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Abstract

We present Bayesian Spillover Graphs (BSG), a
novel method for learning temporal relationships,
identifying critical nodes, and quantifying uncer-
tainty for multi-horizon spillover effects in a dy-
namic system. BSG leverages both an interpretable
framework via forecast error variance decompo-
sitions (FEVD) and comprehensive uncertainty
quantification via Bayesian time series models to
contextualize temporal relationships in terms of
systemic risk and prediction variability. Forecast
horizon hyperparameter h allows for learning both
short-term and equilibrium state network behav-
iors. Experiments for identifying source and sink
nodes under various graph and error specifications
show significant performance gains against state-
of-the-art Bayesian Networks and deep-learning
baselines. Applications to real-world systems also
showcase BSG as an exploratory analysis tool for
uncovering indirect spillovers and quantifying sys-
temic risk.

1 INTRODUCTION

We consider the task of learning temporal interactions and
important components over time in a dynamic network.
Many real-world systems can be described by a multivariate
time series (MTS) and a natural framework for analyzing
temporal relationships is Granger causality [Granger, 1969],
which tests for whether one time series is useful for forecast-
ing another one. Network Granger causality (NGC) [Basu
et al., 2015] extends this concept into the multivariate set-
ting. NGC is useful for identifying one-step ahead predictive
relationships within a system, and may be considered causal
under very specific conditions [Pearl et al., 2000].

Many methods have been developed to estimate NGC. Vec-
tor Autoregression (VAR) [Sims, 1980] and its variants

[Lütkepohl, 2005] remain a standard-bearer for macroeco-
nomics and financial forecasting. Bayesian networks [Pearl,
2011; Ben-Gal, 2008] are also a powerful collection of prob-
abilistic graph models for learning NGC, usually via a di-
rected acyclic graph (DAG). Dynamic Bayesian Networks
(DBN) [Murphy, 2002] are particularly useful for modeling
state changes and temporal structure learning, although it is
restricted by acyclic representations. Alternative methods
for estimating NGC adjacency matrices use deep learning
variants, e.g., attention networks [Nauta et al., 2019], Sta-
tistical Recurrent Units (SRU) [Khanna and Tan, 2019],
and sparse RNNs [Tank et al., 2018]. Recently, Generalized
Vector Autoregression (GVAR) [Marcinkevičs and Vogt,
2021], which utilizes Self-explaining Neural Nets (SENN),
also proposed aggregating model coefficients over lagged
time series to estimate signs of NGC in addition to edge
detection.

However, NGC has several drawbacks. First, it is not de-
signed to capture cumulative interactions or multi-step
ahead effects that evolve over longer forecast horizons
[Marcinkevičs and Vogt, 2021], which may be particularly
important in forecasting or inference for real-world systems
[Diebold and Yılmaz, 2014; Billio et al., 2012]. Spillovers,
in particular, is an interesting subset of temporal relation-
ships (graph edges) that can materialize beyond 1-step ahead
forecasts [Diebold and Yilmaz, 2015] in the context of fore-
cast variability and network connectivity. Furthermore, indi-
rect spillovers between components can also manifest via
intermediary nodes despite having no direct link via NGC.
Estimating NGC via DAG constraints are hence not rep-
resentative of true network interactions, which can be self-
directed, bi-directional, or cyclic over time. Prior NGC meth-
ods also do not quantify strengths of temporal relationships
[Marcinkevičs and Vogt, 2021] nor provide ample interpreta-
tion for related graph measures. Identification of important
nodes relies on standard graph theory metrics [Kramer et al.,
2009; Yusoff and Sharif, 2016] such as eigen-centrality
[Bonacich, 1987] or in/out degrees [Freeman, 1978]. These
metrics are also static point estimates based on NGC graphs.
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And although methods such as GVAR offer sign estima-
tion for temporal relationships, the actual coefficient values
(edge weights) are not necessarily meaningful.

Figure 1: Comparison of BSG vs. Prior NGC Methods.
BSG combines Bayesian VAR estimation with interpretable
FEVD framework over forecast horizons h to quantify
strength of temporal interactions (BSG edge weights) and
systemically important nodes over time.

To summarize, the major drawbacks of current methods are
(1) lack of flexibility for observing network interactions
over multiple forecast horizons, (2) lack of interpretable
network measures that are contextualized, (3) and lack of
uncertainty quantification for strength of temporal relation-
ships and node influence. To this end, a promising solution
is to leverage forecast error variance decomposition (FEVD)
from classic time series forecasting, which estimates the
temporal effect of shocks to individual nodes in the system
[Barbaglia et al., 2020; Tsay, 2013; Diebold and Yilmaz,
2015], and Bayesian VAR models [Rossi et al., 2012; Koop
and Korobilis, 2010] which provide comprehensive uncer-
tainty quantification.

In particular, the formulae behind FEVD is a cornerstone
of classic multivariate time series analysis when we are in-
terested in relationships between time series components. It
is commonly cited as (generalized) impulse response func-
tions in statistical literature and multiplier analysis in eco-
nomic literature [Tsay, 2013], and key applications include
quantifying the effect of one time series component over
forecast horizons, a key advantage over NGC. Under careful
assumptions and conditions, it can also be a viable causal
inference tool to analyze impact of specific policies [Swan-

son and Granger, 1997]. The idea of standardizing FEVD
as a measure of risk and connectivity has been motivated
by macroeconomic and financial applications [Diebold and
Yilmaz, 2015; Barbaglia et al., 2020].

Formally, we define spillovers as the predicted impact of one
component on all other components in a dynamic network
with respect to forecast variability and forecast horizon h. In-
tuitively, we are learning how unexpected shocks in one com-
ponent cascades throughout the network to all other compo-
nents, as well as examining how this impact evolves over
time. Statistically, we can estimate h-step ahead spillovers
based on normalized FEVD for one-step ahead forecasts
and beyond after parameter estimation via Bayesian VAR;
interpretation of resulting spillover effects is then contex-
tualized by the input time series while also accounting for
parameter estimation variability.

Motivation. We present Bayesian Spillover Graph (BSG)
for analyzing temporal interactions over multiple forecast
horizons, identification of systemic influential and at-risk
nodes, and uncertainty quantification for novel network mea-
sures with interpretation beyond simple NGC. BSG is both
a powerful exploratory data analysis and inference tool; key
contributions include:

1. We model temporal relationships in a dynamic sys-
tem based on a single observed MTS; forecast hori-
zon hyperparameter h allows for flexibility in learning
short-term vs. long-term spillover effects.

2. We propose interpretable network measures for con-
textualizing spillovers with respect to prediction vari-
ability and identifying sink and source nodes within a
dynamic network. We demonstrate the robustness of
these measures across various graph and error depen-
dency specifications.

3. We provide uncertainty quantification for BSG mea-
sures through functionals of model parameter poste-
rior distributions via Bayesian estimation, compared
to point-estimates from baseline VAR and NGC re-
trieval methods. We showcase how BSG can quantify
strengths of temporal interactions (including spillovers)
and identify systemically vulnerable nodes in a wildfire
risk application.

We emphasize the distinction between Bayesian DAGs ver-
sus BSG, which models temporal, bi-directional relation-
ships that can potentially amplify spillovers over multi-step
horizons. DAG structure is a popular assumption in causal
inference and can be viewed as a special case of BSG. BSG
learns important edges (temporal interactions) and nodes
(time series components) directly from estimated statistical
network metrics. It also accounts for various dependencies
in error terms that deviate from standard Gaussian noises,
which are more descriptive of real-world systems. A brief
overview of BSG vs. prior methods is shown in Figure 1.



2 METHODOLOGY

2.1 VECTOR AUTOREGRESSION (VAR)

Let zt be a stationary d-dimensional multivariate time series,
and {zjt} be the j-th component of this time series at time
t. A VAR(p) model with order p is defined as:

zt = ω0 +
p∑

i=1

ωizt→i + at (1)

where ω0 is a d-dimensional constant, ωi is the d → d lag
i coefficient matrix for i ↑ 0, and at is a sequence of i.i.d
random vectors with mean 0 and covariance matrix !a.

Bayesian Estimation. We utilize a Bayesian approach
[Tsay, 2013] for estimating unknown model parameters
[ω↑

,!a] for a VAR(p) time series with length T , where
ω↑ = [ω0,ω1, ...,ωp]:

Z = Xω + A (2)

where Z and A are (T ↓ p) → d matrices, and the ith row
is z↑p+i and a↑p+i. ε↑ is a d → (dp + 1) matrix, and X
is a (T ↓ p) → (dp + 1) design matrix with ith row as
(1, z↑p+i→1, z↑i). The likelihood function for the data is

f(Z|ω,!a) ↔ |!a|→n/2 exp[↓1

2
tr({(Z↓Xω)↑(Z↓Xω)!→1

a })]
(3)

where n = T ↓ p is the effective sample size. We uti-
lize Normal-inverse-Wishart conjugate priors f(ω,!a) =
f(!a)f(ω|!a) :

f(!a) ↗ W
→1(V0, n0) (4)

f(vec(ω)|!a) ↗ N(vec(ω0),!a ↘C→1) (5)

where hyperparameters V0 is a d → d matrix, n0 is some
real number, C is a (dp+ 1)→ (dp+ 1) matrix, and ε0 is a
(dp+ 1)→ d matrix. The posterior distribution is then:

f(!a|Z,X) ↗ W
→1(V0 + S̃, n0 + n) (6)

f(vec(ω)|Z,X,!a) ↗ N(vec(ω̃),!a ↘ (X↑X+C)→1)
(7)

where ω̃ = ((X↑X+C)→1(X↑Xω̂ + Cω0)) and S̃ =

(Z↓Xω̃)↑(Z↓Xω̃) + (ω̃↓ω0)↑C(ω̃↓ω0) based on hy-
perparameter choices from the prior; ω̂ is the least-squares
estimate of ω. Usually, V0 is set to identity Id and n0 is a
small number; as sample size n increases, the choice of n0

has very little effect on the final posterior. Similarly, we can
choose vague priors for vec(ω) by letting vec(ω0) = 0 and
C→1 = c0Idp+1, where c0 is some large real number, and
hence the posterior distribution f(vec(ω)|Z,X,!a) is also
mainly updated via the data X.

Although !a is unknown, we can sample M i.i.d samples
from the joint posterior distribution by iterative sampling
from f(!a|Z,X) and f(vec(ω)|Z,X,!a), replacing !a

with posterior estimate !a
(m).

2.2 BAYESIAN SPILLOVER GRAPHS

In brief, we adopt Bayesian estimation for Vector Autore-
gressions (VAR) to estimate posterior distribution for model
parameters [ω↑

,!a] from a single realized MTS. We then
construct Gh(ω,!a|Z), the BSG for forecast horizon h,
with components of MTS as nodes and temporal interac-
tions as directed, weighted edges. Specifically, we can es-
timate BSG edge weights by computing h-step ahead nor-
malized spillovers between two nodes via FEVD for M

posterior samples of {ω↑
,!a}, and taking averages over M .

Consequentially, BSG is an interpretable graph where both
magnitude and specific values of edges are meaningful.

We also introduce three network measures based on func-
tionals of BSG: the spillover index, vulnerability score, and
influence score. These measures describe systemic-wide be-
havior over time and are useful for monitoring influential
and at-risk nodes for a dynamic network. With a Bayesian
framework, we can quantify uncertainty for both BSG edges
and network measures. Under stationarity assumptions, es-
timated normalized spillovers are finite after some fixed
forecast horizon h.

Interpretable BSG Edges from Forcast Error Variance
Decomposition. We adapt generalized FEVD for analyz-
ing h-step ahead spillover effects [Diebold and Yılmaz,
2014; Diebold and Yilmaz, 2015]; the accuracy of a fore-
cast can be measured by its forecast error. Let ϑkk be the
k-th diagonal of !a, and ϖi be the coefficient matrix for a
non-orthogonalized VAR under an infinite moving-average
representation. The jk-th entry of the h-step ahead forecast
error variance is

wh,jk =
ϑ
→1
kk !

h→1
i=0 [ϖi!a]2jk

!h→1
i=0 [ϖi!aϖ

↑
i]jj

(8)

which measures the amount of information of the h-step
ahead forecast error variance for variable j accounted for
by innovations/exogenous shocks to variable k. The h-step
ahead normalized spillover from component k to j is:

s
k↓≃j
h = 100 ⇐ w̃h,jk, w̃h,jk =

wh,jk

!d
k=1wh,jk

(9)

where w̃h,jk is the normalized variance decomposition.
s
k↓≃j
h is the proportion of the h-step ahead forecast error

variance for node j attributed to changes in node k, and
becomes the weight for a directed edge from node k to j

for BSG, Gh(ε,!a|Z). This definition makes BSG an in-
terpretable graph with respect to forecast errors, with direct
explanation of edge weight meaning. Prior methods such as
GVAR would only estimate the sign of a temporal relation-
ship [Marcinkevičs and Vogt, 2021]. See Algorithm 1 for
details on estimating BSG edges from posterior distributions
of Bayesian VAR parameters.



BSG Network Measures as Systemic Risk Indicators. We
propose novel BSG network measures based on function-
als of BSG edges over forecast horizon h that can describe
system-wide behavior and node importance over time. The
goal is to quantify cumulative temporal interactions and
spillovers within a system, as well as identify strongly influ-
ential or vulnerable nodes.

We define the h-spillover index as the magnitude of h-
step normalized spillovers across all components, which
describes the total spillover effect experienced over the full
graph. The h-spillover index can be viewed as a measure of
cumulative risk within the system after h time periods; the
higher it is, the more fragile the system is to innovations in
any individual node.

S(·) = Sh =
d∑

j=1

d∑

k=1
j ↓=k

s
k↔j
h (10)

We may then be interested in identifying specific nodes at
high risk over the full graph. For example, say we wanted
to rank the individual nodes by the magnitude of spillovers
experienced. We define s

↗↔j
h as the total spillover effect

from all other components to a specific component j.

V (·) = s
↗↔j
h =

d∑

↘k,k ↓=j

s
k↔j
h (11)

s
↗↔j
h can be viewed as the vulnerability score for a specific

node at h-steps ahead, and can theoretically take on values
between [0, 100]. The vulnerability score for node j can
be interpreted as the proportion of FEVD not attributed
to innovations to j itself. In particular, nodes with higher
vulnerability are more susceptible to shocks and cascading
effects from other components within the system.

Alternatively, we may be interested in pinpointing the
sources of risks to the system. We define the influence
score for a specific node, sk↔↗

h , as:

I(·) = s
k↔↗
h =

∑d
↘j,j ↓=k s

k↔j
h

Sh
(12)

Note that the numerator of this expression quantifies the
total spillover effect on the graph originating from compo-
nent k, which is then standardized by the h-spillover index.
This allows us to interpret the influence score for node k

as the proportion of total spillover effect on the entire sys-
tem attributed to innovations in k, which again takes on
values between [0, 100] and is comparable across different
networks. In particular, nodes with higher influence leads
to greater impact on the entire system if there is a shock
or change to the node. Collectively, these BSG network
measures have wide applicability for describing real-world
systems and as systemic risk indicators (SRI), which cap-
tures holistic risk arising from overall network connectivity
[Che-Castaldo et al., 2021; De Bandt and Hartmann, 2000].

BSG Estimation & Uncertainty Quantification. Given
a single realized MTS Zt, we can construct BSG
Gh(ω,!a|Z) directly via Bayesian VAR estimation. We
first draw M samples, {ε(m)

,!a
(m)}, from the posterior

distribution of model parameters. For fixed forecast hori-
zon h, we compute w

(m)
h,jk, the h-step ahead forecast error

variance, for each sample. BSG edges are then constructed
by averaging over M , where s̄

k↔j
h = 1

M

∑M
s
(m),k↔j
h is a

weighted directed edge from node k to node j. BSG nodes
are the individual components of Zt. BSG network mea-
sures can also be computed directly by averaging over M
samples, e.g., the influence score for node k would be esti-
mated via s̄k↔↗

h = 1
M!M

m=1[
∑d

↘j,j ↓=k s
(m),k↔j
h /S

(m)
h ]. See

Algorithm 1. This process also allows for uncertainty quan-
tification for any BSG edge or network measure by con-
structing credible intervals over M estimates. We can also
leverage the simplicity of Highest Posterior Density Inter-
val (HPDI) or Bayes Factor [Kass and Raftery, 1995]. See
Section 5 for an example with California wildfire data.

Stationarity and Optimal h↗ for Equilibrium BSG. A
VAR(1) model can be written with an infinite sum as:

zt = µ+
≃∑

i=0

ϖiat→i (13)

where ϖi = ω
i
1 for i ↑ 0 and µ is a d-dimensional constant.

See Appendix A for details. If the series is stationary, then
the absolute value of the eigenvalues of ω1 will be strictly
less than 1. Various transformations, including detrending,
removing seasonality, or differencing the series [Granger
and Newbold, 2014] are recommended to ensure stationar-
ity before parameter estimation. MTS with DAG temporal
network structures can be viewed as a subset of VARs with
restrictive assumptions on ε. In the special case of a VAR(1)
model where the temporal network structure of zt can be
described by a DAG, zt is stationary; see Theorem 1 and
proof in Appendix B.

Theorem 1. If ω1 is a DAG, then (1) no component-wise

autocorrelation exists, (2) ω1 can be specified by a strictly

triangular matrix, (3) all eigenvalues of ω1 are 0 and hence

zt is stationary.

Under stationarity, BSG can reliably model cumulative re-
sponse functions if shocks are not persistent and the system
will return to equilibrium. See Algorithm 1 for choosing the
optimal h↗-step. The horizon h can be interpreted as a tun-
ing parameter that controls the trade-off between learning
immediate versus cumulative effects for BSG.

3 BSG FOR QUANTIFYING INDIRECT
SPILLOVERS

We showcase how BSG models temporal spillovers that
materialize after multiple periods. Consider a 5-dimensional



Figure 2: Normalized spillover evolution from Node 3 to 5 (red) over h. Arrow width is prop. to BSG edge strength.

Table 1: Average NDCG (Accuracy) for Identifying Sink & Source Nodes by Network Specification, 5 Rep.

Stationary 1. DAG, d = 20 2. Directed Cyclic, d = 20 3. Bipartite, d = 20

NDCG@20 NDCG@20 NDCG@20 NDCG@20 NDCG@20 NDCG@20
Method Source Nodes Sink Nodes Source Nodes Sink Nodes Source Nodes Sink Nodes

BSG, h = 1 0.901 ± 0.033 0.997 ± 0.004 0.828 ± 0.009 1 ± 0 0.892 ± 0.072 0.988 ± 0.009
BSG, h = 5 0.967 ± 0.041 0.998 ± 0.002 0.959 ± 0.039 0.999 ± 0.001 1 ± 0 1 ± 0
BSG, h = 10 0.966 ± 0.041 0.998 ± 0.002 0.962 ± 0.037 0.996 ± 0.002 1 ± 0 1 ± 0

VAR-Between 0.876 ± 0.051 0.722 ± 0.051 0.872 ± 0.052 0.726 ± 0.052 0.847 ± 0.09 0.702 ± 0.09
VAR-Closeness 0.79 ± 0.042 0.808 ± 0.042 0.785 ± 0.069 0.813 ± 0.069 0.76 ± 0.08 0.789 ± 0.08
VAR-Degree 0.936 ± 0.034 0.976 ± 0.014 0.931 ± 0.037 0.946 ± 0.046 0.981 ± 0.033 0.974 ± 0.014
VAR-Eigen 0.715 ± 0.032 0.883 ± 0.032 0.720 ± 0.051 0.879 ± 0.051 0.642 ± 0.017 0.908 ± 0.017

DBN-Between 0.766 ± 0.047 0.832 ± 0.047 0.766 ± 0.044 0.833 ± 0.044 0.674 ± 0.078 0.876 ± 0.078
DBN-Closeness 0.79 ± 0.044 0.809 ± 0.044 0.869 ± 0.041 0.729 ± 0.041 0.844 ± 0.108 0.705 ± 0.108
DBN-Degree 0.793 ± 0.058 0.827 ± 0.038 0.874 ± 0.056 0.855 ± 0.053 0.902 ± 0.031 0.858 ± 0.071
DBN-Eigencentrality 0.744 ± 0.02 0.854 ± 0.02 0.739 ± 0.05 0.859 ± 0.05 0.705 ± 0.109 0.845 ± 0.109

GVAR-Between 0.851 ± 0.036 0.747 ± 0.036 0.645 ± 0.041 0.954 ± 0.041 0.831 ± 0.119 0.719 ± 0.119
GVAR-Closeness 0.712 ± 0.041 0.886 ± 0.041 0.643 ± 0.028 0.955 ± 0.028 0.663 ± 0.047 0.887 ± 0.047
GVAR-Degree † † † † † †
GVAR-Eigencentrality 0.718 ± 0.057 0.881 ± 0.057 0.953 ± 0.032 0.646 ± 0.032 0.642 ± 0.016 0.907 ± 0.016

— indicates retrieved NGC graph is degenerate, e.g., only edges are self-directed.
† indicates network measure cannot distinguish between nodes, e.g., all in/out degrees are equal.

VAR(1) time series represented by the directed graph of
temporal interactions (ω1) in Figure 3, with true parameters:

ω1 =





0.8 0.0 0.0 0.0 0.0
0.5 0.8 0.0 0.0 0.0
0.0 0.0 0.8 0.0 0.0
0.0 0.0 0.7 0.8 0.0
0.0 0.0 0.0 0.4 0.8




(14)

!a = diag(5). (15)

Eigen-decomposition of ω1 indicates that all eigenvalues
have magnitude ⇒ 1 and this network is stationary with
standard independent error terms. Nodes 3 and 1 are analo-
gous to source nodes with high out-degree centrality, and 5
and 3 to sink nodes with high in-degree centrality [Borgatti,
2005; Bollobás, 2012; Goldberg et al., 1989]. Node 5 will
experience spillovers from Node 3 via Node 4 after multiple
time periods, but this relationship is omitted in a simple
NGC. This limitation is suitably addressed with a BSG with
h > 1; see Figure 2 where indirect spillover (red arrow from
3 to 5) becomes stronger as h increases.

In Figure 4, we plot average BSG directed edge weights
(h-step ahead normalized spillover) from Nodes 1-4 into
Node 5. The indirect spillover effect through intermediary
Node 4 manifests after 2-steps ahead forecast and signifi-
cantly amplifies as the forecast horizon increases (turquoise
line) before flattening after h = 17. We can directly inter-
pret this edge: the posterior mean for s3↔5

20 is 80.1% with
95% HPDI of (71.9%, 87.7%), which predicts that after 20
periods, roughly 80.1% of forecast variability for node 5
can be attributed to changes in node 3. In contrast, the edge
from Node 4 to Node 5 rapidly declines past h = 4. With
prior methods of only estimating static NGC, we would not
be able to observe nor quantify these spillover effects that
evolve over longer forecast horizons.

4 BSG FOR IDENTIFYING NETWORK
SOURCE & SINK NODES

We illustrate how BSG network measures accurately ranks
and identifies nodes of interest compared to baselines with



Figure 3: Graph of temporal interactions ω1 for a VAR(1)
model. Goal is to quantify spillover effect over time (red).

Figure 4: Edge strength (normalized spillover) into Node 5
over h. Direct impact via Node 4 (purple) declines over time
while indirect spillover via Node 3 (turquoise) accumulates
over time. BSG stabilizes at h↗ = 17.

simulated MTS. Since relative order matters, this is a rank-
ing instead of prediction task. Performance is evaluated by
Normalized Discounted Cumulative Gain (NDCG) [Val-
izadegan et al., 2009]. NDCG measures ranking quality of
a node ordering by BSG network measures or other graph
measures, e.g., source nodes are ranked highly influential.
NDCG is between [0, 1] and directly comparable across
methods; see Appendix C.

Identifying Nodes Across Network Specifications. 3 sta-
tionary network specifications (ω1) are used for simulating 5
MTS replicates: (1) a DAG, (2) a directed cyclic graph with
autocorrelation = 0.5, and (3) a bi-partite graph. Networks
(1) and (2) have 5 source and sink nodes and Network (3)
has 10 source and sink nodes; all have independent Gaussian
noise for !a. Edge weights are sampled from a Unif(0,1)
distribution; T = 500 and d = 20 for each network. We
construct BSG1 SRIs for h = {1, 5, 10}, and use influ-
ence and vulnerability scores for ranking source and sink

1Example code at https://github.com/gdeng96/bsg

Algorithm 1 Estimating Bayesian Spillover Graph with
Optimal h↗

Draw M posterior samples for ω = [ω0,ω1, ...,ωp], !a

1: while m < M do sample
2: !a

(m) ↗ W
→1(V0 + S̃, n0 + n)

3: vec(ω(m)) ↗ N(vec(ω̃),!a
(m) ↘ (X↑X+C)→1)

4: end while
Iterate over h until converge

5: for h in 1, 2, ..., H and ϱ > 0 do
6: Compute w

(m)
h,jk from !a

(m)
,ω(m)

7: Compute s
(m),k↔j
h from w

(m)
h,jk

8: Compute posterior mean s̄
k↔j
h = 1

M

∑M
s
(m),k↔j
h

9: if |s̄k↔j
h ↓ s̄

k↔j
h→1 | < ϱ, ⇑j, k then

10: h
↗ = h

11: end if
12: end for

Construct BSG Gh(ω,!a|Z) with edges s̄k↔j
h↗

Figure 5: BSG Accuracy for identifying source nodes via
influence scores, w.r.t. h-step ahead forecast horizon and
different ϑjk strengths.

nodes respectively. The first set of baselines are 4 standard
graph measures on a NGC graph: in/out degree distributions,
eigen-centrality, betweenness centrality, and closeness cen-
trality. NGC is constructed from a VAR(1) model fitted
via the MTS package, and significant edges are identified
via multiple-testing with Benjamini-Hochberg procedure
[Benjamini and Hochberg, 1995]. Another set of baselines
is DBN and GVAR2 combined with the 4 graph measures
above, because these methods are designed only to retrieve
NGC graphs. For fairness of comparison, GVAR lag is re-
stricted to 1 and run with default hidden units/layer (50),
hyperparameters ς = 0.1 and φ = 0.01, and 500 epochs in
PyTorch. DBN uses default settings with the dbnR package.

Average NDCG are reported in Table 1 for each combina-

2GVAR code available at https://github.com/i6092467/GVAR

https://github.com/gdeng96/bsg
https://github.com/i6092467/GVAR


tion of baseline NGC graph-recovery method and network
measure. Out- and in-degree centralities (Degree) are used
for source and sink nodes respectively. BSG with h = 10
yields the highest accuracy for both node types across all
three networks specifications.

Effect of Forecast Horizon h and Error Covariance !a

We perform an ablation experiment to answer two questions:
(1) How does choice of hyper-parameter h impact BSG

quality and accuracy? (2) How well does BSG perform

across different error dependency structures?

We utilize Network (2), which allows for bi-directional
temporal relationships and cycles. Each component has
unit variance (ϑkk = 1), and pairwise covariance is
{0.1, 0.3, 0.5, 0.7, 0.9} corresponding to the strength of de-
pendencies in !a. d = 24 with 8 source and sink nodes;
for each !a specification, we generate 5 replicates and esti-
mate corresponding BSG for 20 values of h, then compute
accuracy (NDCG) for source node identification. Figure 5
shows that good choices of h ranges between 5-10, and
BSG performance quickly stabilizes after a few forecast pe-
riods while successfully identifying the proper source nodes.
Good choices for h depends mostly on ω1 and is influenced
by the speed at which the system reaches equilibrium (mean-
reverts), not necessarily the size of the network. Lower h
values yield higher accuracy for identifying sink nodes; a
good BSG should select h that maximizes both quantities.

In Table 1 of Appendix D.1 , we report NDCG for identify-
ing sink and source nodes in networks with weak, medium,
and strongly correlated !a, using the same VAR, DBN, and
GVAR specifications as previous experiments. Results show
that BSG influence and vulnerability scores outperform
all benchmarks even under strongly correlated error terms.
When ϑjk is moderately or strongly correlated, standard
VAR breaks down and produces a degenerate graph (i.e.,
multiple testing results in zero significant edges); bench-
mark network measures collapse in this case. DBN performs
mostly consistently, while for GVAR, corresponding in/out-
degrees do not distinguish between influential nodes. BSG
avoid these pitfalls since it inherently accounts for error de-
pendencies and is more applicable for real-world dynamic
networks with strong correlations.

Non-Linear Dynamic Systems Recent works have also
focused on dynamic systems with non-linear or higher-
order temporal relationships. A prime example is the Lokta-
Volterra predator-prey model Bacaër [2011]. Four param-
eters {↼,ε, φ, ↽} correspond to prey ≃ itself, predator ≃
prey, predator ≃ itself, and prey ≃ predator interaction
strengths. We generate 5 MTS replicates using the same
parameter specifications ({1.2, 0.2, 1.1, 0.05}) as Marcinke-
vičs and Vogt [2021], with T = {50, 200, 1000}. We com-
pare BSG influence/vulnerability scores vs. benchmarks for
correctly identifying nodes as predator (source) and prey
(sink). Results and example MTS simulation is reported in

Table 2 and Figure 1 in Appendix D.2; BSG at all forecast
horizons outperforms baselines for T = 50 and T = 200.
For T = 1000, BSG performs consistently well for iden-
tifying source nodes, but has lower accuracy for identify-
ing sink nodes, likely due to long-range dependence for a
longer MTS. GVAR-Closeness has marginally higher accu-
racy (+0.014) for identifying predators compared to BSG
(h = 1) but very low accuracy (0.554) for identifying prey.
Meanwhile, standard VAR after FDR adjustment produces
degenerate graphs. On average, BSG still performs well on
between both source and sink node identification; in practice,
it may be useful to first difference MTS with higher-order
autocorrelation.

5 BSG FOR UNDERSTANDING
REAL-WORLD SYSTEMS

Figure 6: BSG for Kincade Fire, h=12 hours ahead. Red
indicates source and blue indicates sink nodes. Arrow width
is prop. to BSG edge weight. See Figure 4 in Appendix E
for 95% HPDI of spillovers.

Inferring Spillovers from California Wildfires. The Kin-
cade Fire was the largest California wildfire in 2019, burning
a total of 77,758 acres. It originated in Sonoma County and
dangerous PM10/PM2.5 particles in the air posed a serious
public health risk spillover for nearby counties with high
population density. We use BSG to investigate spillovers
and rank at-risk nodes (counties) as measured by hourly PM
2.5 particle concentrations from Oct 22-Nov 7. We have a
reasonable ground-truth for underlying network structure
with Sonoma County as the single source node. Therefore,
any strong BSG edges detected between Sonoma and non-
adjacent counties, or two counties that does not include
Sonoma, can be considered indirect spillover effects.

Data Description. Using public data from EPA (Environ-



Figure 7: 12-hour normalized spillover for Kincade Fire.
Blue arrows indicate direct risk for adjacent counties, and
orange arrows indicate spillovers for non-adjacent counties.

mental Protection Agency), hourly PM 2.5 concentrations
are extracted for 10 counties within 50 miles of Sonoma
County in Northern California; Yolo, Sutter, and Lake coun-
ties had no data available. See Figure 2 in Appendix E for
MTS plot. No visible trend or seasonality effects are ob-
served; autocorrelation plots show evidence of long memory
for some counties and we also observe prominent spikes,
particularly initially in Sonoma and later with time lag in
other counties. To ensure stationarity, we proceed with the
first order difference of the MTS.

Quantifying Spillover & At-risk Nodes. In Figure 6, we
illustrate all BSG edges (h = 12) greater than the 80th
percentile in magnitude for simplicity, with arrow width pro-
portional to edge weights. The top source node Sonoma (by
BSG influence score) is shaded in red, and top sink nodes
(by vulnerability score) is shaded in blue. The BSG neatly
captures the Kincade Fire in that Sonoma has the major-
ity of all outgoing edges, while further away, non-adjacent
counties (sink nodes) such as Colusa and Alameda have
strong spillovers both directly from Sonoma and indirectly
via other counties as well. In particular, note the cycle from
Sonoma ≃ Contra Costa ⇓ Alameda where sink nodes
also interact and amplify spillover effects. We can further
quantify downstream spillovers via BSG edge weights for
counties to the southeast of Sonoma; see Figure 7 for county
map with spillovers. Roughly 10% of FEVD for each county
can be attributed to changes in Sonoma’s PM 2.5 concentra-
tion. One possible explanation is downsloping winds from
the north [Mass and Ovens, 2019], which is particularly

concerning due to the far higher population density of im-
pacted counties. Two other notable indirect spillovers not
involving Sonoma include those from San Mateo to Contra
Costa (12.3%) and Alameda (9.3%).

BSG influence and vulnerability scores for each county are
reported in Figure 3 in Appendix E. Sonoma County is the
most influential node, accounting for more than 40.9% of
total spillover effect across all 10 counties on average, with
the 95% HPDI as (17.9%, 62.7%). BSG accurately identifies
the origin of the Kincade Fire while also showing Sonoma
itself is the least vulnerable node. Locations most at risk
to the fire, by vulnerability score, are Alameda and Contra
Costa followed by San Francisco, Solano, and Colusa. None
of these 5 counties are adjacent to Sonoma; they incur higher
risk via spillovers from intermediary Marin and Napa coun-
ties, accumulated over multiple time periods. These risk
quantifications from BSG have practical implications for
policies with respect to wildfire relief and public health. For
example, although FEMA allocated nearly 60 million dol-
lars in federal relief [FEM, 2019], the funds were strictly
designated for Sonoma County. Meanwhile, BSG as an ex-
ploratory tool clearly identifies much broader spillovers and
at-risk counties.

6 DISCUSSION

BSG is a novel framework for modeling temporal inter-
actions and identifying important nodes within a dynamic
system based on a single realized multivariate time series.
BSG combines interpretable forecast error based network
measures with uncertainty quantification via sampling from
posterior graph distribution, and demonstrates robust perfor-
mance across various graph specifications and error depen-
dency structures. The hyperparameter h allows for custom
learning of both short and long-term temporal relationships,
including indirect spillovers, which are better suited for
understanding how real-world systems evolve over time.
Careful choice of horizon h can help model equilibrium
state of systems and optimize proper ranking of sink and
source nodes.

A key application of BSG could be for analyzing spillover
impact in response to new regulations and economic poli-
cies. For example, consider when a significant event occurs
in a particular city, e.g., a new tax policy is passed or a lo-
cal manufacturer is shut-down and off-shored. Prior works
have utilized impulse response functions to analyze policy
interventions [Sims, 1980; Ericsson et al., 1998; Lütkepohl,
2005]; we propose leveraging BSG to examine and quantify
both positive and negative externalities (spillover effects) in
terms of employment statistics, traffic congestion, local rent,
wages, etc., for neighboring cities or counties. Inference via
BSG can be for both short-term and long-term impact based
on forecast horizon, and used to inform both the public and
policymakers.



Another potential BSG application is in time series analysis
of fMRI data in healthcare and medicine [Penny et al., 2005];
for example, we can examine individual brain fMRI time
series where each component are atlas based regions of
interest, i.e. aggregated behavior from sets of voxels, which
represent smaller unit regions in the brain. The time series
could measure brain activity in response to some stimuli
or treatment, and a BSG can illustrate cumulative effect of
temporal interactions between different brain regions over
time. The novel BSG network measures (influence score,
vulnerability score) can also pinpoint critical components
of brain connectivity, analogous to sink or source nodes.

Future work can dive deep into applying BSG for some
of these datasets aforementioned, as well as extending the
BSG framework for Bayesian networks with time-varying
coefficients [Kowal et al., 2019] or latent state-space repre-
sentations.
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