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ABSTRACT

Unsupervised domain translation (UDT) aims to find functions that convert sam-
ples from one domain (e.g., sketches) to another domain (e.g., photos) without
changing the high-level semantic meaning (also referred to as “content”). The
translation functions are often sought by probability distribution matching of the
transformed source domain and target domain. CycleGAN stands as arguably the
most representative approach among this line of work. However, it was noticed in
the literature that CycleGAN and variants could fail to identify the desired transla-
tion functions and produce content-misaligned translations. This limitation arises
due to the presence of multiple translation functions—referred to as “measure-
preserving automorphism” (MPA)—in the solution space of the learning crite-
ria. Despite awareness of such identifiability issues, solutions have remained elu-
sive. This study delves into the core identifiability inquiry and introduces an MPA
elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple
pairs of diverse cross-domain conditional distributions are matched by the learn-
ing function. Our theory leads to a UDT learner using distribution matching over
auxiliary variable-induced subsets of the domains—other than over the entire data
domains as in the classical approaches. The proposed framework is the first to
rigorously establish translation identifiability under reasonable UDT settings, to
our best knowledge. Experiments corroborate with our theoretical claims.

1 INTRODUCTION

Domain translation (DT) aims to convert data samples from one feature domain to another, while
keeping the key content information. DT naturally arises in many applications, e.g., transfer learning
(Zhuang et al., 2020), domain adaptation (Ganin et al.||2016; |Courty et al.,|2017)), and cross-domain
retrieval (Huang et al.,2015). Among them, a premier application is image-to-image (I2I) translation
(e.g., profile photo to cartonized emoji and satellite images to street map plots (Isola et al.,[2017)).
Supervised domain translation (SDT) relies on paired data from the source and target domains.
There, the translation functions are learned via matching the sample pairs.

Nonetheless, paired data are not always available. In unsupervised domain translation (UDT), the
arguably most widely adopted idea is to find neural transformation functions that perform probability
distribution matching of the domains. The idea emerged in the literature in early works, e.g., (Liu
& Tuzel, [2016; [Taigman et al., 2017; |Kim et al., 2017). High-resolution image translation using
distribution matching was later realized by the seminal work, namely, CycleGAN (Zhu et al.,[2017).
CycleGAN learns a pair of transformations that are inverse of each other. One of transformations
maps the source domain to match the distribution of the target domain, and the other transformation
does the opposite. The distribution matching part is realized by the generative adversarial network
(GAN) (Goodfellow et al.| [2014). Using GAN-based distribution matching for UDT has attracted
much attention—many follow-up works emerged; see the survey (Pang et al., 2021).

*Source code is available at https://github.com/XiaoFuLab/Identifiable-UDT.git
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Challenge - Lack of Translation Identifiability. While UDT approaches have demonstrated signif-
icant empirical success, the theoretical question of translation identifiability has received relatively
limited attention. Recent works (Galanti et al.,[2018bza; Moriakov et al., [2020; |Galanti et al., 2021)
pointed out failure cases of CycleGAN (e.g., content-misaligned translations like those in Fig.
largely attribute to the lack of translation identifiability. That is, translation functions in the solu-
tion space of CycleGAN (or any distribution matching-based learners) is non-unique, due to the
existence of measure-preserving automorphism (MPA) (Moriakov et al., [2020) (the same concept
was called density-preserving mappings in (Galanti et al., |2018bga)). MPA can “swap” the cross-
domain sample correspondences without changing the data distribution—which is likely the main
source of producing content misaligned samples after translation as seen in Fig. |l} Many efforts
were made to empirically enhance the performance of UDT, via implicitly or explicitly promoting
solution uniqueness of their loss functions (Liu et al., 2017; |Courty et al.| 2017} |Xu et al.| 2022}
Yang et al.,|2023). A number of notable works approached the identifiability/uniqueness challenge
by assuming that the desired translation functions have simple (e.g., linear (Gulrajani & Hashimoto,
2022)) or specific structures (de Bézenac et al.| 2021). However, translation identifiability without
using such restrictive structural assumptions have remained elusive.

Contributions. In this work, we revisit distribution matching-based UDT. Our contribution lies in
both identifiability theory and implementation:

MUNIT
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Identifiability. We delve into the core theoretical chal- r\ 3_ Q_
lenge regarding identifiability of the translation functions. 7

As mentioned, the solution space of existing distribution
matching criteria could be easily affected by MPA. How-
ever, our analysis shows that the chance of having MPA ability often leads to content misalign-
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Figure 1: Lack of translation identifi-

o Simple Implementation via Auxiliary Variables. Our theoretical revelation naturally gives rise
to a novel UDT learning criterion. This criterion aligns multiple pairs of conditional distributions
across the source and target domains. We define these conditional distributions over (overlapping)
sub-domaions of the source/target domains using auxiliary variables. We demonstrate that in prac-
tical applications such as unpaired I2I translation, obtaining these sub-domains can be a straight-
forward task, e.g., through available side information or querying the foundation models like CLIP
(Radford et al.}|[2021). Consequently, our identification theory can be readily put into practice.

Notation. The full list of notations is in the supplementary material. Notably, we use P, and
P2 to denote the probability measures of  and x conditioned on u, respectively. We denote
the corresponding probability density function (PDF) of x by p(x). For a measurable function
f X — Yandadistribution P, defined over space X', the notation fup_ denotes the push-forward
measure; that is, for any measurable set A C Y, fup, [A] = P [fP™m8(A)], where fPreims(A) =
{x € X | f(x) € A}. Simply speaking, fup_ denotes the distribution of f(x) where  ~ P,. The
notation fxp, = P, means that the PDFs of f(a) and y are identical almost everywhere (a.e.).

2 PRELIMINARIES

Considers two data domains (e.g., photos and sketches). The samples from the two domains are
represented by x € X C RP= and y € Y C RPv. We make the following assumption:

Assumption 1. For every x € X, it has a corresponding y € Y, and vice versa. In addition, there
exist deterministic continuous functions f* : Y — X and g* : X — Y that link the corresponding
pairs; ie.,

ly)==, g*(x)=1y, Vcorresponding pair (x,y). (D
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In the context of domain translation, a linked (x,y) pair can be regarded as cross-domain data
samples that represent the same “content”, and the translation functions (f*,g*) are responsible
for changing their “appearances/styles”. The term “content” refers to the semantic information to
be kept across domains after translation. In Fig. |1} the content is the identity of the digit ( other
than writing style or the rotation); in Fig. |4| of Sec. 3| the content can be understood as the shared
characteristics of the person in both the cartoon and the photo domains, which can collectively
identify the person.

Note that in the above setting, the goal is to find two ground-truth translation functions where one
function’s source is the other’s target. Hence, both A’ and ) can serve as the source/target domains.
In addition, the above also implies f* = (g*)_l, i.e., the ground-truth translation functions are
invertible. Under this setting, if one can identify g* and f*, then the samples in one domain can be
translated to the other domain—while not changing the content. Note that Assumption [T[jmeans that
there is one-to-one correspondence between samples in the two domains, which can be a somewhat
stringent condition in some cases. However, as we will explain in detail later, many UDT works,
e.g., CycleGAN (Zhu et al.| 2017) and variants (Liu et al.; 2017} [Kim et al.,[2017; (Choi et al., 2018;
Park et al., 2020), essentially used the model in Assumption [1|to attain quite interesting empirical
results. This makes it a useful model and intrigues us to understand its underlying properties.

Supervised Domain Translation (SDT). In SDT, the corresponding pairs (x, y) are assumed to be
aligned a priori. Then, learning a translation function is essentially a regression problem—e.g., via
finding g (or f) such that D(g(x)||y) (or D(f(y)||«)) is minimized over all given pairs, where
D(-]|-) is a certain “distance” measure; see, e.g., (Isola et al., 2017; Wang et al.,|2018).

Unsupervised Domain Translation (UDT). In UDT, samples from the two domains are acquired
separately without alignment. Hence, sample-level matching as often done in SDT is not viable.
Instead, UDT is often formulated as a probability distribution matching problem (see, e.g., (Zhu
et al., 2017; Taigman et al., 2017; Kim et al., 2020; |Park et al., |2020))—as distribution matching
can be attained without using sample-level correspondences. Assume that  and y are the random
vectors that represent the data from the X'-domain and the Y-domain, respectively. Then, the desired
f* and g* are sought via finding f and g such that

Py =gup, and Py = fup,. 2

The hope is that distribution matching can work as a surrogate of sample-level matching as in SDT.
The arguably most representative work in UDT is CycleGAN (Zhu et al., 2017). The CycleGAN
loss function is as follows:

r?gl (Iin%ix ‘CGAN(Q, dya T, y) + ‘CGAN(fa dzv Z, y) + )‘»Ccyc(ga .f)v (3)

where d and d,, represent two discriminators in domains X" and ), respectively,

Laan(g,dy, . y) = Ey~p, [logdy(y)] + Exnp, [log(l — dy (g(2)))], €y
Lean(f, ds, @, y) is defined in the same way, and the cycle-consistency term is defined as
Leye(g, ) = Eaonp, [[|£(9(2)) — z[h] + Ey~r, [19(F(y)) — yl] (5)

The minimax optimization of the Lgan terms enforces gup, = Py and fyp, = Pg. The Leyc
term encourages f = g~ '. CycleGAN showed the power of distribution matching in UDT and has
triggered a lot of interests in I2I translation. Many variants of CycleGAN were also proposed to
improve the performance; see the survey (Pang et al., 2021).

Lack of Translation Identifiability, MPA and Content Misalignment. Many works have noticed
that distribution matching-type learning criterion may suffer from the lack of translation identifia-
bility (Liu et al., 2017} [Moriakov et al.| 2020; |Galanti et al., 2018b; 2021} |Xu et al.| [2022); i.e., the
solution space of these criteria could have multiple solutions, and thus lack the ability to recover
the ground-truth g* and f*. The lack of identifiability often leads to issues such as content mis-
alignment as we saw in Fig. [T} To understand the identifiability challenge, let us formally define
identifiability of any bi-directional UDT learning criterion:

Definition 1. (Identifiability) Under the setting of Assumption assume that ( 7. g) is any optimal
solution of a UDT learning criterion. Then, identifiability of (f*, g*) holds under the UDT learning

criterion if and only ifj?z ffandg = g* ae.
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Notice that we used the optimal solution in the definition. This is because identifiability is a char-
acterization of the “kernel space” (which contains all the zero-loss solutions) of a learning criterion
(Moriakov et al., [2020; [Fu et al., 2019). In other words, when a UDT criterion admits translation
identifiability, it indicates that the criterion provides a valid objective for the learning task—but
identifiability is not related to the optimization procedure. We will also use the following:

Definition 2. (MPA) A measure-preserving automorphism (MPA) of Py is a continuous function
h: X — X suchthat Py = hyp,.

Simply speaking, MPA defined in this work is the continuous transformation h(x) whose output
has the same PDF as p(x). Take the one-dimensional Gaussian distribution z ~ N (p,02) as an
example. The MPA of N (u,0?) is h(x) = —x + 2u. A recent work (Moriakov et al., 2020)
suggested that non-identifiability of the desired translation functions by CycleGAN is caused by the
existence of MPA. Their finding can be summarized in the following Fact:

Fact 1. If MPA of Py, or Py exists, then CycleGAN and any criterion using distribution matching in
do not have identifiability of f* and g*.

Proof: 1t is straightforward to see that Py = gJp and P, = f;Py. In addition, f* and g*
are invertible. Hence, the ground truth (f*,g*) is an optimal solution of CycleGAN that makes
the loss in equal to zero. However, due to the existence MPA, one can see that f = ho
f* can also attain P, = f#py. This is because we have f#py = ho f;Py = hyp, = Pg.
Plus, as h o f* is still invertible, f still makes the
cycle-consistency loss zero. Hence, the solution of

CycleGAN is not unique and this loses identifiabil-
ity of the ground truth translation functions. O

»(x) p(y)

=g'(x)

%f*(y)

desired

4 4

The existence of MPA in the solution space of the
UDT learning losses may be detrimental in terms #

of avoiding content misalignment. To see this, con-

sider the example in Fig. 2| There, P, = N (i1,0%)  wmpa

and h(z) = —z + 2 is an MPA of P,, as men-  ‘ransformed h
tioned. Note that f = h o f* can be an opti-
mal solution found by CycleGAN. However, such
an f can cause misalignment. To explain, assume
x = a and y = b are associated with the same

4

€ 4

P4

d 4

entity, which means that a = f*(b) represents pjoyre 2: Tllustration of of the lack of iden-
the ground-truth alignment and translation. How- tifiability and MPA-induced content misalign-
ever, as p(—a+2u) = p(h(a)lz plho f*(b)) = e (d) ORI ;

p(f (b)), the learned function f wrongly translates ment; “==="means distribution matching.
y=bto x =—a+2u. p(z) p(ah)/l \ /, \\\p(iL"z)
Our Gaussian example seems to be special as it has PN S
symmetry about its mean. However, the existence Sl N

of MPA is not unusual. To see this, we show the . N N
following result: 1 I
Proposition 1. Suppose that P, admits a contin- h(z) = —x +2u No unified MPA

uous PDF, p(x) and p(x) > 0,Vx € X. Assume
that X is simply connected. Then, there exists a
continuous non-trivial (non-identity) h(-) such that

Figure 3: A unified MPA is harder to exist for
a group of distributions.

h#Pm = P,.

Note that there are similar results in (Moriakov et al., 2020) regarding the existence of MPA, but
more assumptions were made in their proof. The universal existence of MPA attests to the challeng-
ing nature of establishing translation identfiability in UDT.

3 IDENTIFIABLE UDT VIA DIVERSIFIED DISTRIBUTION MATCHING

Intuition - Exploiting Diversity of Distributions. Our idea starts with the following observation:
If two distributions have different PDFs, a shared MPA is unlikely to exist. Fig. |3|illustrates the
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intuition. Consider two Gaussian distributions 1 ~ A (1, 1) and g ~ N (g, 1) with py # po.
For each of them, h(x) = —x + 2y, for i = 1,2 is an MPA. However, there is not a function that
can serve as a unified MPA to attain h#pw1 =P, & h#sz = P,, simultaneously. Intuitively, the
diversity of the PDFs of 21 and x5 has made finding a unified MPA h(-) difficult. This suggests that
instead of matching the distributions of « and f(y) and those of y and g(«), it may be beneficial to
match the distributions of more variable pairs whose probability measures are diverse.

Auxiliary Variable-Assisted Distribution Diversification. In applications, the corresponding sam-
ples x, y often share some aspects/traits. For example, in Fig. [4] the corresponding x and y both
have dark hair or the same gender. If we model a collection of such traits as different realizations of
discrete random variable u, the alphabet of u, denoted as {us, ..., us} represents these traits. We
should emphasize that the traits is a result of the desired content invariance across domains, but need
not to represent the whole content.

To proceed, we observe that the conditional distributions Pgj,—,, and Py,—,, satisfy

Peju=u; = f;&Py\u:ui’ Pylu=u;, = g;Pm‘u:ul, Vi. The above holds since x and y have a de-

terministic relation and because the trait u; is shared by the content-aligned pairs (z, y).

In practice, u can take various forms. In I2I translation, one may use image categories or labels,
if available, to serve as u. Note that knowing the image categories does not mean the samples
from the two domains are aligned, as each category could contain a large amount of samples. In
addition, one can use sample attributes (such as hair color, gender as in Fig. 4)) to serve as wu, if
these attributes are not meant to be changed in the considered translation tasks. If not immediately
available, these attributes can be annotated by open-sourced Al models, e.g., CLIP (Radford et al.,
2021)); see detailed implementation in the supplementary material. A similar idea of using CLIP to
acquire auxiliary information was explored in (Gabbay et al., 2021).

By Proposition|1} it is almost certain that P,—,,, has an
MPA h; for all ¢ € [I]. However, it is likely that h; #
hj if Pgjyu=u, and Py j,—,, are sufficiently different. As
a consequence, similar to what we saw in Fig. [3] if one
looks for f that does simultaneous matching of

u; : Black Hair

Pa:|u:ui = f#F’mu:uiv Vi € [I]a (6)
it is more possible that f = f* instead of having other
solutions—this leads to identfiiability of f*. us : Female
Proposed Loss Function. We propose to match multiple Figure 4: Examples of u;.
distribution pairs (Pg|u,, fp,,, ) (as well as (Py.,, g#p,,,. ) fori = 1,..., I. For each pair, we

use discriminator di : X — [0,1] (and dg) : Y — [0,1] in reverse direction). Then, our loss
function is as follows:
1

i (1) (4)
I}l’lgn {d?)li;;?)} ; <£GAN(ga dy , L, y) + CGAN(fv dz , L,y y)) + )‘['cyc(gv .f)a (7)

where we have
Laax (9.4, 2,y) = Pr(u=u;) (Eymr,._., o8 (y)] +Eanr, .., [log (1-d) (g(x))]).

Note that © ~ P, represents samples that share the same characteristic defined by w; (e.g., hair
color, eye color, gender). This means that the loss function matches a suite of distributions defined
over (potentially overlapping) subdomains over the entire domain & and )). We should emphasize
that the auxiliary variable is only needed in the training stage, but not the testing stage.

We call the proposed method diversified distribution matching for unsupervised domain translation
(DIMENSTON)|'} The following lemma shows that DTMENSTON exactly realizes our idea in (6):

Lemma 1. Assume that an optimal solution of () is (f, g, {dri), (iq(f)}) Then, underAssumption
we have Pojy—u, = f4pP .0 Pylu=u, = G#Pyu_,, Vi€ [} and f =g~ ', ae.

"Note that we still use the term “unsupervised” despite the need of auxiliary information—as no paired
samples are required. We avoided using “semi-supervised” or “weakly supervised” as these are often reserved
for methods using some paired samples; see, e.g., (Wang et al.,|2020; [Mustafa & Mantiuk, [2020).
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Identfiiability Characterization. Lemma|l|means that solving the DIMENSION loss leads to con-
ditional distribution matching as we hoped for in (6). Hower, it does not guarantee that (f,g)

found by DIMENSION satisfies f = f* and g = g*. Towards establishing identifiability of the
ground-truth translation functions via DIMENSION, we will use the following definition:

Definition 3 (Admissible MPA). Given auxiliary variable u, the function h(-) is said to be an
admissible MPA of {P|y—y, }1—, if and only if Pg)y—,, = hye.,.. Vi€ [I].

Now, due to the deterministic relationship between the pair  and y, we have the following fact:

Fact 2. Suppose that Assumption|I|holds. Then, there exists an admissible MPA of {P z|,—, Mo if
and only if there exists an admissible MPA of {P |,y }1_;.

The above means that if we establish that there is no admissible MPA of the {P |~ } I, itsuffices
to conclude that there is no admissible MPA of {Py,—,, }/_}.

As described before, to ensure identifiability of the transla-
tion functions via solving the DIMENSION loss, we hope
the conditional distributions Pg|,—,, and Py,—,, to be suf-
ficiently different. We formalize this requirement in the fol-
lowing definition:

Definition 4 (Sufficiently Diverse Condition (SDC)). For
any two disjoint sets A, B C X, where A and B are
connected, open, and non-empty, there exists a ua,p) € Figure 5: Conditional PDFs
{ui, ... ur} such that Paju—y g [Al # Paju=ui s [Bl- p(z|u = u1) and p(x|u = uy) that
Then, the set of conditional distributions {Pm\u:ui}{:1 is satisfy the SDC.

called sufficiently diverse.

p(x|u = uy) p(x|u = us)

p(z|u =) p(alu = us)

Definition [ puts the desired “diversity” into context. It is
important to note that the SDC only requires the existence of
a certain u(4 gy € {u1,...,ur} for a given disjoint set pair
(A, B). It does not require a unified v for all pairs; i.e., u(4,5) Ay By

needs not to be the same as w4 ) for (A, B) # (A, B). Figure 6: Illustration of relaxed
Fig. [5] shows a simple example where the two conditional SDC (r-S.DC)

distributions satisfy the SDC. In more general cases, this im- ’

plies that if the PDFs of the conditional distributions exhibit

different “shapes” over their supports, SDC is likely to hold. Using SDC, we show the following
translation identifiability result:

Theorem 1 (Identifiability). Suppose that Assumption |I| holds. Let E; ; denote the event that the
pair (Pgjy—u,, Pm‘u:uj) does not satisfy the SDC. Assume that Pr[E; ;] < p for any i # j, where
i,j € [I]. Let ( £, g) be from an optimal solution of the DIMENSION loss (7). Then, there is
no admissible MPA of{Pw‘u:ui}iI:1 of the solution, i.e., f = f*, a.e. and g = g*, a.e. with a

probability of at least 1 — p(g)

Theorem [T] shows that if the conditional distributions are sufficiently diverse, solving can cor-
rectly identify the ground-truth translation functions. Theorem [I] also spells out the importance
of having more u;’s (which means more auxiliary information). The increase of I improves the
probability of success quickly.

Towards More Robust Identifiability. Theorem |1] uses the fact that the SDC holds with high
probability for every pair of (Pgy,, Pa|u,) (cf. Pr[E; ;] < p). Itis also of interest to see if the
method is robust to violation of the SDC. To this end, consider the following condition:

Definition 5 (Relaxed Condition: 7-SDC). Let dia(A) = sup,, scallw — zll2 and V;;
{(A,B) | Pgju; [A] = Py, [B] & Paju, [A] = Pgju, [B], AN B = ¢}, where A, B are non-empty,

open and connected. Denote M; ; = max(4 ey, , max{dia(A),dia(B)}. Then, (Pg|u,,Pz|u,)
satisfies the r-SDC if M; ; < r forr > 0.
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Note that the 7-SDC becomes the SDC when r = 0. Unlike SDC in Definition 4] the relaxed SDC
condition allows the violation of SDC over regions V; ;. Our next theorem shows that the translation
identifiability still approximately holds, as long as the largest region in V; ; is not substantial:

Theorem 2 (Robust Identifiability). Suppose that Assumption |I| holds with g* being L-Lipschitz
continuous, and that any pair of(Pw‘ui, Pw‘uj) satisfies the r-SDC (cf. Deﬁnition with probability
at least 1 — ~, i.e., Pr[M; ; > r] < ~ for any i # j, where (i,j) € [I] x [J]. Let g be from any
optimal solution of the DIMENSION loss in (I). Then, we have ||g(x)—g*(x)|2 < 2rL, Va € X,

with a probability of at least 1 — 'y(é) The same holds for f

Theorem [2| asserts that the estimation error of g scales linearly with the “degree” of violation of
the SDC (measured by r). The result is encouraging: It shows that even if the SDC is violated,
the performance of DIMENSION will not decline drastically. The Lipschitz continuity assumption
in Theorem [2| is mild. Note that translation functions are often represented by neural networks
in practice, and neural networks with bounded weights are Lipschitz continuous functions (Bartlett
et al.,2017). Hence, the numerical successes of many neural UDT models (e.g., CycleGAN) suggest
that assuming that Lipschitz continuous ground-truth translation functions exist is reasonable.

4 RELATED WORKS

Prior to CycleGAN (Zhu et al., 2017), the early works (Liu & Tuzel, 2016; [Taigman et al., 2017;
Kim et al.|[2017) started using GAN-based neural structures for distribution matching in the context
of 121 translation. Similar ideas appeared in UDT problems in NLP (e.g., machine translation)
(Conneau et al.,2017;|Lample et al.,[2017). In the literature, it was noticed that distribution matching
modules lack solution uniqueness, and many works proposed remedies (see, e.g, (Liu et al.,2017;|Xu
et al., [2022; Xie et al.| 2022} |Park et al., 2020)). These approaches have worked to various extents
empirically, but the translation identifiability question was unanswered. The term “content” was
used in the vision literature (in the context of 121 translation) to refer to domain-invariant attributes
(e.g., pose and orientation (Kim et al., | 2020; |JAmodio & Krishnaswamy, 2019; [Wu et al., 2019;
Yang et al., 2023)). This is a narrower interpretation of content relative to ours—as content in our
case can be high-level or latent semantic meaning that is not represented by specific attributes. Our
definition of content is closer to that in multimodal and self-supervised learning (Von Kiigelgen
et al.| 2021} [Lyu et al., 2022; Daunhawer et al., 2023). Before our work, auxiliary information
was also considered in UDT. For example, semi-supervised UDT (see, e.g., (Wang et al.| 2020;
Mustafa & Mantiuk,|2020)) uses a small set of paired data samples, but our method does not use any
sample-level pairing information. Attribute-guided I2I translation (see, e.g., (Li et al., 2019; |Choi
et al., 2018} 12020)) specifies the desired attributes in the target domain to “guide” the translation.
These are different from our auxiliary variables that can be both sample attributes or high-level
concepts (which is closer to the “auxiliary variables” in nonlinear independent component analysis
works, e.g., (Hyvarinen et al.,[2019)). Again, translation identifiability was not considered for semi-
supervised or attribute-guided UDT. There has been efforts towards understanding the translation
identifiability of CycleGAN. The works of |Galanti et al.| (2018bja) recognized that the success of
UDT may attribute to the existence of a small number of MPAs. |Moriakov et al.| (2020) showed
that MPA exists in the solution space of CycleGAN, and used it to explain the ill-posedness of
CycleGAN. [Chakrabarty & Das| (2022)) studied the finite sample complexity of CycleGAN in terms
of distribution matching and cycle consistency. |Gulrajani & Hashimoto|(2022) and|de Bézenac et al.
(2021) argued that if the target translation functions have known structures (e.g., linear or optimal
transport structures), then translation identifiability can be established. However, these conditions
can be restrictive. Translation identifiability without using such structural assumptions had remained
unclear before our work.

5 NUMERICAL VALIDATION

Constructing Challenging Translation Tasks. We construct challenging translation tasks to val-
idate our theorems and to illustrate the importance of translation identifiability. To this end, we
make three datasets. The first two are “MNIST v.s. Rotated MNIST” (MrM) and “Edges v.s. Ro-
tated Shoes” (ErS). In both datasets, the rotated domains consist of samples from the “MNIST” and
“Shoes” with a 90 degree rotation, respectively. We intentionally make this rotation, as rotation is
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Figure 8: Qualitative results on (a) Edges to Rotated Shoes, (b) Bitmoji Faces to CelebA-HQ, and
(c) CelebA-HQ to Bitmoji Faces tasks. More comprehensive illustrations are in the appendix.

a large geometric change across domains. This type of large geometric change poses a challenging
translation task (Kim et al.| 2020; [Wu et al., 2019; [Amodio & Krishnaswamyl, 2019} [Yang et al.,
2023). In addition, we construct a task “CelebA-HQ (Karras et al.,2017) v.s. Bitmoji (Mozafari,
2020)” (CB). In this task, profile photos of celebrities are translated to cartoonized bitmoji figures,
and vice versa. We intentionally choose these two domains to make the translation challenging: The
profile photos have rich details and are diverse in terms of face orientation, expression, hair style,
etc., but the Bitmoji pictures have a relatively small set of choices of these attributes (e.g., they are
always front-facing). More details of the datasets are in Sec. [F.4/in the supplementary material.

Baselines. The baselines include some representative UDT methods and some recent developments,

i.e., GP-UNIT 1Yané et a!., 2023), Hneg-SRC (Jung et al.,[2022), Over LORD (Gabbay & Hoshen
2021)), zeroDIM (Gabbay et al.,[2021), St arGAN-v2 (Choi et al.,[2020), U-GAT-IT (Kim et al.
2020), MUNIT (Huang et al., [2018)), UNIT (Liu et al.,[2017), and CycleGAN (Zhu et al.| 2017).

In particular, two versions of CycleGAN are used. “CycleGAN Loss” refers to the plan-vanilla
CycleGAN objective in (3)) and CycleGAN+Id refers to the “identity-regularized” version in (Zhu
2017). ZeroDIM uses the same auxiliary information as that used by the proposed method.

MNIST to Rotated MNIST. Fig. [7| CycleGAN CycleGAN

N Source  Target  Proposed  Loss +1d UNIT  MUNIT U-GAT-ITStargan-v2
shows the results. In this case, we use - = .

u € {1,...,10}, i.e., the labels of the

identity of digits, as the alphabet of the
auxiliary variable. Note that knowing .-Eu---m-
such labels does not mean that the cross-
dorpaln pairs (z,y) are knpvyn. Alter- Figure 7: Translation from MNIST to rotated MNIST.
natively, one can also use digit shapes as

the alphabets (see Sec. [F6). One can see that DIMENSION learns to translate the digits to their
corresponding rotated versions. But the baselines sometimes misalign the samples. The results are
consistent with our analysis (see Sec. [F.6 for more results).

Edges to Rotated Shoes. From Fig. [8|(a), one can see that the baselines all misalign the edges with
wrong shoes. Instead, the proposed DIMENS ION, using the shoe types (shoes, boots, sandals, and
slippers) as the alphabet of u, does not encounter this issue. More experiments including the reverse
translation (i.e., shoes to edges) are in Sec. [F.6 in the supplementary material.

CelebA-HQ and Bitmoji. Figs. |8| (b)-(c) show the results. The proposed method uses u &
{‘male’,’female’,'black hair’,‘non-black hair’}. To obtain the auxilliary information
for each sample, we use CLIP to automatically annotate the images. A remark is that translating
from the Bitmoji domain to the CelebA-HQ domain [see. Fig.[8|(b)] is particularly hard. This is be-
cause the learned translation function needs to “fill in” a lot of details to make the generated profiles
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Table 1: LPIPS scores for the ErS and MrM tasks and F ID scores for all tasks. E: Edges, rS: rotated
Shoes, M: MNIST, rM: rotated MNIST, C: CelebA-HQ, B: Bitmoji faces.

LPIPS () ‘ FID (})

| E-rs SSE MorM fMoM | E S M ™M C B

Proposed | 0.29 £0.06 0.35+0.10 0.11+0.08 0.09+0.04 | 2147 40.14 1395 1607 32.03 20.50
CycleGAN-Loss | 0.43+0.06 0.50+0.07 0.34+£0.07 0.33+£0.09 | 3583 5542 16.09 16.11 36.71 28.02
CycleGAN | 0.65+£0.03 0.544+0.07 0.27£0.09 0.28+0.09 | 259.31 130.84 46.05 3401 196.52  85.05
U-GAT-IT | 0.56 £0.05 0.484+0.07 0.25+£0.09 0.25+0.09 | 288.03 5820 11.78 11.67 5028  39.09
UNIT | 0.49£0.03 0.584+0.03 0.25+0.06 0.25+0.08 | 3395 9628 2044 19.15 53.63 33.56

MUNIT | 0.50£0.03 0.58£0.04. 0.28£0.09 0.28+0.09 | 43.83 86.68 1489 1596 6249 2759
StarGAN-v2 | 0.39£0.05 0.524+0.11 0.28+0.09 029+£0.10 | 7546 13834 30.07 3220 3544 28298

Hneg-SRC | 0.45+0.06  0.50 £ 0.07 - - 21027 198.77 - - 12934 66.36
GP-UNIT | 0.49+0.08 0.44 £ 0.05 - - 23131 96.32 - - 3240 3030
OverLORD | 0.43+0.06 0.4240.05 - - 101.14  124.02 - - 7610 3108
ZeroDIM | 0.38 £0.06  0.41+0.07 - - 85.56 187.45 - - 8836 3621

“~” means that method is not applicable to the dataset due to small resolution.

photorealistic. Our method clearly outperforms the baselines in both directions of translation; see
more in Sec. [F.6 in the supplemenary material.

Metrics and Quantative Evaluation. We employ two widely adopted metrics in UDT. The first
is the learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018)), which leverages the
known ground-truth correspondence between (x,y). LPIPS measures the “perceptual distance”
between the translated images and the ground-truth target images. In addition, we also use the
Fréchet inception distance (F ID) score (Heusel et al.,[2017) in all tasks. FID measures the visual
quality of the learned translation using a distribution divergence between the translated images and
the target domain. In short, LPIPS and FID correspond to the content alignment performance and
the target domain-attaining ability, respectively; see details of the metrics Sec. [F4,

Table|l|shows the LPIP S scores over the first two datasets where the ground-truth pairs are known.
One can see that DIMENSION significantly outperforms the baselines—which is a result of good
content alignment. The FID scores in the same table show that our method produces translated
images that have similar characteristics of the target domains. The F ID scores output by our method
are either the lowest or the second lowest.

Detailed Settings and More Experiments. See Sec. [E{H for settings and more results.

6 CONCLUSION

In this work, we revisited the UDT and took a deep look at a core theoretical challenge, namely,
the translation identifiability issue. Existing UDT approaches (such as CycleGAN) often lack trans-
lation identifiability and may produce content-misaligned translations. This issue largely attributes
to the presence of MPA in the solution space of their distribution matching modules. Our approach
leverages the existence of domain-invariant auxiliary variables to establish translation identifiability,
using a novel diversified distribution matching criterion. To our best knowledge, the identifiability
result stands as the first of its kind, without using restrictive conditions on the structure of the desired
translation functions. We also analyzed the robustness of proposed method when the key sufficient
condition for identifiability is violated. Our identifiability theory leads to an easy-to-implement
UDT system. Synthetic and real-data experiments corroborated with our theoretical findings.

Limitations. Our work considers a model where the ground-truth translation functions are deter-
ministic and bijective. This setting has been (implicitly or explicitly) adopted by a large number
of existing works, with the most notable representative being CycleGAN. However, there can be
multiple “correct” translation functions in UDT, as the same “content” can be combined with vari-
ous “styles”. Such cases may be modeled using probabilistic translation mechanisms (Huang et al.}
2018 |Choi et al.| 2020} |Yang et al., [2023), yet the current analytical framework needs a significant
revision to accommodate the probabilistic setting. In addition, our method makes use of auxiliary
variables that may be nontrivial to acquire in certain cases. We have shown that open-sourced foun-
dation models such as CLIP can help acquire such auxiliary variables and that the method is robust to
noisy/wrong auxiliary variables (see Sec.[H). However, it is still of great interest to develop provable
UDT translation schemes without using auxiliary variables.
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