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Abstract Quantization has become a mainstream compression technique for reducing model size,
computational requirements, and energy consumption for modern deep neural networks
(DNNs). With improved numerical support in recent hardware, including multiple vari-
ants of integer and �oating point, mixed-precision quantization has become necessary to
achieve high-quality results with low model cost. Prior mixed-precision methods have
performed either a post-training quantization search, which compromises on accuracy, or
a di�erentiable quantization search, which leads to high memory usage from branching.
Therefore, we propose the �rst one-shot mixed-precision quantization search that elimi-
nates the need for retraining in both integer and low-precision �oating point models. We
evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to
discover Pareto-optimal models. Our approach improves upon uniform precision, manual
mixed-precision, and recent integer quantization search methods. With integer models, we
increase the accuracy of ResNet-18 on ImageNet by 1.31% points and ResNet-50 by 0.90%
points with equivalent model cost over previous methods. Additionally, for the �rst time,
we explore a novel mixed-precision �oating-point search and improve MobileNetV2 by up
to 0.98% points compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to
simultaneously search a joint quantization and neural architecture space and improve the
ImageNet accuracy by 2.69% points with similar model cost on a MobileNetV2 search space.

1 Introduction

In recent years, deep neural networks (DNNs) have achieved state-of-the-art results on a wide
range of tasks including image classi�cation, speech recognition, image and speech generation, and
recommendation systems. Each model iteration typically enhances quality but also tends to increase
computation, memory usage, and power consumption. These increases limit DNN adoption in
resource-constrained edge devices, worsen their latency across platforms, and expand their carbon
footprint, especially within cloud systems. DNN quantization to low-precision formats has become
the standard method for reducing model storage size, memory bandwidth, and complexity of MAC
operations [1, 2]. These formats include both integer and low-precision �oating-point, which has
recently gained attention as a �exible alternative to integer formats.

At the same time, DNN accelerators have become more diverse and now support a wide range
of numerical formats. For example, the Google TPUv3 supports FP32, BF16, FP16, and INT8 [3],
while the latest NVIDIA Hopper architecture supports FP32, BF16, FP8, and INT8 [4]. Furthermore,
reprogrammable systems such as FPGA devices allow arbitrary precision arithmetic such as INT5,
FP11, FP9, or FP8 for more granular accuracy-performance trade-o�s [5]. While these devices
enable mixed-precision quantization, where layers take on di�erent formats within the same model,
it is challenging to optimally assign per-layer formats since layers exhibit di�erent quantization
characteristics. In simple cases, this assignment can be performed manually, yet with the explosion

AutoML 2024 © 2024 the authors, released under CC BY 4.0



r(f)

RL
Controller

Reward
f

Q(f)

Model

E4M3

E1M2

INT8

BF16

ResNet

MobileNet

DCN

DeiT

FLIQS

TPU
INT8, BF16

GPU
INT4, FP8

CPU
FP8, FP32

FPGA
FP8, INT5

C(f)

Cost

Search
Space

Integer Floating
Point

FLIQS-S INT4, INT8,
BF16

E2M1, E4M3,
BF16

FLIQS-L INT4, INT5, 
INT6, INT7, 
INT8, BF16

E2M1, E2M2, … 
E3M1, E3M2, … 
E4M1, E4M2, …
E5M1, E5M2, 
E6M1, BF16

Only
Train

Search /
Train

Training

Weight Quantization

Activation Quantization

Evaluate
No Retrain

Evaluation

Manual
Precision

RL
Search

Differentiable
Search

PTQ ✓ No Training
� Less Scalable
� Lower Accuracy

ACIQ, OCS

✓ No Training
� Lower Accuracy

HAQ, ReLeQ

✓ No Training
� Branching
� Lower Accuracy

DNAS

QAT ✓ Higher 
Accuracy
� Less Scalable
� Full Training

AQT, PACT

✓ Higher Accuracy
✓ No Retraining
� Full Training

FLIQS (ours)

✓ Higher Accuracy
� Branching
� Full Training
� Retraining

EDMIPS

(a)

r(f)

RL
Controller

Reward
f

Q(f)

Model

E4M3

E1M2

INT8

BF16

ResNet

MobileNet

DCN

DeiT

FLIQS

TPU
INT8, BF16

GPU
INT4, FP8

CPU
FP8, FP32

FPGA
FP8, INT5

C(f)

Cost

Search
Space

Integer Floating
Point

FLIQS-S INT4, INT8,
BF16

E2M1, E4M3,
BF16

FLIQS-L INT4, INT5, 
INT6, INT7, 
INT8, BF16

E2M1, E2M2, … 
E3M1, E3M2, … 
E4M1, E4M2, …
E5M1, E5M2, 
E6M1, BF16

Only
Train

Search /
Train

Training

Weight Quantization

Activation Quantization

Evaluate
No Retrain

Evaluation

Manual
Precision

RL
Search

Differentiable
Search

PTQ ✓ No Training
✕ Less Scalable
✕ Lower Accuracy

ACIQ, OCS

✓ No Training
✕ Lower Accuracy

HAQ, ReLeQ

✓ No Training
✕ Branching
✕ Lower Accuracy

DNAS

QAT ✓ Higher Accuracy
✕ Less Scalable
✕ Full Training

AQT, PACT

✓ Higher Accuracy
✓ No Retraining
✕ Full Training

FLIQS (ours)

✓ Higher Accuracy
✕ Branching
✕ Full Training
✕ Retraining

EDMIPS

(b)

Figure 1: FLIQS – The explosion of model architectures, numerical support, and deployment platforms
requires automated methods for searching model con�gurations to utilize platform-speci�c
numerical formats. We establish FLIQS as the �rst one-shot quantization and neural archi-
tecture search framework for searching for integer and �oating point formats.

of DNN architectures and accelerator designs, automated methods are more reliable, scalable, and
reproducible for achieving high accuracy and performance.

In this paper, we introduce FLoating-Point and Integer Quantization Search (FLIQS) to auto-
mate mixed-precision �oating-point and integer quantization and automatically assign per-layer
formats. In addition, FLIQS can jointly optimize for quantization formats and neural architecture
to intelligently allocate compute across the kernel, channel, and bitwidth dimensions. FLIQS is a
one-shot search based on reinforcement learning (RL) and unlike expensive multi-trial searches, it
avoids training separate models for each con�guration, leading to overall reduced search overhead.
Furthermore, as the search takes place during training, FLIQS can achieve higher accuracies than
post-training quantization (PTQ) searches. Coupled with additional entropy regularization, the
�nal model can be deployed without the need for further retraining or �ne-tuning. As shown in
Figure 1(a), FLIQS accelerates the process of adapting legacy models to new hardware, co-designing
models and accelerators, and �nding Pareto-optimal models on current hardware systems. We
summarize our contributions as follows:

1. Introduce the �rst one-shot quantization search without retraining through the addition of a
new cosine entropy regularization schedule;

2. Demonstrate state-of-the-art results for integer and low-precision �oating-point quantization
search across a range of convolutional and transformer networks;

3. Perform the largest comparison of integer and �oating-point mixed-precision networks;

4. Conduct the �rst study of quantization and neural architecture search on low-precision �oating-
point networks and establish recommendations for allocating compute across bitwidth and
neural architectural dimensions.

2 Related Work

Low-Precision Floating Point: Low-precision �oating point is being discussed as the next gen-
eration format for DNN training and inference. [6]. Companies, including AMD, Intel, NVIDIA,
and Qualcomm, have recently agreed to adopt 8-bit �oating-point (FP8) in future deep learning
systems. Within these formats, recent studies generally focus on two variants: E5M2 and E4M3,
where E represents the number of exponent bits and M is the number of mantissa bits. For example,
HFP8 suggests using E4M3 for the forward pass and E5M2 for backpropagation [7]. Building upon
these uniform precision works [7, 8, 9, 10, 11], FLIQS proposes an automated approach for �nding
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Figure 2: FLIQS Overview – (a) FLIQS begins with pure training to allow the reward signal to stabilize
before updating its policy. The activation quantization is delayed to allow the activation
statistics to stabilize. (b) The RL then controller proposes per-layer formats and architectural
decisions during training

mixed-precision �oating-point networks, compares these to mixed-precision integer networks with
similar cost, and performs a joint �oating-point quantization and neural architecture search.

Quantization Search: Prior work has explored mixed-precision integer quantization searches,
as shown in Figure 1(b). For instance, HAQ [12] and ReLeQ [13] both perform PTQ quantization
searches that utilize RL to allocate bitwidths based on the model accuracy and cost estimates.
In addition, the HAWQ series of works further develops these PTQ searches, using the Hessian
spectrum to determine layer sensitivities and constrained ILP formulations to �nd optimal bitwidth
con�gurations [14, 15, 16]. However, being PTQ-based, these methods cannot take advantage of
the higher accuracy and more accurate feedback provided by quantization-aware training (QAT)
during the search.

Other e�orts perform quantization search during training, often using neural architecture search
(NAS) with super-networks or di�erentiable NAS [17, 18, 19, 13, 20]. For instance, MPQ uses an
adaptive one-shot method that trains models using multiple bitwidths and automatically freezes the
bitwidths of speci�c layers during training to improve the model convergence across bitwidths [21].
In addition, EDMIPS creates branches for each bitwidth, forms a linear combination of them, and
then alternates training the layer weights and the branch weights [22]. These di�erentiable searches
often have simpler formulations since the layer and branch weights are uni�ed and trained together
with gradient descent. However, because they replicate the weights and activations, they incur
higher memory and computational costs compared to RL-based methods. In addition, both PTQ
and QAT prior works require additional retraining steps on the model after the search, while FLIQS
directly serves the �nal model without �ne-tuning.

Quantization Neural Architecture Search (QNAS): In addition, prior work has explored joint
search spaces with quantization formats and neural architecture [23, 24, 25, 26, 27]. For example,
APQ uses knowledge distillation from a full-precision accuracy predictor to optimize neural archi-
tecture, quantization formats, and pruning policies [25]. FLIQS expands on this line of work by
jointly searching quantization formats and neural architecture and highlights trends for allocating
compute across this joint search space for high accuracy and performance.

3 FLIQS Framework

As a one-shot method, FLIQS employs a controller to sample per-layer formats and model archi-
tectures during training. This method allows the search and model to adapt to each other yet it
comes with certain challenges. First, the search may interfere with the original model training
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Figure 3: FLIQS Examples – In these quantization search examples, FLIQS allocates more precision
to the �rst and last layers and the small pointwise convolutions of ResNet-18, and to the
attention block within DeiT-B16. More con�gurations are listed in Appendix A.1.

process, since modifying the architecture shifts the weight and activation distributions during
training. In addition, one-shot search needs to evaluate the quality signal of di�erent architectures
on di�erent batches of training data to avoid lengthening the training process. This introduces noise
into the reward signal since di�erent batches may have signi�cantly di�erent quality. Also, the
controller and policy model must be e�cient enough to be embedded within the training graph to
not signi�cantly increase the training time. This section addresses these challenges, while focusing
on the search space involving per-layer formats and channel widths.

As shown in Figure 2, the model �rst trains without search, and the architecture is sampled
uniformly at random to avoid over�tting to a single option. It uses standard fake quantization
and employs a two-phase approach that delays activation quantization to improve stability (Ap-
pendix A.2). Next, at each training step, the controller proposes a new architecture and applies it to
the model. The model then performs a standard forward and backward pass on the training data to
produce the model gradients and a forward pass on the validation data to produce a quality signal
for the controller. This quality signal is combined with the model cost in Figure 2(b) to produce
a reward and reward advantage, which the controller then uses to update its policy. After the
search and training �nish, the model is directly used for inference without additional �ne-tuning
or retraining.

Cost and Reward Function: FLIQS uses the quadratic cost model, bit operations (BOPs),
as described in Equation 1 where Ę (Ă) is the total bitwidth of the current layer architecture Ă
and ĉýÿĢ (Ă) represents the number of multiply-accumulates (MACs) in layer Ģ . Quadratic cost
models, which predict power and area, are particularly useful in model-accelerator co-design where
multipliers dominate resources and scale quadratically in power and area [28].

ÿĢ (Ă) = Ę (Ă)2 ·ĉýÿĢ (Ă), Ĩ (ÿ ) = č (ÿ ) + Ā

�

�

�

�

∑

Ģ ÿĢ (Ă)

ÿĐ

− 1

�

�

�

�

(1)

This model cost is combined with the quality signal, č (Ă), in the absolute reward function
shown in Equation 1 [29]. This quality signal is model and application dependent but in the simple
case is the validation accuracy. The absolute reward function includes a cost targetÿĐ that provides
the user control over the accuracy-performance trade o�. More restrictive targets tend to result
in less compute-intensive models (as shown in Figure 3), which often have lower accuracy. This
resultant cost term is combined with the model quality using the cost scalar Ā , which balances the
importance of performance and quality.

RL Controller: The RL controller is in charge of choosing the model architecture at each step. It
learns a policy ÿĢ (Ă) for each layer Ģ that represents a probability distribution over each architecture
Ă . At each training step, the controller samples and applies a new layer architecture ĂĢ ∼ ÿĢ (Ă).
The channel widths are e�ciently searched by applying channel masks, which dynamically zero
out channels and reuse the underlying weights during training. This policy ÿĢ (Ă) is parameterized
by ĂĢ,Ă , where ĂĢ,Ă represents the logit for the ĂĪℎ decision in the ĢĪℎ layer. These logits are then
passed through a softmax layer to produce the policy probability distribution.
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Figure 4: FLIQS Analysis – (a) The switching error grows relatively large when either bitwidth is
small and a�ects model convergence. In addition, the optimal clipping threshold depends
on the current bitwidth, which motivates swapping thresholds. (b) Accuracy improves for
higher entropy regularization, and the entropy regularization a�ects the policy convergence.

ÿĢ (Ă) =
exp(ĂĢ,Ă )∑
Ġ exp(ĂĢ, Ġ )

(2)

After sampling and assigning the model architecture, ÿ , the reward Ĩ (ÿ ) is calculated according
to Equation 1. However, since the reward depends on the quality signal, which increases throughout
training, the di�erence between the running average of previous rewards, Ĩ̄ (ÿ ), and the current
reward is used instead: Ĩ� (ÿ ) = Ĩ̄ (ÿ ) − Ĩ (ÿ ). Then, the REINFORCE algorithm [30] is used to
update the policy ÿĢ (Ă) by performing gradient descent on the policy loss, LĂ :

LĂ = −Ĩ� (ÿ )
∑

Ģ

log (ĂĢ ∼ ÿĢ (Ă)), Ă ← Ă + ā∇ĂLĂ (3)

where ā is the RL learning rate. This procedure is chosen due to its low complexity, and it
helps address the performance concerns with one-shot searches (analysis shown in Appendix A.6).
Other reinforcement learning methods, such as PPO, and more sophisticated policy models, such
as multi-layer perceptron models, o�ered no quality improvements while being more costly.

Format Search Space: For pure quantization search, this work evaluates FLIQS on two search
spaces: FLIQS-S and FLIQS-L. FLIQS-S includes the standard power-of-two formats, while FLIQS-L
includes a larger set of formats between four and eight bits. For �oating point, FLIQS-L includes 16
formats, which to our knowledge is the largest quantization search performed. Full details of the
quantization search spaces can be found in Appendix A.5.

Switchable Clipping: FLIQS also introduces a switchable clipping threshold that changes based
on the current format. This is necessary since smaller bitwidths require more aggressive clipping,
and vice versa, as shown in Figure 4(a). These clipping thresholds can either be pre-computed
with synthetic data, or computed during the �rst phase of the search with real data. In general,
pre-computing the thresholds leads to high-quality results with less complexity, and it is used for
the experimental sections below.

4 FLIQS Analysis

Switching Error: The primary challenge for FLIQS is minimizing the e�ect of the search on the
model training. Within a pure quantization search, this e�ect can be formalized by introducing the
switching error. Consider the standard symmetric integer quantizer, č (Į ; ĩ) with the scale factor
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ĩ = (2ġ−1 − 1)/ĂĐ , where ĂĐ is the clipping threshold. This gives the absolute quantization error
�(Į ; ĩ), de�ned as:

č (Į ; ĩ) = +Į · ĩ, /ĩ, �(Į ; ĩ) = |č (Į ; ĩ) − Į | (4)

For a �xed ĂĐ , č (Į ; ĩ) and �(Į ; ĩ) can instead be parameterized solely by the bitwidth ġ . When
this varies during the search, it produces a switching error:

�ď (Į ;ġ1, ġ2) = |č (Į ;ġ2) −č (Į ;ġ1) | (5)

As illustrated in Figure 4(a), this switching error for standard search spaces, such as integer
FLIQS-S, can be relatively large (setup details listed in Appendix A.8).

Convergence: This switching error can be viewed as an additional source of noise for the
model optimizer, typically SGD or Adam [31]. Intuitively, the expected switching error should be
proportional to the total policy entropy Ąĉ of the modelĉ :

Ąĉ = −
∑

Ģ∈ĉ

∑

ġ

ÿĢ (ġ) logÿĢ (ġ), ā [�ď (Į ;ġ1, ġ2)] ∝ Ą (ÿĢ ) (6)

That is, as the policy decreases entropy over time by settling on speci�c formats, the expected
switching error decreases and converges to zero as the entropy tends toward negative in�nity. This
can be seen explicitly by modeling ÿĢ (ġ) ∼ Ċ (ġ ; Ć, Ă) as a Gaussian distribution, which has an
entropy Ą =

1
2
log(2ÿěĂ2). Under these assumptions, limĄ→−∞ ⇒ limĂ→0 ⇒ limġ1→ġ2 and thus:

lim
Ą→−∞

ā [�ď (Į ;ġ1, ġ2)] = ā [ lim
ġ1→ġ2

�ď (Į ;ġ1, ġ2)] = ā [�ď (Į ;ġ2, ġ2)] = 0 (7)

since �ď (Į ;ġ, ġ) = 0. Therefore, as the model entropy decreases, the search no longer interferes
with the model training, and this interference can be formulated in terms of additional optimization
noise. The noise ball around the optimum is proportional to the entropy, and therefore convergence
requires carefully controlling the entropy.

Entropy Regularization: FLIQS introduces entropy regularization to reduce the entropy toward
the end of the search and enable searches without a �nal retraining. This addresses the key challenge
of one-shot quantization search by diminishing the e�ects of the search on the model training. The
entropy regularization adds a new loss term to the policy loss LĂ , balanced by a factor ÿĄ .

L = LĂ − ÿĄĄĉ (8)

ÿcosĄ = −.5ÿěĤĚĄ (1 + cos(ÿĩ)) + ÿ
ěĤĚ
Ą (9)

6



Table 1: Quantization Search – ‘GBOPS’ is the model cost given in billions of bit-ops, and ‘*’ indicates
the �rst and last layers are kept in higher precision. The mean and standard deviations are
listed for FLIQS methods, aggregated over three trials.

Method Precision
ResNet-18 ResNet-50 MobileNetV2

GBOPs Top-1 GBOPs Top-1 GBOPs Top-1

BF16 16 467 72.800.16 1047 78.050.05 77 73.130.14

HAWQ-V3 [16] 4* 34 68.45 71 74.24 - -
ZeroQ [32] 2,8 - - 70 76.08 5 69.44

EDMIPS [22] [1,4] 22 67.20 49 73.20 - -
LQNets [33] 4* 34 69.30 71 75.10 - -
INT FLIQS-S 4,8,16 310.06 69.910.18 731.43 77.400.12 70.03 71.210.18
INT FLIQS-L [4,8],16 320.17 70.610.04 720.53 77.310.03 70.09 71.870.24

HAWQ-V3 [16] 4, 8* 72 70.38 154 76.73 - -
Bayesian Bits [34] [2,32] 56 69.80 - - 17 72.00

DQ [35] [2,10] 226 70.08 - - 37 69.74
PACT [36] 5* 50 69.80 101 76.70 - -

INT FLIQS-S 4,8,16 481.61 71.230.10 811.25 77.320.05 170.73 72.980.22
INT FLIQS-L [4,8],16 431.10 71.510.10 802.30 77.340.05 170.06 72.960.26

HFP8 [7] 8* 137 69.39 284 76.22 21 71.61
FPQuant [9] 8 116 70.28 - - 19 71.60

MPFP [8] 8* 137 69.71 284 75.70 - -
FP FLIQS-L [4,8],16 461.01 71.640.37 740.51 77.340.14 170.32 72.940.09

In addition, FLIQS introduces a cosine entropy regularization schedule in Equation 9, where
ĩ ∈ [0, 1] represents the current training progress and ÿěĤĚ

Ą
= 0.5. Figure 4(b) demonstrates the

characteristics of this schedule and the tradeo�s in choosing ÿĄ . It can achieve high quality
results through high exploration at the beginning of the search (high Ąĉ ) and �nal stability for
the quantization-aware training at the end. Appendix A.11 demonstrates that retraining after the
search adds no bene�t with entropy regularization.

5 Quantization Search

We begin by evaluating FLIQS on pure quantization search spaces, since this allows comparisons to
the most previous work. All models were trained from scratch with cloud-based TPUv3 cluster,
and all training and search hyper-parameters are listed in Appendix A.3.

Pareto Curves: Figure 5 shows the Pareto curves for uniform precision and FLIQS models. It
demonstrates that FLIQS outperforms uniform precision methods across ImageNet models, often
with large margins. The FLIQS-L searched models lead to the highest accuracy overall, yet this
search space requires support for arbitrary precision in hardware, e.g. within FPGA platforms.
In addition, when comparing models together, the FLIQS-L MobileNetV2 outperforms all others
models across �oating-point and integer formats, with FLIQS-L E�cientNet following closely
behind. Finally, the integer and �oating-point models are plotted together and show that in nearly
every case, �oating-point outperforms integer.

To achieve these results, FLIQS makes di�erent decisions for each model guided by the reward
signal. For the ResNet models, it assigns most layers to low-precision, except for the �rst and
last. It further increases the precision of the pointwise convolutions in the downsampling skip
branches (the top 8B convolutions in Figure 3). In contrast, for E�cientNet and MobileNetV2 the
pointwise convolutions are typically in lower precision while the depthwise convolutions are in
higher precision. Lastly, the vision transformer model, DeiT, shows similar behavior to the other
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ResNet Performance – The ResNet18 area estimates demonstrate a small impact from the additional
layers in higher precision with FLIQS-L and additionally show the correlation between GBOPs and
area. The precision column for each of the three layers in the ResNet-18 downsampling block: 3×3,
3×3, 1×1. The ResNet50 results demonstrate that the integer FLIQS-S mixed-precision model does not
add signi�cant overhead over HAWQ-V3. FPGA results were gathered on the Xilinx UltraScale+ FPGA
platform, where look-up tables (LUTs) are the primary resource.

Method Prec. LUTs Rel. × GBOPs Top-1

4B 4,4,4 42.8K 1.00× 29 67.310.10
5B 5,5,5 44.8K 1.05× 45 68.560.13
6B 6,6,6 48.3K 1.13× 65 69.030.09
7B 7,7,7 54.9K 1.28× 89 70.320.07
8B 8,8,8 67.6K 1.58× 117 70.780.10

FLIQS-L 5,5,6 45.9K 1.07× 46 70.120.07
FLIQS-L 5,6,6 47.1K 1.10× 67 71.510.10

Table 2: ResNet18 Estimated Area

Method GBOPs Speedup (×) Top1

2080 Ti A6000

INT8 262 1.000 1.000 77.470.09
INT4 65 1.338 1.234 74.910.15
INT4* 71 1.334 1.228 76.310.15
FLIQS-S 73 1.303 1.213 77.400.12

Table 3: ResNet50 GPU Latency

models in terms of its �rst and last layers and also allocates more bits to its self-attention blocks.
All of the detailed con�gurations can be found in Appendix A.1.

Table Comparison: Table 1 further evaluates FLIQS against previous work. As shown in this
table, FLIQS improves overall accuracy while simultaneously reducing the model cost in most cases.
For example, it outperforms the recent mixed-precision QS method HAWQ-V3 [16] across multiple
model cost targets. For ResNet-50, FLIQS improves the Top-1 accuracy by 0.61% while using only
51% of its GBOPs. In addition, FLIQS-L outperforms many recent works on FP8 model inference.
For example, against MPFP [8] on ResNet18, FLIQS �nds a variant with 1.93% higher accuracy
with a third of the model cost by allocating more bits to the downsampling convolutions and �rst
convolutions in the network.

These results demonstrate that the searched models consistently outperform their uniform
precision baselines. Moreover, this section to our knowledge shows the �rst large-scale compari-
son of �oating-point and integer mixed-precision models and shows that �oating-point models
outperform their integer counterparts for the same total bitwidth. Joint integer and �oating-point
searches were attempted; however, since �oating-point dominates integer formats at the same total
bitwidths, the outputs of these searches were the same as the pure �oating-point searches.

Performance: To evaluate the performance of the searched models, we use an infrastructure
developed by the authors of HAWQV3 [16] that extends the TVM [37] compiler to support INT4
inference. Table 3 shows that on Turing GPUs, the FLIQS-S model improves accuracy signi�cantly
with only 1% lower inference speed compared to the INT4 model. In addition, Table 2 shows that
LUTs scale quadratically with the precision bitwidth, and since LUTs act as a proxy for area, this
veri�es the usefulness of the BOPs cost model. This table also con�rms the overhead from these
searched models is relatively small compared to the accuracy improvements shown in Table 1.

6 Quantization Neural Architecture Search

FLIQS can e�ciently traverse large quantization search spaces and achieve Pareto-optimal combi-
nations of accuracy and model cost within �xed model architectures. Yet, further improvements
can come from combining the quantization search of FLIQS with neural architecture search, which
is referred to as FLIQNAS in this section.

Figure 6 evaluates this method on a MobileNetV2 search space, which incorporates tunable �lter
widths on inverted bottleneck projection layers and adjustable kernel sizes on central depthwise
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Method Precision GBOPs Top1

MobileNetV2 8 19 72.830.24

FLIQNAS-S 4,8,16 130.34 73.790.14
FLIQNAS-L [4,8],16 130.25 74.790.08
APQ-A 2,4,6 13 72.10

FLIQS-S 4,8,16 170.73 72.980.22
FLIQS-L [4,8],16 170.21 72.960.26

FLIQNAS-S 4,8,16 170.27 75.170.08
FLIQNAS-L [4,8],16 170.14 75.650.20
APQ-B 2,4,6 16 74.10

FLIQNAS-S 4,8,16 210.21 75.710.11
FLIQNAS-L [4,8],16 220.29 75.950.04
APQ-C 2,4,6 23 75.10
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Figure 6: MobileNetV2 FLIQNAS – FLIQNAS outperforms APQ in similar search spaces. In addition,
the combination of quantization search and neural architecture search outperforms the two
methods separately on integer and �oating-point formats.

layers. Altogether, there are 230 tunable values leading to a search space of over 10100 con�gurations
for FLIQNAS-S. This search space is signi�cantly larger than that of the original MobileNetV2
FLIQS-S with 53 options and approximately 1025 con�gurations.

This �gure compares FLIQNAS to FLIQS and quantized NAS, which �xes the quantization
format for all layers and only searches for the architecture. It shows that FLIQS-S and FLIQS-L
searches perform well for low model costs, yet as the model scales to higher costs, the compute
is better allocated by increasing the size of the architectural components. In this region, both
quantized NAS and FLIQNAS yield the best performance. For all model costs, FLIQNAS-L is able to
reach the Pareto-optimal tradeo� of accuracy and model cost. Lastly, when compared at identical
cost targets, �oating-point FLIQNAS surpasses the performance of the integer search space.

In Figure 6, we include a FLIQNAS comparison against APQ [25], which performs a joint
architecture, pruning, and quantization search by using a large once-for-all network. Its search
space is similar and includes multiple kernel sizes, channel widths, and integer bitwidths built on
top of the original MobileNetV2 architecture. This table shows that for similar GBOPs, FLIQNAS
leads to higher accuracy over APQ across its three published design points. Further layer-wise
analysis of these results is located in Appendix A.7.

7 Conclusion

As AI hardware supports an increasing number of numerical formats, DNN quantization search
to integer and low-precision �oating-point grows increasingly important for reducing memory
and compute. This paper proposes FLIQS, the �rst one-shot RL-based integer and low-precision
�oating-point quantization search without retraining. Compared to prior work, FLIQS can achieve
higher accuracy without involving additional �ne-tuning or retraining steps by introducing a
cosine entropy regularization schedule. Moreover, as an RL-based method, it reduces the amount
of memory needed for weights, activations, and gradients during the search compared to recent
di�erentiable NAS searches.

These enhancements accelerate research progress and enable quantization searches on larger
search spaces and more substantial models, such as DeiT-B16, which has 10 times the model cost as
BF16 MobileNetV2. In addition, FLIQS conducts the �rst �oating-point quantization search and
produces mixed-precision models that outperform the latest works on FP8 formats. When further
combined with architecture search, it identi�es even stronger MobileNetV2 models than NAS and
quantization search alone. It further suggests that for a �xed compute budget, larger models bene�t
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from increasing architectural dimensions over bitwidth. Overall, FLIQS represents an e�cient
framework for searching multi-precision models on current hardware and gives further insight
into model and hardware co-design for future accelerator generations.
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A Appendix

The following sections contain additional experimental details, small experiments, ablation studies,
and example output bitwidths. The listed hyper-parameters attempt to make the results more
reproducible and interpretable. In addition, the small-scale experiments motivate certain hyper-
parameter selections discussed in the main paper. And �nally, the example con�gurations give
more insight into how FLIQS allocates bitwidth across di�erent models and cost targets.

A.1 Example Con�gurations

FLIQS bitwidth con�gurations vary based on the model and search space. Figure 7 shows a set of
con�gurations for FLIQS-L and FLIQS-S searches on a ResNet18 across four di�erent model cost
targets. Lower bitwidths are represented with colors closer to red and higher bitwidths are closer
to green. This �gure shows that FLIQS typically gives higher bitwidth to the �rst and last layers of
the model. It also consistently gives higher bitwidths to the 1x1 convolution on the upper branch,
and although not obvious in this �gure, it usually allocates more bitwidth to the earlier stages of
the model compared to later stages.

Figure 8 shows example bitwidth con�gurations for all models evaluated. It reveals that
ResNet50 has similar trends to ResNet18: more bitwidth for the �rst and last layers, 1x1 convolutions
on the upper branch, and generally more in the early stages. Unlike the ResNet models, MobileNetV2
has a main block that comprises a sequence of a pointwise convolution, depthwise convolution,
and then pointwise convolution. FLIQS allocates more bitwidth to the central 3x3 depthwise
convolution in this block (groups of three in the �gure). InceptionV3 has a more complicated
branched architecture of 1x1, 3x3, and 5x5 convolutions. This block is shown in the �gure as the
repeated structure of one, three, two, and then one convolution, from top to bottom. FLIQS likewise
gives more bitwidth to the earlier stages of InceptionV3 and its �rst and last layers. Additionally, it
increases the precision of the 1x1 convolutions on the top and bottom of the repeated block.
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Figure 7: ResNet18 Integer FLIQS – Output con�gurations depend on the model, model cost target,
and supported bitwidths. FLIQS-S uses 4 and 8 bits as the search space, while FLIQS-L uses 4
to 8 bits, inclusive. For both variants, FLIQS generally allocates higher bits to the �rst and
last layers, with a slight preference for the last layer. It also assigns more bits to the small
upper 1x1 convolutions and more bits to the �rst 3x3 convolution within a block.
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Figure 8: Integer FLIQS-L Examples
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Figure 9: Floating-Point FLIQS-L Examples
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Start Step Top-1

1000 75.59
2000 75.59
4000 76.11
6000 76.05
8000 76.02
10000 76.03
15000 75.94
20000 75.93
25000 75.54
30000 74.19

(a) Start Step

STD Multiple Top-1

1 63.39
2 67.79
3 68.02
4 67.91
5 67.19
6 67.00
7 66.15
8 64.91

(b) STD Multiple

Pro�le Batches Top-1

1 67.92
5 68.09
10 68.00
50 67.75
100 68.02

(c) Pro�le Batches

Figure 10: Quantization Ablation Studies – (a) The optimal start time for activation quantization is
approximately 20% into the training process. (b) The optimal STD multiple to determine
the activation clipping threshold is around 3. (c) The quantization process is relatively
insensitive to the number of pro�ling batches.

A.2 Two-Phase Quantization

These shared weights are quantized dynamically with a method adapted from the open-source
library Accurate Quantized Training (AQT) [38], which supports both integer and emulated low-
precision �oating point quantization. This process can be summarized as:

Įħ = +ĩ · Ă (Į Ĝ ;ĂĪ ), (10)

Ă (Į Ĝ ;ĂĪ ) = max(−ĂĪ ,min(Į Ĝ , ĂĪ )) (11)

where Įħ is the quantized value, Į Ĝ is the original full-precision number, ĩ is the scale factor,
and ĂĪ denotes the clipping threshold. In addition, Ă (·) represents a clipping function, and +·,
represents a generic rounding function that pushes the value to the nearest integer or low-precision
�oating-point value.

The scale factor ĩ normalizes the input to the chosen maximum representable number and then
rescales to the maximum quantized value. The clipping threshold and scale factor are determined
by the run-time statistics of the weights and activations. Additionally, FLIQS uses a two-phase
quantization approach where the weights and activations begin quantization at di�erent training
steps, as shown in Figure 2.

The two-phase quantization approach has been found empirically to improve the �nal accuracy
of the model. In the �rst phase, only the weights are quantized and in the second phase, the weights
and activations are quantized. The start step of the second phase has a large e�ect on the �nal
accuracy. Table 10a shows the e�ect of sweeping the starting step for activation quantization
on a ResNet50 trained to 30,200 steps. On one extreme, with the second phase starting as soon
as possible, this method degenerates into a single-phase quantization method where weight and
activation quantization begin immediately. On the other extreme, where the second phase begins
as late as possible, it becomes a hybrid QAT-PTQ method where the weights are quantized during
training and the activations are quantized after training.

Table 10a shows that accuracy peaks around 15-20% of the total training time. For this reason,
FLIQS uses 7500 steps as the start step for activation quantization for ResNets and InceptionV3,
which train to 30,200 steps, and 20,000 as the start step for MobileNetV2, E�cientNet, and DeiT,
which train to 112,000 steps or longer.

The quantization method additionally depends on the activation clipping threshold, which is
calculated as a multiple of the pro�led activation standard deviations per layer. With too small a
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clipping threshold, there is lower rounding error on the more numerous central values distribution,
yet there is signi�cant clipping error on the larger values. With too large a threshold, there is more
rounding error on the central values and less clipping error on the larger values.

This trade-o� is demonstrated empirically in Table 10b, where standard deviation multiples
are swept from 1 to 8 and applied globally to a ResNet18. This table shows that the best accuracy
are achieved around 3-4 times the standard deviation in ResNet18. For simplicity, we apply this
multiple to all models for our experiments. Table 10c shows that the �nal accuracy is not sensitive
to the number of pro�ling batches. This is likely because we use a large batch size of 2048, and
since it is shu�ed, it likely already provides a strong estimate of the statistics.

A.3 Training Hyper-Parameters

The training hyper-parameters are chosen to be close to original paper hyper-parameters or recent
related work. Table 4 shows the hyper-parameters used to produce Table 1 and Figure 5.

Table 4: Training Hyper-Parameters – Training Hyper-parameters for all quantization search table
results. Same hyper-parameters are used to produce the Pareto-curve �gures, although
the total training time is reduced along with dependent hyper-parameters, e.g. activation
quantization start step.

Parameter ResNets DeiT-B16 MBV2

IncV3 E�Net

LR Schedule Cos Cos Exp
LR Base 2.64 4e-3 0.256

LR Warmup 10 30 15
Optimizer SGD AdamW RMSProp
Epochs 350 400 360

Act. Quant Start 15,000 15,000 18,000
ST Multiple 4 4 4

A.4 Search Hyper-Parameters

For our search, the RL controller warmup period lasts the �rst 25% of the training It uses an Adam
optimizer with learning rate of 4.6E-3 and momentum of .95. The loss function is a standard softmax
cross entropy loss with a label smoothing coe�cient set to 0.1. A cosine entropy regularization
schedule is applied to all runs beginning with no regularization and ending with ÿĄ = .5. For
QNAS, during the RL controller warmup period, the branches corresponding to various kernel
sizes are sampled jointly with a probability schedule. This schedule begins at 1 at the beginning of
training and decreases linearly to 0 at the end of the warmup period. After the warmup period,
only a single branch is sampled at a time.

A.5 Search Space

In general, the search spaces used with FLIQS should re�ect the capabilities of the target hardware.
Small search spaces are useful for adapting a model to existing hardware such as the TPUv3 or
NVIDIA A100. Large search spaces are useful for recon�gurable hardware such as the AMD Xilinx
UltraScale+ FPGA and for co-designing models with future accelerators. The largest search space
evaluated in this work includes 16 �oating-point formats.

For the integer FLIQS-S search space, we include INT4, INT8, and BF16. These are the standard
formats supported in modern GPU micro-architectures, such as NVIDIA Ampere. Many platforms
additionally support FP16, yet this format typically performs worse than BF16 in most common use
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Table 5: Search Space: FLIQS-S is a small search space designed to target existing hardware support,
while FLIQS-L is a large search space useful for co-design with custom hardware. The �oating-
point FLIQS-L space demonstrates the scalability of RL-based approaches

FLIQS-S FLIQS-L

Integer INT4, INT8, BF16 INT4, INT5, INT6,
INT7, INT8, BF16

Floating E2M1, E4M3, BF16 E2M1, E2M2, E2M3, E2M4,
Point E2M5, E3M1, E3M2, E3M3,

E3M4, E4M1, E4M2, E4M3,
E5M1, E5M2, E6M1, BF16

cases, so it omitted. For integer FLIQS-L, we �ll in the values between INT4 and INT8 primarily
considering custom hardware with integer support. For example, bit-serial deep learning engines
can take advantage of this additional �exibility.

For �oating-point FLIQS-S, we include three formats to be consistent with the integer search
variant. BF16 is the most common half-precision format, E4M3 is the FP8 variant most useful for
inference (E4M2 primarily used for gradients), and E2M1 is a custom FP4 format. For FLIQS-L, we
include all the formats with total bitwidths between four and eight.

All custom formats support subnormals and do not support in�nity. The bias terms are selected
so the exponent range is symmetric about zero. However, this bias term is not relevant to FLIQS,
since continuing from prior work [38, 6], it uses a pro�led scale factor during training and search.
This means that the bias term combines with the pro�led scale factor and has no additional e�ect.
Therefore, the dynamic range is controlled more by the additional scale factor than the format itself
and can adequately scale to various data distributions; the format instead primarily determines the
distribution of quantization points (non-linear for �oating-point and linear for integer ).

A.6 Search Performance

Memory (MiB) Search

Gradient Weight Activation Parameters

FLIQS 46.8 23.4 73.6 51
Branched 92.6 70.2 220.8 51

Table 6: ResNet18 Memory – the estimated memory breakdown for a ResNet18 model during quan-
tization search on the FLIQS-S search space. Branched represents the class of quantization
searches that create multiple branches during their search. Batch size is �xed at 32, model
weights and activations are stored in half-precision, and gradients are full-precision with no
gradient checkpointing. Search Parameters represents the additional parameters necessary
for the search process. FLIQS and branched methods require an additional parameter for each
searched layer for each searched option.

A.7 QNAS Analysis

In general, QNAS searches tend to allocate more of their compute to architectural components,
especially at high cost targets. This behavior is shown in Figure 6, where expanding quantization
searches to include �exible channels and kernel size dimensions increases the accuracy of the
model at similar costs. Within these architectural components, typically the channel dimension
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is increased before the kernel size to reach cost targets. This could be due to the fundamental
di�erence between kernel size and channel width; kernel size re�ects the ability to aggregate
information faster across spatial dimensions and channel width controls the depth of a neural
network representation.

The channel dimension allocations also show an interesting trend in that lower bitwidths
typically receive a larger number of channels. This is intuitive since increasing the channel width
can potentially recuperate losses in representational ability from the lower bitwidth. There is a
weaker trend in this direction with kernel size, where the kernel size can tend to be larger with
lower bitwidths, although it is not as strong.

A.8 Analysis Setup

For shifting error and clipping analysis, we simulate the data distributions commonly found within
neural networks. For this, we use Gaussian and Laplacian distributions and inject additional outlier
values. These outliers are set at 3× the maximum value in the original tensor and are injected at
various rates from 1:10 to 1:10000. These outliers are especially common in activation tensors.

For the shifting error, we then sample 1000 tensors independently at random, and quantize
them with two di�erent symmetric linear quantizers that vary only in their bitwidths. We then
calculate the RMS error between the two output tensors and average over all 1000 tensors. Finally,
we �t the best exponential function with the form: ýě (−þĮ ) +ÿ .

Similarly, for the clipping analysis, we sample 100 tensors and calculate the quantization error
between the original FP32 and quantized tensors for each percentile value. For the percentiles,
we use a linear grid of 100 values from [1, 101]. We then plot the average MSE error over the 100
tensors and separately plot the optimal percentile. We experimented with di�erent metrics, such as
the Kullback-Liebler (KL) divergence, yet these did not lead to qualitatively di�erent results.

A.9 Mantissa Sweep

Table 7: FP8 Sweep – Sweep over possible FP8 values and evaluate Top-1 accuracy on ImageNet. All
methods use an exponent bias of 11.

Mode ResNet18 ResNet50 MobileNetV2 InceptionV3

E1M6 71.72 77.80 73.20 76.53
E2M5 71.70 77.74 73.14 76.36
E3M4 71.69 77.55 73.17 76.48
E4M3 71.69 77.66 72.65 76.30
E5M2 71.59 76.90 72.07 76.15

Table 7 shows the general e�ects of di�erent possible FP8 formats on ImageNet accuracy. The
models are generally resilient to FP8 quantization with MobileNetV2 having the largest accuracy
degradation with the E5M2 format. This is analogous to integer quantization, where typically
INT8 is su�cient for most models to maintain neutral accuracy and where MobileNetV2 is more
sensitive to low-bit quantization. In this table, the accuracy trends upward with more mantissa
bits, and therefore not only do they determine the majority of the area in �oating-point units, they
increase the accuracy of the models. This leads to the classical accuracy-performance trade-o�
that �oating-point quantization search attempts to navigate for optimal con�gurations. Yet for
hardened accelerators, the peak throughput for di�erent FP8 formats is the same, and therefore
higher mantissa bitwidth is preferable.
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A.10 Cost Model FPGA Validation

Table 2 shows the hardware area estimates and accuracy of a set of ResNet-18 models on an AMD
Xilinx UltraScale+ FPGA, implemented using Vivado HLS [39]. Since the whole model does not �t
on the board, we estimate the cost with the �rst residual block in the model, which consists of two
convolutional layers on one branch, and a pointwise convolution on the other, followed by their
sum. Since all MAC operations are mapped to look-up tables (LUTs), the LUT count acts as a proxy
for the area and power overhead of the model. The precision settings for FLIQS-L are taken from
actual runs and represent the general bitwidth allocation to the ResNet blocks, although there may
be some deviation within individual blocks.

This table shows that LUTs scale quadratically with the precision bitwidth. Since the LUTs act
as a proxy for area, this veri�es the core assumption of the BOPs model (Section 1) that BOPs are
proportional to the model area and power on chip. This table also con�rms the overhead from
these searched models is indeed relatively small compared to the accuracy improvements shown in
Table 1.

A.11 Retraining vs. No Retraining

With su�cient entropy regularization, retraining the model after FLIQS is unnecessary. Table 8
shows a sweep for ResNet18 with and without retraining. With retraining, the search occurs as
described in Section 3, except that the best con�guration is taken and retrained from scratch for the
original training length. The table shows natural variance between the retraining and no-retraining
methods, but there is no noticeable advantage to retraining across model widths.

Table 8: Retraining ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

FLIQS-S 59.08 64.93 69.92 71.94 73.32 75.06
+ Retrain 59.00 66.47 69.53 71.63 73.20 74.95
FLIQS-L 60.11 66.28 69.56 71.61 73.12 74.83
+ Retrain 60.10 66.39 69.56 71.58 73.02 74.78

A.12 All Models

Figure 11 plot all models with corresponding colors for methods and corresponding symbols for
models. It shows that FLIQS MobileNetV2 and E�cientNet models consistently outperform other
models in terms of accuracy and model cost, and BF16 models consistently perform the worst. This
is expected since, as their name suggests, these models are designed speci�cally to be e�cient and
both use inverted bottleneck structures to reduce overall compute. The worst performing model
overall is ResNet18, which is followed in the higher model costs by ResNet50.

A.13 Recommendation Model

Next, we brie�y explore FLIQNAS on recommendation models using the Criteo dataset [40], which
is the most popular public advertisement click-through-rate (CTR) prediction benchmark. We
evaluate a multi-layer perceptron (MLP) model with four hidden layers and layer factorization
technique [41] similar to the method used in DCN-V2 (Deep & Cross Network) [42]. We use the
AUC metric for evaluation, and list additional details about the dataset, model architecture and
search space.

Figure 13 compares FLIQNAS and FLIQS with uniformly quantized models on both integer and
�oat quantization. We focus only on FLIQS-L due to the small search space and do not include the
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Figure 11: Model Comparisons: Left – Integer All Models. Right – Floating-Point All Models.

ResNet18

E2
M2

E2
M1

E2
M2

E2
M1

E2
M1

E2
M3

30
GBOPs

E2
M1

E2
M1

E2
M5

E2
M1

E2
M1

E3
M4

…

ResNet50

E2
M2

E2
M1

E2
M2

E2
M3

67
GBOPs

E3
M4

…E2
M2

E2
M1

E2
M1

E2
M2

E2
M1

E2
M2

E2
M3

E2
M1

E2
M3

E2
M2

E2
M2

7
GBOPs

E2
M1

E2
M3

E2
M2

E2
M1

E2
M2

E2
M1

E2
M1

E2
M3…

EfficientNet

E2
M3

E2
M4

E2
M2

7
GBOPs

E2
M1

E2
M4

E2
M3

E2
M1

E2
M3

E2
M2

E2
M2

E2
M1…

MobileNetV2

E2
M2

E2
M1

E2
M1

E2
M1

E2
M2

E2
M1

E2
M1

320 
GBOPs

Attention MLP

DeiT-B16

E2
M3

… E2
M4

E2
M2

E2
M1

56
GBOPs E2

M3
E2
M1

E3
M1

E2
M2

E2
M4

E3
M2

E2
M1

InceptionV3

E3
M1

E2
M1

E2
M2

E4
M1

E2
M3

E2
M1

E2
M1

E2
M1

E2
M2

E2
M4…

Integer Models

GBOPs

Im
ag

eN
et

Float Models

GBOPs

Im
ag

eN
et

Integer vs. Float

GBOPs

Im
ag

eN
et

Figure 12: Floating-Point vs. Integer FLIQS-L – Floating-point models typically outperform their
integer counter-parts.

uniformly quantized INT4 and E2M1 models since they show signi�cant quality loss. Figure 13
shows that FLIQNAS-L performs better than FLIQS-L especially at larger MBOPs. Both of them
show better quality and performance trade-o�s than uniform quantization.

Criteo: The Criteo dataset [40] contains user logs over a period of 7 days with a total of 45M
examples. Each example has 13 continuous features and 26 categorical features with a binary label
indicating if an advertisement was clicked or not.

Architecture: The recommendationmodel architecture starts with an embedding layer to project
the sparse categorical features into dense vectors. The embedded vectors are then concatenated
with the continuous features and fed into the MLP with four hidden layers and low-rank on each
layer to reduce the computational cost.

Search Space: For FLIQS-L, the search space uses the same con�gurations for integer or �oating-
point search on each layer. For FLIQNAS-L, besides the quantization search space, we also include
128 and 512 × [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for rank values and layer widths respectively
on each layer.
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Figure 13: Recommender FLIQNAS – Models are trained on the Criteo dataset and evaluated by AUC
(Area Under the ROC Curve) vs. millions of BOPs (MBOPs). Both FLIQNAS and FLIQS
perform better than the INT8 and E4M3 baselines.
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A.14 Additional Pareto Tables

This section lists all of the raw data used to produce the Pareto curves in Figure 5.
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Figure 14: Additional Pareto Curves – Additional integer and �oating-point Pareto curves that could
not �t in the main paper.

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 62.63 68.34 71.17 72.89 74.31 75.56
INT4 57.03 63.64 67.32 69.79 71.39 73.57
INT8 62.46 67.80 70.60 72.65 74.01 75.58

FLIQS-S 59.08 64.93 69.92 71.94 73.32 75.06
FLIQS-L 60.11 66.28 69.56 71.61 73.12 74.83
+ (Vcos�

) 60.21 66.47 69.83 71.76 73.19 74.91

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 124.5 268.8 467.7 721.3 1030 1810
INT4 7.78 16.80 29.23 45.08 64.35 113.1
INT8 31.13 67.19 116.9 180.3 257.4 452.5

FLIQS-S 8.18 17.68 36.46 54.60 76.35 130.7
FLIQS-L 9.04 19.09 32.33 49.22 69.20 120.2
+ (Vcos�

) 9.30 19.58 33.54 49.57 70.54 120.8

Figure 15: Integer ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

INT4 69.27 73.03 74.91 76.07 76.81 77.68
INT8 73.20 76.17 77.47 77.98 78.66 79.00

FLIQS-S 71.85 75.11 76.62 77.52 78.06 78.76
FLIQS-L 71.56 74.67 76.52 77.37 78.02 78.73
+ (Vcos

�
) 72.12 75.01 76.79 77.66 78.17 78.72

BF16 73.87 76.22 77.68 78.45 78.82 79.14

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

INT4 16.84 37.16 65.43 101.6 145.8 257.9
INT8 67.35 148.7 261.7 406.5 583.1 1031

FLIQS-S 20.49 42.87 73.66 112.7 160 279.3
FLIQS-L 20.51 41.13 71.57 112.9 156.4 273.5
+ (Vcos

�
) 21.03 43.55 74.49 114.8 161.5 282

BF16 269.4 594.6 1047 1626 2332 4126

Figure 16: Integer ResNet-50
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ImageNet Top1

Format 0.25× 0.5× 1.0× 1.4× 2.0×

BF16 55.18 65.72 73.13 76.00 77.64
INT4 40.62 54.11 65.80 70.60 73.85
INT8 55.09 65.70 72.83 75.95 77.37

FLIQS-S 50.78 63.03 71.21 74.64 76.61
FLIQS-L 52.38 63.15 71.73 74.99 77.01
+ (Vcos

�
) 52.11 63.35 71.87 74.83 76.98

GBOPs

Format 0.25× 0.5× 1.0× 1.4× 2.0×

BF16 9.52 24.87 77.00 149.0 291.2
INT4 0.595 1.55 4.81 9.31 18.20
INT8 2.38 6.21 19.25 37.20 72.80

FLIQS-S 1.16 2.90 7.42 13.21 23.51
FLIQS-L 1.06 2.38 7.06 12.70 22.26
+ (Vcos

�
) 1.02 2.42 7.21 12.69 22.31

Figure 17: Integer MobileNetV2

ImageNet Top1

Format 0.25× 0.5× 0.75× 1.0× 1.5×

BF16 63.65 72.10 75.24 76.26 77.55
INT4 53.20 67.20 71.16 73.55 76.00
INT8 62.86 71.52 74.56 75.87 77.38

FLIQS-S 59.49 69.66 73.04 75.07 77.05
+ (Vcos

�
) 60.72 70.28 73.91 75.67 77.12

GBOPs

Format 0.25× 0.5× 0.75× 1.0× 1.5×

BF16 48.69 193.1 433.3 769.2 1728
INT4 3.04 12.07 27.08 48.08 108.0
INT8 12.17 48.28 108.3 192.3 432.0

FLIQS-S 4.18 15.53 29.88 52.02 112.5
+ (Vcos

�
) 4.31 15.99 33.17 59.16 119.9

Figure 18: Integer InceptionV3

ImageNet Top1

Format B0 B1 B2 B3 B4

BF16 73.53 75.50 76.36 78.68 80.35
INT4 59.83 66.08 67.71 70.46 74.29
INT8 73.04 75.08 76.48 78.39 79.55

FLIQS-S 68.94 71.92 74.53 77.67 79.89
FLIQS-L 70.51 73.23 75.41 77.96 80.03
+ (Vcos�

) 70.01 72.96 74.62 77.81 79.92

GBOPs

Format B0 B1 B2 B3 B4

BF16 98.61 175.5 254.0 467.3 1124
INT4 6.16 10.97 15.88 29.21 70.25
INT8 24.65 43.89 63.50 116.8 281.0

FLIQS-S 7.86 13.62 23.81 52.30 198.0
FLIQS-L 7.40 13.21 21.62 49.38 187.0
+ (Vcos�

) 7.42 13.32 19.85 45.26 187.1

Figure 19: Integer E�cientNet

ImageNet Top1

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×

INT4 66.51 72.53 76.19 78.75 79.26 79.84
INT8 70.77 76.41 78.33 79.71 79.55 79.49

FLIQS-S 66.36 74.05 76.96 79.44 79.05 79.47
FLIQS-L 67.04 73.93 77.10 79.27 79.27 79.35
+ (Vcos

�
) 67.78 73.90 76.88 79.23 79.16 79.28

GBOPs

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×

INT4 20.29 38.42 67.96 152.1 206.8 269.8
INT8 80.94 153.5 271.5 608.1 826.6 1079

FLIQS-S 20.31 40.52 70.74 156.3 211.7 275.4
FLIQS-L 21.08 39.55 69.12 153.9 208.8 272.0
+ (Vcos

�
) 21.47 40.45 70.57 154.5 210.4 273.2

Figure 20: Integer DeiT-B16

24



ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 62.63 68.34 71.17 72.89 74.31 75.56
E2M1 58.17 64.18 67.96 70.43 72.08 74.22
E4M3 62.06 67.57 70.56 72.66 73.75 75.43
FLIQS-S 59.80 65.77 68.89 72.10 73.50 75.26
+ (Vcos

�
) 60.99 66.61 70.01 71.92 73.32 74.80

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 124.5 268.8 467.7 721.3 1030 1810
E2M1 7.78 16.80 29.23 45.08 64.35 113.1
E4M3 31.13 67.19 116.9 180.3 257.4 452.5
FLIQS-S 8.18 17.68 30.80 54.60 76.35 128.2
+ (Vcos

�
) 9.60 19.48 32.78 50.01 68.43 118.2

Figure 21: Floating-Point ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 73.87 76.22 77.68 78.45 78.82 79.14
E2M1 70.24 73.91 75.77 76.89 77.40 78.01
E4M3 73.09 75.86 77.42 78.13 78.42 78.97
FLIQS-S 72.16 75.14 76.84 77.83 78.22 78.94
+ (Vcos

�
) 72.39 75.61 76.95 78.00 78.24 78.81

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×

BF16 269.4 594.6 1047 1626 2332 4126
E2M1 16.84 37.16 65.43 101.6 145.8 257.9
E4M3 67.35 148.7 261.7 406.5 583.1 1031
FLIQS-S 21.72 42.87 74.28 112.7 160.0 279.2
+ (Vcos

�
) 21.93 44.70 76.43 115.6 165.6 297.9

Figure 22: Floating-Point ResNet-50

ImageNet Top1

Format 0.25× 0.5× 1.0× 1.4×

BF16 55.18 65.72 73.13 76.00
E2M1 — 52.32 66.29 69.26
E4M3 53.98 64.85 72.63 75.86
FLIQS-S 50.76 62.58 71.14 74.34
+ (Vcos

�
) 51.11 63.65 71.97 75.26

GBOPs

Format 0.25× 0.5× 1.0× 1.4×

BF16 9.52 24.87 77.00 149.0
E2M1 0.595 1.55 4.81 9.31
E4M3 2.38 6.21 19.25 37.20
FLIQS-S 1.22 2.69 7.35 12.6
+ (Vcos

�
) 0.95 2.36 6.77 12.37

Figure 23: Floating-Point MobileNetV2

ImageNet Top1

Format 0.25× 0.5× 0.75× 1.0× 1.5×

BF16 63.65 72.10 75.24 76.26 77.55
E2M1 54.14 67.80 72.09 74.55 76.35
E4M3 62.65 71.50 74.49 75.94 77.39
FLIQS-S 58.78 69.50 73.43 75.28 77.03
+ (Vcos

�
) 60.90 70.63 74.16 75.94 77.43

GBOPs

Format 0.25× 0.5× 0.75× 1.0× 1.5×

BF16 48.69 193.1 433.3 769.2 1728
E2M1 3.04 12.07 27.08 48.08 108.0
E4M3 12.17 48.28 108.3 192.3 432.0
FLIQS-S 3.66 13.46 29.16 51.65 111.4
+ (Vcos

�
) 3.89 15.23 32.86 56.15 124.2

Figure 24: Floating-Point InceptionV3

ImageNet Top1

Format B0 B1 B2 B3 B4

BF16 73.53 75.50 76.36 — —
E2M1 62.45 67.49 69.14 71.22 76.12
E4M3 72.99 75.36 76.20 78.17 79.52
FLIQS-S 67.60 71.63 74.67 78.05 80.30
+ (Vcos

�
) 71.13 74.34 75.58 78.03 80.29

GBOPs

Format B0 B1 B2 B3 B4

BF16 98.61 175.5 254.0 — —
E2M1 6.16 10.97 15.88 29.21 70.25
E4M3 24.65 43.89 63.50 116.8 281.0
FLIQS-S 7.77 13.58 23.26 55.15 203.3
+ (Vcos

�
) 7.30 13.00 19.61 36.6 212.9

Figure 25: Floating-Point E�cientNet
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ImageNet Top1

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×

E2M1 66.63 73.88 76.35 80.10 79.04 79.49
E4M3 71.19 76.96 78.85 79.13 79.90 79.17
FLIQS-S 67.27 73.95 77.52 79.24 79.56 79.27
FLIQS-L 68.25 74.36 77.35 78.89 79.56 79.54

GBOP

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×

E2M1 20.29 38.42 67.96 152.1 206.8 269.8
E4M3 80.94 153.5 271.5 608.1 826.6 1079
FLIQS-S 20.3 38.42 70.74 156.3 211.7 275.4
FLIQS-L 21.08 39.40 68.49 152.9 207.7 270.8

Figure 26: Floating-Point DeiT-B16
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