Published as a conference paper at COLM 2024

Top Leaderboard Ranking = Top Coding Proficiency, Always?
9¢ EVOEVAL: Evolving Coding Benchmarks via LLM

Chungqiu Steven Xia* Yinlin Deng* Lingming Zhang
University of Illinois Urbana-Champaign &

{chunqiu2, yinlind2, lingming}@illinois.edu

Abstract

Large language models (LLMs) have become the go-to choice for code
generation tasks, with an exponential increase in the training, development,
and usage of LLMs specifically for code generation. To evaluate the ability
of LLMs on code, both academic and industry practitioners rely on popular
handcrafted benchmarks. However, prior benchmarks contain only a
very limited set of problems, both in quantity and variety. Further, due to
popularity and age, many benchmarks are prone to data leakage where
example solutions can be readily found on the web and thus potentially
in training data. Such limitations inevitably lead us to inquire: Is the
leaderboard performance on existing benchmarks reliable and comprehensive enough
to measure the program synthesis ability of LLMs? To address this, we introduce
¥ EVOEVAL- a program synthesis benchmark suite created by evolving
existing benchmarks into different targeted domains for a comprehensive
evaluation of LLM coding abilities. Our study on 57 LLMs shows that
compared to the high performance obtained on standard benchmarks like
HUMANEVAL, there is a significant drop in performance (on average 38.1%)
when using EVOEVAL. Additionally, the decrease in performance can range
from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs
and showing potential overfitting of existing benchmarks. Furthermore, we
showcase various insights including the brittleness of instruction-following
models when encountering rewording or subtle changes as well as the
importance of learning problem composition and decomposition. EVOEVAL
not only provides comprehensive benchmarks, but can be used to further
evolve arbitrary problems to keep up with advances and the ever-changing
landscape of LLMs for code. We have open-sourced our benchmarks, tools,
and all LLM-generated code athttps://github.com/evo-eval/evoevall

1 Introduction

Program synthesis (Gulwani et al.,[2017) is regarded as the holy-grail in the field of computer
science. Recently, large language models (LLMs) have become the default choice for pro-
gram synthesis due to its code reasoning capabilities acquired through training on code
repositories. Popular LLMs like GPT-4 (OpenAl, [2023), Claude-3.5 (Anthropic} [2024b), and
Gemini (Team et al.! 2023) have shown tremendous success in aiding developers on a wide
range of coding tas MHCFIz:n et al.|[2021}Xia & Zhang}[2023; Deng et al.,|2023bi5. Furthermore,
researchers and practitioners have designed code LLMs (e.g., DeepSeek Coder (Guo et al.|

2024), CodeLlama (Roziere et al.,[2023), and StarCoder (Li et al.,[2023)) using a variety of train-
ing methods designed specifically for the code domain to improve LLM code understanding.

Coding benchmarks like HUMANEVAL (Chen et al.,, 2021) and MBPP (Austin et al.}
2021) have been handcrafted to evaluate the program synthesis task of turning natura
anguage descriptions (e.g., docstrings) into code snippets. These code benchmarks measure

*Contributed equally with author ordering decided by Nigiril

Published as a conference paper at COLM 2024

def create_alias(name: str) — str:
""" For a given name, create an alias

following these rules: If the name
includes a vovel, replace it with the
def vowels_count(s, 1=None): next vowel in the cycle. If the name def bf(planetl, planet2)
“nnypite a function vowels_count which includes a consonant, replace it with the “uv peturn a tuple containing all
takes a string representing a word and an next consonant in alphabetical order""" planets whose orbits are located
optional list of custom vowels as input. between the orbit of planetl and
@ Creative Problen the orbit of planet2, sorted by
e the proximity to the sun. """
@pifficult Problen - o
% « GRAREVE:
iy) Problem
P (% A&
%% © o
2, <@
‘:»,-\«:\, D)
S, %
\ 2,2 def vonels_count(s):
(:‘\ """ Write a function vowels_count which
takes a string representing a word as
dinput and returns the number of vowels def planet_vowel_count(planetl, planet2):
in the string. Vowels in this case are wnu Wpite 3 funcion that takes two
&9 By e, e, T, e planet names planetl and planet2. Return
R iegeT iV gRsgats copajvone L-gRuLRon Lygkhien \ n integer representing the number of
Qeo it is at the end of the given word. owels in the names of the planets whose
& orbits are located between the orbit of
5 Problen o
¥ planetl and the orbit of planet2, sorted
by the proximity to the sun.
Proggs
QWnyy 7 thy, @conbine Problen
Iary.e‘ use
def vowels_count(s): hogs \
... end of the given word.
wan def check_vowel(s): ™
Only count the lowercase vowels. {4 halgen function
@ suvtle Problem def frequency_count(s):

""Given a string s, count the freguency
of each vowel in the string. Return the
results as a dictionary. """

@ ool Use Problem

Figure 1: Exemplar problems generated in EVOEVAL starting from a HUMANEVAL problem.

functional correctness by evaluating LLM-generated solutions against a set of limited
predefined tests. Recent work (Liu et al.,[2023) has further included augmented tests to
rigorously evaluate the functional correctness of LLM generated code. However, apart from
test inadequacy, existing popular code synthesis benchmarks have the following limitations:

¢ Limited amount and variety of problems. Code benchmarks are mainly constructed by
human annotators manually. Due to the high manual effort required, they only contain a
limited amount of problems (e.g., only 164 problems in HUMANEVAL). Such a low amount
of problems is not sufficient to fully measure the complete spectrum of program synthesis
capability of LLMs. Additionally, prior benchmarks include mostly self-contained prob-
lems that lack variety in both types and domains, where the final evaluation output only
shows the percentage of problems solved. While they provide a baseline overview of the
coding abilities, LLM builders and users cannot gain deeper insights to exactly which
problem types or coding scenarios the particular LLM may excel in or struggle with.

* Prone to dataleakage and training dataset composition. Popular benchmarks like HU-
MANEVAL and MBPP were released almost 4 years ago, with example solutions available
in third-party open-source repositories. In fact, recent work (Riddell et al., [2024) has
shown that there is substantial overlap between benchmark solutions and open-source
training corpuses. Furthermore, the problems within these benchmarks are often simple
derivatives of common coding problems. While recent LLMs have been climbing the
leaderboard by achieving higher pass@1 scores (often with minimal difference between
the next best model), it is unclear whether high scores achieved by LLMs are truly due to
their learned coding capability or instead obtained via memorizing benchmark solutions.

As more LLMs are being constructed, trained, and used especially for code, the insufficient
evaluation benchmarks raise a critical question: Is leaderboard performance on existing
benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs?

Our work. To address the limitation of existing benchmarks, we introduce 9§ EVOEVAL —
a set of program synthesis benchmarks created by evolving existing problems. The key idea
behind EVOEVAL is to use LLMs to automatically transform existing problems into targeted
domains, enabling more comprehensive evaluations. Unlike prior benchmark construction
approaches, which either obtain problems from open-source repositories (posing data
leakage risks) or require manual construction (resulting in high manual effort and limited
diversity), EVOEVAL leverages LLMs with targeted transformations to synthesize new
coding problems. Specifically, we design five such transformations: Difficult, Creative, Subtle,
Combine, and Tool Use. We then prompt GPT-4 to independently transform any existing
problem in previous benchmarks into a new problem within the targeted domain.

Figure [l shows a concrete example of EVOEVAL starting with an initial problem in HU-
MANEVAL- vowels_count to count the number of vowels. @ We first observe the transforma-
tion to a more difficult problem by asking GPT-4 to add additional requirements. This new

Published as a conference paper at COLM 2024

problem contains a separate custom vowel list that makes the overall program logic more
complex. @ We can craft a more creative problem of create_alias that still uses concepts like
vowels and consonants but involves a much more innovative and unusual problem descrip-
tion. @ We can also make subtle changes to the problem where we only count the lowercase
vowels to test if the LLM is simply memorizing the benchmark. @ We can additionally com-
bine concepts from multiple problems together. In the example, we use another problem bf
to create a new problem that returns the vowels in each planet sorted based on the orbiting
order. @ Furthermore, we can test LLMs’ ability to utilize helper functions (commonplace in
real-world code repositories) to solve more complex problems. Again, we reuse the concepts
of vowels from the initial problem. However, instead of directly solving the problem, the
LLM can use the provided check_vowel helper function to simplify the solution.

Together, these transformed benchmarks are designed to introduce more challenging
problems and assess different aspects of LLMs’ code understanding and synthesis
abilities. In EVOEVAL, we additionally use GPT-4 to generate the ground truth solution
to each problem as well as rigorous test cases to evaluate the functional correctness of
LLM-synthesized code. Finally, we manually check each generated problem and ground
truth to ensure problem clarity and correctness. EVOEVAL serves as a way to further evolve
existing benchmarks into more complex and well-suited problems for evaluation in order to
keep up with the ever-growing LLM research. Our work makes the following contributions:

¢ Benchmarks: We present EVOEVAL- a set of program synthesis benchmarks created by
evolving HUMANEVAL problems. EVOEVAL includes 828 problems across 7 benchmarks,
equipped with ground truth solutions and test cases to evaluate functional correctness.

e Approach: We propose a complete pipeline to generate new coding problems for
benchmarking by evolving existing problems through targeted transformations via LLMs.
Furthermore, our pipeline reduces manual checking effort by automatically refining
problem inconsistencies, generating ground truth, and producing test cases.

* Study: We conduct a comprehensive study on 57 LLMs. We found that compared to the
high performance on prior benchmarks, LLMs significantly drop in accuracy (average
38.1%) on EVOEVAL. Additionally, this drop is not uniform across LLMs (from 19.6%
to 47.7%), leading to drastic ranking changes. We further demonstrate that certain LLMs
cannot keep up their high performance when evaluated on more challenging tasks or
problems in different domains, highlighting the possibility of overfitting to existing
benchmarks. Moreover, we observe that instruction-following LLMs are sensitive to
rephrasing or subtle changes in the problem description. They also struggle with utilizing
already provided auxiliary functions. We further demonstrate that current LLMs fail
to effectively compose multiple general coding concepts to solve more complex variants,
or address subproblems decomposed from problems they previously solved.

2 Approach

Targeted problem transformation. We first prompt a powerful LLM to evolve an existing
problem into a new one using a transformation prompt. Each transformation prompt
aims to transform the existing problem in a specific manner. We define two different
transformation types: semantic-altering — changes the semantic meaning of the problem and
semantic-preserving — modifies the description while keeping the same semantic meaning.

Problem refinement & ground truth generation. The initial evolved problem produced by
the LLM may include inconsistencies like incorrect examples. For coding benchmarks, such
mistakes can lead to inaccurate evaluation. As such, we introduce a refinement pipeline
to iteratively rephrase and refine the problem as needed. We first query the LLM to obtain
a possible solution and test inputs for the initial problem. We then evaluate the test inputs
on the solution to derive the expected outputs. Next, we instruct the LLM to refine the
problem by adding or fixing the example test cases in the docstring using the computed
test inputs/outputs, and then regenerate a solution. We then check if the new solution
on the test inputs produces the same outputs as the previous solution. The intuition is
that since the refined problem should only include minimal changes, the solution output
should then remain the same in the absence of any inconsistencies. As such, if we observe

Published as a conference paper at COLM 2024

differences between the two solution outputs, we ask the LLM to further revise and fix any
inconsistencies and repeat the process. If both solutions agree on outputs, we return the
new problem description, solution, and test cases for functional evaluation.

Manual examination & test augmentation. For each transformed problem, we carefully ex-
amine and adjust any final faults to ensure each problem and ground truth are correctly spec-
ified and implemented. We further generate additional tests using an LLM-based test aug-
mentation technique (Liu et al.,|2023). Finally, we produce EVOEVAL, a comprehensive code
synthesis benchmark suite containing diverse problems to evaluate LLM coding capability
across various domains. Details like transformation prompts are presented in Appendix D}

3 EVOEVAL Benchmarks & Evaluation Methodology

EVOEVAL uses HUMANEVAL problems as seeds and GPT-4 as the foundation LM to produce
828 problems across 7 different benchmarks (5 semantic-altering and 2 semantic-preserving).
For the semantic-altering benchmarks, we generate 100 problems each using different seed
problems from HUMANEVAL. For the semantic-preserving benchmarks, we transform all 164
problems in HUMANEVAL as we reuse the original ground truths, requiring less validation.

* DIFFICULT: Increase complexity by adding constraints, replacing commonly used re-
quirements to less common ones, or introducing additional steps to the original problem.
CREATIVE: Produce a more creative problem using stories or narratives.

SUBTLE: Make a subtle change such as inverting or replacing a requirement.

CoMBINE: Combine two problems by using concepts from both problems.

TooOL_USE: Produce a main problem and helper functions. Each helper function is fully
implemented and provides hints or useful functionality for solving the main problem.
VERBOSE: Reword the original docstring to be more verbose with descriptive language
CONCISE: Reword the original docstring to be more concise using concise language.

Evaluation setup: Each LLM generated sample is executed against the test cases and
evaluated using differential testing (McKeeman, [1998) — comparing against the ground
truth results to measure functional correctness. We focus on greedy decoding and denote
this as pass@1.

Models: We evaluate 57 LLMs (Appendix|C), including both proprietary and open-source
models. Further, we classify the LLMs as either base or instruction-following and discuss
the effect of model variants.

Input format: To produce the code solution using each LLM, we provide a specific input
prompt: For base LLMs, we let the LLM autocomplete the solution given the function
header and docstring. For instruction-following LLMs, we use the recommended instruction
and ask the LLM to generate a complete solution for the problem.

4 Results
41 LLM Synthesis & Evaluation on EVOEVAL

EVOEVAL produces more complex and challenging benchmarks for program synthesis.
Table [L shows the pass@1 performance along with the ranking of LLMs on each of the
semantic-altering EVOEVAL benchmarks with the average pass@l and ranking on all
benchmarks in the last columng!| First, compared to the success rate on HUMANEVAL,
when evaluated on EVOEVAL, all LLMs consistently perform worse. For example, the
state-of-the-art GPT-40, GPT-4 and Claude-3.5 models solve close to 85% of all HUMANEVAL
problems but fall almost below 55% pass@1 when evaluated on the DIFFICULT problems.
On average, across all benchmarks, the performance of LLMs decreased by 38.1%
(DIFFICULT: 56.6%, CREATIVE: 48.2%, SUBTLE: 5.0%, COMBINE: 74.7%, and TOOL_USE: 6.1%).
Additionally, this drop is not uniform across all LLMs and can range from 19.6% to 47.7%.

1We evaluated all 57 LLMs, however, we omitted some LLMs in Tableror space reasons.

Published as a conference paper at COLM 2024

Table 1: pass@1 and ranking results (* indicates tie) on the semantically-altering EVOEVAL
and HUMANEVAL benchmarks (including HUMANEVAL+ scores in the parenthesis).
denotes instruction-following LLMs.

HUMANEVAL WDIFFICULT ¥CREATIVE WSUBTLE WCOMBINE ¥TOOL_USE ¥WEVOEVAL

e pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank pass@1 rank
©®GPT-40 NA 86.0(81.7) 1 510 5 64.0 2 80.0 4 510 *3 720 1 673 2
® GPT-4-Turbo™ NA83.5(805) *2 500 *6 61.0 3 8.0 *1 450 5 690 *3 651 4
©®GPT-4+ NA823(762) *6 520 *2 660 1 760 6 530 2 680 *6 662 3
® GPT-3.5-Turbo NA76.8(69.5) *9 33.0 *19 420 *13 700 *9 330 9 640 *10 531 12
A Claude-3.5* NA835(780) *2 560 1 600 4 80 *1 570 1 680 *6 678 1
A Claude-3+ NA823(750) *6 500 *6 53.0 7 81.0 3 420 7 690 *3 629 7
A Claude-3-haiku= NA 74.4(66.5) *13 40.0 *12 47.0 *11 65.0 *16 250 *12 61.0 *16 521 13
& Claude-2+ NA 66.5(62.2) *24 290 23 420 *13 640 *19 19.0 20 570 *22 462 21

O Gemini-1.5-pro™ NA835(76.8) *2 520 *2 550 *5 780 5 430 6 690 *3 634 6
O Gemini-1.0-pro™ NA 62.2(56.7) 27 370 *16 400 18 53.0 *27 23.0 *I15 57.0 *22 454 23
O PaLM-2+ NA 40.2(36.6) 44 180 *38 220 39 36.0 *48 3.0 *45 460 *35 275 43
« DS Coder-v2-Inst 236b829(78.7) 5 520 *2 550 *5 750 7 510 *3 700 2 643 5

33b78.0(73.2) 8 47.0 9 470 *11 670 *11 31.0 *10 66.0 8§ 560 8
@ DS Coder-Inst™ 6.7b 74.4(69.5) *13 40.0 *12 370 *19 61.0 *23 180 *21 51.0 30 469 20
1.3b 63.4(60.4) 26 20.0 *36 250 *31 53.0 *27 9.0 *34 39.0 *47 349 30

33b50.6(427) 32 260 26 23.0 *36 470 *32 110 *31 63.0 *13 368 29
« DS Coder 6.7b 45.1(38.4) *37 21.0 *32 240 *33 47.0 *32 50 *41 550 *25 329 35
1.3b29.9(26.2) 51 6.0 *54 19.0 *41 270 55 0.0 57 400 46 203 51

« DS Coder-1.5-Inst* 7b 68.9(63.4) *21 37.0 *16 370 *19 66.0 *14 240 14 600 *18 488 16

« DS Coder-1.5 7b42.1(34.8) *41 21.0 *32 340 *23 43.0 *37 4.0 *43 540 *27 33.0 34
o0 Llama -3.1-Inst* 70b75.0(689) *11 420 10 490 9 730 8 340 8 620 15 558 9
00 Llama -3-Inst* 70b73.8(71.3) *15 41.0 11 50 8 700 *9 310 *10 640 *10 553 10

70b 66.5(59.8) *24 31.0 22 41.0 *16 650 *16 18.0 *21 65.0 9 477 18
34b51.8(439) 31 220 *30 27.0 29 43.0 *37 9.0 *34 470 *33 333 33
13b48.8(42.7) 35 21.0 *32 250 *31 46.0 35 8.0 *37 540 *27 338 32

7b433(39.00 39 140 44 18.0 *43 40.0 *43 8.0 *37 440 *39 279 42

70b 60.4(52.4) 29 250 27 290 *26 49.0 *29 140 *27 630 *13 401 28
34b 52.4(43.3) 30 150 43 240 *33 47.0 *32 11.0 *31 440 *39 322 36

00 CodeLlama-Inst™

o CodeLlama 13b42.7(36.6) 40 180 *38 240 *33 380 *45 60 40 480 *31 294 39

7b39.6(36.6) 45 10.0 *48 150 47 420 40 3.0 *45 440 *39 256 44
WizardCoder* 34b61.6(543) 28 240 28 320 25 550 26 17.0 *24 550 *25 408 26
WizardCoder-1.1% 33b73.8(69.5) *15 480 8 480 10 660 *14 200 19 640 *10 533 11
XwinCoder 34b 68.9(622) *21 330 *19 420 *I13 670 *11 150 26 600 *18 477 19
Phind-CodeLlama-2 34b70.7(66.5) 19 220 *30 350 22 630 21 250 *12 580 21 456 22
Code Millenials* 34b732(69.5) 17 350 18 410 *16 650 *16 17.0 *24 560 24 479 17
Speechless-CL 34b75.0(69.5 *11 380 15 37.0 *19 640 *19 230 *15 590 20 493 15
Magicoder-s-DS* 67b76.8(70.7) *9 400 *12 340 *23 670 *11 210 *17 610 *16 50.0 14
Magicoder-s-CL# 7b70.1(659) 20 270 25 260 30 580 25 110 *31 520 29 407 27

15b45.1(36.0) *37 160 *41 190 *41 41.0 *41 50 *1 480 *31 290 41
StarCoder2 7b34.8(31.1) *46 120 *45 17.0 45 380 *45 20 *51 460 *35 250 46

3b31.1(262) 50 80 *51 140 *48 310 *0 20 *51 350 51 202 52
StarCoder 15b 34.8(30.5) *46 120 *45 110 53 37.0 47 20 *51 440 *39 235 47
¥ Mixtral-Tnst* 8x7b 42.1(38.4) *41 210 *32 180 *43 41.0 *41 9.0 *34 450 *37 293 40
OpenChat* 7b713(665) 18 330 *19 290 *26 62.0 22 140 *27 430 44 421 24
© Gemma-Inst* 7b28.0(232) *54 60 *54 10.0 *54 290 54 20 *51 310 53 177 54
©Gemma 7b31.7(250) 49 120 *45 13.0 *50 400 *43 20 *51 39.0 *47 230 48

2b22.0(17.1) 57 2.0 57 60 57 240 57 20 *51 210 56 128 57
£ Phi-2 27b50.0(45.1) *33 180 *38 230 *36 49.0 *29 140 *27 370 50 318 38

72b67.1(61.6) 23 280 24 280 28 610 *23 210 *17 470 *33 420 25
Qwen-1.5% 14b50.0(45.7) *33 200 *36 230 *36 480 31 180 *21 440 *39 338 31

7b 42.1(37.8) *41 16.0 *41 13.0 *50 43.0 *37 70 39 320 52 255 45

Published as a conference paper at COLM 2024

e g i L S

DS-v2-I. 5.5 genini-pro-1.5 9 " b,

A // gemini-pro-1.5 / \p %ﬁx // gemini-pro-1.5 /
Claude\s.s g

bs 3T
e E Kt o5 & ey /7 V33011 & / wessuria P Tl
0.7 —® ot
- ""3'5"":;(3%““ /' apt-3.55turbo n_v{ weap N Bl e 7 ll--!-l-v‘!}-g dude-3
% i-s-cL7b '“"'“, """gj" Llana-3, 1y76b-1 o ! !-l-m-!// b oS “33b-1.1
§0.6 ns-l.3b-ra’/m q\g_;.:m 0S-1.3b-1 &;_(lx-vl.s cLrapr— 0 m»;.s-t;r;u S0 g5 Rrn s
+ cLron’t -5 o o\m%; ,,.i..i.,f L yo-1
To.5 cL-78bPY geninifro cL-700-H0 7 e Lo "“?£"" / (36,"_,,
w -2 - hi-2
H oni-28 &> 7 & - g‘*nni-l 4 L) Ds-33b
Sou e A I fonsms [
starcodsr-15b // .ii?m.;;su IR er 15 ,/ ,/ Xtarcoder2-156
0.3
S A Sin S S
0.2 Vi Vi £

2
6.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2

0.0 0.2 0.4 0.4
Difficult pass@l Creative pass@l Combine pass@l

0.6 0.8 0.0 (] 6 .8

.2 0.4 0.
Tool_Use passel

Figure 2: HUMANEVAL+ vs EVOEVAL pass@1. Red identity line shows equivalent perfor-
mance. We cluster the LLMs into: purple region — aligned performance on HUMANEVAL vs.
EVOEVAL and blue region — over performance on HUMANEVAL vs. EVOEVAL.

LLMs struggle on EVOEVAL benchmarks compare to the high performance achieved on
HUMANEVAL. One surprising finding comes from SUBTLE, where the average performance

of LLMs drops by 22.5% on the same 100 problemsﬁ even though only small changes are
made to the original problems and the difficulty remains roughly the same. Appendix E|Fig-
ure 21| presents an example problem and failing solution. Furthermore, we can also identify
LLMSs which struggle heavily on specific types of problems compared to their relative perfor-
mance on HUMANEVAL. Figure2]shows a scatter plot of HUMANEVAL+ vs. EVOEVAL scores.
As we saw before, the significant portions of the models tend to be worse on EVOEVAL than
HUMANEVAL (i.e., purple shaded region). However, there are LLMs that have a much higher
HUMANEVAL score compared to their performance on EVOEVAL (i.e., blue shaded region).
This implies potential data leakage of popular benchmarks where LLM performances are ar-
tificially inflated but do not translate to more difficult or other program synthesis problems.

Significant ranking changes of LLMs on EVOEVAL. Compared to HUMANEVAL where
top models all perform similarly, we observe drastic differences in ranking changes on
EVOEVAL. We observe that while the relative difference between the top 10 models on
HUMANEVAL is around 10%, the difference on EVOEVAL on average is over 20%. Due to
such saturation, existing benchmarks may not reliably rank the program synthesis ability
of each model. For example, while Claude-3.5 and GPT-4-Turbo are tied for second on
HUMANEVAL, they both excel at different types of problems: Claude-3.5 performs best on
difficult and combine problems, while GPT-4-Turbo is better with tool use and creative
tasks. Furthermore, while GPT-40 achieves the top HUMANEVAL and HUMANEVAL+ score,
it falls off compared to the base GPT-4 variant where it is worse on DIFFICULT, CREATIVE
and COMBINE problems. Such evaluation cannot be gained through naively reporting
existing coding benchmark performance. Overall, by evolving the original benchmark
into more difficult and diverse problems of different types, EVOEVAL can provide a more
holistic evaluation and ranking of the coding ability of LLMs.

EVOEVAL can be used to comprehensively compare multiple mod-
els. In Figure[3] while both WizardCoder-1.1 and Phind-CodeLlama-
2 have similar HUMANEVAL scores, they perform drastically dif-
ferently across EVOEVAL benchmarks. WizardCoder-1.1 is better
on DIFFICULT and CREATIVE while Phind-CodeLlama-2 is better
on COMBINE problems. This can be explained through the train-
ing dataset used in each LLM: WizardCoder-1.1 uses an evolv-
ing dataset by generating more complex problems whereas Phind-
CodeLlama-2 is fine-tuned on high quality programming problems
that seems to boost the ability to solve programs which combines
multiple programming concepts. Different from just reporting a
singular pass@k score, EVOEVAL also allows a detailed analysis

Figure 3: Radar graph

2Note that SUBTLE only contains 100 problems, and the pass@1 score on these 100 seed HUMANEVAL
problems is higher compared to the full 164 problems. Therefore, this back-to-back performance drop is
much higher than the performance drop from full HUMANEVAL to SUBTLE (5.0%) mentioned above.

Published as a conference paper at COLM 2024

0.8 'l""uul'u

LYY

Wupum&;;muw”wnmn

W Verbose

GRNOBYBRYG O FEX & WO

@ o o N » MmN XY ANIS NSy 2R 0 @ N v AN o & 0
R G g o S i
NI F A OB g o el R JORE
&y e PP F e NS fNFE Y & LIy b
FAFE PPl S F TGN TF 7
F PSR g &8s & s
A §éf5 F8ST §§é § 4
é L. g9 &

Instruction-following LLMs

Figure 4: HUMANEVAL pass@1 with relative decrease or increase on VERBOSE and CONCISE.

Table 2: Results on COMBINE and COMBINE-NAIVE. HUMANEVAL is categorized into
pass both, one and none, depending on the success on the two parent problems used for
combination. COMBINE (Solved) and COMBINE-NAIVE (Solved) then show the distribution
of solved problems that came from the previous categories. Composition Percentage is the %
of pass both problems the LLM can still solve when combined.

si; HUMANEVAL COMBINE (Solved) Composition
ize
Percentage
passboth passone passnone|passboth passone passnone
G GPT-40 NA 80 20 0 49 2 0 61.2%
© GPT-4-Turbo™ NA 79 19 2 38 6 1 48.1%
© GPT-4+ NA 93 7 0 50 3 0 53.8%
© GPT-3.5-Turbo™ NA 65 34 1 24 9 0 36.9%
& Claude-3.5* NA 81 18 1 49 8 0 60.5%
& Claude-3+ NA 81 19 0 85 7 0 43.2%
0 Gemini-1.5-pro~ NA 86 13 1 40 3 0 46.5%
« DS Coder-v2-Inst™ 236b 83 16 1 47 4 0 56.6%
HUMANEVAL COMBINE-NAIVE (Solved)

© GPT-40 NA 881 185 8 589 50 0 66.9%
© GPT-4-Turbo™ NA 863 195 16 407 61 3 47.2%
G GPT-4+ NA 1018 55, 1 768 7 0 75.4%
© GPT-3.5-Turbo™ NA 799 261 14 474 79 1 59.3%
& Claude-3.5* NA 861 203 10 710 93 1 82.5%
& Claude-3+ NA 796 268 10 359 96 1 45.1%
O Gemini-1.5-pro~ NA 788 267 19 595 148 6 75.5%
« DS Coder-v2-Inst™ 236b 805 252 17 598 95 5 74.3%

across different dimensions of coding capability to identify particular domains or types of
coding questions an LLM struggles with or excels in.

Instruction-following LLMs are sensitive to subtle changes or rephrasing in problem
docstrings. Figure E|shows the HUMANEVAL score (bar) and the relative performance drop
or improvement (arrows) on VERBOSE and CONCISE. We observe that almost all instruction-
following LLMs drop in performance (average 3.4% and 4.0% decrease on VERBOSE and
CONCISE respectively) when evaluated on the two semantic-preserving dataset compared
to the original HUMANEVAL. This is drastically different from the base variants, where we
even observe performance improvements (average 0.5% and 2.1% increase on VERBOSE and
CONCISE respectively). VERBOSE and CONCISE do not change the semantic meaning of the
original problem; they simply reword it in either a more verbose or concise manner. Prior
work|Deng et al. (2023a) has shown that by rephrasing the original problem description, one
can further boost LLM performance, and we observe the similar phenomenon here mostly
only for non-instruction-following models. Additionally, even on SUBTLE, where only small
changes are applied, on average, instruction-following LLMs drops by 7.4% whereas base
models only decrease by less than 1%. These findings across LLM types show that while
instruction-tuned LLMs are expected to align better with detailed instructions, they fail to
distinguish between these rephrasing or subtle changes in docstring, indicating potential
memorization or contamination of prior evaluation benchmarks.

4.2 Problem Composition & Decomposition

Composing problems. The ability to compose different known concepts to solve new
problems is known as compositional generalization (Keysers et al.,[2020). This skill is essential
for code synthesis, especially for complex problems in real-world programs. However,
measuring compositional generalization in LLM presents a fundamental challenge since

Published as a conference paper at COLM 2024

Table 3: Results on DECOMPOSE. HUMANEVAL shows the pass/fail breakdown of the 50
seed HUMANEVAL problems. DECOMPOSE is categorized into pass both, one and none, based
on if the LLM can solve both subproblems. Decomp. % and Recomp. % are the % of originally
passing and failing problems for which the LLM can solve both subproblems respectively.

Size | HUMANEvVAL | DECOMPOSE | Decomp. Recomp.

| | HUMANEVAL pass | HUMANEVAL fail | % o

|pass fail |passboth passone passnone|passboth passone passnone|
©® GPT-40 NA | 41 9 26 14 1 5 4 0 63.4% 55.6%
© GPT-4-Turbo™ NA | 39 11 29 9 1 4 6 1 74.4% 36.4%
© GPT-4~ NA | 47 3 37 10 0 0 3 0 78.7% 0.0%
© GPT-3.5-Turbo ™ NA | 33 17 19 13 1 11 4 2 57.6% 64.7%
& Claude-3.5 NA | 38 12 25 9 4 3 9 0 65.8% 25.0%
A Claude-3~ NA | 39 11 26 11 2 6 5 0 66.7% 54.5%
O Gemini-1.5-pro~ NA | 41 9 27 13 1 5 3 1 65.9% 55.6%
« DS Coder-v2-Inst 236b| 38 12 31 7 0 6 6 0 81.6% 50.0%

it requires controlling the relationship between training and test distributions (Shi et al.|
2024). While it is not easy to control the pre-training data of LLMs, we have more control in
the testing phase. Hence, we focus on program concepts that have been demonstrated to
fall within the capabilities of an LLM, and explore whether this proficiency extends to the
combination of program concepts. As such, we start by taking a deeper look at the COMBINE
problems evolved from combining previous HUMANEVAL problems.

First half of Table[2/shows the COMBINE dataset results of the top LLMs. We observe that
almost all problems solved came from the pass both category, which is intuitive as we do
not expect LLMs to solve a problem composed of subproblems that it cannot already solve.
However, the composition percentage is quite low, as only a few LLMs are able to achieve
greater than half. This demonstrates that while state-of-the-art LLMs can achieve a high
pass rate on simple programming tasks, they still struggle with composing these known
concepts to address more complex problems.

Composing problems naively. Since COMBINE prob-
lems are not guaranteed to contain no additional new

concepts, we build a simplified dataset for sequential
composition. Let A and B be two separate problems
with x as input(s) for A, we aim to create a new prob-
lem C with the same inputs where the solution can be
written as B(A(x)). To accomplish this, the new prob-
lem combines docstrings for A and B sequentially.
However, simple concatenation of docstringsleads to
unclear descriptions. As such, for each problem in
HUMANEVAL, we manually create two separate vari-
ants based on which order the problem may come
in the new docstring. Figure 5 shows an example of

def add(x: int, y: int):
"""add two numbers x and y"""

Problem A

def digits(n):
"""Given a positive integer n,
return the product of the odd digits.
Return @ if all digits are even."""

Problem B

def add_digits(x: int, y: int):
"""Fiprst, add two numbers x and y

Next, given the resulting

positive integer n,

return the product of the odd digits.
Return @ if all digits are even."""

Problem C

how naive combination problem is constructed with ~ Figure 5: COMBINE-NAIVE problem
the manual sequential instruction highlighted in red.

Using these modified problem docstrings, we build a sequential combination dataset —
COMBINE-NAIVE, containing 1074 problems by randomly combining problems filtering for

input output matching (i.e., the type of A(x) should equal to the type of y in B(y)).

The latter half of Table shows the results on COMBINE-NAIVE following the same setup as
COMBINE. We observe that while the composition percentage on the naive dataset improves
significantly compared to the evolved COMBINE dataset, it still fails to reach near perfection,
with the best LLM being able to only solve ~80% of prior pass both problems. While existing
LLM training or inference paradigms for code focus on obtaining high quality datasets
boosted with instruction-tuning, our result shows that existing LLMs still struggle with the
concept of problem composition to tackle more complex problems.

Decomposing problems. We also evaluate problem decomposition — decomposing larger
problems into multiple subproblems. We start by selecting 50 HUMANEVAL problems and
then follow our approach in Section [2|to decompose each original problem into two smaller
subproblems, creating 100 problems in our DECOMPOSE benchmark. Table [3 shows the

Published as a conference paper at COLM 2024

u “’ﬂ &# &ﬂ ”# ”‘ ”# mm" -

DS-33b DS-7b-v1.5 DS-6.7b DS-1.3b CL-76b CL-34b CL-13b CL-7b gemma-7b mistral-7b

pass@l

Figure 6: pass@1 from TOOL_USE-MAIN_ONLY (darker bar) to TOOL_USE (lighter bar).

results of selected LLMs on DECOMPOSE. We first observe that similar to the composition
percentage in the COMBINE and COMBINE-NAIVE problems, LLMs do not achieve a high
decomposition percentage. Since current LLMs are trained to recover seen outputs in their
training data, and when used for program synthesis, they cannot generalize the concepts
from training data. This is demonstrated by not being able to solve smaller subproblems
obtained from solved more difficult parent problems. Conversely, LLMs can sometimes
solve both subproblems even when the parent problem is not solved (i.e., recomposition

ercentage), showing room for improvement with techniques like planning (Jiang et al.|
2023b) and least-to-most prompting (Zhou et al.,[2022).

4.3 Tool Use Problems

We analyze the TOOL_USE benchmark, which contains helper functions. We further con-
struct the TOOL_USE-MAIN_ONLY benchmark, which contains the same set of problem as
TOOL_USE, except that the input to the LLM does not include any helpers. We observe that
compared to without any helper functions (average 29.8%), LLMs on average improve by
80.1% when provided with helper functions. This is expected as helper functions reduce the
work required to solve the more complex problem. However, this improvement is not uni-
form: the average improvement when given the auxiliary functions for instruction-following
models is only 59.2% compared to the base LLMs” improvement of 122.0%.

In Figure|6, we observe that without the helpers, the instruction-following models signif-
icantly outperform their base LLMs. However, once the helpers are provided, this gap is
drastically decreased, with cases even where the base models outperform their instruction-
following counterparts. As real-world coding involves understanding, using, and then
reusing existing functions across different places in the repository, being able to success-
fully leverage auxiliary methods is key. Current instruction-following LLMs are generally
fine-tuned with data consisting of self-contained code snippets without the interaction and
learning of function usages. This is further exacerbated by prior benchmarks, which mostly
use self-contained functions, thus cannot test the tool-using capability of LLMs.

5 Related Work

Large language models for code. Starting with the general development of LLMs for general
purpose tasks, developers have applied LLMs to perform code-related tasks by further
training LLMs using code snippets from open-source repositories. Such LLMs include
CODEX (Chen et al.,[2021), CodeT5 (Wang et al., [2021), CodeGen (Nijkamp et al.| [2023),
InCoder (Fried et al.,[2023), CodeLlama (Roziére et al.,[2023), StarCoder (Li et al.| 2023}
[Lozhkov et al.,[2024), DeepSeek Coder (Guo et al}[2024), etc. More recently, researchers
have applied instruction-tuning methods to train code-specific LLMs that are well-versed in
following instructions. Examples of such LLMs include CodeLlama-Inst (Roziére et al.,[2023)
and DeepSeek Coder-Instruct (Guo et al.,;[2024). WizardCoder (Luo et al[2023) instruction-
tunes the model using Evol-Instruct to create more complex instructions. Magicoder (Weil
let al.,)2023) develops OSS-Instruct by synthesizing high quality instruction data from open-
source code snippets. OpenCodelnterpreter (Zheng et al.,[2024) leverages execution feedback
for instruction-tuning in order to better support multi-turn code generation and refinement.

Program synthesis benchmarking. HUMANEVAL (Chen et al.,2021) and MBPP (|§ustin etal,

2021) are two of the most widely-used handcrafted code generation benchmarks complete
with test cases. Building on these popular benchmarks, additional variants have been

Published as a conference paper at COLM 2024

crafted including: EVALPLUS (Liu et al.,[2023) which improves the two benchmarks with
more complete test cases; HUMANEVAL-X (Zheng et al., 2023) which extends HUMANEVAL
to C++, JavaScript and Go; MultiPL-E (Cassano et al., 2023) which further extends both
HUMANEVAL and MBPP to 18 languages. Similarly, other benchmarks have been developed
for specific domains: DS-1000 (Lai et al.,[2023) and Arcade (Yin et al,[2022) for data science
APIs; CodeContests (Li et al.,|2022), APPS (Hendrycks et al.,2021), and LiveCodeBench (Jain
et al.,[2024) for programming contests, and SWE-Bench (Jimenez et al., 2024) for software
engineering tasks. Different from prior benchmarks which require handcraft problems from
scratch — high manual effort or scrape open-source repositories or coding contest websites
— leading to unavoidable data leakage, EVOEVAL directly uses LLMs to evolve existing
benchmark problems to create new complex evaluation problems. Furthermore, contrasting
with the narrow scope of prior benchmarks (often focusing on a single type or problem,
i.e., coding contests), EVOEVAL utilizes targeted transformation to evolve problems into
different domains, allowing for a more holistic evaluation of program synthesis using LLMs.

6 Conclusion

We present EVOEVAL- a set of program synthesis benchmarks created by evolving existing
problems into different target domains for a holistic and comprehensive evaluation of LLM
program synthesis ability. Our results on 57 LLMs show drastic drops in performance
(average 38.1%) when evaluated on EVOEVAL. Additionally, we observe significant ranking
differences compared to prior leaderboards, indicating potential dataset overfitting on
existing benchmarks. We provide additional insights, including the brittleness of instruction-
following LLMs as well as the limited compositional generalization abilities of LLMs.

7 Acknowledgment

We thank Owen Colegrove for his help on starting this project and providing valuable
feedback throughout, Jiawei Liu for providing helpful discussions and Yifeng Ding for his
help in running experiments. This work was partially supported by NSF grant CCF-2131943
and Kwai Inc. This project is supported, in part, by funding from Two Sigma Investments,
LP. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of Two Sigma Investments,
LP.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Anthropic. Introducing claude 2.1. https://www.anthropic.com/news/claude-2-1/,
2023.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family/, 2024a.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet/, 2024b.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Xiaodong Deng Kai Dang, Yang Fan, Wenbin
Ge, Fei Huang, Binyuan Hui, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Tianyu Liu,

10

http://www.twosigma.com/
http://www.twosigma.com/
https://www.anthropic.com/news/claude-2-1/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-5-sonnet/
https://www.anthropic.com/news/claude-3-5-sonnet/

Published as a conference paper at COLM 2024

Keming Lu, Jianxin Ma, Rui Men, Na Ni, Xingzhang Ren, Xuancheng Ren, Zhou San,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Jin Xu, An Yang, Jian Yang, Kexin Yang,
Shusheng Yang, Yang Yao, Jianwei Zhang Bowen Yu, Yichang Zhang, Zhenru Zhang,
Bo Zheng, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Introducing
qwenl.5. https://qwenlm.github.io/blog/qwenl.5/, 2023b.

BudEcosystem. Code millenials 34b. URL |[https://huggingface.co/
budecosystem/code-millenials-34b] (https://huggingface.co/budecosystem/
code-millenials-34b).

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin,
Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman,
etal. Multipl-e: A scalable and polyglot approach to benchmarking neural code generation.
IEEE Transactions on Software Engineering, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let
large language models ask better questions for themselves, 2023a.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang.
Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models. In 32nd International Symposium on Software Testing and Analysis (ISSTA),
2023b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code
infilling and synthesis. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=hQwb-1bM6EL,

Google. Our next-generation model: Gemini 1.5. https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/, 2024.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations
and Trends® in Programming Languages, 4(1-2):1-119, 2017. ISSN 2325-1107. doi: 10.1561/
2500000010. URL http://dx.doi.org/10.1561/2500000010,

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Lj, et al. Deepseek-coder: When the large language model meets
programming-the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS, 2021.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural
information processing systems, 15, 2002.

HuggingFace. Hugging face, 2022. https://huggingface. co.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and
contamination free evaluation of large language models for code. arXiv preprint, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

11

https://qwenlm.github.io/blog/qwen1.5/
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
https://openreview.net/forum?id=hQwb-lbM6EL
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
http://dx.doi.org/10.1561/2500000010
https://huggingface.co

Published as a conference paper at COLM 2024

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code
generation with large language model. arXiv preprint arXiv:2303.06689, 2023b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github
issues? In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=VIF8yNQM66

Daniel Keysers, Nathanael Schérli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii
Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry
Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional
generalization: A comprehensive method on realistic data. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=SygcCnNKwr,

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark
for data science code generation. In International Conference on Machine Learning, pp.
18319-18345. PMLR, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the
source be with you!, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang,
Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel]. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. Competition-level code generation with alphacode. Science, 2022. URL
https://www.science.org/doi/abs/10.1126/science.abql1158|

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code gen-
eration. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=1qvx610Cu7

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max
Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry
Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauf3,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone,
Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien
Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Mufioz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the
stack v2: The next generation, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao,
Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language
models with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

William M McKeeman. Differential testing for software. Digital Technical Journal, 10(1):
100-107, 1998.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-1lama-3-1/,2024.

Microsoft ~ Research. Phi-2: The surprising power of small Ilan-
guage models. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/, 2023.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=SygcCnNKwr
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

Published as a conference paper at COLM 2024

Mistral Al team. Mixtral of experts a high quality sparse mixture-of-experts. https:
//mistral.ai/news/mixtral-of-experts/, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=iaYcJKpY2B_.

OpenAl Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/
chatgpt/, 2022.

OpenAl. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.
OpenAl Hello gpt-40. https://openai.com/index/hello-gpt-4o/, 2024.

phind team. Beating gpt-4 on humaneval with a fine-tuned codellama-34b. https://www.
phind.com/blog/code-1lama-beats-gpt4, 2023.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James Baicoianu,
and Nathan Cooper. Stable code 3b. URL [https://huggingface.co/stabilityai/
stable-code-3b] (https://huggingface.co/stabilityai/stable-code-3b).

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating
code generation capabilities of language models. arXiv preprint arXiv:2403.04811, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton.
Exedec: Execution decomposition for compositional generalization in neural program
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=oTRwljRgiv.

Jiangwen Su. Code millenials 34b. URL |[https://huggingface.co/
uukuguy/speechless-codellama-34b-v2.0] (https://huggingface.co/uukuguy/
speechless-codellama-34b-v2.0).

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Xwin-LM Team. Xwin-lm. https://github.com/Xwin-LM/Xwin-LM, 2023.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Open-
chat: Advancing open-source language models with mixed-quality data. arXiv preprint
arXiv:2309.11235, 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware uni-
fied pre-trained encoder-decoder models for code understanding and generation. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
8696-8708, 2021.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120, 2023.

Chungiu Steven Xia and Lingming Zhang. Keep the conversation going: Fixing 162 out of
337 bugs for $0.42 each using chatgpt. arXiv preprint arXiv:2304.00385, 2023.

13

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://www.phind.com/blog/code-llama-beats-gpt4
https://www.phind.com/blog/code-llama-beats-gpt4
%5Bhttps%3A//huggingface.co/stabilityai/stable-code-3b%5D(https://huggingface.co/stabilityai/stable-code-3b)
%5Bhttps%3A//huggingface.co/stabilityai/stable-code-3b%5D(https://huggingface.co/stabilityai/stable-code-3b)
https://openreview.net/forum?id=oTRwljRgiv
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
https://github.com/Xwin-LM/Xwin-LM

Published as a conference paper at COLM 2024

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. 2022.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and
refinement. arXiv preprint arXiv:2402.14658, 2024.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625,
2022.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source
models in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

14

	Introduction
	Approach
	EvoEval Benchmarks & Evaluation Methodology
	Results
	LLM Synthesis & Evaluation on EvoEval
	Problem Composition & Decomposition
	Tool Use Problems

	Related Work
	Conclusion
	Acknowledgment
	Reproducibility Statement
	EvoEval Benchmarks
	Potential Bias in Performance

	Evaluation LLMs
	Evaluated LLMs
	Detailed Evaluation Setup

	Transformation Prompts
	Example Problems in EvoEval

