Published as a conference paper at COLM 2024

Evaluating Language Models for Efficient Code Generation

Jiawei Liu” Songrun Xie® Junhao WangJE
Yuxiang Wei” Yifeng Ding” Lingming Zhang”
University of Illinois Urbana-Champaign® Tongji University“{'L

{jiawei6, lingming}@illinois.edu

Abstract

We introduce Differential Performance Evaluation (DPE), a framework de-
signed to reliably evaluate Large Language Models (LLMs) for efficient code
generation. Traditional coding benchmarks often fail to provide reliable
insights into code efficiency, due to their reliance on simplistic test inputs and
the absence of effective compound metrics. DPE addresses these issues by
focusing on efficiency-demanding programming tasks and establishing an in-
sightful compound metric for performance evaluation. DPE operates in two
phases: To curate efficiency datasets, it selects efficiency-demanding tasks
from existing coding benchmarks and generates computationally expensive
inputs to stress the efficiency of LLM solutions. To assess the code efficiency,
DPE profiles the new solution and compares it globally against a set of ref-
erence solutions that exhibit distinct efficiency levels, where the matched
level defines its efficiency score. As a proof of concept, we use DPE to create
EVALPERF, a benchmark with 121 performance-challenging coding tasks.
Our comprehensive evaluation draws interesting findings on the efficiency
impact of model sizes, instruction tuning, and prompting. For example,
while the scaling law fails to account for code efficiency, general instruction
tuning benefits both code correctness and efficiency. We also evaluate the
evaluation by examining the effectiveness of DPE, showing that EVALPERF
is reliable and convenient to use even across platforms.

1 Introduction

With the increasing usage (GitHub, 2023; Amazon Web Services, 2023) of Large Language
Models (LLMs) for code generation, comprehensively evaluating these LLMs is crucial for
finding the next advancements. As such, the functional correctness in code generation (Chen
etal., 2021; Austin et al., 2021) has been well-studied, where given a coding instruction in nat-
ural language, LLMs produce solutions whose correctness is assessed through test execution.

While code correctness ensures the program performs its intended behaviors accurately,
code efficiency is equally crucial for building high-quality software. With the massive

& Task Prompt

Perf-Exercising
Inputs

def fib(n):
"""Return n-th Fibonacci number
>>> fib(10) = 55
>>> fib(1) = 1"""

. . {n=1024}
Validated Solutions

if n < 1:
return n

return fib(n-1) + fib(n-2)

Profiling

© 0ld Solutions

Synthesizing a Synthesizer

Profiling

a, b=20, 1
for _ in range(n):

a, b = b, atb
return a

® New Solution

Perf Matching

30% 50% 80%

Performance Clustering

100%

Perf-Exercising
Task Selection

Enough compute.
Performance diversity

Figure 1: Overview of Differential Performance Evaluation

Published as a conference paper at COLM 2024

deployment of coding copilots, these assistants can help developers write low-latency,
scalable, and cost-effective code by suggesting efficient algorithms, data structures, and
coding patterns. More importantly, code execution can be a bottleneck for running the
emerging Program-aided Language Models (Gao et al., 2023) (e.g., GPT-4), motivating the
generation of efficient code toward a smooth user experience.

Reasonably evaluating the code efficiency is important yet challenging. A naive evaluation
approach may simply record the execution runtime of validated solutions from existing bench-
marks. However, such a strategy fails to provide reliable performance insights for two reasons:

Limitation #1: Light computation. Existing coding tasks commonly involve minimal
computation, caused by small test inputs and simplistic control flow (e.g., adding two
numbers). However, it is not evaluation-friendly regarding code efficiency because lighter
computation can incur larger result flakiness at orders of magnitude (Appendix A.1) due to its
sensitivity to system noises. Meanwhile, code efficiency becomes less important at a tiny scale
since all complexities are “equal” when N is small. For example, a recursive implementation
can be no slower than an efficient iterative solution when computing the first few Fibonacci
numbers. Consequently, it is more meaningful to study code efficiency over large-scale data.

Limitation #2: Inadequate metric. Runtime speedup has been the de facto compound metric
in the literature (Mendis et al., 2019; Zheng et al., 2020; Baghdadi et al., 2021) of efficiency
optimization. While speedup is straightforward when studying a single optimization subject,
averaging speedups over multiple tasks is confusing when interpreting the overall code
efficiency of an LLM. For example, assuming model A is slower than B by 2x on 99 tasks
while outperforming B on the only task by 100, the average speedup says code from A

is generally faster than that of B by %3x994100x1 — 1 495 which may not align with general
user perception. While we defer detailed discussions in Appendix A.2, the misperception
comes from the huge scale variation of speedups across different tasks, calling for a more
insightful compound metric for code efficiency.

To this end, we propose Differential Performance Evaluation (DPE), a general framework to
curate performance-exercising programming challenges and perform effective code efficiency
evaluation. From the data and metric perspective, DPE argues that effective performance
benchmarking requires: (i) efficiency-challenging programming tasks to differentiate code
solutions, and (i) an unsightly metric to tell how far an LLM is to generate empirically optimal
code. At dataset curation time, DPE takes a set of coding tasks as input and transforms them
into tasks worth practicing for efficiency. Specifically, DPE generates performance-exercising
test inputs for each task by Synthesizing a Synthesizer (SAS). SAS prompts an LLM with
Chain-of-Thought (Wei et al., 2022) (CoT) few-shot learning to produce a scale-controllable test
input sampler. Next, we tune the sampler to generate challenging yet computable inputs via
exponential input sampling. Furthermore, we design filtering strategies to pick reliable tasks
for performance evaluation. For each performance-exercising task, DPE samples a rich set
of valid solutions and clusters them by performance characteristics. At evaluation time, DPE
profiles a given new solution along with reference solutions and the ranking of the matched
performance cluster determines its score. Below summarizes the contributions of this paper:

1. Dimension: While the correctness evaluation of code generation has been well studied,
we deliver a new and important aspect to the community by studying the data curation
and assessment for the efficiency evaluation of LLM-generated code.

2. Technique: We propose Differential Performance Evaluation (DPE) for effective efficiency
evaluation. DPE curates performance-demanding coding tasks by sampling synthesized
test input generators and using filters to ensure evaluator quality. A solution’s efficiency
is then globally assessed by referencing representative solutions.

3. Benchmark: Using DPE we create EVALPEREF, including 121 performance-exercising
programming tasks and test inputs. We also fully open-source and maintain the data
curation pipeline and evaluator at github.com/evalplus/evalplus as part of EvalPlus.

4. Study: We extensively study the code efficiency of popular LLMs and draw interesting
findings regarding the efficiency impact of model sizes, instruction tuning, and prompt-
ings. We also show that DPE can create inputs that are more performance-exercising
than prior art by 4.8 x and EVALPERF can lead to consistent performance evaluation even
across various platforms.

Published as a conference paper at COLM 2024

2 Differential Performance Evaluation

Figure 1 illustrates the overview of Differential Performance Evaluation (DPE), including
(i) how to create a performance evaluation dataset to differentiate code performance (§§2.1
to 2.4); and (ii) how to evaluate new code solutions using the created dataset (§2.5).

At the high level, the input to the dataset creation phase is a set of programming tasks, e.g.,
from HumanEval (Chen etal., 2021) and MBPP (Austin et al., 2021). As output, DPE produces
a subset of performance-exercising tasks equipped with challenging test inputs. Specifically,
we follow the steps below to transform and select performance-exercising tasks:

1. Valid solution curation: Given a programming task, we collect a rich set of correct
solutions by sampling various LLMs and test execution.

2. Performance-exercising input generation: We maximize the performance difficulty of
a coding task by synthesizing a test generator aiming to produce costly test inputs.

3. Performance-exercising task selection: We profile validated solutions using performance-
exercising inputs and filter out tasks using various quality criteria.

4. Performance clustering: Based on the profiled performance, solutions for each task are
partitioned into several clusters for performance reference at evaluation time.

During evaluation, if passing the correctness tests, the new solutions are profiled to compare
against the reference solutions. Specifically, from slow to fast, the cumulative ratio of the
cluster that includes the matched reference solution is the efficiency score of the evaluated
solution. For example, in Figure 1 the new solution (the green box) matches the efficiency
of the representative solution of the “100%” cluster, leading to a score of 100 (%) for this task.

2.1 Valid Solution Curation

To start with, DPE takes a set of programming tasks as inputs and assumes such tasks are
equipped with task descriptions (i.e., base prompts for the LLMs) and correctness tests. For ex-
ample, these tasks can come from existing coding benchmarks such as HumanEval and MBPP.
Next, we sample plausible solutions from diverse code LLMs and validate these solutions via
test execution. Because correctness is the prerequisite for performance, we comprehensively
validate plausible solutions using the rigorous tests from EvalPlus (Liu et al., 2023a).

2.2 Synthesizing a Synthesizer: Performance-Exercising Input Generation
While performance-exercising inputs
are crucial, automating their creation ARIERRIER ST

. L] Generate function ‘perf_input_gen(scale: int) to produce a "large"
can be Challenglng/ as lt 15 nOt always input to exercise the efficiency of the “prime_num’ function:

as simple as producing large integers.
This is because these programming
problems can define “large” inputs
differently and require various struc-
tural and semantic constraints. For
instance, when testing is_prime(n),
a randomly large n often leads to a
quick path of False since most num-
bers are divisible by smaller numbers
(e.g., half of the integers are divisible
by two). Instead, the desirable test
inputs are large prime numbers.

To this end, we propose Synthesizing
a Synthesizer (SAS) to automatically
produce performance-exercising in-
puts of different programming tasks
by prompting powerful code LLMs
to generate test generators. Further-

. Ground-truth Solution

"""Wprite a function to check if a number is prime"""
import math
def prime_num(num):
if num < 2: return False
for i in range(2, math.isqrt(num)):
if num % i = 0: return False
return True

@ Chain of Thoughts

Analysis:

1. Input format: An_integer 'n”

2. Time complexity: 0(n)

3. Space complexity: 0(1)

4. What kind of input can exercise its perf? Large prime numbers

a Input Generator

can reuse the “prime_num® function
larger “scale’ means larger input
use case: prime_num(*perf_input_gen(scale))
def perf_input_gen(scale: int):
for i in range(scale, 2, -1):
if prime_num(i): return (i,)
return (2,)

Figure 2: Exemplifying Synthesizing a Synthesizer.

Published as a conference paper at COLM 2024

more, the generator function is controllable through a scale factor, allowing for tuning the
complexity of generated test inputs.

Generating input generator. SAS applies few-shot prompting with Chain of Thoughts (CoT)
for input generator synthesis, exemplified in Figure 2. Specifically, the end goal of prompting
is to obtain the generator function (i.e., perf_input_gen) illustrated in the “Input Generator”
block (at the bottom). The generator function takes a scale factor as input and outputs
performance-exercising test inputs according to the scale. The generator is expected to
respect monotonicity over the scale factor, i.e., a larger scale factor should lead the generator
to produce a more challenging input. The context for generating the generator includes
three parts: (i) an instruction clarifying the goal of code generation; (ii) a ground-truth
solution helping the LLM understand the overall semantic and complexity; and (iii) a few
question-answer pairs to activate CoT reasoning of the task complexity. By initializing the
prompt using such few-shot samples, we further load the “instruction” and “ground-truth
solution” block for a programming task under test synthesis and let a generative LLM follow
the few-shot demonstration and produce a test input sampler.

Exponential input sampling. For each coding task, we sample performance-exercising inputs
by running the generator function (i.e., perf_input_gen) using different scale factors (i.e.,
scale). Specifically, we start by setting the scale factor to 1 and sample test inputs by doubling
the factor round by round. The sampled test inputs are evaluated through execution, and we
stop generation when an input hits a time or memory limit on any validated solution (§2.1).
By expanding the scale factor exponentially, we obtain the most performance-exercising
input within our computational limits. Meanwhile, we use test execution to drop ill-formed
generators and retry another sample of input generators at failure.

Insight. Prior work (Liu et al., 2023a; Li et al., 2022) also prompts LLMs to generate test inputs
directly. However, such an approach is inapplicable for generating challenging inputs whose
text representation can be huge, blowing up the context limits of LLMs. Meanwhile, it is also
hard for LLMs to strictly follow the structural requirements and diversify the inputs during
long-context generation. Hence, we highlight the indirect generation of complex test inputs
via input generator synthesis. Recently, Zhang et al. (2023) proposed ALGO which uses
ChatGPT Code Interpreter to create input generators for exhaustive validation. Different
than ALGO, SAS aims for performance-exercising inputs via few-shot CoT and scale tuning,
which does not rely on the powerful ChatGPT Code Interpreter.

2.3 Performance-Exercising Task Selection

Even with the most challenging test input, a programming task might not meet the
requirement of performance diversity and runtime variation (e.g., add two numbers). Con-
sequently, we propose filtering strategies to drop undesired programming tasks. For every
programming task, we profile all valid solutions {sq,s,,--,5, } curated in §2.1 multiple times.
Therefore, for solution s; we profile its execution for k times and obtain a list of execution

time! T;=[t1, - t;]. As such, a selected programming task must meet the following criteria:

1. Sufficient computation: A performance-exercising task must experience a reasonably
long execution. As such, we require min{mean (T;) | i € [1,n] } > t;;,s;,, meaning that the
execution of any solution must run longer than #,,gj.

2. Low performance variation: We require Poo{CV(T;) | i € [1,n]} < CViesn, where
CV(T;) =std(Ti) /mean(T;), i.e., coefficient of variation, and Pog is the 99% largest variation.

3. Performance diversity: We apply a clustering method (to be discussed in §2.4) to
adaptively cluster the solutions into several groups at different levels of efficiency.
Therefore, we require the number of output clusters to be greater than K where K > 1.

2.4 Adaptive Performance Clustering

Given a performance-exercising task, we cluster its reference solutions by their performance
characteristics and use them to differentiate new solutions at evaluation time.

IFor clarity, in this section, we use “execution time” or “runtime” to refer to the execution cost,
which in practice can be generalized to other metrics such as the number of instructions.

Published as a conference paper at COLM 2024

def thresh(t): # smaller runtime = higher variation, needs larger thresh
return BIAS + math.sqrt(WEIGHT / t)

def clusterld(timeld: List[float]) — List[List[float]l]:

timeld = np.sort(timeld)[::-1] # slow to fast

rdiff = -np.diff(timeld) / timeld[:-1] # relative drop in 0-100%
splitters = [i+1 for i, r in enumerate(rdiff) if r > thresh(timeld[i])]
return np.split(timeld, splitters) # return a list of clusters

Figure 3: The algorithm to adaptively segment solutions for each task based on their efficiency.

Figure 3 elucidates our adaptive clustering algorithm. Commencing from Line 4, the cluster-
ing algorithm takes a list of mean execution time (i.e., 1-dimension) as input and dynamically
partitions them into clusters based on their relative scale. Subsequently, we sort the execution
time from slow to fast in Line 5. Denoting the sorted time1d as T = [fy,fp, -+, f¢], in Line 6, we
compute the relative difference in percentage, i.e., 6f; = t’}ﬁ Following this, in Line 7, the al-

gorithm employs an adaptive thresholding mechanism to determine the segmentation points
over the sorted T. Considering Figure 6, which indicates that smaller executions often exhibit
larger variations, Line 7 calls the adaptive thresholding function in Line 1 which produces
larger thresholds for smaller runtime. Specifically, to build a segmentation pointat¢; (leftinclu-
sive), the algorithm mandates that 6¢; > bias++/w/f, where bias and w are hyper-parameters
of the threshold minima and scale, respectively. Therefore, in Line 8, the algorithm returns
the runtime clusters for each task by splitting them over the provided segmentation points.

2.5 Efficiency Scoring by References

In the final stage of dataset curation, we retain the slowest solution per cluster along with its cu-
mulative percentage in each task. These solutions serve as benchmarks for efficiency scoring.
During evaluation, both the reference solutions and the new solution are profiled in the same
environment for performance assessment. Notably, we opt for a single representative solution
per cluster as profiling all solutions during evaluation would be extremely time-consuming.

Differential Performance Score. For each task, we denote the reference solutions from the
m clusters as [s1,52,++,5,] and their corresponding cumulative ratios [r1,r2, -, (r1 >0 and
rm = 100%). Meanwhile, we profile each reference point multiple times and obtain its mean
runtime ;. Given a new and validated solution s* to evaluate, we use the same profiling pro-
cedure and obtain a mean runtime of t*. As such, we compute a Differential Performance Score

(DPS) for s* as max ({O} U{ri 6> Yiem)) , i.e., the cumulative ratio of the reference that
is immediately slower than s*. In addition, we also provide a normalized version of DPS by
ablating the volume of solutions at each level, i.e., DPSporm = max ({O} U{ i |5 >1}ic [Lm]) .

The above discusses how to compute the performance score for one coding task, to compute
the dataset-wise performance score we simply average over all passed tasks.

Exemplification. For example, a DPS of 80% implies that overall the LLM generates code
whose efficiency can match or improve 80% of all LLM-generated solutions. Similarly, a
DPSnorm of 80% indicates that the code efficiency of the LLM can overall match or improve
80% of performance clusters, by ignoring the size of each cluster.

Lastly, DPS is not free as it requires to collect reference solutions of diverse efficiency levels.

3 EVALPERF: A Benchmark for Code Efficiency Evaluation

Based on Differential Performance Evaluation, we build EVALPERF, a new dataset with 121
performance-exercising programming tasks, for effective evaluation of code efficiency.

Published as a conference paper at COLM 2024

We put HumanEval+ (164 tasks) and MBPP+ (399 tasks) together as the initial tasks to DPE,
given their more rigorous tests (Liu et al., 2023a) to safeguard correctness. To echo §2.1, we
sample and test code solutions from 21 open LLMs that achieve over a pass@1 score of 50 on the
EvalPlus leaderboard (Xie et al., 2024), where we sample 50 solutions for each model at a tem-
perature of 0.8 for diversified generation. Next, we generate test input samplers (§2.2) using
two few-shot samples and we start the generation at the “Chain of Thoughts” block in Figure 2
right after providing the ground-truth solution. Specifically, we use AWQ-quantized (Lin
et al., 2024) DeepSeekCoder-instruct-33B (DeepSeek Al, 2023) as the generative LLM to
produce 16 input generator samples for each task at a temperature of 0.8. We then sample
concrete test inputs from these generators, starting with a scale factor of 2! and increasing it
exponentially until hitting the 20-second time wall or the 16GB memory wall. Of course, some
generators could be broken and we filter them out via the running itself and its generated tests.

Task selection and clustering require profiling of these solutions. Specifically, we use the
number of executed assembly instructions as the profile metric. This profile can be easily and
natively obtained by querying the Performance Monitoring Units (PMU) of modern CPUs
through system calls, such as perf_event (Weaver, 2013a) in Linux, which is pervasively
available on most platforms. Compared to physical runtime, the #instruction is much more
stable, resulting in negligible variation. Compared to software profilers such as architecture
simulators, hardware counters provide low overhead (Wikipedia, 2024) and are easy to use
through simple system calls. As such, we profile the #instructions for each solution over
the performance-exercising input and filter the tasks using the criteria in §2.3. Specifically,
we filter out tasks whose solutions can finish in #4,,.s;, = 10k instructions which is the scale of
instructions for printing “hello world”. We omit the variation criterion as we use the hardware
performance counters for cost measurement. For clustering (§2.4), we set the base threshold
(i.e., bias) as 20% and the weight (i.e., w) as 10k instructions for the adaptive threshold function
in Figure 3, and for diversity require each task to have at least K =4 performance clusters. As
such, we build EVALPERF, a dataset with 121 performance-exercising coding tasks, equipped
with computationally challenging inputs and solutions for performance reference.

Lastly, our future efforts will continuously extend EVALPERF using more coding tasks.

4 Evaluation

In §4.1 we study the code efficiency of recent code LLMs on EVALPERF and in §4.2 we
evaluate the effectiveness of Differential Performance Evaluation.

4.1 Evaluating Code Efficiency

Setup. Following recent work (Lozhkov et al., 2024), we evaluate the performance as well as
the correctness of programs synthesized by a series of open model families, including CODEL-
LAMA (Rozieére et al., 2023), DeepSeekCoder (DeepSeek Al, 2023), StarCoder (Li et al., 2023),
and StarCoder2 (Lozhkov etal., 2024). For proprietary models, we evaluate GPT-4 Turbo (Ope-
nAl, 2023) (i.e., gpt-4-0125-preview) which is to date the leading model on the EvalPlus
leaderboard (Xie et al., 2024). Specifically, we use up to four variants for each model type:

1. base: the base pre-trained model without instruction tuning.

2. instruct: the instruction-tuned model using its specialized instruction format.

3. perf-instruct: the instruction-tuned model using a prompt asking the model to “solve
the programming task efficiently by writing a fast implementation”.

4. perf-CoT: the instruction-tuned model with a zero-shot chain-of-thought prompt (Kojima
etal., 2022) by adding “Think step by step” before the perf-instruct prompt.

By default, we generate 50 samples at a temperature of 0.2 for each programming task
following Lozhkov et al. (2024). Yet, for cost mitigation, we limit it to 10 samples for GPT-4
Turbo. This approach is justified by the GPT-4 Turbo’s higher accuracy in generating correct
code. For correctness evaluation, we compute a comprehensive pass@1 on the sum of 164
HumankEval+ tasks and 399 MBPP+ tasks. For code efficiency analysis, for each task, we
compute the average DPS and DPSyorm Vvalues for the first 10 correct solutions in the 50
samples and report the score averaged across all tasks. Notably, we compare models in a

Published as a conference paper at COLM 2024

(3
< o
O o
IS
< N

o
6'(10:&‘\"‘“4‘

&
SR

O o
& e

&
SOV
o) X
<O &\o. (\(;d\)c

X
< o
LO0 &
9& Qg&‘,\‘\s\‘ =

o
Qg’\’ o = & o o o & =
L NN L L L
ccord 80.8 82.7 77.2 822 85.8]773 807 789 754 80.3 82.0 76 85:80870 79.4
peri-to 81.7 822 81.2 856 85.8 86.5 763 76.4 78.0 789 79.9 784 80.0 79.7 [78.8
"y 81.7 77.0) 85.1 76.2 79.4. 754 824 76.9 86.8 79.7]
perf-instruct 80.9 817 814 8138 81.2 826 81.8 803 855 852
) 774 76.5| 75.4 77,5 79.2)
instruct 8238 85.4 816 805 86.8
base
Codellama (13B) CodelLlama (34B) CodelLlama (70B) CodelLlama (7B) CodeQwenl.5 (7B)
ccot 808 78.0 755 862 853 79.0 890 889 733 912 89.7 822 820 835
per-Lo 76.7 764 776 83.0 819 83.0 821 834 825 91.7 917 83.3 833 825
" 1 79.9. 74.1] 85.7 78.9 9.1 || 89.7 815 837
perf-instruct 821 82.9 86.2 85.8 89.5 888 91.2 82.3 824
i] 75.1 79.5 75.0 83.0)
instruct 794 86.1 89.5 80.9
base

DeepSeek-Coder (1.3B) DeepSeek-Coder (33B) DeepSeek-Coder (6.7B) GPT-4-Turbo StarCoder2 (15B)

Figure 4: Pairwise comparison of DPS with model variant pairs. Each pair of variants is com-
pared over the common set of passing solutions. Within each block, the bottom-left number
comes from the corresponding variant in the y-axis and the top-right number is for the x-axis.

pairwise fashion and compute the efficiency scores over the common set of passing solutions
to eliminate correctness inconsistency.

Impact of instruction tuning. Code instruction tuning finetunes the base model over
high-quality code which can significantly improve the correctness in code generation (Wei
et al., 2024; DeepSeek Al, 2023). Surprisingly, as is suggested by Figure 4, correct code
generated by instruction-tuned models also tends to be more efficient than that of the base
model (except for StarCoder2-15B). For example, instruction-tuned DeepSeekCoder-6.7B
improves the base model by 19% regarding DPS. This interesting finding implies that general
instruction tuning methods can improve multiple code quality aspects beyond correctness,
even if the existing instruction tuning methods were not designed to optimize code efficiency.

Impact of prompting. For instruction-following models, besides the general chat template
(i.e., instruct), we also use two performance-encouraging zero-shot prompting methods
(i.e., perf-instruct and perf-CoT). Overall the performance-encouraging prompts neither
consistently nor noticeably improve the code efficiency compared to using the basic
prompting method. This shows that existing models are still weak in following such
instructions, calling for future work to improve the instruction-following abilities of
code LLMs. In the Appendix, Table 3 also shows that performance-encouraging prompts
commonly lead to correctness degradation in code generation.

Impact of model sizes. It has been

a general conclusion that larger ENEO RN EONS AN RO S S
models within a model family can ;[855 &5 &I w90 784 7m0 e0s
often generate more accurate code. momr Tl 1 wme wme |] ms e
Figure 5 explores how parameter 8 868 837 | o] [- R/
sizes within the same model family 138 . 900 2
impact the overall code efficiency. s 138 3B

Within the 12 pairs in Figure 5,
there are seven cases where a larger
model in the family outperforms
the smaller one regarding code ef-
ficiency, e.g.,DeepSeekCoder-6.7B-
Instruct improves the DPS of the 1.3B version by 14% and there is an 8.7% improvement from
StarCoder2 7B to 15B. However, performance degradation with > 1% loss also happens 4
times, e.g., in the worst case, there is a 6% degradation between the 3B and 7B versions of
StarCoder2 base models. This underscores a new finding — the scaling law (Kaplan et al., 2020)
persists for code correctness but does not seem explicit for code efficiency, calling for future
research in modeling and data curation to improve efficiency in code generation models.

CodeLlama (instruct) DeepSeek-Coder (instruct) StarCoder2 (base)

Figure 5: Pairwise DPS comparison with models of
different parameter sizes.

Published as a conference paper at COLM 2024

Lastly, we defer more evaluation details in Appendix A.3.

4.2 Evaluating the Evaluation

SAS vs. EvalPlus. EvalPlus (Liu et al., 2023a) generates an abundance of test cases, some
of which could be already performance-exercising. Therefore, we use EvalPlus as a baseline
to evaluate the performance difficulty of test inputs generated by SAS. Specifically, we use
the filtering criteria in §2.3 as the evaluator and compare the number of retained tasks using
the most challenging inputs of both methods, i.e., more is better.

Table 1 shows the results. We start

with a total of 563 tasks from Hu- Total Filtering

manEval+ and MBPP+. Of these, (C>10) >10kinstr. +#Cluster >1
for 342 tasks, we are able to obtain EyalPlus 204 5
at least 10 validated solutions (§3). 58 (Ours) 563 (342) 271 o1

Using the criteria of “enough com-
putation” which asks for test execu-
tion of over 10k instructions, the most
performance-challenging EvalPlus in-
puts pass 204 out of 342 tasks (i.e.,
60%), whereas SAS improves it by 1.3 x for enabling 271 tasks (i.e., 79%) with inputs that
exhibit larger computation. Meanwhile, since our cost measurement is based on hardware
counters (§3), the variation-related criterion does not apply here. The clustering criterion
allows tasks with at least 4 clusters of different performance characteristics. By applying this,
EvalPlus-enabled tasks further reduce to 25 out of 204 (i.e., 88% drop), whereas SAS stands
out by passing 121 tasks, resulting in a relative improvement of 4.8 x.

Table 1: Retained tasks after different filtering phases
using inputs from EvalPlus and SAS. C > 10 refers to
tasks with at least 10 correct solutions from sampling.

Cross-platform variation. A usable and reliable benchmark must easily run on various plat-
forms and draw consistent conclusions. As such, we study the result consistency of EVALPERF
over different test beds. Table 2 lists the DPS and DPS;orm 0f three instruction-tuned models
over 4 test-beds, covering a wide range of configurations covering desktop-, workstation-, and
server-scenarios. With the emergence of heterogeneous CPUs, we also include a desktop using
a heterogeneous architecture, i.e., 19-12900K with 8 performance cores and 8 efficiency cores.
All of these testbeds are equipped with hardware counters (which are widely available), allow-
ing for efficient profiling of #instructions. Specifically, Table 2 demonstrates that EVALPERF
overall leads to very consistent conclusions, with a maximum coefficient of variation at 0.4%.
Meanwhile, the evaluation takes approximately no more than 15 minutes for most evaluated
models (i.e., up to 10 profiled solutions for each of 121 tasks). This highlights the reliability and
usability of the EVALPERF dataset as well as the DPE methodology. The low cross-platform
variation comes from two major design choices: (i) Differential evaluation: in DPE the score is
determined by the relative position compared against reference solutions which differentiate
each other significantly; and (ii) Hardware performance counters: using hardware counters we
can efficiently obtain reliable #instructions of profiled execution despite system noises.

Desktop Desktop Workstation Server
i7-10700K i9-12900K TR Pro 5975WX Xeon6442Y CV
8Cores 8P & 8E Cores 32 Cores 48 Cores (%)

64GB RAM 64GBRAM 256GBRAM 512GBRAM
CODELLAMA-70B DPS 79.2 79.4 79.4 788 0.3
instruct pps,gm, 75.4 759 75.2 751 04
DeepSeekCoder-33B ~ DPS 85.4 85.6 85.5 854 0.1
instruct pps. ., 78.6 78.5 78.6 784 0.1
DPS 90.5 90.0 90.7 899 04

GPT-4 instruct

DPSnorm 79.9 79.8 79.9 799 01

Table 2: Cross-platform variation of the mean Differential Performance Score.

Published as a conference paper at COLM 2024

5 Related Work

The correctness of general code generation is one of the most studied evaluation aspects.
APPS (Hendrycks et al., 2021) and MBPP (Austin et al., 2021) curate Python problems
with tests from coding websites. Meanwhile, HumanEval (Chen et al., 2021) includes 164
Python programming tasks manually designed from scratch. Yet, Liu et al. (2023a) shows
that existing benchmarks have limited tests and proposes to extend the test coverage using
automated test generation, creating HumanEval+ and MBPP+. Meanwhile, these Python
tasks are translated to other languages for multilingual evaluation (Cassano et al., 2022;
Athiwaratkun et al., 2022; Zheng et al., 2023). Furthermore, benchmarks also cover important
domains such as data science (Lai et al., 2022; Yin et al., 2022; Zan et al., 2022), repository-level
generation (Ding et al., 2023; Liu et al., 2023b), software development (Jimenez et al., 2023),
security (Pearce et al., 2022), open-domain generation (Wang et al., 2023; Zhuo et al., 2024),
and code understanding (Gu et al., 2024; Muennighoff et al., 2023; Liu et al., 2024). It is also
important to avoid contamination in evaluation (Jain et al., 2024).

In terms of code efficiency, recent work PIE (Shypula et al., 2023) creates a benchmark to eval-
uate the program optimization capability of LLMs given base C++ programs. Furthermore,
PIE (Shypula et al., 2023) employs CPU simulators to profile code execution to address the
reproducibility concern. As a general evaluation mechanism, DPE (ours) as a meta technique
can be applied to evaluating code generation and optimization, and also use CPU simulators
for measurements. More concretely, our EVALPERF dataset based on DPE focuses on
evaluating the code efficiency of the setting of direct code generation, which is more realistic
in daily software development where oftentimes a base reference program is not available.
Meanwhile, for measurement of computational cost, EVALPERF uses hardware performance
counters that are low-overhead, reliable, and easy to use, explained in Appendix A.2.

At the time when the paper is accepted, there have been emerging sibling benchmarks for eval-
uating efficiency in code generation (Huang et al., 2024; Qiu et al., 2024; Waghjale et al., 2024).
While these benchmarks consider additional source tasks (e.g., those from LeetCode) and effi-
ciency aspects (e.g., memory usage), they still suffer from limitations including test computa-
tion insufficiency and relying on variation-sensitive compound metrics like average speedups.
DPE as a meta-evaluation framework complements these new works and addresses these
limitations by automatically creating performance-exercising test inputs and a stable com-
pound metric mechanism for code efficiency. In addition, we suggest ablating impacts of
the correctness dimension in efficiency evaluation, by comparing different models over a
common set of passing tasks rather than the unaligned whole test suite (Huang et al., 2024).

6 Conclusion

This paper presents Differential Performance Evaluation (DPE), a novel framework to
effectively assess the efficiency of code generated by Large Language Models (LLMs).
By improving the computational complexity and metric mechanism of existing program
synthesis benchmarks, DPE provides a general and robust approach to reasonably evaluate
code efficiency. DPE includes two phases: (i) making a performance-exercising benchmark;
and (ii) evaluating the global performance of new solutions. In the data curation phase, DPE
transforms tasks into challenges that rigorously test code efficiency. In the evaluation phase,
DPE profiles new solutions against reference solutions with representative performance
characteristics. DPE is general, and based on it we create EVALPERF, a benchmark with 121
performance-challenging coding tasks.

Our evaluation based on EVALPERF reveals new insights into the impact of instruction
tuning, promptings, and model sizes on code efficiency. Meanwhile, the evaluation of DPE
itself showcases its effectiveness, reliability, and simplicity in performance benchmarking,
even across various platforms.

Published as a conference paper at COLM 2024

Acknowledgment

This work was partially supported by NSF grant CCF-2131943 and Kwai Inc, as well as API
credits from the OpenAl Researcher Access Program.

References

Amazon Web Services. Al Code Generator - Amazon CodeWhisperer - AWS. https://aws.
amazon.com/codewhisperer/,2023.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming
Tan, Wasi Uddin Ahmad, Shigi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual
evaluation of code generation models. In The Eleventh International Conference on Learning
Representations, 2022.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
Program synthesis with large language models. CoRR, abs/2108.07732, 2021. URL
https://arxiv.org/abs/2108.07732.

Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel Abdous, Taha
Arbaoui, Karima Benatchba, et al. A deep learning based cost model for automatic code
optimization. Proceedings of Machine Learning and Systems, 3:181-193, 2021.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5
simulator. ACM SIGARCH computer architecture news, 39(2):1-7,2011.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin,
Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman,
Arjun Guha, Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible
approach to benchmarking neural code generation, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021.

DeepSeek Al. Deepseek coder: Let the code write itself. https://github.com/deepseek-ai/
DeepSeek-Coder, 2023.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain,
Murali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and
Bing Xiang. Crosscodeeval: A diverse and multilingual benchmark for cross-file code
completion. In Thirty-seventh Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023. URL https://openreview.net/forum?id=wgDcbBMSfh.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference
on Machine Learning, pp. 10764-10799. PMLR, 2023.

GitHub. GitHub Copilot — Your Al pair programmer. https://github.com/features/
copilot,2023.

10

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://arxiv.org/abs/2108.07732
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://openreview.net/forum?id=wgDcbBMSfh
https://github.com/features/copilot
https://github.com/features/copilot

Published as a conference paper at COLM 2024

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida I Wang. Cruxeval: A benchmark for code reasoning, understanding and execution.
arXiv preprint arXiv:2401.03065, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS,2021.

Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the
efficiency of automatically generated code. arXiv preprint arXiv:2402.02037,2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?,
2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199-22213,2022.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer,
Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable
benchmark for data science code generation, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
Jodo Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho
Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu,
Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf,
Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson,
Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau,
Yacine Jernite, Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang,
Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel]. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu,
and Oriol Vinyals. Competition-level code generation with alphacode. Science, 378
(6624):1092-1097, December 2022. ISSN 1095-9203. doi: 10.1126/science.abq1158. URL
http://dx.doi.org/10.1126/science.abq1158.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang,
Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware
weight quantization for llm compression and acceleration. In MLSys, 2024.

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh Jabbarvand. Codemind: A framework to
challenge large language models for code reasoning. arXiv preprint arXiv:2402.09664, 2024.

11

http://dx.doi.org/10.1126/science.abq1158

Published as a conference paper at COLM 2024

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code
generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a.
URL https://openreview.net/forum?id=1gqvx610Cu7.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint arXiv:2306.03091, 2023b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2
and the stack v2: The next generation. arXiv preprint arXiv:2402.19173,2024.

Charith Mendis, Cambridge Yang, Yewen Pu, Dr Saman Amarasinghe, and Michael Carbin.
Compiler auto-vectorization with imitation learning. Advances in Neural Information
Processing Systems, 32,2019.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement
optimization with reinforcement learning. In International conference on machine learning,
pp. 2430-2439. PMLR, 2017.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following, 2023.

OpenAl. Gpt-4 technical report, 2023.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In
2022 IEEE Symposium on Security and Privacy (SP), pp. 754-768. IEEE, 2022.

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
efficient is llm-generated code? a rigorous & high-standard benchmark. arXiv preprint
arXiv:2406.06647, 2024.

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas

Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models
for code, 2023.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh.
Learning performance-improving code edits. arXiv preprint arXiv:2302.07867,2023.

Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. Ecco: Can
we improve model-generated code efficiency without sacrificing functional correctness?
arXiv preprint arXiv:2407.14044, 2024.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation
for open-domain code generation. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Vincent M Weaver. Linux perf_event features and overhead. In The 2nd international workshop
on performance analysis of workload optimized systems, FastPath, volume 13, pp. 5,2013a.

Vincent M Weaver. Linux perf_event features and overhead. In The 2nd international workshop
on performance analysis of workload optimized systems, FastPath, volume 13, pp. 5,2013b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

12

https://openreview.net/forum?id=1qvx610Cu7

Published as a conference paper at COLM 2024

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder:
Empowering code generation with oss-instruct. In Forty-first International Conference on
Machine Learning, 2024.

Wikipedia. Hardware performance counter - wikipedia, 2024. URL https:
//en.wikipedia.org/wiki/Hardware_performance_counter.

Songrun Xie, Junhao Wang, and Jiawei Liu. Evalplus leaderboard, 2024. URL
https://evalplus.github.io/leaderboard.html.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to
code generation in interactive data science notebooks. arXiv preprint arXiv:2212.09248,2022.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: continual pre-training on sketches for library-oriented
code generation. arXiv preprint arXiv:2206.06888, 2022.

Kexun Zhang, Danging Wang, Jingtao Xia, William Yang Wang, and Lei Li
ALGO: Synthesizing algorithmic programs with generated oracle verifiers. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JolrEmMim6.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Alj,
Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-
Performance} tensor programs for deep learning. In 14th USENIX symposium on operating
systems design and implementation (OSDI 20), pp. 863-879, 2020.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Yangi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao
Liu, Phitchaya Phothilimtha, Shen Wang, Anna Goldie, et al. Transferable graph optimizers
for ml compilers. Advances in Neural Information Processing Systems, 33:13844-13855, 2020.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench:
Benchmarking code generation with diverse function calls and complex instructions. arXiv
preprint arXiv:2406.15877, 2024.

13

https://en.wikipedia.org/wiki/Hardware_performance_counter
https://en.wikipedia.org/wiki/Hardware_performance_counter
https://evalplus.github.io/leaderboard.html
https://openreview.net/forum?id=JolrEmMim6

	Introduction
	Differential Performance Evaluation
	Valid Solution Curation
	Synthesizing a Synthesizer: Performance-Exercising Input Generation
	Performance-Exercising Task Selection
	Adaptive Performance Clustering
	Efficiency Scoring by References

	EvalPerf: A Benchmark for Code Efficiency Evaluation
	Evaluation
	Evaluating Code Efficiency
	Evaluating the Evaluation

	Related Work
	Conclusion
	Appendix
	Runtime Variation at Different Runtime Scales
	Discussion of Performance Measurement and Metrics
	Extended Results of Code Correctness and Efficiency

