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Abstract
Reinforcement learning (RL) algorithms struggle with learning optimal policies for tasks where
reward feedback is sparse and depends on a complex sequence of events in the environment. Proba-
bilistic reward machines (PRMs) are finite-state formalisms that can capture temporal dependencies
in the reward signal, along with nondeterministic task outcomes. While special RL algorithms
can exploit this finite-state structure to expedite learning, PRMs remain difficult to modify and
design by hand. This hinders the already difficult tasks of utilizing high-level causal knowledge
about the environment, and transferring the reward formalism into a new domain with a different
causal structure. This paper proposes a novel method to incorporate causal information in the form
of Temporal Logic-based Causal Diagrams into the reward formalism, thereby expediting policy
learning and aiding the transfer of task specifications to new environments. Furthermore, we provide
a theoretical result about convergence to optimal policy for our method, and demonstrate its strengths
empirically.
Keywords: Temporal Causality, Reinforcement Learning, Probabilistic Reward Machines, Formal
Methods

1. Introduction

Reinforcement Learning (RL) has emerged as the forefront method in providing a robust and general
framework for intelligent, autonomous decision-making and learning within complex environments.
One of the biggest challenges in Reinforcement Learning is integrating high-level, causal knowledge
into the learning process. Causal reasoning may come naturally to humans, assisting them in
navigating the world by making decisions based on more than just observed outcomes; it involves an
understanding of how those outcomes come about. This is in contrast to traditional RL techniques,
which often lack the ability to capture temporal cause-effect relationships and hence offer inefficient
learning and decision-making. For instance, the knowledge of the likely consequences of actions
in terms of future states and rewards can dramatically reduce the amount of exploration that needs
to take place to learn effective policies. This problem is most evident in settings with long-term
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consequences, which calls for RL methods that could incorporate causal knowledge directly into
their decision process.

In RL the interaction between the agent and the environment happens step by step. Starting in
state s the agent chooses an action a with probability π(a | s) (the policy), and the environment
transitions into a new state s′ and gives a reward r. This interaction is formalized in the concept of
an MDP, a tuple M = (S,A,R, p, γ) where S is the set of states, A the set of actions available to
the agent, R : (S ×A)⋆ × S → R the reward function mapping trajectories in the MDP to rewards,
p(s′ | s, a) a probabilistic transition function, and γ ∈ (0, 1) the discount factor. The agent’s goal is
to maximize the expected discounted return, maxπ Eπ[

∑∞
i=0 γ

iri]. A labeling function L(s, a, s′)
can be provided to attach descriptive propositional variables to transitions in the MDP. An MDP
together with a labeling function is called a labeled MDP.

Although MDPs can have a large number of states and a complex transition function, one often
has access to high-level causal knowledge of the environment. Figure 1(a) illustrates this point on a
small example MDP. To complete the task, the agent must choose to bring either coffee or a soda
to the office. The high-level knowledge one may supply is that any path from the soda to the office
is later blocked by a flower pot, which the agent must avoid. This is due to walls and a one-way
door, which constrain the agent’s movement. Although special RL algorithms can find the optimal
policy for this task, they will not take these temporal-causal constraints into account, and will explore
the environment in an inefficient manner. Unfortunately, employing high-level knowledge about
causality has shown to be a difficult task, as the current causal RL approaches (e.g., Zhang (2020);
Lu et al. (2021); Wang et al. (2021); Bareinboim et al. (2015); Lee and Bareinboim (2018); Mesnard
et al. (2021); Forney et al. (2017); Li et al. (2021)) mostly do not take into account the temporal
aspect of the causal knowledge. This paper aims to address this issue by proposing a novel method
that incorporates knowledge about causality directly into the reward function. On the other hand,
den Hengst et al. (2022) propose an approach for safe RL that incorporates symbolic reasoning and
a temporal domain. However, their primary focus is on ensuring safety rather than expediting the
learning process, distinguishing their work from ours, which specifically targets efficient learning by
leveraging causality.

1.1. Probabilistic Reward Machines

Common RL algorithms such as Q-learning struggle with tasks where rewards are sparse and depend
on a complex sequence of actions that the agent must perform in a specific order. Reward machines,
introduced by Icarte et al. (2020) are a finite-state formalism that can capture the reward function in
such cases. Q-learning for Reward Machines (QRM), as proposed by Icarte et al. (2020), can exploit
this reward structure to expedite learning the optimal policy. The QRM algorithm employs reward
machines to significantly enhance the efficiency of problem-solving processes. This algorithm applies
an off-policy Q-learning strategy to the reward machine by decomposing it into relevant components
at the same time, thereby facilitating the simultaneous learning of each distinct subpolicy. This
methodological approach has been empirically validated, demonstrating the algorithm’s capability
to converge towards an optimal policy in tabular case. Velasquez et al. (2021) introduced a more
general variant of reward machines called probabilistic reward machines (PRMs). PRMs use a
nondeterministic transition function that can capture uncertainty in task outcomes. In the example
from Figure 1, uncertainty comes from the fact that the coffee machine may malfunction. Definition 1
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(a) A labeled 5x5 Gridworld with coffee (c),
soda (s), an office (o), and a flower pot (f).
The agent can move in the four cardinal di-
rections, and starts in the cell labeled Æ.
Other shaded cells are impassable walls.
One-way doors are represented by the up-
wards arrow. The flower pot acts as a sink
state.
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(b) A PRM for the task in Figure 1(a) (left).
Transitions are labeled with propositional
formulas and reward outputs. Only tran-
sition probabilities different from 1 are
shown. State q4 is a terminal state which
ends the task. Formulas on transitions
from q0 to q1 and q2 (c∧¬s) contain¬s in
order to disambiguate the transition func-
tion in state q0 on the input c,s. The same
could be achieved by using the formula
¬c∧s for the transition from q0 to q3, and
just c for transitions into q1, q2.

Figure 1: An MDP (left) and a PRM (right) that captures the task of bringing either coffee or soda
to the office. The coffee machine has a probability of 10% to malfunction and produce bad coffee,
leading to a reduced reward of 0.1 instead of 1. Bringing soda to the office results in a reward of 1
deterministically. An example input for the PRM is {c, s}, ∅, {o, c} (a sequence of three labels),
which will induce the run q0 7→ q3 7→ q3 7→ q4 with a reward of 1. It is important to note that inputs
for PRMs are sets of descriptive propositional variables that are true in a given step, hence why a
single label such as {c, s} can include multiple (or 0) variables.

formalizes this notion of a finite-state representation of a temporally extended task with probabilistic
outcomes.

Definition 1 (Probabilistic Reward Machine (PRM)) A PRM A = (U, uI , 2
AP,Γ, τ, σ, F ) is a

tuple where U is a finite set of states with a distinguished initial state uI ∈ U , AP is a set of atomic
propositions and 2AP is the set of labels, Γ ⊂ R is a finite set of rewards, τ : (U × 2AP×U)→ [0, 1]
is a probabilistic transition function, σ : (U × 2AP × U)→ Γ is a function mapping each transition
to a reward in Γ, and F ⊆ U is a finite set of terminal states that signal the end of the interaction.

The agent-environment interaction generates a trajectory s0, a0, s1, . . . , an−1, sn and the corre-
sponding label sequence ℓ0ℓ1 · · · ℓn−1, where L(si, ai, si+1) = ℓi for all i = 0, . . . , n− 1. The state
s0 may be a unique initial state, or drawn from an initial distribution. After reading a label ℓ in state
u, the PRM executes a nondeterministic transition into a new state u′ with probability τ(u, ℓ, u′), and
the agent receives a reward r = σ(u, ℓ, u′). A run of a PRM A on a label sequence ℓ0ℓ1 · · · ℓn−1 is a
sequence u0, r0, u1, . . . , rn−1, un where u0 = uI , and for all i = 0, . . . , n− 1, τ(ui, ℓi, ui+1) > 0
and σ(ui, ℓi, ui+1) = ri.
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Figure 2: Figure 2(a) (left) is the TL-CD which captures relevant causal information in the environ-
ment from Figure 1(a). Figure 2(b) (right) is a TL-CD that holds for the case study in Figure 6.

1.2. Temporal Logic-based Causal Diagrams

Linear temporal logic over finite sequences (LTLf ) is a formal reasoning system that can capture
causal and temporal properties of label sequences and labeled MDPs. Aside from Boolean operators
like ¬ and ∨, LTLf introduces temporal operators such as Gψ (true if and only if ψ holds for every
element in the sequence), Xψ (true iff. ψ holds for the next element of the sequence), and ψUφ (true
iff. ψ holds until φ becomes true, and φ is true in some element of the sequence). We also rely on
the weak until operator ψWφ (true iff. ψ holds until φ becomes true, but φ is not required to become
true).

In order to encode knowledge about causality in the underlying MDP, we rely on Temporal
Logic-based Causal Diagrams (TL-CDs) introduced in Paliwal et al. (2023). TL-CDs are a special
notation that expresses the causal relationship between formulas in LTLf . The first conjunct induced
by the TL-CD in Figure 2(a), G(s → ¬oWf), means that if the agent observes s (soda) in any
step, then it will not observe o (the office) before it observes f (the flower pot). This part of the
TL-CD encodes knowledge that soda may only be reached via a one-way door, and the only other
exit towards the office will be blocked by the flower pot.

Formally, a TL-CD is a directed graph whose nodes are labeled with LTLf formulas. For a
TL-CD C one may construct an equivalent LTLf formula φC through Equation 1, where φ ▶ ψ
iterates over edges that connect formulas φ and ψ in the TL-CD.

φC =
∧
φ▶ψ

G(φ→ ψ) (1)

If φC is true for a label sequence ℓ, we will write ℓ |= φC . A label sequence ℓ = ℓ0ℓ1 · · · ℓn−1

is attainable in an MDP M = (S,A,R, p, γ) if there exists a trajectory s0, a0, s1, . . . , an−1, sn in
M such that L(si, ai, si+1) = ℓi and p(si, ai, si+1) > 0 for all i = 0, 1, . . . , n− 1. We will say that
a TL-CD C holds for an MDP M if for every label sequence ℓ attainable in M , we have ℓ |= φC .
In order to simplify working with TL-CDs, we leverage the notion of deterministic finite automata
(DFAs). We formalize this notion in Definition 2.

Definition 2 (Deterministic Finite Automaton (DFA)) A DFA is a tuple C = (Q, qI ,Σ, δ, F ) con-
sisting of a finite set of states Q with an initial state qI , input alphabet Σ, deterministic transition
function δ : Q× Σ→ Q, and a finite set of accepting states F ⊆ Q.
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If the run of the DFA C on an input string ℓ ends in an accepting state q ∈ F , we will write
ℓ ∈ L(C). Every TL-CD C can be converted into an equivalent DFA C, in the sense that for every ℓ,
we have ℓ ∈ L(C) ⇐⇒ ℓ |= φC . We will refer to C as the causal DFA.

2. Problem statement

One may use QRM to find the optimal policy for the task in Figure 1. However, the PRM in
Figure 1(b) does not take flower pots and one-way doors into account. Because the agent does not
know that knocking over flower pots is forbidden or that choosing soda causes him to enter a room
blocked by a flower pot, it will waste time exploring those fruitless trajectories. As PRMs are in
essence task specifications, and one may also wish to transfer them into a new environment while
preserving the overall goal. In both cases, high-level insights about causality, especially its temporal
aspects, could prove helpful by reflecting the dynamics of the MDP in condensed form.

Unfortunately, incorporating knowledge about temporal causality into the reward function re-
mains a difficult and error-prone manual task. In PRMs, this would necessitate adding new states
and reasoning about a different, more complicated transition function. Some methods such as JIRP,
proposed by Xu et al. (2019) and SRMI, proposed by Corazza et al. (2022) assume that a suitable
but unknown representation of the reward function exists, and attempt to recover it from interaction
traces. This work proposes an alternative method that leverages TL-CDs in order to automate the
process of incorporating knowledge about causality into PRMs. More formally, the problem can be
stated as follows. Given a TL-CD C which holds for an MDP M and a PRM A, produce a PRM B
that induces the same optimal policy as A, but utilizes causal information in C to expedite learning.

3. Method

This section introduces a novel approach for incorporating causal information from a TL-CD into
the reinforcement learning process via a PRM. By creating a product of a TL-CD, represented as a
causal DFA, with a PRM, we aim to enhance the RL agent’s ability to efficiently learn and make
decisions in complex environments.

We first consider the equivalent causal DFA for a given TL-CD. As explained in Section 1.2,
the equivalent causal DFA captures the same semantics as the given TL-CD. While TL-CDs are an
intuitive notational tool, DFAs are easier to work with computationally. The causal DFA for the
TL-CD in Figure 2(a) is shown in Figure 3 (in two parts for convenience). State u3 is a sink state,
meaning that any run of the DFA which enters u3 will never leave it. It is also a rejecting state. Taken
together, this means that any label sequence for which the causal DFA enters u3 is not the prefix of
an attainable sequence in an MDP M if we assume that the TL-CD holds for M .

In other words, when a causal DFA run reaches a rejecting sink state on some prefix of input
labels, then the entire input label sequence is unattainable. The reason is that there is no suffix of
labels which can cause the run to transition into an accepting state. From now on we will implicitly
consider causal DFAs to have at most one rejecting sink state, and that an accepting state is reachable
from all other states. This can be achieved by minimization (Sipser (2013)).

We propose to incorporate causal information from a TL-CD C into a PRM A by computing state
values in a new PRM B1 = C × A, which is a product of the TL-CD (represented by the causal DFA
C) and A. The product PRM B1 synchronizes the runs of the original PRM A and the causal DFA C.
B1 mirrors the output of A, except when C transitions into a rejecting sink state. Then the output of
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Figure 3: Two factors of the causal DFA for the TL-CD in Figure 2(a). Rejecting sink states are
diamond-shaped. Their parallel composition is the true causal DFA, and its states come from the
Cartesian product of states in this Figure. For example, the initial state is (u0, t0).

B1 is set to a minimal value m that is lesser than any possible immediate reward and resulting future
gain, and will remain there for the rest of the run as C will not leave the sink state. We also compute
state values in a “pessimistic” PRM B2 = C × (−A) in order to uncover temporal-causal information
about worst-case reward outcomes. While B1 outputs the same rewards as A, B2 negates outputs
of A (but also gives minimal outputs m for transitions into rejecting sink states). Because of the
minimal reward output m, value iteration in either B1 or B2 will disregard transitions that lead C into
a rejecting sink state, as explained under Figure 4. Due to negating reward outputs, label sequences
that maximize return in B2, minimize the return in B1. We combine state value information from B1

and B2 into a final PRM B. To obtain B, we start from B1, and add all states u ∈ UB1 that have 0
value in both the machine B1 and B2 (v⋆B1

(u) = v⋆B2
(u) = 0) into the set of terminal states FB1 . Such

states have the property that no matter the policy, the future return is constrained with 0 from above
and below (and thus, the choice of actions is of no consequence). The product C × A is formalized in
Definition 3. We define the value of a PRM state u via the Bellman optimality equation 2, where γ
matches the discount factor in the MDP.

v⋆(u) = max
ℓ∈2AP

∑
u′∈U

τ
(
u, ℓ, u′

)
·
(
σ
(
u, ℓ, u′

)
+ γv⋆

(
u′
))

(2)

As Equation 2 is an optimality equation, v⋆(u) is the expected return of a PRM run starting in u
and following the most optimistic label sequence (which may or may not be attainable in the MDP).
We define the minimal reward output m as m = −1 −maxr∈ΓA |r| −maxu∈UA v⋆(u). While it
may be simpler to use m = −∞, we compute a concrete bound in order to better communicate
how our method makes use of state value information. In brief, the formula for m is inspired by the
Bellman optimality operator used in value iteration. The terms can be explained in the following
way. First, −maxr∈ΓA |r| ensures that the reward is lower than any other immediate reward in the
original PRM. Second, −maxu∈UA v⋆(u) ensures that the reward is lower than any possible future
gain starting from a state in the original PRM. Taken together, these two terms ensure that transitions
that correspond to rejecting sink states do not contribute to state values.

Definition 3 (PRM & TL-CD product) Let M = (S,A,R, p, γ) be an MDP where the reward
function R : (2AP)⋆ → Γ is given by the PRM A = (UA, uAI , 2

AP,ΓA, τA, σA, FA), C a TL-CD that
holds for M , and C = (Q, qI , 2

AP, δ, FC) its equivalent minimal causal DFA with states Q, initial
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state qI , a set of accepting states FC ⊆ Q, and transition function δ. Let Qr.s. ⊆ Q \ FC be the set of
rejecting sink states of C.

We define the product C × A as a new PRM (U, uI , 2
AP,Γ, τ, σ, F ), where

1. U = UA ×Q, a state of C × A is a pair of states (u, q) with u ∈ UA and q ∈ Q;

2. uI = (uAI , qI), the initial state in C × A is the pair of initial states of A and C;

3. Γ = ΓA ∪ {m}, the output alphabet of C × A is expanded with a possible reward output that
is 1 less than any output in the original set of rewards from A;

4. τ((u, q), ℓ, (u′, q′)) = τA(u, ℓ, u′) · 1{δ(q,ℓ)=q′}, the probability of C × A transitioning from
(u, q) to (u′, q′) upon reading ℓ is the same as the probability of A transitioning from u to u′,
given that C transitions from q to q′ (otherwise, the probability is 0);

5. σ((u, q), ℓ, (u′, q′)) =

{
σA(u, ℓ, u′) q′ ̸∈ Qr.s.

m = −1−maxr∈ΓA |r| −maxu∈UA v⋆(u) otherwise
, the output

of the product PRM agrees with A except when C transitions into a rejecting sink state; and

6. F = {(u, q) : u ∈ FA}, terminal states in C × A correspond to terminal states in A.

Performing value iteration acts as a form of look-ahead in the product C × A, whose output
function is defined so that transitions which lead the causal DFA into a rejecting sink state do not
contribute to overall state value. The same is true for B2 = C × (−A), which is defined in the same
way, except the output function −σA(u, ℓ, u′) provides look-ahead information about the worst-case
future outcome. Our method, given in Algorithm 1, improves the convergence speed of QRM by
utilizing information about expected rewards that better reflects the temporal causal structure of the
environment. In Theorem 1 we show that our method converges to the optimal policy in the limit.

x0 x1

x2

x3

x4
s, 0

o, −1

f, 0 o, −1

¬(o ∨ f), 0

¬o, 0

Figure 4: A fragment of the product of the PRM from Figure 1(b) and the TL-CD from Figure 2(a).
Inheriting the q, u, and t names of PRM and causal DFA states from previous figures, x0 =
(q0, u0, t0), x1 = (q3, u1, t0), x2 = (q4, u3, t0), x3 = (q3, u2, t1), and x4 = (q4, u2, t2). Due to the
maximum in Equation 2, dashed transitions do not contribute to state value. Dashed states x1 and x3
have 0 value in both B1 (depicted) and B2, and will be added to the set of terminal states.

Theorem 1 (Convergence to Optimal Policy) Let M be an MDP with a non-Markovian reward
function captured by PRM A. Let C be a TL-CD that holds for M , and C the corresponding minimal
causal DFA with rejecting sink states Qr.s.. Then Algorithm 1 converges to an optimal policy for M
with respect to A. In particular, we can easily recover the optimal policy for (M,A) from the optimal
policy for (M,B) found in the algorithm.
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Algorithm 1: Reinforcement Learning With Temporal-Causal Information
Require :MDP M , PRM A, minimal causal DFA C with rejecting sink states Qr.s.

1 B1,B2 ← computeProduct(A,C), computeProduct(−A,C)
2 v⋆B1

, v⋆B2
← valueIteration(B1, γ), valueIteration(B2, γ)

3 B← B1

4 for each u ∈ UB do
5 if v⋆B1

(u) = v⋆B2
(u) = 0 then

6 Add u to the set of terminal states of B
7 end
8 end
9 Q← initializeQFunction()

10 while termination criteria not met do
11 Q← RunQRMEpisode(Q,B)
12 end
13 return Q

In the full proof of Theorem 1, we introduce 3 transformations on PRMs that realize our method
of combining a PRM with a TL-CD. In brief, these transformations allow us to (1) take the parallel
composition of a PRM and a DFA, (2) change the outputs of PRMs on transitions into unreachable
states, and (3) add states into the set of terminal states of the PRM (under certain conditions); all the
while preserving the optimal policy. We then show how Algorithm 1 applies these transformations in
order to arrive at the desired PRM B. Since these transformations preserve the optimal policy (or
allow for easy recovery of it), we conclude that QRM using the transformed PRM B converges to the
optimal policy. In brief, the core contribution of the modifications we propose lies in the ability to
exploit causal knowledge contained in the TL-CD. Although we significantly change the structure of
PRM by combining it with the TL-CD, we prove that the optimal policy remains the same. However,
the changed structure allows for a more nuanced calculation of PRM state values that is not blind to
the temporal-causal relations that hold for the MDP. More precisely, we are able to obtain upper and
lower bounds on state values, and prove that under certain conditions one does not need to explore
the MDP (specifically, when both the upper and lower value bounds are 0). In doing so, we improve
the balance between exploration and exploitation and increase the sample efficiency of our algorithm.
See the Appendix for further details about the function that computes the PRM and causal DFA
intermediate product, and the full proof of Theorem 1.

4. Case Studies

Our method shows promising results across two case studies. The first case study (results in
Figure 5(a)) is based on the coffee vs. soda example from Figure 1. The second case study (results in
Figure 5(b)) is described in Figure 2.

We compared our method against QRM without access to knowledge about causality. In both
case studies, our method takes significantly fewer steps to converge to the optimal policy.

For a more thorough comparison and analysis of the method’s efficiency, we implemented it
across two distinct case studies: a four-door task and a small office world domain. The third case
study entails an agent navigating through a scenario where it must open four doors in any arbitrary
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Figure 5: Reward per step averaged over 20 runs. “No causal” refers to using QRM with the original
PRM that does not account for additional causal information in the environment. “Causal” are the
results for our method. Both graphs showcase QRM convergence to the optimal policy.
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(a) 3x3 Gridworld environment where the
agent must open both door A (a) and door
B (b) in any order. However, the cell with
door A traps the agent. The agent can fail
at opening the doors with probability 0.1.

q0
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q4
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0.9

b, 0
0.9

b, 1
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a, 1
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¬(a ∨ b), 0

¬b, 0
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(b) The PRM without causal info about the
two-door task. Missing transitions are all
self-loops with probability 0.1.

Figure 6: The MDP and PRM for the second case study. The TL-CD that adds causal information
regarding the sink door A can be found on Figure 2(b). It states that after seeing door A, the agent
can not later see door B.

order, as illustrated in Figure 7(a). This task involves a significantly more complex PRM owing to
the number of possible orders. To evaluate the method’s performance and its efficacy in this case
study, we use a grid world configuration of 6 × 6.

The agent here must open door A, door B, door C, and door D in any order. However, door D is
a trap, and the agent cannot see doors A, B, or even C after seeing door D. This knowledge, in fact, is
encoded in Figure 7(b). As this task requires a complex Probabilistic Reward Machine (PRM), we
deemed it prudent to relegate its detailed explanation to the Appendix.

Furthermore, Figure 9(a) compares our method on the four-doors task to QRM without additional
causal information. It can be seen that QRM with causal information results in much higher rewards
with faster convergence.
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(a) 6x6 Gridworld environment where the
agent must open door A (a), door B (b),
door C (c), and door D (d) in any order.
However, the cell with door D traps the
agent. The agent may fail to open door B
with a probability of 0.1, and it will go to
door D instead.

d G¬(a ∨ b ∨ c)

(b) TL-CD that holds for the case study of
four-doors task.

Figure 7: The MDP and Causal DFA for the third case study.

Another case study in which we implemented this method is the small office world domain.
For this specific exploration, we considered a small office world with a spatial layout of 17 × 9,
similar to the setup in Paliwal et al. (2023). Within the scope of this case study, the procedure to exit
the grid entails a two-step process for the agent: first, it must obtain one of the two available keys,
denoted as k1 or k2, and then navigate to exit e1 or e2, correspondingly aligned with the key acquired.
Through one-way doors (indicated by blue arrows), keys, and walls, the agent interacts with the
environment. A graphical illustration of this environment, capturing the elements and challenges
the agent faces, is provided in Figure 8(a), providing a better understanding of the structural and
operational complexities of the small office world being explored.

As a result of c being a one-way door, the agent will not be able to pick up key k2 and exit at e2,
due to the information encoded in figure 8(c). In addition, if the agent passes through the door b, it
will not be able to exit through the door e1. Furthermore, Figure 8(b) displays the PRM, omitting
the causal information regarding the small office world. In order to succeed in exiting the maze and
receiving reward 1, the agent must complete both sequences a−k1 − e1 (open door a, pick up key k1,
and leave at e1) or b−k2 − e2 (open door b, pick up key k2, and exit at e2). However, a probability
of 0.9 suggests a likelihood of the agent exiting through e1, while a probability of 0.1 indicates a risk
of the agent getting stuck.

Figure 9(b) depicts the performance comparison of our method on the small office world scenario
to QRM without additional causal information. In the figure, it can be seen that if the RL agent
knows the causal DFA and learns never to open door b, the agent can obtain their optimal reward
faster with higher accumulated rewards.

4.1. Performance Impact of Proposed Modifications

Our method makes significant structural changes to the underlying PRM in order to incorporate
temporal-causal information contained in TL-CDs. One of the primary effects of these changes is
increasing the size of the state space. Despite this increase in size, experimental results demonstrate
that our algorithm improves convergence properties on realistic examples when the provided informa-
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(a) Map of the small office world. Shaded cells are impassable walls.
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(c) TL-CD that holds for the case study of the
small office.

Figure 8: The PRM and Causal DFA for the fourth case study, alongside the office map for reference.

tion is useful (allows for pruning redundant paths from the PRM where exploration is not necessary).
Strictly speaking, however, we only require that the causal diagrams are correct (that they hold for
the MDP), not that they contain useful information.

Being robust to mistakes and imprecisions in user-provided causal information (or even malicious
inputs) is beneficial. We hypothesize that our algorithm possesses this property, in the sense that
its performance does not diminish in the presence of useless or redundant knowledge. In order to
check this, we re-ran our experiments in this more difficult setting of perturbed user input. We added
useless and redundant causal knowledge, by including an additional factor in the causal DFA product.
More precisely, we called computeProduct an additional time with a redundant causal DFA with
no rejecting sink states. This factor injects no new useful causal information, but increases the state
space size 5 times. The results we obtained were fully in line with the ones presented in our case
studies, i.e. the improved convergence rate enabled by our method was retained. In conclusion, our
algorithm can handle useless or redundant knowledge, and its performance is not diminished by it.
We showcase these results in Figure 10.
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(a) Four-doors task results.
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Figure 9: Comparison of task results, using the same reward per step metric averaged over 20 runs.
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Figure 10: The Coffee vs. soda task. “Causal” are the results for our method, but with additional,
redundant causal knowledge added. The resulting PRM has 5 times more states than the one from
Figure 5(a), but our method achieves the same performance. Like before, “No causal” refers to using
QRM with the original PRM (which has neither causal information nor redundancy added).

We make two additional observations relating to state space size.

1. PRMs themselves already provide an immense reduction in state space size, because the policy
no longer has to consider the whole history. Instead, the PRM state acts as a form of finite
memory in the MDP.

2. Our method is based on removing redundant paths from the PRM (those where exploration is
not necessary).

We want to further drive home the point that while using PRMs and incorporating causal
information as we propose does contribute to an increased state space, the resulting performance
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benefits more than outweigh the costs (and, as our additional analysis shows, some costs are fully
avoided).

5. Conclusion and Further Work

The method proposed in this paper addresses the difficult problem of accounting for knowledge
about temporal causality in the RL environment. We have shown that an expressive and concise
description of temporal and causal relations in the form of a Temporal Logic-based Causal Diagram
can be integrated into the reward function formalism. Furthermore, we have shown how the added
information about temporal and causal relations can be leveraged to expedite learning without
changing the optimal policy.

While our method performs well in case studies, we are convinced that this work can be continued
to integrate knowledge about causality even more tightly into the reward function. In particular,
look-ahead information contained in state-values of the product PRM may be further utilized by
methods like reward shaping. We are also interested in further exploring the interplay between
probabilistic outcomes and causal information.
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Section A contains the algorithm for the computeProduct function used in Algorithm 1.
Section B contains the proof of Theorem 1. In Section C, the PRM related to the four-door task is
depicted.

Appendix A. Computing the PRM and causal DFA product

Algorithm 2 computes the (intermediate) product B1 (B2) of a PRM A and causal DFA C. This
function is called in Line 1 of Algorithm 1 in Section 3. Note that this function does not perform
value iteration, this is done in Line 2 of Algorithm 1. The set of terminal states in the intermediate
product B1 is a subset of the set of terminal states in the final product B.

The transitions dictionary used in Algorithm 2 represents the transition and output functions
of B1. It maps triplets ((u, q), ℓ, (u′, q′)) to to pairs (p, r), where p = τB1((u, q), ℓ, (u′, q′)), and
r = σB1((u, q), ℓ, (u′, q′)).

Appendix B. Formal Statements and Proofs

Throughout this Section, letM = (S,A,R, p, L, γ) be a labeled MDP, and let A = (U, uI , 2
AP,Γ, τ, σ, F )

be a PRM that encodes R in M . A state s ∈ S is reachable if there exists an attainable trajectory
s0, a0, s1, . . . , an−1, sn in M such that s = si for some i = 0, . . . , n.

Lemma 1 (Transformation 1) Let A = (U, uI , 2
AP,Γ, τ, σ, F ) be a PRM, C a DFA with transition

function δ, and A × C their parallel composition with output function σA×C((u, q), ℓ, (u′, q′)) =
σ(u, ℓ, u′). Let π⋆(s, (u, q)) be an optimal policy in the product MDP M × (A×C). Then π(s, u) =
π⋆(s, (u, F (u))) is an optimal policy in the product MDP M × A, where Fs : U → Q is a
tiebreaking reachability function that maps u to a fixed but arbitrary q such that (s, u, q) is reachable
in M × (A× C).

Proof Since Q-learning with an ϵ-greedy exploration strategy visits every reachable state infinitely
often in the limit, we can learn a mapping Fs along with the optimal policy for M × (A × C), by
setting Fs(u) = q once we reach (s, u, q) for the first time, and we have not yet observed (s, u, q′)
for any q′ ∈ Q. Then, from the fact that

1. Q-learning learns the optimal Q-function in all reachable states, and

2. the optimal Q-function q⋆(s, u, q, a) for M × (A × C) is the same as q⋆(s, u, a) for M × A
once we project out the DFA component q ∈ Q,

it will follow that we can use Fs to construct the optimal policy in M × A.
Let q⋆(s, u, a) be the optimal Q-function forM×A, and q⋆(s, u, q, a) the optimal Q-function for

M × (A× C). We will proceed by showing that q⋆(s, u, q1, a) = q⋆(s, u, q2, a) for all q1, q2 ∈ Q.
Let q̃(s, u, q, a) = q⋆(s, u, a). We will show that q̃ is a solution to the state value Bellman

optimality equation for M × (A × C), given in Equation 3. In the following formulas, let ℓ =
L(s, a, s′).

16658



TEMPORAL CAUSALITY AND REINFORCEMENT LEARNING

Algorithm 2: computeProduct(A, C)
Input :PRM A, minimal causal DFA C with rejecting sink states Qr.s.

1 appears← A.appears∪ C.appears ; // M.appears is the set of relevant atomic
propositions in M.

2 pairToSelfStateMap← {} ; // Dictionary mapping pairs of states in A and
C to a single state in B′

3 selfToPairStateMap← {}
4 nonTerminalStates← ∅ ; // Contains non-terminal states of the

intermediate product PRM.
5 terminalStates← ∅ ; // Contains terminal states of the intermediate

product PRM.
6 transitions← {} ; // Dictionary representation of τ and σ functions of

B′.
7 stateCounter← 0
8 for u in A.states do
9 for q in C.states do

10 pairToSelfStateMap[(u, q)]← stateCounter
11 selfToPairStateMap[stateCounter]← (u, q)
12 if u in A.terminalStates then
13 terminalStates← {stateCounter} ∪ terminalStates
14 end
15 else
16 nonTerminalStates← {stateCounter} ∪ nonTerminalStates
17 end
18 stateCounter← stateCounter + 1

19 end
20 end
21 for u in A.nonTerminalStates do
22 for q in C.states do
23 state← pairToSelfStateMap[(u, q)]
24 transitions[state]← {}
25 for inputSymbol in GENERATEINPUTS(appears) do
26 inputSymbolPrm← A.appears ∩ inputSymbol
27 inputSymbolDfa← C.appears ∩ inputSymbol
28 transitions[state][inputSymbol]← {}
29 nextDfaState← C.transitions[q][inputSymbolDfa]
30 for nextPrmState in A.transitions[u][inputSymbolPrm] do
31 nextState← pairToSelfStateMap[(nextPrmState, nextDfaState)]
32 probability, reward← A.transitions[u][inputSymbolPrm][nextPrmState]
33 if nextDfaState in Qr.s. then
34 reward← m
35 end
36 transitions[state][inputSymbol][nextState]← (probability, reward)
37 end
38 end
39 end
40 end
41 return PRM(transitions, appears, terminalStates)
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q⋆(s, u, q, a) =
∑
s′∈S
u′∈U
q′∈Q

p(s′, u′, q′ | s, u, q, a)
(
σA×C((u, q), ℓ, (u′, q′)) + γmax

a′∈A
q⋆(s′, u′, q′, a′)

)

=
∑
s′∈S
u′∈U

p(s′, u′ | s, u, a)
(
σA(u, ℓ, u′) + γmax

a′∈A
q⋆(s′, u′, δ(q, ℓ), a′)

)
(3)

The second equality holds because

1. p(s′, u′, q′ | s, u, q, a) = 0 for δ(q, ℓ) ̸= q′,

2. p(s′, u′, q′ | s, u, q, a) = p(s′, u′ | s, u, a) for δ(q, ℓ) = q′, and

3. σA×C((u, q), ℓ, (u′, q′)) = σA(u, ℓ, u′).

by definition of A× C. Equation 3 shows that the Bellman optimality equation for q⋆(s, u, q, a)
reduces to the Bellman optimality equation for q⋆(s, u, a). More precisely, the parameters for the
system of nonlinear equations given in Equation 3 are the same as those in the system for q⋆(s, u, a),
except that each individual equation is repeated |Q| times (once for every DFA state). Therefore, we
have q̃(s, u, q, a) = q⋆(s, u, a) as a solution.

Now all that is left is the fact that Q-learning in M × (A × C) will converge to the optimal
Q-function that is independent of the q ∈ Q component, and that Q-learning will converge to the
same Q-function in M × A. Values in unreachable states will remain unaffected by learning updates,
and will not affect the return from the optimal policy.

Definition 4 (Unreachable PRM state) Let A = (U, uI , 2
AP,Γ, τ, σ, F ) be a PRM. A state u ∈ U

is M -unreachable if for every input sequence λ s.t. A λ−→ u (A transitions into u upon reading λ)
we have that every trajectory s0, a0, s1, . . . , an−1, sn such that L(s0, a0, s1, . . . , an−1, sn) = λ is
unattainable in M (has probability 0 according to the transition function p of M ).

Lemma 2 (Transformation 2) Let α ∈ R be an arbitrary real. Let A = (U, uI , 2
AP,Γ, τ, σ, F )

be a PRM, and let V ⊂ U be a set of M -unreachable PRM states of A. Let A′ = A/V → α =
(U, uI , 2

AP,Γ ∪ α, τ, σA′
, F ) be a PRM obtained by setting the output of every transition into an

unreachable state u ∈ V to α. In other words, σA
′
(u, u′) = α for all u ∈ U and u ∈ V . Let π⋆(s, u)

be an optimal policy in the product MDP M × A′. Then π⋆(s, u) is also an optimal policy in the
product MDP M × A.

Proof MDPsM×A andM×A′ share the same state space S×U , probabilistic transition function p,
and initial state distribution. They may differ only in their (Markovian) reward function, specifically,
on transitions into unreachable states (s, u) ∈ S × U for all s ∈ S and u ∈ V ⊂ U . By definition 4,
trajectories that induce a PRM transition into an M -unreachable state in A are unattainable.

This proof proceeds similarly to proof of Lemma 1, except it is even easier because we can work
with a system of linear (not optimality) equations. The statement of the lemma concerning optimality
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will follow from the general reduction, i.e. the lemma holds for an arbitrary policy π not just the
optimal one. In Equation 4 we set out the system of Bellman equations in M × A′, and show that it
reduces to the one for M × A.

qM×A′
π (s, u, a) =

∑
s′∈S
u′∈U

p(s′, u′ | s, u, a)

(
σA

′
(u, ℓ, u′) + γ

∑
a′∈A

π(a′ | s′)qM×A′
π (s′, u′, a′)

)

=
∑
s′∈S

u′∈U\V

p(s′, u′ | s, u, a)

(
σA(u, ℓ, u′) + γ

∑
a′∈A

π(a′ | s′)qM×A′
π (s′, u′, a′)

)

+
∑
s′∈S
u′∈V

p(s′, u′ | s, u, a)

(
σA

′
(u, ℓ, u′) + γ

∑
a′∈A

π(a′ | s′)qM×A′
π (s′, u′, a′)

)
(4)

If u is an M -reachable state, the second sum vanishes because pM×A(s′, u′ | s, u, a) = pM (s′, |
s, a) · τA(u, L(s, a, s′), u′) = 0 for u′ ∈ V (otherwise, u′ would be M -reachable if u was M
reachable). Therefore, solutions in rows corresponding to M -reachable states are independent of
rows corresponding to M -unreachable states, and the equations are the same as in the system for
qM×A, where the second sum also vanishes. Therefore, as Q-learning explores all reachable states
infinitely often, and the reachable states in both product MDPs are the same and share the same
Q-function, Q-learning will find the same optimal policy in both MDPs. The values of Q-functions
corresponding to unreachable states are of no consequence.

Definition 5 captures the structure of the set of M -unreachable states in a PRM A induced by
rejecting sinks states of a causal DFA. This property of a set of unreachable states V models the
deterministic transition function of a causal DFA.

Definition 5 (Dependent Set of Unreachable PRM States) Let A = (U, uI , 2
AP,Γ, τ, σ, F ) be a

PRM, and V a subset of M -unreachable states in A. We say that V is a dependent set of M -
unreachable states in A if it is a set of M -unreachable states and the following property holds for all
labels ℓ ∈ 2AP and states u ∈ UA: (∃u′ ∈ V ) τA(u, ℓ, u′) > 0 =⇒ (∀u′′ ̸∈ V ) τA(u, ℓ, u′′) = 0.

Intuitively, a set of M -unreachable states V is dependent if it is not possible to transition into
both V and U \ V from any u ∈ U .

Lemma 3 (Transformation 3) Let A = (U, uI , 2
AP,Γ, τ, σ, F ) be a PRM, V a dependent set of

M -unreachable states in A, and m = −1−maxr∈ΓA |r| −maxu∈UA v⋆(u). Let B1 = A/V → m
be a PRM that mirrors the output of A, (except on transitions into unreachable states in V where
the output is m), and B2 = (−A)/V → m a PRM that negates the output of A (except on
transitions into unreachable states in V where the output is m). Let u0 ∈ U be a state in A such
that v⋆B1

(u) = v⋆B2
(u) = 0. Let B = (U, uI , 2

AP,Γ, τ, σ, F ∪⊓′) be a PRM obtained by adding u0 to
the set of terminal states in A. Let π⋆(s, u) be an optimal policy in the product MDP M × B. Then
π⋆(s, u) is also an optimal policy in the product MDP M × A.
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Proof Let π be a policy in M ×B. We will show that vM×A
π = vM×B

π , i.e. that an arbitrary policy π
has the same value in M × A. From there, it follows that if π is optimal in M × B, then it is optimal
in M × A.

To make analysis easier, we will model terminal states as absorbing states (sinks with output 0).
For easier notation, s̃ will refer to states in SM , and s = (s̃, u) will refer to states in SM×A.

We will first show vM×A
π (s0) = vM×B

π (s0) for every state s0 = (s̃, u0). We have vM×B
π (s0) = 0

because s0 is an absorbing state in M ×B. We must show that vM×A
π (s0) = 0. Intuitively, this is the

case because in M × A, the expected return when starting in s0 = (s̃, u0) and following an arbitrary
policy π is bounded with 0 from above and below. It is enough to show that vM×B1

π (s0) = 0, because
by the proof of Lemma 2 we have vM×A

π (s0) = vM×B1
π (s0). We will show this via Equation 5.

0 = −v⋆B2
(u0) ≤ vM×B1

π (s0) ≤ v⋆B1
(u0) = 0 (5)

Equalities in Equation 5 hold by assumption. The second inequality holds trivially. The first
inequality holds because the “pessimistic” machine B2 realizes the minimal value of every state
(negated to obtain the discounted return in terms of B1). More precisely, for a given state s = (s̃, u)
we have

v⋆B2
(u) = max

ℓ∈2AP

∑
u′∈U

τB2(u, ℓ, u′)(σB2(u, ℓ, u′) + γv⋆B2
(u′))

= (⋆)

= max
ℓ∈2AP

τ(u,ℓ,u′)=0
∀u′∈V

∑
u′∈U

τB2(u, ℓ, u′)(σB2(u, ℓ, u′) + γv⋆B2
(u′))

= max
ℓ∈2AP

τ(u,ℓ,u′)=0
∀u′∈V

∑
u′∈U

τB1(u, ℓ, u′)(−σB1(u, ℓ, u′) + γv⋆B2
(u′))

(6)

and similarly

v⋆B1
(u) = max

ℓ∈2AP

∑
u′∈U

τB1(u, ℓ, u′)(σB1(u, ℓ, u′) + γv⋆B2
(u′))

= max
ℓ∈2AP

τ(u,ℓ,u′)=0
∀u′∈V

∑
u′∈U

τB1(u, ℓ, u′)(σB1(u, ℓ, u′) + γv⋆B1
(u′)) (7)

.
(⋆): By assumption, when τB2(u, ℓ, u′) > 0 for any u′ ∈ V then τB2(u, ℓ, u′′) = 0 for all

u′′ ̸∈ V . Intuitively, if reading input ℓ from state u induces a transition to u′ ∈ V with positive
probability in B2, since the transitions of the causal DFA are not probabilistic, every other state u′′

such that τB2(u, ℓ, u′′) > 0 must also transition into the same rejecting sink state in the causal DFA.
In that case, σB2(u, ℓ, u′) = m for all u′, which is lower than any possible immediate reward and
resulting state value. Therefore, the maximum is not attained for the input ℓ. Similar reasoning is
applied in Equation 7.

Equation 6 and Equation 7 show that −v⋆B2
bounds the value of any policy in M × B1 from

below, that is−v⋆B2
(u) ≤ vM×B1

π (s). The argument is that v⋆B2
is a solution to the Bellman optimality

equation in B1 with negated rewards. In particular, Equation 6 and Equation 7 show that one can
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disregard transitions into unreachable states in V when computing state values. In that case, −v⋆B2
is

the pessimal state value in B1. Intuitively, one attains a discounted return of −v⋆B2
(u) when starting

in u and minimizing the expected discounted sum of rewards along transitions in B1, while ignoring
transitions into V .

We proceed to show vM×A
π (s) = vM×B

π (s) in all components (not just for s = s0).
When we fix an arbitrary policy π, we obtain the immediate reward vector RA;π

s (RB;π
s ) and

probabilistic transition matrix PA;π
s,s′ (PB;π

s,s′ ) for M × A (M × B).
The state value Bellman equation for π in M × A can then be expressed in matrix form as in

Equation 8 (and similarly for M × B).

vAπ = RA;π + γPA;πvAπ (8)

We proceed to show that vBπ also solves Equation 8, that is that Equation 9 holds.

vBπ = RA;π + γPA;πvBπ (9)

We already know that the Equation 9 holds in rows corresponding to s0 ∈ (∫̃ ,⊓′) : ∫̃ ∈ SM, as
we have shown vAπ (s

0) = vBπ (s
0) = 0. For s ∈ S \ (∫̃ ,⊓′) : ∫̃ ∈ SM, we haveRA;π

s = RB;π
s (B does

not change the immediate reward on transitions from s ̸= s0). However, we also have PA;π
s,: = PB;π

s,:

(M × B transitions in the same way as M × A from s ̸= s0).

Now we can prove Theorem 1.
Proof Algorithm 1 starts with a PRM A and applies a series transformations in order to obtain a
new PRM B. Then, it runs QRM for (M,B) instead of (M,A). Lemmas 1, 2, and 3 show that
the optimal policy either remains the same when the transformations are applied (Transformation
2, 3), or that the optimal policy for the initial PRM can be easily recovered from the transformed
PRM (Transformation 1). Line 1 applies Transformation 1 and 2. Lines 2-6 apply Transformation 3.
Finally, convergence to optimal policy of Algorithm 1 then follows from the convergence to optimal
policy of QRM.

Appendix C. Four Doors Case Study

Figure 11 depicts the PRM for the 4-door task. As can be seen, increasing the number of doors leads
to an exponential increase in the number of states.
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CORAZZA PARTOVI ARIA NEIDER XU
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Figure 11: The PRM without causal info about the four-door task
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