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Abstract

We propose a method called ODMU for “on-the-fly control of distributed multi-agent systems with
unknown nonlinear dynamics” and with (a)synchronous communication between the agents where
data from a single finite-horizon trajectory is used, possibly in conjunction with side information.
ODMU can be applied to real-time scenarios when the dynamics of the system are unknown or
suddenly change such that a priori known model cannot be applied. In our proposed algorithm, the
agents communicate their states using (a)synchronous communication and exploit the side informa-
tion, e.g., regularities of the system, states, agents’ communication scheme, algebraic limitations,
and coupling in the system states. We provide ODMU for over-approximating the reachable sets
and to control the agents under conditions with severely limited data. ODMU creates differential
inclusion sets that calculate the over approximations of the reachable sets containing the unknown
vector field. We show that ODMU calculates the near-optimal control and calculates an upper bound
(suboptimality bound) for the error between the optimal trajectory and the trajectory calculated by
ODMU. We use convex-optimization-based control to obtain the guaranteed near-optimal solution.
We demonstrate the effect of side information on obtaining smaller bounds on suboptimality by ap-
plying ODMU on a system of unicycles. Additionally, we present a case study where a multi-agent
system of unicycles with unknown dynamics is controlled via ODMU. Moreover, we have developed
two baselines, SINDYcMulti and CGP-LCBMulti to compare our method with them.
Keywords: Nonlinear dynamical systems, multi-agent systems, optimization, reachability analy-
sis, uncertain systems

1. Introduction

When sudden and abrupt changes are experienced by a system such that it alters its dynamics
severely, a priori known model cannot be exploited; therefore, we need to learn the dynamics of
the system on the fly Djeumou et al. (2021). These scenarios are even more involved for systems
with multiple agents where task completion depends on all agents, not just one agent. In such cases,
the system must exploit the information from its current trajectory to maintain a certain degree
of control. We develop ODMU “on-the-fly control of distributed multi-agent systems with unknown
nonlinear dynamics” to control multi-agent systems (MAS) with unknown dynamics and under con-
ditions where data is severely limited, only data from trajectory is available. We use this framework
as it enables robust control of the MAS when the underlying dynamics are unknown.

ODMU over approximates the reachable set of the system and allows for reachability analysis.
ODMU is a one-step optimization algorithm that enables convex optimization to obtain a near-optimal
solution to the control input for an on-the-fly control problem. Several methods could approximate
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the reachable sets, such as Hamilton-Jacobi-based Mitchell et al. (2005) or methods based on inter-
val Taylor such as Berz and Makino (1998) Goubault and Putot (2019). These methods are used
when the dynamics are known; however, in our scenario, the system’s dynamics become unknown,
and for such scenarios, there has been limited work done Djeumou et al. (2021) and even less for
MAS, especially when the data is severely limited. ODMU uses side information, if available, such as
regularities in the dynamics or bounds on vector fields to obtain a narrower reachable set. The ob-
tained trajectory of the system for each agent contains the state of the agent, derivatives of the state
of the agent, and the applied control input of the agent. Contributions. We have the following con-
tributions to the field: (1) We propose a novel distributed data-driven control algorithm for on-the-fly
control of MAS and implement two approaches with synchronous and asynchronous communica-
tions for the agents to coordinate their actions. (2) We provide a theoretical guarantee that ODMU
obtains a near-optimal solution for MAS, and we compute an upper bound for this near-optimality
of the proposed algorithm ODMU. (3) Our proposed algorithm is developed for MAS where the sys-
tem’s dynamics are unknown or suddenly become unknown, and it is capable of controlling the
system under conditions where data is severely limited. We demonstrate the efficiency of ODMU by
simulating a multi-agent system consisting of unicycles where the dynamics are unknown and data is
severely limited also compare it with two baselines that we have developed called SINDYcMulti
and CGP-LCBMulti. Related Work. Limited work is done for on-the-fly data-driven control of
single-agent systems and even more limited for on-the-fly control of MAS Hou and Wang (2013)
Djeumou et al. (2021). These methods combine system identification and model predictive control
Korda and Mezić (2018)-Vinod et al. (2020). For instance, Korda and Mezić (2018) uses Koopman
theory for linear system identification, and SINDYc Kaiser et al. (2018) employs sparse regression
for nonlinear system identification in single-agent systems, requiring substantial data. We pro-
pose SINDYcMulti, a multi-agent baseline based on SINDYc. Researchers in Van Waarde et al.
(2020); van Waarde et al. (2020); Markovsky and Dörfler (2022); Berberich et al. (2020, 2022) have
proposed methods that work without system identification and mostly assume linear time-invariant
dynamical systems; however, our ODMU works with general nonlinear unknown dynamics. Another
method, DMDc, obtains a linear approximation using spectral properties but requires more data than
ODMU. Myopic control Ornik et al. (2019) builds a local linear model with finite perturbations but
cannot integrate side information. Contextual optimization-based methods like Gaussian processes
(CGP-LCB) Krause and Ong (2011) face high computational costs. C2Opt Vinod et al. (2020)
overcomes these costs but relies on the gradient of the one-step cost, and it could only use limited
forms of side information.

2. Preliminaries

We denote the set of real numbers by R, natural numbers by N, n-dimensional vector x by x 2

Rn, matrix by X 2 Rn⇥m where n,m 2 R, |·| set cardinality, 1-norm by kxk1, and 2-norm
by kxk2. We show the over-approximation of a set A ⇢ Rn by A. An interval is denoted
by [a, b] = {r 2 R|a  r  b} where a, b 2 R and a  b, set {i, . . . , j} is denoted by N[i,j]

where i, j 2 N and i  j. k
th component of vector x and (k, j) component of matrix X

are shown by (x)
k

and (X)
k,j

, respectively. The Lipshitz constant of f : X ! R by Lf =
sup {L 2 R | |f(x)� f(y)|  Lkx� yk2, x, y 2 X , x 6= y} where X ✓ Rn, and the Jacobian of
function f by @f

@x
. Function f 2 C

↵(X ) with ↵ � 0 is called C
↵ continuous if the function is con-

tinuous on X ✓ Rn and all the partial derivatives up to order 1, . . . ,↵ do exist and are continuous
on the domain X , f is piecewise � C

↵ if there is a set A such that A ✓ X and f is C
↵ on A

Djeumou et al. (2021).
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2.1. Interval Analysis

We show sets of intervals by IR = {A =
⇥
A,A

⇤
|A,A 2 R,A  A}, set of n-dimensional

interval vectors by IRn, n ⇥m-dimensional matrices by IRn⇥m, the absolute value of an interval
A by |A| = max{|A|, |A|}. We apply the arithmetic operations to set inclusion and intersections
of intervals to interval vectors and matrices component-wise. We denote the infinity norm of A 2
IRn by |A|1 = supi2N[1,n]

|(A)i| , Cartesian product as A ⌦ B =
⇥⇥
A,A

⇤
,
⇥
B,B

⇤⇤
2 IR2 for

any A,B 2 IR, and the Cartesian product of any interval A 2 IR with itself n times is shown
by A

n. The term “interval” refers to either an interval vector or interval matrix, depending on
the context. Interval-valued functions are essential in interval analysis; therefore, we introduce an
interval-valued function as follows.

Given f : X ! Y with X ✓ Rn and Y ✓ Rm (or Y ✓ Rn⇥m), then we can show the
interval-valued function f : IRn

! Rn is an interval extension of function f if
f(A) ◆ R(f,A) = {f(x)|x 2 A} 8A ✓ X (1)

Hence, given an interval A, f(A) is an interval-valued function that over-approximates the range
(R) of values given to f over the set A. As per the general notation of interval-valued functions,
we demonstrate interval-valued vector functions with bold lowercase and interval-valued matrix
functions with bold uppercase symbols.

2.2. Multi-agent System

The set of all agents is N = {1, . . . , N} and neighbor’s for agent k is denoted by Nk where
k  N 2 N . Each agent has its own dynamics and we model the communication structure of the
multi-agent system using an undirected graph defined as follows.

Definition 1 We show an udirected graph by G = (C, E), where C = {c1, c2, ..., cnC} is a finite set
of nodes, E ✓ E

0 = {e1,2, e1,3, ..., e1,nE , e2,3, ..., enE�1,nE} is a finite set of edges where e⌫,& 2 E if
nodes c⌫ and c& are connected by an edge in the graph G, and nC , nE 2 N.

Each node ci of the undirected graph G represents an agent in the system. Each edge e⌫,&

connecting the nodes ⌫ and & represents the fact that agents ⌫ and & are neighbors, i.e., agents ⌫

and & can communicate with each other. For quantities with two superscripts such as xk,, the first
superscript k refers to the agent that is communicating, and the second superscript  refers to the
agent k’s estimation of the other agent (agent ) for that quantity.

2.3. Reachable Set In Multi-agent Systems

Let us consider a nonlinear dynamical system for each of the agents as
ẋ
k = T

k(xk, uk) (2)
where the state x

k : R+ 7! X of agent k is a continuous-time signal evolving in X 2 IRn,
control input uk 2 U of agent k is evolving in the control set U 2 IRm with U = {v

k : R+ 7!

U | v
k is piecewise � C

Du} for Du � 0. The dynamics of agent k is T k : X ⇥ U 7! Y which is
C

DT for DT � 1 and Y 2 IRn. Evolution of the states of the agent k considering the initial state
x
k

i
= x

k(ti) at time ti 2 R�0 where i 2 Z�0 and control input signal uk 2 U will create a sequence
of states that will be a part of the trajectory of the system. A trajectory of (2) is a function of time
x
k(·, xk

i
, u

k) : [ti,1) 7! X and it satisfies Equation (2).

Definition 2 (Reachable set) Consider a set Qi ✓ X at time ti and a set of controls, V ✓ U, then
the reachable set of dynamics as shown in Equation (2) at times t � ti is obtained by

R(t,Qi,V) = {z 2 X | 9xi 2 Qi, 9⇤ 2 V, z = x(t;xi,⇤)} (3)
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Considering a set V ✓ U and an initial set Qk

0 ✓ X of states at time t0 for agent k, we can
calculate the over-approximations of R

k(t,Qk

0,V) at time t � t0 by exploiting interval Taylor-
based methods. We consider a discrete time set t0 < . . . < tµ (µ 2 N) such that for all ⇤k

2 V, ⇤k

is C
Du for each of the interval [ti, ti+1). To calculate R

k,+
i
2 IRn sets considering the initial set

R
k,+
0 = Q

k

0 such that for all i 2 Z[0,µ�1] we have R
k

i+1 = R
k(ti+1, R

k,+
i

,V) ✓ R
k,+
i+1. We define

agent k’s interval Taylor expansion T
k by denoting the d

th derivative as T k,[d] (T k,[1] = T
k) as:

T
k,[d+1] =

1

1 + d

 
@T

k,[d]

@x
T

k +
d�1X

l=0

@T
k,[d]

@u(l)
u
(l+1)

!
(4)

Substituting the initial set with R
k,+
i

= Q
k

0 results in the reachable set of the next time step as
R

k,+
i+1 = R

k,+
i

+
D�1X

d=1

(ti+1 � ti)
d

⇣
T

k,[d](Rk,+
i

,⇤k)
⌘
(ti) + (ti+1 � ti)

D

⇣
T

k,[D](�k

i ,⇤
k)
⌘
([ti, ti+1]) (5)

where D must be D  min(Du + 1, DT ), ⇤k,(0)(A) is ⇤k(A), and the intervals ⇤k,(d)(A) for
all d 2 N[0,Du] are such that

S
⇤k2V R(⇤k,(d)

,A) ✓ ⇤k,(d)(A) with A ✓ R
+ or ⇤k,(d)(A) over-

approximates the range of the dth derivative of all ⇤k
2 V on the interval A. We calculate agent k’s

a priori rough enclosure set �k

i
✓ X of Rk(t, Rk,+

i
,V) for all t 2 [ti, ti+1] recursively by solving:

R
k,+
i

+ [0, ti+1 � ti]T
k(�k

i ,⇤
k([ti, ti+1])) ✓ �k

i . (6)

2.4. Constrained Receding-horizon Control For Multi-agent Systems

We define the cost function for agent k as C
k to solve the optimization problem as one-step cost

function C : X ⇥ U ⇥ X ! R. We assign a constant time step �t � 0 where the next state would
be x

k

i+1 = x
k(tk

i+1, x
k

i
, u

k

i
) where ti+1 = ti +�t (subscript i is a short-hand for ti), agent’s initial

state is xk
i
2 X , and the control input signal uk

i
2 U is constant between two time steps. The control

input at time ti+1 for the initial state x
k

i
of agent k is the solution of

minimize
i+H�1X

ti=i

C
k

i (x
1
i , u

1
i , x

1
i+1, x

2
i , u

2
i , x

2
i+1, . . . , x

N

i , u
N

i , x
N

i+1)

subject to u
1
i , . . . , u

N

i 2 U ; u1i+H�1, . . . , u
N

i+H�1 2 U ; ẋki = T
k(xki , u

k

i ), i, k 2 N (7)

where the planning horizon is H � 1. The optimization problem (7) is not a convex optimization
problem due to the possible nonlinearities of the system dynamics (2) Kocijan et al. (2004).
3. Problem Statement

We consider a control-affine nonlinear dynamics for each agent k as
ẋ
k = f

k(xk) +G
k(xk)uk, (8)

where the unknown vector-valued function is f
k : X 7! Rn and the matrix-valued function is

G
k : X 7! Rn⇥m for X 2 IRn.

Assumption 1 (Lipschitz system) f
k and G

k are locally Lipshitz-continuous functions on x
k
2 R

and their components have a finite Lipshitz constant on all the subsets of Rn.
f
k and G

k for each agent k are globally Lipshitz-continuous on X due to the bounded domain,
X 2 IRn. We know the upper bounds on the Lipshitz constants L

k

f
2 Rn

+ and L
k

G
2 Rn⇥m

+ . L
k

f

stand for the Lipshitz constant of the function f
k for agent k, this description can be extended to the

Lipshitz constant of the function G
k. The known upper bounds on the Lipshitz constants of

�
f
k
�
q

and
�
G

k
�
q,l

are (Lk

f
)q = L

k

fq
and (Lk

G
)q,l = L

k

Gq,l
for all q 2 N[1,n] and l 2 N[1,m] Chakrabarty

et al. (2019); Calliess (2017); Zabinsky et al. (2003).
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Lemma 3 (f
k

and G
k

over-approximations using a sample trajectory J
k
µ ) We have a set ✏kµ =

{(xk, ⌘kFi
, ⌘

k

Gi
)|fk(xi) 2 ⌘

k

Fi
, G(xk

i
) 2 ⌘

k

Gi
}
µ

i=0 obtained from trajectory J
k
µ . Using Lipschitz

bounds Lk

f
and L

k

G
we can calculate the intervals f : X ! IRn and G : X ! IRn⇥m for all the

components q 2 N[1,n] and l 2 N[1,m] as following (proof can be found in Djeumou et al. (2022))

(fk(xk))q = { \
(xk

i ,⌘
k
Fi

,·)2✏kµ
(⌘kFi

)q + L
k

fq
kx

k
� x

k

i k2[�1, 1] | f
k(xk) 2 fk(xk) 8xk 2 X} (9)

(Gk(xk))q,l = { \
(xk

i ,⌘
k
Gi

,·)2✏kµ
(⌘kGi

)q,l+L
k

Gq,l
kx

k
�x

k

i k2[�1, 1] |G
k(xk) 2 Gk(xk) 8xk 2 X} (10)

where the intervals ⌘
k

Fi
and ⌘

k

Gi
are the tightest intervals that contain f

k(xk
i
) and G

k(xk
i
), respec-

tively. A priori rough enclosure �k

i
for agent k can be calculated using (6),

R
k,+
i

+ [0,�t](fk(�k

i ) +Gk(�k

i )U) ✓ �k

i (11)

We use Lemma 3 for each agent k to obtain the intervals for the dynamics of the control-affine
system (8), fk and G

k, then we apply the Theorem 4 to obtain the reachable set Rk,+
i+1.

Theorem 4 (Reachable set over-approximation of an agent) For agent k considering Lipschitz
bounds Lk

f
and L

k

G
, piecewise � C

Du control signals with continuity condition Du � 1 on a set
V ✓ U, a trajectory J

k
µ , and time step �t, then the reachable set Rk

i
at time ti+1 can be calculated

for the dynamics defined by differential inclusion ẋ
k
ti
2 fk(x) +Gk(x) as

R
k,+
i+1 =R

k,+
i

+ (fk(Rk,+
i

) +Gk(Rk,+
i

)⇤k(ti))�t+

(Jk

f
+ J

k

G⇤
k

i )(f
k(�k

i ) +Gk(�k

i )�
k

i )
�t

2

2
+Gk(�k

i )�
k,(1)
i

�t
2

2
(12)

where the control input interval is ⇤k(ti), �k

i
= ⇤k([ti, ti + �t]), and control input derivative is

�(1)
i

= ⇤k,(1)([ti, ti +�t]) for all the control signals in V. Theorem 4 can be proved using Taylor
expansion when Du = 2 (second-order Taylor expansion). Equation (12) when the control input
u
k

i
2 U is constant in the time interval of [ti, ti+1) becomes

R
k

i+1 ✓ (Bk

i +A
k,+
i

u
k

i ) \ (Bk

i +A
k,�
i

u
k

i ) (13)

such that intervals Bk

i
, Ak,�

i
, and A

k,+
i

are calculated as follows

B
k

i = R
k,+
i

+ fk(Rk,+
i

)�t+ J
k

f
fk(�k

i )
�t

2

2
(14)

A
k,�
i

= Gk(Rk,+
i

)�t+ (Jk

GG
k(�k

i ) + J
k
T

G (fk(�k

i ) +Gk(�k

i )U))
�t

2

2
(15)

A
k,+
i

= Gk(Rk,+
i

)�t+ ((Jk

f
+ J

k

GU)G
k(�k

i ) + J
k
T

G (fk(�k

i )))
�t

2

2
(16)

Each agent k uses Equations (14)-(16) to obtain the intervals of other agents. We denote the con-

catenation of these intervals by agent k as ⇣k,+
i

=
h
A

1,+
i

, . . . ,A
N,+
i

i
T

and �
k

i
=
⇥
B
1
i
, . . . ,B

N

i

⇤T .
Example 1 We study a unicycle system with x

k

i
=
⇥
⇢x ⇢y �

⇤
, representing position in the x and

y planes and angular orientation, respectively. Control input uk =
⇥
{ =

⇤
adjusts the unicycle’s

speed and heading, control bounds U = [�3, 3] ⇥ [�⇡,⇡], fk = 0, Gk with
�
G

k
�
1,1

= cos�,
�
G

k
�
2,1

= sin�,
�
G

k
�
3,2

= 1, and other entries 0, Lipschitz bounds of Lk

f
= [0.01, 0.01, 0.01],

and L
k

G1,1
= L

k

G2,1
= 1.1, Lk

G3,2
= 1, and other entries 0. We utilize Example 1 with a �t = 0.1[s]

time step as a motivating illustration.
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4. Control Synthesis For Multi-agent Systems

The multi-agent system needs to collaborate, i.e., agents are collaborating to carry out a system-
level task in a cooperative setting to synthesize the control input vector Ui =

⇥
u
1
i+1, . . . , u

N

i+1

⇤
at

time step ti by solving the following optimization problem (17).

minimize
NX

k=1

C
k

i (x
1
i , u

1
i , x

1
i+1, x

2
i , u

2
i , x

2
i+1, . . . , x

N

i , u
N

i , x
N

i+1)

subject to u
k

i 2 U ; |xk � x

| � dcol, 8 2 N \ {k}; ẋki 2 fk

i +Gk

i u
k

i , 8k 2 N (17)
where C

k

i
is the agent k’s cost function, xk

i
is the state of agent k at time step ti, uki represents the

control input at time ti, dcol 2 R is collision avoidance value, f

i is the interval-valued function of
over-approximated set of fk at time ti, and G

i is the interval-valued function of over-approximated
set of Gk at time ti. By applying the relaxation in the control input plane, the optimization problem
becomes convex Djeumou et al. (2022), meaning that a constant control input will be applied in the
continuous time interval [ti, ti+1).
Assumption 2 (Quadratic cost function) We apply quadratic cost for one-step cost function C,
which is a restricted strongly convex quadratic function,

C(x, u, ẋ) =


ẋ

u

�T 
Q S

S
T

R

� 
ẋ

u

�
+


q

r

�T 
ẋ

u

�
(18)

where Q = Q
T
2 Rn⇥n, S 2 Rn⇥m, R = R

T
2 Rm⇥n, q 2 Rn, and r 2 Rm. Please refer to

Zhang and Cheng (2015) for more details about restricted strongly convex functions.
Theorem 5 provides an upper bound on the difference between the optimal cost function and

the suboptimal cost function of optimization problem (17) where the suboptimal and optimal cost
functions correspond to cases where the agents’ dynamics is unknown and known, respectively.
Theorem 5 (Suboptimality bound) The optimal and suboptimal cost functions of agent k at time
ti are C

⇤k
i

and C
k

i
, respectively.

|C
⇤k
i � C

k

i |  max
⇣
kw(�k

i ) + w(⇣k,+
i

)|U|k2Z(⇣k,+
i

), kw(�k

i ) + w(⇣k,+
i

)|U|k2Z(⇣k,+
i

)
⌘

(19)

where Z
�
⇣
k,+

�
= min

⇣
k2|�k

i
U|+ q + 2|Q

⇣
�
k

i
+ ⇣

k,+
i

U

⌘
|k2, k2|�k

i
U|+ q + 2|QX|k2

⌘
for any

⇣
k,+
2 IRn⇥m and w

�
⇣
k,+

�
= ⇣

k,+
� ⇣

k,+.
Proof We consider two arbitrary states of the system for agent k; therefore, we have:

x
k,+
i+1 = b

k

i +A
k,+
i

u
k

i 2 B
k

i +A
k,+
i

u
k

i , u
k

i 2 U (20)

x̂
k,+
i+1 = b̂

k

i + Â
k,+
i

u
k

i 2 B
k

i +A
k,+
i

u
k

i , u
k

i 2 U (21)
Substituting Equations (20) and (21) into Equation (19) using Equation (18) format and by

exploiting the width of the interval operator, w, to obtain |b
k

i
� b̂

k

i
|  w(Bk

i
) and |A

k,+
i
� Â

k,+
i

| 

w(Ak,+
i

) knowing that the intervals of the over-approximation sets must stay in the set of states X
(Equation (22)), then we obtain Equation (23):

(bki + b̂
k

i ) + (Ak,+
i

+ Â
k,+
i

)ui 2 2(Bk

i + 2Ak,+
i

u
k

i ) \ 2X (22)
��������
2S

2

64
u
1
i

...
u
N

i

3

75+ q +Q

0

BB@

2

64
b
1
i
+ b̂

1
i

...
b
N

i
+ b̂

N

i

3

75+

2

64
A

1,+
i

+ Â
1,+
i

...
A

N,+
i

+ Â
N,+
i

3

75

T 2

64
u
1
i

...
u
N

i

3

75

1

CCA

��������
2

 Z(⇣k,+
i

) (23)

Now, we can write the cost function inequality as:
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|C
k(·, u1i , x

1,+
i+1, . . . , ·, u

N

i , x
N,+
i+1 )� C

k(·, u1i , x̂
1,+
i+1, . . . , ·, u

N

i , x̂
N,+
i+1 )|



�������

2

64
w(B1

i
)

...
w(BN

i
)

3

75+

2

64
w(A1,+

i
)

...
w(AN,+

i
)

3

75 |U|

�������
2

Z(⇣k,+
i

) (24)

Considering that the optimal solution is u
⇤k
i

and the next unknown state of the system will be
x
k

i+1(u
⇤k
i
) 2 B

k

i
+A

k,+
i

u
⇤k
i

. Then we can rewrite the Equation (24) as:

|C
⇤k
i � C

k

i | = |C
⇤k(x1i , u

⇤1
i , x

1
i+1(u

⇤1
i ), . . . , xNi , u

⇤N
i , x

N

i+1(u
⇤N
i ))�

C
k(x1i , u

1
i , x̂

1
i+1(û

1
i ), . . . , x

N

i , û
N

i , x̂
N

i+1(û
N

i ))| 

�������

2

64
w(B1

i
)

...
w(BN

i
)

3

75+

2

64
w(A1,+

i
)

...
w(AN,+

i
)

3

75 |U|

�������
2

Z(⇣k,+
i

)

(25)The optimal control solution, u⇤k, will correspond to x
k

i+1 2 B
k

i
+ A

k,+
i

u
⇤k next unknown

state. Let ûk
i

be the optimal solution of problem (17), then the next known state is obtained by
x̂
k

i
(ûk

i
) 2 B

k

i
+A

k,+
i

u
⇤k
i

; therefore |C
⇤k
i
� C

k

i
| becomes

|C
⇤k(x1i , u

⇤1
i , x

1
i+1(u

⇤1
i ), . . . , xNi , u

⇤N
i , x

N

i+1(u
⇤N
i ))�

C
k(x1i , û

1
i , x̂

1
i+1(û

1
i ), . . . , x

N

i , û
N

i , x̂
N

i+1(û
N

i ))|  |C
⇤k(x1i , û

1
i , x

1
i+1(û

1
i ), . . . , x

N

i , û
N

i , x
N

i+1(û
N

i ))�

C
k(x1i , û

1
i , x̂

1
i+1(û

1
i ), . . . , x

N

i , û
N

i , x̂
N

i+1(û
N

i ))|  kw(�i) + w(⇣k,+
i

)|U|k2Z(⇣k,+
i

) (26)

Similarly we could prove |C
⇤k
i
� C

k

i
|  kw(�k

i
) + w(⇣k,�

i
)|U|k2Z(⇣k,�

i
) for ⇣k,�

i
, the subop-

timality bounds for the optimistic control problem. We calculate the upper bound on |
P

N

k=0C
⇤k
i
�P

N

k=0C
k

i
| using triangle inequality and denote the calculated upper bound error for each agent k as

⌅k (right-hand side of Eq. (19)). We extend this representation to problem (17).

|

NX

k=1

C
⇤k
i �

NX

k=1

C
k

i | = |C
⇤1
i + . . .+ C

⇤N
i �

�
C

1
i + . . .+ C

N

i

�
|  (27)

|C
⇤1
i � C

1
i |+ . . .+ |C

⇤N
i � C

N

i |  ⌅1 + . . .+ ⌅N
. (28)

5. On-the-fly Control of Multi-agent Systems With Unknown Dynamics

ODMU (Algorithm 2) synthesizes control input vector U for each time interval [ti, ti +�t). ODMU
uses the continuity of the unknown dynamical system to obtain the R

k,+
i

. Using its sampled tra-
jectory, it calculates the reachable set (Line 19) for agent k. Then agent k communicates with its
neighbors Nk (one or more, depending on communication scheme) to receive the state of the neigh-
bors x

i
, 6= k (Line 21). We then calculate the over-approximations for fk and Gk, then calculate

�k set (Lines 23-24). Once the intervals are calculated for the system dynamics (Line 29), we solve
the one-step optimization problem to calculate the control input uk

i
for agent k. We demonstrated

the convergence of ODMU in Corollary 6. We propose two algorithms to solve (17).
5.1. Graph-Based Constrained ADMM Optimization for Multi-agent Systems

We introduce a distributed graph-based alternating direction method of multipliers (ADMM) con-
strained optimization for MAS with unknown dynamics GM-ADMM, which is a generalization of
Khatana and Salapaka (2023), a distributed constrained optimization that can handle both equality
and inequality constraints. GM-ADMM combines differential inclusion with the methods introduced
in Khatana and Salapaka (2023) and Melbourne et al. (2020) for on-the-fly control synthesis. In Al-
gorithm 1 (GM-ADMM), control input Uk

i0 (primal variable) is calculated by agent k and the consensus

7
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Algorithm 1 Distributed on-the-fly control for MAS with consensus check, GM-ADMM algorithm.
Input: Hyper-parameter �, {⌘i0}i0�0 consensus tolerance, Iter0max 2 Z�0, upper bound for convergence

diameter D 2 Z�0

Output: Updated consensus primal variable y
k
i0+1

1 y
k
i0 2 U ,�

k
i0 2 Rn

,⌥k
i0 = Rm

,Z
k
i0 2 Rn⇥m

,B
k
i0 2 Rm;

2 function GM-ADMM():

3 U
k
i0+1  argmin

Uk2U

n
C

k
i0 + �

kT

i0
�
U

k
i0 � y

k
i0
�
+ �

2 kU
k
i0 � y

k
i0k

2
2 +⌥kT

i0
�
Z

k
i0U

k
i0 �B

k
i0
�
+ �

2 kZ
k
i0U

k
i0 �B

k
i0k

2
2

o

4 $
k
i0=0 = U

k
i0=0; V

k
i0=0 = 1; H

k
i0=0 = 0; M := 1

5 for i
0 = 0, . . . , Iter0max do

6 U
k
i0+1  pk,kU

k
i0 +

P
2N pk,U


i0 , V

k
i0+1  pk,kV

k
i0 +

P
2N pk,V


i0 , $k

i0+1  
1

V k
i0+1

U
k
i0+1

7 H
k
i0  max2N

�
k$

k
i0+1 �$

k
i0k+ H


i0
 

8 if i
0 = MD � 1 then

9 Ĥ
k

M�1 = H
k
i0+1

10 if Ĥ
k

M�1 < ⌘i0 then

11 y
k
i0+1  

⇣
U

k
i0+1 +

1
��

k
i0

⌘
, break (consensus reached)

12 H
k
i0+1 = 0, M = M + 1

13 end

14 �
k
i0+1  �

k
i0 + �

�
U

k
i0+1 � y

k
i0+1

�
, ⌥k

i0+1  ⌥k
i0 + �

�
Z

k
i0U

k
i0+1 �B

k
i0+1

�

primal variable y
k

i0 which ensures Uk

i0 = U


i0 , 8k, 2 N . In GM-ADMM, each agent k communicates
only with its neighbors to acquire information from them at each time step ti. Hence, we relax
the exact consensus requirement to a ⌘i0+1 closeness among the variables of all the agents, i.e.,
ky

k

i0 � y


i0k  2⌘i0 , 8k, 2 N where ⌘i0 2 R>0. �k

i0 and ⌥k

i0 are the dual variables in the GM-ADMM.
Algorithm 1 ensures at ti0 agents reach consensus for Uk where agent k solves the Lagrangian of the
optimization problem by initializing the consensus primal variable y

k

i0 , dual variables �k

i0 ,⌥
k

i0 , and
constraints Zk

i0 ,B
k

i0 , subsequently, agent k obtains Uk

i0+1 (Lines 3-4). Then the consensus variables
$

k

i0 ,U
k

i0 (U k

i0=0 = U
k

i0+1 + �
k

i0), V
k

i0 ,H
k

i0 , and iterator M are initialized so that agent k can update
its consensus regarding y

k

i0 based on its communication with all of its neighbors where pk, denotes
the element (k,) in adjacency matrix p (Lines 4-6). Agent k then calculates the largest radius
H

k

i0 that encompasses all the consensus primal variables of itself and its neighbors and consensus
is reached when H

k

i0 is less than the consensus tolerance ⌘i0 leading to the update of yk
i0+1 (Lines

7-12). Then, the dual variables are updated (Line 14).

Corollary 6 (ODMU convergence) ODMU at each time step ti converges to a suboptimal solution
U

⇤
i
= [u⇤1

i
, . . . , u

⇤N
i

] for the optimization problem (17).

Proof (1) Theorem 5 guarantees |C⇤k
i
� C

k

i
| is bounded at each time step ti. (2) at each time step

ti, Lemma 1, Lemma 2, and Theorem 3 in Khatana and Salapaka (2023) guarantee that Algorithm
1 converges to the optimal cost function C

⇤k
i

when the number of iterations in Algorithm 2 goes
to infinity, i.e., Algorithm 1 is guaranteed to converge to a suboptimal cost function within finite
number of iterations. Hence, Algorithm 1 converges to the optimal cost function C

⇤k
i

when i!1.

5.2. Data Driven Control of Multi-agent Systems With Decentralized On-the-Fly Control

We propose Data-driven control of MAS with Decentralized On-the-Fly control (DMDO) where we
skip the consensus check compared to GM-ADMM and use asynchronous communication, so that

8
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Algorithm 2 ODMU: one-step near-optimal on-the-fly control solution at time ti > tµ

Input: Trajectory J
k
i , cost threshold Cth, maximum iteration Itermax 2 Z�0, control set U , and if available

any of the side information.
Output: Constant control signal obtained for time interval [ti, ti +�t)

15 function ComputeControlInput():

16 for i = 1, . . . , Itermax do

17 if C
k
> Cth then

18 for k = 1, . . . , N (Number of agents) do

19 R
k,+
i  {x

k
i }

20 for  2 Nk, 6= k do

21 {x
k,
i } GetAgentsState() (Agent k communicates with its neighbors Nk)

22 end

23 fk(Rk,+
i ) ComputeF (Rk,+

i ) using (9) , Gk(Rk,+
i ) ComputeG(Rk,+

i ) using (10)
24 �k

i  fk(Rk,+
i ), Gk(Rk,+

i ), (11), Rk,+
i , and U

25 fk(�k
i ) ComputeF (�k

i ) using (9), Gk(�k
i ) ComputeG(�k

i ) using (10)
26 if SideInformationAvailable() then

27 Obtain tighter bounds on fk(�k
i ) and Gk(�k

i ) using any side information from 1-4
28 Compute the J

k
f using L

k
f and Compute the J

k
G using L

k
G

29 B
k
i ,A

k,+
i ,A

k,�
i  R

k,+
i ,�k

i ,U ,f
k
,Gk

, J
k
f , and J

k
G

30 u
k
i+1  GM-ADMM (Algorithm 1) or DMDO (Subsection 5.2)

31 end

32 end

33 return u
k
i+1

agent k at each time step ti can communicate with only one of its neighbors Nk; thus, xk
i

=
⇥(x

i�⌧
), 6= k where ⇥ is the extrapolation function to update the estimated state (xk) of agent

k’s from agent  with time delay of ⌧ 2 Z�0 due to communication scheme. In DMDO, each agent
calculates a near-optimal solution due to Theorem 5. This method is guaranteed to converge to an
✏-Nash equilibrium due to the existence of the ⌅k for each agent k (it can be proved using Theorem
5 and convexity of the optimization).
5.3. Side Information

We use side information to tighten approximations Rk,+
i

Djeumou et al. (2021). Field Bounds (1):

Bounds on fk and Gk for agent k are R
k,fA 2 IRn and R

k,GA 2 IRn⇥m for a given set � ✓ A.
Tighter field approximations are obtained as fk(�)  fk(�) \ R

k,fA . Gradients bounds(2):

Information on some components of the gradient for agent k, e.g., Jacobian bound J
k

f
of fk on set A

leads to (Jk

f
)q,l  (Jk

f
)q,l\R+ if �k

i
✓ A. Algebraic constraints (3): Constraints on differentiable

function H, e.g., H(ẋk(·), xk(·)) � 0 for all xk 2 X . Dynamics partial knowledge(4): Dynamics
for agent k may include known and unknown components, e.g., fk = fk

kn + fk

ukn. This enables a
tighter over-approximation of Rk

i+1 by J
k

f
=

@fk
kn

@xk (�i) + J
k

fukn
.

6. Simulation

We consider Ck = 1
2kx

k

i+1k
2
2 +

1
2kx

k

i+1 � x̄
k

i+1k
2
2 where x̄

k = 1
|Nk|

P
2Nk

x
k,; for each agent

k we apply the step size of �t = 0.1[s] and |Nk| = 2. We use J
k

30 to sample 30 data points
(one trajectory per agent) for R

k

i
. Figure 1 which demonstrates the efficiency of our proposed

methods GM-ADMM and DMDO in comparison to SINDYcMulti (an extension of SINDYc Kaiser
et al. (2018) to MAS that uses sparse regression for nonlinear system identification; needs sub-

9
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stantial data) and CGP-LCBMulti (a MAS extension of Krause and Ong (2011) that is based on
Gaussian process). Our algorithms reach the cost threshold, while the CGP-LCBMulti algorithm
cannot properly guide the agents towards the center, and SINDYcMulti struggles to coordinate
the agents’ inputs to achieve a correct heading. The cost associated with the optimization prob-
lem (17) for each agent is shown in Figure 1. SINDYcMulti is reaching a plateau after some
steps, and CGP-LCBMulti cost is reducing but cannot reach the threshold. We consider the
L
k

f,kn =
⇥
0.15 0.15 0.18

⇤
and (Jk

f
)q,l = 0.05 additionally to Example 1 (Case (b)) and the

setup of the Example 1 (Case (a)) to demonstrate the effect of side information on the DMDO where
Figure 2 shows agents in Case (b) reach the target state sooner in comparison with Case (a).

(a) MAS consisting of 4 agents driven
to the target state.

(b) Cost associated with each agent.

Figure 1: Trajectories and optimization cost for Example 1, target state is the green square at (0, 0)
and the cost threshold is the black dashed circle.

(a) DMDO for cases (a) and (b). (b) Cost for cases (a) and (b).
Figure 2: Effect of side information on ODMU convergence to target state.

7. Conclusion

We developed a distributed on-the-fly control algorithm for MAS. Our approach calculates the over-
approximations of the reachable sets for each agent and exploits any available side information to
compute a tighter over-approximation set. We showed that ODMU is guaranteed to calculate the near-
optimal control input for the MAS. The experiment demonstrates the efficiency of our proposed
method. For future work, we plan to investigate the effect of communication schemes and expand
the work to swarm systems.
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