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Abstract

The increasing size of large language models

(LLMs) traditionally requires low-precision in-

teger formats to meet strict latency and power

demands. Yet recently, alternative formats such

as Normal Float (NF4) have increased model ac-

curacy at the cost of increased chip area. In this

work, we first conduct a large-scale analysis of

LLM weights and activations across 30 networks

and conclude that most distributions follow a Stu-

dent’s t-distribution. We then derive a new the-

oretically optimal format, Student Float (SF4),

that improves over NF4 across modern LLMs,

for example increasing the average accuracy on

LLaMA2-7B by 0.76% across tasks. Using this

format as a high-accuracy reference, we then pro-

pose augmenting E2M1 with two variants of su-

pernormal support for higher model accuracy. Fi-

nally, we explore the quality and efficiency fron-

tier across 11 datatypes by evaluating their model

accuracy and hardware complexity. We discover

a Pareto curve composed of INT4, E2M1, and

E2M1 with supernormal support, which offers

a continuous tradeoff between model accuracy

and chip area. For example, E2M1 with super-

normal support increases the accuracy of Phi-2

by up to 2.19% with 1.22% area overhead, en-

abling more LLM-based applications to be run

at four bits. The supporting code is hosted at

https://github.com/cornell-zhang/llm-datatypes.

1. Introduction

Quantization has become the mainstream method for deep

neural network (DNN) compression (Hao et al., 2021). Com-

pared to alternatives like pruning, it retains original model
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Figure 1. Quantization Datatypes – Datatypes should reflect

LLM weight and activation distributions to achieve the highest

quality. In this work, we compare model accuracy, chip area, and

power consumption across datatypes to map the quality-efficiency

Pareto frontier. We also propose alternative datatypes including

Student Float (SF4), super-range E2M1 (SR), and super-precision

E2M1 (SP). These complement existing datatypes, e.g., Normal

Float (NF4), Intel E2M1 (E2M1-I), bitsandbytes E2M1 (E2M1-B)

and Additive Powers of Two (APoT4).

quality at higher compression ratios (Kuzmin et al., 2023),

and importantly it can be applied post-training, often with-

out any fine-tuning. This makes it suitable for large language

models (LLMs), which require significant resources during

fine-tuning for gradient and optimizer state buffers. Recent

LLM quantization works have successfully lowered weight

and activation precision to eight bits (Frantar et al., 2023;

Xiao et al., 2023) and four bits (Zhao et al., 2023; Liu et al.,

2023; Shao et al., 2023) with minimal accuracy loss.

At four bits, prior LLM quantization has focused on integer

datatypes since they are supported in current DNN accel-

erators (Jouppi et al., 2023). However, recent work has

shown eight-bit floating-point (FP8), e.g. E4M3, achieves

higher accuracy compared to INT8, where E represents the

exponent bits and M the mantissa bits (Kuzmin et al., 2022;

Micikevicius et al., 2022). These improvements motivate

the further study of four-bit non-integer formats, such as

FP4, that can be included in next-generation accelerators.
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Many of these formats are illustrated in Figure 1, which

includes seven FP4 variants in blue along with INT4 and

multiple alternative formats. All formats are normalized to

one for comparison and placed against an example weight

distribution in the background. Visualizing both the datatype

and underlying weight distribution is important since their

agreement leads to high-accuracy post-training quantization.

For example, E2M1 typically achieves higher accuracy than

INT4 because it allocates more coverage to the majority of

values in the center of the distribution. This difference be-

tween datatypes is particularly important at four bits, where

there are only sixteen possible values. At higher bitwidths,

most reasonable datatypes provide dense coverage across

the distribution.

In addition to preserving accuracy, datatypes must have effi-

cient multiply-and-accumulate (MAC) units, which perform

nearly all of the compute-intensive LLM operations. For

instance, while E2M1 has higher accuracy, up to a 7.13%

LAMBADA improvement on Phi-2, INT4 has an 8% smaller

and more power-efficient MAC unit. In this work, we ex-

plore this accuracy-efficiency frontier across datatypes and

summarize our contributions as follows:

1. Conduct a large-scale profiling of the weights and acti-

vations across 30 DNNs and discover that most DNN

distributions are best approximated by the Student’s

t-distribution.

2. Derive a theoretically optimal datatype with respect to

this distribution, Student Float (SF4), and empirically

verify that it improves the state-of-the-art for lookup-

based quantization.

3. Propose two variants of supernormal support for E2M1

and Additive Powers-of-Two (APoT) datatypes, using

SF4 as a high-accuracy reference.

4. Plot the Pareto frontier for accuracy and performance

across datatypes, comparing FP4 vs. INT4, discussing

FP4 variants, and improving the accuracy of E2M1 and

APoT4 with supernormal support.

2. Related Work

DNN quantization can be broadly categorized into two

branches: quantization-aware training (QAT) (Zhang et al.,

2023a) and post-training quantization (PTQ) (Zhao et al.,

2019a;b; Chee et al., 2023). PTQ directly performs quanti-

zation after the model has finished training, often without

any training or calibration data (Cai et al., 2020; Nagel et al.,

2019). This approach simplifies the model quantization

process but leads to lower model accuracy, especially at

extremely low precision. In this scenario, the choice of

datatype is particularly important for preserving high model

accuracy. Traditionally, integer formats were the only op-

tion at low bitwidths, yet recent work has proposed new

floating-point, lookup-based, and alternative formats. At

four bits, these datatypes have complex quality and perfor-

mance trade-offs that affect the model accuracy, chip area,

and estimated power.

2.1. Floating-Point

Floating-point formats have been essential for deep learn-

ing given their ability to represent a wide range of values

necessary for weights, activations, and gradients. Recently,

the Open Compute Project proposed a standard for lower-

precision formats, including FP4, FP6, and micro-scaling

formats (Rouhani, 2023). This standard follows prior re-

search like VS-Quant (Dai et al., 2021) and micro-exponents

(MX) (Rouhani et al., 2023), which share scales per block

and introduce multi-level scale factors. In addition, the quan-

tization library “bitsandbytes” (Dettmers et al., 2022a) has

implemented an FP4 datatype for weight-only LLM quan-

tization. Similarly, Intel’s neural compressor, which has

become a popular library for LLM compression research,

offers an FP4 implementation for weight-only LLM quanti-

zation (Shen et al., 2023).

In addition, multiple recent works have compared floating-

point and integer formats and explored mixed-format net-

works (Chen et al., 2023). For instance, FLIQS (Dotzel

et al., 2024) and MoFQ (Zhang et al., 2023b) discovered

that floating-point formats produce higher accuracies across

vision, language, and recommendation tasks, where the dif-

ferences are larger at lower precisions. Our work continues

this line of research by comparing seven different FP4 can-

didates across LLMs, proposing supernormal extensions to

them, and mapping their quality and hardware efficiency

tradeoffs.

2.2. Logarithmic Datatypes

As floating-point formats allocate all of their bits to the

exponent, they become logarithmic formats. In this process,

these formats replace costly digital multiplications with pure

exponent addition (Alsuhli et al., 2023), yet they poorly fit

natural DNN distributions. As shown in Figure 1, they

cluster too many values in the center of the distribution

while leaving sparse coverage at the extremes. To address

this, Additive Powers-of-Two (APoT) adds two logarithmic

numbers together to better match these data distributions

and increase model accuracy (Li et al., 2020). At four bits,

APoT has the general form: (−1)S (2E+2Ẽ), where E and

Ẽ are sets of powers of two. This leads to a potentially large

search space that we explore in Appendix E, yet at four bits,

the only reasonable variant has E ∈ {0, 2−1, 2−2, 2−4} and

Ẽ ∈ {0, 2−3}. Therefore, we focus on this variant only. Our

work maps the quality-efficiency frontier of these formats,

describes the limitations of native E3M0, and introduces

two variants of APoT that achieve higher accuracy with

minor area overhead.
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Figure 2. Mistral-7B Weight Profile – The weights in Mistral-7B

are best approximated by t-distributions. The best fitting normal

distribution (1.0 × σ) poorly fits the peak of the distribution, and

forcing it to fit the peak (0.6 × σ) causes poor representation on

the larger values. Straight lines on quantile-quantile (Q-Q) plots

indicate perfect fits between theoretical and sampled distributions.

2.3. Normal Float

While logarithmic datatypes were developed primarily for

performance, Normal Float (NF4) was designed exclusively

for model accuracy (Dettmers et al., 2023). It equally di-

vides the probability mass for normal distributions using

quantile functions (Dettmers et al., 2022b), ensuring approx-

imately the same number of weights get mapped to each

datatype value. This leads to high accuracy, yet it relies

on floating-point lookup tables and high-precision MAC

units to be implemented in real hardware. In our work, we

propose an alternate lookup format, Student Float (SF4),

to increase the accuracy of lookup-based quantized LLMs

and build various hardware-efficient datatypes based on its

insights.

3. Proposed Datatypes

In this section, we conduct a large-scale profiling of LLM

weight and activation distributions across models and ap-

plications. We then use these distributions to analytically

derive the SF4 datatype and introduce supernormal sup-

port, which increases model accuracy for E2M1 and APoT4

formats with low hardware overhead.

3.1. Student’s t-Distribution

Instead of the normal distribution, we use the Student’s t-

distribution to model LLM weights and activations. This

distribution, S(t; ν), generalizes the normal distribution

by introducing a degree of freedom parameter ν that con-

trols the shapes of its peaks and tails. Larger ν leads to

wider peaks and thinner tails (shown in Appendix C). The

Model Weight Activation
ν KS-∆ ν KS-∆

OPT-1B 6.682.86 0.040 5.914.08 0.117
BLOOM-560M 5.872.68 0.020 6.754.84 0.066

BLOOM-7B 10.135.96 -0.019 4.511.33 0.049
Falcon-7B 5.872.68 0.020 6.754.84 0.066

LLaMA2-7B 6.783.45 0.025 2.980.89 0.022
Yi-6B 7.264.98 0.013 2.503.30 0.036

FLAN-T5 13.472.40 0.004 5.341.53 0.031
Mistral-7B 1.660.67 0.049 1.672.15 0.111
Zephyr-3B 4.595.20 0.099 2.371.03 0.098

BERT 13.132.42 -0.069 6.454.35 0.034
RoBERTa 7.282.18 0.022 6.694.77 0.022
ALBERT 10.874.86 0.000 7.811.75 0.018

ResNet18 2.710.69 0.069 10.946.20 -0.008
ResNet50 2.951.22 0.052 6.577.03 0.006

MobileNetV2 5.025.55 0.003 8.227.92 0.003
EfficientNet-B0 4.295.42 0.065 3.511.86 0.029

Table 1. Weight and Activation Profiling – DNN distributions are

better approximated by t-distributions, typically with single-digit

degrees of freedom (ν). The mean and variance for ν are calculated

across layers. The Kolmogorov-Smirnov (KS) ∆ measures the

difference between the KS distance on the best-fit normal and

Student’s t-distributions. Positive values indicate a smaller distance

to the t-distribution.

t-distribution probability density function (PDF) is shown

below, where Γ is the generalized factorial.

S(t; ν) =
Γ
(

ν+1

2

)

√
νπ Γ

(

ν

2

)

(

1 +
t2

ν

)− ν+1

2

(1)

As ν → ∞, this distribution converges to the standard

normal distribution:

S(t; ν → ∞) =
1√
2π

e−
t
2

2 (2)

This distribution is useful for studying LLM weights and

activations, since it can both quantify the normality of the

distribution through ν and offer an analytical model for

deriving future datatypes.

3.2. Model Profiling

Figure 2 (left) applies this analysis to an MLP weight tensor

from Mistral-7B (Jiang et al., 2023). It shows the weight

histogram along with the t-distribution and standard normal

distribution. It reveals that the best-fit t-distribution gives a

better representation compared to the best-fit normal distri-

bution (1.0× σ) at small and large values. Furthermore, it

shows that this is not just a matter of incorrect scaling. Since

when σ is scaled down by 0.6 in the normal distribution to

fit the peak, the larger values are no longer well-represented.

The right figure shows the same results in a quantile-quantile

(Q-Q) plot, which compares the theoretical quantiles of each

distribution to the profiled quantiles of the weight tensor. In
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Algorithm 1 Student Float Derivation

1: Set δ = 1

2

(

1

32
+ 1

30

)

.

2: Compute eight evenly spaced probabilities p1, . . . , p8
where p1 = δ and p8 = 1

2
, and then compute eight

evenly spaced probability values p8, . . . , p16 such that

p8 = 1

2
and p16 = 1− δ.

3: Set s̃i = QS(pi; ν) where QS is the quantile function

for the Student’s t-distribution S(t; ν) with degrees of

freedom ν.

4: Normalize s̃ to [−1, 1]: si =
s̃i

maxi |s̃i|
.

a Q-Q plot, straight lines represent perfect matches between

the profiled data and theory, and therefore the t-distribution

represents a significantly stronger fit overall.

Table 1 expands this analysis by quantifying the mean and

variance for ν across layers in LLMs, BERT-like models,

and CNNs. It shows that the best fitting t-distributions

typically have small single-digit degrees of freedom (ν),

with a few exceptions like the weights in FLAN-T5 (Wei

et al., 2022). Since t-distributions approach normal distribu-

tions at high ν, this implies they are significantly different

from normal distributions. The table also lists the differ-

ence ∆ between the Kolmogorov-Smirnov (KS) distances

for the best-fitting t-distribution and normal distributions.

The positive differences in most models indicate that the

t-distribution has an overall better fit, and these differences

also suggest that ν = 10 is approximately the cutoff for

normal distributions. More networks and more detailed

analysis are located in Appendix A.

3.3. Student Float

Given these results, we can generate datatype optimized for

the Student’s t-distribution, which we refer to as Student

Float (or SF4 at four bits). In this derivation, we follow prior

work (Dettmers et al., 2023) and equalize the expected num-

ber inputs (weights or activations) mapped to each datatype

value. This effectively equalizes the load across the datatype

and ensures the quantized histogram will be approximately

balanced and flat.

This process is described in Algorithm 1, which was adapted

from the derivation of the NF4 datatype (Dettmers et al.,

2023). It first produces sixteen numbers, pi, equally spread

out in probability space, although it fixes p8 = 1

2
to force

a lossless representation for zero. This is important since

quantization error on zero inputs can lead to multiple prac-

tical issues, e.g., incorrect masking or zero padding, that

would need to be handled specially in software. Addition-

ally, it adds more values on the positive side, against the

convention for integer types, since modern activation func-

tions often bias activations toward positive values.

OPT-125M OPT-1B Phi-2 LLaMA2-7B

ν PPL ACC PPL ACC PPL ACC PPL ACC

FP32 - 26.02 37.90 6.64 57.89 5.52 62.57 3.40 73.92

NF4 - 33.77 34.06 7.21 56.43 6.47 60.94 3.71 71.98

SF4 3 29.24 37.18 7.65 54.92 6.38 61.07 3.58 72.38
SF4 4 27.21 37.30 6.95 57.50 6.26 61.19 3.52 72.54
SF4 5 25.69 38.56 6.90 57.83 6.33 61.56 3.60 72.42
SF4 6 25.80 37.90 6.70 58.59 6.34 60.92 3.69 71.82
SF4 7 29.22 36.43 6.81 58.08 6.48 60.33 3.69 71.80

Table 2. Degrees of Freedom – LLM evaluation on LAMBADA

accuracy (ACC) and perplexity (PPL). SF4 achieves its highest

quality when generated with the most common degrees of freedom

(ν) profiled in Table 1. SF4 converges to NF4 in the limit (shown

in Appendix C), yet its accuracy peaks around ν = 5.

It then maps pi through the Student’s t-distribution quan-

tile function, Q(p), to produce the unnormalized datatype

values s̃i This quantile function gives the value x = Q(p),
such that S(X ≤ x) = p, where X is a random variable

following the t-distribution S. Therefore, equally spread

probabilities will be mapped to quantiles that equally divide

the probability mass. The values are finally normalized into

[−1, 1] for simplicity, but the true range of the datatype

will be determined by the high-precision quantization scale

factors at the row or group level.

3.4. Accuracy Study

Given the parameterization of the quantile function,

QS(p; ν), SF4 would vary with the choice of ν. As ν in-

creases, the peaks of the t-distribution become shorter and

wider, SF4 spreads out more, and in the limit, it converges

to NF4 (shown in Appendix C). However, since SF4 will be

a reference for non-lookup datatypes with specialized and

efficient MAC units, it should have a definite form and ν

should be fixed across models. Therefore, we use the most

common degrees of freedom in Table 1 and fix ν = 5.

To evaluate this choice, Table 2 sweeps the degrees of free-

dom and measures the LAMBADA accuracy and perplexity

on OPT-125M, OPT-1B, Phi-2, and LLaMA2-7B. It shows

the highest accuracy and lowest perplexity results typically

cluster around ν = 5, although there is some variance across

models. In this table, SF4 reaches its highest accuracy sig-

nificantly before converging to NF4, which occurs approxi-

mately at ν = 10 as discussed in Section 3.2.

3.5. Supernormal Support

Given its high accuracy, SF4 can be used as a reference

for building efficient datatypes with corresponding MAC

units. Figure 1 visualizes five E2M1 variants next to SF4.

Assuming model accuracy is fully determined by the shape

of the datatype, this figure shows the issues with multiple
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Mistral-7B OPT-1B OPT-6.7B LLaMA2-7B Phi-2 BLOOM-7B Yi-6B

Calib. Method None MSE None MSE None MSE None MSE None MSE None MSE None MSE

LAMBADA ↑

FP32 75.90 75.90 57.89 57.89 67.69 67.69 73.92 73.92 62.57 62.57 57.64 57.64 68.27 68.27

NF4 74.97 74.97 56.43 56.37 67.88 68.43 71.20 71.98 61.28 60.94 57.03 57.09 67.46 68.19
SF4 75.90 75.00 58.02 57.83 68.02 68.02 71.96 72.42 60.47 61.56 57.97 57.87 67.84 68.04

INT4 73.92 73.74 55.52 56.96 63.92 67.07 72.06 70.19 58.59 55.11 56.08 56.14 64.93 61.75

E2M1-I 74.17 74.36 56.18 56.53 67.49 66.02 71.43 70.72 58.20 59.15 55.75 55.82 64.39 62.12
E2M1-B 73.98 73.65 55.73 57.13 66.97 65.55 70.75 70.68 58.32 59.91 55.64 55.72 63.92 60.64

E2M1 74.75 74.81 56.26 57.52 67.84 67.86 72.40 71.51 59.95 58.92 56.51 56.48 66.74 66.95
+ SR 72.95 72.95 54.41 54.41 67.26 67.26 71.07 71.07 62.24 62.24 50.18 50.34 59.97 60.01
+ SP 75.41 74.99 55.85 57.46 67.24 67.36 71.65 71.84 61.73 60.97 56.86 56.72 67.38 67.45

E3M0 74.23 71.05 52.36 53.02 62.64 64.47 69.92 68.66 54.96 55.58 56.47 56.42 65.15 65.38

APoT4 75.41 73.78 56.22 54.67 66.08 67.53 72.77 71.58 59.62 59.97 57.02 57.12 68.19 68.07
+ SP 75.12 74.05 55.27 55.25 65.92 68.06 73.22 71.63 61.09 61.50 57.13 57.23 68.04 68.31

WikiText-2 ↓

FP32 18.01 18.01 16.41 16.41 12.28 12.28 8.79 8.79 11.05 11.05 14.71 14.71 10.21 10.21

NF4 19.80 19.36 17.17 17.13 12.73 12.75 9.11 9.12 11.89 11.89 14.94 14.74 10.36 10.47
SF4 19.09 19.34 17.11 17.10 12.67 12.66 9.16 9.10 11.83 11.84 14.96 14.84 10.34 10.36

INT4 20.17 20.81 18.28 18.02 13.27 13.20 9.33 9.71 12.41 12.81 15.16 15.25 10.71 11.34

E2M1-I 20.07 20.55 17.86 18.00 12.92 12.96 9.37 9.74 12.19 12.38 15.18 15.16 10.69 11.34
E2M1-B 20.93 21.17 18.34 18.15 13.11 13.19 9.43 9.89 12.37 12.64 15.22 15.26 10.76 11.54

E2M1 19.76 19.27 17.24 17.25 12.78 12.79 9.17 9.21 11.97 11.99 15.01 15.18 10.42 10.54
+ SR 20.25 20.25 17.62 17.62 13.06 13.06 9.84 9.84 12.58 12.58 15.95 15.82 11.60 11.54
+ SP 19.38 19.47 17.19 17.18 12.76 12.77 9.13 9.20 11.92 11.96 14.98 14.89 10.37 10.29

E3M0 20.25 21.93 18.29 18.41 13.31 13.91 9.87 10.06 12.74 12.92 15.61 15.71 11.42 11.43

APoT4 19.13 19.23 17.47 17.42 12.84 12.88 9.15 9.27 12.09 12.17 15.02 14.98 10.46 10.49
+ SP 18.93 19.32 17.40 17.32 12.80 12.85 9.11 9.41 11.98 12.06 14.99 14.92 10.40 10.39

Table 3. Weight-Only Eval – Student Float (SF4) typically outperforms NF4, and the supernormal variants (SR and SP) often improve

over E2M1 and APoT4, although there are many exceptions. All models evaluated with weight-only sub-channel quantization with block

size 128 with optional MSE clipping calibration on the LAMBADA and WikiText-2 datasets.

variants in comparison to SF4. For example, E2M1-I and

E2M1-B push their subnormal values too close to zero,

which will introduce large quantization errors on the most

numerous central values.

In addition, E2M1 only uses 15 unique values and SF4

uses all 24 = 16 values. This missing value is caused by

the floating-point sign bit, which introduces positive and

negative zero. At higher precision, such as eight bits, this

redundancy wastes only 0.4% of its bitspace, but it makes a

large difference at four bits, where FP4 wastes 6.25% of its

values. Therefore, we propose adding additional supernor-

mal support to E2M1 to complement the existing subnormal

support. This reassigns negative zero to a useful value and

brings these formats more in line with the SF4, as shown in

Figure 1. In the following sections, we evaluate the accuracy

and efficiency of two supernormal variants:

1. Super-range (SR), which extends the range of the

values by allocating one point at the edge of the distri-

bution.

2. Super-precision (SP), which extends the precision by

giving one extra value within the distribution.

Super-precision matches the symmetry of SF4 and often

achieves higher accuracy compared to super-range, yet it

leads to larger chip area and power. For instance, it de-

creases the WikiText-2 perplexity compared to super-range

across LLMs, including LLaMA2-7B, OPT1B, and Phi-2,

while increasing the area of the corresponding MAC unit

by 14%. Finally, we also add super-precision support to the

APoT4 (Li et al., 2020) datatype in an analogous way. All

datatype values are listed in Appendix D.

4. Experiments

In this section, we evaluate these proposed datatypes against

previous integer, floating-point, logarithmic, and lookup-

based datatypes. These datatypes are applied with weight-

only and weight-activation quantization across popular

LLMs, zero-shot evaluations, and quantization methods,

totaling over 4000 data points. Finally, we show that trends

found at four bits hold for lower bitwidths and prior CNN

models. The main results are shown in this section, and the

remainder are listed in the Appendix.

4.1. Weight-Only Quantization

Given the memory-bound nature of LLM inference, we be-

gin the format evaluation with weight-only quantization.

Table 3 compares all datatypes in terms of their LAM-

BADA (Kazemi et al., 2023) accuracy and WikiText-2 per-
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LAMB Hella Wino PIQA BoolQ ARC-c ∆%

FP32 73.92 57.14 69.14 78.07 77.74 43.43 0.00

NF4 72.35 56.55 69.53 76.99 77.40 42.49 -1.10
SF4 73.20 56.81 69.06 77.69 78.56 43.34 -0.22

INT4 72.06 56.53 69.14 77.31 76.76 42.92 -1.17

E2M1-I 71.43 56.50 68.90 77.80 77.06 42.66 -1.30
E2M1-B 70.75 56.54 68.98 77.58 76.73 43.34 -1.28

E2M1 71.65 56.69 69.53 77.97 78.13 42.49 -0.85
+ SR 71.07 54.66 66.85 76.77 73.55 42.41 -3.49
+ SP 71.65 56.84 69.43 77.99 78.26 42.49 -0.80

E3M0 69.92 54.61 67.64 76.55 75.32 39.59 -4.32

APoT4 72.77 56.27 68.27 78.07 77.55 43.17 -0.86
+ SP 73.22 56.56 68.59 77.69 77.68 43.86 -0.39

Table 4. LLaMA2-7B Weight-Only – Accuracy improvements

with SF4 and super-precision formats continue common zero-shot

benchmarks. ∆% represents the mean relative percentage change

in accuracy from FP32. All models shown in Appendix G.

plexity on weight-only quantized models. These metrics

were chosen first because they are the most sensitive to

model perturbations. The evaluated models include Mistral-

7B (Jiang et al., 2023), LLaMA2-7B (Touvron et al., 2023),

OPT-1B (Zhang et al., 2022), OPT-6.7B, Phi-2 (Li et al.,

2023), BLOOM-7B (Scao et al., 2023), and Yi-6B.

The models were quantized and evaluated with a modified

version of the neural compressor library, which includes

lookup-based quantization for the new datatypes. All mod-

els use symmetric, sub-channel quantization with block size

128, with either no clipping or weight-based MSE clipping.

This block size was selected since it is small enough to sig-

nificantly increase model accuracy but large enough to align

most MAC units without requiring splitting accumulations.

Both clipping methods were included to ensure the datatype

accuracy was not heavily dependent on the quantization

algorithm itself.

This table demonstrates that SF4 improves model quality

compared to NF4 in most cases. In addition, it shows the

FP4 variants, even in the worst case, typically outperform

INT4, which agrees with the results seen in prior higher-

precision comparisons to integer formats (Dotzel et al.,

2024; Kuzmin et al., 2022). Within these FP4 formats, the

Intel and bitsandbytes variants consistently underperform

compared to the E2M1 baseline, which is due to their con-

centrated subnormal values shown in Figure 1. Finally, the

baseline APoT datatype often performs well against E2M1

and INT4, for example, increasing LAMBADA accuracy

loss by 1.44% compared to INT4 on LLaMA2-7B. Table 3

further shows that supernormal support typically increases

model quality, yet there are instances when the baseline

format achieves higher accuracy.

Block Size 16 32 64 128 256 CW

NF4 -1.19 -0.89 -1.79 -1.87 -1.44 -4.86
SF4 -1.04 -1.04 -1.38 -1.33 -1.44 -3.69

INT4 -1.98 -2.27 -2.27 -2.96 -3.53 -7.98

E2M1-I -1.90 -1.70 -2.02 -2.67 -3.37 -6.57
E2M1-B -2.33 -2.00 -2.17 -2.80 -3.90 -8.58

E2M1 -1.27 -1.59 -1.67 -1.40 -1.62 -3.92
+ SR -13.54 -4.98 -1.91 -1.86 -1.58 -3.21
+ SP -0.39 -0.97 -0.92 -0.66 -0.92 -3.85

E3M0 -3.25 -3.33 -4.20 -4.50 -5.77 -6.17

APoT4 -1.34 -2.04 -2.34 -1.90 -2.30 -4.35
+ SP -0.64 -1.47 -1.13 -1.29 -1.64 -3.43

Table 5. Phi-2 Subchannel Sweep – Differences between formats

exist even with the smallest subchannel block sizes. All results are

from Phi-2 with weight-only quantization. The average relative

accuracy change (↑) from FP32 is shown, calculated across LAM-

BADA, HellaSwag, Winogrande, PIQA, BoolQ and ARC-c. More

positive change, i.e., less accuracy drop, is preferred. Channelwise

(CW) quantization is shown in the last column.

4.2. Zero-Shot Evaluation

While LAMBADA and WikiText-2 are the most sensitive

metrics, other zero-shot evaluations align more closely with

real-world LLM usage. Table 4 expands the weight-only

comparison to include multiple zero-shot tasks evaluated on

LLaMA2-7B. It includes common-sense reasoning with Hel-

laSwag (Zellers et al., 2019) and language comprehension

with WinoGrande (Sakaguchi et al., 2019) and BoolQ (Clark

et al., 2019). In addition, it measures physical common-

sense with PIQA (Bisk et al., 2020) and scientific question-

answering with ARC-c (Moskvichev et al., 2023). Its results

reinforce the previous observations, showing consistent im-

provements of SF4 over NF4 and improvement of the super-

precision variants of E2M1 and APoT4 over their baselines.

For instance, SF4 improves over NF4 by close to 1% on

LAMBADA, PIQA, BoolQ, and ARC-c, and the inclusion

of super-precision reduces accuracy loss by 0.47% with

APoT4.

4.3. Subchannel Sweep

Subchannel quantization is standard for weight-only LLM

quantization, yet the size of the subchannels affect the shape

of the weight distribution and potentially the optimal format.

Therefore, Table 5 compares formats on Phi-2 while varying

subchannel block size. It aggregates all metrics into a single

score that measures the average relative accuracy drop from

FP32. As expected, decreasing block size leads to higher

accuracy across formats, yet the differences between for-

mats still remain. Even at the extreme with block size 16,

which is beyond what current DNN accelerators can support

efficiently, the trends hold from previous evaluations. For

instance, without subchannel quantization, the difference

between INT4 and E2M1-SP is 4.14% on average, and with

block size 16 the difference remains at 1.59%.
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Channelwise Subchannel

RTN GPTQ RTN GPTQ

NF4 -4.86 -2.48 -1.87 -1.14
SF4 -3.69 -2.49 -1.33 -1.65

INT4 -7.98 -6.45 -2.96 -2.39

E2M1-I -6.57 -5.47 -2.67 -2.31
E2M1-B -8.58 -5.35 -2.80 -2.46

E2M1 -3.92 -2.57 -1.40 -1.48
+ SR -3.21 -2.19 -1.86 -1.17
+ SP -3.85 -2.35 -0.66 -1.54

E3M0 -6.17 -4.76 -4.50 -3.64

APoT4 -4.35 -3.80 -1.90 -1.89
+ SP -3.43 -2.91 -1.29 -1.46

Table 6. Phi-2 GPTQ – Quality differences remain with weight-

only quantization with the inclusion of GPTQ. The average accu-

racy drop (%) is shown, calculated across LAMBADA, HellaSwag,

Winogrande, PIQA, BoolQ, and ARC-c. Round-to-nearest (RTN)

quantization is the baseline and results are evaluated with and

without subchannel quantization with 128-element subchannels.

4.4. GPTQ Comparison

In addition to extreme subchannel quantization, we evalu-

ate the effects of advanced post-training quantization like

GPTQ (Frantar et al., 2023). GPTQ is a popular weight-

only optimizer that uses second-order Hessian information

to improve quantization quality by iteratively updating un-

quantized weight blocks to account for the add quantization

error. These results are shown in Table 6 evaluated on the

Phi-2 model, where GPTQ typically reduces the accuracy

loss across datatypes with and without subchannel quanti-

zation. However, the differences between formats remain

even in this more optimized regime.

4.5. Three-Bit Formats

The lookup datatypes NF4 and SF4 can be generalized to

other precisions with slight modifications to Algorithm 1.

At three bits, Table 7 evaluates OPT-1B across a similar sub-

set of tasks. This table demonstrates that at lower bitwidths,

Student Float continues to outperform Normal Float across

most evaluations, particularly on the more sensitive LAM-

BADA and Wikitext-2 metrics with an improvement of

1.13% and 2.50% respectively.

Of the possible FP3 datatypes, only E2M0 is well-defined,

and it performs better than INT3 in all cases, which is in

contrast to E3M0, where INT4 typically has higher quality.

This is because at low precision, the dynamic range of the

exponent is restricted, and E2M0 becomes close in shape

to SF3 (shown in Appendix D). At two bits, the datatype

shape is not well-defined and therefore it is not evaluated.

4.6. Weight-Activation Quantization

Since MAC units require both inputs to be quantized, it

is important to also evaluate weight and activation quan-

LAMB ↑ Hella ↑ Wino ↑ PIQA ↑ BoolQ ↑ Wiki ↓

FP32 57.89 41.54 59.51 71.71 57.83 16.41

NF3 46.28 38.10 54.93 68.06 53.01 25.06
SF3 47.41 36.90 56.99 68.82 53.27 22.56

INT3 00.97 27.66 49.96 56.37 40.34 33.12

E2M0 23.52 32.43 53.99 64.15 51.96 28.98

Table 7. Three-Bit OPT-1B – The same procedures for generating

SF4 and NF4 can be applied at lower bitwidths. Student Float

continues to improve over Normal Float in most cases, and both

achieve higher accuracy than integer and floating point.

M-7B O-1B O-6B L-7B P-2B B-7B Y-6B

N
o

S
m

o
o

th
Q

u
an

t

NF4 -4.49 -11.02 -4.27 -2.65 -8.00 -8.50 -10.61
SF4 -3.98 -10.95 -4.76 -2.82 -6.79 -7.39 -9.17

INT4 -8.74 -20.72 -9.44 -6.27 -16.19 -17.94 -24.37

E2M1-I -8.46 -16.00 -5.62 -6.11 -15.66 -12.40 -17.97
E2M1-B -10.33 -15.92 -6.22 -7.47 -17.82 -14.84 -21.45

E2M1 -5.08 -11.09 -4.16 -2.68 -8.41 -9.32 -11.52
+ SR -13.02 -11.10 -6.92 -12.28 -8.53 -7.48 -31.46
+ SP -3.88 -12.03 -4.52 -3.42 -7.25 -8.97 -10.30

E3M0 -8.40 -10.74 -8.19 -10.66 -15.25 -6.20 -10.56

APoT4 -5.46 -12.78 -4.62 -3.74 -9.62 -10.20 -12.59
+ SP -5.68 -12.02 -4.85 -3.50 -8.48 -9.59 -12.81

S
m

o
o

th
Q

u
an

t

NF4 -3.75 -9.66 -1.77 -3.60 -6.98 -4.49 -5.46
SF4 -2.86 -10.02 -1.39 -3.45 -5.86 -2.19 -3.76

INT4 -7.09 -10.93 -3.60 -6.35 -19.97 -11.58 -11.52

E2M1-I -7.20 -11.17 -2.74 -5.60 -17.27 -8.64 -10.32
E2M1-B -7.71 -10.10 -3.59 -6.63 -22.07 -10.74 -13.05

E2M1 -3.77 -10.71 -1.34 -3.44 -7.57 -4.23 -5.93
+ SR -15.52 -10.49 -5.45 -13.14 -8.02 -5.23 -26.38
+ SP -3.95 -11.87 -1.18 -3.24 -7.98 -4.19 -6.24

E3M0 -8.01 -10.75 -6.39 -9.13 -13.05 -6.71 -9.77

APoT4 -4.54 -9.36 -2.10 -4.23 -9.82 -6.34 -6.40
+ SP -4.55 -9.76 -1.65 -4.19 -8.20 -5.63 -6.20

Table 8. W4A4 Eval – Evaluation of W4A4 quantization averaged

across LAMBADA, HellaSwag, Winogrande, PIQA, BoolQ and

ARC-c. Each value represents the mean relative percentage accu-

racy change (↑) from FP32.

tization. Table 8 performs this evaluation across all the

previously mentioned models and metrics, showing the av-

erage accuracy change from FP32 baseline. Across for-

mats, the accuracy drops are naturally larger compared to

weight-only quantization, e.g. INT4 dropping 24.37% on

Yi-6B. Yet, in many cases, the drop is limited by including

SmoothQuant (Xiao et al., 2023), which transfers the quan-

tization difficulty from activations to weights, reducing the

accuracy for INT4 to only 11.52% on Yi-6B.

NF4 and SF4 are included in this table, even though as

lookup-based datatypes, they would require custom sup-

port like product quantization to handle quantized activa-

tions (AbouElhamayed et al., 2024). Regardless of sup-

port, they are still meaningful references for designing other

datatypes. As before, these formats typically outperform the

hardened datatypes, with SF4 achieving the highest overall
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ResNet18 ResNet50 Dense121 ViT-B-16

FP32 69.76 76.13 74.43 81.07

NF4 58.04 67.66 68.76 79.48
SF4 63.12 69.05 69.48 80.28

INT4 40.09 29.36 47.48 77.61

E2M1 55.39 64.47 67.74 79.66
+ SR 57.04 66.80 67.97 79.57
+ SP 61.10 68.31 68.81 79.94

E3M0 49.70 50.04 53.98 78.99

APoT4 54.66 65.13 62.34 78.96
+ SP 55.03 66.09 63.11 79.04

Table 9. Vision Models – Given their similar distributions, vision

models have similar improvements with SF4 and super-precision

formats. All models are evaluated on ImageNet using channel-

wise weight and activation quantization, with clipping thresholds

determined statically over 256 training examples.

accuracy with and without SmoothQuant, e.g. limiting the

accuracy loss to an average of 2.86% on Mistral-7B. All of

the raw table data are listed in Appendix G.

4.7. Vision Models

Since the weights and activations for LLMs and convolu-

tional neural networks (CNNs) follow the same distribu-

tions according to Table 1, we expect similar quality trends

on CNNs that were found with LLMs. Table 9 shows

these results on ResNet18 (He et al., 2015), ResNet50,

DenseNet121 (Huang et al., 2017), and ViT-B-16 with

weight and activation quantization. SF4 again improves

over NF4 and reaches the highest accuracies in all models.

For instance, it improves ResNet18 by 5.08% when evalu-

ated on ImageNet-1K. Super-precision also outperforms the

E2M1 and APoT4 baselines, where E2M1 improves by up

to 5.71% and APoT4 by 0.96%.

5. Hardware Comparison

In addition to maintaining high model quality, datatypes

must also be efficient in real hardware. To examine the hard-

ware cost of different datatypes, we model their MAC units

using SystemVerilog and then use Synopsys Design Com-

piler to synthesize their area and estimate their power under

TSMC 28nm technology. Each MAC unit contains a multi-

plier and an accumulator that has been sized to iteratively

add 256 terms from a dot product.

5.1. Area and Power

Table 10 summarizes these hardware costs across datatypes

and adjusts the accumulation bitwidth for lossless accumu-

lation in integer or fixed-point. This assumption means that

each format must vary its accumulator bitwidth to avoid

overflow and underflow, which can have a significant effect

on the total area. At low precision, this accumulator area

Accum. Mult. Accum. MAC Rel. Chip

Bits µm2 µm2 µm2 µW Overhead 1

INT4 16 75.3 85.4 160.7 48.5 0.0%
INT5 18 106.6 97 203.6 59.8 17.7%

E2M1-I 20 119.1 109.1 228.2 59.7 4.2%
E2M1-B 23 137.9 131 268.9 67.9 6.7%

E2M1 17 79.7 90.7 170.4 49.6 0.6%
+ SR 18 96.8 94.5 191.3 53.5 1.9%
+ SP 19 121.5 96.5 218.0 54.6 3.6%

E3M0 22 98.0 119.7 217.7 59.5 3.6%

APoT4 16 96.2 85.4 181.6 47.2 1.3%
+ SP 16 99.7 85.4 185.1 45.5 1.5%

1 Assuming the MAC units and the memory system occupy
10% and 60% of the chip area, respectively (Chen et al.,
2019; Jouppi et al., 2021).

Table 10. Hardware Results – Area and power measurements for

the MAC units for each datatype. The relative system overhead

represents the area overhead of each format compared to INT4,

accounting for the other components of a DNN accelerator.

can even exceed the multiplier area, especially with format

with larger dynamic range. For example, the E2M1 accumu-

lator is 13.8% larger than its multiplier. This is typically not

true at higher precision, since multipliers scale quadratically

with bitwidth while accumulators only scale linearly.

This table shows that, despite often having the lowest ac-

curacy, INT4 remains the most efficient format due to its

small accumulator. Other formats, which have larger dy-

namic ranges, increase the required multiplier accumulator

bitwidth, leading to a larger total area of the MAC unit.

However, the MAC unit is only one part of the whole sys-

tem, which involves memory, communication, and addi-

tional control components. To account for these, Table 10

includes a column for estimated system chip overhead with

respect to INT4. This estimate assumes the MAC units and

memory occupy approximately 10% and 60% area of the

entire design, respectively, which is common within modern

DNN accelerators (Chen et al., 2019; Jouppi et al., 2023).

Since the memory system is largely unaffected for a given

bitwidth, the increased area for compute is dampened at the

system level. For instance, while the MAC area overhead

of adding super-precision support to E2M1 is 27.9%, its

overall chip area overhead is only 3.6%.

5.2. Higher Bitwidths

In addition to non-traditional formats, future accelerators

can increase the bitwidth beyond four bits. To consider this

possibility, Table 10 includes the estimated area and power

for INT5, which would outperform all four-bit formats in

model quality. It would even achieve this with a comparable

MAC area compared to some four-bit datatypes. However, it

would add significant memory overhead that leads to a large

increase in the overall system area. For example, although
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Figure 3. Quality vs. Area – Relative accuracy change from

unquantized baselines averaged across LAMBADA, HellaSwag,

Winogrande, PIQA, BoolQ and ARC-c. All Model results aver-

aged across Mistral-7B, OPT-1B, OPT-6.7B, LLaMA2-7B, Phi-2,

BLOOM-7B, and Yi-6B. All individual model Paretos are shown

in Appendix F.

the MAC area of INT5 only increases by 2.7% over INT4,

the required memory is at least 1.25× higher, leading to

17.7% system overhead in total.

5.3. Quality vs. Area

Combining the quality and performance results, Figure 3

plots the average accuracy changes across models and tasks.

It also highlights the Mistral-7B model, leaving the other

models in Appendix F. The accuracy change is evaluated

across the same tasks in Table 8 with respect to the unquan-

tized FP32 baseline. This figure shows a Pareto curve from

INT4 at the lowest area and quality to super-precision E2M1

with the highest area and quality. It first demonstrates the

strength of E2M1 compared to INT4, since it can signifi-

cantly reduce the average accuracy drop across models by

7.34% with a near negligible system overhead of 0.6%. The

APoT datatypes are typically in the middle of the curve,

with accuracies close to E2M1. However, APoT requires

additional logic to be converted from higher-precision FP32

or BF16, and therefore it becomes less useful than E2M1 in

real systems.

In addition, super-precision offers accuracy boosts to E2M1

across models. With approximately a 3% system area over-

head, super-precision could be worth the extra complexity as

it would enable more LLM applications at four bits. Other

formats such as the Intel and bitsandbytes variants of E2M1

and E3M0 are strictly worse; they have higher dynamic

range, which increases the size of the accumulator, and they

nearly always reduce model accuracy compared to E2M1.

6. Conclusion

DNN quantization has become essential for enabling LLM

applications to reach latency targets and reduce infrastruc-

ture costs. Traditionally, these quantization methods have

relied on integer datatypes, yet the recent success of FP8

formats motivates further study of non-integer formats at

four bits. In this work, we first profile over 30 DNNs

and discover most have weights and activations that are

best approximated by the Student’s t-distribution. Then,

by optimizing for this distribution, we introduce Student

Float (SF4), which can be used as a drop-in replacement

for NF4 in memory-bound applications involving weight-

only quantization. We first find it increases model quality

across the most popular LLMs and then use these insights

to analyze more efficient datatypes. For example, the high

accuracy of E2M1 over INT4 stems from its piecewise ap-

proximation of SF4. These high-quality datatypes reduce

the need for more complex algorithmic optimizations such

as SmoothQuant, GPTQ, and fine-grained subchannel quan-

tization. This decreases the system complexity, such as

maintaining SmoothQuant scales on residual branches and

optimizing low block-size subchannel quantization, and

lowers the effort for high-quality LLM quantization.

Finally, we introduce supernormal extensions to E2M1 and

APoT to increase their model accuracies at the cost of minor

increases in system area. We then map out the Pareto frontier

across datatypes in terms of model accuracy and chip area.

This frontier begins with INT4 with lowest accuracy but

highest efficiency and extends to E2M1 with super-precision

with highest accuracy and close to highest area. In particular,

we find that E2M1 with supernormal support increases the

accuracy of Phi-2 by up to 2.19% with 1.22% estimated

chip overhead, offering a promising option to enable new

quality-neutral LLM applications at four bits.
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Model Weight Activation
ν KS-∆ ν KS-∆

GPT2 2.040.86 0.086 7.212.13 0.097
OPT-1B 6.682.86 0.040 5.914.08 0.117

BLOOM-560M 5.872.68 0.020 6.754.84 0.066
BLOOM-7B 10.135.96 -0.019 4.511.33 0.049

Falcon-7B 5.872.68 0.020 6.754.84 0.066
LLaMA2-7B 6.783.45 0.025 2.980.89 0.022

Yi-6B 7.264.98 0.013 2.503.30 0.036
T5-Small 11.804.01 0.004 6.742.94 0.021

FLAN-T5 13.472.40 0.004 5.341.53 0.031
Mistral-7B 1.660.67 0.049 1.672.15 0.111
Zephyr-3B 4.595.20 0.099 2.371.03 0.098

BERT 13.132.42 -0.069 6.454.35 0.034
RoBERTa 7.282.18 0.022 6.694.77 0.022
ALBERT 10.874.86 0.000 7.811.75 0.018

VGG19 5.962.24 0.016 1.810.75 0.095
ResNet18 2.710.69 0.069 10.946.20 -0.008
ResNet50 2.951.22 0.052 6.577.03 0.006

ResNet101 1.960.84 0.075 9.265.13 0.008
InceptionV3 2.610.83 0.044 12.024.62 0.002
InceptionV4 2.291.55 0.007 9.186.11 -0.039

MNASNet100 4.454.27 0.020 9.845.56 0.021
MobileNetV2 5.025.55 0.003 8.227.92 0.003
MobileNetV3 4.353.16 0.031 7.825.98 0.581

EfficientNet-B0 4.295.42 0.065 3.511.86 0.029

ConvNext-S 1.960.79 0.110 4.594.07 0.069
RegNet 2.911.78 0.075 6.122.37 0.037

ConvMixer 2.451.16 0.125 9.845.56 0.021
CoAT-Lite 2.111.87 0.050 7.295.28 -0.006

PiT-B 8.133.25 0.006 8.874.22 0.017

Table 11. Profiling – DNN distributions are better approximated

by t-distributions, typically with single-digit degrees of freedom

(ν). The mean and variance for ν are calculated across layers. The

Kolmogorov-Smirnov (KS) ∆ measures the difference between the

KS distance run on the best-fit normal and Student’s t-distributions.

Positive values indicate a smaller distance to the t-distribution. For

activation profiling, model inputs are randomly generated.

Figure 4. Degrees of Freedom – Higher degrees of freedom lead

to datatypes with more spread, and in the limit, SF4 approaches

NF4. Most distributions have degrees of freedom close to 5, and

therefore the SF4 (ν = 5) datatype is used throughout Section 4.

Model Weight Activations
ν KS-∆ ν KS-∆

Query 9.884.78 -0.008 3.770.46 0.027
Key 9.484.85 -0.001 11.074.56 -0.002

Value 13.832.10 -0.001 9.404.33 0.002
Out 8.774.50 0.004 4.021.44 0.029

FC1 9.564.98 0.010 9.725.16 0.034
FC2 5.682.64 0.021 9.725.16 0.242

Total 9.534.72 0.004 4.661.11 0.040

Table 12. OPT-125M Profiling Breakdown – Disaggregating the

profiling metrics for different layer types on OPT-125M.

A. Weight and Activation Profiling

For weights and activation profiling, we use Huggingface

transformers, PyTorch torchvision, and the timm package

to load models. We chose the models holistically based

on historical significance, current popularity, architectural

types, and diversity across tasks. This leads to including

LLMs, BERT-like transformers, CNNs, RNNs, and diffu-

sion models.

To profile the model, we iterate through the model modules

and filter for nn.Linear, nn.Conv1D, and nn.Conv2D. If the

weight tensors are extremely large containing hundreds of

millions of entries, we randomly downsample since small

studies showed this did not significantly affect the profiling

results. For activation profiling, we use randomly gener-

ated inputs with the appropriate shape to match the current

model.

Table 11 shows all the model profiling data, comparing

between Student’s t-distributions and normal distributions.

It lists the mean and variance for the degrees of freedom

ν calculated across layers within the model. In addition,

it shows the difference between two Kolmogorov-Smirnov

distances: the first is between the profiled distributions and

the best-fitting normal distribution, and the second with

respect to the best-fitting Student’s t-distribution. A positive

difference between the normal and t-distribution distances

indicates that the t-distribution is closer, and therefore it

better represents the profiled data.

The degrees of freedom and KS-∆ are shown for both the

weights and activations. Overall, the activations typically

have smaller degrees of freedom. For example, BLOOM-

7B has an average of 10.13 for its weights and 4.51 for its

activations, and FLAN-T5 has 13.47 for its weights and

5.34 for its activations. The degrees of freedom and KS-∆
are also very correlated, since a high degree of freedom

indicates a distribution closer to normal. Only the models

with ν > 10 have a negative KS-∆, which indicates this

is a useful intuitive cutoff for classifying a distribution as

normal.

In addition, we disaggregate the data across layer types,
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Figure 5. t-Distributions – Increasing the degrees of freedom, ν,

leads to more probability mass in the center, and less at the edges

of the distribution. This leads to more representation in the center

of the SF4 datatype, and in the limit, the NF4 datatype.

e.g. separating the attention layers from the linear layers

in transformers. This analysis is shown in Table 12 for the

OPT-125M model, which separately averages the degrees of

freedom and KS-∆ for different layer types. It shows some

differences between layer types, with FC2 having the lowest

ν, yet overall most layers are similar within their variance.

B. Weight-Only

Table 13 shows the additional evaluations across models

on WikiText-2. As a measure of perplexity, this is most

sensitive metric to model changes, as others tend to mask

their changes through a classification problem (e.g. multiple

choice). This table shows consistent improvement with SF4

over NF4 across models with the exception of BLOOM-7B.

Results are shown with and without MSE calibration.

Table 14 shows the results of LLaMA2-7B on a multi-

lingual version of the LAMBADA dataset. It reinforces

the previous trends, which SF4 typically achieving higher

accuracy and E2M1 with and without super-precision out-

perform other datatypes.

C. Student Float

Figure 4 shows that SF4 converges to NF4 as its degrees of

freedom increase to infinity. This allows testing for gradu-

ally denser datatypes toward NF4 and making comparisons

to the corresponding degrees of freedom in the profiling re-

sults in Table 11. Overall, on average models approximately

have ν = 5, which leads to the highest accuracy results

across tasks.

In addition, Figure 5 shows the direct effect of increasing

the degrees of freedom (ν) on the curvature of the Student’s

t-distribution. Higher ν leads to wider peaks and thinner

tails.

Figure 6. Datatype Shapes – The shapes of all considered

datatypes, including lookup datatypes, integer, floating-point, and

APoT (Li et al., 2020).

Figure 7. APoT4 Variants – Comparison across APoT4 variants

with two sets (2S) and three sets (3S), where each datatype is

constructed by all possible sums by taking one value from each

set. For example, the 2S (3) variant used in Section 4, uses the

sets S1 ∈ {0, 2−1, 2−2, 2−4} and S2 ∈ {0, 2−3}. The values to

construct the sets are always drawn from {0, 2−1, 2−2, 2−4}. SF4

is shown for reference.

D. Datatype Values

This section lists the values for all the datatypes used in the

evaluations in Section 4 and Section 5. In addition, it shows

all of the datatypes in the same figure, including the lookup

datatypes, integer, floating-point, and APoT variants.

E. Additive Powers-of-Two

The Additive Powers-of-Two method leads to a large search

space of datatypes, where all the most reasonable variants

are shown in Figure 7. These have been filtered to remove

datatypes that lead to duplicate values (under-utilizing the

bitspace) and different configurations that lead to the exact

same datatype. This figure shows that the 2S (3) variant best

approximates the SF4 datatype, and therefore in this work

2
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Mistral-7B OPT-1B OPT-6.7B LLaMA2-7B Phi-2 BLOOM-7B Yi-6B

Calib. Method None MSE None MSE None MSE None MSE None MSE None MSE None MSE

WikiText-2 ↓

FP32 18.01 18.01 16.41 16.41 12.28 12.28 8.79 8.79 11.05 11.05 14.71 14.71 10.21 10.21

NF4 19.80 19.36 17.17 17.13 12.73 12.75 9.11 9.12 11.89 11.89 14.94 14.74 10.36 10.47
SF4 19.09 19.34 17.11 17.10 12.67 12.66 9.16 9.10 11.83 11.84 14.96 14.84 10.34 10.36

INT4 20.17 20.81 18.28 18.02 13.27 13.20 9.33 9.71 12.41 12.81 15.16 15.25 10.71 11.34

E2M1-I 20.07 20.55 17.86 18.00 12.92 12.96 9.37 9.74 12.19 12.38 15.18 15.16 10.69 11.34
E2M1-B 20.93 21.17 18.34 18.15 13.11 13.19 9.43 9.89 12.37 12.64 15.22 15.26 10.76 11.54

E2M1 19.76 19.27 17.24 17.25 12.78 12.79 9.17 9.21 11.97 11.99 15.01 15.18 10.42 10.54
+ SR 20.25 20.25 17.62 17.62 13.06 13.06 9.84 9.84 12.58 12.58 15.95 15.82 11.60 11.54
+ SP 19.38 19.47 17.19 17.18 12.76 12.77 9.13 9.20 11.92 11.96 14.98 14.89 10.37 10.29

E3M0 20.25 21.93 18.29 18.41 13.31 13.91 9.87 10.06 12.74 12.92 15.61 15.71 11.42 11.43

APoT4 19.13 19.23 17.47 17.42 12.84 12.88 9.15 9.27 12.09 12.17 15.02 14.98 10.46 10.49
+ SP 18.93 19.32 17.40 17.32 12.80 12.85 9.11 9.41 11.98 12.06 14.99 14.92 10.40 10.39

Table 13. Weight-Only WikiText-2 – All models evaluated with weight-only sub-channel quantization with block size 128. Student Float

(SF4) typically outperforms NF4, and the super normal variants (SR and SP) often improve the model performance over E2M1.

EN ↑ FR ↑ DE ↑ IT ↑ ES ↑ Wiki ↓

FP32 73.92 50.69 39.51 46.09 43.57 8.791

NF4 73.20 48.20 37.53 44.50 42.67 9.105
SF4 72.35 48.79 38.54 44.81 44.44 9.163

INT4 72.06 47.45 37.26 42.87 42.60 9.333

E2M1-I 71.43 47.43 37.07 42.48 42.05 9.366
E2M1-B 70.75 47.41 36.54 42.11 41.02 9.427

E2M1 71.65 47.49 37.05 42.91 42.50 9.168
+ SR 71.07 45.27 35.14 41.45 39.36 9.842
+ SP 71.65 47.00 37.36 42.87 42.01 9.131

E3M0 69.92 45.37 35.20 42.05 40.68 9.868

APoT4 72.77 48.98 37.88 45.16 41.53 9.149
+ SP 73.22 48.75 37.55 44.34 41.57 9.109

Table 14. LLaMA2-7B Multi-Lingual – LLaMA2-7B compari-

son across multi-lingual LAMBADA tasks and WikiText-2. SF4

outperforms NF4 on lookup datatypes, and E2M1 with subnormal

and super-precision outperforms other FP4 datatypes.

we focus only on this variant.

F. Additional Paretos

This section includes all of the Pareto-curves for Mistral-

7B, OPT-1B, OPT-6.7B, LLaMA2-7B, Phi-2, BLOOM-7B,

and Yi-6B evaluated across LAMBADA, HellaSwag, Wino-

grande, PIQA, BoolQ, and ARC-c. The y-axis represents the

average relative accuracy change from floating-point, and

the x-axis is the corresponding MAC area for the datatype.

3



Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs

Datatype Values

NF4 -1.000 -0.696 -0.525 -0.395 -0.284 -0.185 -0.091 0.000 0.080 0.161 0.246 0.338 0.441 0.563 0.723 1.000
SF4 (ν = 3) -1.000 -0.576 -0.404 -0.292 -0.205 -0.131 -0.064 0.000 0.056 0.114 0.176 0.246 0.330 0.439 0.606 1.000
SF4 (ν = 4) -1.000 -0.609 -0.436 -0.318 -0.225 -0.145 -0.071 0.000 0.062 0.126 0.194 0.270 0.359 0.472 0.638 1.000
SF4 (ν = 5) -1.000 -0.628 -0.455 -0.334 -0.237 -0.153 -0.075 0.000 0.066 0.133 0.205 0.284 0.376 0.491 0.657 1.000
SF4 (ν = 6) -1.000 -0.640 -0.467 -0.345 -0.246 -0.158 -0.078 0.000 0.068 0.138 0.212 0.293 0.387 0.504 0.669 1.000

INT4 -8.000 -7.000 -6.000 -5.000 -4.000 -3.000 -2.000 -1.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

E2M1-I -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.062 0.000 0.062 1.000 1.500 2.000 3.000 4.000 6.000
E2M1-B -12.000 -8.000 -6.000 -4.000 -3.000 -2.000 -0.062 0.000 0.062 2.000 3.000 4.000 6.000 8.000 12.000

E2M1-NS -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.750 0.000 0.750 1.000 1.500 2.000 3.000 4.000 6.000
E2M1 -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 6.000
+ SR -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 6.000 8.000
+ SP -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 5.000 6.000

E3M0 -16.000 -8.000 -4.000 -2.000 -1.000 -0.500 -0.250 0.000 0.250 0.500 1.000 2.000 4.000 8.000 16.000

APoT4 -1.000 -0.800 -0.600 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.600 0.800 1.000
+ SP -1.000 -0.800 -0.600 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000

Table 15. Quantized Datatype Values – The specific values for each datatype across lookup, integer, floating-point, and alternative

formats. Some datatypes have only 15 values, as opposed to 16 (24), since they include a dedicated sign bit, which leads to representations

for positive and negative zero. The Student Float (SF4) formats include versions for different degrees of freedom (ν), which cluster values

in different ways. For floating-point formats, the Intel (Shen et al., 2023) (I-E2M1) and bitsandbytes (Dettmers et al., 2022a) (B-E2M1)

versions are included as references too. Additive Powers of Two (APoT) (Li et al., 2020) is also shown which performs the sum of two

logarithmic numbers. Finally, the super-precision (SP), super-range (SR), and no subnormal (NS) variants are shown for some of these

formats.

4



Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs

Figure 8. All Model Paretos – Relative accuracy change from unquantized baselines averaged across LAMBADA, HellaSwag, Wino-

grande, PIQA, BoolQ, and ARC-c. All models are quantized with W4A4 subchannel quantization with SmoothQuant (Xiao et al., 2023)

included on models with the SQ label.
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G. Additional Tables

Metric LAMB Hella Wino PIQA BoolQ ARC-c

BF16 73.92 57.14 69.14 78.07 77.74 43.43

NF4 72.35 56.55 69.53 76.99 77.40 42.49
SF4 73.20 56.81 69.06 77.69 78.56 43.34

INT4 72.06 56.53 69.14 77.31 76.76 42.92

I-E2M1 71.43 56.50 68.90 77.80 77.06 42.66
B-E2M1 70.75 56.54 68.98 77.58 76.73 43.34

E2M1 71.65 56.69 69.53 77.97 78.13 42.49
+ SR 71.07 54.66 66.85 76.77 73.55 42.41
+ SP 71.65 56.84 69.43 77.99 78.26 42.49

E3M0 69.92 54.61 67.64 76.55 75.32 39.59

APoT4 72.77 56.27 68.27 78.07 77.55 43.17
+ SP 73.22 56.56 68.59 77.69 77.68 43.86

Table 16. LLaMA-7B Weight-Only Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

FP32 62.57 55.84 75.45 78.78 83.21 52.56

NF4 60.47 54.66 75.22 77.42 82.81 50.85
SF4 61.28 54.75 75.30 78.13 80.76 52.56

INT4 58.59 54.51 75.61 77.69 79.14 51.02

I-E2M1 58.20 54.06 74.59 77.69 82.45 51.28
B-E2M1 58.32 54.07 75.22 77.04 82.32 50.85

E2M1 59.95 54.83 76.24 77.09 83.06 51.96
+ SR 63.24 53.32 75.06 78.40 81.38 50.17
+ SP 61.73 55.06 76.01 76.99 83.21 52.73

E3M0 54.96 52.18 74.59 78.56 80.86 50.43

APoT4 59.62 54.50 74.35 77.91 81.35 52.82
+ SP 61.09 54.66 74.27 78.35 81.71 52.90

Table 17. Phi-2 Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c

FP32 75.92 61.22 73.88 80.58 83.58 50.43

NF4 74.97 60.90 72.93 80.30 82.84 49.74
SF4 75.90 60.73 73.80 80.63 83.09 49.40

INT4 73.92 60.59 73.80 80.36 82.23 49.32

I-E2M1 74.17 60.41 72.45 80.36 82.84 48.98
B-E2M1 73.98 60.36 72.22 80.09 82.48 48.81

E2M1 74.75 60.57 73.16 80.14 82.29 48.55
+ SR 72.95 59.07 73.56 79.65 82.84 47.95
+ SP 75.41 60.96 72.93 80.36 83.46 47.78

E3M0 74.23 58.76 72.22 79.71 81.99 46.42

APoT4 75.41 60.89 73.95 80.30 83.09 47.44
+ SP 75.12 61.05 73.09 80.20 83.03 48.21

Table 18. Mistral-7B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c

FP32 68.27 55.40 70.96 77.64 75.50 46.25

NF4 67.46 54.81 71.03 77.26 78.47 44.97
SF4 67.84 54.75 70.80 77.15 76.97 45.14

INT4 64.93 54.51 68.75 77.31 75.41 44.37

I-E2M1 64.39 54.48 71.11 77.26 75.81 44.71
B-E2M1 63.92 54.56 70.56 77.09 75.32 44.20

E2M1 66.74 54.52 69.85 76.71 76.57 45.05
+ SR 59.97 52.95 67.80 75.90 76.18 43.52
+ SP 67.38 54.83 70.56 76.71 76.27 46.50

E3M0 65.15 52.48 68.90 76.33 73.82 41.81

APoT4 68.21 55.08 70.24 77.69 77.49 45.73
+ SP 68.14 55.25 70.88 77.58 77.34 45.39

Table 19. Yi-6B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c

FP32 57.64 46.49 64.56 72.69 62.81 30.29

NF4 57.03 45.47 62.98 72.96 63.46 30.38
SF4 57.77 45.43 64.25 72.25 62.87 29.86

INT4 56.08 45.31 63.54 73.12 63.55 29.44

I-E2M1 55.75 45.66 63.38 72.80 63.24 29.95
B-E2M1 55.64 45.47 62.90 72.96 63.21 30.20

E2M1 56.51 45.26 63.30 72.63 63.43 30.12
+ SR 50.18 44.56 62.75 72.63 61.44 30.63
+ SP 56.86 45.41 63.46 72.74 63.46 30.03

E3M0 56.47 44.36 61.25 72.47 63.67 29.78

APoT4 57.02 45.30 63.85 72.96 62.57 29.86
+ SP 57.13 45.46 63.22 72.47 62.72 29.86

Table 20. BLOOM-7B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c

FP32 67.69 50.49 65.43 76.28 66.06 30.72

NF4 67.88 49.34 64.25 76.22 65.99 30.63
SF4 68.02 49.58 64.96 75.90 64.04 30.03

INT4 63.92 49.02 63.93 75.63 65.23 31.23

I-E2M1 67.49 49.44 64.17 76.22 65.84 30.20
B-E2M1 66.97 49.42 63.06 76.55 67.06 31.14

E2M1 67.84 49.15 64.17 76.06 66.02 30.63
+ SR 67.26 48.48 64.48 75.14 63.46 29.44
+ SP 67.24 49.29 63.77 76.17 65.96 30.38

E3M0 62.64 48.16 63.38 74.65 65.96 30.12

APoT4 66.08 49.64 64.64 75.79 65.02 30.63
+ SP 65.92 49.59 64.96 75.95 64.31 31.06

Table 21. OPT-6B Weight-Only Subchannel 128
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Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 68.27 55.4 70.96 77.64 75.5 46.25

NF4 51.17 51.34 63.77 74.21 71.93 40.70
SF4 55.29 51.58 64.33 74.59 73.03 40.44

INT4 31.4 46.14 56.2 71.49 58.84 34.81

I-E2M1 42.36 48.89 60.14 71.93 64.16 36.77
B-E2M1 34.52 47.16 55.64 70.78 63.64 37.80

E2M1 49.62 50.93 63.61 73.23 72.02 40.19
+ SR 23.50 41.69 55.33 65.13 63.12 25.94
+ SP 48.13 50.80 63.77 74.21 66.61 40.36

E3M0 59.07 49.19 64.80 73.07 69.97 38.48

APoT4 47.18 50.42 62.35 74.48 69.05 41.21
+ SP 48.13 50.80 63.77 74.21 66.61 40.36

S
m

o
o

th
Q

u
an

t

NF4 61.81 53.40 65.59 74.92 72.75 43.94
SF4 64.72 53.48 66.93 76.61 73.24 44.45

INT4 51.85 51.13 63.93 74.65 68.29 39.76

I-E2M1 53.58 51.55 63.38 74.48 68.20 42.06
B-E2M1 51.39 50.93 62.27 73.78 67.25 38.23

E2M1 61.91 53.13 65.59 75.84 69.45 44.28
+ SR 34.97 44.82 57.46 65.51 65.47 26.62
+ SP 59.25 53.37 66.69 75.35 70.70 43.94

E3M0 59.77 49.82 65.35 74.16 72.08 37.37

APoT4 58.80 53.07 67.64 74.43 72.81 42.58
+ SP 59.25 53.37 66.69 75.35 70.70 43.94

Table 22. Yi-6B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 57.64 46.49 64.56 72.69 62.81 30.29

NF4 44.23 42.69 59.12 69.86 60.55 29.18
SF4 48.98 43.24 59.04 70.29 58.87 29.01

INT4 31.15 39.91 54.38 67.79 54.16 26.88

I-E2M1 41.8 42.04 55.33 68.72 57.22 27.65
B-E2M1 36.48 40.83 54.78 67.95 57.77 27.13

E2M1 44.21 42.37 59.51 70.02 59.51 28.16
+ SR 48.22 41.51 57.22 70.62 61.96 29.61
+ SP 44.58 42.82 58.48 70.73 59.69 28.41

E3M0 52.55 42.48 56.51 70.24 62.48 29.27

APoT4 40.15 41.95 58.88 70.40 60.98 28.41
+SP 41.35 41.98 59.19 70.62 59.82 29.18

S
m

o
o

th
Q

u
an

t

NF4 52.90 44.50 60.69 71.38 61.65 28.84
SF4 55.29 45.06 61.09 72.31 63.64 29.86

INT4 41.72 41.72 56.83 69.53 57.13 28.41

I-E2M1 47.08 42.21 57.06 69.91 61.50 28.24
B-E2M1 43.76 41.06 56.67 69.86 61.13 27.30

E2M1 53.77 44.52 60.46 71.76 61.74 28.75
+ SR 52.94 42.11 58.41 71.06 63.30 29.44
+ SP 51.09 43.92 58.98 70.78 59.62 30.12

E3M0 51.93 42.4 57.93 69.8 62.84 28.07

APoT 50.11 43.81 58.33 70.62 59.48 29.86
+ SP 51.09 43.92 58.98 70.78 59.62 30.12

Table 23. BLOOM-7B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 73.92 57.14 69.14 78.07 77.74 43.43

NF4 73.03 55.57 67.09 76.55 75.96 41.38
SF4 72.21 55.28 66.69 76.93 75.72 41.81

INT4 69.92 53.76 65.27 75.79 69.88 40.10

I-E2M1 69.55 54.33 65.11 75.57 70.34 40.27
B-E2M1 68.31 53.65 62.43 74.81 70.0 40.27

E2M1 72.21 55.61 67.01 76.39 76.24 41.72
+ SR 63.96 48.91 61.01 73.18 70.18 35.58
+ SP 72.64 54.79 66.61 76.66 73.88 41.38

E3M0 65.03 51.29 62.35 74.43 69.42 36.26

APoT4 72.79 55.01 65.82 76.39 74.07 41.04
+ SP 72.64 54.79 66.61 76.66 73.88 41.38

S
m

o
o

th
Q

u
an

t

NF4 72.50 55.22 66.54 76.66 74.28 40.70
SF4 71.90 55.09 66.06 77.04 75.35 41.04

INT4 70.35 54.07 65.43 75.79 68.90 39.85

I-E2M1 70.39 53.92 66.22 76.28 72.11 39.33
B-E2M1 70.44 53.73 64.96 75.03 69.88 39.51

E2M1 72.21 55.10 65.9 76.93 74.71 41.38
+ SR 64.25 47.97 61.33 73.01 68.96 34.47
+ SP 71.78 55.13 65.75 77.37 73.94 39.93

E3M0 66.74 51.16 64.25 75.68 71.71 36.18

APoT4 71.82 54.87 66.22 76.39 73.76 40.36
+ SP 71.78 55.13 65.75 77.37 73.94 39.93

Table 24. LLaMA-7B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 75.90 61.22 73.88 80.58 83.58 50.43

NF4 72.02 59.66 68.11 79.38 80.64 47.18
SF4 73.47 59.83 69.38 79.71 81.10 46.25

INT4 64.99 58.11 67.01 77.69 76.82 44.37

I-E2M1 66.41 57.23 68.59 78.35 74.98 44.62
B-E2M1 64.22 57.19 66.22 77.09 75.29 42.66

E2M1 72.0 59.56 69.85 79.05 79.60 45.14
+ SR 65.01 51.32 66.46 75.35 76.02 39.33
+ SP 70.83 59.66 69.30 78.56 79.57 44.71

E3M0 70.87 55.48 66.14 77.86 80.12 42.15

APoT4 71.2 59.29 68.43 79.38 79.33 45.65
+ SP 70.83 59.66 69.30 78.56 79.57 44.71

S
m

o
o

th
Q

u
an

t

NF4 73.86 59.17 71.19 79.54 80.58 46.42
SF4 74.50 59.64 71.74 79.98 82.20 46.67

INT4 68.41 57.91 68.41 77.89 77.52 45.76

I-E2M1 68.97 58.54 68.27 78.56 76.12 45.05
B-E2M1 68.91 57.86 68.90 78.45 75.38 44.20

E2M1 73.63 59.45 71.98 79.92 79.91 45.90
+ SR 64.93 50.29 65.75 75.3 72.05 35.58
+ SP 73.67 59.63 69.14 79.43 79.88 45.65

E3M0 71.53 55.82 66.77 77.09 79.42 43.09

APoT4 73.67 59.37 69.69 78.67 79.42 46.25
+ SP 73.67 59.63 69.14 79.43 79.88 45.65

Table 25. Mistral-7B W4A4 Subchannel 128
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Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 57.89 41.54 59.51 71.71 57.83 23.38

NF4 40.13 36.57 57.14 66.16 52.08 22.95
SF4 41.98 37.27 55.33 66.54 51.38 22.78

INT4 28.06 32.65 53.43 61.92 47.83 20.99

I-E2M1 39.10 35.50 52.80 65.02 46.27 21.42
B-E2M1 36.25 34.28 54.78 63.33 45.90 23.29

E2M1 39.82 36.71 57.14 65.56 53.06 22.70
+ SR 40.62 37.16 54.62 68.01 51.90 22.78
+ SP 37.55 35.66 56.04 65.89 54.37 22.70

E3M0 44.13 37.82 54.46 67.74 50.98 22.01

APoT4 37.69 35.61 57.54 64.91 54.16 21.42
+ SP 37.55 35.66 56.04 65.89 54.37 22.70

S
m

o
o

th
Q

u
an

t

NF4 44.75 38.11 54.46 67.85 49.63 23.63
SF4 43.61 38.02 57.30 67.41 49.33 22.78

INT4 42.42 37.22 54.46 66.81 52.57 22.44

I-E2M1 43.47 37.03 55.72 66.05 50.55 22.35
B-E2M1 43.37 36.99 56.67 65.94 50.43 23.63

E2M1 43.64 37.84 57.85 67.03 47.55 22.53
+ SR 40.02 37.27 57.06 68.12 53.46 22.18
+ SP 40.91 37.77 57.70 67.85 51.68 23.12

E3M0 42.34 37.87 55.17 67.52 52.57 21.84

APoT4 41.72 37.97 57.54 68.34 51.53 23.21
+ SP 40.91 37.77 57.70 67.85 51.68 23.12

Table 26. OPT-1B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 67.69 50.49 65.43 76.28 66.06 30.72

NF4 64.89 47.86 62.75 74.54 63.21 29.01
SF4 65.57 47.81 63.54 74.37 62.20 27.99

INT4 53.15 44.98 60.46 72.8 62.84 28.50

I-E2M1 62.41 47.76 60.69 73.99 62.60 29.18
B-E2M1 60.39 47.04 61.01 73.78 63.00 29.18

E2M1 65.22 47.39 62.75 74.32 64.10 29.01
+ SR 62.47 46.09 59.67 73.99 63.52 27.82
+ SP 61.73 47.28 62.04 73.88 63.82 30.03

E3M0 57.23 45.32 60.77 72.74 62.94 28.58

APoT4 61.40 47.56 62.43 75.14 63.39 29.95
+ SP 61.73 47.28 62.04 73.88 63.82 30.03

S
m

o
o

th
Q

u
an

t

NF4 67.79 49.22 63.06 75.24 65.38 30.03
SF4 68.29 49.24 63.85 75.14 64.74 30.46

INT4 66.72 48.8 63.22 74.10 62.57 29.10

I-E2M1 65.55 48.64 62.83 74.59 65.29 30.03
B-E2M1 65.94 48.40 61.72 74.27 63.06 30.12

E2M1 68.27 49.23 63.69 75.19 64.71 30.63
+ SR 64.62 46.36 60.22 74.81 64.37 28.41
+ SP 67.75 49.64 64.25 74.81 62.87 30.08

E3M0 61.96 47.30 60.93 73.50 62.6 28.33

APoT 67.26 49.56 64.09 75.30 62.32 30.38
+ SP 67.75 49.64 64.25 74.81 62.87 30.08

Table 27. OPT-6B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

S
m

o
o

th
Q

u
an

t

FP32 62.57 55.84 75.45 78.78 83.21 52.56

NF4 52.20 51.63 71.03 76.93 74.62 49.74
SF4 53.06 51.22 71.82 75.08 79.88 50.60

INT4 41.18 47.4 67.48 74.37 66.97 46.16

I-E2M1 43.18 47.4 67.01 75.35 66.73 45.99
B-E2M1 39.82 46.5 67.88 74.43 66.64 42.92

E2M1 49.66 51.19 71.82 75.30 78.29 49.23
+SR 51.81 49.40 73.56 75.73 78.47 47.10
+ SP 51.19 50.85 69.46 76.50 77.58 49.32

E3M0 42.15 47.63 66.61 74.05 72.81 45.22

APoT4 49.58 50.25 69.85 76.77 75.60 48.46
+ SP 51.19 50.85 69.46 76.50 77.58 49.32

S
m

o
o

th
Q

u
an

t

NF4 52.98 51.74 71.82 75.73 79.72 49.23
SF4 55.33 51.53 71.82 76.44 80.92 49.74

INT4 31.94 46.57 64.96 72.03 69.45 44.54

I-E2M1 36.97 47.85 67.88 72.63 67.37 46.50
B-E2M1 31.13 45.91 64.56 72.58 66.97 40.70

E2M1 51.68 51.33 71.03 76.28 77.92 50.17
+ SR 52.78 49.39 72.93 76.39 78.01 48.21
+ SP 49.95 50.86 71.74 74.92 81.25 48.38

E3M0 49.41 47.51 69.14 74.70 71.41 44.88

APoT4 47.86 50.49 70.40 75.14 79.11 47.53
+ SP 49.95 50.86 71.74 74.92 81.25 48.38

Table 28. Phi-2 W4A4 Subchannel 128
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