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problem contains a separate custom vowel list that makes the overall program logic more
complex. 2 We can craft a more creative problem of create alias that still uses concepts like
vowels and consonants but involves a much more innovative and unusual problem descrip-
tion. 3 We can also make subtle changes to the problem where we only count the lowercase
vowels to test if the LLM is simply memorizing the benchmark. 4 We can additionally com-
bine concepts from multiple problems together. In the example, we use another problem bf

to create a new problem that returns the vowels in each planet sorted based on the orbiting
order. 5 Furthermore, we can test LLMs’ ability to utilize helper functions (commonplace in
real-world code repositories) to solve more complex problems. Again, we reuse the concepts
of vowels from the initial problem. However, instead of directly solving the problem, the
LLM can use the provided check vowel helper function to simplify the solution.

Together, these transformed benchmarks are designed to introduce more challenging
problems and assess different aspects of LLMs’ code understanding and synthesis
abilities. In EVOEVAL, we additionally use GPT-4 to generate the ground truth solution
to each problem as well as rigorous test cases to evaluate the functional correctness of
LLM-synthesized code. Finally, we manually check each generated problem and ground
truth to ensure problem clarity and correctness. EVOEVAL serves as a way to further evolve
existing benchmarks into more complex and well-suited problems for evaluation in order to
keep up with the ever-growing LLM research. Our work makes the following contributions:

• Benchmarks: We present EVOEVAL– a set of program synthesis benchmarks created by
evolving HUMANEVAL problems. EVOEVAL includes 828 problems across 7 benchmarks,
equipped with ground truth solutions and test cases to evaluate functional correctness.

• Approach: We propose a complete pipeline to generate new coding problems for
benchmarking by evolving existing problems through targeted transformations via LLMs.
Furthermore, our pipeline reduces manual checking effort by automatically refining
problem inconsistencies, generating ground truth, and producing test cases.

• Study: We conduct a comprehensive study on 57 LLMs. We found that compared to the
high performance on prior benchmarks, LLMs significantly drop in accuracy (average
38.1%) on EVOEVAL. Additionally, this drop is not uniform across LLMs (from 19.6%
to 47.7%), leading to drastic ranking changes. We further demonstrate that certain LLMs
cannot keep up their high performance when evaluated on more challenging tasks or
problems in different domains, highlighting the possibility of overfitting to existing
benchmarks. Moreover, we observe that instruction-following LLMs are sensitive to
rephrasing or subtle changes in the problem description. They also struggle with utilizing
already provided auxiliary functions. We further demonstrate that current LLMs fail
to effectively compose multiple general coding concepts to solve more complex variants,
or address subproblems decomposed from problems they previously solved.

2 Approach

Targeted problem transformation. We first prompt a powerful LLM to evolve an existing
problem into a new one using a transformation prompt. Each transformation prompt
aims to transform the existing problem in a specific manner. We define two different
transformation types: semantic-altering – changes the semantic meaning of the problem and
semantic-preserving – modifies the description while keeping the same semantic meaning.

Problem refinement & ground truth generation. The initial evolved problem produced by
the LLM may include inconsistencies like incorrect examples. For coding benchmarks, such
mistakes can lead to inaccurate evaluation. As such, we introduce a refinement pipeline
to iteratively rephrase and refine the problem as needed. We first query the LLM to obtain
a possible solution and test inputs for the initial problem. We then evaluate the test inputs
on the solution to derive the expected outputs. Next, we instruct the LLM to refine the
problem by adding or fixing the example test cases in the docstring using the computed
test inputs/outputs, and then regenerate a solution. We then check if the new solution
on the test inputs produces the same outputs as the previous solution. The intuition is
that since the refined problem should only include minimal changes, the solution output
should then remain the same in the absence of any inconsistencies. As such, if we observe
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differences between the two solution outputs, we ask the LLM to further revise and fix any
inconsistencies and repeat the process. If both solutions agree on outputs, we return the
new problem description, solution, and test cases for functional evaluation.

Manual examination & test augmentation. For each transformed problem, we carefully ex-
amine and adjust any final faults to ensure each problem and ground truth are correctly spec-
ified and implemented. We further generate additional tests using an LLM-based test aug-
mentation technique (Liu et al., 2023). Finally, we produce EVOEVAL, a comprehensive code
synthesis benchmark suite containing diverse problems to evaluate LLM coding capability
across various domains. Details like transformation prompts are presented in Appendix D.

3 EVOEVAL Benchmarks & Evaluation Methodology

EVOEVAL uses HUMANEVAL problems as seeds and GPT-4 as the foundation LM to produce
828 problems across 7 different benchmarks (5 semantic-altering and 2 semantic-preserving).
For the semantic-altering benchmarks, we generate 100 problems each using different seed
problems from HUMANEVAL. For the semantic-preserving benchmarks, we transform all 164
problems in HUMANEVAL as we reuse the original ground truths, requiring less validation.

• DIFFICULT: Increase complexity by adding constraints, replacing commonly used re-
quirements to less common ones, or introducing additional steps to the original problem.

• CREATIVE: Produce a more creative problem using stories or narratives.
• SUBTLE: Make a subtle change such as inverting or replacing a requirement.
• COMBINE: Combine two problems by using concepts from both problems.
• TOOL USE: Produce a main problem and helper functions. Each helper function is fully

implemented and provides hints or useful functionality for solving the main problem.
• VERBOSE: Reword the original docstring to be more verbose with descriptive language
• CONCISE: Reword the original docstring to be more concise using concise language.

Evaluation setup: Each LLM generated sample is executed against the test cases and
evaluated using differential testing (McKeeman, 1998) – comparing against the ground
truth results to measure functional correctness. We focus on greedy decoding and denote
this as pass@1.

Models: We evaluate 57 LLMs (Appendix C), including both proprietary and open-source
models. Further, we classify the LLMs as either base or instruction-following and discuss
the effect of model variants.

Input format: To produce the code solution using each LLM, we provide a specific input
prompt: For base LLMs, we let the LLM autocomplete the solution given the function
header and docstring. For instruction-following LLMs, we use the recommended instruction
and ask the LLM to generate a complete solution for the problem.

4 Results

4.1 LLM Synthesis & Evaluation on EVOEVAL

EVOEVAL produces more complex and challenging benchmarks for program synthesis.
Table 1 shows the pass@1 performance along with the ranking of LLMs on each of the
semantic-altering EVOEVAL benchmarks with the average pass@1 and ranking on all

benchmarks in the last columns1. First, compared to the success rate on HUMANEVAL,
when evaluated on EVOEVAL, all LLMs consistently perform worse. For example, the
state-of-the-art GPT-4o, GPT-4 and Claude-3.5 models solve close to 85% of all HUMANEVAL

problems but fall almost below 55% pass@1 when evaluated on the DIFFICULT problems.
On average, across all benchmarks, the performance of LLMs decreased by 38.1%
(DIFFICULT: 56.6%, CREATIVE: 48.2%, SUBTLE: 5.0%, COMBINE: 74.7%, and TOOL USE: 6.1%).
Additionally, this drop is not uniform across all LLMs and can range from 19.6% to 47.7%.

1We evaluated all 57 LLMs, however, we omitted some LLMs in Table 1 for space reasons.

4













Published as a conference paper at COLM 2024

crafted including: EVALPLUS (Liu et al., 2023) which improves the two benchmarks with
more complete test cases; HUMANEVAL-X (Zheng et al., 2023) which extends HUMANEVAL

to C++, JavaScript and Go; MultiPL-E (Cassano et al., 2023) which further extends both
HUMANEVAL and MBPP to 18 languages. Similarly, other benchmarks have been developed
for specific domains: DS-1000 (Lai et al., 2023) and Arcade (Yin et al., 2022) for data science
APIs; CodeContests (Li et al., 2022), APPS (Hendrycks et al., 2021), and LiveCodeBench (Jain
et al., 2024) for programming contests, and SWE-Bench (Jimenez et al., 2024) for software
engineering tasks. Different from prior benchmarks which require handcraft problems from
scratch – high manual effort or scrape open-source repositories or coding contest websites
– leading to unavoidable data leakage, EVOEVAL directly uses LLMs to evolve existing
benchmark problems to create new complex evaluation problems. Furthermore, contrasting
with the narrow scope of prior benchmarks (often focusing on a single type or problem,
i.e., coding contests), EVOEVAL utilizes targeted transformation to evolve problems into
different domains, allowing for a more holistic evaluation of program synthesis using LLMs.

6 Conclusion

We present EVOEVAL– a set of program synthesis benchmarks created by evolving existing
problems into different target domains for a holistic and comprehensive evaluation of LLM
program synthesis ability. Our results on 57 LLMs show drastic drops in performance
(average 38.1%) when evaluated on EVOEVAL. Additionally, we observe significant ranking
differences compared to prior leaderboards, indicating potential dataset overfitting on
existing benchmarks. We provide additional insights, including the brittleness of instruction-
following LLMs as well as the limited compositional generalization abilities of LLMs.
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