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Abstract—Large language models (LLMs) have demonstrated
remarkable performance across various machine learning tasks.
Yet the substantial memory footprint of LLMs significantly hin-
ders their deployment. In this paper, we improve the accessibility
of LLMs through BitMoD1, an algorithm-hardware co-design
solution that enables efficient LLM acceleration at low weight
precision. On the algorithm side, BitMoD introduces fine-grained
data type adaptation that uses a different numerical data type to
quantize a group of (e.g., 128) weights. Through the careful design
of these new data types, BitMoD is able to quantize LLM weights
to very low precision (e.g., 4 bits and 3 bits) while maintaining
high accuracy. On the hardware side, BitMoD employs a bit-
serial processing element to easily support multiple numerical
precisions and data types; our hardware design includes two key
innovations: First, it employs a unified representation to process
different weight data types, thus reducing the hardware cost.
Second, it adopts a bit-serial dequantization unit to rescale the
per-group partial sum with minimal hardware overhead. Our
evaluation on six representative LLMs demonstrates that BitMoD
significantly outperforms state-of-the-art LLM quantization and
acceleration methods. For discriminative tasks, BitMoD can
quantize LLM weights to 4-bit with < 0.5% accuracy loss on
average. For generative tasks, BitMoD is able to quantize LLM
weights to 3-bit while achieving better perplexity than prior LLM
quantization scheme. Combining the superior model performance
with an efficient accelerator design, BitMoD achieves an average
of 1.69× and 1.48× speedups compared to prior LLM acceler-
ators ANT and OliVe, respectively.

I. INTRODUCTION

Large language models (LLMs) have achieved significant

breakthroughs in natural language processing tasks [46], [56].

However, the growth of LLM size and complexity continues

to outpace the scaling of compute performance and memory

capacity in existing hardware platforms [21]. For example,

the first generation of the GPT model, introduced in 2018,

contains only 117 million parameters, while the second and

third generations grew more than 10× and 1000×, respectively

within two years [8]. This rapid increase in size necessitates

significant memory capacity for model deployment, hindering

their wide adoption, especially in edge scenarios with limited

compute and memory resources. For instance, the state-of-the-

art (SOTA) open-source LLM family, Llama-3 [34], contains

1Code is available at: https://github.com/yc2367/BitMoD-HPCA-25

more than 8 billion parameters and requires more than 16GB

of memory to store the model weights in 16-bit floating-

point (FP16) format, which cannot fit in an edge GPU such

as Jetson-TX2 with 8GB memory [36]. Therefore, designing

novel LLM compression algorithms, together with accelera-

tors co-designed for efficient deployment of the compressed

models, presents a promising solution to enhancing the acces-

sibility of LLMs on edge devices.

Quantization serves as one of the most hardware-efficient

methods to mitigate the computation and memory demands of

LLMs. Generally, there are two types of quantization mech-

anisms. The first one is quantization-aware training (QAT),

where retraining is needed to update model weights and

quantization parameters (e.g., scaling factors) [25], [30]. The

second approach is post-training quantization (PTQ), which

does not require retraining [9], [18], [19], [24], [29], [41],

[51]. Although QAT can achieve more competitive accuracy

than PTQ, the prohibitive cost of retraining LLMs makes it less

practical. As a result, PTQ is commonly adopted in existing

LLM quantization studies. While some PTQ works quantize

both weights and activations into low precision [24], [41], [51],

weight-only quantization can offer a better trade-off between

model accuracy and hardware efficiency for edge deployment

of LLMs, where weights dominate the memory footprint [9],

[18], [19], [29]. However, existing weight-only quantization

works on GPUs suffer from poor computational efficiency

since GPUs lack dedicated hardware to perform multiplication

between integer weight and floating-point activation. Conse-

quently, these methods must first dequantize the weight to

FP16 and rely on the floating-point pipeline for computation.

To achieve better computational efficiency for LLMs, a

recent accelerator work, FIGNA [26], proposes a family

of dedicated computing units for mixed-precision arithmetic

between integer weights and floating-point activations. To

further unleash the potential of quantization for improved

hardware efficiency, several works have proposed algorithm-

hardware co-design solutions based on custom low-precision

data types [24], [25], [37], [39]. The microscaling format

(MX) [37], [39], assigns 8-bit metadata as the shared exponent

to a group of low-precision weights. ANT [25] introduces a
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new data type that better adapts to the intra-tensor value dis-

tribution, thus reducing the quantization error. OliVe [24] pro-

poses an outlier-victim-pair quantization mechanism, where

an outlier value with a large magnitude is represented with

an “Adaptive Biased Float” format and can be protected by

pruning its adjacent victim value that has a small magnitude.

In this paper, we propose BitMoD2, an algorithm-hardware

co-design solution for efficient LLM acceleration at low

weight precision. On the algorithm side, BitMoD exploits

the per-group quantization [15], and modifies low-precision

floating-point data types by repurposing the redundant zero

value with a special value, which provides the ability to

better adapt the data type itself to the numerical distribution

of each weight group. Through careful choice of special

values, BitMoD is able to quantize LLM weights to very low

precision (e.g., 4-bit and 3-bit) with tiny encoding overhead

while maintaining good model accuracy. On the hardware side,

BitMoD employs the bit-serial computing paradigm with a

unified representation for different low-precision data types to

efficiently trade-off weight precision and hardware efficiency.

The main contributions of this paper are summarized below:

1) We propose BitMoD, a hardware-efficient PTQ solution

for LLM acceleration. BitMoD introduces new data

types that are tailored for per-group weight quantization

at 4-bit and 3-bit precision with tiny encoding overhead.

2) We demonstrate that the proposed data types can be

seamlessly integrated with other quantization optimiza-

tion techniques, achieving better model perplexity than

SOTA software-only LLM quantization works.

3) We propose an efficient accelerator design for BitMoD,

which adopts a unified bit-serial representation for mul-

tiple low-precision data types. This effectively reduces

the hardware cost to perform computation between low-

precision weights and FP16 activations, and trades-off

weight precision for improved hardware efficiency.

4) Our evaluation on six representative LLMs shows that

on average, BitMoD achieves 2.2× speedup and 2.31×
better energy efficiency compared to the baseline FP16

accelerator, without loss in accuracy. Compared to SOTA

accelerators ANT and OliVe, BitMoD achieves an aver-

age speedup of 1.69× and 1.48×, respectively.

II. BACKGROUND AND MOTIVATION

A. Why Weight Quantization for LLMs?

To demonstrate the importance of LLM weight quantization

for edge applications, we profile the total memory access

footprint of weight and activation for four representative LLMs

running both discriminative and generative tasks with a batch

size of 1. For discriminative tasks, the LLM receives an

input context and outputs a single token such as in sentiment

analysis [45] and multiple-choice question answering [12]. For

generative tasks, the LLM receive an input context and output

multiple tokens. We set the input to output sequence length to

256 : 1 and 256 : 256 for discriminative and generative tasks,

2BitMoD stands for Bit-serial computation with Mixture of Data types.

Fig. 1: Total memory access of weights and activations on discriminative tasks
(with 256 input tokens and 1 output token) and generative tasks (with 256
input tokens and 256 generated tokens). Note the log scale on the y-axis.
Note that the gap between weight and activation memory accesses increases
for generative tasks at batch size 1 despite a much larger KV-cache than
discriminative tasks. While prior work [43] has correctly reported a memory
bottleneck caused by the KV-cache, this only occurs for 175B+ parameter
models with a high batch size (e.g., 512) and a context lengths exceeding 512
tokens. This scenario is less relevant to our focus on low-batch edge LLM
inference where the weights indeed dominate the total memory accesses.

respectively, catering for edge applications as suggested by Lin

et al. [29]. As shown in Fig. 1, the LLM weights access con-

sumes orders of magnitude larger memory than the activations

access. Although discriminative tasks only need to output a

single token (e.g., “A”/“B”/“C” for multiple-choice question

answering), the weight tensor dimension of an LLM (e.g.,

2048 for OPT-1.3B) is much larger than the input token length,

leading to memory access dominated by weights. Moreover,

generative tasks necessitate repeated weight fetching for every

new output token, resulting in significantly higher memory

access for LLM weights. Thus, weight quantization is more

effective for deploying LLMs in edge scenario where the batch

size is small and the input token length is typically short.

B. Quantization Basics

One of the most popular quantization schemes is inte-

ger quantization, where a floating-point value is scaled and

rounded to a low-precision integer. There are two widely used

quantization modes – symmetric and asymmetric. Symmetric

integer quantization can be expressed as follows:

∆ =
Wfmax

2b−1 − 1
; Wq = Round

(

Wf

∆

)

; Wqf = Wq ·∆ (1)

where Wf is the original floating-point tensor, Wfmax is the

absolute maximum value, b is the quantized integer precision,

∆ is the scaling factor, Wq is the quantized integer value, and

Wqf is the floating-point value after performing dequantization

(i.e., re-scaling).

The symmetric quantization assumes that the minimum and

maximum values of a tensor have the same absolute value

(i.e., symmetric value range), but this is not always true.

Hence, another popular mode of quantization is asymmetric

quantization, which can be expressed as follows:

∆ =
Range (Wf )

2b − 1
; z = Round

(

−Wfmin

∆

)

Wq = Round

(

Wf

∆

)

+ z ; Wqf = (Wq − z) ·∆ (2)



Fig. 2: Maximum value and value range for different quantization granularity.
Results are normalized to the standard deviation (σ) of the weight vector at
the corresponding granularity, then averaged across all weight vectors. The
per-group granularity has a group size of 128.

where Wfmin is the absolute minimum value of Wf , and z
represents the zero-point of the quantized tensor.

C. Motivation

We analyze several techniques that are widely adopted in

recent quantization studies, which motivates our proposed

BitMoD framework. We mainly focus on weight quantization

in our discussion.

Quantization Granularity Matters. Consider a floating-

point weight tensor WK×D
f , where K represents the number

of output channels and D is the channel size. There are three

granularities to quantize the model weight: per-tensor, per-

channel, and per-group. The per-tensor quantization uses the

same scaling factor to quantize a whole weight tensor, while

per-channel quantization divides the weight tensor along the

output channel into K vectors, and quantizes every vector

W 1×D
f independently. However, given the large tensor size

and hidden dimension of LLMs, these two granularities still

lead to large quantization error. Specifically, the quantization

error of a dequantized weight in Eq. 1 can be expressed as:

Error(Wqf ) = ErrorRound

(

Wf

∆

)

·∆ (3)

where ErrorRound is the rounding error during quantiza-

tion, which has been shown to have an expected value of

0.25 [29]. Therefore, the quantization error is proportional

to the scaling factor ∆, which is further proportional to

the maximum value and range for symmetric (Eq. 1) and

asymmetric (Eq. 2) quantization, respectively.

In order to further reduce the quantization error, recent LLM

quantization studies adopt the per-group granularity [15], [18],

[19], [29]. The per-group quantization further divides a weight

channel W 1×D
f into D/G groups, each with a group size

of G. The group size introduces extra overhead to store the

quantization parameters, i.e., scaling factor (and zero-point)

for every group, and is usually set to 128 in SOTA quantization

frameworks to balance accuracy and memory overhead [19],

[29]. Fig. 2 demonstrates the benefits of per-group quantization

by showing the maximum value and range in four representa-

tive LLMs at different granularity. The per-group granularity

has the lowest maximum value and range, hence will have a

lower quantization error compared to the other two granularity.

Therefore, we focus on per-group quantization in this work.

TABLE I. Wikitext-2 perplexity (↓) under different quantization
granularity and 4-bit data types. “PC” and “PG” stand for per-channel
and per-group, respectively. The group size is 128.

Model OPT-1.3B Phi-2B Llama-2-7B Llama-2-13B

Granularity PC PG PC PG PC PG PC PG

FP16 14.62 14.62 9.71 9.71 5.47 5.47 4.88 4.88

INT4-Sym 36.05 16.04 13.03 11.15 12.92 5.84 5.47 5.07

INT4-Asym 48.41 15.41 12.08 10.67 8.89 5.77 5.27 5.01

FP4 16.07 14.99 11.24 10.68 8.07 5.77 5.15 5.05

Flint 15.87 16.23 11.71 11.23 6.67 6.09 5.31 5.29

Quantization Data Type Matters. Numerous studies have

proposed custom data types for quantization at the per-channel

granularity [24], [25], [39]. We analyze the effects of adopting

different data types for per-channel and per-group weight

quantization. We explore four basic data types at 4-bit pre-

cision: integer with symmetric (INT4-Sym) and asymmetric

(INT4-Asym) quantization, floating-point (FP4), and the

Flint data type proposed by ANT [25]. Table I shows

the resulting perplexity on the Wikitext-2 dataset [32]. We

highlight two important observations. First, although Flint

can achieve better perplexity at the per-channel granularity, it

never outperforms other data types at the per-group granularity.

Second, the per-group INT4-Asym and FP4 quantization

achieve the best perplexity on some but not all studied

LLMs, indicating that both asymmetry and FP data types are

favorable for per-group quantization. The reason behind this is

twofold. First, weight tensors typically exhibit Gaussian-like

distribution that fits well to the floating-point data type [16],

[50]. Second, while the effects of outliers are mitigated by per-

group quantization, a weight group can still contain outliers in

an asymmetric pattern, being either solely positive or negative,

as highlighted in previous studies [14], [15]. This characteristic

benefits from asymmetric quantization.

The above observation motivates us to explore new quanti-

zation data types that can combine the benefits of asymmetry

and FP formats to achieve better accuracy under per-group

quantization. We notice that the basic FP data types have sym-

metric quantization values due to the inherent sign-magnitude

binary representation that contains positive and negative zero

values. Our key insight is that we can introduce additional

asymmetry to FP by repurposing a redundant zero value with

another special value. This approach provides us with two key

benefits. First, it allows to fully utilize the limited quantization

levels. Although the redundant zero value does not affect high-

precision formats such as FP16, it constitutes a large fraction

of quantization levels at low precision (e.g., 12.5% at 3-bit

precision). Second, we can tune the special value to make the

extended FP data types better adapt to the per-group weight

distribution, which we discuss in Section III-B.

Quantization Bit-width Matters. While prior LLM acceler-

ators mainly rely on bit-parallel architectures that support 8-bit

and 4-bit precision [24]–[26], recent studies have shown that

6-bit floating-point weights exhibit negligible accuracy loss

across various LLM models and tasks [48], [50]. Motivated by

this, we analyze the effects of using different 6-bit data types

for per-group LLM weight quantization. We consider four data



TABLE II. Wikitext-2 and C4 perplexity (↓) under different 6-bit
data types. We use per-group weight quantization with a group size
of 128.

Model OPT-1.3B Phi-2B Llama-2-7B Llama-2-13B

Dataset Wiki C4 Wiki C4 Wiki C4 Wiki C4

FP16 14.62 14.72 9.71 12.74 5.47 6.97 4.88 6.47

INT6-Sym 14.51 14.80 9.85 12.82 5.49 6.99 4.89 6.46

INT6-Asym 14.61 14.78 9.76 12.8 5.49 6.99 4.89 6.46

FP6-E2M3 14.59 14.76 9.85 12.8 5.52 6.99 4.92 6.49

FP6-E3M2 14.81 14.81 9.81 12.87 5.49 7.02 4.89 6.50

types: integer with symmetric (INT6-Sym) and asymmetric

(INT6-Asym) quantization, floating-point with 2-bit exponent

and 3-bit mantissa (FP6-E2M3), and floating-point with 3-bit

exponent and 2-bit mantissa (FP6-E3M2). Table II compares

the resulting perplexity of different quantization data types on

Wikitext-2 [32] and C4 [17] datasets. On average, the studied

6-bit data types achieve similar and negligible perplexity loss

compared to the FP16 baseline. For example, the average

perplexity loss of INT6-Sym is less than 0.05, and its simple

integer representation offers a promising solution to efficient

LLM acceleration. Therefore, it is crucial for an accelerator to

support diverse quantization bit-width to offer a better trade-

off between memory footprint and model accuracy.

A natural solution for accommodating variable precision is

to adopt bit-serial architectures [2], [11], [27], [44]. However,

existing bit-serial accelerators mainly target the integer data

type, which causes significant accuracy loss at 3-bit precision

as we will show in Section V-B. Furthermore, these accelera-

tors cannot leverage per-group quantization for improved accu-

racy. This is because per-group quantization assigns different

scaling factors for different groups, necessitating a floating-

point unit with large area overhead to dynamically dequantize

the partial sum after computing the dot-product for every

group. Thus, an efficient dequantization mechanism with low

hardware cost is desirable.

Algorithm-Hardware Co-Design Matters. Numerous frame-

works have been proposed to accelerate LLM execution, as

depicted in Table III. SOTA algorithmic solutions such as

AWQ [29] quantize LLM weights to low-precision integer

while preserving high accuracy. Nevertheless, AWQ is opti-

mized for LLM acceleration on GPUs, which lack dedicated

mixed-precision computing unit. As a result, it converts the

low-precision weights to FP16 and relies on the GPU floating-

point pipeline for computation, resulting in poor computational

efficiency.

In contrast, ANT [25], OliVe [24], and FIGNA [26] pro-

pose efficient bit-parallel accelerators for quantized model

acceleration. But their precision is limited to 8-bit and 4-bit,

which restricts the ability to utilize other precision (e.g., 6-

bit) for a better accuracy-efficiency trade-off. Moreover, their

accelerators do not natively support per-group quantization,

which requires a floating-point unit to dynamically dequantize

the per-group partial sum on the fly. While Microscaling [39]

accommodates diverse precision, it necessities a floating-point

pipeline to handle the shared micro-exponent of a weight

group, leading to higher energy consumption compared to

TABLE III. Comparison between BitMoD and SOTA co-design
frameworks for LLM acceleration

Framework
Per-group Supported Accuracy @ Hardware

Quant? Precision 3-bit Weight Efficiency

AWQ [29] Yes Limited High Low

FIGNA [26] No Limited Low High

ANT [25] No Limited Low High

OliVe [24] No Limited Medium High

Microscaling [39] Yes Many Low Medium

BitMoD (Ours) Yes Many High High

other low-precision compute units. Furthermore, given the

significant memory footprint of LLMs, it is desirable to

explore sub-4-bit quantization while maintaining good model

accuracy, which ANT, OliVe, and Microscaling do not address.

As we will show in Section V-B, the custom quantization

data types proposed by ANT, OliVe, and Microscaling fail

to achieve better accuracy than the simple asymmetric integer

quantization at 4-bit weight precision, and cause unaccept-

able accuracy loss at 3-bit weight precision under per-group

quantization. The above limitation motivates us to propose an

efficient LLM acceleration framework that supports a wide

range of hardware-friendly bit-widths, while maintaining good

accuracy at low weight precision.

III. BITMOD QUANTIZATION FRAMEWORK

In this section, we present the BitMoD quantization frame-

work, which includes new data type families tailored for per-

group quantization at 3-bit and 4-bit precision. Section III-A

describes our proposed data types that extend the basic

floating-point data types at 3-bit and 4-bit precision. Sec-

tion III-B presents an enhanced per-group LLM quantization

strategy using the proposed data types. Section III-C describes

the hardware-efficient per-group dequantization mechanism

using integer scaling factors.

A. Asymmetric FP3 and FP4 Data Types

The basic floating-point formats contain a redundant quan-

tization level due to the sign-magnitude representation that

has both +0 and −0. We propose to replace this redundant

zero with another special value to fully utilize the available

quantization levels and introduce additional asymmetry. We

first use the basic FP3 format to derive our custom 3-bit data

type, and then extend our idea to 4-bit precision.

FP3 Extension. The basic FP3 data type contains seven

distinct values {0,±1,±2,±4}. Our main idea is to extend

FP3 and allows the redundant zero to be replaced by one of

some pre-defined special values. Consequently, a weight group

can be quantized by the basic FP3 data type together with

a selected special value to minimize the quantization error.

Ideally, the special values can have an arbitrary precision.

But a high-precision (e.g., FP16) special value leads to more

hardware overhead for computing, which offsets the efficiency

of low-precision data types. Hence, we limit the special value

to low-precision integers. Furthermore, given N as the number

of allowed special values, an encoding overhead of
⌈

logN
⌉



Fig. 3: Normalized weight quantization error (↓) with different special values
(SV) for FP3. We use per-group quantization with a group size of 128. The
special values ± 6 achieve the lowest overall quantization error, thus adopted
in BitMoD.

bits is needed to specify which special value to be selected

during computation. This selection also requires an N -to-1

mux in the hardware implementation. To balance the encoding

overhead and hardware complexity, we set N = 4 which only

requires 2-bit encoding per group.

The choice of special values will affect the resulting quanti-

zation error because it changes the set of available quantization

values. As discussed in Section II-C, both asymmetry and

floating-point data types are crucial for good accuracy under

per-group quantization. Since the scaling factor and quantized

values are ultimately determined by the absolute maximum

value of a data type [31], we establish the set of special

values based on two principles. First, some special values

should fall inside the numerical range of FP3 to ensure that

they do not alter its original absolute maximum (i.e., 4).

This is advantageous for quantizing weight groups exhibiting

symmetric, Gaussian-like distribution. Second, some special

values could fall outside the numerical range of FP3 to

introduce additional asymmetry, i.e., the absolute maximum

and minimum quantization values of the extended FP3 are

different. This can benefit weight groups that exhibit asym-

metric distribution.

To satisfy the first property, the special values should be set

to ± 3, which replace the redundant zero with +3 and − 3,

respectively. We call this new data type FP3-ER since it adds

extra resolution (ER) within the range of FP3. To satisfy the

second property, there are an infinite number of values that can

fall outside the FP3 range. Therefore, we determine the two

remaining special values that can minimize the quantization

error. We further reduce the search space by restricting these

two special values to have the same absolute value, which

results in balanced asymmetry across all weight groups. This

is desirable because, although an individual weight group

may prefer asymmetric quantization, a whole weight tensor

TABLE IV. Our proposed extended resolution (ER) and extended
asymmetry (EA) FP3 and FP4 data types.

Dtype Basic Values Extended Dtype Special Value

FP3 0, ± 1, ± 2, ± 4
FP3-ER −3 or +3

FP3-EA −6 or +6

FP4
0, ± 0.5, ± 1, ± 1.5 FP4-ER −5 or +5

± 2, ± 3, ± 4, ± 6 FP4-EA −8 or +8

Algorithm 1: Fine-grained data type adaptation.

Input : Weight group: W ; Quantization precision: p

Output : Quantized weight group: Wqout ;

Selected special value: vout
1 Func AdaptiveQuant(W, p ) :

// Get basic and special quantization

values according to Table IV

2 basicValues = GetBasicValues( p )
3 specialValues = GetSpecialValues( p )

// Search for the best special value

4 minError = +∞

5 for v in specialValues do

6 quantValues = basicValues ∪ v

7 Wq = NonLinearQuantize(W, quantValues )
8 newError = MeanSquareError(W, Wq )
9 if newError < minError then

10 minError = newError

11 Wqout = Wq

12 vout = v

13 return Wqout , vout

usually exhibits symmetric, Gaussian-like distribution [25],

[54]. Fig. 3 shows the normalized per-group quantization error

on six LLMs when adding different special values to FP3.

We observe that adding asymmetry significantly reduces the

quantization error. In addition, the special values ± 6 have the

lowest quantization error on most LLMs except for OPT-1.3B,

and are therefore adopted in BitMoD. We call the resulting

new data type FP3-EA since it adds extra asymmetry (EA)

to extend the range of FP3.

FP4 Extension. Similar to FP3-ER and FP3-EA, we add

extra resolution and asymmetry to FP4. We conduct experi-

ments to measure the effects of different FP4 special values

on the resulting quantization error, which leads to the best

FP4-ER and FP4-EA that have special values ± 5 and ± 8,

respectively. Table IV summarizes the extended FP3 and FP4

data types. Note that although we have fixed the four special

values given that they can minimize the quantization error for

the diverse set of LLMs that we evaluate, the proposed BitMoD

accelerator can flexibly accommodate other arbitrary special

values that may perform well with different LLMs, which we

discuss in Section IV-A.

B. Fine-grained Data Type Adaptation

The extended FP3 and FP4 data types contain four special

values, but every weight group can only be quantized with

one special value in addition to the basic values. Therefore,

we propose a fine-grained data type adaptation strategy that

quantizes every group using a different special value to min-

imize the quantization error, as detailed in Algo. 1. First, the

basic and special values are obtained from Table IV (Line 2 –

3). We iterate through all special values and add one special

value to the set of basic values in every iteration (Line 5 – 6).

Then we perform non-linear quantization (Line 7), which is

commonly used in previous PTQ studies that map the floating-



TABLE V. Wikitext-2 and C4 perplexity (↓) under different precision
for the per-group scaling factor (SF). We use INT4-Asym for weight
quantization with a group size of 128.

Model OPT-1.3B Phi-2B Llama-2-7B Llama-2-13B

SF Bits Wiki C4 Wiki C4 Wiki C4 Wiki C4

FP16 15.41 15.84 10.68 13.66 5.77 7.31 5.01 6.62

INT8 15.41 15.84 10.68 13.66 5.77 7.31 5.01 6.62

INT6 15.43 15.84 10.74 13.71 5.77 7.31 5.01 6.62

INT4 15.52 15.93 10.76 13.73 5.77 7.36 5.03 6.64

INT2 18.46 18.61 15.68 18.32 8.41 10.63 6.19 8.12

point tensor to a set of non-linear values (i.e., non-INT data

types) [18], [24], [25]. Finally, we assign the special value

that has the lowest mean-square error between the original

and quantized weight (Line 8 – 11).

Although Algo. 1 describes the quantization procedure for a

single weight group, the algorithm can be vectorized on a GPU

to find the best special value for all groups of a weight tensor

simultaneously. For our implementation, the algorithm only

takes ∼10 second to quantize the whole Llama-2-7B model

on a single A6000 GPU. Hence, our proposed quantization

strategy exhibits high compression speed and efficiency.

C. Efficient Per-group Dequantization

While quantization allows computing the dot product in

low precision, it still requires dequantization (i.e., re-scaling)

after producing the output. Specifically, Eq. 1 indicates that

the quantized low-precision weight should be multiplied by

the scaling factor to obtain the actual floating-point weight.

Per-channel quantization only needs re-scaling after producing

the final output activation. Such per-channel re-scaling can be

further fused into other element-wise operations such as layer-

norm before writing the output activation back to memory,

reducing the data transfer cost [29], [51]. However, per-group

quantization must dequantize the partial sum after computing

every group of dot-products because different groups have

different scaling factors. Furthermore, since BitMoD maintains

the input activation at FP16, the group partial sum will also

have floating-point formats. As a result, performing dequanti-

zation on-the-fly necessitates a floating-point pipeline, which

can diminish the potential hardware efficiency gained from

using low-precision weights.

In order to reduce the dequantization cost, we build upon

prior work VS-Quant [13], which applies a second-level

quantization that further quantizes the scaling factors to low-

precision integers. Given the weight channel size D and group

size G, VS-Quant applies symmetric quantization (Eq. 1) to

the D/G scaling factors from the same channel, where the

precision of per-group scaling factor is a design parameter.

However, VS-Quant only targets small-scale neural networks

and uses a small group size of 16. It is unclear how quantizing

the scaling factors of a larger group will affect the accuracy

of LLMs. Hence, we conduct experiments to find the best

precision for per-group scaling factors. We use INT4-Asym

quantization as an example, while other data types show the

same trend. As shown in Table V, INT8 per-group scaling

factors have no accuracy loss compared to using FP16 scaling
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factors. This is expected since INT8 can even achieve no

accuracy loss for per-channel weight quantization [51], [52],

which has a much wider numerical range than scaling factors.

Thus, we use INT8 per-group scaling factors in BitMoD,

which allows efficient per-group dequantization in a bit-serial

manner as will be described in Section IV-B.

Memory Overhead Analysis. The proposed BitMoD quan-

tization only needs an 8-bit scaling factor and 2-bit encoding

metadata to select the special value for every group. Given

a large group size such as 128, which is commonly used

in SOTA software-only LLM quantization studies [18], [19],

[29], the 10-bit extra memory per group incurs practically

no overhead. Furthermore, prior software-only PTQ works

mainly adopt asymmetric integer quantization [18], [19], [29],

which requires a 16-bit scaling factor and an 8-bit zero-point

per group. Hence, BitMoD exhibits lower memory overhead

compared to these works.

IV. BITMOD HARDWARE ACCELERATOR

In this section, we describe the BitMoD hardware design,

which leverages the bit-serial computing paradigm to offer a

good trade-off between weight precision, model accuracy and

hardware efficiency. Section IV-A develops a unified bit-serial

representation of different low-precision data types supported

by BitMoD. Section IV-B details the microarchitecture of the

BitMoD processing element (PE). Section IV-C presents the

overall accelerator architecture.

A. Unified Bit-serial Representation

Prior studies have demonstrated that per-channel INT8

weight quantization shows no accuracy loss compared to using

FP16 weights [26], [51], [52]. Moreover, as discussed in

Section II-C, per-group INT6 quantization also has negligible

accuracy loss. Hence, the design target of BitMoD hardware

is to support INT8, INT6, as well as the new FP4 and FP3

extensions in a unified architecture. However, the basic values

of FP3 and FP4 use the floating-point format, which is not

compatible with the integer representation. A naive approach
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is to convert all data types to INT8, yet this cannot improve

the computational efficiency for lower-precision weights.

In order to trade-off lower weight precision for improved

hardware efficiency, we propose a unified bit-serial represen-

tation, where every number is decomposed into a series of bit-

serial terms, each containing four parts: sign, exponent (exp),

mantissa (man), and bit-significance (bsig). The value of a

bit-serial term can be expressed as:

vterm = (−1)sign · 2exp · man · 2bsig (4)

Fig. 4 describes the bit-serial representation for different

data types supported by BitMoD. For INT8 and INT6, we

apply Booth encoding [7] to decompose their binary strings

into four and three 3-bit Booth strings, respectively. The Booth

encoding has been widely used in prior bit-serial accelerators

to speed up computation [2], [4], [42]. Every two adjacent

Booth strings have a difference of 2 in bit-significance. The

sign, exponent, and mantissa depend on the content of a Booth

string, which defines the desired operation when multiplying

with another operand x.

For the extended FP4, we first convert it to fixed-point

values in sign-magnitude format with 1 sign bit, 4 integer

bits {I3, I2, I1, I0} to handle the largest special value ± 8 of

FP4-EA, and 1 fraction bit {F0} to handle ± 0.5 and ± 1.5 of

the basic FP4 values. The fixed-point value is then compared

with the redundant negative zero. If the comparison result

is equal, the negative zero will be replaced by the assigned

special value (SV) of a particular weight group. The four

allowed special values are stored in a register file (SV reg),

which only requires one-time programming before deploying

an LLM. To obtain the bit-serial term, we observe that all

values of the extended FP4 in Table IV contain at most two

‘1’ bits after converting to the fixed-point format. Hence, we

use the simple leading-one detector (LOD) to get two bit-serial

terms from the first four bits {I3, I2, I1, I0} and last four bits

{I2, I1, I0, F0}, respectively. Finally, since the extended FP3

values are a subset of FP4, it can be decoded into two bit-serial

terms using the same hardware. Note that the bit-serial decoder

is not limited to support the special values shown in Table IV.

The special value register file can be programmed with other

special values as needed, and the number of decoded bit-

serial terms can be minimized with simple modification to the

decoder. For example, the special value 7 can be expressed as
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two bit-serial terms 23 and − 20 instead of using a leading-one

detector that emits three bit-serial terms.

B. BitMoD Processing Element

While BitMoD is able to quantize weight to low precision,

activation still remains in FP16. To address this challenge, we

propose a mixed-precision bit-serial PE as shown in Fig. 5.

In every cycle, the PE performs a 4-way dot product between

four bit-serial weight terms (w) and four FP16 activations (a).

Step 1 first aligns the sum of exponents (ae+we) to compute

the delta exponent (δe). It also generates the sign (ys) of

every product between a weight term and activation. Step 2

performs the bit-serial multiplication between the 1-bit weight

mantissa (wm) and 11-bit activation mantissa (am) including

the hidden bit. The multiplication result is aligned by a right-

shifter that is controlled by the delta exponent. We reserve 3

extra bits in the shifter result to account for rounding to the

nearest even as suggested by Awad et al. [4]. The bit-serial dot

product of the mantissa is then computed using an adder tree.

After producing the bit-serial dot product, Step 3 performs

accumulation by first multiplying the dot product with the

weight bit-significance (Wbsig), followed by adding with the

accumulator mantissa (mACC). The accumulated mantissa is

then normalized to update the accumulator exponent (eACC).

Since BitMoD adopts per-group quantization, the accumulated

group partial sum must be dequantized on the fly. To reduce

this hardware cost, Step 4 performs dequantization in a

bit-serial manner. Specifically, the accumulator mantissa is

multiplied by one bit of the group scaling factor (∆i) in

every cycle, followed by shift-and-add to obtain the exponent

(eGRP ) and mantissa (eGRP ) of the dequantized partial sum.



TABLE VI. Wikitext-2 and C4 perplexity (↓) using different data types under per-group weight quantization.

Precision Datatype* OPT-1.3B Phi-2B Yi-6B Llama-2-7B Llama-2-13B Llama-3-8B
Mean∆PPL

Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4

16-bit FP16 14.62 14.72 9.71 12.74 5.84 8.91 5.47 6.97 4.88 6.47 6.13 8.88 0

4-bit

ANT 16.23 16.08 11.23 14.31 6.87 10.95 6.09 7.71 5.31 6.91 7.58 11.04 1.23

OliVe 15.38 15.82 10.49 13.51 6.55 9.84 5.91 7.34 5.13 6.74 6.89 9.91 0.68

MX-FP4 15.39 15.81 10.72 13.72 6.62 10.24 5.82 7.39 5.11 6.71 7.04 10.13 0.79

INT4-Asym 15.41 15.74 10.68 13.65 6.32 9.69 5.77 7.31 5.01 6.62 6.84 9.79 0.62

BitMoD 14.89 15.29 10.48 13.53 6.23 9.58 5.72 7.26 5.01 6.61 6.73 9.66 0.48

3-bit

ANT 340.6 332.9 15.57 18.35 9.01 14.32 8.51 10.28 6.40 7.98 15.22 17.56 57.61

OliVe 76.79 59.63 14.93 17.76 32.42 66.02 9.13 12.04 8.69 12.43 26.76 46.39 23.14

MX-FP3 1E+3 771.6 17.89 20.37 15.41 21.97 8.86 11.99 7.19 9.13 23.82 31.39 152.8

INT3-Asym 139.4 144.9 13.92 16.79 8.66 13.33 7.08 9.29 5.64 7.35 13.26 17.80 24.34

BitMoD 22.67 20.47 12.91 15.69 7.66 11.98 6.55 8.36 5.50 7.18 8.96 12.82 2.94

* All quantization data types use per-group quantization. The MX data type uses a group size of 32 following the standard in [37], while other data
types use a group size of 128. The perplexity of MX degrades when using a larger group size.

One concern of the bit-serial dequantization is whether it

will take more cycles than the normal dot product stage and

cause potential pipeline stalling. As discussed in Section III-C,

the per-group scaling factor has 8 bits, which requires 8

cycles for dequantization. On the other hand, even the lowest-

precision data type FP3 in BitMoD requires two cycles to

process two bit-serial terms. Given the PE dot-product size

of 4 and a commonly used group size of 128, the group

dot-product stage takes 128/4 × 2 = 64 cycles to complete.

Therefore, the proposed bit-serial dequantization will never

stall the computing pipeline. Furthermore, since INT6 and

the extended FP4/FP3 data types contain three and two bit-

serial terms, the proposed BitMoD PE is able to compute 4

multiply-accumulate operations in 3 and 2 cycles, respectively.

Compared to the normal FP16 multiply-accumulate hardware,

BitMoD achieves a throughput improvement of 1.33× and 2×
for INT6 and FP4/FP3 data types, respectively. In fact, as

will be evaluated in Section V-C, the BitMoD PE consumes

24% less area than an FP16 PE, thus is able to provide even

higher throughput under an iso-compute area constraint.

Besides matrix multiplication between weights and acti-

vations, LLMs also contain the self-attention layer, which

involves two matrix multiplication operations between three

activation tensors, i.e., query, key, and value. Given that the

BitMoD PE only maintains one activation tensor in FP16, the

other two activation tensors need to be low-precision integers.

Fortunately, prior works have demonstrated that the key and

value tensors are very amenable to quantization due to the

softmax normalization inside self-attention, and can be safely

quantized to INT8 and even INT4 with negligible accuracy

loss [43], [51], [57]. Hence, BitMoD can accommodate the

self-attention layer with the proposed bit-serial PE by quan-

tizing the key and value tensors to low-precision integers.

C. BitMoD Accelerator

Fig. 6 shows the overall architecture of the BitMoD accel-

erator. The input and weight buffers are banked to provide

adequate bandwidth for the access from PEs. The bit-serial

term generator receives the weight data and decomposes them

into bit-serial terms as discussed in Section IV-A. The main

PE array contains 4× 4 tiles connected in a systolic manner.

Every PE tile has 8 rows × 8 columns and adopts an output-

stationary dataflow. The bit-serial weight term is broadcast to

the whole PE column, while the input is broadcast to the whole

PE row. This allows BitMoD to exploit data reuse through both

weight-sharing and input-sharing. Every PE column contains

a local output buffer and an accumulator, which is used to

accumulate the per-group partial sum from a PE to obtain

the final per-channel output activation. Since processing a

weight group takes many cycles, there is enough time to drain

the whole PE column using only one shared accumulator to

amortize the hardware cost.

V. EVALUATION

A. Experimental Methodology

LLM Benchmarks. For evaluation, we choose six representa-

tive LLMs with diverse model sizes, including OPT-1.3B [56],

Phi-2B [35], Yi-6B [1], Llama-2-7B, Llama-2-13B [33], and

Llama-3-8B [34]. We obtain the pre-trained models from the

HuggingFace repository, and implement the proposed BitMoD

quantization framework in PyTorch. To evaluate the effects of

quantization on the resulting model performance, we consider

both discriminative and generative tasks. For discriminative

tasks, we evaluate three benchmarks: HellaSwag [55], Wino-

Grande [40], and Piqa [6] under the zero-shot setting using

LM-Evaluation-Harness [20]. For generative tasks, we choose

Wikitext-2 [32] and C4 [17] datasets and evaluate the perplex-

ity following the methodology in prior quantization works [3],

[19], [29], [41].

Quantization Data Types. We compare the model accuracy

of BitMoD with four baseline quantization data types:

• ANT [25], which adaptively uses different data types to

quantize different tensors at the per-channel granularity.

• OliVe [24], that introduces an outlier-victim pair encoding

mechanism, which sacrifices the normal value (i.e., vic-

tim) adjacent to the outlier to accommodate the important

outlier value.

• Microscaling (MX) [39], which groups 32 low-precision

FP weights with an extra 8-bit shared exponent.

• Per-group asymmetric integer quantization, which is com-

monly adopted in prior software quantization methods.



TABLE VII. Accuracy (higher is better) of discriminative tasks using different data types under per-group weight quantization.

Precision Datatype
OPT-1.3B Phi-2B Yi-6B Llama-2-7B Llama-2-13B Llama-3-8B

Mean∆Acc
Hella Wino Piqa Hella Wino Piqa Hella Wino Piqa Hella Wino Piqa Hella Wino Piqa Hella Wino Piqa

16-bit FP16 53.72 59.43 72.41 73.74 75.77 79.22 74.96 70.72 78.78 75.98 69.06 79.11 79.39 72.38 80.5 79.18 72.85 80.74 0

4-bit
INT4-Asym 52.31 59.35 71.05 72.29 75.14 78.4 73.91 70.51 77.64 75.29 68.74 78.22 78.76 72.45 80.2 78.07 73.24 79.76 -0.71

BitMoD 53.03 59.12 71.49 72.51 77.58 79.48 73.98 70.09 78.35 75.43 68.19 78.45 78.41 72.14 80.42 78.49 73.09 79.98 -0.42

3-bit
INT3-Asym 38.98 55.01 64.25 67.75 71.74 77.48 71.3 67.32 76.71 71.87 66.46 76.66 76.58 69.61 78.94 68.56 66.61 75.03 -4.84

BitMoD 49.16 58.09 68.88 70.16 75.22 78.18 70.72 67.72 76.28 72.68 66.22 77.53 76.79 72.37 79.22 73.56 70.32 77.91 -2.61

To ensure a fair comparison with BitMoD, we only apply

the data types of ANT, OliVe, and MX to LLM weight

quantization while maintaining activations in FP16. Despite

that the original ANT and OliVe frameworks only support

per-channel quantization due to the absence of dedicated

dequantization hardware, we have extended their algorithms

for per-group quantization. This allows to compare the model

accuracy purely based on the employed quantization data

types. While we mainly focus on weight quantization in our

evaluation, Section V-E demonstrates that BitMoD can be

combined with SOTA activation quantization scheme, which

offers the potential to reduce activation memory as well.

In addition to co-design works, we show that BitMoD can

be seamlessly integrated into existing software-only quantiza-

tion optimizations to further reduce the memory footprint or

achieve better model performance. We combine BitMoD with

three software quantization methods:

• SmoothQuant [51], which targets both weight and activa-

tion quantization in INT8. It addresses the quantization

difficulty of large activation magnitude by partially mi-

grating it to weights.

• AWQ [29], which employs activation-aware weight quan-

tization to protect the salient weight channels correspond-

ing to larger activation magnitudes.

• OmniQuant [41], which modulates the outlier weight val-

ues by optimizing the clipping threshold through block-

wise fine-tuning.

To integrate BitMoD with these software-only methods, we

replace their original weight quantizers that use integer data

types with the extended FP4 and FP3 data types of BitMoD.

Accelerator Baselines. To evaluate the hardware performance

and energy efficiency, we compare BitMoD with a baseline

accelerator that supports FP16 models and uses an FP16

multiply-accumulate PE instead of the proposed bit-serial PE.

We also compare BitMoD with ANT and OliVe, which design

TABLE VIII. Wikitext-2 and C4 perplexity (↓) when quantizing
Llama weights using different data types. We use per-group weight
quantization with a group size of 128.

Precision Datatype
Llama-2-7B Llama-2-13B Llama-3-8B

Wiki C4 Wiki C4 Wiki C4

4-bit

FP4 5.77 7.32 5.05 6.66 6.86 9.85

FP4-ER 5.74 7.28 5.03 6.63 6.76 9.71

FP4-EA 5.81 7.30 5.08 6.65 6.83 9.79

BitMoD 5.72 7.26 5.01 6.61 6.73 9.66

3-bit

FP3 7.51 10.28 5.90 7.58 15.22 19.87

FP3-ER 7.18 9.71 5.66 7.33 13.43 17.56

FP3-EA 6.61 8.45 5.54 7.23 9.06 12.97

BitMoD 6.55 8.36 5.50 7.18 8.96 12.82

custom decoders to support multiple data types in a unified

systolic array. We evaluate the performance in LLMs with a

batch size of 1 and an input sequence length of 256, catering

for edge use cases as in prior work [29].

Hardware Implementation. We implement the accelerator

of BitMoD at RTL-level using SystemVerilog and verify the

functionality of each component via RTL simulation. We use

Synopsys Design Compiler to synthesize BitMoD in TSMC

28nm technology to report the area and power. For end-

to-end performance evaluation, we implement a cycle-level

simulator, where the accelerator timing and energy parameters

are set based on the RTL synthesis results. The DRAM power

is calculated based on the DDR4 model from DRAMSim3

[28]. All accelerators are evaluated under an iso-compute area

constraint, and equipped with 512 KB activation buffer and

512 KB weight buffer, which are modelled with CACTI [5].

B. Accuracy Comparison of Different Data Types

Generative Tasks. Table VI details the perplexity of applying

different PTQ data types at 4-bit and 3-bit weight precision.

For 4-bit and 3-bit weight quantization, BitMoD achieves

< 0.5 and < 3 perplexity loss on average compared to the

FP16 baseline models, respectively. Although ANT, OliVe,

and MX are able to maintain acceptable perplexity at 4-bit

precision, they experience significant degradation in perplexity

when quantizing weights to 3 bits. OliVe, which is designed

to handle outlier values under per-channel quantization, finds

its advantages diminished since the impact of outliers can

be significantly mitigated through per-group quantization as

described in Section II-C. MX employs the basic FP4 and

FP3 without exploring the potential of their redundant zero,

leading to worse perplexity than INT-Asym that fully utilizes

the available quantization levels while supporting asymmetry.

On the contrary, BitMoD consistently outperforms asymmetric

integer quantization at per-group granularity, and the benefits

are more pronounced at 3-bit precision. This demonstrates that

the combination of asymmetry and floating-point data types in

BitMoD can significantly reduce the quantization error.

Discriminative Tasks. Table VII compares the model accu-

racy of discriminative tasks when employing BitMoD and the

TABLE IX. Wikitext-2 and C4 perplexity (↓) when using different
special values for FP3.

Special OPT-1.3B Phi-2B Llama-2-7B Llama-3-8B

Values Wiki C4 Wiki C4 Wiki C4 Wiki C4

{± 5, ± 6} 23.39 20.12 13.02 15.84 6.61 8.48 9.09 13.81

{± 3, ± 5} 35.54 37.65 13.41 16.29 6.68 8.73 10.32 14.48

{± 3, ± 6} 22.67 20.47 12.91 15.69 6.55 8.36 8.96 12.82



Fig. 7: Speedup of different accelerators (higher is better).

Fig. 8: Energy consumption breakdown of different accelerators (↓). “LL” and “LY” stand for ‘lossless” and ‘lossy”, respectively.

baseline asymmetric integer quantization at per-group granu-

larity. BitMoD achieves better or comparable accuracy than

asymmetric integer quantization. At 4-bit precision, BitMoD

has < 0.5% accuracy loss on average compared to the baseline

FP16 models. Moreover, on average, BitMoD achieves a big

improvement of 2.2% in model accuracy compared to the

asymmetric integer quantization that is widely used in SOTA

software quantization methods.

BitMoD Data Type Ablation. As discussed in Section III-A,

BitMoD introduces new data types by adding extra resolution

and asymmetry to FP3 and FP4. We analyze the effects of

these different data types on the perplexity of three studied

Llama models. As shown in Table VIII, the BitMoD data types

with both extra resolution and asymmetry achieve the best

perplexity. Compared to the basic FP4 data type, FP4-ER

shows a greater improvement in perplexity than FP4-EA. This

is because at 4-bit, the basic FP4 still has enough quantization

levels to quantize a weight group with asymmetric distribution,

and adding extra resolution can better reduce the quanti-

zation error. On the contrary, for 3-bit precision, FP3-EA

achieves much better perplexity than FP3-ER. Given fewer

quantization levels at 3-bit, the extra asymmetry introduced

by FP3-EA has a larger impact when accounting for weight

groups with asymmetric distribution.

BitMoD Special Value Ablation. The BitMoD PE can

flexibly support different special values. We evaluate two other

potential combinations of special values for FP3: {± 3, ± 5}
and {± 5, ± 6}. Table IX shows the resulting Wikitext and

C4 perplexity. The adopted special values in BitMoD, i.e.,

{± 3, ± 6}, achieve the lowest perplexity on average. The

special value combination {± 5, ± 6} only introduces extra

asymmetry to the basic FP3. However, many weight groups

can exhibit symmetric distribution, which prefers a symmetric

data type with the same absolute maximum and minimum

values. On the other hand, the special values ± 5 have a higher

quantization error than ± 6 as described in Section III-A,

leading to worse perplexity when combined with ± 3.

C. Accelerator Performance

For accelerator evaluation, we consider two configurations

for the BitMoD accelerator based on the resulting model

accuracy: (1) Lossless, where the weight precision is INT6

given its near-zero accuracy loss under per-group quantiza-

tion. We compare this configuration with the baseline FP16

accelerator. (2) Lossy, where the weight can be quantized to

4-bit for discriminative tasks and 3-bit for generative tasks

while maintaining good model performance. We compare this

configuration with ANT and OliVe.

Tile Area and Power. Table X shows the PE tile area and

power breakdown of BitMoD and the baseline FP16 acceler-

ator at 1 GHz frequency. The unified bit-serial representation

allows BitMoD to support different weight data types with low

hardware cost. As a result, the BitMoD PE is 24% smaller

TABLE X. Area and power consumption per tile of the baseline FP16
accelerator vs. BitMoD at 1 GHz frequency.

Number Area (µm2) Power (mW)

of PEs PE Array Encoder Total PE Array Encoder Total

Baseline 6× 8 95,498 – 95,498 36.96 – 36.96

BitMoD 8× 8 97,090 2,419 99,509 37.5 1.86 39.36
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Fig. 9: Wikitext-2 perplexity-EDP pareto plot for Phi-2B and Llama-2-7B.

than the baseline PE, which allows to fit more BitMoD PEs

within the same compute area. Furthermore, the bit-serial term

encoder has a tiny hardware overhead and only accounts for

2.5% of the PE array area.

Performance. Fig. 7 presents the hardware performance nor-

malized to the baseline FP16 accelerator for discriminative and

generative tasks. BitMoD achieves the best performance under

both lossless and lossy quantization. The performance gain

of BitMoD mainly comes from its careful algorithm-hardware

co-design of different quantization data types. Since discrim-

inative tasks are compute-bound and mainly involve matrix-

matrix multiplications, the higher throughput of BitMoD PE

leads to better performance than the baseline PE. In con-

trast, OliVe requires more complicated PEs with significant

hardware overhead to accommodate the outliers, which have

a much wider numerical range (e.g., {24, ..., 192} at 4-bit

precision). In comparison, the BitMoD data type has a small

value range and can be efficiently processed with the pro-

posed unified bit-serial representation. Regarding memory-

bound generative tasks, BitMoD can quantize LLM weights

to very low precision such as 3-bit, which offers significant

memory saving while maintaining good perplexity. On the

contrary, ANT and OliVe do not natively support per-group

quantization due to the lack of dedicated dequantization hard-

ware, and cannot maintain acceptable model quality under per-

channel quantization using 3-bit weight precision. Therefore,

they must adopt a higher weight precision to compensate for

the significant degradation in perplexity. Overall, the lossless

BitMoD achieves 1.99× and 2.41× speedup for discriminative

and generative tasks, respectively compared to the baseline

FP16 architecture. The lossy BitMoD achieves 1.72× / 1.56×
and 1.66× / 1.39× speedup for discriminative and generative

tasks, respectively compared to ANT / OliVe.

Energy Consumption. Fig. 8 presents the normalized energy

breakdown of different accelerators, where the on-chip com-

pute energy includes both buffer and core energy. The energy

saving of BitMoD mainly comes from the reduced weight

memory footprint and efficient bit-serial PE. Both ANT and

OliVe require a higher weight precision than BitMoD to main-

tain acceptable model quality, leading to higher DRAM energy

consumption. In addition, the baseline architecture uses FP16

weights, which is an overkill for LLMs since the simple INT6

data type can achieve comparable accuracy under per-group

Fig. 10: Normalized area and power of BitMoD and different bit-parallel PEs.

weight quantization. Overall, the lossless BitMoD achieves

2.31× better energy efficiency over the baseline architecture

across different tasks. The lossy BitMoD has 1.48× and 1.31×
better energy efficiency than ANT and OliVe, respectively.

Accuracy-Efficiency Trade-offs. The proposed BitMoD can

offer good trade-offs between model accuracy and hardware

efficiency. To demonstrate this, we analyze the relationship

between energy-delay product (EDP) and model perplexity of

Phi-2B and Llama-2-7B on Wikitext-2. We compare BitMoD

with ANT and OliVe under different LLM weight precision.

Fig. 9 shows the resulting perplexity-EDP relationship for the

studied two LLMs and three accelerators. Note that while

the 5-bit precision is not presented explicitly, BitMoD can be

easily extended to perform bit-serial INT5 computation using

its Booth encoder. Similarly, the custom data types introduced

by ANT and OliVe can be extended to 5-bit precision based

on their data type definition. As indicated in Fig. 9, the lower

left region indicates a better trade-off between perplexity and

EDP. Although ANT and OliVe propose different algorithm-

hardware co-design approaches for LLM acceleration, they

only leverage the per-channel quantization granularity that

fails to preserve the model quality at very low precision, and

they lack a unified architecture to efficiently support different

data types and precision. In contrast, BitMoD exploits new

data types tailored for per-group quantization and adopts an

efficient bit-serial computing paradigm to support various data

types. Hence, BitMoD can always sit on the Pareto frontier.

D. Comparison to Mixed-Precision Bit-Parallel Architecture

FIGNA [26] proposes a family of bit-parallel PEs for arith-

metic between low-precision integer weight and floating-point

activation. However, every FIGNA PE is designed separately

and only supports one weight precision, which fails to offer a

trade-off between model accuracy and hardware efficiency. We

explore the possibility of FIGNA to support mixed-precision

integer weights. We consider a baseline FIGNA-like PE that

performs multiply-accumulate between FP16 activation and

INT8 weight. We extend the baseline PE to support either

one FP16-INT8 operation or two FP16-INT4 operations,

which multiply the same FP16 activation with two INT4

weights. Fig. 10 compares the normalized area and power of

different PEs. Although the FP-INT8 PE has the smallest area,

adding support for mixed weight precision incurs significant

hardware overhead and leads to even higher area and power

consumption than the conventional FP-FP PE. This is because

a bit-parallel PE computing two FP16-INT4 operations will



TABLE XI. Wikitext-2 and C4 perplexity (↓) of different quantization
strategies. We use per-group weight quantization with a group size
of 128. For every table column, we highlight the best two perplexity
results in bold.

Bits Method
Llama-2-7B Llama-2-13B Llama-3-8B Mean

Wiki C4 Wiki C4 Wiki C4 ∆PPL

16-bit FP16 5.47 6.97 4.88 6.47 6.13 8.88 0

4-bit

QuaRot 5.60 7.48 5.00 6.88 6.54 10.18 0.48

GPTQ 5.63 7.13 4.99 6.56 6.53 9.38 0.24

AWQ 5.60 7.12 4.97 6.56 6.54 9.39 0.23

OmniQ 5.59 7.12 4.96 6.56 6.57 9.50 0.25

BitMoD + AWQ 5.59 7.09 4.96 6.55 6.50 9.33 0.20

BitMoD + OmniQ 5.57 7.07 4.95 6.55 6.45 9.30 0.18

3-bit

QuaRot 6.09 8.44 5.37 7.52 7.64 12.49 1.88

GPTQ 6.29 7.89 5.42 7.00 9.58 11.66 1.51

AWQ 6.24 7.81 5.32 6.95 8.22 11.56 1.22

OmniQ 6.05 7.76 5.28 6.99 8.33 12.04 1.28

BitMoD + AWQ 6.07 7.64 5.27 6.88 7.81 11.07 0.98

BitMoD + OmniQ 5.89 7.59 5.21 6.85 7.57 11.05 0.89

produce two separate outputs, doubling the cost of a floating-

point accumulator and output register. In contrast, the bit-serial

BitMoD PE trades-off between weight precision and latency,

which requires only one accumulator and output register for

any weight precision. Consequently, BitMoD offers the highest

flexibility to support variable weight precision with better

efficiency compared to the decomposable bit-parallel PE.

E. Combining BitMoD with Other Quantization Schemes

BitMoD can be seamlessly integrated with existing software-

only quantization methods by replacing their original weight

quantizers that use integer data types with the extended FP4

and FP3 data types of BitMoD. We demonstrate such feasi-

bility on AWQ [29], OmniQuant [41], and SmoothQuant [51].

Orthogonal to Quantization Optimization. The original

AWQ and OmniQuant adopt INT-Asym weight quantiza-

tion with several algorithmic optimizations such as weight

clipping and scaling factor search, leading to SOTA model

performance under 4-bit and 3-bit weight precision. We

evaluate the model performance when applying AWQ and

OmniQuant optimizations on top of the BitMoD data type.

We also compare with SOTA software-only LLM quantiza-

tion methods, including GPTQ [19] and QuaRot [3] under

weight-only quantization. Table XI shows the Wikitext and

C4 perplexity of the studied Llama models using different

quantization strategies. Combining BitMoD with AWQ and

OmniQuant significantly outperforms other approaches. For

example, applying the BitMoD data type reduces the average

perplexity loss of OmniQuant by 28% and 31% at 4-bit and

3-bit precision, respectively. Overall, BitMoD combined with

AWQ and OmniQuant achieves an average perplexity loss of

< 1 for both 4-bit and 3-bit weight precision, pushing the

limit of LLM weight quantization to a new state-of-the-art.

It’s important to note that using AWQ and OmniQuant does

not inhibit the functionality of the BitMoD accelerator—their

optimization merely adjusts the per-group scaling factor, which

is supported by the bit-serial dequantization unit of BitMoD.

TABLE XII. Wikitext-2 perplexity (↓) when activation maintains in
FP16 or is quantized to INT8 with SmoothQuant (SQ8). For weights,
we use per-group quantization with a group size of 128.

Weight Weight Llama-2-7B Llama-2-13B Llama-3-8B

Precision Datatype FP16 SQ8 FP16 SQ8 FP16 SQ8

8-bit INT8 5.47 5.52 4.95 4.93 6.13 6.26

4-bit
INT4-Asym 5.77 5.83 5.01 5.09 6.84 7.05

BitMoD 5.72 5.76 5.01 5.07 6.73 6.87

3-bit
INT3-Asym 7.08 7.58 5.64 5.99 13.26 25.78

BitMoD 6.55 6.85 5.5 5.82 9.09 10.57

Orthogonal to Activation Quantization. SmoothQuant can

quantize LLM activation to INT8 with low accuracy loss. We

conduct weight PTQ using BitMoD and INT-Asym data types

on the pre-calibrated Llama models from SmoothQuant that

use INT8 activation. Table XII shows the WikiText-2 perplex-

ity under FP16 and INT8 activation using different quantized

weight precision and data types. The perplexity improvement

of BitMoD over INT-Asym remains after quantizing activa-

tion to INT8 using SmoothQuant, and the improvement is

particularly pronounced at lower precision (i.e., 3-bit). For

instance, on Llama-3-8B, BitMoD improves the perplexity by

15.21 compared to INT3-Asym after applying SmoothQuant.

Notably, on Llama-2-7B, the perplexity of BitMoD weight

with INT8 activation is even better than INT-Asym weight

with FP16 activation, which demonstrates the potential of

BitMoD for further reducing the LLM memory footprint under

a target model quality.

VI. RELATED WORK

DNN Accelerators. There is an abundance of prior work on

DNN accelerators [2], [4], [11], [22]–[27], [38], [39], [42],

[44], [47], [49], [53], [54], [58]. These accelerators propose

specialized processing elements and data flow to match the

computational characteristics and memory access pattern of

DNNs. Some accelerators exploit value sparsity to accelerate

small-scale DNNs with the help of retraining [22], [23], [47],

[49], [58]. Other works target low-precision DNN acceleration

based on model quantization [24]–[26], [38], [39], [53], [54].

Among them, [24], [25], [39] introduce custom data types

to better fit the value distribution of DNNs. Another line of

works relies on bit-serial computing to scale the performance

with lower operand precision, and leverages bit-level sparsity

to skip ineffectual bit operations [2], [4], [11], [27], [42],

[44]. The proposed BitMoD combines the benefits of quanti-

zation and bit-serial computing to efficiently trade-off between

weight precision and hardware efficiency.

LLM Quantization. Numerous algorithmic studies have pro-

posed quantization solutions to reduce the memory footprint

of LLMs [3], [10], [14], [18], [19], [29], [30], [41], [48], [51].

Most of these works rely on asymmetric integer quantization

for LLM weights while applying other techniques to optimize

the quantization parameters. The proposed BitMoD data type is

orthogonal to many of these works and can be synergistically

combined with different quantization optimizations.



VII. CONCLUSION

In this paper, we introduce BitMoD, an algorithm-hardware

co-design scheme for efficient LLM acceleration. On the

algorithm side, BitMoD designs new data types that are

tailored for per-group LLM weight quantization at very low

precision. By intelligently repurposing the redundant zero

value to an additional number, BitMoD extends the resolution

or range of 3-bit-and 4-bit floating-point data types. More-

over, the BitMoD quantization framework can be seamlessly

integrated with existing software-only quantization methods to

further improve the model performance. On the hardware side,

BitMoD proposes a unified bit-serial representation for diverse

low-precision data types and an efficient bit-serial PE to

process quantized weight and FP16 activation. Our evaluation

demonstrates that BitMoD significantly outperforms existing

LLM quantization methods, pushing the limit of LLM weight

quantization to a new state-of-the-art. Compared to prior accel-

erators ANT / OliVe, BitMoD achieves 1.69× / 1.48× speedup

and 1.48× / 1.31× better energy efficiency, while being able

to support diverse weight precision to offer a good trade-off

between model accuracy and hardware efficiency.
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