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ABSTRACT

Understanding identifiability of latent content and style variables from unaligned
multi-domain data is essential for tasks such as domain translation and data gener-
ation. Existing works on content-style identification were often developed under
somewhat stringent conditions, e.g., that all latent components are mutually in-
dependent and that the dimensions of the content and style variables are known.
We introduce a new analytical framework via cross-domain latent distribution

matching (LDM), which establishes content-style identifiability under substantially
more relaxed conditions. Specifically, we show that restrictive assumptions such
as component-wise independence of the latent variables can be removed. Most
notably, we prove that prior knowledge of the content and style dimensions is not
necessary for ensuring identifiability, if sparsity constraints are properly imposed
onto the learned latent representations. Bypassing the knowledge of the exact
latent dimension has been a longstanding aspiration in unsupervised representation
learning—our analysis is the first to underpin its theoretical and practical viability.
On the implementation side, we recast the LDM formulation into a regularized
multi-domain GAN loss with coupled latent variables. We show that the reformula-
tion is equivalent to LDM under mild conditions—yet requiring considerably less
computational resource. Experiments corroborate with our theoretical claims.

1 INTRODUCTION

In multi-domain learning, “domains” are typically characterized by a distinct “style" that sets their
data apart from others (Choi et al., 2020). Take handwritten digits as an example: writing styles of
different persons can define different domains. Shared information across all domains, such as the
identities of the digits in this case, is termed as “content". Learning content and style representations
from multi-domain data facilitates many important applications, e.g., domain translation (Huang et al.,
2018), image synthesis (Choi et al., 2020), and self-supervised representation learning (Von Kügelgen
et al., 2021; Lyu et al., 2022; Daunhawer et al., 2023); see more in Huang et al. (2018); Lee et al.
(2020); Choi et al. (2020); Wang et al. (2016); Yang et al. (2020); Wu et al. (2019).

Recent advances showed that understanding the identfiability of the latent content and style compo-
nents from multi-domain data allows to design more reliable, predicable, and trustworthy learning
systems (Hyvarinen et al., 2019; Lyu et al., 2022; Xie et al., 2023; Kong et al., 2022; Shrestha & Fu,
2024; Gresele et al., 2020; Gulrajani & Hashimoto, 2022). A number of works studied content/style
identifiability when the multi-domain data have sample-to-sample cross-domain alignment according
to shared contents. Specifically, identifiability was established for sample-aligned multi-domain
settings under the assumption that multi-domain data are linear and nonlinear mixtures of latent
content and style components, in the context of canonical correlation analysis (CCA), multiview
analysis and self-supervised learning (SSL); see Ibrahim et al. (2021); Sørensen et al. (2021); Wang
& Isola (2020); Von Kügelgen et al. (2021); Lyu et al. (2022); Karakasis & Sidiropoulos (2023);
Daunhawer et al. (2023)

1



Published as a conference paper at ICLR 2025

When cross-domain samples are unaligned, it becomes significantly more challenging to establish
identifiability of the content and style components. The recent works in Xie et al. (2023); Sturma et al.
(2023); Kong et al. (2022); Timilsina et al. (2024) made meaningful progresses towards this goal.
These works considered mixture models of content and style for each domain, similar to those in Lyu
et al. (2022); Von Kügelgen et al. (2021); Ibrahim et al. (2021); Sørensen et al. (2021); Karakasis
& Sidiropoulos (2023); Daunhawer et al. (2023), but without cross-domain alignment. The new
results in (Xie et al., 2023; Sturma et al., 2023; Kong et al., 2022; Timilsina et al., 2024) provide
theory-backed solutions to a suite of timely and important applications, e.g., cross-language retrieval,
multimodal single cell data alignment, causal representation learning, and image data translation and
generation.

Challenges. The content-style identifiability results in existing unaligned multi-domain learning
works are intriguing and insightful, but some challenges remain. First, the conditions used in their
proofs have a number of restrictions, which limits the proof’s applicability in many cases. For
example, Sturma et al. (2023); Timilsina et al. (2024) assume that the all data reside in a linear
subspace, which is over-simplification of reality; Xie et al. (2023); Kong et al. (2022) assume that
the content and style variables are component-wise independent and that a large number of domains
exist—both can be hard to fulfil. Second, the existing identifiability analyses in unaligned multi-
domain learning (Xie et al., 2023; Kong et al., 2022; Sturma et al., 2023; Timilsina et al., 2024)
(as well as those in aligned multi-domain learning) all need to know the dimensions of the content
and style variables, which are not available in practice. Selecting these dimensions often involves
extensive trial and error.

Contributions. In this work, we advance the analytical and computational aspects of content-style
learning from unaligned multi-domain data. Our detailed contributions are as follows:

(i) Enhanced Identifiability of Content and Style: We propose a content-style identification criterion
via constrained latent distribution matching (LDM). We show that the identifiability conditions under
LDM are much more relaxed relative to those in existing works. Specifically, our results hold for
nonlinear mixture models, as opposed to the linear ones used in Sturma et al. (2023); Timilsina
et al. (2024). Unlike Xie et al. (2023); Kong et al. (2022); Sturma et al. (2023), no elementwise
mutual independence assumption is needed in our proof. More importantly, our result holds for as
few as two domains (whereas Xie et al. (2023); Kong et al. (2022) needs the existence of a large
number of domains). The new results widens the applicability of content-style identifiable models in
a substantial way.

(ii) Content-Style Identifiability under Unknown Latent Dimensions: We consider the scenario where
the latent content and style dimensions are unknown—which is the case in practical settings. Note
that existing works determine the content and style dimensions often by heuristics, e.g., trial-and-error.
However, wrongly selected latent dimensions can largely degrade the performance of some tasks;
e.g., an over-estimated style dimension hinders the diversity of data in generation tasks (see Sec. 6).
We show that, by imposing proper sparsity constraints onto the LDM formulation, the content-style
identifiability is retained even without knowing the exact latent dimensions. To our knowledge, this
result is the first of the kind in the context of nonlinear mixture identification.

(iii) Efficient Implementation: We prove that the LDM formulation is equivalent to a sparsity-
constrained, latent variable-coupled muti-domain GAN loss, under reasonable conditions. Directly
realizing the LDM formulation would impose multiple complex modules, including the DM and
content-style separation modules, in the learned latent domain. Simultaneously learning the latent
space and optimizing these modules can be computationally involved. The GAN-based formulation
circumvents such complicated operations and thus substantially simplifies the implementation.

For theory validation, we perform experiments over a series of image translation and generation tasks.

Notation. Please see Appendix A.1 for detailed notation designation. A particular remark is that Px

and px(·) represent the probability measure of x and the probability density function (PDF) of x,
respectively. The “push forward” notation [f ]#Px means the distribution of f(x).
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2 BACKGROUND

Content-Style Modeling in Multi-Domain Analysis. Consider the case where the data are acquired
over N domains X (n) ✓ Rd, where n = 1, . . . , N . We assume that any sample from domain n can
be represented as a function (or, a nonlinear mixture) of content and style components, i.e.,

c ⇠ Pc, s
(n) ⇠ Ps(n) , x(n) = g(c, s(n)), (1)

where Ps(n) and Pc are distributions of the style components in nth domain and the content compo-
nents, respectively. Let C ✓ RdC and S(n) ✓ RdS be the open set supports of Pc and Ps(n) . Then,
we define X (n) = {g(c, s(n))|c, s(n) 2 C ⇥ S(n)} ✓ Rd as the support of x(n) ⇠ Px(n) . Let
X = [N

n=1X (n) ✓ Rd and S = [N
n=1S(n) ✓ RdS represent the whole data space and the whole style

space, respectively. We assume that the nonlinear function g : C⇥S ! X is a differentiable bijective

function. This is a common assumption in latent component identification works, e.g., Von Kügelgen
et al. (2021); Hyvarinen et al. (2019); Khemakhem et al. (2020), which basically says that every
data sample has an associated unique representation in a latent domain. A remark is that although
X ✓ Rd and d might be greater than dS + dC, the bijective property can hold as X resides within a
low dimensional manifold (Von Kügelgen et al., 2021).

Learned

content

style

Figure 1: Cross-domain translation from
source domain s to target domain t.

The model in (1) is widely adopted (explicitly or implic-
itly) in multi-domain analysis; see examples from Huang
et al. (2018); Lee et al. (2020); Choi et al. (2020); Wang
et al. (2016); Yang et al. (2020); Wu et al. (2019). This
model makes sense when the “domains” are participated
using distinguishable semantic meaning; e.g., in Fig. 1,
“style” includes the writing manners (handwritten/printed)
and display background colors (black/gray). Under the
model in (1), learning g (and its inverse f ) as well as
the latent components c and s(n) is the key to facilitate
a number of important applications.

Application: Cross-Domain Translation. Learning content and style components from a sample in
the source domain (ci, s

(s)
i ) = f(x(s)

i ) and a sample from the target domain (cj , s
(t)
j ) = f(x(t)

j )

can assist translate x(s)
i to its corresponding representation in the target domain. This can be realized

by generating a new sample x(s!t)
i,j = g(ci, s

(t)
j ); see Fig. 1 for illustration and Lyu et al. (2022);

Huang et al. (2018); Wang et al. (2016).

Application: Data Generation. If c and s(n) can be learned from the samples, then one can also learn
the distributions Pc and Ps(n) using off-the-shelf distribution learning tools, e.g., GAN (Goodfellow
et al., 2014). This way, one can draw samples from the distributions, i.e., cnew ⇠ Pc, s

(n)
new ⇠ Ps(n)

and generate new samples x(n)
new = g(cnew, s

(n)
new) with intended styles.

Other Applications. We should mention that the content-style modeling is also a critical perspective
for understanding representation learning paradigms, e.g., the SSL frameworks (Von Kügelgen et al.,
2021; Lyu et al., 2022; Daunhawer et al., 2023; Wang & Isola, 2020).

Content-Style Identifiability. In recent years, the identifiability of f , c and s(n) started drawing
attention, due to its usefulness in building more reliable/predictable systems.

Aligned Domains: Results from Self-Supervised Learning (SSL). The works (Von Kügelgen et al.,
2021; Daunhawer et al., 2023; Lyu et al., 2022; Karakasis & Sidiropoulos, 2023) studied content
identifiability in the context of representation learning, in particular, SSL and multiview learning.
It was shown that when N = 2, if content-shared pairs {x(1),x(2)} are available, then enforcing
f(x(1)) = f(x(2)), 8 content-shared pairs (x(1),x(2)) can provably learn c, under reasonable
conditions. The learning criterion can be realized by various loss functions, e.g., Euclidean fitting-
based (Lyu et al., 2022; Karakasis & Sidiropoulos, 2023) and contrastive loss-based (Von Kügelgen
et al., 2021; Daunhawer et al., 2023) criteria. The identifiability of the style components was also
considered under similar aligned domain settings; see (Lyu et al., 2022; Eastwood et al., 2023).

Unaligned Domains: Progresses and Challenges. Aligned samples are readily available in applica-
tions such as data-augmented SSL (Von Kügelgen et al., 2021; Daunhawer et al., 2023; Lyu et al.,

3



Published as a conference paper at ICLR 2025

2022). However, in other applications such as image style translation and image generation, aligned
samples are hard to acquire (Zhu et al., 2017). For unaligned multi-domain data, the identfiiability
issue of content and style has also been recently addressed. For example, the work of Sturma et al.
(2023) extended the linear ICA model to unaligned multi-domain settings, in the context of causal
learning. The work of Timilsina et al. (2024) took a similar linear mixture model but showed content-
style identifiability under more relaxed conditions. The work of Xie et al. (2023); Kong et al. (2022)
proved content-style identifiability under a more realistic nonlinear mixture model similar to that in
(1). However, the main result there relies on a number of somewhat stringent conditions. That is, two
notable assumptions in Xie et al. (2023); Kong et al. (2022) boil down to (i) that all components in
z = (c, s(n)) are elementwise statistically independent given the domain index n; and (ii) that there
exist at least 2dS + 1 domains. These conditions can be hard to fulfil. See more detailed discussions
on existing results in Appendix B.

The Dimension Knowledge Challenge. Notably, all the existing works in this domain (under both
aligned and unaligned settings) assume that the dimensions of c and s(n) are known. However, in
mixture model learning, such knowledge is hard to acquire (especially in the nonlinear mixture case).
As we will show, using wrongly selected dC and dS can be rather detrimental to content-style learning
tasks—e.g., an over-estimated style dimension could lead to a serious lack of diversity in generated
new samples. Consequently, the dimensions are often selected by extensive trial and error in practice.

3 MAIN RESULT

In this work, we revisit content-style learning from a latent distribution matching (LDM) viewpoint.
Recall that c and s(n) represent the content and the style of the nth domain, respectively. We assume:
Assumption 3.1 (Block Independence). The block variables c 2 RdC and {s(n) 2 RdS}Nn=1 are
statistically independent, i.e., p(c, s(1), . . . , s(N)) = pc(c)

QN
n=1 ps(n)(s(n)).

The assumption was used in various multi-domain models (Lyu et al., 2022; Eastwood et al., 2023;
Wang et al., 2016; Choi et al., 2020; Timilsina et al., 2024). It makes sense when the styles can be
combined with contents in an “arbitrary” way without affecting the contents (e.g., the writing style of
digits can change freely without affecting the identity of the digits). Next, we will use this assumption
to build our learning criterion. We propose the following learning criterion:

find f : X ! RdC+dS injective
s.t. [fC]#P

x(i)
= [fC]#P

x(j)
, i 6= j, 8i, j 2 [N ], (distribution matching) (2a)

[fS]#P
x(n) |= [fC]#P

x(n)
, 8n 2 [N ], (block-indep. enforcing) (2b)

where fC(x
(n)) 2 RdC represents the first dC outputs of f that are designated to represent the content

components, fS(x
(n)) 2 RdS represents the learned style from domain n, Eq. (2a) matches the distri-

butions of fC(x
(i)) and fC(x

(j))—i.e., the learned contents from domains i and j, respectively—and
Eq. (2b) imposes a block independence constraint on the learned content fC(x

(n)) and style fS(x
(n))

from each domain following Assumption (3.1).

3.1 WARM UP: ENHANCED IDENTIFIABILITY WITH KNOWN LATENT DIMENSIONS

We first show that the content-style identifiability under (1) and known dC and dS can be substantially
enhanced relative to existing works. We will remove the need for the dimension knowledge in the next
subsection. To establish identifiability via solving Problem (2), we make the following assumption:
Assumption 3.2 (Domain Variability). Let A ✓ Z := C ⇥ S be any measurable set that satisfies
(i) Pz(n) [A] > 0 for any n 2 [N ] and (ii) A cannot be expressed as B ⇥ S for any set B ⇢ C. Then,
there exists a pair of iA, jA 2 [N ] such that the following holds:

Pz(iA) [A] 6= Pz(jA) [A], . (3)

Note that for any A, we only need one pair of (iA, jA) to satisfy the condition, and the pair can change
over different A’s. Essentially, Eq. (3) requires that the styles have sufficiently diverse distributions.
This assumption is a standard characterization for the distributional diversity of the domains in the
literature; see Xie et al. (2023); Kong et al. (2022) and its variant Timilsina et al. (2024).
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Under Assumptions 3.1 and (3.2), denote bf as a solution to Problem (2). Then, we have:
Theorem 3.3 (Identifiability under Known Latent Dimensions). Under Eq. (1), suppose that As-

sumptions 3.1 and 3.2 hold, and that the bf is differentiable. Then, we have bfC(x
(n)) = �(c) and

bfS(x
(n)) = �(s(n)), 8n 2 [N ], where � : C ! RdC and � : S ! RdS are injective functions.

The proof of Theorem 3.3 is in Appendix C. Theorem 3.3 purports that the solution of Problem (2)
identifies the model (1)—including the content/style components and the inverse mapping of the
generative function g (up to � and �). Theorem 3.3 uses conditions that are significantly more relaxed
relative to those in existing works Xie et al. (2023); Sturma et al. (2023); Kong et al. (2022); Timilsina
et al. (2024). First, instead of assuming the elements of z(n) = (c, s(n)) are statistically independent
as in Xie et al. (2023); Sturma et al. (2023); Kong et al. (2022), our proof is based on the assumption
that the content and styles are block independent (cf. Assumption 3.1). This block-independence
assumption, which is the key for style identifiability, is similar to those in Lyu et al. (2022) and
Timilsina et al. (2024)—but the former assumes aligned domains and the latter can only work under
linear mixture models (see Theorem B.2 in Appendix B.2). Second, Theorem 3.3 does not need the
existence of N = 2dS + 1 domains as in Xie et al. (2023); Kong et al. (2022) (see Theorem B.3 in
Appendix B.3)—our result can hold over as few as N = 2 domains. As a result, our Theorem 3.3
applies to a considerably wider range of cases relative to those in existing works.

3.2 IDENTIFIABILITY WITHOUT DIMENSION KNOWLEDGE

Theorem 3.3 still uses the knowledge of dC and dS. In this subsection, we propose a modifed learning
criterion that does not use the exact dimension information. To proceed, let bdC and bdS denote the
user-specified latent dimensions for f , i.e., f : X ! RbdC+bdS , fC : X ! RbdC and fS : X ! RbdS .
Note that these dimensions need not to be exact. We consider the following learning criterion:

minimize
f : injective

NX

n=1

E
h���fS

⇣
x(n)

⌘���
0

i
(4a)

subject to [fC]#P
x(i)

= [fC]#P
x(j)

, 8i, j 2 [N ], (4b)

[fS]#P
x(n) |= [fC]#P

x(n)
, 8n 2 [N ], (4c)

Problem (4) minimizes the “effective dimension” of the extracted style component, while satisfying
the distribution matching and independence constraints. The idea is to use excessive bdC and bdS so that
one has enough dimensions to represent the content and style information. Note that trivial solutions
could occur when using over-estimated bdC and bdS. For instance, when fC is a constant function, fS

can still be an injective function of x(n) given large enough bdS. This pathological solution satisfies
both constraints (4b) and (4c). We use the sparsity objective in (4a) to “squeeze out” the redundant
dimensions in fS. This prevents the content information from “leaking” into the learned fS. We
formalize this intuition in the following theorem:
Theorem 3.4 (Identifiability without Dimension Knowledge). Assume that the conditions in Theo-

rem 3.3 hold. Let bf represent a solution of Problem (4) and bf is differentiable. Assume the following

conditions hold: (a) bdC � dC and bdS � dS. (b) 0 < pz(n)(z) < 1, 8z 2 Z = C ⇥ S, 8n 2 [N ].

Then, there exists injective functions � : C ! RbdC and � : S ! RbdS , 8n 2 [N ] such that

bfC(x
(n)) = �(c) and bfS(x

(n)) = �(s(n)), 8n 2 [N ].

The proof of Theorem 3.4 is in Appendix D. Theorem 3.4 means that using Problem (4), there is no
need to know dS or dC in advance. Also, note that no extra assumptions on c and s(n) are needed on
top of those in Theorem 3.3. Hence, the identifiability result has significant practical implications for
content-style identification, where the latent dimension in practice is always hard to acquire.

4 IMPLEMENTATION: SPARSITY-REGULARIZED MULTI-DOMAIN GAN

At first glance, a conceptually straightforward realization of the learning criterion in Problem (2)
could take the following form:
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minimize
f : injective

NX

i=1

NX

j>i

LDM(fC(x
(i)),fC(x

(j))) + �
NX

i=1

Lindep(fC(x
(i)),fS(x

(i))), (5)

where the first term and the second term promotes the distribution matching (DM) constraint (2a)
and the independence constraint (2b), respectively. Similarly, Problem (4) can be implemented in a
straightforward manner by adding a sparsity regularization term to Problem (5).
Remark 4.1. Problem (5) is potentially viable but can be costly: Both the LDM modules and the block
independence regularization on the learned components often needs rather nontrivial optimization
(see (Lyu et al., 2022)). Enforcing f to be injective also needs extra regularization, e.g., autoencoder
type regularization (Lyu et al., 2022; Zhu et al., 2017) and entropy-type regularization (Von Kügelgen
et al., 2021; Daunhawer et al., 2023).

In light of Remark 4.1, instead of using Problem (5), we reformulate Problems (2) and (4) as follows:

min
q,eC,eS

max
d(n)

NX

n=1

E
h
log

⇣
d(n)

⇣
x(n)

⌘⌘
+ log

⇣
1� d(n)

⇣
q
⇣
eC(rC), e

(n)
S (r(n)S )

⌘⌘⌘i
(6a)

subject to e(n)S (r(n)S ) has minimal ke(n)S (r(n)S )k0, 8r(n)S . (6b)

The above approximates Problems (2) and (4) when the constraint (6b) is absent and active, respec-
tively. In practice, the sparsity constraint can be approximated using sparsity regularization terms
(e.g., `1 norm) easily. Denote bdC and bdS are the estimates of dC and dS, respectively. The idea is
to learn invertible nonlinear mappings eC and e(n)S that transform independent Gaussian variables
(i.e., rC and r(n)S ) to represent content c and style s(n), respectively. Generate rC ⇠ N (0, I bdC

) and

construct an invertible eC such that eC(rC) 2 RbdC . Similarly, construct invertible e(n)S such that
e(n)S (r(n)S ) 2 RbdS with r(n)S ⇠ N (0, I bdS

). Then, the content and style are mixed by q to match the
distribution of x(n) using a logistic loss (i.e., GAN-type DM). In other words, the formulation looks
for eC, e(n)S and q such that Px(n) = Pq(n) , q(n) = q(eC(rC), e

(n)
S (r(n)S )), 8n 2 [N ]. This way,

instead of directly learning f , we learn the generative process g using q. Our next theorem shows
that q is indeed the inverse of f (up to some ambiguities).

To proceed, denote bC and bS(n) as the sets representing the range of beC and be(n)S , respectively. Then,
the effective domain of bq is bC ⇥ bS where bS = [n

bS(n). We show that:

Theorem 4.2. Let (bq,beC,be(n)S , bd) be any differentiable optimal solution of Problem (6). Let C and

S be simply connected open sets. Let 0 < pz(n)(z) < 1, 8z 2 Z = C ⇥ S . Under the assumptions

in Theorem 3.3, we have the following:

(a) If bdC = dC and bdS = dS and (6b) is absent, then bq : bC ⇥ bS ! X is bijective and bf = bq�1
is

also a solution of Problem (2).

(b) If bdC > dC, bdS > dS and bq : bC ⇥ bS ! X is bijective, bf = bq�1
is also a solution of Problem (4)1

.

Problem (6) has a number of practical advantages over the direct implementation in Problem (5).
Particularly, it avoids complex operations in the latent domain. In LDM, performing DM on fC(x

(i))
and fC(x

(j)) poses quite a nontrivial optimization process. This is because both of the inputs to
the DM modules (i.e., fC(x

(i)) for all i 2 [N ]) change from iteration to iteration—yet the DM
module (e.g., GAN and Wasserstein distance-based DM (Goodfellow et al., 2014; Arjovsky et al.,
2017)) itself often involves complex optimization with its own parameters updated on the fly. The
new formulation performs GAN-based DM in the data domain and keeps one input (the real data) to
every GAN module fixed. This reduces a lot of agony in optimization parameter tuning. Problem (6)
also does not need any explicit constraint/regularization to enforce the block independence of fC and

1Problem (4) requires bf to be injective. Here, although the bf learned by Problem (6) seems to be bijective
(due to bf = bq�1) instead of only injective, the bijectivity is w.r.t. the domains X ! bC ⇥ bS. The function is
indeed only injective when considered w.r.t. X ! R

bdC+bdS ; see Sec. A.2 “Injection, bijection, and surjection”.
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Table 1: Evaluation of the data generation task. Standard deviation reported using ± for style diversity

Method FID (#) Style Diversity (") Training time, hours (#)

AFHQ CelebA-HQ CelebA-7 AFHQ CelebA-HQ CelebA-7 AFHQ CelebA-HQ CelebA-7

Transitional-cGAN 38.00 8.12 70.45 – – – 29.65 32.56 12.53
StyleGAN-ADA 8.17 5.89 72.10 – – – 28.46 32.26 11.55

I-GAN 6.28 5.91 5.18 0.16 ± 0.02 0.07 ± 0.03 0.07 ±0.03 29.53 28.76 12.51
Proposed 6.19 5.70 5.27 0.50 ± 0.03 0.36 ± 0.04 0.26 ± 0.06 27.36 27.78 12.28

fS (which could be resource consuming (Lyu et al., 2022; Gretton et al., 2007)), as eC and e(n)S are
constructed to be block independent.

Another quite interesting observation is that, the proof of Theorem 4.2 (a) shows that the bijectivity
constraint on q is automatically fulfilled when an additional condition (i.e., that C and S are simply
connected) is met. This means that the LDM formulation would need extra modules, e.g., Ekr �
f(x)�xk2, to impose injectivity constraints, even when dS and dC are known. When dC and dS are
unknown, solving Problem (6) per se does not ensure q to be bijective. Nonetheless, we observed
that not explicitly enforcing bijectivity in implementations does not affect the performance in practice.
Similar phenomenon was observed in nICA implementations; see, e.g., (Hyvarinen & Morioka, 2017;
Hyvarinen et al., 2019).

5 RELATED WORKS

Nonlinear ICA. Learning content and style components from a nonlinear mixture model is reminis-
cent of nonlinear independent analysis (nICA) (Hyvärinen & Pajunen, 1999; Hyvarinen & Morioka,
2017; Hyvarinen et al., 2019). Most nICA works were developed under single domain settings,
with some recent generalizations to multiple views/domains (Gresele et al., 2020; Hyvarinen et al.,
2019). Nonetheless, nICA requires that all the latent variables are (conditionally) independent. This
is considered a somewhat restrictive assumption in content-style learning.

Content-Style Models in Aligned Multi-Domain Learning. Aligned multi-domain content-style
learning is a key technique in data-augmented SSL and representation learning. There, it was shown
that elementwise (conditional) independence is not needed, if the goal is to isolate content from style
(Von Kügelgen et al., 2021; Lyu et al., 2022; Karakasis & Sidiropoulos, 2023). It was further shown
that block independence (similar to Assumption 3.1) is the key to identify the style (Lyu et al., 2022;
Daunhawer et al., 2023). However, all these works require cross-domain data alignment.

Content-Style Identification in Unaligned Multi-Domain Learning. Identifiability of unaligned
multi-domain learning was studied in the context of various applications, e.g., image translation
(Shrestha & Fu, 2024), data synthesis (Xie et al., 2023), cross-domain information retrieval Timilsina
et al. (2024), and domain adaptation (Kong et al., 2022; Gulrajani & Hashimoto, 2022; Timilsina
et al., 2024). In applications, content-style disentanglement has been applied in various tasks, such as
(Hong et al., 2024; Huang et al., 2022; Dai et al., 2023). However, only a handful of works (Kong
et al., 2022; Xie et al., 2023; Timilsina et al., 2024) have investigated the identifiability aspects. The
work (Kong et al., 2022) postulated a similar content-style model as in (Xie et al., 2023) and came
up with identifiability conditions similar to those in (Xie et al., 2023). The mostly related work to
ours is (Xie et al., 2023), as both works are interested in content-style identification under (1). Our
implementation in Problem (6) partially recovers the marginal distribution matching criterion in (Xie
et al., 2023), despite the fact that our learning criteria started with an LDM perspective. Nonetheless,
our method enjoys much less restrictive model assumptions for content-style identifiability. Our
multi-domain GAN also admits more relaxed neural architecture (see Appendix G).

Content-Style Learning without Knowing Latent Dimensions. The SSL work (Von Kügelgen
et al., 2021) presented a proof that essentially established that the content can be learned without
knowing the exact dimension dC. However, their result was under the assumption that the domains
are aligned. In addition, the proof could not hold when style learning is also involved. Our proof
solved these challenges. The work in (Xie et al., 2023) used a mask-based formulation to remove the
requirement of knowing dC and dS. The mask-based formulation has the flavor of sparsity promoting
as in our proposed method. However, they still need to know dC + dS, which is unlikely available in
practice. In addition, the mask-based method in (Xie et al., 2023) did not have theoretical supports.
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Figure 2: Samples generated by learning content (pose of cat) and style (type of cat) from AFHQ.

6 NUMERICAL EXAMPLES

Multi-Domain Data Generation. For the data generation task, we validate our theoretical claims
using three real world datasets: animal faces (AFHQ) (Choi et al., 2020), CelebA-HQ (Karras et al.,
2018), and CelebA (Liu et al., 2015) with 3, 2, and 7 domains, respectively (see Appendix G.6).

The baselines here are I-GAN (Xie et al., 2023), StyleGAN-ADA (Karras et al., 2020) and
Transitional-cGAN (Shahbazi et al., 2021).

Following Xie et al. (2023), we use StyleGAN2-ADA (Karras et al., 2020) to represent our
generative function q in (6a). We set bdC = 384 and bdS = 128 in all the experiments. We
use an `1 regularization term �ke(n)S (r(n)S )k1 to approximate the sparsity constraint in (6b).
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(a) I-GAN (Xie et al., 2023)

different style samples
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(b) Proposed

Figure 3: Samples generated by combining the same content
c with s(n) for various n’s in AFHQ and CelebA-HQ.

Note that other sparsity-promoting
regularization (such as the `p function
with p < 1) can also be easily used
under our framework, which shows
similar effectiveness (see Appendix
H.4). We find that the algorithm is
not very sensitive to the choice � as
any positive � encourages sparsity of
e(n)S (r(n)S ). We use � = 0.3 for all
the experiments. More detailed exper-
imental settings are in Appendix G.

Fig. 2 shows the qualitative results
for content-style identification using
various methods for the cat domain
(n = 1) of AFHQ. For each row, we
fix the content part c = eC(rC) (i.e.,
pose of the cat) and randomly sam-
ple different styles s(1) = e(1)S (r(1)S )

where r(1)S ⇠ N (0, I bdS
) to generate

the images x(1) = q(c, s(1)). This
way, the samples s(1)i for i = 1, 2, . . .
correspond to various types of cats. Fig.2 (a) shows that the I-GAN appears to generate the same type
of cat even when repeatedly sampled from their learned distribution of s(1). This suggests that the
style components are not extracted properly. Fig. 2 (b) shows the result of using the proposed method
without any sparsity regularization. As explained earlier, this can lead to learning constant content
part with all information captured by the style part. Fig. 2(b) corroborates with the intuition since we
see little to no pose variation in the sampled contents (i.e., the three rows). Fig. 2 (c) shows the result
of proposed method, i.e., Problem (6). One can see that both content and style parts demonstrate
sufficient diversity, indicating well learned content and style distributions. Appendix H shows similar
results for other domains and datasets.

Fig. 3 shows the generated samples of x(n) for different n’s using models learned from the AFHQ
and CelebA-HQ datasets, which correspond to different species of animals (cat, dog, and tiger) and
different genders of people, respectively. The top three rows in each figure correspond to the three
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n’s (i.e., three domains) of the AFHQ dataset, whereas the bottom two rows correspond to two n’s of
the CelebA-HQ dataset.

Translation # 1 Translation # 2Source Image

(a) Proposed

Translation # 1 Translation # 2Source Image

(b) I-GAN (Gen)

Figure 4: Translation by combining content (pose)
randomly sampled styles from the dog domain.

Figure 5: Guided translation by combining content
(first column) with style (second column) of the
images.

For the jth row associated with each dataset, we
sample three different styles s(nj)

i , i 2 {1, 2, 3}
and combine it with a fixed content c to generate
the image x

(nj)
i = q(c, s

(nj)
i ) in the jth row

and ith column.

Both the baseline I-GAN and our method can
combine a fixed c̄ with s

(nj)
i for different i to

create content (pose)-consistent new data (see
all the rows). However, one can see that the
baseline I-GAN was not able to sample differ-
ent styles in each domain. It seems that every
domain n always repeatedly samples the same
style components s̄(n) as the same images al-
ways appear in the same row. The proposed
method can generate quite diverse style samples
in all the domains. Additional results are in the
Appendix H.

Table 1 shows the FID (Heusel et al., 2017),
style diversity scores, and training time of the
different methods. We use LPIPS distance
(Zhang et al., 2018) between pairs of images
with the same c̄ and different style samples
from s(n) to measure the style diversity. The
diversity scores are averaged over 6,000 im-
ages across all domains, where every 10 images
contain the same content with different styles.
Note that the baselines StyleGAN-ADA and
Transitional-cGAN do not learn content-
style models, and thus the style diversity scores
of theirs are not reported. One can see that the
FID scores of the methods are similar, mean-
ing that all methods generate realistic looking
images. However, the style diversity of the pro-
posed method is 3 to 5 times higher than the
baseline over all datasets. The conditional gen-
erative models (Transitional-cGAN and
StyleGAN-ADA) sometimes encountered convergence issues on specific datasets as reflected by
their FID scores. Finally, the training time of all the methods are in the similar range, the proposed
method being slightly faster for AFHQ and CelebA-HQ datasets.

Multi-Domain Translation.
Existing methods use a dedicated system for multi-domain translation (Choi et al., 2018; 2020; Yang
et al., 2023). However, since a multi-domain generative model can already disentangle content and
style (cf. Theorems-4.2 of this work), one can simply use the generative model for domain translation.

Given an image x(i) in the source domain i, in order to extract the corresponding content c or
style s(i) , one can simply solve (bc,bs) = argminc,s div(q(c, s),x(i)), where div is some distance
metric/divergence measure. There exists many approaches to solving the problem, often referred to
as GAN inversion (Xia et al., 2022). In our case, we simply use the Adam optimizer for this inversion
step. For div, we use a pre-trained VGG16 (Simonyan & Zisserman, 2014) neural network. More
details are in Appendix G. To generate the desired translation, the GAN inversion-extracted content
can be combined with a randomly sampled style s(t) = e(t)S (r(t)S ), r(t)S ⇠ N (0, I bdS

) from the target
domain t. Additionally, one can also extract style from an image in target domain and combine it
with extracted content from the source domain for guided translation.

9
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Table 2: Quantitative evaluation of all methods for the translated images.

Method FID (#) Style Diversity (") Training time ( hours)

AFHQ CelebA-HQ AFHQ CelebA-HQ Generation Translation Total

StarGANv2 16.83 13.67 0.45 ± 0.03 0.45 ± 0.03 – 50.83 50.83
SmoothGAN 53.68 29.69 0.14 ± 0.04 0.09 ± 0.03 – 30.90 30.90
I-GAN (Tr) 19.57 15.26 0.46 ± 0.03 0.29 ± 0.05 29.53 67.46 96.99

Proposed 13.74 16.61 0.53 ± 0.03 0.41 ± 0.03 27.36 – 27.36

The baselines used are the method in (Xie et al., 2023), StarGANv2 (Choi et al., 2020), and
SmoothGAN (Liu et al., 2021). Note that (Xie et al., 2023) proposed a separate system for the domain
translation that uses its pre-trained multi-domain generative model to train a separate translation
model (see Appendix F). However, since the aforementioned GAN inversion procedure is also
applicable to their generative model as it extracts content and style, we use two versions of their
system, namely, I-GAN (Gen) for the method based on GAN inversion and I-GAN (Tr) for the
separate translation system proposed in (Xie et al., 2023).

Fig. 4 (a) and (b) show the result of translation from wild domain (n = 3) to dog domain (n = 2)
using randomly sampled style components. The content bc(3)i , i 2 [3] extracted for samples in the
wild domain is combined with randomly sampled styles s(2)j , j 2 [2] in the dog domain to synthesize
the translated images. Our translations in each row contain the same content (i.e., pose of wild) as
the input source image, but different styles (i.e., dog species). However, I-GAN (Gen) seems to
produce unrealistic samples in some cases (first row). Their style diversity also appears to be limited.

Fig. 5 shows results of guided-translation for all methods for all pairs of domains in the AFHQ
domain. Content extracted from the images in the first column is combined with the style from the
second column. One can see that the proposed method preserves the style information better than the
baselines.

Further experiments on multi-domain translation are presented in Appendix H.2.

Table 2 shows that the image quality (see FID) and diversity (see style diversity) of the translated
images are competitive or better than the baselines (see qualitative results in Fig. 9 and 10 of
Appendix H.). One can also see that the training time (on a single Tesla V100 GPU) of proposed
method is at least 22 and 69 hours shorter than the competitive baselines StarGANv2 and I-GAN
(Tr), respectively.

7 CONCLUSION

We revisited the problem of content-style identification from unaligned multi-domain data, which
is a key step for provable domain translation and data generation. We offered a LDM perspective.
This new viewpoint enabled us to prove identifiability results that enjoy considerably more relaxed
conditions compared to those in previous research. Most importantly, we proved that content and style
can be identified without knowing the exact dimension of the latent components. To our knowledge,
this stands as the first dimension-agnostic identifiability result for content-style learning. We showed
that the LDM formulation is equivalent to a latent domain-coupled multi-domain GAN loss, and
the latter features a simpler implementation in practice. We validated our theorems using image
translation and generation tasks.

Limitations. Our work focused on sufficient conditions for content-style identifiability, yet the
necessary conditions were not fully understood—which is also of great interest. Additionally, our
model considers that the domains are in the range of the same generating function. The applicability
is limited to homogeneous multi-domain data, e.g., images with the same resolution. An interesting
extension is to consider heterogeneous multi-domain models that can deal with very different types
of data (e.g., text and audio). Additionally, our work is also limited to continuous data modalities
like images, audio, etc. Discrete data modalities like text will require extension of both theory and
implementation. This challenge presents another important future work. Finally, another limitation
of our work is that the proposed method is based on the GAN framework which is known to be
unstable during training. Therefore, novel implementation methods based on more stable distribution
matching modules such as flow matching are also of interest as a future work.
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