[ lim Ag(x;ky, k)] = E[As(x; ka, k2)] =0 7
H——-c0 ki1—k;

since Ag(x; k, k) = 0. Therefore, as the model entropy decreases, the search no longer interferes
with the model training, and this interference can be formulated in terms of additional optimization
noise. The noise ball around the optimum is proportional to the entropy, and therefore convergence
requires carefully controlling the entropy.

Entropy Regularization: FLIQS introduces entropy regularization to reduce the entropy toward
the end of the search and enable searches without a final retraining. This addresses the key challenge
of one-shot quantization search by diminishing the effects of the search on the model training. The
entropy regularization adds a new loss term to the policy loss Ly, balanced by a factor fy.

L =Ly - puHpm ®)

0= —.Sﬁgnd(l + cos(7s)) +/3E"d 9)



Table 1: Quantization Search — ‘GBOPS’ is the model cost given in billions of bit-ops, and “ indicates
the first and last layers are kept in higher precision. The mean and standard deviations are
listed for FLIQS methods, aggregated over three trials.

Method  Precision ResNet-18 ResNet-50 MobileNetV2
GBOPs Top-1 GBOPs Top-1 GBOPs Top-1
BF16 16 467 72.8091 1047 78.050.05 77 73.13¢.14
HAWQ-V3 [16] 4~ 34 68.45 71 74.24 - -
ZeroQ [32] 28 - - 70 76.08 5 69.44
EDMIPS [22] [1.4] 22 67.20 49 73.20 - -
LQNets [33] 4* 34 69.30 71 75.10 - -
INT FLIQS-S  4,8,16 310.06 6991918 73143 77.400.12  70.03 71.21p.18
INT FLIQS-L  [4,8],16 32017 70.6lp04 72055 7731003 Tooo 71.870.24
HAWOQ-V3 [16] 4, 8* 72 70.38 154 76.73 - -
Bayesian Bits [34] [2,32] 56 69.80 - - 17 72.00
DQ[35] [2,10] 226 70.08 - - 37 69.74
PACT [36] 5" 50 69.80 101 76.70 - -
INT FLIQS-S  4,8,16 48, 1 7123010 8li2s 7732005 17073  72.98025
INTFLIQS-L  [4,8],16 43110  71.51p10 80230  77.34005 17006  72.96026
HFP8 [7] 8" 137 69.39 284 76.22 21 71.61
FPQuant [9] 8 116 70.28 - - 19 71.60
MPFP [8] 8" 137 69.71 284 75.70 - -

FP FLIQS-L [4,8],16 461.01 71.640_37 740_51 77.340414 170_32 72.940_09

In addition, FLIQS introduces a cosine entropy regularization schedule in Equation 9, where
s € [0, 1] represents the current training progress and ﬁz’d = 0.5. Figure 4(b) demonstrates the
characteristics of this schedule and the tradeoffs in choosing fy. It can achieve high quality
results through high exploration at the beginning of the search (high Hys) and final stability for
the quantization-aware training at the end. Appendix A.11 demonstrates that retraining after the

search adds no benefit with entropy regularization.
Quantization Search

We begin by evaluating FLIQS on pure quantization search spaces, since this allows comparisons to
the most previous work. All models were trained from scratch with cloud-based TPUv3 cluster,
and all training and search hyper-parameters are listed in Appendix A.3.

Pareto Curves: Figure 5 shows the Pareto curves for uniform precision and FLIQS models. It
demonstrates that FLIQS outperforms uniform precision methods across ImageNet models, often
with large margins. The FLIQS-L searched models lead to the highest accuracy overall, yet this
search space requires support for arbitrary precision in hardware, e.g. within FPGA platforms.
In addition, when comparing models together, the FLIQS-L MobileNetV2 outperforms all others
models across floating-point and integer formats, with FLIQS-L EfficientNet following closely
behind. Finally, the integer and floating-point models are plotted together and show that in nearly
every case, floating-point outperforms integer.

To achieve these results, FLIQS makes different decisions for each model guided by the reward
signal. For the ResNet models, it assigns most layers to low-precision, except for the first and
last. It further increases the precision of the pointwise convolutions in the downsampling skip
branches (the top 8B convolutions in Figure 3). In contrast, for EfficientNet and MobileNetV2 the
pointwise convolutions are typically in lower precision while the depthwise convolutions are in
higher precision. Lastly, the vision transformer model, DeiT, shows similar behavior to the other



ResNet Performance — The ResNet18 area estimates demonstrate a small impact from the additional
layers in higher precision with FLIQS-L and additionally show the correlation between GBOPs and
area. The precision column for each of the three layers in the ResNet-18 downsampling block: 3x3,
3x3, 1x1. The ResNet50 results demonstrate that the integer FLIQS-S mixed-precision model does not
add significant overhead over HAWQ-V3. FPGA results were gathered on the Xilinx UltraScale+ FPGA
platform, where look-up tables (LUTs) are the primary resource.

Method Prec. LUTs Rel. X GBOPs Top-1

4B 444 428K 1.00x 29 67.310.10 Method GBOPs  Speedup (x)  Top1
5B 555 44.8K 1.05x 45 68.560.13 2080 Ti A6000

B 777 seoK 12k 80 oy NI 202 1000 L0 Tl

8B 888 67.6K 1.58x 117 70.780.10 INT4 65 1338~ 1.234 749105

: INT4* 71 1334 1.228 76.31q15

FLIQS-L 55,6 459K 1.07x 46 70.120.07 FLIQS-S 73 1303  1.213 77.400 15

FLIQS-L 56,6 47.1K 1.10x 67 71.51¢ 10

Table 3: ResNet50 GPU Latency
Table 2: ResNet18 Estimated Area

models in terms of its first and last layers and also allocates more bits to its self-attention blocks.
All of the detailed configurations can be found in Appendix A.1.

Table Comparison: Table 1 further evaluates FLIQS against previous work. As shown in this
table, FLIQS improves overall accuracy while simultaneously reducing the model cost in most cases.
For example, it outperforms the recent mixed-precision QS method HAWQ-V3 [16] across multiple
model cost targets. For ResNet-50, FLIQS improves the Top-1 accuracy by 0.61% while using only
51% of its GBOPs. In addition, FLIQS-L outperforms many recent works on FP8 model inference.
For example, against MPFP [8] on ResNet18, FLIQS finds a variant with 1.93% higher accuracy
with a third of the model cost by allocating more bits to the downsampling convolutions and first
convolutions in the network.

These results demonstrate that the searched models consistently outperform their uniform
precision baselines. Moreover, this section to our knowledge shows the first large-scale compari-
son of floating-point and integer mixed-precision models and shows that floating-point models
outperform their integer counterparts for the same total bitwidth. Joint integer and floating-point
searches were attempted; however, since floating-point dominates integer formats at the same total
bitwidths, the outputs of these searches were the same as the pure floating-point searches.

Performance: To evaluate the performance of the searched models, we use an infrastructure
developed by the authors of HAWQV3 [16] that extends the TVM [37] compiler to support INT4
inference. Table 3 shows that on Turing GPUs, the FLIQS-S model improves accuracy significantly
with only 1% lower inference speed compared to the INT4 model. In addition, Table 2 shows that
LUTs scale quadratically with the precision bitwidth, and since LUTs act as a proxy for area, this
verifies the usefulness of the BOPs cost model. This table also confirms the overhead from these
searched models is relatively small compared to the accuracy improvements shown in Table 1.

Quantization Neural Architecture Search

FLIQS can efficiently traverse large quantization search spaces and achieve Pareto-optimal combi-
nations of accuracy and model cost within fixed model architectures. Yet, further improvements
can come from combining the quantization search of FLIQS with neural architecture search, which
is referred to as FLIQNAS in this section.

Figure 6 evaluates this method on a MobileNetV2 search space, which incorporates tunable filter
widths on inverted bottleneck projection layers and adjustable kernel sizes on central depthwise
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Figure 6: MobileNetV2 FLIQNAS - FLIQNAS outperforms APQ in similar search spaces. In addition,
the combination of quantization search and neural architecture search outperforms the two
methods separately on integer and floating-point formats.

layers. Altogether, there are 230 tunable values leading to a search space of over 10!% configurations

for FLIQNAS-S. This search space is significantly larger than that of the original MobileNetV2
FLIQS-S with 53 options and approximately 10%° configurations.

This figure compares FLIQNAS to FLIQS and quantized NAS, which fixes the quantization
format for all layers and only searches for the architecture. It shows that FLIQS-S and FLIQS-L
searches perform well for low model costs, yet as the model scales to higher costs, the compute
is better allocated by increasing the size of the architectural components. In this region, both
quantized NAS and FLIQNAS yield the best performance. For all model costs, FLIQNAS-L is able to
reach the Pareto-optimal tradeoff of accuracy and model cost. Lastly, when compared at identical
cost targets, floating-point FLIQNAS surpasses the performance of the integer search space.

In Figure 6, we include a FLIQNAS comparison against APQ [25], which performs a joint
architecture, pruning, and quantization search by using a large once-for-all network. Its search
space is similar and includes multiple kernel sizes, channel widths, and integer bitwidths built on
top of the original MobileNetV2 architecture. This table shows that for similar GBOPs, FLIQNAS
leads to higher accuracy over APQ across its three published design points. Further layer-wise
analysis of these results is located in Appendix A.7.

Conclusion

As Al hardware supports an increasing number of numerical formats, DNN quantization search
to integer and low-precision floating-point grows increasingly important for reducing memory
and compute. This paper proposes FLIQS, the first one-shot RL-based integer and low-precision
floating-point quantization search without retraining. Compared to prior work, FLIQS can achieve
higher accuracy without involving additional fine-tuning or retraining steps by introducing a
cosine entropy regularization schedule. Moreover, as an RL-based method, it reduces the amount
of memory needed for weights, activations, and gradients during the search compared to recent
differentiable NAS searches.

These enhancements accelerate research progress and enable quantization searches on larger
search spaces and more substantial models, such as DeiT-B16, which has 10 times the model cost as
BF16 MobileNetV2. In addition, FLIQS conducts the first floating-point quantization search and
produces mixed-precision models that outperform the latest works on FP8 formats. When further
combined with architecture search, it identifies even stronger MobileNetV2 models than NAS and
quantization search alone. It further suggests that for a fixed compute budget, larger models benefit



from increasing architectural dimensions over bitwidth. Overall, FLIQS represents an efficient
framework for searching multi-precision models on current hardware and gives further insight
into model and hardware co-design for future accelerator generations.
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A Appendix

A1l

The following sections contain additional experimental details, small experiments, ablation studies,
and example output bitwidths. The listed hyper-parameters attempt to make the results more
reproducible and interpretable. In addition, the small-scale experiments motivate certain hyper-
parameter selections discussed in the main paper. And finally, the example configurations give
more insight into how FLIQS allocates bitwidth across different models and cost targets.

Example Configurations

FLIQS bitwidth configurations vary based on the model and search space. Figure 7 shows a set of
configurations for FLIQS-L and FLIQS-S searches on a ResNet18 across four different model cost
targets. Lower bitwidths are represented with colors closer to red and higher bitwidths are closer
to green. This figure shows that FLIQS typically gives higher bitwidth to the first and last layers of
the model. It also consistently gives higher bitwidths to the 1x1 convolution on the upper branch,
and although not obvious in this figure, it usually allocates more bitwidth to the earlier stages of
the model compared to later stages.

Figure 8 shows example bitwidth configurations for all models evaluated. It reveals that
ResNet50 has similar trends to ResNet18: more bitwidth for the first and last layers, 1x1 convolutions
on the upper branch, and generally more in the early stages. Unlike the ResNet models, MobileNetV2
has a main block that comprises a sequence of a pointwise convolution, depthwise convolution,
and then pointwise convolution. FLIQS allocates more bitwidth to the central 3x3 depthwise
convolution in this block (groups of three in the figure). InceptionV3 has a more complicated
branched architecture of 1x1, 3x3, and 5x5 convolutions. This block is shown in the figure as the
repeated structure of one, three, two, and then one convolution, from top to bottom. FLIQS likewise
gives more bitwidth to the earlier stages of InceptionV3 and its first and last layers. Additionally, it
increases the precision of the 1x1 convolutions on the top and bottom of the repeated block.

FLIQS-S FLIQS-L
. o Sbﬁﬁb
30 4p L 4pb 4b ap 4 ap 4b lap 4b 1 ap 8o > ool RN B R B [ ©°
GBOPs GBOPs
. o B — b 8b -
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Figure 7: ResNet18 Integer FLIQS — Output configurations depend on the model, model cost target,
and supported bitwidths. FLIQS-S uses 4 and 8 bits as the search space, while FLIQS-L uses 4
to 8 bits, inclusive. For both variants, FLIQS generally allocates higher bits to the first and
last layers, with a slight preference for the last layer. It also assigns more bits to the small
upper 1x1 convolutions and more bits to the first 3x3 convolution within a block.
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Start Step Top-1

1000 75.59 ]

2000 75 59 STD Multiple Top-1

4000 76.11 1 63.39

6000 76.05 2 67.79

8000 76,02 3 68.02 Profile Batches Top-1
10000 76.03 4 67.91 1 67.92
15000 75.94 5 67.19 5 68.09
20000 75.93 6 67.00 10 68.00
25000 75.54 7 66.15 50 67.75
30000 74.19 8 64.91 100 68.02
(a) Start Step (b) STD Multiple (c) Profile Batches

Figure 10: Quantization Ablation Studies — (a) The optimal start time for activation quantization is
approximately 20% into the training process. (b) The optimal STD multiple to determine
the activation clipping threshold is around 3. (c) The quantization process is relatively
insensitive to the number of profiling batches.

A.2 Two-Phase Quantization

These shared weights are quantized dynamically with a method adapted from the open-source
library Accurate Quantized Training (AQT) [38], which supports both integer and emulated low-
precision floating point quantization. This process can be summarized as:

xg = Ls - o(xfi00)] (10)
o(xf; 0;) = max(—o;, min(xz, 01)) (11)

where x4 is the quantized value, x is the original full-precision number, s is the scale factor,
and o; denotes the clipping threshold. In addition, o(-) represents a clipping function, and |-]
represents a generic rounding function that pushes the value to the nearest integer or low-precision
floating-point value.

The scale factor s normalizes the input to the chosen maximum representable number and then
rescales to the maximum quantized value. The clipping threshold and scale factor are determined
by the run-time statistics of the weights and activations. Additionally, FLIQS uses a two-phase
quantization approach where the weights and activations begin quantization at different training
steps, as shown in Figure 2.

The two-phase quantization approach has been found empirically to improve the final accuracy
of the model. In the first phase, only the weights are quantized and in the second phase, the weights
and activations are quantized. The start step of the second phase has a large effect on the final
accuracy. Table 10a shows the effect of sweeping the starting step for activation quantization
on a ResNet50 trained to 30,200 steps. On one extreme, with the second phase starting as soon
as possible, this method degenerates into a single-phase quantization method where weight and
activation quantization begin immediately. On the other extreme, where the second phase begins
as late as possible, it becomes a hybrid QAT-PTQ method where the weights are quantized during
training and the activations are quantized after training.

Table 10a shows that accuracy peaks around 15-20% of the total training time. For this reason,
FLIQS uses 7500 steps as the start step for activation quantization for ResNets and InceptionV3,
which train to 30,200 steps, and 20,000 as the start step for MobileNetV2, EfficientNet, and DeiT,
which train to 112,000 steps or longer.

The quantization method additionally depends on the activation clipping threshold, which is
calculated as a multiple of the profiled activation standard deviations per layer. With too small a
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clipping threshold, there is lower rounding error on the more numerous central values distribution,
yet there is significant clipping error on the larger values. With too large a threshold, there is more
rounding error on the central values and less clipping error on the larger values.

This trade-off is demonstrated empirically in Table 10b, where standard deviation multiples
are swept from 1 to 8 and applied globally to a ResNet18. This table shows that the best accuracy
are achieved around 3-4 times the standard deviation in ResNet18. For simplicity, we apply this
multiple to all models for our experiments. Table 10c shows that the final accuracy is not sensitive
to the number of profiling batches. This is likely because we use a large batch size of 2048, and
since it is shuffled, it likely already provides a strong estimate of the statistics.

Training Hyper-Parameters

The training hyper-parameters are chosen to be close to original paper hyper-parameters or recent
related work. Table 4 shows the hyper-parameters used to produce Table 1 and Figure 5.

Table 4: Training Hyper-Parameters — Training Hyper-parameters for all quantization search table
results. Same hyper-parameters are used to produce the Pareto-curve figures, although
the total training time is reduced along with dependent hyper-parameters, e.g. activation
quantization start step.

Parameter ResNets DeiT-B16 MBV2

IncV3 EffNet
LR Schedule Cos Cos Exp
LR Base 2.64 4e-3 0.256
LR Warmup 10 30 15
Optimizer SGD AdamW  RMSProp
Epochs 350 400 360
Act. Quant Start 15,000 15,000 18,000
ST Multiple 4 4 4

Search Hyper-Parameters

For our search, the RL controller warmup period lasts the first 25% of the training It uses an Adam
optimizer with learning rate of 4.6E-3 and momentum of .95. The loss function is a standard softmax
cross entropy loss with a label smoothing coefficient set to 0.1. A cosine entropy regularization
schedule is applied to all runs beginning with no regularization and ending with Sy = .5. For
QNAS, during the RL controller warmup period, the branches corresponding to various kernel
sizes are sampled jointly with a probability schedule. This schedule begins at 1 at the beginning of
training and decreases linearly to 0 at the end of the warmup period. After the warmup period,
only a single branch is sampled at a time.

Search Space

In general, the search spaces used with FLIQS should reflect the capabilities of the target hardware.
Small search spaces are useful for adapting a model to existing hardware such as the TPUv3 or
NVIDIA A100. Large search spaces are useful for reconfigurable hardware such as the AMD Xilinx
UltraScale+ FPGA and for co-designing models with future accelerators. The largest search space
evaluated in this work includes 16 floating-point formats.

For the integer FLIQS-S search space, we include INT4, INT8, and BF16. These are the standard
formats supported in modern GPU micro-architectures, such as NVIDIA Ampere. Many platforms
additionally support FP16, yet this format typically performs worse than BF16 in most common use
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Table 5: Search Space: FLIQS-S is a small search space designed to target existing hardware support,
while FLIQS-L is a large search space useful for co-design with custom hardware. The floating-
point FLIQS-L space demonstrates the scalability of RL-based approaches

FLIQS-S FLIQS-L

Integer  INT4,INTS, BF16  INT4, INT5, INT6,
INT7, INTS, BF16

Floating E2M1, E4M3, BF16 E2M1, E2M2, E2M3, E2M4,

Point E2M5, E3M1, E3M2, E3M3,
E3M4, E4M1, E4M2, E4M3,
E5M1, E5M2, E6M1, BF16

cases, so it omitted. For integer FLIQS-L, we fill in the values between INT4 and INTS8 primarily
considering custom hardware with integer support. For example, bit-serial deep learning engines
can take advantage of this additional flexibility.

For floating-point FLIQS-S, we include three formats to be consistent with the integer search
variant. BF16 is the most common half-precision format, E4M3 is the FP8 variant most useful for
inference (E4M2 primarily used for gradients), and E2M1 is a custom FP4 format. For FLIQS-L, we
include all the formats with total bitwidths between four and eight.

All custom formats support subnormals and do not support infinity. The bias terms are selected
so the exponent range is symmetric about zero. However, this bias term is not relevant to FLIQS,
since continuing from prior work [38, 6], it uses a profiled scale factor during training and search.
This means that the bias term combines with the profiled scale factor and has no additional effect.
Therefore, the dynamic range is controlled more by the additional scale factor than the format itself
and can adequately scale to various data distributions; the format instead primarily determines the
distribution of quantization points (non-linear for floating-point and linear for integer ).

A.6 Search Performance

Memory (MiB) Search
Gradient Weight Activation Parameters
FLIQS 46.8 23.4 73.6 51
Branched 92.6 70.2 220.8 51

Table 6: ResNet18 Memory — the estimated memory breakdown for a ResNet18 model during quan-
tization search on the FLIQS-S search space. Branched represents the class of quantization
searches that create multiple branches during their search. Batch size is fixed at 32, model
weights and activations are stored in half-precision, and gradients are full-precision with no
gradient checkpointing. Search Parameters represents the additional parameters necessary
for the search process. FLIQS and branched methods require an additional parameter for each
searched layer for each searched option.

A.7 QNAS Analysis

In general, QNAS searches tend to allocate more of their compute to architectural components,
especially at high cost targets. This behavior is shown in Figure 6, where expanding quantization
searches to include flexible channels and kernel size dimensions increases the accuracy of the
model at similar costs. Within these architectural components, typically the channel dimension
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is increased before the kernel size to reach cost targets. This could be due to the fundamental
difference between kernel size and channel width; kernel size reflects the ability to aggregate
information faster across spatial dimensions and channel width controls the depth of a neural
network representation.

The channel dimension allocations also show an interesting trend in that lower bitwidths
typically receive a larger number of channels. This is intuitive since increasing the channel width
can potentially recuperate losses in representational ability from the lower bitwidth. There is a
weaker trend in this direction with kernel size, where the kernel size can tend to be larger with
lower bitwidths, although it is not as strong.

Analysis Setup

For shifting error and clipping analysis, we simulate the data distributions commonly found within
neural networks. For this, we use Gaussian and Laplacian distributions and inject additional outlier
values. These outliers are set at 3X the maximum value in the original tensor and are injected at
various rates from 1:10 to 1:10000. These outliers are especially common in activation tensors.

For the shifting error, we then sample 1000 tensors independently at random, and quantize
them with two different symmetric linear quantizers that vary only in their bitwidths. We then
calculate the RMS error between the two output tensors and average over all 1000 tensors. Finally,
we fit the best exponential function with the form: Ae(~5%) + C.

Similarly, for the clipping analysis, we sample 100 tensors and calculate the quantization error
between the original FP32 and quantized tensors for each percentile value. For the percentiles,
we use a linear grid of 100 values from [1, 101]. We then plot the average MSE error over the 100
tensors and separately plot the optimal percentile. We experimented with different metrics, such as
the Kullback-Liebler (KL) divergence, yet these did not lead to qualitatively different results.

Mantissa Sweep

Table 7: FP8 Sweep — Sweep over possible FP8 values and evaluate Top-1 accuracy on ImageNet. All
methods use an exponent bias of 11.

Mode ResNet18 ResNet50 MobileNetV2 InceptionV3

E1Mé6 71.72 77.80 73.20 76.53
E2M5 71.70 77.74 73.14 76.36
E3M4 71.69 77.55 73.17 76.48
E4M3 71.69 77.66 72.65 76.30
E5M2 71.59 76.90 72.07 76.15

Table 7 shows the general effects of different possible FP8 formats on ImageNet accuracy. The
models are generally resilient to FP8 quantization with MobileNetV2 having the largest accuracy
degradation with the E5M2 format. This is analogous to integer quantization, where typically
INTS is sufficient for most models to maintain neutral accuracy and where MobileNetV2 is more
sensitive to low-bit quantization. In this table, the accuracy trends upward with more mantissa
bits, and therefore not only do they determine the majority of the area in floating-point units, they
increase the accuracy of the models. This leads to the classical accuracy-performance trade-off
that floating-point quantization search attempts to navigate for optimal configurations. Yet for
hardened accelerators, the peak throughput for different FP8 formats is the same, and therefore
higher mantissa bitwidth is preferable.
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Cost Model FPGA Validation

Table 2 shows the hardware area estimates and accuracy of a set of ResNet-18 models on an AMD
Xilinx UltraScale+ FPGA, implemented using Vivado HLS [39]. Since the whole model does not fit
on the board, we estimate the cost with the first residual block in the model, which consists of two
convolutional layers on one branch, and a pointwise convolution on the other, followed by their
sum. Since all MAC operations are mapped to look-up tables (LUTs), the LUT count acts as a proxy
for the area and power overhead of the model. The precision settings for FLIQS-L are taken from
actual runs and represent the general bitwidth allocation to the ResNet blocks, although there may
be some deviation within individual blocks.

This table shows that LUTs scale quadratically with the precision bitwidth. Since the LUTs act
as a proxy for area, this verifies the core assumption of the BOPs model (Section 1) that BOPs are
proportional to the model area and power on chip. This table also confirms the overhead from
these searched models is indeed relatively small compared to the accuracy improvements shown in
Table 1.

Retraining vs. No Retraining

With sufficient entropy regularization, retraining the model after FLIQS is unnecessary. Table 8
shows a sweep for ResNet18 with and without retraining. With retraining, the search occurs as
described in Section 3, except that the best configuration is taken and retrained from scratch for the
original training length. The table shows natural variance between the retraining and no-retraining
methods, but there is no noticeable advantage to retraining across model widths.

Table 8: Retraining ResNet-18

ImageNet Top1
Format 0.5x  0.75x 1.0x 1.25x 1.5x 2.0X

FLIQS-S  59.08 64.93 69.92 7194 7332 75.06
+ Retrain  59.00 6647 69.53 71.63 73.20 74.95
FLIQS-L  60.11 66.28 69.56 71.61 73.12 74.83
+ Retrain  60.10 6639 69.56 71.58 73.02 74.78

All Models

Figure 11 plot all models with corresponding colors for methods and corresponding symbols for
models. It shows that FLIQS MobileNetV2 and EfficientNet models consistently outperform other
models in terms of accuracy and model cost, and BF16 models consistently perform the worst. This
is expected since, as their name suggests, these models are designed specifically to be efficient and
both use inverted bottleneck structures to reduce overall compute. The worst performing model
overall is ResNet18, which is followed in the higher model costs by ResNet50.

Recommendation Model

Next, we briefly explore FLIQNAS on recommendation models using the Criteo dataset [40], which
is the most popular public advertisement click-through-rate (CTR) prediction benchmark. We
evaluate a multi-layer perceptron (MLP) model with four hidden layers and layer factorization
technique [41] similar to the method used in DCN-V2 (Deep & Cross Network) [42]. We use the
AUC metric for evaluation, and list additional details about the dataset, model architecture and
search space.

Figure 13 compares FLIQNAS and FLIQS with uniformly quantized models on both integer and
float quantization. We focus only on FLIQS-L due to the small search space and do not include the
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Figure 11: Model Comparisons: Left — Integer All Models. Right — Floating-Point All Models.
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Figure 12: Floating-Point vs. Integer FLIQS-L - Floating-point models typically outperform their
integer counter-parts.

uniformly quantized INT4 and E2M1 models since they show significant quality loss. Figure 13
shows that FLIQNAS-L performs better than FLIQS-L especially at larger MBOPs. Both of them
show better quality and performance trade-offs than uniform quantization.

Criteo: The Criteo dataset [40] contains user logs over a period of 7 days with a total of 45M
examples. Each example has 13 continuous features and 26 categorical features with a binary label
indicating if an advertisement was clicked or not.

Architecture: The recommendation model architecture starts with an embedding layer to project
the sparse categorical features into dense vectors. The embedded vectors are then concatenated
with the continuous features and fed into the MLP with four hidden layers and low-rank on each
layer to reduce the computational cost.

Search Space: For FLIQS-L, the search space uses the same configurations for integer or floating-
point search on each layer. For FLIQNAS-L, besides the quantization search space, we also include
128 and 512 % [0.25,0.5,0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for rank values and layer widths respectively
on each layer.
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Figure 13: Recommender FLIQNAS — Models are trained on the Criteo dataset and evaluated by AUC
(Area Under the ROC Curve) vs. millions of BOPs (MBOPs). Both FLIQNAS and FLIQS
perform better than the INT8 and E4M3 baselines.
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A.14 Additional Pareto Tables

This section lists all of the raw data used to produce the Pareto curves in Figure 5.
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Figure 14: Additional Pareto Curves — Additional integer and floating-point Pareto curves that could
not fit in the main paper.

ImageNet Top1l GBOPs
Format 0.5x 0.75X 1.0x 1.25X 1.5X 2.0X Format 0.5x 0.75X 1.0x 1.25X 1.5X 2.0X
BF16 62.63 68.34 71.17 72.89 74.31 75.56 BF16 124.5 268.8 467.7 721.3 1030 1810
INT4 57.03 63.64 67.32 69.79 71.39 73.57 INT4 7.78 16.80 29.23 45.08 64.35 113.1
INT8 62.46 67.80 70.60 72.65 74.01 75.58 INT8 31.13 67.19 116.9 180.3 257.4 452.5
FLIQS-S 59.08 64.93 69.92 71.94 73.32 75.06 FLIQS-S 8.18 17.68 36.46 54.60 76.35 130.7
FLIQS-L 60.11 66.28 69.56 71.61 73.12 74.83 FLIQS-L 9.04 19.09 32.33 49.22 69.20 120.2
+(ﬂg’s) 60.21 66.47 69.83 71.76 73.19 74.91 +(ﬂg’s) 9.30 19.58 33.54 49.57 70.54 120.8

Figure 15: Integer ResNet-18

ImageNet Top1l GBOPs
Format 0.5x 0.75X 1.0x 1.25X 1.5X 2.0X Format 0.5x 0.75X 1.0x 1.25X 1.5X 2.0X
INT4 69.27 73.03 74.91 76.07 76.81 77.68 INT4 16.84 37.16 65.43 101.6 145.8 257.9
INT8 73.20 76.17 77.47 77.98 78.66 79.00 INT8 67.35 148.7 261.7 406.5 583.1 1031
FLIQS-S 71.85 75.11 76.62 77.52 78.06 78.76 FLIQS-S 20.49 42.87 73.66 112.7 160 279.3
FLIQS-L 71.56 74.67 76.52 77.37 78.02 78.73 FLIQS-L 20.51 41.13 71.57 112.9 156.4 273.5
+(ﬂ§’s) 72.12 75.01 76.79 77.66 78.17 78.72 +(ﬂ§’s) 21.03 43.55 74.49 114.8 161.5 282
BF16 73.87 76.22 77.68 78.45 78.82 79.14 BF16 269.4 594.6 1047 1626 2332 4126

Figure 16: Integer ResNet-50



ImageNet Top1
Format 0.25x 0.5x 1.0x 1.4x 2.0X

BF16 55.18 65.72 73.13 76.00 77.64
INT4 40.62 54.11 65.80 70.60 73.85
INT8 55.09 65.70 72.83 7595 77.37
FLIQS-S 50.78 63.03 71.21 74.64 76.61
FLIQS-L 52.38 63.15 71.73 7499 77.01
+(BE°) 5211 6335 71.87 74.83 76.98

GBOPs

Format 0.25x 0.5x 1.0x 1.4x 2.0Xx

BF16 9.52 2487 77.00 149.0 291.2
INT4 0.595 155 481 931 138.20
INT8 2.38 6.21 19.25 37.20 72.80
FLIQS-S 1.16 290 742 1321 23.51
FLIQS-L 1.06 238 7.06 1270 22.26
+ (BE®) 1.02 242 721 12,69 2231

Figure 17: Integer MobileNetV2

ImageNet Topl
Format 0.25x 0.5 0.75x 1.0x 1.5X

BF16  63.65 72.10 75.24 76.26 77.55
INT4 53.20 67.20 71.16 73.55 76.00
INT8  62.86 71.52 74.56 75.87 77.38
FLIQS-S 59.49 69.66 73.04 75.07 77.05

+(By°) 6072 70.28 7391 75.67 77.12

GBOPs

Format 0.25x 0.5X 0.75x 1.0x 1.5X

BF16  48.69 193.1 4333 769.2 1728
INT4 3.04 12.07 27.08 48.08 108.0
INT8  12.17 48.28 108.3 1923 432.0
FLIQS-S 4.18 15.53 29.88 52.02 1125

+(f%) 431 1599 33.17 59.16 119.9

Figure 18: Integer InceptionV3

ImageNet Top1

GBOPs

Format Bo B1 B2 B3 B4

Format Bo B1 B2 B3 B4

BF16 73.53 7550 76.36 78.68 80.35
INT4 59.83 66.08 67.71 70.46 74.29
INTS 73.04 75.08 76.48 78.39 79.55
FLIQS-S 68.94 71.92 74.53 77.67 79.89
FLIQS-L 70.51 73.23 7541 77.96 80.03

+(;;’5) 70.01 7296 74.62 77.81 79.92

BF16 98.61 175.5 254.0 4673 1124
INT4 6.16 10.97 15.88 29.21 70.25
INTS 24.65 43.89 63.50 116.8 281.0
FLIQS-S 7.86 13.62 23.81 52.30 198.0
FLIQS-L 7.40 13.21 21.62 49.38 187.0

+(;;’S) 742 1332 19.85 45.26 187.1

Figure 19: Integer EfficientNet

ImageNet Top1
Format 0.25X0.375X 0.5X 0.75X0.875X 1.0X

INT4 66.51 72.53 76.19 78.75 79.26 79.84
INT8 70.77 76.41 78.3379.71 79.55 79.49
FLIQS-S 66.36 74.05 76.96 79.44 79.05 79.47
FLIQS-L 67.04 73.93 77.10 79.27 79.27 79.35
+(B°) 67.78 73.90 76.8879.23 79.16 79.28

GBOPs
Format 0.25X0.375X 0.5X 0.75X0.875X 1.0X

INT4 20.29 38.42 67.96 152.1 206.8 269.8
INT8 80.94 153.5 271.5608.1 826.6 1079
FLIQS-S 20.31 40.52 70.74 156.3 211.7 275.4
FLIQS-L 21.08 39.55 69.12 153.9 208.8 272.0
+(ﬁ;{°S) 21.47 40.45 70.57 154.5 210.4 273.2

Figure 20: Integer DeiT-B16
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ImageNet Top1 GBOPs
Format 0.5X 0.75X 1.0x 1.25X 1.5X 2.0X Format 0.5X 0.75X 1.0x 1.25X 1.5X 2.0X
BF16 62.63 68.34 71.17 72.89 74.31 75.56 BF16 124.5 268.8 467.7 721.3 1030 1810
E2M1 58.17 64.18 67.96 70.43 72.08 74.22 E2M1 7.78 16.80 29.23 45.08 64.35 113.1
E4M3 62.06 67.57 70.56 72.66 73.75 75.43 E4M3 31.13 67.19 116.9 180.3 257.4 452.5
FLIQS-S 59.80 65.77 68.89 72.10 73.50 75.26 FLIQS-S 8.18 17.68 30.80 54.60 76.35 128.2
+(ﬂ;}’s) 60.99 66.61 70.01 71.92 73.32 74.80 +(ﬂ;}’s) 9.60 19.48 32.78 50.01 68.43 118.2
Figure 21: Floating-Point ResNet-18
ImageNet Top1 GBOPs
Format 0.5X 0.75X 1.0X 1.25X 1.5X 2.0X Format 0.5X 0.75X 1.0X 1.25X 1.5X 2.0X
BF16 73.87 76.22 77.68 78.45 78.82 79.14 BF16 269.4 594.6 1047 1626 2332 4126
E2M1 70.24 73.91 75.77 76.89 77.40 78.01 E2M1 16.84 37.16 65.43 101.6 145.8 257.9
E4M3 73.09 75.86 77.42 78.13 78.42 78.97 E4M3 67.35 148.7 261.7 406.5 583.1 1031
FLIQS-S 72.16 75.14 76.84 77.83 78.22 78.94 FLIQS-S 21.72 42.87 74.28 112.7 160.0 279.2
+(ﬂI°{°S) 72.39 75.61 76.95 78.00 78.24 78.81 +(ﬂ%°s) 21.93 44.70 76.43 115.6 165.6 297.9
Figure 22: Floating-Point ResNet-50
ImageNet Top1l GBOPs
Format 0.25x 05X 1.0x 14X Format 0.25x 05X 1.0x 14X
BF16 55.18 65.72 73.13  76.00 BF16 9.52 24.87 77.00 149.0
E2M1 - 5232 66.29  69.26 E2M1 0.595 1.55 4.81 9.31
E4M3 5398 6485 72.63 75.86 E4M3 2.38 6.21 19.25  37.20
FLIQS-S  50.76 6258 71.14 7434 FLIQS-S 1.22 2.69 7.35 12.6
+( f{"s) 51.11 63.65 71.97 75.26 +( f{os) 0.95 2.36 6.77 12.37
Figure 23: Floating-Point MobileNetV2
ImageNet Top1 GBOPs
Format 0.25x 0.5x 0.75x 1.0x 1.5X Format 0.25x 0.5x 0.75x 1.0x 1.5X
BF16 63.65 72.10 75.24 76.26 77.55 BF16 48.69 193.1 4333 769.2 1728
E2M1 54.14 67.80 72.09 7455 76.35 E2M1 3.04 12.07 27.08 48.08 108.0
E4M3  62.65 71.50 74.49 7594 77.39 E4M3  12.17 48.28 1083 1923 432.0
FLIQS-S 58.78 69.50 73.43 75.28 77.03 FLIQS-S 3.66 13.46 29.16 51.65 111.4
+(ﬂ;}’s) 60.90 70.63 74.16 7594 77.43 +(ﬂ;}’s) 3.89 15.23 32.86 56.15 124.2
Figure 24: Floating-Point InceptionV3
ImageNet Top1 GBOPs
Format B0 B1 B2 B3 B4 Format B0 B1 B2 B3 B4
BF16  73.53 75.50 7636 — — BF16  98.61 175.5 2540 — —
E2M1 6245 6749 69.14 71.22 76.12 E2M1  6.16 10.97 1588 29.21 70.25
E4M3 7299 7536 76.20 78.17 79.52 E4M3  24.65 43.89 63.50 116.8 281.0
FLIQS-S 67.60 71.63 74.67 78.05 80.30 FLIQS-S 7.77 13.58 23.26 55.15 203.3
+( ) 7113 7434 75.58 78.03 80.29 +( ) 7.30 13.00 19.61 36.6 2129

Figure 25: Floating-Point EfficientNet
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ImageNet Top1 GBOP

Format 0.25X0.375X 0.5X 0.75X0.875X 1.0X Format 0.25X0.375X 0.5X 0.75X0.875X 1.0Xx
E2M1 66.63 73.88 76.3580.10 79.04 79.49 E2M1 20.29 38.42 67.96 152.1 206.8 269.8
E4M3 71.19 76.96 78.8579.13 79.90 79.17 E4M3 80.94 153.5 271.5608.1 826.6 1079
FLIQS-S 67.27 73.95 77.5279.24 79.56 79.27 FLIQS-S 20.3 38.42 70.74 156.3 211.7 2754
FLIQS-L 68.25 74.36 77.3578.89 79.56 79.54 FLIQS-L 21.08 39.40 68.49 152.9 207.7 270.8

Figure 26: Floating-Point DeiT-B16
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