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Abstract
We study the problem of symmetric matrix completion, where the goal is to reconstruct a positive
semidefinite matrix Xω

→ Rd→d of rank-r, parameterized by UU↑, from only a subset of its
observed entries. We show that the vanilla gradient descent (GD) with small initialization provably
converges to the ground truth Xω without requiring any explicit regularization. This convergence
result holds true even in the over-parameterized scenario, where the true rank r is unknown and
conservatively over-estimated by a search rank r

↓
↑ r. The existing results for this problem either

require explicit regularization, a sufficiently accurate initial point, or exact knowledge of the true
rank r.

In the over-parameterized regime where r
↓

↓ r, we show that, with !̃(dr9) observations,
GD with an initial point ↔U0↔ ↗ O(ω) converges near-linearly to an ω-neighborhood of Xω.
Consequently, smaller initial points result in increasingly accurate solutions. Surprisingly, neither
the convergence rate nor the final accuracy depends on the over-parameterized search rank r

↓, and
they are only governed by the true rank r. In the exactly-parameterized regime where r

↓ = r, we
further enhance this result by proving that GD converges at a faster rate to achieve an arbitrarily small
accuracy ω > 0, provided the initial point satisfies ↔U0↔ = O(1/d). At the crux of our method lies
a novel weakly-coupled leave-one-out analysis, which allows us to establish the global convergence
of GD, extending beyond what was previously possible using the classical leave-one-out analysis.
Keywords: Matrix completion, implicit regularization, leave-one-out analysis

1. Introduction

Matrix completion is a fundamental problem in the field of machine learning, where the objective is
to reconstruct a positive semidefinite (PSD) matrix of rank-r, denoted as Xω

→ Rd→d, from only a
subset of its observed entries. The most natural approach to solve this problem involves minimizing
the following mean squared error:

min
U↑Rd→r↑

f(U) =
1

4p

∥∥∥P!(UU↓
↘ Xω)

∥∥∥
2

F
. (MC)

Here, p represents the probability of observing each entry in Xω, ! denotes the set of observed
entries, and P! shows the projection operation onto the set of matrices supported by !. When the
true rank r is unknown, it is often over-estimated by the search rank r

↔
↓ r, leading to what is

referred to as over-parameterized matrix completion.
A prominent application of matrix completion is in collaborative filtering (Gleich and Lim, 2011).

Additionally, it has applications in other areas, including image reconstruction (Hu et al., 2018),
fast kernel matrix approximation (Graepel, 2002; Paisley and Carin, 2010), and more recently, in
teaching arithmetic to transformers (Lee et al., 2023).
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Figure 1: The performance of vanilla GD with small initialization and constant step-size on MC without any explicit
regularization. In all experiments, we set the dimension d = 100 and the true rank r = 3. (a): Higher sampling rates
improve the final accuracy of GD for the over-parameterized MC, but have no impact on the exactly-parameterized MC.
(b): Increasing the initialization scale hampers the final accuracy of GD for the over-parameterized MC, but has no impact
on the exactly-parameterized MC.

Perhaps one of the most natural approaches for solving the above optimization problem is (vanilla)
gradient descent (GD): given an initial point U0 and a fixed step-size ε > 0, generate a sequence of
iterates {Ut}

T
t=1 according to Ut+1 = Ut ↘ ε≃f(Ut). Despite its simplicity and desirable practical

performance (see Figure 1 and the experiments in (Zheng and Lafferty, 2016)), the conditions under
which the GD converges globally to the ground truth Xω have remained a long-standing mystery.

A line of research has been devoted to studying gradient-based algorithms with explicit regu-
larization (Sun and Luo, 2016; Zheng and Lafferty, 2016; Jain et al., 2013; Ge et al., 2016). These
methods typically incorporate either an ϑ2,↗-norm regularizer or a projection step to constrain the
iterates within a set with ϑ2,↗-norm bounds to promote incoherence (see Definition 2). However, the
use of ϑ2,↗-norm regularization or projection techniques often introduce more tuning parameters,
and has been found to be unnecessary in most cases (Zheng and Lafferty, 2016; Ma et al., 2018)1.

On the other hand, the convergence of GD without explicit regularization was initially tackled by
Ma et al. (2018) in the context of symmetric matrix completion, and subsequently extended by Chen
et al. (2020) to asymmetric settings. However, these studies consider a very special case of matrix
completion where GD is initialized sufficiently close to the ground truth, and the rank of the ground
truth r is known. In practice, however, GD converges even if it is initialized far from the ground truth
and the rank is over-parameterized r

↔
↑ r (see Figure 1).

Therefore, the following question still remains open:

Why does GD with a small initialization efficiently converge to the ground truth of MC in
the absence of explicit regularization, even in the general rank-r case where r↔ ↓ r ↓ 1?

Recently, Kim and Chung (2022) answered the above question for the special case of rank-1
symmetric matrix completion with r

↔ = r = 1, but their proposed approach does not extend to
the general rank-r case. It is also worth noting that the above question has been addressed for
another class of matrix factorization problems satisfying a norm-preserving property called restricted
isometry property (RIP). Problems that satisfy this property include matrix sensing (Li et al., 2018;

1. It is worth noting that explicit regularization can still offer significant advantages in scenarios with extremely limited
sample sizes (Sun, 2015).
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Stöger and Soltanolkotabi, 2021; Ma and Fattahi, 2023a) and sparse recovery (Vaskevicius et al.,
2019). However, a significant challenge arises with matrix completion, as it does not satisfy the
restricted isometry property. Consequently, the existing methodologies built upon RIP are not directly
applicable to matrix completion.

1.1. Summary of Contributions

In this work, we provide a complete answer to the aforementioned question. A comparison of our
results with other studies on unregularized matrix completion can be found in Table 1. The key
contributions of our work are as follows:

- Convergence of GD with small initialization in over-parameterized regime: When the
rank of the ground truth r is unknown and over-parameterized by r

↔
↓ r ↓ 1, we prove that

GD with small initialization converges to the ground truth at a near-linear rate. Surprisingly,
neither the convergence rate nor the final accuracy depends on the over-parameterized search
rank r

↔, and they are only governed by the true rank r. In particular, given an initial point that
satisfies ↔U0↔ ↗ O(ω) for some ω > 0 and a sampling rate of p = !̃(r9 log6(1/ω)/d), GD
converges to ω-neighborhood of Xω in O(log4(1/ω)) iterations. Therefore, a smaller initial
point or a larger sampling rate can improve the final error of GD. The empirical observation
presented in Figure 1 provides further support for this result.

- Improved results in the exactly-parameterized regime: We show that GD enjoys an
improved convergence when the rank of the ground truth r is known and r

↔ = r ↓ 1.
In particular, given an initial point that satisfies ↔U0↔ ↗ O(1/d) and a sampling rate of
p = !̃(r9/d), GD converges to ω-neighborhood of Xω in O(log(1/ω)) iterations for any
arbitrarily small ω > 0. A key distinction from the over-parameterized setting is that the final
error of GD remains unaffected by the initialization scale or the sample size, provided that
they meet certain thresholds. This is also evident in Figure 1. When r = O(1), the resulting
sample complexity is information-theoretically optimal (modulo logarithmic factors).

- Weakly-coupled leave-one-out analysis: In order to establish the implicit regularization of
GD for MC, a pivotal technique is a decoupling mechanism known as leave-one-out analysis,
a trick rooted in probability and random matrix theory. However, the current theory based
on this technique is only effective when the iterates are sufficiently close to the ground truth.
At the crux of our technical analysis lies an extension of the classical leave-one-out analysis
to the global setting, which we term weakly-coupled leave-one-out analysis. In essence, our
proposed method relaxes the requirement for the initial iterates to be sufficiently close to the
ground truth, making it particularly suitable for the global convergence analysis of GD.

Notations. We use bold uppercase letters X,Y to denote matrices and bold lowercase letters x,y
to denote vectors. For vectors, we use ↔·↔ to denote ϑ2-norm, and for matrices we use ↔·↔ and ↔·↔F
to denote operator norm and Frobenius norm, respectively. For matrix X → Rd1→d2 , we denote
by Xi,j the (i, j)-th element of X , Xi,· the i-th row, and X·,j the j-th column. The ϑ2,↗-norm of
X , denoted as ↔X↔2,↗, is defined as maxi ↔Xi,·↔. Additionally, we define the singular values of
X → Rd1→d2 as ϖ1(X) ↓ ϖ2(X) ↓ · · · ↓ ϖmin{d1,d2}(X) ↓ 0. The set of all orthogonal matrices
is denoted by Od1→d2 := {O → Rd1→d2 : O↓O = I}. For two matrices X,Y → Rd1→d2 , we define
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Algorithm Sample complexity Computational complexity Global Exact Over-param.

(Ma et al., 2018) dr
3 log3(d) ϱ

2 log
(
1
ε

)
✁ ✂ ✁

(Chen et al., 2020) dr
2 log(d) ϱ

2 log
(
1
ε

)
✁ ✂ ✁

(Kim and Chung, 2022) d log22(d) log
(
1
ε

)
✂ ✃ ✁

Ours (Theorem 3) dr
9 log8(d) ϱ

4 log
(
1
ε

)
✂ ✂ ✁

Ours (Theorem 2) dr
9 log2(d) log6

(
1
ε

)
ϱ
4 log4

(
1
ε

)
✂ ✂ ✂

Table 1: Comparisons between different algorithms for matrix completion without explicit regularization. ✃ The result
only holds for r↑ = r = 1.

their Procrustes distance as dist(X,Y ) = minO↑Od2→d2
↔X ↘ Y O↔F. The projection matrix onto

the column space of an orthogonal matrix V → Od1→d2 is defined as PV := V V ↓.
We use the notation f(n) ↭ g(n) or f(n) = O(g(n)) when a constant C > 0 exists such that

f(n) ↗ Cg(n) for sufficiently large n. Conversely, f(n) ↫ g(n) or f(n) = !(g(n)) implies the
existence of a constant C > 0 such that f(n) ↓ Cg(n) for sufficiently large n. Moreover, we use
the notations Õ(·) and !̃(·) to hide logarithmic dependencies on the dimension or other parameters
of the problem. Additionally, we use f(n) ⇐ g(n) or f(n) = ”(g(n)) when f(n) ↭ g(n) and
f(n) ↫ g(n).

2. Problem Setup and Main Results

Suppose that the singular value decomposition (SVD) of Xω is given by Xω = V ω!ωV ω↓, where
V ω

→ Od→r and !ω is an r ⇒ r diagonal matrix with diagonal elements in descending order
ϖ
ω
1 ↓ · · · ↓ ϖ

ω
r > 0. We denote the condition number of Xω as ϱ = ϖ

ω
1/ϖ

ω
r . Upon defining the

symmetrized operator R! = 1
2p(P! + P

↓

! ), the update rule for GD can be written as

Ut+1 = Ut ↘ ε≃f(Ut) = Ut ↘ εR!(UtU
↓

t ↘ Xω)Ut, U0 = ςZ (GD)

where ς > 0 is the initialization scale and Z is the initialization matrix satisfying ↔Z↔ = 1. We
assume that Z satisfies the following alignment condition.

Condition 1 (Alignment) We say the matrix Z → Rd→r↑ with ↔Z↔ = 1 satisfies the alignment
condition if there exists a universal constant c0 > 0 such that

ϖr(PV ωZ) ↓ c0. (alignment condition)

Intuitively, this condition necessitates that the initialization matrix should have a non-negligible
alignment with the column space of the ground truth. The following lemma reveals that this alignment
condition is satisfied for common initialization strategies with overwhelming probability.

Lemma 1 (Sufficient condition for alignment) The following statements are satisfied:

• Gaussian initialization. Given 0.5d ↗ r
↔
↗ d and Z = G/ ↔G↔, where G is a standard

Gaussian matrix, alignment condition holds with c0 = 0.1 with probability at least 1 ↘

exp{↘!(d)}.
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• Orthogonal initialization. Given r
↔ = d and Z = O for any O → Od→d, alignment condition

is satisfied with c0 = 1.

• Spectral initialization. Let V !V ↓ be the eigendecomposition of the best rank-r↔ approxima-
tion of R!(Xω) measured in Frobenius norm. Given r ↗ r

↔
↗ d and Z = U/ ↔U↔, where

U = V !1/2, alignment condition holds with c0 =
1
2ε with probability at least 1 ↘

1
d3 .

Before proceeding to the main theorem, we introduce two crucial conditions on the ground truth Xω

and the random observation set !.

Condition 2 (Incoherence) The rank-r PSD matrix Xω
→ Rd→d with SVD Xω = V ω!ωV ω↓ is

µ-incoherent for some µ ↓ 1 if ↔V ω
↔2,↗ =

√
µ
d ↔V ω

↔F =
√

µr
d .

Condition 3 (Random sampling model) Each entry of Xω is observed independently with proba-
bility p. In other words, P((i, j) → !) = p independently for all 1 ↗ i, j ↗ d.

Chen (2015) shows that the incoherence condition is necessary for the recovery of the ground
truth. Intuitively, the incoherence condition with µ = O(1) entails that none of the columns of V ω

have significant alignment with the standard basis vectors. Such a condition ensures that the ground
truth is far from being sparse. We note that successful recovery of a sparse Xω is only achievable
in a near-ideal scenario where p ⇑ 1 and nearly the entirety of Xω is observed. On the other hand,
when µ = O(1), the recovery is possible even when p scales with !̃(poly(r)/d) (Chen, 2015).

With the aforementioned conditions in place, we can now present our main result, which
establishes the global convergence of GD on MC for the over-parameterized setting.

Theorem 2 (Convergence of GD for over-parameterized MC) Let Xω be rank-r, and Condi-
tions 2 and 3 are satisfied with a sampling rate of p ↫ ε6µ4r9 log6( 1

ε ) log2(d)
d . Consider MC with

search rank r ↗ r
↔
↗ d. Consider the iterates of GD with the step-size ε ⇐

µr
↘
pdϑω

1
and the initial

point U0 = ςZ, where 0 < ς ↗

√
ϑω
1
d and Z satisfies Condition 1. With probability at least 1 ↘

2
d3 ,

after T ↭ 1
ϖϑω

r
log

(
1
ϱ

)
iterations, we have

∥∥∥UTU↓

T ↘ Xω
∥∥∥
F
↭

√
ϖω
1ϱ

2µr2

p
ς.

A few observations are in order based on the above theorem.

Computational complexity. The initialization scale ς governs the final accuracy of GD. Therefore,
to ensure that

∥∥UTU↓

T ↘ Xω
∥∥
F

↗ ω, it suffices to set the initialization scale to ς ↭
√

p
ϑω
1ε

2µr2 ω.

Moreover, assuming that max{ϱ, µ, r} = O(1) and ω ↗ 1/d, this accuracy is achieved within
Õ
(
log4

(
1
ς

))
iterations, which scales only poly-logarithmically with 1/ω.

Effect of over-parameterization. The level of over-parameterization in the search rank r
↔ does

not have any impact on either the sample complexity or the convergence of GD. As a result, our
results hold even if d2p ⇓ dr

↔. In such cases, MC has many global minima, some of which may not
satisfy UU↓

⇑ Xω. This sheds light on the implicit regularization of the vanilla GD with small
initialization toward low-rank solutions when applied to MC.
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Sample complexity. The required sample complexity is given by d
2
p ↫ dr

9
ϱ
6
µ
4 log6

(
1
ϱ

)
log2 (d),

which is optimal with respect to the dimension d up to a logarithmic factor. This contrasts with
the direct extension of the approach by Kim and Chung (2022), which necessitates a sample size
on the order of d1+”(ε≃1). Moreover, Theorem 2 highlights that the sampling rate p must scale
with log6

(
1
ς

)
to attain an accuracy level of ω, which in turn leads to a mild dependency of the final

error on the sampling rate. In other words, given a fixed sampling rate p, GD achieves an accuracy
in the order of exp(↘!(pd)). We suspect that the observed dependency might be an artifact of
our proof technique and could potentially be relaxed with a more detailed analysis, similar to that
presented in (Stöger and Soltanolkotabi, 2021). In our next theorem, we demonstrate that in the
exact-parameterization regime, it is possible to relax this mild dependency, achieving a sample
complexity that does not depend on the desired accuracy level or the initialization scale.

Theorem 3 (Convergence of GD for exactly-parameterized MC) Let Xω be rank-r, and Condi-
tions 2 and 3 are satisfied with a sampling rate of p ↫ ε6µ4r9 log8(d)

d . Consider MC with search rank
r
↔ = r. Consider the iterates of GD with the step-size ε ⇐

µr
↘
pdϑω

1
and the initial point U0 = ςZ,

where ς ⇐
ϑω
r

ε1.5d and Z satisfies Condition 1. Given any accuracy ω > 0, with probability at least
1 ↘ O

(
1
d3

)
and after T ↭ 1

ϖϑω
r
log

(
1
ς

)
iterations, we have

∥∥∥UTU↓

T ↘ Xω
∥∥∥
F

↗ ω. (1)

We next outline the key distinctions between the two aforementioned theorems. In the exactly-
parameterized regime, neither the sampling rate p nor the initialization scale ς affect the final error ω,
as long as they meet certain thresholds. In contrast, a smaller initialization scale or a larger sampling
rate improves the final error in the over-parameterized regime. Moreover, the convergence rate of GD
improves from O

(
log4

(
1
ς

))
to O

(
log

(
1
ς

))
. This is because the required sampling rate is smaller in

the exactly-parameterized regime, allowing the algorithm to adopt a more aggressive step-size.

3. Proof Outline

In this section, we present the key ideas underpinning our proof techniques. We begin in Section 3.1
with a dynamic signal-residual decomposition. Next, in Section 3.2, we introduce the weakly-coupled
leave-one-out analysis which, together with our dynamic signal-residual decomposition, completes
the proof for Theorem 2. Section 3.3 explains how these techniques can be further refined to yield
improved results for the exactly-parameterized regime. Throughout this section, we occasionally
omit the consideration of higher-order terms involving the step-size ε. We highlight that while this
omission serves to streamline the presentation, our rigorous proofs in the appendix carefully account
for these higher-order terms.

3.1. Dynamic Signal-residual Decomposition

We employ a dynamic projection scheme akin to that described by Li et al. (2018), which decomposes
the iterates Ut into two distinct components: a low-rank signal part, St, and a residual part, Et. This
decomposition is represented as follows:

Ut = St + Et, where St = PVtUt, and Et = P
⇐

Vt
Ut.

6
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Upon defining Mt = R!(Xω
↘ UtU↓

t ), the dynamic orthonormal matrix Vt is recursively defined
as:

Vt+1 = Zt+1

(
Z↓

t+1Zt+1

)≃1/2
where Zt+1 = (I + εMt)Vt and V0 = V ω

.

Upon defining the error matrix as ”t := Xω
↘ UtU↓

t , our goal is to show that ↔”t↔F decreases
efficiently to O(ς). To show the benefit of the proposed dynamic signal-residual decomposition in
achieving this goal, we start by stating the one-step dynamic of the error matrix:

↔”t+1↔
2
F = ↔”t+1↔

2
F ↘ 4ε

〈
”t,MtUtU

↓

t

〉
+O(ε2). (2)

Therefore, to establish the convergence of ↔”t↔F, it suffices to provide a reasonable lower-bound for〈
”t,MtUtU↓

t

〉
. This can be achieved via the following descent lemma:

Lemma 4 (Descent lemma, informal) Suppose that
↘
ϑω
r

2 ↗ ϖr(St), ↔St↔ ↗ 2
√
ϖω
1 , and

↔Vt ↘ V ω
↔ ↗ 0.1. Then, we have

〈
”t,MtUtU

↓

t

〉
↓

ϖ
ω
r

15
↔”t↔

2
F ↘ O

(√
ϖω3
r µr2

p
↔Et↔ +

⇔
rϖ

ω
1 ↔(I ↘ R!)(”t)↔

)
↔”t↔F.

By combining the descent lemma with Equation (2), we arrive at the following expression:

↔”t+1↔F ↗


1 ↘

εϖ
ω
r

10


↔”t↔F +O(ε)

(√
ϖω3
r µr2

p
↔Et↔ +

⇔
rϖ

ω
1 ↔(I ↘ R!)(”t)↔

)
+O(ε2).

(3)
The above inequality holds once the conditions

↘
ϑω
r

2 ↗ ϖr(St) ↗ ↔St↔ ↗ 2
√

ϖω
1 and ↔Vt ↘ V ω

↔ ↗

0.1 are met. These conditions entail that during the initial phase of the algorithm, ϖr(St) must
undergo a fast growth, whereas Vt must remain close to V ω. Under these conditions, GD enters a
fast linear convergence phase, provided that ↔(I ↘ R!)(”t)↔ ⇓ ↔”t↔F. In fact, we can readily
establish that ↔(I ↘ R!)(”t)↔ ↗ c ↔”t↔ for some c > 0. However, the challenge lies in ensuring
that c remains sufficiently small so as not to negate the effect of a constant factor improvement
1↘ 0.1εϖω

r in Equation (3). This phase continues until GD reaches an error level controlled by ↔Et↔.
Therefore, to prove the convergence of GD, we need to establish the following properties:

• Fast growth of St: Recall that max{↔S0↔ , ↔E0↔} = O(ς). We need to ensure efficient
growth of ϖr(St) from O(ς) to

↘
ϑω
r

2 , while keeping ↔St↔ below 2
√
ϖω
1 .

• Slow growth of Et: We need to show that while the signal term grows rapidly, the residual term
Et grows at a much slower rate. Specifically, we will demonstrate that T = O

(
1

ϖϑω
r
log( 1ϱ)

)

suffices to ensure
↘
ϑω
r

2 ↗ ϖr(St) ↗ ↔St↔ ↗ 2
√

ϖω
1 while keeping ↔Et↔ = O(ς).

• Small values of ↔(I ↘ R!)(”t)↔ and ↔Vt ↘ V ω
↔: Equally important is maintaining control

over ↔(I ↘ R!)(”t)↔ and ↔Vt ↘ V ω
↔. While ↔Vt ↘ V ω

↔ ↗ 0.1 is needed as a crucial
condition for Equation (3), the value of ↔(I ↘ R!)(”t)↔ directly controls the convergence
rate of GD.

To establish the above properties, we provide the one-step dynamics of St, Et, and (I↘R!)(”t).

7
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Lemma 5 (One-step dynamics, informal) Under the conditions of Theorem 2, the following in-
equalities hold with an overwhelming probability:

↔St+1↔ ↗

(
1 + ε

(
ϖ
ω
1 ↘ ↔St↔

2 +O (ϖω
1 ↔Vt ↘ V ω

↔ + ↔(I ↘ R!)(”t)↔)
))

↔St↔ ,

(4)

ϖr(St+1) ↓
(
1 + ε

(
ϖ
ω
r ↘ ϖ

2
r (St) ↘ O (ϖω

1 ↔Vt ↘ V ω
↔ + ↔(I ↘ R!)(”t)↔)

))
ϖr(St)

+O(ε) · (ϖω
1 ↔Vt ↘ V ω

↔ + ↔(I ↘ R!)(”t)↔) ↔Et↔ , (5)
↔Et+1↔ ↗ (1 +O(ε) · (ϖω

1 ↔Vt ↘ V ω
↔ + ↔(I ↘ R!)(”t)↔)) ↔Et↔ , (6)

↔(I ↘ R!)(”t)↔ ↗O

(√
d

p
↔”t↔

(
↔V ω

↔
2
2,↗ + ↔Vt↔

2
2,↗

)
+

√
ϖω
1µr

p
↔Et↔

)
. (7)

Next, we provide a high-level overview of how Lemma 5 can be used to establish the aforemen-
tioned properties. To this goal, we only focus on the initial phase of the algorithm, where both St

and Et are small. A more formal analysis for the entire trajectory is provided in Appendix C.
To use Lemma 5, it suffices to control two key quantities: ↔Vt↔2,↗ and ↔Vt ↘ V ω

↔. To illustrate
this, let us assume that Vt inherits the incoherence of V ω, that is, ↔Vt↔2,↗ ↗ O(

√
µr/d) ⇓ 1

for all 1 ↗ t ↗ T . Then, Equation (7) suggests that ↔(I ↘ R!)(”t)↔ ↗ c ↔”t↔ + O(ς), where
c = O(µr/

⇔
pd) ⇓ 1, thereby ensuring the necessary control over ↔(I ↘ R!)(”t)↔.

On the other hand, the small values of ↔(I ↘ R!)(”t)↔ and ↔Vt ↘ V ω
↔ play crucial roles

in controlling the behavior of the signal and residual terms. To illustrate this, let us assume
that at a certain point, ↔St↔ ↓ 1.5

√
ϖω
1 . Given that we have considered ↔(I ↘ R!)(”t)↔ and

↔Vt ↘ V ω
↔ to be small, Equation (4) simplifies to ↔St+1↔ ↗ (1↘ε!(ϖω

1)) ↔St↔+O(εϖω
1 ↔Et↔), ef-

fectively preventing ↔St+1↔ from further growth. With a similar reasoning, Equation (5) simplifies to
ϖr(St+1) ↓ (1+ε!(ϖω

r ))ϖr(St). Here, we have leveraged the assumption that ϖ2
r (St) ⇓ ϖ

ω
r during

the initial phase. This implies that ϖr(St) grows at a rate of 1+ε!(ϖω
r ). In contrast, Equation (6) im-

plies that ↔Et↔ grows at a rate of 1+ εO(↔(I ↘ R!)(”t)↔+ϖ
ω
1 ↔Vt ↘ V ω

↔), which is significantly
slower than the growth rate of ϖr(St) because max{↔(I ↘ R!)(”t)↔ ,ϖω

1 ↔Vt ↘ V ω
↔} ⇓ ϖ

ω
r . It

is due to this discrepancy in the growth rates of ↔St↔ and ↔Et↔ that GD enters the local linear
convergence rate and achieves a final error of O(ς).

3.2. Refined Leave-one-out Analysis with Weak Coupling

Indeed, it is not immediately evident why both ↔Vt↔2,↗ and ↔Vt ↘ V ω
↔ would remain small. In

fact, our initial intuition might suggest the opposite: recall that GD takes an aggressively large
step size. Consequently, even a single GD update has the potential to disrupt the incoherence of
Vt. Our key contribution is to establish that such disruption does not occur, even when the iterates
are arbitrarily far from the ground truth. In essence, we show that despite the gradient update
↔εR!(”t)Ut↔ potentially having a magnitude of !̃(1), its impact on Vt is distributed fairly evenly
across its elements. As a result, it has minimal influence on ↔Vt↔2,↗ and ↔Vt ↘ V ω

↔.
We start by showing that a small ↔Vt↔2,↗ implies a small ↔Vt ↘ V ω

↔.

8
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Lemma 6 (Small ↔Vt↔2,↗ implies small ↔Vt ↘ V ω
↔F, informal) Suppose that ↔St↔ ↗ 2

√
ϖω
1

and ↔Vt ↘ V ω
↔ ↗

1
2ε . With an overwhelming probability, we have

↔Vt+1 ↘ V ω
↔F ↗ ↔Vt ↘ V ω

↔F +O(ε) · ϖ
ω
1

√
dr

p

(
↔V ω

↔
2
2,↗ + ↔Vt↔

2
2,↗

)
+O(ε2).

Recall that, due to the incoherence of V ω, we have ↔V ω
↔2,↗ =

√
µr/d. Now, suppose we can

further establish that Vt enjoys a similar incoherence property. In such a case, the aforementioned
lemma leads to ↔Vt ↘ V ω

↔ ↗ ↔Vt ↘ V ω
↔F ↗ O

(
T · εϖ

ω
1

√
µ2r3

pd

)
+O(T ·ε

2) for every 1 ↗ t ↗ T .
Given the provided bounds on T and p, this automatically establishes that ↔Vt ↘ V ω

↔ remains small
throughout the iterations. Therefore, it suffices to control the incoherence of ↔Vt↔2,↗.

Controlling ↔Vt↔2,↗, which necessitates estimating the ϑ2-norm of each row, requires a more
fine-grained analysis than what is needed for the Frobenius norm. The primary challenge lies
in the intricate correlations between the orthogonal matrix Vt and the random observation set !,
which preclude the straightforward application of classical concentration inequalities. To effectively
decouple these correlations, we propose a technique called weakly-coupled leave-one-out analysis.
Before introducing our proposed methodology, it is essential to grasp the core principles of the
classical leave-one-out analysis.

Local leave-one-out analysis. When the search rank is exactly parameterized (r = r
↔) and the

initial point is sufficiently close to the ground truth U0U↓
0 ⇑ Xω, Ma et al. (2018) established the

incoherence of the iterates via the following leave-one-out sequences

U (l)

t

T
t=0

for each 1 ↗ l ↗ d:

dist
(
U0,U

(l)
0

)
⇑ 0, and U (l)

t+1 =
(
I ↘ εR!(l)

(
U (l)

t U (l)↓
t ↘ Xω

))
U (l)

t , (8)

where R!(l) is the leave-one-out projection operator defined by

R!(l) =
1

2p

(
P!(l) + P

↓

!(l)

)
, and [P!(l)(X)]i,j =






pXi,j if i = l or j = l,

Xi,j if (i, j) → !, i ↖= l, and j ↖= l,

0 otherwise.

The sole distinction between the projection operators R!(l) and R! is in their l-th row and l-th
column: in contrast to R!, the l-th row and l-th column of R!(l)(X) are deterministically set
to match the corresponding values of X . This seemingly minor adjustment yields two important
consequences: first, it ensures that Ut ⇑ U (l)

t , and second, it guarantees that the behavior of U (l)
t

remains independent of the random measurements in the l-th row and l-th column. This decoupling
technique is the key to controlling the deviation of ↔Ut↔2,↗. To formalize this intuition, let us define
Uω = V ω!ω1/2. One can write

↔Ut↔2,↗ = max
1⇒l⇒d

∥∥∥∥

UtH

(l)
t



l,·

∥∥∥∥



↗ max
1⇒l⇒d

∥∥∥∥

Uω

↘ U (l)
t R(l)

t



l,·

∥∥∥∥+

∥∥∥∥

UtH

(l)
t ↘ U (l)

t R(l)
t



l,·

∥∥∥∥+
∥∥∥[Uω]l,·

∥∥∥


↗ max
1⇒l⇒d

∥∥∥∥
(
Uω

↘ U (l)
t R(l)

t

)

l,·

∥∥∥∥



  
leave-one-out error

+ max
1⇒l⇒d

∥∥∥UtH
(l)
t ↘ U (l)

t R(l)
t

∥∥∥
F



  
proximal error

+


ϖω
1µr

d
.

(9)
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Here R(l)
t and H(l)

t are orthogonal matrices defined as R(l)
t = argminO↑Or→r

∥∥U (l)
t O ↘Uω

∥∥
F

and
H(l)

t = argminO↑Or→r

∥∥U (l)
t O ↘ U (l)

t R(l)
t

∥∥
F

. Although it may not be immediately obvious, it can
be shown that the l-th row of the matrix Uω

↘ U (l)
t R(l)

t is purely deterministic. Consequently, it
becomes possible to effectively control the leave-one-out error. To tackle the proximal error, recall
that the initial point U0U↓

0 is assumed to be close to Xω. Within this region, the local landscape
exhibits restricted strong convexity. This ensures that the true iterates Ut and the leave-one-out
versions U (l)

t become increasingly close, leading to a small proximal error. By combining these
two arguments, we can guarantee the incoherence of the true iterates. Furthermore, the incoherence
of Ut automatically implies the incoherence of Vt, given that

⇔
ϖω
r ↔Vt↔2,↗ ↭ ↔Ut↔2,↗ when

UtU↓
t ⇑ Xω. For more details, we refer interested readers to the discussions in (Ma et al., 2018).

While the classical leave-one-out analysis provides precise local guarantees within the exactly-
parameterized regimes, we shed light on its limitations when applied globally in the over-
parameterized settings. A significant challenge arises from the discrepancy of the singular values
of Ut and U (l)

t : although they may remain close to the singular values of Uω in the local regime,
they can undergo substantial changes when positioned far from the true solution. Consequently, the
original measure of proximal error based on dist(Ut,U

(l)
t ) loses its effectiveness as a reliable metric.

Instead, recall that we only require controlling Vt, which unlike Ut, has unit singular values.
This motivates us to switch to a more stable metric—the divergence between the left column spaces
of Ut and U (l)

t . However, an additional complication is that these left column spaces may also not
align perfectly due to over-parameterization. Fortunately, by resorting to our proposed dynamic
signal-residual decomposition, we can show that the iterates Ut are well-approximated by the low-
rank signal Ut ⇑ St. Therefore, it suffices to focus on controlling the discrepancy in the column
spaces of St and S(l)

t , i.e., dist(Vt,V
(l)
t ). However, the new proximal error dist(Vt,V

(l)
t ) can still

grow exponentially. To explain the root cause of this exponential growth, we employ matrix Taylor
expansion to derive the first-order approximations for Vt+1 and V (l)

t+1:

Vt+1 = Vt + εP
⇐

Vt
MtVt +O(ε2) and V (l)

t+1 = V (l)
t + εP

⇐

V
(l)
t

M (l)
t V (l)

t +O(ε2), (10)

where we define M (l)
t = R!(l)

(
Xω

↘ U (l)
t U (l)↓

t

)
. To effectively control the proximal error, it is

crucial to establish an upper bound for
∥∥Mt ↘ M (l)

t

∥∥. This distance tends to concentrate around∥∥UtU↓
t ↘ U (l)

t U (l)↓
t

∥∥ ⇑
∥∥StS↓

t ↘ S(l)
t S(l)↓

t

∥∥ when the sampling rate p is sufficiently large.
However, as previously noted, the singular values of St and S(l)

t may diverge. This misalignment can
lead to

∥∥Mt ↘ M (l)
t

∥∥ = !(ϖω
1) in the worst case. Hence, the proximal error can grow exponentially.

Weakly-coupled leave-one-out analysis. To remedy the alignment challenges identified earlier,
we propose the following refined leave-one-out sequences


Ṽ (l)
t

T
t=0

:

Ṽ (l)
t+1 = Z̃(l)

t+1

(
Z̃(l)↓

t+1 Z̃(l)
t+1

)≃1/2
where Z̃(l)

t+1 =
(
I + ε M (l)

t

)
Ṽ (l)
t and Ṽ (l)

0 = V ω
. (11)

In this context, M (l)
t is defined as:

M (l)
t = R!(l)

(
Xω

↘ Ṽ (l)
t !tṼ

(l)↓
t

)
where !t = V ↓

t UtU
↓

t Vt → Rr→r
. (12)

10
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Compared to the original M (l)
t , we replace !(l)

t = V (l)↓
t U (l)

t U (l)↓
t V (l)

t by !t = V ↓
t UtU↓

t Vt in
the definition of M (l)

t . Our analysis indicates that this adjustment significantly improves the control
over the distance

∥∥Mt ↘ M (l)
t

∥∥ = o(1) when the sampling rate p is sufficiently large. Hence, the
proximal error grows at a much slower rate.

Despite their promise, these refined leave-one-out sequences do introduce a trade-off: the
statistical independence inherent in the original leave-one-out sequences is compromised due to the
inclusion of !t. In other words, the l-th leave-one-out sequence


Ṽ (l)
t

T
t=0

is no longer independent
of the random measurements in the l-th row and l-th column. Nonetheless, we demonstrate that the
resulting correlation is relatively weak, primarily because !t is a comparatively small r ⇒ r matrix.
To control this statistical coupling, we employ a novel adaptive covering argument, which can be of
independent interest. This approach effectively mitigates the statistical coupling while incurring a
mild increase in the required sample complexity, which remains only polynomial in r.

To formalize our arguments, we can decompose the refined leave-one-out sequences ↔Vt↔2,↗ as:

↔Vt↔2,↗ ↗ ↔V ω
↘ Vt↔2,↗ + ↔V ω

↔2,↗

= max
1⇒l⇒d

∥∥∥(V ω
↘ Vt)l,·

∥∥∥

+ ↔V ω

↔2,↗

↗ max
1⇒l⇒d

∥∥∥∥
(
V ω

↘ Ṽ (l)
t

)

l,·

∥∥∥∥



  
refined leave-one-out error (Proposition 7)

+ max
1⇒l⇒d

∥∥∥Vt ↘ Ṽ (l)
t

∥∥∥
F



  
refined proximal error (Proposition 8)

+


µr

d
.

(13)

Next, we characterize the dynamic of the refined leave-one-out error.

Proposition 7 (Refined leave-one-out error) Suppose that p ↫ log(d)
d and ↔V ω

↘ Vt↔ ↗
1
2ε . With

probability at least 1 ↘
1
d3 , for any 1 ↗ t ↗ T ↭ 1

ϖϑω
r
log

(
1
ϱ

)
and 1 ↗ l ↗ d, we have

∥∥∥∥
(
V ω

↘ Ṽ (l)
t+1

)

l,·

∥∥∥∥ ↗ (1 ↘ 0.5εϖω
r )

∥∥∥∥
(
V ω

↘ Ṽ (l)
t

)

l,·

∥∥∥∥+O(ε) · ϖ
ω
1

ϱµ
1.5

r
2 log

(
1
ϱ

)
√

pd2
.

A simple inductive argument based on Proposition 7 reveals that the following inequality holds with
an overwhelming probability for all 1 ↗ t ↗ T :

∥∥∥
(
V ω

↘ Ṽ (l)
t

)

l,·

∥∥∥ ↭ ϱ
2
µ
1.5

r
2 log

(
1
ϱ

)
√
pd2

↗


µr

4d
, assuming p ↫ ϱ

4
µ
2
r
3 log2

(
1
ϱ

)
log(d)

d
.

Next, we characterize the dynamic of the refined proximal error.

Proposition 8 (Refined proximal error) Suppose that p ↫ ε6µ4r9 log6( 1
ε ) log2(d)

d , ↔V ω
↘ Vt↔ ↗

1
2ε , and

∥∥Vt ↘ Ṽ (l)
t

∥∥
F

↗

√
µr
4d . With probability at least 1 ↘

1
d3 , for any 1 ↗ t ↗ T ↭ 1

ϖϑω
r
log

(
1
ϱ

)

and 1 ↗ l ↗ d, we have

∥∥∥Vt+1 ↘ Ṽ (l)
t+1

∥∥∥
F

↗

∥∥∥Vt ↘ Ṽ (l)
t

∥∥∥
F
+O(ε) · ϖ

ω
1

√
ϱµ3r5.5 log

(
1
ϱ

)
log (d)

⇔
pd · d

.

11
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The above proposition implies that

∥∥∥Vt ↘ Ṽ (l)
t

∥∥∥
F
↭ εϖ

ω
1

√
ϱµ3r5.5 log

(
1
ϱ

)
log (d)

⇔
pd · d

· T ↭
√

ϱ3µ3r5.5 log3
(
1
ϱ

)
log (d)

⇔
pd · d

↗


µr

4d
.

Combining the above inequalities with the proposed decomposition in Equation (13) leads to:

↔Vt↔2,↗ ↗


µr

4d
+


µr

4d
+


µr

d
↗


4µr

d
, with probably at least 1 ↘

2

d3
.

This establishes the incoherence of Vt for all 1 ↗ t ↗ T .

3.3. Improved Results for Exact Parameterization

Finally, we show that our analysis in the over-parameterized regime, combined with the following
local convergence result for the exact parameterization regime by Ma et al. (2018), readily establishes
the proof of Theorem 3.

Theorem 9 (Local convergence of GD (Ma et al., 2018, Theorem 2)) Consider MC with search
rank r

↔ = r. Suppose that the sampling rate satisfies p ↫ µ3r3 log3(d)
d . Consider the iterates of GD

with step-size ε ↗
2

25εϑω
1

. Suppose that there exists t0 ↓ 0 such that Ut0 and the leave-one-out

sequences

U (l)

t0

d
l=0

defined in Equation (8) satisfy:

dist (Ut0 ,U
ω) ↗ O

(√
ϖω
rµ

3r3 log(d)

pd2

)
, (14)

max

dist

(
Ut0 ,U

(l)
t0

)
, dist

(
U (l)

t0 ,Uω
)

↗ O

(√
ϖω
rµ

3r3 log(d)

pd2

)
, for all 1 ↗ l ↗ d. (15)

With probability at least 1 ↘ O
(

1
d3

)
, for all t0 ↗ t ↗ t0 +O(d5), we have

∥∥∥UtU
↓

t ↘ Xω
∥∥∥
F

↗

∥∥∥Ut0U
↓

t0 ↘ Xω
∥∥∥
F
(1 ↘ 0.2εϖω

r )
t≃t0

.

To prove Theorem 3, it suffices to show that the conditions of the above theorem are met at a
certain iteration 0 ↗ t0 ↗ T . This can be achieved by leveraging our result for the over-parameterized
regime. In particular, upon choosing ς = c ·

ϑω
r

ε1.5d for sufficiently small c > 0 in Theorem 2, one
can show that both Conditions (14) and (15) are satisfied with an overwhelming probability after
t0 = Õ

(
1

ϖϑω
r

)
iterations. From this iteration onward, Theorem 9 shows that the iterations of GD enter

a local linear convergence regime, which readily establishes the final result of Theorem 3.

4. Conclusion and Future Directions

In this paper, we prove the convergence of vanilla gradient descent (GD) with small initialization
for symmetric matrix completion. Existing convergence results for this problem typically require
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explicit regularization or precise initializations. However, our work proves that neither condition is
necessary for GD to converge. Moreover, our results also apply to the over-parameterized regime,
where the rank of the true solution is unknown and over-estimated instead.

Although our required sample complexity Õ(dr9) is optimal with respect to the dimension d, it
remains sub-optimal with respect to the rank r. Specifically, it exceeds the sample complexity of
regularized GD, which stands at Õ(dr2) (Chen and Wainwright, 2015). We expect our analysis can
be sharpened to achieve a similar sample complexity.

We anticipate that our findings will pave the way for broader results extending beyond symmetric
matrix completion. In particular, our proposed weakly-coupled leave-one-out analysis relaxes several
stringent conditions of classical leave-one-out analysis, making it highly applicable for the global
analysis of GD. We believe that this approach, along with potential variations, holds promise for
explaining the favorable performance of GD or its variants in various statistical learning problems.
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Appendix A. Related Work

Nonconvex matrix completion. To solve the matrix completion problem, several algorithms based
on convex optimization have been developed (Candes and Recht, 2012; Candès and Tao, 2010;
Gross, 2011), offering excellent theoretical guarantees. However, in high-dimensional scenarios,
convex optimization techniques require significant memory and computational resources due to the
iterative singular value decompositions. To overcome these limitations, researchers have shifted
towards nonconvex optimization techniques using first-order methods such as GD (Sun and Luo,
2016), projected GD (Zheng and Lafferty, 2016), and alternating minimization (Jain et al., 2013).
Specifically, Sun and Luo (2016) demonstrate that GD can achieve local linear convergence provided
that the initialization is close to the ground truth. Subsequent studies provide the global convergence
guarantees for the first-order methods by showing the benign landscape of these nonconvex opti-
mization formulations. Specifically, they reveal that the loss landscape has no spurious local minima
and all the saddle points are strict (Ge et al., 2016, 2017; Chen and Li, 2017; Fattahi and Sojoudi,
2020). Nonetheless, these advancements necessitate either an explicit ϑ2,↗-norm regularization or a
projection step to maintain the incoherence of the iterates. Moreover, these works are only applicable
in the exactly-parameterized setting Ma and Fattahi (2023b). For a more detailed exploration of
matrix completion and its variants, we refer the readers to the comprehensive survey by Chi et al.
(2019).

Leave-one-out analysis. Leave-one-out analysis is a powerful statistical technique designed to
decouple correlations among individual entries of a stochastic process. Initially employed by
El Karoui et al. (2013) to establish asymptotic sampling distributions for robust estimators in high or
moderate dimensional regression, this technique has been proven invaluable across a broad spectrum
of applications. For instance, Abbe et al. (2020) utilized it to control ϑ↗ estimation errors for
eigenvectors in stochastic spectral problems, enabling precise spectral clustering in community
detection without the need for data cleaning or regularization. More relevantly, Ma et al. (2017)
applied leave-one-out analysis to demonstrate the local linear convergence of GD for the unregularized
and symmetric matrix completion. Their approach not only elucidated the convergence properties
of GD in matrix completion but also paved the way for similar analyses in other low-rank recovery
challenges, such as phase retrieval and blind deconvolution. Extending these insights, Chen et al.
(2020) and Kim and Chung (2022) broadened the scope of this analysis to include asymmetric matrix
completion and global convergence in rank-1 scenarios, respectively. Furthermore, leave-one-out
analysis has facilitated advancements in Singular Value Projection (SVP) for matrix completion, as
demonstrated by Ding and Chen (2020) and has been instrumental in analyzing gradient descent with
random initialization for phase retrieval, as shown by Chen et al. (2019).

Implicit regularization of GD in other applications. Indeed, the conventional wisdom in statistics
suggests that increasing the number of parameters beyond the true dimension without proper regular-
ization would lead to inferior solutions due to overfitting. However, a growing body of works show
that, for a large class of learning problems, GD leads to surprisingly good solutions, due to its implicit
regularization property. For instance, it is known that GD recovers the true low-dimensional solutions
in matrix factorization and sensing (Gunasekar et al., 2018; Li et al., 2018; Stöger and Soltanolkotabi,
2021), tensor decomposition (Wang et al., 2020; Ge et al., 2021), deep linear neural networks (Arora
et al., 2018; Ma and Fattahi, 2022), and beyond (Ma et al., 2022). However, the current theory behind
the success of GD in these classes of problems hinges heavily upon a norm-preserving property
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of the measurements, known as the restricted isometry property (RIP), limiting its applicability in
settings where RIP is not satisfied.

Appendix B. Preliminaries

B.1. Otuline of the Appendix

The structure of the appendix is as follows. In the remainder of this section, we introduce additional
notation. Following this, we present key intermediate lemmas (Lemmas 10 to 13) crucial for our
main proofs. Section C delves into a detailed proof of the signal and residual dynamics, starting
with a refined version of Lemma 5 (Proposition 14) that takes into account the incoherence of Vt.
Additionally, the proof of Lemma 4 is provided in this section. Moving on to Section D, we present
the proofs of our main theorems. Section E presents the key novelty of our paper, focusing on
establishing the incoherence of Vt via weakly-coupled leave-one-out analysis. The validation of
different initialization schemes, as presented in Lemma 1, is addressed in Section F. In Section G,
we compile several known results on matrix completion crucial to our arguments. Lastly, Section H
collects several basic lemmas, which we include for completeness.

B.2. Additional Notations

We introduce some additional notations that will be used throughout the appendix. The max-norm
of X , denoted as ↔X↔max, is defined as maxi,j |Xi,j |. We define the operator and Frobenius norm
ball as B

d1→d2
op (r) := {X → Rd1→d2 : ↔X↔ ↗ r} and B

d1→d2
F (r) := {X → Rd1→d2 : ↔X↔F ↗ r},

respectively. For any matrix X , we denote its SVD as X = LX!XR↓

X
. We denote Sd→d as the

set of all the symmetric matrices X → Rd→d. In the appendix, #,#1,#2, . . . denote fixed universal
constants, while C,C1, C2, c1, c2, . . . represent universal constants whose specific values may vary
depending on the context.

Throughout the appendix, our arguments are conditioned on the following good event without
further explanation. We define the random observation matrix # as

#i,j =

{
1 if (i, j) → !,

0 otherwise.
(16)

Then, the good event can be defined as

Egood =

{∥∥∥∥
#+#↓

2p
↘ J

∥∥∥∥ ↗ #

√
d

p

}
. (17)

Here J is the all-one matrix. According to Lemma 25, we have P(Egood) ↓ 1 ↘
1
d3 .

B.3. Important Intermediate Lemmas

Next, we collect some useful intermediate results that will be directly used throughout our proofs.
We also note that some of these intermediate results rely on concentration inequalities for matrix
completion, which are thoroughly discussed in Appendix G. Before proceeding, we define the
following notations

”t = Xω
↘ UtU

↓

t , Mt = R!

(
Xω

↘ UtU
↓

t

)
, and $t = StE

↓

t + EtS
↓

t + EtE
↓

t .

(18)

19



MA FATTAHI

Moreover, we introduce the following term

At = ↘ε
2MtVtV

↓

t MtVt ↘ 0.5ε2VtV
↓

t M2
t Vt ↘ 0.5ε3MtVtV

ω↓M2
t Vt + (I + εMt)VtR(Yt)

(19)
where Yt = V ↓

t

(
2εMt + ε

2M2
t

)
Vt and R(X) =

∑
↗

k=2
(≃1)k(2k)!
4k(k!)2

Xk. This notion of At will be
used when controlling the higher-order terms with respect to the step-size ε. We are now ready to
statement our helper lemmas.

Lemma 10 (Helper lemma for Ut) Suppose that ↔St↔ ↗ 2
√
ϖω
1 and ↔Et↔ ↗

√
ϑω
1µr
d . Then, we

have
∥∥∥UtU

↓

t

∥∥∥
F

↗ 8
⇔
rϖ

ω
1. (20)

Proof Applying triangle inequality, we have

∥∥∥UtU
↓

t

∥∥∥
F

↗

∥∥∥StS
↓

t

∥∥∥
F
+ 2

∥∥∥StE
↓

t

∥∥∥
F
+
∥∥∥EtE

↓

t

∥∥∥
F

↗
⇔
r ↔St↔

2 + 2
⇔
r ↔St↔ ↔Et↔ +

⇔

d ↔Et↔
2

↗ 8
⇔
rϖ

ω
1.

(21)

Here in the last inequality, we use the assumptions ↔St↔ ↗ 2
√

ϖω
1 and ↔Et↔ ↗

√
ϑω
1µr
d and the fact

that d ↑ µr.

Lemma 11 (Helper lemma for $t) Suppose that ↔St↔ ↗ 2
√
ϖω
1 , ↔Vt↔2,↗ ↗ 2

√
µr
d , and ↔Et↔ ↗

√
ϑω
1µr
81d . Then, conditioned on Egood, we have

↔$t↔ ↗ 5
√
ϖω
1 ↔Et↔ ,

↔R!($t)↔ ↗ 10#

√
ϖω
1µr

p
↔Et↔ ,

↔(I ↘ R!) ($t)↔ ↗ 9#

√
ϖω
1µr

p
↔Et↔ .

(22)

Proof First, we can bound ↔$t↔ as follows

↔$t↔ ↗

∥∥∥StE
↓

t

∥∥∥+
∥∥∥EtS

↓

t

∥∥∥+
∥∥∥EtE

↓

t

∥∥∥ ↗ 5
√
ϖω
1 ↔Et↔ (23)
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where we use the assumptions ↔St↔ ↗ 2
√
ϖω
1 and ↔Et↔ ↗

√
ϑω
1µr
d ↗

√
ϖω
1 . Next, we control

↔(I ↘ R!) ($t)↔. To this end, we first apply triangle inequality to obtain

↔(I ↘ R!) ($t)↔ ↗ 2
∥∥∥(I ↘ R!)

(
StE

↓

t

)∥∥∥+
∥∥∥(I ↘ R!)

(
EtE

↓

t

)∥∥∥

(a)
↗ #

√
d

p
↔Et↔2,↗

(
↔Et↔2,↗ + 2 ↔St↔2,↗

)

(b)
↗ #

√
d

p
↔Et↔

(
↔Et↔ + 8


ϖω
1µr

d

)

↗ 9#

√
ϖω
1µr

p
↔Et↔ .

(24)

Here in (a), we apply Lemma 30. In (b), we use the facts that ↔Et↔2,↗ ↗ ↔Et↔ ↗

√
ϑω
1µr
d and

↔St↔2,↗ =
∥∥∥VtV

↓

t Ut

∥∥∥
2,↗

Lemma 30
↗ ↔Vt↔2,↗ ↔St↔ ↗ 2


µr

d
· 2
√

ϖω
1 = 4


ϖω
1µr

d
. (25)

In the last inequality, we use the fact that ↔St↔ ↗ 2
√
ϖω
1 and ↔Vt↔2,↗ ↗ 2

√
µr
d . Lastly, applying

triangle inequality leads to

↔R!($t)↔ ↗ ↔$t↔ + ↔(I ↘ R!) ($t)↔

↗ 5
√
ϖω
1 ↔Et↔ + 9#

√
ϖω
1µr

p
↔Et↔

↗ 10#

√
ϖω
1µr

p
↔Et↔ ,

(26)

where the last inequality is due to p ↗
1
25#

2
µr.

Lemma 12 (Helper lemma for ”t) Under the same conditions as Lemma 11 with the additional

assumption that ↔Vt ↘ V ω
↔ ↗ #1

εµr1.5 log( 1
ε)↘

pd
, we have

↔”t↔ ↗ 5ϖω
1,

↔(I ↘ R!) (”t)↔ ↗ 5#

√
µ2r2

pd
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔ ,

↔(I ↘ R!) (”t)↔ ↗ 21#ϖω
1

√
µ2r2

pd
,

↔Mt↔ ↗

(
1 + 5#

√
µ2r2

pd

)
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔ ,

↔Mt↔ ↗ 6ϖω
1,

∥∥∥MtP
⇐

Vt

∥∥∥ ↗ 2#1ϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

.

(27)
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Proof We first control ↔”t↔ as follows

↔”t↔ ↗

∥∥∥Xω
↘ StS

↓

t

∥∥∥+ ↔$t↔

↗ max{↔Xω
↔ , ↔St↔

2
} + 5

√
ϖω
1 ↔Et↔

↗ 4ϖω
1 + 5

√
ϖω
1 ↔Et↔

↗ 5ϖω
1.

(28)

Next, we control ↔(I ↘ R!) (”t)↔. To this end, applying triangle inequality leads to

↔(I ↘ R!) (”t)↔ ↗

∥∥∥(I ↘ R!)
(
Xω

↘ StS
↓

t

)∥∥∥
  

:=(I)

+ ↔(I ↘ R!)($t)↔  
:=(II)

.
(29)

For (I), applying Lemma 31, we have

(I) ↗ #

√
d

p

∥∥∥Xω
↘ StS

↓

t

∥∥∥
(
↔V ω

↔
2
2,↗ + ↔Vt↔

2
2,↗

)

(a)
↗ 5#

√
µ2r2

pd

∥∥∥Xω
↘ StS

↓

t

∥∥∥

↗ 5#

√
µ2r2

pd
(↔”t↔ + ↔$t↔)

(b)
↗ 5#

√
µ2r2

pd
↔”t↔ + 25#

√
ϖω
1µ

2r2

pd
↔Et↔ .

(30)

Here in (a), we use the assumption that ↔Vt↔2,↗ ↗ 2
√

µr
d . In (b), we use the result from Lemma 11

that ↔$t↔ ↗ 5
√

ϖω
1 ↔Et↔. On the other hand, we know that (II) ↗ 9#

√
ϑω
1µr
p ↔Et↔ due to Lemma 11.

Overall, we conclude that

↔(I ↘ R!) (”t)↔ ↗ 5#

√
µ2r2

pd
↔”t↔ + 25#

√
ϖω
1µ

2r2

pd
↔Et↔ + 9#

√
ϖω
1µr

p
↔Et↔

↗ 5#

√
µ2r2

pd
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔ .

(31)

In the final inequality, we make the assumption d ↓ 9µr without loss of generality. This assumption
simplifies the presentation of the proof but does not impact the final result of the paper.

Furthermore, upon noticing that
∥∥Xω

↘ StS↓
t

∥∥ ↗ max{↔Xω
↔ , ↔St↔

2
} ↗ 4ϖω

1 , we have

↔(I ↘ R!) (”t)↔ ↗ 5#

√
µ2r2

pd

∥∥∥Xω
↘ StS

↓

t

∥∥∥+ ↔(I ↘ R!)($t)↔

↗ 20#ϖω
1

√
µ2r2

pd
+ 9#

√
ϖω
1µr

p
↔Et↔

↗ 21#ϖω
1

√
µ2r2

pd
.

(32)
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Next, combining the above two inequalities, we can control ↔Mt↔ as follows:

↔Mt↔ ↗ ↔”t↔ + ↔(I ↘ R!) (”t)↔

↗ ↔”t↔ + 5#

√
µ2r2

pd
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔

↗

(
1 + 5#

√
µ2r2

pd

)
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔ .

(33)

Furthermore, we can also bound ↔Mt↔ as

↔Mt↔ ↗ ↔”t↔ + ↔(I ↘ R!) (”t)↔

↗ 5ϖω
1 + 21#ϖω

1

√
µ2r2

pd

↗ 6ϖω
1.

(34)

Lastly, for
∥∥MtP

⇐

Vt

∥∥, we have the following decomposition
∥∥∥MtP

⇐

Vt

∥∥∥ ↗

∥∥∥(I ↘ R!) (”t)P
⇐

Vt

∥∥∥+
∥∥∥
(
Xω

↘ UtU
↓

t

)
P

⇐

Vt

∥∥∥

↗ ↔(I ↘ R!) (”t)↔ +
∥∥∥V ω! (V ω

↘ Vt)
↓

P
⇐

Vt

∥∥∥+
∥∥∥UtE

↓

t P
⇐

Vt

∥∥∥

↗ 21#ϖω
1

√
µ2r2

pd
+ ϖ

ω
1 ↔V ω

↘ Vt↔ + ↔Et↔ (↔St↔ + ↔Et↔)

↗ 22#
ϖ
ω
1µr

⇔
pd

+ ϖ
ω
1 ↔V ω

↘ Vt↔

(a)
↗ 22#

ϖ
ω
1µr

⇔
pd

+ #1ϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↗ 2#1ϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

.

(35)

Here in (a), we apply Lemma 6.

Lemma 13 (Helper lemma for At) Under the same conditions as Lemma 11, we have

↔At↔ ↗ 300ε2ϖω2
1 . (36)

Proof We first use triangle inequality to bound ↔At↔ as follows

↔At↔ ↗ 1.5ε2 ↔Mt↔
2 + 0.5ε3 ↔Mt↔

3 + (1 + ε ↔Mt↔) ↔R(Yt)↔ . (37)

Next, Lemma 12 tells us that ↔Mt↔ ↗ 6ϖω
1 conditioned on Egood. For ↔R(Yt)↔, we first have

↔R(Yt)↔ ↗

↗∑

k=2

(2k)!

4k(k!)2
↔Yt↔

k =
2 +

√
1 ↘ ↔Yt↔

2
√
1 ↘ ↔Yt↔

(
1 +

√
1 ↘ ↔Yt↔

)2 ↔Yt↔
2
. (38)
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Note that ↔Yt↔ ↗
∥∥2εMt + ε

2M2
t

∥∥ ↗ 20εϖω
1 and the right-hand side is an increasing function of

↔Yt↔. Therefore, we derive that

↔R(Yt)↔ ↗
1

2
↔Yt↔

2
↗ 200ε2ϖω2

1 . (39)

This implies that
↔At↔ ↗ 300ε2ϖω2

1 . (40)

Appendix C. Proofs for Dynamic Signal-residual Decomposition

We first present a more precise version of the one-step dynamics of the signal and residual terms.

Proposition 14 Suppose that ↔St↔ ↗ 2
√

ϖω
1 , ↔Et↔ ↗

√
ϑω
1
d , ↔Vt↔2,↗ ↗ 2

√
µr
d and ↔V ω

↘ Vt↔F ↗

#1
εµr1.5 log( 1

ε)↘
pd

. Then, the following dynamics hold conditioned on Egood:

ϖr(St+1) ↓
(
1 + 0.8εϖω

r ↘ εϖ
2
r (St)

)
ϖr(St) ↘ 6#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

↔Et↔ ,

(minimal signal dynamic)

↔St+1↔ ↗ 2
√
ϖω
1, (maximal signal dynamic)

↔Et+1↔ ↗

(
1 + 2#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

)
↔Et↔ . (residual dynamic)

Additionally, if ϖr(St) ↓

↘
ϑω
r

2 , then

∥∥∥Xω
↘ Ut+1U

↓

t+1

∥∥∥
F

↗


1 ↘

1

10
εϖ

ω
r

∥∥∥Xω
↘ UtU

↓

t

∥∥∥
F
+ #6ε

√
ϖω3
1 µr2

p
↔Et↔ .

(error dynamic)

The key distinction between the above proposition and Lemma 5 lies in a finer control over the
one-step dynamics, accompanied by additional assumptions on ↔Et↔, ↔Vt↔2,↗, and ↔Vt ↘ V ω

↔F.
We emphasize that the one-step dynamics in Lemma 5 are derived from the proof of this proposition.
Moreover, the proof of the error dynamics (last inequality in Proposition 14) will incorporate the
proof of the descent lemma (Lemma 4).

C.1. Proof of Signal Dynamic

We notice that

St+1 = PVt+1 (I + εMt) (St + Et) = (I + εMt)St + PVt+1 (I + εMt)Et. (41)

Here the second equality follows from the definition of PVt+1 .

24



GD CONVERGES FOR MATRIX COMPLETION

Maximal signal dynamic. We first provide an upper-bound for ↔St+1↔ by

↔St+1↔ ↗ ↔(I + εMt)St↔  
:=(I)

+
∥∥PVt+1 (I + εMt)Et

∥∥
  

:=(II)

.
(42)

Next, we further control (I) by

(I) ↗ ↔(I + ε”t)St↔ + ε ↔(I ↘ R!) (”t)↔ ↔St↔

(a)
↗ ↔(I + ε”t)St↔ + ε · 21#ϖω

1

√
µ2r2

pd
· 2
√
ϖω
1

↗

∥∥∥
(
I + ε

(
Xω

↘ StS
↓

t

))
St

∥∥∥+ ε ↔$t↔ ↔St↔ + 42#ε
ϖ
ω1.5
1 µr
⇔
pd

(b)
↗

∥∥∥
(
I + ε

(
Xω

↘ StS
↓

t

))
St

∥∥∥+ 10εϖω
1 ↔Et↔ + 42#ε

ϖ
ω1.5
1 µr
⇔
pd

↗

∥∥∥
(
I + ε

(
Xω

↘ StS
↓

t

))
St

∥∥∥
  

:=(I1)

+43#ε
ϖ
ω1.5
1 µr
⇔
pd

.

(43)

Here we apply Lemma 12 in (a) and (b). In the last inequality, we use the assumption that ↔Et↔ ↗

#
⇔

ϑω
1µr

↘
pd

. For (I1), we further decompose it via triangle inequality as follows

(I1) ↗

∥∥∥PVt

(
I + ε

(
Xω

↘ StS
↓

t

))
St

∥∥∥+
∥∥∥P

V ↓
t

(
I + ε

(
Xω

↘ StS
↓

t

))
St

∥∥∥

=
∥∥∥
(
I + ε

(
V ↓

t V ω!ωV ω↓Vt ↘ S̄tS̄
↓

t

))
S̄t

∥∥∥
  

:=(I1,1)

+ε

∥∥∥P
V ↓
t
(V ω

↘ Vt)!
ωV ω↓St

∥∥∥
  

:=(I1,2)

. (44)

Here we define S̄t = V ↓
t Ut → Rr→d. Note that

∥∥S̄t

∥∥ = ↔St↔. For (I1,1), we have

(I1,1) ↗

∥∥∥
(
I ↘ εS̄tS̄

↓

t

)
S̄t

∥∥∥+ ε

∥∥∥V ↓

t V ω!ωV ω↓VtS̄t

∥∥∥
(a)
=

∥∥S̄t

∥∥
(
1 ↘ ε

∥∥S̄t

∥∥2
)
+ εϖ

ω
1

∥∥S̄t

∥∥

= ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
.

(45)

where (a) follows from the fact that S̄t and S̄tS̄↓
t share the same eigenvectors, and the assumption

ε ↭ 1/ϖ1. Next, we control (I1,2):

(I1,2) ↗ ϖ
ω
1 ↔V ω

↘ Vt↔ ↔St↔ ↗ 2#1
ϱµ(ϖω

1r)
1.5 log

(
1
ϱ

)
⇔
pd

. (46)

Here we use Lemma 6. Therefore, we can bound (I1) by

(I1) ↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 2#1ε

ϱµ(ϖω
1r)

1.5 log
(
1
ϱ

)
⇔
pd

. (47)
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This leads to

(I) ↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 2#1ε

ϱµ(ϖω
1r)

1.5 log
(
1
ϱ

)
⇔
pd

+ 43#ε
ϖ
ω1.5
1 µr
⇔
pd

↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 3#1ε

ϱµ(ϖω
1r)

1.5 log
(
1
ϱ

)
⇔
pd

.

(48)

Next, we control (II). To this end, we first notice that

PVt+1 (I + εMt)P
⇐

Vt
=

(
PVt+1 ↘ PVt

)
P

⇐

Vt
+ εPVt+1MtP

⇐

Vt
. (49)

Hence, we can bound (II) by

(II) ↗
∥∥PVt+1 ↘ PVt

∥∥ ↔Et↔ + ε

∥∥∥MtP
⇐

Vt

∥∥∥ ↔Et↔

(a)
↗

(
2 ↔Vt+1 ↘ Vt↔ + 2#1εϖ

ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

)
↔Et↔ .

(50)

Here we use Lemma 43 in (a). It remains to control ↔Vt+1 ↘ Vt↔. To this end, upon noticing that
Vt+1 ↘ Vt = εP

⇐

Vt
MtVt + At, one has

↔Vt+1 ↘ Vt↔ ↗ ε

∥∥∥MtP
⇐

Vt

∥∥∥+ ↔At↔

(a)
↗ 2#1εϖ

ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

+ 300ε2ϖω2
1

↗ 3#1εϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

.

(51)

Here we apply Lemma 12 and Lemma 13 in (a). Hence, we have

(II) ↗ 5#1εϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↔Et↔ . (52)

Putting everything together, we obtain that

↔St+1↔ ↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 3#1εϖ

ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

(√
ϖω
1 + 2 ↔Et↔

)

↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 6#1εϖ

ω1.5
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

.

(53)

Next, we consider two cases separately. First, if ↔St↔ ↗ 1.5
√
ϖω
1 , then we simply have

↔St+1↔ ↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 6#1εϖ

ω1.5
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↗ 1.5
√

ϖω
1 · (1 + εϖ

ω
1) + 6#1εϖ

ω1.5
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↗ 2
√
ϖω
1.

(54)
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On the other hand, if 1.5
√
ϖω
1 ↗ ↔St↔ ↗ 2

√
ϖω
1 , then we have

↔St+1↔ ↗ ↔St↔

(
1 + εϖ

ω
1 ↘ ε ↔St↔

2
)
+ 6#1εϖ

ω1.5
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↗ 2
√
ϖω
1 (1 ↘ 1.25εϖω

1) + 6#1εϖ
ω1.5
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↗ 2
√
ϖω
1.

(55)

This completes the proof for the maximal signal dynamic.

Minimal signal dynamic. We first provide a lower-bound for ϖr(St+1) as follows

ϖr(St+1) ↓ ϖr((I + εMt)St)  
(I)

↘
∥∥PVt+1 (I + εMt)Et

∥∥
  

(II)

.
(56)

For (I), applying Lemma 44, we first obtain that (I) ↓ ϖr
(
V ↓
t (I + εMt)St

)
. Next, we decompose

V ↓
t (I + εMt)St as follows

V ↓

t (I + εMt)St

=


I + εV ↓

t

(
Mt + StS

↓

t

)
Vt

(
I ↘ εV ↓

t StS
↓

t Vt

)≃1


  
:=Bt

V ↓

t St

(
I ↘ εS↓

t St

)

  
:=Ct

. (57)

According to Lemma 45, we have

ϖr((I + εMt)St) ↓ ϖr(Bt)ϖr(Ct) = ϖr(Bt)
(
1 ↘ εϖ

2
r (St)

)
ϖr(St), (58)

where in the last equality, we use the fact that St and StS↓
t St share the same singular space and

hence
ϖr(Ct) = ϖr(St(I ↘ εS↓

t St)) =
(
1 ↘ εϖ

2
r (St)

)
ϖr(St). (59)

Now, it suffices to provide a lower-bound for ϖr(Bt). To this end, we first notice that

ϖr(Bt) ↓ 1 + εϖr

(
V ↓

t

(
Mt + StS

↓

t

)
Vt

)
ϖr

(
I ↘ εV ↓

t StS
↓

t Vt

)≃1


↓ 1 + εϖr

(
V ↓

t

(
Mt + StS

↓

t

)
Vt

)
.

(60)

Here the second inequality is due to I ↘ εV ↓
t StS↓

t Vt ↙ I . To proceed, notice that

Mt + StS
↓

t = Xω + (R! ↘ I) (”t) ↘ $t. (61)

Therefore, we have

ϖr

(
V ↓

t

(
Mt + StS

↓

t

)
Vt

)
↓ ϖr

(
V ↓

t XωVt

)
↘ ↔(R! ↘ I) (”t)↔ ↘ ↔$t↔

↓ ϖr

(
V ↓

t XωVt

)
↘ 21#ϖω

1

√
µ2r2

pd
↘ 5

√
ϖω
1 ↔Et↔

↓ ϖr

(
V ↓

t XωVt

)
↘ 22#ϖω

1

√
µ2r2

pd
.

(62)
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For the first term in the above inequality, we have

ϖr

(
V ↓

t XωVt

)
↓ ϖr

(
!ωV ω↓Vt

)
↘ ϖ

ω
1 ↔V ω

↘ Vt↔

↓ ϖ
ω
r ↘ 2ϖω

1 ↔V ω
↘ Vt↔

↓ ϖ
ω
r ↘ 2#1ϖ

ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↓ 0.95ϖω
r .

(63)

Therefore, we obtain

ϖr

(
V ↓

t

(
Mt + StS

↓

t

)
Vt

)
↓ 0.95ϖω

r ↘ 22#ϖω
1

√
µ2r2

pd
↓ 0.9ϖω

r .
(64)

Combining the above arguments, we have

(I) ↓ (1 + 0.9εϖω
r )

(
1 ↘ εϖ

2
r (St)

)
ϖr(St) ↓

(
1 + 0.8εϖω

r ↘ εϖ
2
r (St)

)
ϖr(St). (65)

On the other hand, we have already derived an upper bound for (II) in the maximal signal dynamic,
which is

(II) ↗ 5#1εϖ
ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

↔Et↔ . (66)

Putting everything together, we have

ϖr(St+1) ↓
(
1 + 0.8εϖω

r ↘ εϖ
2
r (St)

)
ϖr(St) ↘ 5#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

↔Et↔ . (67)

C.2. Proof of Residual Dynamic

First, we can expand Et+1 as below

Et+1 = P
⇐

Vt+1
(I + εMt) (St + Et) = P

⇐

Vt+1
(I + εMt)Et, (68)

where in the second equality, we use the fact that P
⇐

Vt+1
(I + εMt)St = 0. Then, by triangle

inequality, we obtain

↔Et+1↔ ↗

(
1 + ε

∥∥∥MtP
⇐

Vt

∥∥∥
)

↔Et↔ ↗

(
1 + 2#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

)
↔Et↔ . (69)

Here in the last inequality, we use Lemma 12.

C.3. Proof of Error Dynamic

The core proof idea is adapted from the proof of Proposition 4.3 appeared in (Li et al., 2018). We
first expand ↔”t+1↔

2
F as

↔”t+1↔
2
F =

∥∥∥Xω
↘ (I + εMt)UtU

↓

t (I + εMt)
∥∥∥
2

F

= ↔”t↔
2
F ↘ 4ε

〈
Xω

↘ UtU
↓

t ,MtUtU
↓

t

〉

  
(I)

+(II), (70)
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where
(II) = 2

〈
↘”t + εMtUtU

↓

t , ε
2MtUtU

↓

t Mt

〉

+ ε
2
∥∥∥MtUtU

↓

t + UtU
↓

t Mt

∥∥∥
2

F
+ ε

4
∥∥∥MtUtU

↓

t Mt

∥∥∥
2

F

(71)

contains all the higher-order terms. We then provide a lower-bound for (I). To this goal, we notice
that

(I) = ↔”tUt↔
2
F ↘

〈
”t, (I ↘ R!) (”t)UtU

↓

t

〉

↓ ↔”tUt↔
2
F ↘ ↔”t↔F

∥∥∥UtU
↓

t

∥∥∥
F

↔(I ↘ R!) (”t)↔

↓ ↔”tUt↔
2
F ↘ ↔”t↔F · 8

⇔
rϖ

ω
1 ·

(
5#

√
µ2r2

pd
↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔

)

= ↔”tUt↔
2
F ↘ 40#ϖω

1

√
µ2r3

pd
↔”t↔

2
F ↘ 80#

√
ϖω3
1 µr2

p
↔Et↔ ↔”t↔F .

(72)

Here in the last inequality, we apply Lemma 12. Next, we provide a lower-bound for ↔”tUt↔
2
F. To

this goal, we first notice that

↔”tUt↔F =
∥∥∥
(
Xω

↘ StS
↓

t

)
St ↘ $tSt +”tEt

∥∥∥
F

↓

∥∥∥
(
Xω

↘ StS
↓

t

)
St

∥∥∥
F

↘ ↔$t↔ ↔St↔F ↘ ↔”t↔F ↔Et↔

↓

∥∥∥
(
Xω

↘ StS
↓

t

)
St

∥∥∥
F

↘ 10
⇔
rϖ

ω
1 ↔Et↔ ↘ ↔”t↔F ↔Et↔ .

(73)

In the last inequality we use the fact that ↔$t↔ ↗ 5
√
ϖω
1 ↔Et↔ and ↔St↔F ↗

⇔
r ↔St↔ ↗ 2

√
rϖω

1 from
Lemma 11. Applying Lemma 35, we can further provide a lower-bound for

∥∥(Xω
↘ StS↓

t

)
St

∥∥
F

as

∥∥∥
(
Xω

↘ StS
↓

t

)
St

∥∥∥
F

↓ ϖr(St)
∥∥∥
(
Xω

↘ StS
↓

t

)
Vt

∥∥∥
F

↓

⇔
ϖω
r

2

∥∥∥
(
Xω

↘ StS
↓

t

)
Vt

∥∥∥
F
. (74)

Next, we present the following intermediate lemma to control
∥∥(Xω

↘ StS↓
t

)
Vt

∥∥
F

.

Lemma 15 Suppose that ↔V ω
↘ Vt↔ ↗ 0.1. Then, we have

∥∥∥
(
Xω

↘ StS
↓

t

)
Vt

∥∥∥
2

F
↓

2

5

∥∥∥Xω
↘ StS

↓

t

∥∥∥
2

F
. (75)

We first use this lemma to finish the proof of the loss dynamic and defer the proof to the end of this
section. Applying this lemma to Equation (74) yields

∥∥∥
(
Xω

↘ StS
↓

t

)
St

∥∥∥
F

↓


ϖω
r

10

∥∥∥Xω
↘ StS

↓

t

∥∥∥
F

↓


ϖω
r

10
↔”t↔F ↘


ϖω
r

10
↔$t↔F

↓


ϖω
r

10
↔”t↔F ↘ ϖ

ω
1


5

2ϱ
↔Et↔ .

(76)
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Combining Equation (76) and Equation (73) leads to

↔”tUt↔F ↓


ϖω
r

10
↔”t↔F ↘ ϖ

ω
1


5

2ϱ
↔Et↔ ↘ 10

⇔
rϖ

ω
1 ↔Et↔ ↘ ↔”t↔F ↔Et↔

↓


ϖω
r

10
↔”t↔F ↘ 20

⇔
rϖ

ω
1 ↔Et↔ .

(77)

This implies that

↔”tUt↔
2
F ↓

ϖ
ω
r

10
↔”t↔

2
F ↘ 13


r

ϱ
ϖ
ω1.5
1 ↔”t↔F ↔Et↔ . (78)

Overall, we obtain

(I) ↓
ϖ
ω
r

10
↔”t↔

2
F↘13


r

ϱ
ϖ
ω1.5
1 ↔”t↔F ↔Et↔↘40#ϖω

1

√
µ2r3

pd
↔”t↔

2
F↘80C

√
ϖω3
1 µr2

p
↔Et↔ ↔”t↔F

↓
ϖ
ω
r

15
↔”t↔

2
F↘81#

√
ϖω3
1 µr2

p
↔Et↔ ↔”t↔F .

(79)
Next, we control (II). To this end, we first notice that

↘2
〈
”t,MtUtU

↓

t Mt

〉
↗ 2 ↔”t↔F ↔Mt↔

2
∥∥∥UtU

↓

t

∥∥∥
F

↗ 16
⇔
rϖ

ω
1 ↔”t↔F

(
2 ↔”t↔ + 10#

√
ϖω
1µr

p
↔Et↔

)2

↗ 128
⇔
rϖ

ω
1 ↔”t↔F


↔”t↔

2
F + 25#2ϖ

ω
1µr

p
↔Et↔

2

.

(80)

Similarly, we have
〈
MtUtU

↓

t ,MtUtU
↓

t Mt

〉
↗ ↔Mt↔

3
∥∥∥UtU

↓

t

∥∥∥
2

F

↗ C1rϖ
ω2
1


↔”t↔

3
F +

(ϖω
1µr)

1.5

p1.5
↔Et↔

3

,

(81)

∥∥∥MtUtU
↓

t + UtU
↓

t Mt

∥∥∥
2

F
↗ 4 ↔Mt↔

2
∥∥∥UtU

↓

t

∥∥∥
2

F

↗ C2rϖ
ω2
1


↔”t↔

2
F +

ϖ
ω
1µr

p
↔Et↔

2

.

(82)

∥∥∥MtUtU
↓

t Mt

∥∥∥
2

F
↗ C3rϖ

ω2
1


↔”t↔

4
F +

ϖ
ω2
1 µ

2
r
2

p2
↔Et↔

4

. (83)

These inequalities lead to

(II) ↗ C4ε
2
rϖ

ω2
1


↔”t↔

2
F + #2ϖ

ω
1µr

p
↔Et↔

2

. (84)
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Overall, we have

↔”t+1↔
2
F ↗


1 ↘

1

5
εϖ

ω
r


↔”t↔

2
F + 324#ε

√
ϖω3
1 µr2

p
↔Et↔ ↔”t↔F + C5ε

2
r
ϖ
ω3
1 µr

p
↔Et↔

2

↗





1 ↘

1

10
εϖ

ω
r


↔”t↔F + C6ε

√
ϖω3
1 µr2

p
↔Et↔




2

,

(85)

which implies that

↔”t+1↔F ↗


1 ↘

1

10
εϖ

ω
r


↔”t↔F + C6ε

√
ϖω3
1 µr2

p
↔Et↔ . (86)

Lastly, we provide the proof of Lemma 15.
Proof of Lemma 15. First, we define P = V ω↓Vt and note that StS↓

t = Vt!tV ↓
t . This allows us

to write ∥∥∥
(
Xω

↘ StS
↓

t

)
Vt

∥∥∥
2

F
= ↔!t↔

2
F + ↔!ωP ↔

2
F ↘ 2

〈
!t,P

↓!ωP
〉
,

∥∥∥Xω
↘ StS

↓

t

∥∥∥
2

F
= ↔!t↔

2
F + ↔!ω

↔
2
F ↘ 2

〈
!t,P

↓!ωP
〉
.

(87)

Substituting the above equivalent forms into Equation (75), we need to show that

3 ↔!t↔
2
F + 5 ↔!ωP ↔

2
F ↓ 2 ↔!ω

↔
2
F + 6

〈
!t,P

↓!ωP
〉
. (88)

To this end, we first apply the Cauchy-Schwartz inequality, which gives us 2
〈
!t,P↓!ωP

〉
↗

↔!t↔
2
F +

∥∥P↓!ωP
∥∥2
F

. Therefore, it suffices to show that

5 ↔!ωP ↔
2
F ↘ 2 ↔!ω

↔
2
F ↘ 3

∥∥∥P↓!ωP
∥∥∥
2

F
↓ 0. (89)

This follows from

5 ↔!ωP ↔
2
F ↘ 2 ↔!ω

↔
2
F ↘ 3

∥∥∥P↓!ωP
∥∥∥
2

F
= tr

((
!ω

(
I ↘ PP↓

)
!ω

)
·

(
3PP↓

↘ 2I
))

↓ 0.

(90)
Here we use the facts that !ω

(
I ↘ PP↓

)
!ω

∝ 0 since ↔P ↔ ↗ ↔V ω
↔ ↔Vt↔ ↗ 1, and 3PP↓

↘

2I ∝ 0 since ϖr(P ) ↓ 1 ↘ ↔V ω
↘ Vt↔ ↓ 0.9. This completes the proof.

Appendix D. Proofs for Main Theorems

In this section, we use the one-step dynamics in Proposition 14 to prove our main theorems under the

conditions that ↔Vt↔2,↗ ↗ 2
√

µr
d and ↔V ω

↘ Vt↔F ↗ #1
εµr1.5 log( 1

ε)↘
pd

for all 0 ↗ t ↗ T . These two
conditions will be established later in Appendix E.

D.1. Proof of Theorem 2

The proof is divided into three distinct steps.
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Step 1. In the first step, we show that ↔St↔ ↗ 2
√
ϖω
1 and ↔Et↔ ↗ 2ς hold for all 0 ↗ t ↗ T .

We prove this by induction. First, in the base case where t = 0, these two conditions are naturally
met because ↔S0↔ ↗ ↔U0↔ ↗ ς ↗ 2

√
ϖω
1 and ↔E0↔ ↗ 2 ↔E0↔ ↗ 2ς. Next, for the induction step,

we assume that ↔St↔ ↗ 2
√
ϖω
1 and ↔Et↔ ↗ 2ς hold for all 0 ↗ s ↗ t, with t ↗ T ↘ 1. Utilizing

Proposition 14, we can directly derive that ↔St+1↔ ↗ 2
√
ϖω
1 . Regarding ↔Et+1↔, we have

↔Et+1↔↗


1 + 2#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

t+1

ς

(a)
↗


1 + 4#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

· (t+ 1)


ς ↗ 2ς.

(91)
Here in (a), we apply Lemma 46. This is valid since 4#1ε

ϑω
1εµr

1.5 log( 1
ε)↘

pd
· (t + 1) ↗ 1 for any

t ↗ T ↘1 ↭ 1
ϖϑω

r
log

(
1
ϱ

)
provided that the sampling rate satisfies p ↫ ε4µ2r3 log4( 1

ε)
d . This completes

the induction step.

Step 2. This step demonstrates that the minimal signal ϖr(St) grows linearly to
↘
ϑω
r

2 .
Given that we have already established ↔St↔ ↗ 2

√
ϖω
1 and ↔Et↔ ↗ 2ς for all 0 ↗ t ↗ T , we

can simplify the minimal signal dynamic in Proposition 14 as

ϖr(St+1) ↓
(
1 + 0.8εϖω

r ↘ εϖ
2
r (St)

)
ϖr(St) ↘ 12#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

ς

↓ (1 + 0.4εϖω
r )ϖr(St) ↘ 12#1ε

ϖ
ω
1ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

ς.

(92)

This holds for any t that satisfies ϖr(St) ↗
3
↘
ϑω
r

4 . By applying Lemma 47, we obtain

ϖr(St) ↓ (1 + 0.4εϖω
r )

t

(
ϖr(St) ↘ 30#1

ϱ
2
µr

1.5 log
(
1
ϱ

)
⇔
pd

ς

)
. (93)

At initialization, it is observed that

ϖr(S0) ↘ 30#1
ϱ
2
µr

1.5 log
(
1
ϱ

)
⇔
pd

ς ↓ c0ς ↘ 30#1
ϱ
2
µr

1.5 log
(
1
ϱ

)
⇔
pd

ς ↓
c0

2
ς, (94)

provided that p ↫ ε4µ2r3 log2( 1
ε)

d . Consequently, within T1 ↭ 1
ϖϑω

r
log

(
ϑω
r
ϱ

)
iterations, ϖr(St)

reaches
↘
ϑω
r

2 . It is also easy to show that ϖr(St) ↓

↘
ϑω
r

2 holds true for all t ↓ T1.

Step 3. This step is dedicated to demonstrating that the error
∥∥Xω

↘ UtU↓
t

∥∥
F

converges linearly
to O(ς) once ϖr(St) ↓

↘
ϑω
r

2 .
Based on our arguments in Step 2, where we established that ϖr(St) ↓

↘
ϑω
r

2 for t ↓ T1, and
leveraging Proposition 14 along with Lemma 47, we can derive that

∥∥∥Xω
↘ UtU

↓

t

∥∥∥
F

↗


1 ↘

1

5
εϖ

ω
r

t≃T1 ∥∥∥Xω
↘ UT1U

↓

T1

∥∥∥
F
+ 3240#

√
ϖω
1ϱ

2µr2

p
ς. (95)

Note that
∥∥Xω

↘ UT1U
↓

T1

∥∥
F

↗ ↔Xω
↔F +

∥∥UT1U
↓

T1

∥∥
F

↗ 9
⇔
rϖ

ω
1 according to Lemma 10. Hence,

within an additional T2 = 1
ϖϑω

r
log

(
rϑω

1
ϱ

)
iterations, the error converges to O

(√
ϑω
1ε

2µr2

p ς

)
, thus

concluding the proof of Theorem 2.
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D.2. Proof of Theorem 3

To prove this result, we first apply Theorem 2 to output a solution Ut0 and its leave-one-out versions
U (l)

t0 that meet the initialization conditions in Theorem 9. Then, we apply Theorem 9 to obtain the
desired result.

Establishing Condition (14). By choosing the initialization scale ς = c ·
ϑω
r

ε1.5d for sufficiently

small c > 0 and assuming the sampling rate of p ↫ ε2µ4r9 log4(d)
d , Theorem 2 guarantees that, with

probability at least 1 ↘
1
d2 , the iterations of GD with step-size ε ⇐

µr
↘
pdϑω

1
satisfy

∥∥∥Ut0U
↓

t0 ↘ Xω
∥∥∥
F

↗ 0.9#4

√
ϖω
1ϱ

2µr2

p

ϖ
ω
r

ϱ1.5d
, for some t0 ↭

1

εϖω
r
log


ϱ
1.5

d

ϖω
r


. (96)

On the other hand, Lemma 40 in the appendix implies that

dist (Ut0 ,U
ω) ↗

1.1

ϖω
r

∥∥∥Ut0U
↓

t0 ↘ Xω
∥∥∥
F

↗ #4

√
ϖω
rµ

3r3 log(d)

pd2
,

which establishes Condition (14).

Establishing Condition (15). The proof of Condition (15) follows a similar logic, recognizing
that the leave-one-out sequences exhibit a stronger concentration than the original iterations. Conse-
quently, they fulfill Condition (15) within at most t0 ↭ 1

ϖϑω
r
log

(
ε1.5d
ϑω
r

)
iterations. Further details of

this argument are omitted for brevity.
This shows that the initial conditions of Theorem 9 are satisfied after t0 iterations. From this

iteration onward, Theorem 9 shows that the iterations of GD enter a local linear convergence regime,
which readily establishes the final result of Theorem 3.

Appendix E. Proofs for Incoherence Dynamic

In this section, we present our proofs for establishing the incoherence of Vt. To simplify the
presentation, we omit the “′” from our notations. Therefore, V (l)

t ,Z(l)
t ,M (l)

t , . . . in this section
refer to Ṽ (l)

t , Z̃(l)
t , M (l)

t , . . . defined in Section 3.2.

E.1. Proof of Lemma 6

We first state a finer variant of this lemma here.

Proposition 16 (Controlling ↔Vt ↘ V ω
↔F) Suppose that the stepsize satisfies ε ⇐

µr
↘
pdϑω

1
. More-

over, suppose that ↔St↔ ↗ 2
√
ϖω
1 , ↔Et↔ ↗

√
ϑω
1
d , ↔Vt↔2,↗ ↗ 2

√
µr
d and ↔V ω

↘ Vt↔F ↗ #1
εµr1.5 log( 1

ε)↘
pd

for all t ↗ T ↭ 1
ϖϑω

r
log

(
1
ϱ

)
. Then, conditioned on Egood, we have

↔Vt ↘ V ω
↔F ↗ #1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

∞t ↗ T ↭ 1

εϖω
r
log


1

ς


. (97)
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Proof First notice that Vt+1 can be rewritten as

Vt+1 = Zt+1
(
Z↓

t+1Zt+1
)≃1/2

= (I + εMt)Vt
(
V ↓

t (I + εMt)
2 Vt

)≃1/2

= (I + εMt)Vt (I + Yt)
≃1/2

(98)

where we denote Yt = V ↓
t

(
2εMt + ε

2M2
t

)
Vt. Next, we apply Taylor expansion for the matrix-

valued function f(X) = (I + X)≃1/2, which states that for any X satisfying ↔X↔ < 1,

f(X) = (I + X)≃1/2 = I ↘
1

2
X + R(X) where R(X) =

↗∑

k=2

(↘1)k(2k)!

4k(k!)2
Xk

. (99)

Then, upon setting X = Yt in the above equation and plugging it into Equation (98) and rearranging
the subterms, we have

Vt+1 = (I + εMt)Vt


I ↘

1

2
V ↓

t

(
2εMt + ε

2M2
t

)
Vt + R(Yt)


=

(
I + εP

⇐

Vt
Mt

)
Vt + At,

(100)
where

At = ↘ε
2MtVtV

↓

t MtVt ↘ 0.5ε2VtV
↓

t M2
t Vt ↘ 0.5ε3MtVtV

ω↓M2
t Vt + (I + εMt)VtR(Yt)

(101)
contains all the higher-order terms. Next, according to triangle inequality, we can provide an upper
bound for ↔V ω

↘ Vt+1↔F as follows

↔V ω
↘ Vt+1↔F ↗

∥∥∥V ω
↘

(
I + εP

⇐

Vt
Mt

)
Vt

∥∥∥
F  

:=(I)

+ ↔At↔F .
(102)

We first control the leading term (I). To this goal, we apply triangle inequality and obtain

(I) ↗

∥∥∥V ω
↘

(
I + εP

⇐

Vt

(
Xω

↘ UtU
↓

t

))
Vt

∥∥∥
F
+ ε

∥∥∥(I ↘ R!)
(
Xω

↘ UtU
↓

t

)
Vt

∥∥∥
F

↗

∥∥∥V ω
↘

(
I + εP

⇐

Vt
”t

)
Vt

∥∥∥
F  

:=(I1)

+ε
⇔
r ↔(I ↘ R!) (”t)↔  

:=(I2)

. (103)

To control (I1), we further decompose it as

(I1) ↗

∥∥∥V ω
↘

(
I + εP

⇐

Vt
V ω!ωV ω↓

)
Vt

∥∥∥
F
+ ε

∥∥∥P
⇐

Vt
UtU

↓

t Vt

∥∥∥
F

(a)
↗

∥∥∥V ω
↘ Vt ↘ εP

⇐

Vt
(V ω

↘ Vt)!
ωV ω↓Vt

∥∥∥
F
+ ε

⇔
r

∥∥∥EtU
↓

t Vt

∥∥∥
(b)
↗

∥∥∥V ω
↘ Vt ↘ εP

⇐

Vt
(V ω

↘ Vt)!
ωV ω↓Vt

∥∥∥
F  

:=(I1,1)

+2ε
√
rϖω

1 ↔Et↔ .

(104)
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Here in (a), we use the fact that P
⇐

Vt
Vt = 0 and the definition Et = P

⇐

Vt
Ut. In (b), we use

the assumption that ↔St↔ ↗ 2
√

ϖω
1 . Next, according to the orthogonality of Vt and V ⇐

t , we can
upper-bound (I1,1) as follows

(I1,1)2 = ↔PVt(V
ω
↘ Vt)↔

2
F +

∥∥∥P
⇐

Vt
(V ω

↘ Vt)
(
I ↘ ε!ωV ω↓Vt

)∥∥∥
2

F

↗ ↔PVt(V
ω
↘ Vt)↔

2
F +

∥∥∥P
⇐

Vt
(V ω

↘ Vt)
∥∥∥
2

F

∥∥∥I ↘ ε!ωV ω↓Vt

∥∥∥
2

(a)
↗ ↔PVt(V

ω
↘ Vt)↔

2
F +

∥∥∥P
⇐

Vt
(V ω

↘ Vt)
∥∥∥
2

F

= ↔V ω
↘ Vt↔

2
F .

(105)

Here (a) is due to the fact that
∥∥I ↘ ε!ωV ω↓Vt

∥∥ ↗ ↔I ↘ ε!ω
↔ + εϖ

ω
1 ↔V ω

↘ Vt↔ ↗ 1 ↘ ε(ϖω
r ↘

ϖ
ω
1 ↔V ω

↘ Vt↔) ↗ 1 since we assume ↔V ω
↘ Vt↔ ↗

1
2ε . Therefore, we derive that

(I1) ↗ ↔V ω
↘ Vt↔F + 2ε

√
rϖω

1 ↔Et↔ . (106)

On the other hand, Lemma 12 tells us that, conditioned on Egood, we have (I2) ↗ 21#ϖω
1

√
µ2r2

pd .
Therefore, we can conclude that

(I) ↗ ↔V ω
↘ Vt↔F + 2ε

√
rϖω

1 ↔Et↔ + ε
⇔
r · 21#ϖω

1

√
µ2r2

pd
↗ ↔V ω

↘ Vt↔F + 22#ε
ϖ
ω
1µr

1.5

⇔
pd

.

(107)
Next, according to Lemma 13, we can control ↔At↔F as

↔At↔F ↗
⇔
r ↔At↔ ↗ 300

⇔
rε

2
ϖ
ω2
1 . (108)

Putting everything together, we have

↔V ω
↘ Vt+1↔F ↗ ↔V ω

↘ Vt↔F + 22#ε
ϖ
ω
1µr

1.5

⇔
pd

+ 300
⇔
rε

2
ϖ
ω2
1

↗ ↔V ω
↘ Vt↔F + 23#ε

ϖ
ω
1µr

1.5

⇔
pd

,

(109)

provided that ε ⇐
µr

↘
pdϑω

1
. This completes the proof.

E.2. Proof of Proposition 7

We restate the proposition here for clarity.

Proposition 17 (Dynamic of
∥∥∥
(
V ω

↘ V (l)
t

)
l,·

∥∥∥) Under the same conditions as Proposition 16, for

all t ↗ T ↭ 1
ϖϑω

r
log

(
1
ϱ

)
, we have

∥∥∥∥
(
V ω

↘ V (l)
t+1

)

l,·

∥∥∥∥ ↗ (1 ↘ 0.5εϖω
r )

∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥+ #2εϖ
ω
1

ϱµ
1.5

r
2 log

(
1
ϱ

)
√
pd2

. (110)

35



MA FATTAHI

Proof Similar to Equation (100), we can express V (l)
t+1 as

V (l)
t+1 =


I + εP

⇐

V
(l)
t

M (l)
t


V (l)
t + A(l)

t , (111)

where M (l)
t = R!(l)

(
Xω

↘ V (l)
t !tV

(l)↓
t

)
and A(l)

t is defined as

A(l)
t = ↘ε

2M (l)
t V (l)

t V (l)↓
t M (l)

t V (l)
t ↘ 0.5ε2V (l)

t V (l)↓
t M (l)2

t V (l)
t

↘ 0.5ε3M (l)
t V (l)

t V (l)↓M (l)2
t V (l)

t + (I + εMt)V (l)
t R

(
Y (l)
t

) (112)

containing all the higher-order terms. Applying triangle inequality yields
∥∥∥∥
(
V ω

↘ V (l)
t+1

)

l,·

∥∥∥∥ ↗

∥∥∥∥∥


V ω

↘


I + εP

⇐

V
(l)
t

M (l)
t


V (l)
t



l,·

∥∥∥∥∥+

∥∥∥∥
(
A(l)

t

)

l,·

∥∥∥∥

=

∥∥∥∥∥


V ω

↘


I + εP

⇐

V
(l)
t

%(l)
t


V (l)
t



l,·

∥∥∥∥∥
  

:=(I)

+

∥∥∥∥
(
A(l)

t

)

l,·

∥∥∥∥ .
(113)

Here in the last equality, we use the fact that P
⇐

V
(l)
t

M (l)
t = P

⇐

V
(l)
t

%(l)
t where %(l)

t = M (l)
t ↘

V (l)
t !ωV ω↓ + V (l)

t !tV
(l)↓
t . Upon noticing that P

⇐

V
(l)
t

= I ↘ P
V

(l)
t

, we further decompose (I) as

follows
(I) ↗

∥∥∥∥
(
V ω

↘

(
I + ε%(l)

t

)
V (l)
t

)

l,·

∥∥∥∥
  

:=(I1)

+ε

∥∥∥∥
(
P
V

(l)
t

%(l)
t V (l)

t

)

l,·

∥∥∥∥
  

:=(I2)

.
(114)

To control (I1), notice that the l-th row of M (l)
t is equal to the l-th row of Xω

↘ V (l)
t !tV

(l)↓
t due

to our choice of R!(l) . Therefore, we have

(I1) =
∥∥∥∥
(
V ω

↘

(
I + ε

(
Xω

↘ V (l)
t !tV

(l)↓
t ↘ V (l)

t !ωV ω↓
↘ V (l)

t !tV
(l)↓
t

))
V (l)
t

)

l,·

∥∥∥∥

=

∥∥∥∥
(
V ω

↘

(
I + ε

((
V ω

↘ V (l)
t

)
!ωV ω↓

))
V (l)
t

)

l,·

∥∥∥∥

=

∥∥∥∥
((

V ω
↘ V (l)

t

)(
I ↘ ε!ωV ω↓V (l)

t

))

l,·

∥∥∥∥

↗

∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥
∥∥∥I ↘ ε!ωV ω↓V (l)

t

∥∥∥

(a)
↗ (1 ↘ 0.5εϖω

r )

∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥ .

(115)

Here in (a), we use the fact that
∥∥∥I ↘ ε!ωV ω↓V (l)

t

∥∥∥ ↗ ↔I ↘ ε!ω
↔ + εϖ

ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥ ↗ 1 ↘

ε(ϖω
r↘ϖ

ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥) ↗ 1↘0.5εϖω
r since we have

∥∥∥V ω
↘ V (l)

t

∥∥∥ ↗
1
2ε according to the following

proposition.
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Lemma 18 (Frobenius norm control) Under the same conditions as Proposition 16, for any 1 ↗

t ↗ T = 100
ϖϑω

r
log

(
1
ϱ

)
, for all 1 ↗ l ↗ d, we have

∥∥∥V ω
↘ V (l)

t

∥∥∥
F

↗ #1
ϱµr

1.5 log
(
1
ϱ

)
⇔
pd

. (116)

The proof of the above lemma is the same as that of Proposition 16 and hence omitted here. Next, for
(I2), we first have

(I2) =
∥∥∥∥
(
V (l)
t V (l)↓

t %(l)
t V (l)

t

)

l,·

∥∥∥∥ ↗

∥∥∥∥
(
V (l)
t

)

l,·

∥∥∥∥
∥∥∥V (l)↓

t %(l)
t V (l)

t

∥∥∥ ↗

∥∥∥∥
(
V (l)
t

)

l,·

∥∥∥∥
∥∥∥%(l)

t

∥∥∥ .

(117)
For the first part, we have

∥∥∥∥
(
V (l)
t

)

l,·

∥∥∥∥ ↗
∥∥V ω

l,·

∥∥+

∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥ ↗


µr

d
+

∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥ ↗ 2


µr

d
. (118)

Here we use the assumption that
∥∥∥∥
(
V ω

↘ V (l)
t

)

l,·

∥∥∥∥ ↗

√
µr
d . For the second part, we have

∥∥∥%(l)
t

∥∥∥ =
∥∥∥
(
V ω

↘ V (l)
t

)
!ωV ω↓

↘ (I ↘ R!(l))
(
Xω

↘ V (l)
t !tV

(l)↓
t

)∥∥∥

↗

∥∥∥
(
V ω

↘ V (l)
t

)
!ωV ω↓

∥∥∥+
∥∥∥(I ↘ R!(l))

(
Xω
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(119)

Here in (a), we apply Lemma 12. In (b), we apply Lemma 18. Invoking Equations (118) and (119)
in Equation (117), we obtain that

(I2) ↗ 2


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d
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ω
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(
1
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)
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. (120)

Next, we control the higher-order term
∥∥∥∥
(
A(l)

t

)

l,·

∥∥∥∥. To this end, we first notice that the l-th row of

A(l)
t is equal to the l-th row of
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t P
V
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t
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V
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t
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t

M (l)2
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t

+
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t

)
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(
Y (l)
t

)
.

(121)

Therefore, we can upper-bound its operator norm by
∥∥∥∥
(
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t

)
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(
”(l)

t

)

l,·

∥∥∥∥
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∥∥∥
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∥∥∥∥
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Next, we notice that
∥∥∥∥
(
V (l)
t

)

l,·

∥∥∥∥ ↗ 2
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∥∥∥∥
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)
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∥∥∥∥
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∥∥∥∥
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d
+

∥∥∥∥
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t
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d
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(123)

On the other hand, according to Lemma 13, we have
∥∥∥M (l)

t

∥∥∥ ↗ 6
√
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∥∥∥R
(
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1 . Therefore, we derive that

∥∥∥∥
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d
. (124)

Overall, we obtain
∥∥∥∥
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(125)
provided that ε ⇐

µr
↘
pdϑω

1
. This completes the proof of Proposition 17.

E.3. Proof of Proposition 8

We restate the proposition here for clarity.

Proposition 19 (One-step dynamic of
∥∥Vt ↘ V (l)

t

∥∥
F

) Suppose that the sampling rate satisfies p ↫
ε6µ4r9 log4( 1
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d . Suppose that ↔V ω

↘ Vt↔ ↗
1
2ε and
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)
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Proof Note that

Vt+1 =
(
I + εP

⇐

Vt
Mt

)
Vt + At and V (l)

t+1 =


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⇐

V
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t
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
V (l)
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t . (127)

Hence, we can expand
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2

F
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∥∥∥
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where

(II) = ε
2

∥∥∥∥P
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contains all the higher-order terms.

We first control (I). Notice that P
⇐
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⇐
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⇐
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Therefore, we can decompose (I) as follows
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⇐
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Next, we provide upper bounds for these terms separately. For (I1), applying Cauchy-Schwarz
inequality leads to
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Here in (a), we apply Lemma 43. In (b), we use the result from Equation (119). Similarly, (I2), we
have
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Next, for (I3), we further decompose it as

(I3) =
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⇐
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We control these terms separately. First, we present the following key proposition, the proof of which
is deferred to the end of this section.

Proposition 20 For all 0 ↗ t ↗ T , we have
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For (I3,1), we have
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Here in the last inequality, we use Proposition 20. Next, we apply Lemma 29 to control (I3,2).
Specifically, upon setting A = Vt, B = P

⇐
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)
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Similarly, we apply Lemma 29 to control (I3,3). Upon setting A =
(
Vt ↘ V (l)

t

)
!t, B =

P
⇐
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To control
∥∥∥Vt ↘ V (l)

t

∥∥∥
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, we apply Lemma 39:
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Hence, we have
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Lastly, for (I3,4), we notice that
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Here in (a), we use the fact that
〈
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In (b), we apply Proposition 16. Therefore, we obtain
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which implies that
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Next, we move on to controlling (II). First, by the basic inequality 2ab ↗ a
2 + b

2, we bound (II) as
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∥∥∥∥P
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Next, we provide the control over
∥∥∥∥P
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For the second term, we further decompose it as
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The first term can be controlled by Proposition 20. For the second term, we have
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Here we apply Corollary 29 in (a). Similarly, we can also control the third term as follows
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Combining the above inequalities leads to
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Similarly, we can derive that
∥∥∥At ↘ A(l)

t

∥∥∥
F

↗ Cϖ
ω
1

∥∥∥Vt ↘ V (l)
t

∥∥∥
F
+ Cϖ

ω
1


εµ3r5.5 log( 1

ε) log(d)↘
pd·d

.
Therefore, we have

(II) ↗ C3ε
2

(
ϖ
ω
1

∥∥∥Vt ↘ V (l)
t

∥∥∥
2

F
+ ϖ

ω2
1

ϱµ
3
r
5.5 log

(
1
ϱ

)
log (d)

⇔
pd · d

)
. (150)

Putting everything together, we obtain

∥∥∥Vt+1↘V (l)
t+1

∥∥∥
F

↗

(
1+#1εϖ

ω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

)∥∥∥Vt↘V (l)
t

∥∥∥
F
+ #3εϖ

ω
1

√
ϱµ3r5.5 log

(
1
ϱ

)
log (d)

⇔
pd · d

↗

∥∥∥Vt ↘ V (l)
t

∥∥∥
F
+ 2#3εϖ

ω
1

√
ϱµ3r5.5 log

(
1
ϱ

)
log (d)

⇔
pd · d

.

(151)

E.4. Proof of Proposition 20

To prove this proposition, we propose a novel argument based on adaptive ω-nets. Upon fixing an
ω-net Nς with respect to Frobenius norm for the operator norm ball B

r→r
op (4ϖω

1) with ω = c
d

2, we first

construct a series of adaptive ω-nets


V
(l)
ς,t

T

t=0
in the following recursive manner.

V
(l)
ς,t+1 =


Y (l)
ς,t+1 :

∥∥∥Y (l)
ς,t+1

∥∥∥
2,↗

↗ 2


µr

d
, and Y (l)

ς,t+1 = Z(l)
ς,t+1

(
Z(l)↓

ς,t+1Z
(l)
ς,t+1

)≃1/2
where

Z(l)
ς,t+1 =

(
I + εR!(l)

(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

))
V (l)
ς,t , ∞V (l)

ς,t → V
(l)
ς,t ,!ς,t → Nς


.

(152)

2. We call a set Nϑ an ω-net with respect to a norm →·→ for a given set S if for any element s ↑ S, there exists an element
s↑ ↑ Nϑ such that →s ↓ s↑→ ↔ ω.
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Moreover, we set V
(l)
ς,0 = {V ω

}. Then, we denote the best approximation of V (l)
t in V

(l)
ς,t as

V (l)
ς,t = argmin

V ↑V
(l)
ϑ,t

∥∥∥V (l)
t ↘ V

∥∥∥
F

. Hence, we have the following decomposition

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
t !tV

(l)↓
t

)
V (l)
t

∥∥∥
F

↗

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
F  

(I)

+
∥∥∥(R! ↘ R!(l))

(
Xω

↘ V (l)
t !tV

(l)↓
t

)(
V (l)
t ↘ V (l)

ς,t

)∥∥∥
F  

(II)

+

∥∥∥∥(R! ↘ R!(l))


V (l)
t !t

(
V (l)
t ↘ V (l)

ς,t

)↓


V (l)
ς,t

∥∥∥∥
F  

(III)

+
∥∥∥(R! ↘ R!(l))

(
V (l)
t (!t ↘ !ς,t)V (l)↓

ς,t

)
V (l)
ς,t

∥∥∥
F  

(IV)

+
∥∥∥(R! ↘ R!(l))

((
V (l)
t ↘ V (l)

ς,t

)
!ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
F  

(V)

.

(153)

To proceed, we require the following key lemmas.

Lemma 21 For any 1 ↗ i ↗ j ↗ d, let pi,j be a Bernoulli random variable taking the value pi,j = 1
if and only if (i, j) → !. Let ri,j = 1

2p(pi,j + pj,i). The following statements hold:

• Independent case: Suppose the sampling rate p ↫ µr
d log

(
4r
φ

)
. Suppose that X → Sd→d and

V → Od→r with ↔V ↔2,↗ ↗ 2
√

µr
d are independent of rl,1, . . . , rl,d. Then, with probability at

least 1 ↘ φ, we have

↔(R! ↘ R!(l)) (X)V ↔
2
F ↗

32µr log(4r/φ)

p
↔X↔

2
max . (154)

• General case: Suppose the sampling rate p ↫ log(d)
d . For arbitrary X → Rd→d and V → Rd→r,

with probability at least 1 ↘
1
d3 , we have

↔(R! ↘ R!(l)) (X)V ↔
2
F ↗

2d

p
↔X↔

2
max ↔V ↔

2
F . (155)

Lemma 22 Suppose the sampling rate satisfies p ↫ µr
d log

(
4r
φ

)
. For any 0 ↗ t ↗ T =

100
ϖϑω

r
log

(
1
ϱ

)
, 1 ↗ l ↗ d, with probability at least 1 ↘

1
d3 , we have

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
2

F
↗ #

ϱµ
3
r
5.5 log

(
1
ϱ

)
log

(
rϑω

1
ς

)

√
pd3

. (156)
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Lemma 23 Under the same conditions as Lemma 22, we have
∥∥∥V (l)

t+1 ↘ V (l)
ς,t+1

∥∥∥
F

↗

(
1 + #εϖω

1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

)∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
+ C3ε

ϖ
ω
1µr

⇔
pd

ω. (157)

The proof of these lemmas is deferred to the end of this section. Now we use Lemma 23 to control
the dynamic of

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F

. Note that
∥∥∥V (l)

0 ↘ V (l)
ς,0

∥∥∥
F
= 0. Hence, applying Lemma 47, we

have
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
F

↗ C

((
1 + #εϖω

1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

)t

↘ 1

)
ε
ϑω
1µr↘
pd

ω

εϖω
1
εµr1.5 log( 1

ε)↘
pd

↗ Cε
ϖ
ω
1µr

⇔
pd

ω · t.

(158)

Now we are ready to control (I) to (V) separately. First, Lemma 22 directly implies that

(I) ↗ #


ϱµ3r5.5 log

(
1
ϱ

)
log

(
rϑω

1
ς

)

4
√
pd3

. (159)

On the other hand, applying Lemma 21 to (II) leads to

(II) ↗

√
2d

p

∥∥∥Xω
↘ V (l)

t !tV
(l)↓
t

∥∥∥
max

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F

↗ #

√
µ2r2

pd

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
. (160)

Similarly, we have

(III) ↗

√
2d

p

∥∥∥∥V (l)
t !t

(
V (l)
t ↘ V (l)

ς,t

)↓
∥∥∥∥
max

∥∥∥V (l)
ς,t

∥∥∥
F

↗ #

√
µr2

p

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
,

(IV) ↗

√
2d

p

∥∥∥V (l)
t (!t ↘ !ς,t)V (l)↓

ς,t

∥∥∥
max

∥∥∥V (l)
ς,t

∥∥∥
F

↗ #

√
µ2r3

pd
ω,

(V) ↗

√
2d

p

∥∥∥
(
V (l)
t ↘ V (l)

ς,t

)
!ς,tV

(l)↓
ς,t

∥∥∥
max

∥∥∥V (l)
ς,t

∥∥∥
F

↗ #

√
µr2

p

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
.

(161)

Overall, we derive that
∥∥∥(R! ↘ R!(l))

(
Xω

↘ V (l)
t !tV

(l)↓
t

)
V (l)
t

∥∥∥
F

↗ #


ϱµ3r5.5 log

(
1
ϱ

)
log

(
rϑω

1
ς

)

4
√
pd3

+ #

√
µr2

p

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F

↗ #


ϱµ3r5.5 log

(
1
ϱ

)
log

(
rϑω

1
ς

)

4
√
pd3

+ #

√
µr2

p
· ε

ϖ
ω
1µr

⇔
pd

ω · t

↗ 2#ϖω
1

√
ϱµ3r5.5 log

(
1
ϱ

)
log (d)

4
√

pd3
.

(162)
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The last inequality follows from the fact that ω = c
d . This completes the proof of Proposition 20. ↬

Next, we proceed to present the proofs of Lemma 21, Lemma 22, and Lemma 23.
Proof of Lemma 21. We first expand ↔(R! ↘ R!(l)) (X)V ↔

2
F as follows

↔(R! ↘ R!(l)) (X)V ↔
2
F =

r∑

j=1

(
d∑

k=1

(rl,k ↘ 1)Xl,kVk,j

)2

+
∑

i ⇓=l

(ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2
. (163)

Next, we prove these two cases separately.

Independent case. First, we control
∑d

k=1 (rl,k ↘ 1)Xl,kVk,j for all 1 ↗ j ↗ r via Bernstein’s
inequality (Lemma 32). To this goal, for a fixed 1 ↗ j ↗ r, upon defining Zk = (rl,k ↘ 1)Xl,kVk,j

with E[Zk] = 0, we have

M := max
k

|Zk| ↗
1

p
↔X↔max ↔V ↔2,↗ ,

↼
2 :=

d∑

k=1

Var
[
Z

2
k

]
↗

1

p

d∑

k=1

X
2
l,kV

2
k,j ↗

1

p
↔X↔

2
max

d∑

k=1

V
2
k,j =

1

p
↔X↔

2
max .

(164)

Here in the last equality we use the fact that
∑d

k=1 V
2
k,j = 1 since V → Od→r. Therefore, due to

Bernstein’s inequality, with probability at least 1 ↘
φ
2r , one has

∣∣∣∣∣

d∑

k=1

Zk

∣∣∣∣∣ ↗ 2↼

√

log


4r

φ


+

4

3
M log


4r

φ



↗
2 ↔X↔max

⇔
p

√

log


4r

φ


+

4 ↔X↔max ↔V ↔2,↗

3p
log


4r

φ



↗
4 ↔X↔max

⇔
p

√

log


4r

φ


,

(165)

where we use the assumption p ↫ µr
d log

(
4r
φ

)
. Hence, via a union bound, we know that with

probability at least 1 ↘
φ
2 , we have

r∑

j=1

(
d∑

k=1

(rl,k ↘ 1)Xl,kVk,j

)2

↗
16r ↔X↔

2
max

p
log


4r

φ


. (166)

Next, we can control
∑

i ⇓=l (ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2 as

∑

i ⇓=l

(ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2
↗

d∑

i=1

(ri,l ↘ 1)2 ↔X↔
2
max ↔V ↔

2
2,↗ . (167)
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Then, we apply Bernstein’s inequality to control
∑d

k=1 (rl,k ↘ 1)2. To this end, notice that

E

(rl,k ↘ 1)2


=

1 ↘ p

2p
↗

1

2p
,

M := max
k

(rl,k ↘ 1)2 ↗


1

p
↘ 1

2

↗
1

p2
,

↼
2 :=

d∑

k=1

Var

(rl,k ↘ 1)2


↗

d

p3
.

(168)

Therefore, with probability at least 1 ↘
φ
2 , we have

d∑

k=1

(rl,k ↘ 1)2 ↗
d

2p
+

4

3

1

p2
log


2

φ


+ 2

√
d

p3

√

log


2

φ


↗

d

p
(169)

since we set p ↫ µr
d log

(
4r
φ

)
. This implies that with probability at least 1 ↘

φ
2 , we have

∑

i ⇓=l

(ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2
↗

d

p
↔X↔

2
max ↔V ↔

2
2,↗ . (170)

Finally, taking a union bound, we conclude that with probability at least 1 ↘ φ, we have

↔(R! ↘ R!(l)) (X)V ↔
2
F ↗

16r ↔X↔
2
max log(4r/φ)

p
+

d

p
↔X↔

2
max ↔V ↔

2
2,↗

↗
32µr log(4r/φ)

p
↔X↔

2
max .

(171)

General case. First, we apply Cauchy-Schwarz inequality to obtain

r∑

j=1

(
d∑

k=1

(rl,k ↘ 1)Xl,kVk,j

)2

↗

r∑

j=1

(
d∑

k=1

(rl,k ↘ 1)2
)(

d∑

k=1

X
2
l,kV

2
k,j

)

↗

(
d∑

k=1

(rl,k ↘ 1)2
)

·

r∑

j=1

↔X↔
2
max

d∑

k=1

V
2
k,j

=

(
d∑

k=1

(rl,k ↘ 1)2
)

· ↔X↔
2
max ↔V ↔

2
F .

(172)

Next, we can control
∑

i ⇓=l (ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2 as follows

∑

i ⇓=l

(ri,l ↘ 1)2X2
i,l ↔Vl,·↔

2
↗

d∑

i=1

(ri,l ↘ 1)2 ↔X↔
2
max ↔V ↔

2
F

=

(
d∑

k=1

(rl,k ↘ 1)2
)

↔X↔
2
max ↔V ↔

2
F .

(173)
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Here we use the fact that ri,j = rj,i, ∞i, j → [d]. Next, we apply Bernstein’s inequality to control∑d
k=1 (rl,k ↘ 1)2. To this end, notice that

E

(rl,k ↘ 1)2


=

1 ↘ p

2p
↗

1

2p
,

M := max
k

(rl,k ↘ 1)2 ↗


1

p
↘ 1

2

↗
1

p2
,

↼
2 :=

d∑

k=1

Var

(rl,k ↘ 1)2


↗

d

p3
.

(174)

Therefore, with probability at least 1 ↘ φ, we have

d∑

k=1

(rl,k ↘ 1)2 ↗
d

2p
+

4

3

1

p2
log


2

φ


+ 2

√
d

p3

√

log


2

φ


. (175)

Specifically, upon setting φ = 1
d3 , we obtain that with probability at least 1 ↘

1
d3 , one has

d∑

k=1

(rl,k ↘ 1)2 ↗
d

p
, (176)

since we set p ↫ log(d)
d . Overall, we have

↔(R! ↘ R!(l)) (X)V ↔
2
F ↗ 2

(
d∑

k=1

(rl,k ↘ 1)2
)

↔X↔
2
max ↔V ↔

2
F ↗

2d

p
↔X↔

2
max ↔V ↔

2
F , (177)

with probability at least 1 ↘
1
d3 . This completes the proof.

Proof of Lemma 22. First, for fixed !ς,t → Nς and V (l)
ς,t → V

(l)
ς,t , Lemma 21 implies that with

probability at least 1 ↘ φ, we have

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
2

F
↗

32µr log(4r/φ)

p

∥∥∥Xω
↘ V (l)

ς,t !ς,tV
(l)↓
ς,t

∥∥∥
2

max
.

(178)
Note that ∥∥∥Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

∥∥∥
max

↗ ↔Xω
↔max +

∥∥∥V (l)
ς,t !ς,tV

(l)↓
ς,t

∥∥∥
max

(a)
↗ ↔!ω

↔ ↔V ω
↔
2
2,↗ + ↔!ς,t↔

∥∥∥V (l)
ς,t

∥∥∥
2

2,↗

↗ 9ϖω
1
µr

d
.

(179)

Therefore, with probability at least 1 ↘ φ, we have

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
2

F
↗

288µ3
r
3 log(4r/φ)

pd2
. (180)
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Lastly, we apply the union bound to finalize the desired result. To this end, note that B
r→r
op (4ϖω

1) ∈

B
r→r
F (4

⇔
rϖ

ω
1). Hence, according to Lemma 42, we know that |Nς| ↗

(
12

↘
rϑω

1
ς

)r2

which implies

that
∣∣∣V(l)

ς,t

∣∣∣ ↗

(
6
↘
rϑω

1
ς

)r2t
. Therefore, the total cardinality of

⋃d
l=1

⋃T
t=0 V

(l)
ς,t is upper-bounded by

∣∣∣∣∣

d⋃

l=1

T⋃

t=0

V
(l)
ς,t

∣∣∣∣∣ ↗ d ·

T∑

t=0


12

⇔
rϖ

ω
1

ω

r2t

↗ 2d


12

⇔
rϖ

ω
1

ω

r2T

. (181)

Hence, once we set φ = 1
2d4

(
6
↘
rϑω

1
ς

)≃r2T
, we obtain that with probability at least 1 ↘ d

≃3, for any

0 ↗ t ↗ T, 1 ↗ l ↗ d and V (l)
ς,t → V

(l)
ς,t ,

∥∥∥(R! ↘ R!(l))
(
Xω

↘ V (l)
ς,t !ς,tV

(l)↓
ς,t

)
V (l)
ς,t

∥∥∥
2

F
↗ #

µ
3
r
3

pd2


log(d) + r

2
T


rϖ

ω
1

ω



↗ #
ϱµ

3
r
5.5 log

(
1
ϱ

)
log

(
rϑω

1
ς

)

√
pd3

.

(182)

Here we use the fact that T ↗
100
ϖϑω

r
log(1/ς) and ε = ”

(
µ
ϑω
1

√
r
pd

)
. This completes the proof.

Proof of Lemma 23. The derivation of
∥∥∥V (l)

t+1 ↘ V (l)
ς,t+1

∥∥∥
F

is nearly the same as that of
∥∥∥Vt+1 ↘ V (l)

t+1

∥∥∥
F

.
First, note that

V (l)
ς,t+1 =


I + εP

⇐

V
(l)
ϑ,t

M (l)
ς,t


V (l)
ς,t + A(l)

ς,t, (183)

where M (l)
ς,t and A(l)

ς,t are defined similar to M (l)
t and A(l)

t . Hence, we can expand
∥∥∥V (l)

t+1 ↘ V (l)
ς,t+1

∥∥∥
2

Fas

∥∥∥V (l)
t+1↘V (l)

ς,t+1

∥∥∥
2

F
=

∥∥∥V (l)
t ↘V (l)

ς,t

∥∥∥
2

F
+ 2ε

〈
V (l)
t ↘V (l)

ς,t ,P
⇐

V
(l)
t

M (l)
t V (l)

t ↘P
⇐

V
(l)
ϑ,t

M (l)
ς,t V

(l)
ς,t

〉

  
:=(I)

+(II).

(184)
where

(II) = ε
2

∥∥∥∥P
⇐

V
(l)
t

M (l)
t V (l)

t ↘ P
⇐

V
(l)
ϑ,t

M (l)
ς,t V

(l)
ς,t

∥∥∥∥
2

F

+
∥∥∥A(l)

t ↘ A(l)
ς,t

∥∥∥
2

F

+ 2

〈
I + εP

⇐

V
(l)
t

M (l)
t


V (l)
t ↘


I + εP

⇐

V
(l)
ϑ,t

M (l)
ς,t


V (l)
ς,t ,A

(l)
t ↘ A(l)

ς,t

〉 (185)
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contains all the higher-order terms. Next, we further decompose (I) as follows

(I) =
〈

V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

%(l)
t V (l)

t ↘ P
⇐

V
(l)
ϑ,t

%(l)
ς,tV

(l)
ς,t

〉

=

〈
V (l)
t ↘ V (l)

ς,t ,


P

⇐

V
(l)
t

↘ P
⇐

V
(l)
ϑ,t


%(l)

ς,tV
(l)
ς,t

〉

  
:=(I1)

+

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

%(l)
t

(
V (l)
t ↘ V (l)

ς,t

)〉

  
:=(I2)

+

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

(
%(l)

t ↘ %(l)
ς,t

)
V (l)
ς,t

〉

  
:=(I3)

.

(186)
Here we define %(l)

t = M (l)
t ↘ V (l)

t !ωV ω↓ + V (l)
t !tV

(l)↓
t and %(l)

ς,t = M (l)
ς,t ↘ V (l)

ς,t !
ωV ω↓ +

V (l)
ς,t !ς,tV

(l)↓
ς,t . We control (I1) as follows

(I1) ↗

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F

∥∥∥∥P
⇐

V
(l)
t

↘ P
⇐

V
(l)
ϑ,t

∥∥∥∥
F

∥∥∥%(l)
ς,t

∥∥∥ ↗ 2
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
2

F

∥∥∥%(l)
ς,t

∥∥∥ . (187)

Here we apply Lemma 43 in the second inequality. For
∥∥∥%(l)

ς,t

∥∥∥, following the same analysis as in
Equation (119), we have

∥∥∥%(l)
ς,t

∥∥∥ ↗ ϖ
ω
1

∥∥∥V ω
↘ V (l)

ς,t

∥∥∥+ 10#
ϖ
ω
1µr

⇔
pd

↗ ϖ
ω
1

(∥∥∥V ω
↘ V (l)

t

∥∥∥+
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
)
+ 10#

ϖ
ω
1µr

⇔
pd

↗ ϖ
ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥+ 20#
ϖ
ω
1µr

⇔
pd

.

(188)

Here in the last inequality, we use the fact that
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥ ↗ ω ↗ 10# µr
↘
pd

. Plugging this
inequality into Equation (187), we obtain

(I1) ↗ 2ϖω
1

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F


ϖ
ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥+ 20#
ϖ
ω
1µr

⇔
pd


. (189)
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Similar to our derivation for (I1), it follows that (I2) ↗ ϖ
ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥
2

F

(
ϖ
ω
1

∥∥∥V ω
↘ V (l)

t

∥∥∥ +

10#
ϑω
1µr↘
pd

)
. Lastly, to bound (I3), we further decompose it as

(I3) =
〈

V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

(
M (l)

t ↘ M (l)
ς,t + V (l)

ς,t !
ωV ω↓

↘ V (l)
ς,t !

(l)
t V (l)↓

ς,t

)
V (l)
ς,t

〉

=

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

(I ↘ R!(l))


V (l)
ς,t !

(l)
ς,t

(
V (l)
ς,t ↘ V (l)

t

)↓


V (l)
ς,t

〉

  
:=(I3,1)

+

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

(I ↘ R!(l))
((

V (l)
ς,t ↘ V (l)

t

)
!(l)

ς,tV
(l)↓
t

)
V (l)
ς,t

〉

  
:=(I3,2)

+

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

(I ↘ R!(l))
(
V (l)
t (!ς,t ↘ !t)V (l)↓

t

)
V (l)
ς,t

〉

  
:=(I3,3)

+

〈
V (l)
t ↘ V (l)

ς,t ,P
⇐

V
(l)
t

V (l)
ς,t !

ωV ω↓V (l)
ς,t

〉

  
:=(I3,4)

.

(190)

Next, we control these terms separately. First, we apply Lemma 29 to control (I3,1). Specifically, upon
setting A = V (l)

ς,t ,B = P
⇐

V
(l)
t

(
V (l)
t ↘ V (l)

ς,t

)
,C =

(
V (l)
ς,t ↘ V (l)

t

)
!ς,t,D = V (l)

ς,t in Lemma 29,

with probability at least 1 ↘ d
≃3, we have

(I3,1) =
〈
(I ↘ R!)

(
AC↓

)
,BD↓

〉

↗ #

√
d

p
↔A↔2,↗ ↔B↔F · ↔C↔F ↔D↔2,↗

= #

√
d

p

∥∥∥V (l)
ς,t

∥∥∥
2

2,↗

∥∥∥∥P
⇐

V
(l)
t

(
V (l)
t ↘ V (l)

ς,t

)∥∥∥∥
F

∥∥∥
(
V (l)
ς,t ↘ V (l)

t

)
!ς,t

∥∥∥
F

↗ 16#ϖω
1

√
µ2r2

pd

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F
.

(191)

Here in the last inequality, we use the fact that ↔!ς,t↔ ↗ 4ϖω
1 and

∥∥∥V (l)
ς,t

∥∥∥
2,↗

↗ 2
√

µr
d . In a manner

akin to our derivation for (I3,1), we can also show that

(I3,2) ↗ 16#ϖω
1

√
µ2r2

pd

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F

(I3,3) ↗ 4#ϖω
1

√
µ2r2

pd
ω

∥∥∥V (l)
ς,t ↘ V (l)

t

∥∥∥
F
.

(192)
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Lastly, for (I3,4), we observe that

(I3,4) = ↘

〈
V (l)
ς,t ,P

⇐

V
(l)
t

V (l)
ς,t !

ωV ω↓V (l)
ς,t

〉

↗ ↘

〈
V (l)
ς,t ,P

⇐

V
(l)
t

V (l)
ς,t !

ω

〉
+ ϖ

ω
1

∥∥∥V ω
↘ V (l)

ς,t

∥∥∥
F

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F

(a)
↗ ϖ

ω
1

∥∥∥V ω
↘ V (l)

ς,t

∥∥∥
F

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F

↗ ϖ
ω
1

(∥∥∥V ω
↘ V (l)

t

∥∥∥
F
+
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
F

)∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F

(b)
↗ ϖ

ω
1

(
#1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

+
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
F

)∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F
.

(193)

Here in (a), we use the fact that
〈

V (l)
ς,t ,P

⇐

V
(l)
t

V (l)
ς,t !

ω

〉
=

∥∥∥∥P
⇐

V
(l)
t

V (l)
ς,t !

ω1/2

∥∥∥∥
2

F

↓ 0. In (b), we

apply Proposition 16.
Putting everything together, we obtain that

(I3) ↗

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F

(
32#ϖω

1

√
µ2r2

pd

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
+ 4#ϖω

1

√
µ2r2

pd
ω

)
, (194)

which in turn leads to

(I) ↗ #ϖω
1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
2

F
+
∥∥∥V (l)

t ↘ V (l)
ς,t

∥∥∥
F

· 4#ϖω
1

√
µ2r2

pd
ω. (195)

Therefore, our final bound is established as
∥∥∥V (l)

t+1 ↘ V (l)
ς,t+1

∥∥∥
F

↗

(
1 + #εϖω

1

ϱµr
1.5 log

(
1
ϱ

)
⇔
pd

)∥∥∥V (l)
t ↘ V (l)

ς,t

∥∥∥
F
+ C3ε

ϖ
ω
1µr

⇔
pd

ω. (196)

This completes the proof.

Appendix F. Proofs for Different Initialization Schemes

Gaussian initialization. Suppose the search rank 0.5d ↗ r
↔

↗ d. Let Z = G/ ↔G↔ where
G → Rd→r↑ is a standard Gaussian matrix. Before proceeding, we first introduce the following
lemma, which characterizes the concentration of the largest and smallest singular values of a standard
Gaussian matrix.

Lemma 24 (Adapted from Theorem 6.1 in (Wainwright, 2019)) Suppose that G → Rd1→d2 is a
standard Gaussian matrix where d1 ↓ d2. Then, for any φ > 0, we have

P
(
↔G↔ ↓ (2 + φ)

√
d1

)
↗ exp


↘
d1φ

2

2


,

P
(
ϖmin(G) ↓ (1 ↘ φ)

√
d1 ↘

√
d2

)
↗ exp


↘
d1φ

2

2


.

(197)

52



GD CONVERGES FOR MATRIX COMPLETION

Notice that ϖr(PV ωG) = ϖmin(V ω↓G) where V ω↓G → Rr→r↑ is another standard Gaussian matrix.
Hence, upon setting φ = 1

2 and noting that r↔ ↓
d
2 , Lemma 24 implies that with probability at least

1 ↘ exp{d/16}, we have

ϖr(PV ωG) ↓
1

2

⇔

r↔ ↘
⇔
r ↓

1

4

⇔

d. (198)

On the other hand, upon setting φ = 1
2 , Lemma 24 implies that with probability at least 1↘exp{d/8},

we have

G ↗
5

2

⇔

d. (199)

Via a union bound, we know that with probability at least 1 ↘ 2 exp{d/16}, we have

ϖr(PV ωZ) =
ϖr(PV ωG)

↔G↔
↓

⇔
d/4

5
⇔
d/2

=
1

10
. (200)

Hence, with probability at least 1 ↘ 2 exp{d/16}, Condition 1 is satisfied with c0 = 0.1.

Orthogonal initialization. Suppose the search rank satisfies r↔ = d. Upon choosing Z = O for
some O → Od→d, we have

ϖr(PV ωO) = ϖr(V
ωV ω↓) = 1. (201)

Hence, Condition 1 is satisfied with c0 = 1.

Spectral initialization. Let V !V ↓ be the eigendecomposition of the best rank-r↔ approximation
of R!(Xω) measured in Frobenius norm. Suppose r ↗ r

↔
↗ d and Z = U/ ↔U↔, where U =

V !1/2. Corollary 30 tells us that, with probability at least 1 ↘
1
d3 , we have

↔R!(X
ω) ↘ Xω

↔ ↗ #ϖω
1

√
µ2r2

pd
. (202)

Conditioned on this event, we have

↔U↔
2 = ↔R!(X

ω)↔ ↗ ↔Xω
↔ + ↔R!(X

ω) ↘ Xω
↔ ↗ 2ϖω

1. (203)

On the other hand, by Weyl’s inequality, we have

ϖ
2
r (PV ωU) = ϖr(V

ω↓UU↓V ω)

↓ ϖr(V
ω↓

R!(X
ω)V ω) ↘ ϖr+1(R!(X

ω))

↓ ϖr(V
ω↓XωV ω) ↘ ↔R!(X

ω) ↘ Xω
↔ ↘ ϖr+1(R!(X

ω))

↓ ϖ
ω
r ↘ 2 ↔R!(X

ω) ↘ Xω
↔

↓ 0.5ϖω
r .

(204)

Combining the above two inequalities, we conclude that, with probability at least 1↘
1
d3 , Condition 1

is satisfied with c0 =
1
2ε .
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Appendix G. Concentration Inequalities for Matrix Completion

Recall that the sampling matrix # → Rd→d is defined as

!i,j =

{
1 if (i, j) → !,

0 otherwise.
(205)

The following lemma characterizes the concentration behavior of #.

Lemma 25 (Adapted from (Vu, 2018, Lemma 8)) Suppose the sampling rate satisfies p ↫ log(d)
d .

There is a universal constant # > 0 such that, with probability at least 1 ↘
1
d3 , we have

∥∥∥∥
#+#↓

2p
↘ J

∥∥∥∥ ↗ #

√
d

p
. (206)

Here J is the all-one matrix.

The original result appeared in (Vu, 2018, Lemma 8) only holds for symmetric Bernoulli model, i.e.,
# = #↓. However, we can easily extend it to the asymmetric case via the dilation trick (Tropp et al.,
2015). Hence, we omit the details here. Next, we have the following extension to the leave-one-out
sequences.

Corollary 26 Suppose the sampling rate satisfies p ↫ log(d)
d . Then, with probability at least 1 ↘

1
d3 ,

for all 1 ↗ l ↗ d, we have ∥∥∥∥∥
#(l) +#(l)↓

2p
↘ J

∥∥∥∥∥ ↗ #

√
d

p
. (207)

Proof of Corollary 26. Note that for any 1 ↗ l ↗ d, the matrix !(l)+!(l)↔

2p ↘ J can be derived from
!+!↔

2p ↘ J by zeroing out the l-th row and column. Hence, the proof follows by invoking Lemma 34
in Lemma 25.

Lemma 27 ((Chen et al., 2020, Lemma A.1) and (Chen and Li, 2019, Lemma 8)) For all A, B,
C, and D → Rd→r, we have

∣∣∣
〈
(I ↘ R!)

(
AC↓

)
,BD↓

〉∣∣∣ ↗

∥∥∥∥
#+#↓

2p
↘ J

∥∥∥∥ · ↔A↔2,↗ ↔B↔F · ↔C↔F ↔D↔2,↗ . (208)

Moreover, for all 1 ↗ l ↗ d, we have

∣∣∣
〈
(I ↘ R!(l))

(
AC↓

)
,BD↓

〉∣∣∣ ↗

∥∥∥∥∥
#(l) +#(l)↓

2p
↘ J

∥∥∥∥∥ · ↔A↔2,↗ ↔B↔F · ↔C↔F ↔D↔2,↗ .

(209)

As a special case, we have
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Lemma 28 For any matrix X → Rd→d with the form X = UV ↓, we have

↔(I ↘ R!(l)) (X)↔ ↗ ↔(I ↘ R!) (X)↔ ↗

∥∥∥∥
#+#↓

2p
↘ J

∥∥∥∥ ↔U↔2,↗ ↔V ↔2,↗ , ∞1 ↗ l ↗ d.

(210)

Note that the above two results are deterministic. Combining them with Lemma 25 leads to the
following high-probability results.

Corollary 29 ((Chen et al., 2020, Lemma 4.3 and Lemma A.1)) Suppose that the sampling rate
satisfies p ↫ log(d)

d . There exists a universal constant C > 0 such that, for any A,B,C,D → Rd→r,
with probability at least 1 ↘

1
d3 , we have

∣∣∣
〈
(I ↘ R!)

(
AC↓

)
,BD↓

〉∣∣∣ ↗ #

√
d

p
· ↔A↔2,↗ ↔B↔F · ↔C↔F ↔D↔2,↗ . (211)

Moreover, with the same probability, for any 1 ↗ l ↗ d, we have

∣∣∣
〈
(I ↘ R!(l))

(
AC↓

)
,BD↓

〉∣∣∣ ↗ #

√
d

p
· ↔A↔2,↗ ↔B↔F · ↔C↔F ↔D↔2,↗ . (212)

Corollary 30 ((Chen and Li, 2019, Lemma 9)) Consider an arbitrary matrix X → Rd→d decom-
posed as X = UV ↓. There exists a universal constant C such that, with probability at least 1 ↘

1
d3 ,

we have
∥∥∥
(
I ↘ R

(l)
!

)
(X)

∥∥∥ ↗ ↔(I ↘ R!) (X)↔ ↗ #

√
d

p
↔U↔2,↗ ↔V ↔2,↗ . (213)

Lastly, we provide a finer result for a matrix of the form X ↘ Y .

Lemma 31 For two arbitrary symmetric matrices X,Y → Rd→d, with probability at least 1 ↘
1
d3 ,

we have
∥∥∥
(
I ↘ R

(l)
!

)
(X ↘ Y )

∥∥∥ ↗ ↔(I ↘ R!) (X ↘ Y )↔ ↗ #

√
d

p
↔X ↘ Y ↔

(
↔UX↔

2
2,↗ + ↔UY ↔

2
2,↗

)
.

(214)

Proof We denote Z = X ↘ Y with an SVD Z = LZ!ZL↓

Z
(recall that Z is symmetric). Hence,

with probability at least 1 ↘
1
d3 , we have

↔(I ↘ R!) (Z)↔
(a)
↗ #

√
d

p
↔LZ!Z↔2,↗ ↔LZ↔2,↗

(b)
↗ #

√
d

p
↔!Z↔ ↔LZ↔

2
2,↗

= #

√
d

p
↔Z↔ ↔LZ↔

2
2,↗

(c)
↗ #

√
d

p
↔Z↔

(
↔LX↔

2
2,↗ + ↔LY ↔

2
2,↗

)
.

(215)
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Here in (a), we apply Lemma 30 upon setting U = LZ!Z and V = LZ . In (b), we apply
Lemma 33. Lastly, in (c), we apply Lemma 39. This completes the proof.

Appendix H. Auxiliary Lemmas

H.1. Concentration Inequalities

Lemma 32 (Bernstein’s inequality) Let X1, · · · , Xn be independent zero-mean random variables.
Suppose that |Xi| ↗ M almost surely, for all i and set ↼2 =

∑n
i=1Var

[
X

2
i

]
. Then, for all positive

t,

P
(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ↓ t

)
↗ 2 exp

(
↘

t
2

2↼2 + 2
3Mt

)
. (216)

Or equivalently, with probability at least 1 ↘ φ, one has
∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ↗ 2↼
√

log (2/φ) +
4

3
M log (2/φ) . (217)

H.2. Matrix Norm Inequalities

Lemma 33 ((Cape et al., 2019, Proposition 6.5)) For A → Rd1→d2 , and B → Rd2→d3 , we have

↔AB↔2,↗ ↗ ↔A↔2,↗ ↔B↔ and ↔AB↔2,↗ ↗ ↔A↔
↗

↔B↔2,↗ . (218)

Lemma 34 (Adapted from (Sun and Luo, 2016, Proposition A.3)) For any matrix A → Rd1→d2 ,
denote A≃i,· (A·,≃i) as the matrix obtained by replacing the i-th row (column) of A by zeros,
respectively. Then, we have

↔A≃i,·↔ ↗ ↔A↔ and ↔A·,≃j↔ ↗ ↔A↔ , ∞i → [d1], j → [d2]. (219)

Lemma 35 ((Sun and Luo, 2016, Proposition A.4)) For any two matrices A → Rd1→d2 ,B →

Rd2→d3 , we have
↔AB↔ ↗ ↔A↔ ↔B↔ and ↔AB↔F ↗ ↔A↔ ↔B↔F . (220)

Furthermore, if d1 ↓ d2, then

ϖmin(A) ↔B↔F ↗ ↔AB↔F and ϖmin(A) ↔B↔ ↗ ↔AB↔ . (221)

Lemma 36 For arbitrary matrices U → Rd1→d2 , ! → Rd2→d3 and V → Rd4→d3 , we have
∥∥∥U!V ↓

∥∥∥
max

↗ ↔!↔ ↔U↔2,↗ ↔V ↔2,↗ . (222)

Proof By Cauchy-Schwartz inequality, we have
∥∥∥U!V ↓

∥∥∥
max

= max
i,j

∣∣∣∣∣
∑

k

[U!]i,kVj,k

∣∣∣∣∣

↗ max
i,j

↔(U!)i,·↔ ↔Vj,·↔

= ↔U!↔2,↗ ↔V ↔2,↗

↗ ↔!↔ ↔U↔2,↗ ↔V ↔2,↗ .

(223)
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Here we apply Lemma 33 to derive the last inequality. This completes the proof.

Lemma 37 For any matrix A → Rd1→d2 , we have

↔A↔
2
2,↗ =

∥∥∥AA↓

∥∥∥
max

. (224)

Proof We write a1, · · · ,ad1 as the row vectors of A. Then, we have

↔A↔
2
2,↗ = max

1⇒i⇒d1
↔ai↔

2
. (225)

On the other hand, we can write
∥∥AA↓

∥∥
max

as
∥∥∥AA↓

∥∥∥
max

= max
1⇒i,j⇒d1

|∋ai,aj△| . (226)

First, we have
∥∥AA↓

∥∥
max

↗ ↔A↔
2
2,↗ since

∥∥∥AA↓

∥∥∥
max

= max
1⇒i,j⇒d1

|∋ai,aj△| ↗ max
1⇒i,j⇒d1

↔ai↔ ↔aj↔ = max
1⇒i⇒d1

↔ai↔
2 = ↔A↔

2
2,↗ . (227)

Second, we have
∥∥AA↓

∥∥
max

↓ ↔A↔
2
2,↗ upon noting that

∥∥∥AA↓

∥∥∥
max

= max
1⇒i,j⇒d1

|∋ai,aj△| ↓ max
i=j

|∋ai,aj△| = max
1⇒i⇒d1

↔ai↔
2 = ↔A↔

2
2,↗ . (228)

Therefore, we derive that
∥∥AA↓

∥∥
max

= ↔A↔
2
2,↗, which completes the proof.

Lemma 38 For two PSD matrices A,B → Rd→d with A ↙ B, we have

↔A↔max ↗ ↔B↔max . (229)

Proof The proof follows by the fact that for any PSD matrix A, we have ↔A↔max = maxi{Ai,i}.
According to this fact, we immediately have

↔A↔max = max
i

{Ai,i} ↗ max
i

{Bi,i} = ↔B↔max (230)

since A ↙ B. Now we turn to prove this fact. Note that we can write any PSD matrix A as
A = PP↓. Then, according to Lemma 37, we have

↔A↔max = ↔P ↔
2
2,↗ = max

i
↔pi↔

2 = max
i

{Ai,i}. (231)

Here we write {pi} as the row vectors of P . This completes the proof.

Lemma 39 For Z = X ↘ Y , we have

↔LZ↔
2
2,↗ ↗ ↔LX↔

2
2,↗ + ↔LY ↔

2
2,↗ . (232)
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Proof We bound ↔LZ↔
2
2,↗ as follows

↔LZ↔
2
2,↗

(a)
=

∥∥∥LZL↓

Z

∥∥∥
max

(b)
↗

∥∥∥LXL↓

X + LY L↓

Y

∥∥∥
max

↗

∥∥∥LXL↓

X

∥∥∥
max

+
∥∥∥LY L↓

Y

∥∥∥
max

(c)
= ↔LX↔

2
2,↗ + ↔LY ↔

2
2,↗ .

(233)

Here (a) and (c) follow from Lemma 37. In (b), we apply Lemma 38 since LZL↓

Z
↙ LXL↓

X
+

LY L↓

Y
. This is due to the fact that col(Z) ▽ col(X) ̸ col(Y ) which leads to LZL↓

Z
= PZ ↙

PX + PY . This completes the proof.

Lemma 40 ((Tu et al., 2016, Lemma 5.4)) For any X,Y → Rd→r with ϖr(X) > 0, we have

dist2(X,Y ) ↗
1

2
(⇔

2 ↘ 1
)
ϖ2
r (X)

∥∥∥XX↓
↘ Y Y ↓

∥∥∥
2

F
. (234)

Lemma 41 Consider a matrix U → Rd1→d2 and a diagonal matrix ! → Rd2→d2 . We have

↔U!↔2,↗ ↓ ϖr(!) ↔U↔2,↗ . (235)

Proof We first write ! = Diag{ϖ1, · · · ,ϖd2}. Next, note that

↔(U!)l,·↔
2 =

d2∑

j=1

U
2
l,jϖ

2
j ↓ ϖ

2
r (!)

d2∑

j=1

U
2
l,j = ϖ

2
r (!) ↔Ul,·↔

2
. (236)

Hence, taking the maximum over index l on both sides, we immediately obtain

↔U!↔2,↗ ↓ ϖr(!) ↔U↔2,↗ . (237)

H.3. Other Useful Inequalities

Lemma 42 (Adapted from (Vershynin, 2018, Corollary 4.2.13)) The covering number Nς of Br→r
F (R)

satisfies the following inequality for any 0 < ω ↗ 1:

Nς ↗


3R

ω

r2

. (238)

Lemma 43 For two orthogonal matrices V1,V2 → Od→r, we have
∥∥∥V1V

↓

1 ↘ V2V
↓

2

∥∥∥ ↗ 2 ↔V1 ↘ V2↔ and
∥∥∥V1V

↓

1 ↘ V2V
↓

2

∥∥∥
F

↗ 2 ↔V1 ↘ V2↔F . (239)
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Proof Note that V1V ↓
1 ↘ V2V ↓

2 = V1 (V1 ↘ V2)
↓ + (V1 ↘ V2)V ↓

2 . Hence, we have
∥∥∥V1V

↓

1 ↘ V2V
↓

2

∥∥∥ ↗ ↔V1 ↘ V2↔ (↔V1↔ + ↔V2↔) ↗ 2 ↔V1 ↘ V2↔ . (240)

Similarly, for the Frobenius norm, we also have
∥∥∥V1V

↓

1 ↘ V2V
↓

2

∥∥∥
F

↗ ↔V1 ↘ V2↔F (↔V1↔ + ↔V2↔) ↗ 2 ↔V1 ↘ V2↔F . (241)

This completes the proof.

Lemma 44 For arbitrary matrix X → Rd1→d2 with rank(X) = r and O → Od1→r, we have

ϖr(X) ↓ ϖr

(
O↓X

)
. (242)

Moreover, if O = UX , we have ϖi(X) = ϖi
(
O↓X

)
for all 1 ↗ i ↗ r.

Proof We first prove the special case. Suppose O = UX , then we have O↓X = !XV ↓

X
. Note that

this is the SVD of O↓X with the singular value matrix !X . Hence, O↓X has the same singluar
values as X . For the general case, it follows by

ϖr

(
O↓X

)
= inf

Y ↑M↗r↘1

∥∥∥O↓X ↘ Y
∥∥∥
F

↗

∥∥∥O↓X ↘ O↓UX!X,≃1V
↓

X

∥∥∥
F

↗

∥∥∥O↓
ϖr(X)uX,≃1v

↓

X,≃1

∥∥∥
F

↗ ϖr(X).

(243)

Here we define M⇒r≃1 as the set of all matrices of rank at most r ↘ 1. We also denote
!X,≃1 = Diag{ϖω

1(X), · · · ,ϖr≃1(X), 0}. Finally, uX,≃1,vX,≃1 refer to the last columns of
UX ,VX , respectively.

Lemma 45 Consider two matrices A → Rr→r
,B → Rr→d where A is invertible and B ↖= 0. We

have
ϖr(AB) ↓ ϖr(A)ϖr(B). (244)

Proof It directly follows by

ϖr(AB) = min
⇑x⇑=1,x↑range(B↔)

↔ABx↔

↓ ϖr(A) min
⇑x⇑=1,x↑range(B↔)

↔Bx↔

= ϖr(A)ϖr(B).

(245)
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Lemma 46 For any x → [0, 1
2(r≃1)) and r > 1, we have

(1 + x)r ↗ 1 + 2rx. (246)

Lemma 47 For the series {xt}
↗
t=0, the following two statements hold:

• Suppose that xt+1 ↗ Axt + B, ∞t ↓ 0 where A > 0, A ↖= 1 and x0 +
B

A≃1 ↓ 0. Then, we
have

xt ↗ A
t


x0 +

B

A ↘ 1


↘

B

A ↘ 1
. (247)

• Suppose that xt+1 ↓ Axt ↘ B, ∞t ↓ 0 where A > 0 and x0 ↘
B

A≃1 ↓ 0. Then, we have

xt ↓ A
t


x0 ↘

B

A ↘ 1


+

B

A ↘ 1
. (248)

Proof We first prove the first statement. Note that we can rewrite xt+1 ↗ Axt +B as yt+1 ↗ Ayt

where yt = xt +
B

A≃1 . Note that y0 ↓ 0, A > 0 by our assumption. Hence, we derive yt ↗ A
t
y0 =

A
t
(
x0 +

B
A≃1

)
, which implies that xt = yt ↘

B
A≃1 ↗ A

t
(
x0 +

B
A≃1

)
↘

B
A≃1 .

For the second statement, we first rewrite the condition as yt+1 ↓ Ayt where yt = xt ↘
B

A≃1 .

Then, we have yt ↓ A
t
y0, which implies that xt = yt +

B
A≃1 ↓ A

t
y0 +

B
A≃1 = A

t
(
x0 ↘

B
A≃1

)
+

B
A≃1 .
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