

Published as a conference paper at COLM 2024

problem contains a separate custom vowel list that makes the overall program logic more
complex. 2 We can craft a more creative problem of create alias that still uses concepts like
vowels and consonants but involves a much more innovative and unusual problem descrip-
tion. 3 We can also make subtle changes to the problem where we only count the lowercase
vowels to test if the LLM is simply memorizing the benchmark. 4 We can additionally com-
bine concepts from multiple problems together. In the example, we use another problem bf

to create a new problem that returns the vowels in each planet sorted based on the orbiting
order. 5 Furthermore, we can test LLMs’ ability to utilize helper functions (commonplace in
real-world code repositories) to solve more complex problems. Again, we reuse the concepts
of vowels from the initial problem. However, instead of directly solving the problem, the
LLM can use the provided check vowel helper function to simplify the solution.

Together, these transformed benchmarks are designed to introduce more challenging
problems and assess different aspects of LLMs’ code understanding and synthesis
abilities. In EVOEVAL, we additionally use GPT-4 to generate the ground truth solution
to each problem as well as rigorous test cases to evaluate the functional correctness of
LLM-synthesized code. Finally, we manually check each generated problem and ground
truth to ensure problem clarity and correctness. EVOEVAL serves as a way to further evolve
existing benchmarks into more complex and well-suited problems for evaluation in order to
keep up with the ever-growing LLM research. Our work makes the following contributions:

• Benchmarks: We present EVOEVAL– a set of program synthesis benchmarks created by
evolving HUMANEVAL problems. EVOEVAL includes 828 problems across 7 benchmarks,
equipped with ground truth solutions and test cases to evaluate functional correctness.

• Approach: We propose a complete pipeline to generate new coding problems for
benchmarking by evolving existing problems through targeted transformations via LLMs.
Furthermore, our pipeline reduces manual checking effort by automatically refining
problem inconsistencies, generating ground truth, and producing test cases.

• Study: We conduct a comprehensive study on 57 LLMs. We found that compared to the
high performance on prior benchmarks, LLMs significantly drop in accuracy (average
38.1%) on EVOEVAL. Additionally, this drop is not uniform across LLMs (from 19.6%
to 47.7%), leading to drastic ranking changes. We further demonstrate that certain LLMs
cannot keep up their high performance when evaluated on more challenging tasks or
problems in different domains, highlighting the possibility of overfitting to existing
benchmarks. Moreover, we observe that instruction-following LLMs are sensitive to
rephrasing or subtle changes in the problem description. They also struggle with utilizing
already provided auxiliary functions. We further demonstrate that current LLMs fail
to effectively compose multiple general coding concepts to solve more complex variants,
or address subproblems decomposed from problems they previously solved.

2 Approach

Targeted problem transformation. We first prompt a powerful LLM to evolve an existing
problem into a new one using a transformation prompt. Each transformation prompt
aims to transform the existing problem in a specific manner. We define two different
transformation types: semantic-altering – changes the semantic meaning of the problem and
semantic-preserving – modifies the description while keeping the same semantic meaning.

Problem refinement & ground truth generation. The initial evolved problem produced by
the LLM may include inconsistencies like incorrect examples. For coding benchmarks, such
mistakes can lead to inaccurate evaluation. As such, we introduce a refinement pipeline
to iteratively rephrase and refine the problem as needed. We first query the LLM to obtain
a possible solution and test inputs for the initial problem. We then evaluate the test inputs
on the solution to derive the expected outputs. Next, we instruct the LLM to refine the
problem by adding or fixing the example test cases in the docstring using the computed
test inputs/outputs, and then regenerate a solution. We then check if the new solution
on the test inputs produces the same outputs as the previous solution. The intuition is
that since the refined problem should only include minimal changes, the solution output
should then remain the same in the absence of any inconsistencies. As such, if we observe

3

Published as a conference paper at COLM 2024

differences between the two solution outputs, we ask the LLM to further revise and fix any
inconsistencies and repeat the process. If both solutions agree on outputs, we return the
new problem description, solution, and test cases for functional evaluation.

Manual examination & test augmentation. For each transformed problem, we carefully ex-
amine and adjust any final faults to ensure each problem and ground truth are correctly spec-
ified and implemented. We further generate additional tests using an LLM-based test aug-
mentation technique (Liu et al., 2023). Finally, we produce EVOEVAL, a comprehensive code
synthesis benchmark suite containing diverse problems to evaluate LLM coding capability
across various domains. Details like transformation prompts are presented in Appendix D.

3 EVOEVAL Benchmarks & Evaluation Methodology

EVOEVAL uses HUMANEVAL problems as seeds and GPT-4 as the foundation LM to produce
828 problems across 7 different benchmarks (5 semantic-altering and 2 semantic-preserving).
For the semantic-altering benchmarks, we generate 100 problems each using different seed
problems from HUMANEVAL. For the semantic-preserving benchmarks, we transform all 164
problems in HUMANEVAL as we reuse the original ground truths, requiring less validation.

• DIFFICULT: Increase complexity by adding constraints, replacing commonly used re-
quirements to less common ones, or introducing additional steps to the original problem.

• CREATIVE: Produce a more creative problem using stories or narratives.
• SUBTLE: Make a subtle change such as inverting or replacing a requirement.
• COMBINE: Combine two problems by using concepts from both problems.
• TOOL USE: Produce a main problem and helper functions. Each helper function is fully

implemented and provides hints or useful functionality for solving the main problem.
• VERBOSE: Reword the original docstring to be more verbose with descriptive language
• CONCISE: Reword the original docstring to be more concise using concise language.

Evaluation setup: Each LLM generated sample is executed against the test cases and
evaluated using differential testing (McKeeman, 1998) – comparing against the ground
truth results to measure functional correctness. We focus on greedy decoding and denote
this as pass@1.

Models: We evaluate 57 LLMs (Appendix C), including both proprietary and open-source
models. Further, we classify the LLMs as either base or instruction-following and discuss
the effect of model variants.

Input format: To produce the code solution using each LLM, we provide a specific input
prompt: For base LLMs, we let the LLM autocomplete the solution given the function
header and docstring. For instruction-following LLMs, we use the recommended instruction
and ask the LLM to generate a complete solution for the problem.

4 Results

4.1 LLM Synthesis & Evaluation on EVOEVAL

EVOEVAL produces more complex and challenging benchmarks for program synthesis.
Table 1 shows the pass@1 performance along with the ranking of LLMs on each of the
semantic-altering EVOEVAL benchmarks with the average pass@1 and ranking on all

benchmarks in the last columns1. First, compared to the success rate on HUMANEVAL,
when evaluated on EVOEVAL, all LLMs consistently perform worse. For example, the
state-of-the-art GPT-4o, GPT-4 and Claude-3.5 models solve close to 85% of all HUMANEVAL

problems but fall almost below 55% pass@1 when evaluated on the DIFFICULT problems.
On average, across all benchmarks, the performance of LLMs decreased by 38.1%
(DIFFICULT: 56.6%, CREATIVE: 48.2%, SUBTLE: 5.0%, COMBINE: 74.7%, and TOOL USE: 6.1%).
Additionally, this drop is not uniform across all LLMs and can range from 19.6% to 47.7%.

1We evaluated all 57 LLMs, however, we omitted some LLMs in Table 1 for space reasons.

4

Published as a conference paper at COLM 2024

crafted including: EVALPLUS (Liu et al., 2023) which improves the two benchmarks with
more complete test cases; HUMANEVAL-X (Zheng et al., 2023) which extends HUMANEVAL

to C++, JavaScript and Go; MultiPL-E (Cassano et al., 2023) which further extends both
HUMANEVAL and MBPP to 18 languages. Similarly, other benchmarks have been developed
for specific domains: DS-1000 (Lai et al., 2023) and Arcade (Yin et al., 2022) for data science
APIs; CodeContests (Li et al., 2022), APPS (Hendrycks et al., 2021), and LiveCodeBench (Jain
et al., 2024) for programming contests, and SWE-Bench (Jimenez et al., 2024) for software
engineering tasks. Different from prior benchmarks which require handcraft problems from
scratch – high manual effort or scrape open-source repositories or coding contest websites
– leading to unavoidable data leakage, EVOEVAL directly uses LLMs to evolve existing
benchmark problems to create new complex evaluation problems. Furthermore, contrasting
with the narrow scope of prior benchmarks (often focusing on a single type or problem,
i.e., coding contests), EVOEVAL utilizes targeted transformation to evolve problems into
different domains, allowing for a more holistic evaluation of program synthesis using LLMs.

6 Conclusion

We present EVOEVAL– a set of program synthesis benchmarks created by evolving existing
problems into different target domains for a holistic and comprehensive evaluation of LLM
program synthesis ability. Our results on 57 LLMs show drastic drops in performance
(average 38.1%) when evaluated on EVOEVAL. Additionally, we observe significant ranking
differences compared to prior leaderboards, indicating potential dataset overfitting on
existing benchmarks. We provide additional insights, including the brittleness of instruction-
following LLMs as well as the limited compositional generalization abilities of LLMs.

7 Acknowledgment

We thank Owen Colegrove for his help on starting this project and providing valuable
feedback throughout, Jiawei Liu for providing helpful discussions and Yifeng Ding for his
help in running experiments. This work was partially supported by NSF grant CCF-2131943
and Kwai Inc. This project is supported, in part, by funding from Two Sigma Investments,
LP. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of Two Sigma Investments,
LP.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Anthropic. Introducing claude 2.1. https://www.anthropic.com/news/claude-2-1/,
2023.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family/, 2024a.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet/, 2024b.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Xiaodong Deng Kai Dang, Yang Fan, Wenbin
Ge, Fei Huang, Binyuan Hui, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Tianyu Liu,

10

http://www.twosigma.com/
http://www.twosigma.com/
https://www.anthropic.com/news/claude-2-1/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-5-sonnet/
https://www.anthropic.com/news/claude-3-5-sonnet/

Published as a conference paper at COLM 2024

Keming Lu, Jianxin Ma, Rui Men, Na Ni, Xingzhang Ren, Xuancheng Ren, Zhou San,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Jin Xu, An Yang, Jian Yang, Kexin Yang,
Shusheng Yang, Yang Yao, Jianwei Zhang Bowen Yu, Yichang Zhang, Zhenru Zhang,
Bo Zheng, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Introducing
qwen1.5. https://qwenlm.github.io/blog/qwen1.5/, 2023b.

BudEcosystem. Code millenials 34b. URL [https://huggingface.co/
budecosystem/code-millenials-34b](https://huggingface.co/budecosystem/
code-millenials-34b).

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin,
Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman,
et al. Multipl-e: A scalable and polyglot approach to benchmarking neural code generation.
IEEE Transactions on Software Engineering, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let
large language models ask better questions for themselves, 2023a.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang.
Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models. In 32nd International Symposium on Software Testing and Analysis (ISSTA),
2023b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code
infilling and synthesis. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=hQwb-lbM6EL.

Google. Our next-generation model: Gemini 1.5. https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/, 2024.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations
and Trends® in Programming Languages, 4(1-2):1–119, 2017. ISSN 2325-1107. doi: 10.1561/
2500000010. URL http://dx.doi.org/10.1561/2500000010.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS, 2021.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural
information processing systems, 15, 2002.

HuggingFace. Hugging face, 2022. https://huggingface.co.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and
contamination free evaluation of large language models for code. arXiv preprint, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

11

https://qwenlm.github.io/blog/qwen1.5/
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
%5Bhttps%3A//huggingface.co/budecosystem/code-millenials-34b%5D(https://huggingface.co/budecosystem/code-millenials-34b)
https://openreview.net/forum?id=hQwb-lbM6EL
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
http://dx.doi.org/10.1561/2500000010
https://huggingface.co

Published as a conference paper at COLM 2024

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code
generation with large language model. arXiv preprint arXiv:2303.06689, 2023b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github
issues? In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=VTF8yNQM66.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii
Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry
Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional
generalization: A comprehensive method on realistic data. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=SygcCnNKwr.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark
for data science code generation. In International Conference on Machine Learning, pp.
18319–18345. PMLR, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the
source be with you!, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang,
Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. Competition-level code generation with alphacode. Science, 2022. URL
https://www.science.org/doi/abs/10.1126/science.abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code gen-
eration. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=1qvx610Cu7.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max
Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry
Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone,
Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien
Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the
stack v2: The next generation, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao,
Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language
models with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

William M McKeeman. Differential testing for software. Digital Technical Journal, 10(1):
100–107, 1998.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024.

Microsoft Research. Phi-2: The surprising power of small lan-
guage models. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/, 2023.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=SygcCnNKwr
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

Published as a conference paper at COLM 2024

Mistral AI team. Mixtral of experts a high quality sparse mixture-of-experts. https:
//mistral.ai/news/mixtral-of-experts/, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=iaYcJKpY2B_.

OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/
chatgpt/, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

phind team. Beating gpt-4 on humaneval with a fine-tuned codellama-34b. https://www.
phind.com/blog/code-llama-beats-gpt4, 2023.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James Baicoianu,
and Nathan Cooper. Stable code 3b. URL [https://huggingface.co/stabilityai/
stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b).

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating
code generation capabilities of language models. arXiv preprint arXiv:2403.04811, 2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton.
Exedec: Execution decomposition for compositional generalization in neural program
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=oTRwljRgiv.

Jiangwen Su. Code millenials 34b. URL [https://huggingface.co/
uukuguy/speechless-codellama-34b-v2.0](https://huggingface.co/uukuguy/
speechless-codellama-34b-v2.0).

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Xwin-LM Team. Xwin-lm. https://github.com/Xwin-LM/Xwin-LM, 2023.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Open-
chat: Advancing open-source language models with mixed-quality data. arXiv preprint
arXiv:2309.11235, 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware uni-
fied pre-trained encoder-decoder models for code understanding and generation. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
8696–8708, 2021.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120, 2023.

Chunqiu Steven Xia and Lingming Zhang. Keep the conversation going: Fixing 162 out of
337 bugs for $0.42 each using chatgpt. arXiv preprint arXiv:2304.00385, 2023.

13

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://www.phind.com/blog/code-llama-beats-gpt4
https://www.phind.com/blog/code-llama-beats-gpt4
%5Bhttps%3A//huggingface.co/stabilityai/stable-code-3b%5D(https://huggingface.co/stabilityai/stable-code-3b)
%5Bhttps%3A//huggingface.co/stabilityai/stable-code-3b%5D(https://huggingface.co/stabilityai/stable-code-3b)
https://openreview.net/forum?id=oTRwljRgiv
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
%5Bhttps%3A//huggingface.co/uukuguy/speechless-codellama-34b-v2.0%5D(https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0)
https://github.com/Xwin-LM/Xwin-LM

Published as a conference paper at COLM 2024

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. 2022.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and
refinement. arXiv preprint arXiv:2402.14658, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625,
2022.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source
models in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

14

	Introduction
	Approach
	EvoEval Benchmarks & Evaluation Methodology
	Results
	LLM Synthesis & Evaluation on EvoEval
	Problem Composition & Decomposition
	Tool Use Problems

	Related Work
	Conclusion
	Acknowledgment
	Reproducibility Statement
	EvoEval Benchmarks
	Potential Bias in Performance

	Evaluation LLMs
	Evaluated LLMs
	Detailed Evaluation Setup

	Transformation Prompts
	Example Problems in EvoEval

