
Magicoder: Empowering Code Generation with OSS-INSTRUCT

Yuxiang Wei 1 Zhe Wang 2 † Jiawei Liu 1 Yifeng Ding 1 Lingming Zhang 1

Abstract

We introduce Magicoder, a series of fully open-

source (code, weights, and data) Large Language

Models (LLMs) for code that significantly closes

the gap with top code models while having no

more than 7B parameters. Magicoder models are

trained on 75K synthetic instruction data using

OSS-INSTRUCT, a novel approach to enlighten-

ing LLMs with open-source code snippets to gen-

erate diverse instruction data for code. Our main

motivation is to mitigate the inherent bias of the

synthetic data generated by LLMs through the

wealth of open-source references for the produc-

tion of more realistic and controllable data. The

orthogonality of OSS-INSTRUCT and other data

generation methods like Evol-Instruct further en-

ables us to build an enhanced MagicoderS . Both

Magicoder and MagicoderS substantially outper-

form state-of-the-art code models with similar or

even larger sizes on a wide range of coding bench-

marks. Notably, MagicoderS-CL-7B based on

CODELLAMA even surpasses the prominent Chat-

GPT on HumanEval+ (66.5 vs. 65.9 in pass@1).

Overall, OSS-INSTRUCT opens a new direction

for crafting diverse synthetic instruction data for

code using abundant open-source references.

1. Introduction

Code generation, also known as program synthesis (Gul-

wani et al., 2017), is a long-standing challenge in com-

puter science. In the past few decades, a large body of

research has been studying symbolic approaches, such as

abstraction-based synthesis (Wang et al., 2017; Feng et al.,

2018) for general-purpose synthesis problems and program-

ming by examples (Cambronero et al., 2023; Liu et al.,

†The work was done during a remote summer internship at the
University of Illinois. 1University of Illinois at Urbana-Champaign,
USA 2Tsinghua University, China. Correspondence to: Yuxiang
Wei <ywei40@illinois.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2023a) for domain-specific tasks. Until recently, Large Lan-

guage Models (LLMs) trained on code (Austin et al., 2021;

Chen et al., 2021) has shown outstanding breakthroughs in

generating code that accurately satisfies user intents, and

they are widely deployed to assist real-world software de-

velopment (Microsoft, 2023b; Services, 2023).

Initially, closed-source models such as GPT-3.5 Turbo (Ope-

nAI, 2022) (i.e., ChatGPT) and GPT-4 (OpenAI, 2023) mas-

sively dominated various coding benchmarks and leader-

boards (Chen et al., 2021; Austin et al., 2021; Liu et al.,

2023b; Lai et al., 2022; Xia & Zhang, 2023). To further push

the boundaries of code generation with open source LLMs,

SELF-INSTRUCT (Wang et al., 2023a) is adopted to boot-

strap the instruction-following ability of LLMs. In the realm

of code, practitioners commonly devise synthetic coding

instructions using a stronger teacher model (e.g., ChatGPT

and GPT-4) and then finetune a weaker student model (e.g.,

CODELLAMA (Rozière et al., 2023)) with the generated data

to distill the knowledge from the teacher (Taori et al., 2023;

Chaudhary, 2023). For example, Code Alpaca (Chaudhary,

2023) consists of 20K automatically generated code instruc-

tions by applying SELF-INSTRUCT on ChatGPT using 21

seed tasks. To further enhance the coding abilities of LLMs,

Luo et al. (2023b) proposes Code Evol-Instruct that employs

various heuristics to increase the complexity of seed code

instructions (Code Alpaca in this case), achieving state-of-

the-art (SOTA) results among open-source models.

While these data generation methods can effectively im-

prove the instruction-following capability of an LLM, they

rely on a narrow range of predefined tasks or heuristics

under the hood. For example, on the one hand, Code Al-

paca that adopts SELF-INSTRUCT only relies on 21 seed

tasks to generate new code instructions using an identical

prompt template. On the other hand, Code Evol-Instruct

takes Code Alpaca as seeds and merely depends on 5 heuris-

tics to evolve the dataset. As partly suggested by Yu et al.

(2023) and Wang et al. (2023a), such approaches may sig-

nificantly inherit the system bias inherent in the LLMs as

well as the predefined tasks.

Therefore, in this paper, we propose OSS-INSTRUCT to

mitigate the inherent bias of LLMs and to unleash their

potential to craft diverse and creative code instructions via

direct learning from the open source. As shown in Figure 1,

1

Magicoder: Empowering Code Generation with OSS-INSTRUCT

than using the references directly, we demonstrate that fine-

tuning the base models with semantically relevant comment-

function pairs extracted from open-source projects even

negatively impacts the model performance (§4.2).

In general, we make the following contributions:

• We introduce OSS-INSTRUCT, a pioneering approach to

enlightening LLMs with open-source code snippets to

generate more diverse, realistic, and controllable coding

instruction data, which can be leveraged to substantially

boost the performance of various LLMs via instruction

tuning. It opens a new dimension for creating low-bias

and diverse instruction-tuning data from the abundance of

open-source references.

• We build the Magicoder series trained with OSS-

INSTRUCT and MagicoderS series trained on a combi-

nation of OSS-INSTRUCT and Evol-Instruct. Our eval-

uation across 6 benchmarks shows that all Magicoders

significantly improve the base LLMs. Notably, both

MagicoderS-CL and MagicoderS-DS outperform Chat-

GPT on HumanEval+ with only 7B parameters.

• We fully open source the model weights, training data, and

source code at https://github.com/ise-uiuc/

magicoder to facilitate future research.

2. OSS-INSTRUCT: Instruction Tuning from

Open Source

In this section, we elaborate on our OSS-INSTRUCT ap-

proach. From a high level, as shown in Figure 1, OSS-

INSTRUCT works by prompting an LLM (e.g., ChatGPT)

to generate a coding problem and its solution according to

some seed code snippet collected from the wild (e.g., from

GitHub). The seed snippet offers controllability of the gen-

eration and encourages the LLM to create diverse coding

problems that can reflect real-world programming scenarios.

2.1. Generating Coding Problems

OSS-INSTRUCT is powered by seed code snippets that can

be easily collected from open source. In this work, we

directly adopt starcoderdata as our seed corpus, a fil-

tered version of The Stack (Kocetkov et al., 2022) dataset

that StarCoder is trained on, containing permissively li-

censed source code documents in various programming lan-

guages. We chose starcoderdata because it is widely

adopted, includes massive high-quality code snippets, and

is even post-processed for data decontamination (Li et al.,

2023; Allal et al., 2023). For each code document from

the corpus, we randomly extract 1–15 consecutive lines

as the seed snippet for the model to gain inspiration from

and produce coding problems. In total, we collected 80K

initial seed snippets from 80K code documents, 40K from

Python, and 5K from each of C++, Java, TypeScript, Shell,

C#, Rust, PHP, and Swift respectively. Then, each collected

seed code snippet is applied to the prompt template shown

in Appendix A.1, which a teacher model takes as input and

outputs both a coding problem and its solution.

2.2. Data Cleaning and Decontamination

We perform data cleaning by excluding samples that are

identical or share the same seed code snippet. While there

exist other sorts of noisiness (e.g., the solution is incom-

plete) in the generated data, inspired by Honovich et al.

(2023), they are not removed as we believe they still con-

tain valuable information for LLMs to learn. More experi-

mental details can be found in Appendix C.3. Finally, we

apply the same logic as StarCoder Li et al. (2023) to decon-

taminate our training data by removing coding problems

that contain docstrings or solutions from HumanEval (Chen

et al., 2021) and MBPP (Austin et al., 2021), docstrings

from APPS (Hendrycks et al., 2021), prompts from DS-

1000 (Lai et al., 2022), or questions from GSM8K (Cobbe

et al., 2021). As part of our analysis, the decontamination

procedure only filters out 9 additional samples. Since the

seed corpus starcoderdata has already gone through

rigorous data decontamination, this observation suggests

that OSS-INSTRUCT is unlikely to introduce additional data

leakage beyond the seeds. The eventual OSS-INSTRUCT

dataset contains about 75K entries. An overview of the

dataset statistics can be found in Appendix A.3.

2.3. Qualitative Examples of OSS-INSTRUCT

Figure 2 shows some qualitative examples of how OSS-

INSTRUCT can help LLM get inspiration from a seed code

snippet to create new coding problems and solutions. For

example, the shell script example shows how an LLM crafts

a Python coding problem with just one line of shell script.

The library imports example demonstrates how an LLM

can create a realistic machine learning problem using just

a few import statements. Meanwhile, the class signature

instance illustrates the ability of LLM to draw inspiration

from an incomplete class definition featuring annotations

like SpringBootApplication and keywords such as

bank. From this, the LLM generates a problem that re-

quires implementing a complete banking system based on

Spring Boot. Overall, OSS-INSTRUCT can inspire an LLM

with distinct code structures and semantics to create diverse

coding tasks, including algorithmic challenges, realistic

issues, single-function code generation, library-based pro-

gram completion, whole-program development, and even

whole-application construction.

Similarity with HumanEval To study whether our data

generation process produces more HumanEval-like prob-

3

https://github.com/ise-uiuc/magicoder
https://github.com/ise-uiuc/magicoder

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 1: Pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding. The

abbreviations “CL” and “SC” refer to the base models CODELLAMA-PYTHON and StarCoder, respectively. We report the

results consistently from the EvalPlus (Liu et al., 2023b) Leaderboard.

Model Release Date Size
Benchmark Open-Source

HumanEval (+) MBPP (+) Weight Data

GPT-3.5 Turbo Nov 2023 - 72.6 (65.9) 81.7 (69.4) # #

GPT-4 Turbo Nov 2023 - 85.4 (81.7) 83.0 (70.7) # #

CODELLAMA-PYTHON Aug 2023 34B 51.8 (42.7) 67.2 (52.9) #

WizardCoder-CL Sep 2023 34B 73.2 (64.6) 73.2 (59.9) #

CodeT5+ May 2023 16B 31.7 (26.2) 54.6 (44.4)

CodeGen-Mono Mar 2022 16B 32.9 (27.4) 52.6 (43.6)

StarCoder May 2023 15B 34.1 (29.3) 55.1 (46.1)

CODELLAMA-PYTHON Aug 2023 13B 42.7 (36.6) 61.2 (50.9) #

WizardCoder-SC Sep 2023 15B 51.9 (45.1) 61.9 (50.6) #

StarCoder May 2023 7B 24.4 (20.7) 33.1 (28.8)

Mistral Oct 2023 7B 28.7 (23.2) 50.1 (40.9) #

CodeT5+ May 2023 6B 29.3 (23.8) 51.9 (40.9)

CodeGen-Mono Mar 2022 6B 29.3 (25.6) 49.9 (42.1)

CODELLAMA-PYTHON Aug 2023 7B 37.8 (34.1) 57.6 (45.4) #

WizardCoder-CL Sep 2023 7B 48.2 (40.9) 56.6 (47.1) #

Magicoder-CL Dec 2023 7B 60.4 (55.5) 64.2 (52.6)

MagicoderS-CL Dec 2023 7B 70.7 (66.5) 68.4 (56.6)

CODELLAMA-PYTHON (Rozière et al., 2023), Wizard-

Coder (Luo et al., 2023b), GPT-3.5 Turbo (OpenAI, 2022),

GPT-4 Turbo (OpenAI, 2023), StarCoder (Li et al., 2023),

CodeT5+ (Wang et al., 2023b), CodeGen-Mono (Nijkamp

et al., 2023), and Mistral (Jiang et al., 2023a). All the re-

sults are consistently reported from the EvalPlus (Liu et al.,

2023b) leaderboard (EvalPlus hash: 1895d2f).

Table 1 shows the pass@1 results of different LLMs on

these benchmarks. From the results, we can first observe

that Magicoder-CL has a clear improvement over the base

CODELLAMA-PYTHON-7B, and outperforms all studied

open-source models except CODELLAMA-PYTHON-34B

and WizardCoder-CL-34B. Notably, Magicoder-CL sur-

passes WizardCoder-SC-15B and has a substantial improve-

ment on HumanEval and HumanEval+ over CODELLAMA-

PYTHON-34B. MagicoderS-CL demonstrates further im-

provements by being trained with the orthogonal Evol-

Instruct method. MagicoderS-CL outperforms ChatGPT

and all other open-source models on HumanEval+. More-

over, although it scores slightly lower than WizardCoder-

CL-34B and ChatGPT on HumanEval, it surpasses both of

them on the more rigorous HumanEval+ dataset, indicating

that MagicoderS-CL may produce more robust code.

3.2. Multilingual Code Generation

In addition to Python, as shown in Table 2, we perform

an extensive evaluation on 6 widely used programming

languages, i.e., Java, JavaScript, C++, PHP, Swift, and

Rust, using the MultiPL-E benchmark (Cassano et al.,

2022). We report available results from the WizardCoder pa-

per (Luo et al., 2023b) and evaluate our models consistently

through bigcode-evaluation-harness (Ben Allal

et al., 2022). We skip proprietary models such as Chat-

GPT and GPT-4 as they are not supported by the frame-

work. Due to a significant inference latency when running

WizardCoder-CL-7B using the harness in our environment,

we choose not to include it in our analysis.

The results indicate that Magicoder-CL improves the base

CODELLAMA-PYTHON-7B by a large margin among all

the studied programming languages. Moreover, Magicoder-

CL also achieves better results than the SOTA 15B

WizardCoder-SC among half of the programming lan-

guages. Additionally, MagicoderS-CL demonstrates fur-

ther improvement over Magicoder-CL on all program-

ming languages, achieving comparable performance against

WizardCoder-CL-34B with only 7B parameters. It is worth

noting that Magicoder-CL is only trained with very limited

multilingual data but still outperforms other LLMs with

similar or even larger sizes. Also, although the harness

5

Magicoder: Empowering Code Generation with OSS-INSTRUCT

evaluates models in completion formats which are for base

models, Magicoders still show significant improvements de-

spite being only instruction-tuned. This implies that LLMs

can learn knowledge from the data beyond its format.

3.3. Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) contains 1K distinct

data science coding issues ranging from 7 popular data sci-

ence libraries in Python. It evaluates the realistic and practi-

cal use case of an LLM and offers unit tests for validating

each problem. DS-1000 has both completion and insertion

modes, but here we only evaluate completion because the

base CODELLAMA-PYTHON does not support infilling. Ta-

ble 3 shows the evaluation results where we include the

recent INCODER (Fried et al., 2023), CodeGen (Nijkamp

et al., 2023), Code-Cushman-001 (Microsoft, 2023a), Star-

Coder (Li et al., 2023), CODELLAMA-PYTHON (Rozière

et al., 2023), and WizardCoder (Luo et al., 2023b). We

can see from the table that Magicoder-CL-7B already out-

performs all the baselines we evaluate, including state-

of-the-art WizardCoder-CL-7B and WizardCoder-SC-15B.

MagicoderS-CL-7B further breaks the limit by introduc-

ing an 8.3 percentage point absolute improvement over

WizardCoder-SC-15B.

3.4. Comparison with DeepSeek-Coder

DeepSeek-Coder (Guo et al., 2024) is a series of models

released concurrently to our work and they demonstrate su-

perior coding performance. We only briefly discuss it in

this section because its data and instruction tuning details

are not publicly available at the time of writing. We apply

the same finetuning strategy on DeepSeek-Coder-Base-6.7B

as we performed on CODELLAMA-PYTHON-7B, leading

to Magicoder-DS and MagicoderS-DS. Table 4 shows a

similar trend as Table 1 that the base model can be sig-

nificantly improved after applying OSS-INSTRUCT. Re-

markably, the MagicoderS-DS variant surpasses DeepSeek-

Coder-Instruct-6.7B on all the benchmarks with ⇥8 fewer

training tokens, and it also closely matches DeepSeek-

Coder-Instruct-33B on these datasets.

4. Ablations of Data Source

4.1. Impact of the Language Distribution

To understand the correlation between the programming lan-

guages appearing in the training data and the downstream

performance of different languages, we conduct an addi-

tional ablation study about the training data. We classify the

75K training data into approximately 43K Python-only, and

32K non-Python data according to whether ‘‘‘python

is a substring of the generated data. We do not classify

the data based on the seed code snippet because LLMs per-

forming OSS-INSTRUCT may produce code in a different

programming language than the seed.

Table 5 shows the evaluation results, where we consistently

finetune the base CODELLAMA-PYTHON-7B for 2 epochs

on different data partitions using the same training hyper-

parameters explained in Appendix B. From the table, we

can see that, as can be imagined, training on Python or

non-Python data can substantially boost the performance of

the base model in Python or non-Python tasks, respectively.

Interestingly, instruction tuning on different programming

languages can still boost the overall coding performance

that includes out-of-distribution languages. For example,

when trained on only non-Python data, Magicoder-CL still

achieves a 10.4 percentage point improvement over the base

model in the Python-only evaluation. This implies LLMs

can establish correlations between different programming

languages and perform transfer learning of deeper code se-

mantics. Finally, we observe a more significant boost in

Python evaluation when combining data from both sources,

with a slight decrease in multilingual performance compared

with only finetuning on multilingual data. We attribute this

decrease to the dominant amount of Python data (around

57%) during instruction tuning.

4.2. OSS-INSTRUCT vs. Direct Finetuning

The fact that OSS-INSTRUCT gets an LLM inspired from

open-source code snippets may lead to a natural question:

why not directly finetuning on these open-source code? To

answer this question, we follow CodeSearchNet (Husain

et al., 2020) to mine semantically relevant comment-function

pairs from the same seed document corpus we use to con-

struct the 75K OSS-INSTRUCT dataset. We then train the

model to predict the function bodies from the function signa-

tures and comments. We prioritize comment-function pairs

that overlap with our 75K seed snippets, resulting in about

11K data points. To align with our 75K samples, we collect

the remaining 64K samples using the whole corpus of 75K

seed documents. Eventually, we have the same number of

comment-function pairs with OSS-INSTRUCT data.

We finetune the base CODELLAMA-PYTHON-7B for 2

epochs using the paired data, following the same training

setup discussed in Appendix B. From Table 6, we observe

that finetuning on 75K paired comment-function data even

worsens the base model, while OSS-INSTRUCT helps to

introduce a substantial boost. We conjecture that the degra-

dation is owing to the substantial noise and inconsistency

that exists intrinsically in the data pairs, even though these

paired data exhibit very similar format as HumanEval or

MultiPL-E problems. This further shows that data factual-

ity, rather than the format, is essential to code instruction

tuning. It also indicates the superiority of OSS-INSTRUCT

which can translate these loosely related code fragments

6

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 2: Pass@1 results of different LLMs on MultiPL-E (Cassano et al., 2022) following the same hyperparameter

settings as the WizardCoder paper (Luo et al., 2023b): temperature = 0.2, top p = 0.95, max length = 512, and

num samples = 50. We evaluate all 7B models using bigcode-evaluation-harness (Ben Allal et al., 2022) and

report other results from WizardCoder.

Model Size
Programming Language

Java JavaScript C++ PHP Swift Rust

CODELLAMA 34B 40.2 41.7 41.4 40.4 35.3 38.7

CODELLAMA-PYTHON 34B 39.5 44.7 39.1 39.8 34.3 39.7

CODELLAMA-INSTRUCT 34B 41.5 45.9 41.5 37.0 37.6 39.3

WizardCoder-CL 34B 44.9 55.3 47.2 47.2 44.3 46.2

StarCoderBase 15B 28.5 31.7 30.6 26.8 16.7 24.5

StarCoder 15B 30.2 30.8 31.6 26.1 22.7 21.8

WizardCoder-SC 15B 35.8 41.9 39.0 39.3 33.7 27.1

CODELLAMA 7B 29.3 31.7 27.0 25.1 25.6 25.5

CODELLAMA-PYTHON 7B 29.1 35.7 30.2 29.0 27.1 27.0

Magicoder-CL 7B 36.4 45.9 36.5 39.5 33.4 30.6

MagicoderS-CL 7B 42.9 57.5 44.4 47.6 44.1 40.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top p = 0.5, max length =

1024, and num samples = 40, following the same hyperparameter setting used in WizardCoder (Luo et al., 2023b). We

evaluate all the 7B models with their preferred prompt formats and report other results from WizardCoder.

Model Size

+ 155

Matplotlib

+ 220

NumPy

+ 291

Pandas

+ 68

PyTorch

+ 106

SciPy

+ 115

Sklearn

+ 45

TensorFlow

= 1000

Overall

INCODER 6.7B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4

CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7

Code-Cushman-001 - 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder 15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0

WizardCoder-SC 15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

CODELLAMA-PYTHON 7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0

WizardCoder-CL 7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4

Magicoder-CL 7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9

MagicoderS-CL 7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

Table 4: Pass@1 (greedy decoding) comparison between Magicoder and DeepSeek-Coder (Guo et al., 2024) on Hu-

manEval (+) and MBPP (+). DeepSeek-Coder results are reported from EvalPlus (Liu et al., 2023b) Leaderboard.

Model Size Training Tokens
Benchmark Open-Source

HumanEval (+) MBPP (+) Weight Data

DeepSeek-Coder-Base

1.3B 2T - 55.4 (46.9) #

6.7B 2T 47.6 (39.6) 70.2 (56.6) #

33B 2T 51.2 (43.3) - #

DeepSeek-Coder Instruct

1.3B +2B 64.6 (58.5) 63.7 (53.1) #

6.7B +2B 73.8 (70.1) 72.7 (63.4) #

33B +2B 78.7 (72.6) 78.7 (66.7) #

Magicoder-DS 6.7B +90M 66.5 (60.4) 75.4 (61.9)

MagicoderS-DS 6.7B +240M 76.8 (70.7) 75.7 (64.4)

7

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 5: Ablation study of using different programming languages as training data. We show the pass@1 results on

HumanEval+ (Liu et al., 2023b) for Python and the average pass@1 results on MultiPL-E (Cassano et al., 2022) for the

same set of programming languages used in Table 2 (i.e., Java, JavaScript, C++, PHP, Swift, and Rust). All the variants are

finetuned with 2 epochs and evaluated through greedy-decoding.

Model (7B) Finetuning Data Python (HumanEval+) Others (MultiPL-E)

CODELLAMA-PYTHON - 34.1 29.6

Magicoder-CL Python (43K) 47.6 32.7

Magicoder-CL Others (32K) 44.5 38.3

Magicoder-CL Both (75K) 55.5 37.8

Table 6: Comparison between OSS-INSTRUCT and directly

finetuning on comment-function pairs with CODELLAMA-

PYTHON-7B as the base model.

Finetuning Data HumanEval+ MultiPL-E

Base model w/o finetuning 34.1 29.6

Comment-function pairs (75K) 34.1 24.1

OSS-INSTRUCT (75K) 55.5 37.8

into semantically-consistent instruction-tuning data.

4.3. OSS-INSTRUCT with A Less Powerful Teacher

In this section, we explore the factors contributing to the

effectiveness of OSS-INSTRUCT beyond just the distillation

of the teacher model. We propose two potential key reasons.

First, since the base model is pretrained with comprehen-

sive code data, the distillation process likely activates the

model’s internal capabilities, leading to improved perfor-

mance in coding tasks. Second, OSS-INSTRUCT uses seed

code snippets to generate problem-solution pairs in one shot.

These seed snippets provide valuable context, enabling the

model to create better solutions than a plain teacher model

lacking such seed information. These enhanced solutions

can then be used to train more effective student models. To

verify these points, we conduct an additional experiment

by generating a subset of 20K OSS-INSTRUCT data using

Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024), a state-of-

the-art, general-purpose, open-source LLM.

Table 7: Pass@1 on HumanEval+ and MBPP+ when fine-

tuning CODELLAMA-PYTHON-7B for 2 epochs on 20K

OSS-INSTRUCT data generated by Mixtral-8x7B-Instruct-

v0.1 (Jiang et al., 2024).

Model HumanEval+ MBPP+

Mixtral-8x7B-Instruct-v0.1 39.6 47.4

CODELLAMA-PYTHON-7B 34.1 45.4

Magicoder-CL-Mixtral-7B 55.5 50.4

Table 7 indicates that Magicoder-CL-Mixtral-7B not

only significantly improves over the base CODELLAMA-

PYTHON, but is also better than Mixtral-8x7B-Instruct-v0.1

(i.e., the teacher model) across HumanEval+ and MBPP+.

These results suggest that OSS-INSTRUCT is not simply dis-

tilling a teacher model, but also triggering the base model’s

own capability and effectively leveraging the information

encapsulated in seed code snippets.

5. Related Work

Foundation models for code Trained over billions of

lines of code, LLMs have demonstrated outstanding per-

formance in a wide range of software engineering tasks,

including code generation (Chen et al., 2021; Austin et al.,

2021), program repair (Xia & Zhang, 2022; Wei et al.,

2023; Xia et al., 2023b; Jiang et al., 2023b; Bouzenia et al.,

2024), and software testing (Xia et al., 2023a; Deng et al.,

2023; Yuan et al., 2023; Schäfer et al., 2023; Lemieux et al.,

2023). In particular, prominent base models, such as Code-

Gen (Nijkamp et al., 2023), CodeT5 (Wang et al., 2021),

StarCoder (Li et al., 2023), and CODELLAMA (Rozière

et al., 2023), are pre-trained over a huge number of code-

base from scratch, establishing the fundamental ability of

general code generation and understanding. More recent

code LLMs, such as DeepSeek-Coder (Guo et al., 2024) and

StarCoder2 (Lozhkov et al., 2024), additionally organize

the pretraining data at the repository level to enhance the

model’s contextual understanding capabilities. Furthermore,

these base models are also finetuned (Luo et al., 2023b) or

prompted (Chen et al., 2023) to unlock their true potential

to specialize in solving domain-specific coding tasks.

Instruction tuning with synthetic data Instruction tun-

ing aims to improve pretrained LLMs by finetuning them

with a mixture of instructions and corresponding re-

sponses (Wei et al., 2022). However, obtaining high-

quality instructional data is oftentimes laborious. Hence,

researchers are increasingly focusing on the development

of methods to generate synthetic instruction data. Wang

et al. (2023a) introduces SELF-INSTRUCT, where a founda-

8

Magicoder: Empowering Code Generation with OSS-INSTRUCT

tion LLM (GPT-3 (Brown et al., 2020)) is used to gen-

erate synthetic instruction-response pairs with carefully

crafted prompts. The same LLM is then instruction-tuned on

the synthetic data to distill such self-generated knowledge.

This technique has been further extended to create synthetic

data with different LLMs. For example, Alpaca (Taori et al.,

2023) and Code Alpaca (Chaudhary, 2023) apply SELF-

INSTRUCT to finetune LLAMA with ChatGPT-generated

instructions. To improve SELF-INSTRUCT, WizardLM (Xu

et al., 2023) and WizardCoder (Luo et al., 2023a) propose

Evol-Instruct and Code Evol-Instruct by guiding ChatGPT

with heuristic prompts to make the synthetic data more com-

plex and diverse. More recently, Gunasekar et al. (2023)

shows that textbook-quality synthetic data alone can help

the model achieve remarkable coding and reasoning capa-

bilities. Orthogonal to all existing methods, our proposed

OSS-INSTRUCT allows LLMs to get inspired from real-

world code snippets for better controllability, quality, and

creativity in coding tasks.

Evaluating LLMs for code Most code benchmarks eval-

uate LLMs on generating single-function programs from

natural language descriptions. Such benchmarks include

HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),

APPS (Hendrycks et al., 2021), and CodeContests (Li et al.,

2022). A handful of manual tests are used to assess the

functional correctness of LLM-generated solutions. How-

ever, insufficient tests can lead to false negatives. Conse-

quently, the EvalPlus framework (Liu et al., 2023b) pro-

duces HumanEval+ and MBPP+ by extending 80⇥/35⇥

more tests. To address dataset contamination issues, re-

searchers propose LiveCodeBench (Jain et al., 2024), which

compiles fresh coding problems not included in model

training, and EvoEval (Xia et al., 2024), which strategi-

cally leverages LLMs to evolve existing benchmarks into

new coding tasks. Meanwhile, there are comprehensive

benchmarks evaluating code generation for data science

(DS-1000 (Lai et al., 2022)), addressing open-source issues

(SWE-bench (Jimenez et al., 2023)), and repository-level

code generation (CROSSCODEEVAL (Ding et al., 2023) and

RepoEval (Zhang et al., 2023)).

6. Conclusion and Future Work

We propose OSS-INSTRUCT, a novel data generation

method using Large Language Models to generate diverse

coding challenges from open-source code snippets. This

approach enables Magicoder, which significantly improves

the base LLM. Despite having less than 7B parameters, it

can outperform all evaluate LLMs with less than or equal to

16B parameters, including the 15B WizardCoder. Combin-

ing OSS-INSTRUCT with Evol-Instruct allows us to build

the enhanced MagicoderS models. They achieve remark-

able results by rivaling leading models like ChatGPT in

HumanEval benchmarks. We fully open source the model

weights, training data, and source code, to enable future

research in LLMs for code. In the near future, we will ap-

ply OSS-INSTRUCT to larger base models. We will also

continue advancing OSS-INSTRUCT by generating higher-

quality data with a strategically designed distribution of the

seed code snippets and with more advanced teacher LLMs

such as GPT-4.

Acknowledgement

We thank all the reviewers for their insightful comments and

suggestions for our paper. This work was partially supported

by NSF grant CCF-2131943, as well as Kwai Inc.

Impact Statement

This work is motivated to boost large language models

in terms of their code generation and understanding ca-

pabilities through instruction tuning. The proposed OSS-

INSTRUCT method leverages the abundance of open source

to generate diverse and controllable instruction data. We ex-

pect this idea to also foster innovative software solutions tai-

lored to domain-specific needs, particularly in areas where

real data is private and scarce, by generating extensive syn-

thetic data. Additionally, our method reinforces the value

of community-driven content and knowledge sharing by

incorporating open-source code as references.

However, it is essential to recognize the potential for misuse,

such as the deliberate generation of vulnerable code that can

be exploited for malicious purposes. Ultimately, adhering

to ethical guidelines is crucial to ensure the responsible use

of this technique.

References

Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Fer-

randis, C. M., Muennighoff, N., Mishra, M., Gu, A., Dey,

M., Umapathi, L. K., Anderson, C. J., Zi, Y., Poirier, J. L.,

Schoelkopf, H., Troshin, S., Abulkhanov, D., Romero,

M., Lappert, M., Toni, F. D., del Rı́o, B. G., Liu, Q.,

Bose, S., Bhattacharyya, U., Zhuo, T. Y., Yu, I., Villegas,

P., Zocca, M., Mangrulkar, S., Lansky, D., Nguyen, H.,

Contractor, D., Villa, L., Li, J., Bahdanau, D., Jernite, Y.,

Hughes, S., Fried, D., Guha, A., de Vries, H., and von

Werra, L. Santacoder: don’t reach for the stars!, 2023.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,

and Sutton, C. Program synthesis with large language

models. CoRR, abs/2108.07732, 2021. URL https:

//arxiv.org/abs/2108.07732.

Ben Allal, L., Muennighoff, N., Kumar Umapathi,

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Magicoder: Empowering Code Generation with OSS-INSTRUCT

L., Lipkin, B., and von Werra, L. A framework

for the evaluation of code generation models.

https://github.com/bigcode-project/

bigcode-evaluation-harness, 2022.

Bouzenia, I., Devanbu, P., and Pradel, M. Repairagent: An

autonomous, llm-based agent for program repair. arXiv

preprint arXiv:2403.17134, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,

Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,

Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,

Radford, A., Sutskever, I., and Amodei, D. Language

models are few-shot learners. In Larochelle, H.,

Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),

Advances in Neural Information Processing Systems,

volume 33, pp. 1877–1901. Curran Associates, Inc.,

2020. URL https://proceedings.neurips.

cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.

pdf.

Cambronero, J., Gulwani, S., Le, V., Perelman, D., Rad-

hakrishna, A., Simon, C., and Tiwari, A. Flashfill++:

Scaling programming by example by cutting to the

chase. Proc. ACM Program. Lang., 7(POPL), jan 2023.

doi: 10.1145/3571226. URL https://doi.org/10.

1145/3571226.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-

Costin, L., Pinckney, D., Yee, M.-H., Zi, Y., Anderson,

C. J., Feldman, M. Q., Guha, A., Greenberg, M., and

Jangda, A. Multipl-e: A scalable and extensible approach

to benchmarking neural code generation, 2022.

Chaudhary, S. Code alpaca: An instruction-following llama

model for code generation. https://github.com/

sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,

H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,

Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,

M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,

S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-

ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,

Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,

Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,

J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,

Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,

V., Morikawa, E., Radford, A., Knight, M., Brundage,

M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,

Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,

W. Evaluating large language models trained on code,

2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large

language models to self-debug, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,

Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,

R., Hesse, C., and Schulman, J. Training verifiers to solve

math word problems, 2021.

Deng, Y., Xia, C. S., Peng, H., Yang, C., and Zhang, L.

Large language models are zero-shot fuzzers: Fuzzing

deep-learning libraries via large language models, 2023.

Ding, Y., Wang, Z., Ahmad, W. U., Ding, H., Tan, M.,

Jain, N., Ramanathan, M. K., Nallapati, R., Bhatia, P.,

Roth, D., and Xiang, B. Crosscodeeval: A diverse

and multilingual benchmark for cross-file code comple-

tion. In Thirty-seventh Conference on Neural Informa-

tion Processing Systems Datasets and Benchmarks Track,

2023. URL https://openreview.net/forum?

id=wgDcbBMSfh.

Feng, Y., Martins, R., Bastani, O., and Dillig, I. Program

synthesis using conflict-driven learning. SIGPLAN Not.,

53(4):420–435, jun 2018. ISSN 0362-1340. doi: 10.

1145/3296979.3192382. URL https://doi.org/

10.1145/3296979.3192382.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,

E., Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and

Lewis, M. Incoder: A generative model for code infilling

and synthesis. In The Eleventh International Confer-

ence on Learning Representations, 2023. URL https:

//openreview.net/forum?id=hQwb-lbM6EL.

Gulwani, S., Polozov, O., and Singh, R. Program syn-

thesis. Foundations and Trends® in Programming Lan-

guages, 4(1-2):1–119, 2017. ISSN 2325-1107. doi:

10.1561/2500000010. URL http://dx.doi.org/

10.1561/2500000010.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,

Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,

de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,

H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,

Y. T., and Li, Y. Textbooks are all you need, 2023.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,

Chen, G., Bi, X., Wu, Y., Li, Y. K., Luo, F., Xiong, Y.,

and Liang, W. Deepseek-coder: When the large language

model meets programming – the rise of code intelligence,

2024.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,

A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and

Steinhardt, J. Measuring coding challenge competence

with apps, 2021.

10

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3296979.3192382
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Honovich, O., Scialom, T., Levy, O., and Schick, T. Unnat-

ural instructions: Tuning language models with (almost)

no human labor. In Rogers, A., Boyd-Graber, J., and

Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-

ing of the Association for Computational Linguistics (Vol-

ume 1: Long Papers), pp. 14409–14428, Toronto, Canada,

July 2023. Association for Computational Linguistics.

doi: 10.18653/v1/2023.acl-long.806. URL https:

//aclanthology.org/2023.acl-long.806.

Hugging Face. Hugging face: The ai community build-

ing the future. https://huggingface.co/, 2023.

Accessed: 2023-12-01.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and

Brockschmidt, M. Codesearchnet challenge: Evaluat-

ing the state of semantic code search, 2020.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,

Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-

codebench: Holistic and contamination free evaluation of

large language models for code, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,

Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,

G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-

A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,

T., and Sayed, W. E. Mistral 7b, 2023a.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,

B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,

E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,

Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,

Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,

Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,

W. E. Mixtral of experts, 2024.

Jiang, N., Liu, K., Lutellier, T., and Tan, L. Impact of code

language models on automated program repair, 2023b.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,

O., and Narasimhan, K. Swe-bench: Can language mod-

els resolve real-world github issues?, 2023.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,

C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,

Bahdanau, D., von Werra, L., and de Vries, H. The stack:

3 tb of permissively licensed source code, 2022.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,

L., tau Yih, S. W., Fried, D., Wang, S., and Yu, T. Ds-

1000: A natural and reliable benchmark for data science

code generation, 2022.

Lemieux, C., Inala, J. P., Lahiri, S. K., and Sen, S. Co-

damosa: Escaping coverage plateaus in test genera-

tion with pre-trained large language models. In 2023

IEEE/ACM 45th International Conference on Software

Engineering (ICSE), pp. 919–931. IEEE, 2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,

Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,

Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,

Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,

O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-

pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,

Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,

D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-

tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,

P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,

N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,

Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,

C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,

D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,

S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.

Starcoder: may the source be with you!, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,

J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,

Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume,

C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,

Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,

D. J., Sutherland Robson, E., Kohli, P., de Freitas,

N., Kavukcuoglu, K., and Vinyals, O. Competition-

level code generation with alphacode. Science, 378

(6624):1092–1097, December 2022. ISSN 1095-9203.

doi: 10.1126/science.abq1158. URL http://dx.doi.

org/10.1126/science.abq1158.

Liu, J., Peng, J., Wang, Y., and Zhang, L. Neuri: Di-

versifying dnn generation via inductive rule inference.

In Proceedings of the 31st ACM Joint European Soft-

ware Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/FSE 2023,

pp. 657–669, New York, NY, USA, 2023a. Associa-

tion for Computing Machinery. ISBN 9798400703270.

doi: 10.1145/3611643.3616337. URL https://doi.

org/10.1145/3611643.3616337.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code

generated by chatGPT really correct? rigorous evaluation

of large language models for code generation. In Thirty-

seventh Conference on Neural Information Processing

Systems, 2023b. URL https://openreview.net/

forum?id=1qvx610Cu7.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,

J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,

Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,

Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,

Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,

E., Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y.,

He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,

Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,

C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,

Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,

11

https://aclanthology.org/2023.acl-long.806
https://aclanthology.org/2023.acl-long.806
https://huggingface.co/
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3611643.3616337
https://doi.org/10.1145/3611643.3616337
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,

Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,

Ferrandis, C. M., Zhang, L., Hughes, S., Wolf, T., Guha,

A., von Werra, L., and de Vries, H. Starcoder 2 and the

stack v2: The next generation, 2024.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,

Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering

code large language models with evol-instruct. arXiv

preprint arXiv:2306.08568, 2023a.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,

Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering

code large language models with evol-instruct, 2023b.

Microsoft. Azure openai service models. https:

//learn.microsoft.com/en-us/azure/

cognitive-services/openai/concepts/

models, 2023a.

Microsoft. GitHub Copilot – Your AI pair pro-

grammer. https://github.com/features/

copilot, 2023b.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,

Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and

Longpre, S. Octopack: Instruction tuning code large

language models, 2023.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,

Zhou, Y., Savarese, S., and Xiong, C. Codegen: An

open large language model for code with multi-turn pro-

gram synthesis. In The Eleventh International Confer-

ence on Learning Representations, 2023. URL https:

//openreview.net/forum?id=iaYcJKpY2B_.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and

Solar-Lezama, A. Is self-repair a silver bullet for code

generation? In The Twelfth International Conference

on Learning Representations, 2024. URL https://

openreview.net/forum?id=y0GJXRungR.

OpenAI. Chatgpt: Optimizing language models for dialogue.

https://openai.com/blog/chatgpt/, 2022.

OpenAI. Gpt-4 technical report, 2023.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,

X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,

A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C. C.,

Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,

F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and

Synnaeve, G. Code llama: Open foundation models for

code, 2023.

Schäfer, M., Nadi, S., Eghbali, A., and Tip, F. An empirical

evaluation of using large language models for automated

unit test generation. IEEE Transactions on Software En-

gineering, 2023.

Services, A. W. AI Code Generator - Amazon Code-

Whisperer - AWS. https://aws.amazon.com/

codewhisperer/, 2023.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning

rates with sublinear memory cost, 2018.

SPARCK JONES, K. A statistical interpretation of term

specificity and its application in retrieval. 28(1):11–21,

2023/11/30 1972. doi: 10.1108/eb026526. URL https:

//doi.org/10.1108/eb026526.

Su, H., Shi, W., Kasai, J., Wang, Y., Hu, Y., Ostendorf,

M., Yih, W.-t., Smith, N. A., Zettlemoyer, L., and Yu, T.

One embedder, any task: Instruction-finetuned text em-

beddings. 2022. URL https://arxiv.org/abs/

2212.09741.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,

X., Guestrin, C., Liang, P., and Hashimoto, T. B.

Stanford alpaca: An instruction-following llama

model. https://github.com/tatsu-lab/

stanford_alpaca, 2023.

theblackcat102. The evolved code alpaca dataset.

https://huggingface.co/datasets/

theblackcat102/evol-codealpaca-v1,

2023.

Wang, X., Dillig, I., and Singh, R. Program synthesis using

abstraction refinement. Proc. ACM Program. Lang., 2

(POPL), dec 2017. doi: 10.1145/3158151. URL https:

//doi.org/10.1145/3158151.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. CodeT5:

Identifier-aware unified pre-trained encoder-decoder mod-

els for code understanding and generation. In Moens,

M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-

ceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, pp. 8696–8708, On-

line and Punta Cana, Dominican Republic, November

2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.emnlp-main.685. URL https://

aclanthology.org/2021.emnlp-main.685.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,

Khashabi, D., and Hajishirzi, H. Self-instruct: Align-

ing language models with self-generated instructions. In

Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-

ceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pp. 13484–13508, Toronto, Canada, July 2023a. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/

2023.acl-long.754. URL https://aclanthology.

org/2023.acl-long.754.

12

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://github.com/features/copilot
https://github.com/features/copilot
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openai.com/blog/chatgpt/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D. Q., Li, J., and

Hoi, S. C. H. Codet5+: Open code large language models

for code understanding and generation, 2023b.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,

B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language

models are zero-shot learners, 2022.

Wei, Y., Xia, C. S., and Zhang, L. Copiloting the copilots:

Fusing large language models with completion engines

for automated program repair, 2023.

Xia, C. S. and Zhang, L. Less training, more repairing

please: Revisiting automated program repair via zero-

shot learning, 2022.

Xia, C. S. and Zhang, L. Keep the conversation going:

Fixing 162 out of 337 bugs for $0.42 each using chatgpt.

arXiv preprint arXiv:2304.00385, 2023.

Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang,

L. Universal fuzzing via large language models, 2023a.

Xia, C. S., Wei, Y., and Zhang, L. Automated program

repair in the era of large pre-trained language models.

In 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE), pp. 1482–1494, 2023b. doi:

10.1109/ICSE48619.2023.00129.

Xia, C. S., Deng, Y., and Zhang, L. Top leaderboard ranking

= top coding proficiency, always? evoeval: Evolving

coding benchmarks via llm, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,

C., and Jiang, D. Wizardlm: Empowering large language

models to follow complex instructions. arXiv preprint

arXiv:2304.12244, 2023.

Yu, Y., Zhuang, Y., Zhang, J., Meng, Y., Ratner, A., Krishna,

R., Shen, J., and Zhang, C. Large language model as

attributed training data generator: A tale of diversity and

bias, 2023.

Yuan, Z., Lou, Y., Liu, M., Ding, S., Wang, K., Chen, Y.,

and Peng, X. No more manual tests? evaluating and

improving chatgpt for unit test generation. arXiv preprint

arXiv:2305.04207, 2023.

Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan,

D., Mao, Y., Lou, J.-G., and Chen, W. Repocoder:

Repository-level code completion through iterative re-

trieval and generation, 2023.

13

	Introduction
	OSS-Instruct: Instruction Tuning from Open Source
	Generating Coding Problems
	Data Cleaning and Decontamination
	Qualitative Examples of OSS-Instruct

	Evaluation
	Python Text-to-Code Generation
	Multilingual Code Generation
	Code Generation for Data Science
	Comparison with DeepSeek-Coder

	Ablations of Data Source
	Impact of the Language Distribution
	OSS-Instruct vs. Direct Finetuning
	OSS-Instruct with A Less Powerful Teacher

	Related Work
	Conclusion and Future Work
	More Details of OSS-Instruct
	Prompt Design
	Qualitative Examples
	Breakdown of OSS-Instruct Dataset

	Implementation Details
	Data Generation
	Data Decontamination
	Training

	More Evaluation Results
	Evaluation on APPS for Competitive Programming
	Fill-in-the-Middle Evaluation on DS-1000
	Impact of Removing Noisy Data

	Cases where OSS-Instruct Improves Code Understanding
	More Precise Understanding of Requirements
	Handling Corner Cases
	Generalizing to Unseen Tasks

	Generating Complex Programs
	Implementing Snake Game in Python
	Building Othello Game in Java
	Writing Specific Gradio Application
	Developing Machine Learning Pipeline with PyTorch

	Limitations

