Magicoder: Empowering Code Generation with OSS-INSTRUCT

Yuxiang Wei !

Abstract

We introduce Magicoder, a series of fully open-
source (code, weights, and data) Large Language
Models (LLMs) for code that significantly closes
the gap with top code models while having no
more than 7B parameters. Magicoder models are
trained on 75K synthetic instruction data using
OSS-INSTRUCT, a novel approach to enlighten-
ing LLMs with open-source code snippets to gen-
erate diverse instruction data for code. Our main
motivation is to mitigate the inherent bias of the
synthetic data generated by LLMs through the
wealth of open-source references for the produc-
tion of more realistic and controllable data. The
orthogonality of OSS-INSTRUCT and other data
generation methods like Evol-Instruct further en-
ables us to build an enhanced MagicoderS. Both
Magicoder and MagicoderS substantially outper-
form state-of-the-art code models with similar or
even larger sizes on a wide range of coding bench-
marks. Notably, MagicoderS-CL-7B based on
CODELLAMA even surpasses the prominent Chat-
GPT on HumanEval+ (66.5 vs. 65.9 in pass@1).
Overall, OSS-INSTRUCT opens a new direction
for crafting diverse synthetic instruction data for
code using abundant open-source references.

1. Introduction

Code generation, also known as program synthesis (Gul-
wani et al., 2017), is a long-standing challenge in com-
puter science. In the past few decades, a large body of
research has been studying symbolic approaches, such as
abstraction-based synthesis (Wang et al., 2017; Feng et al.,
2018) for general-purpose synthesis problems and program-
ming by examples (Cambronero et al., 2023; Liu et al.,

fThe work was done during a remote summer internship at the
University of Illinois. ' University of Illinois at Urbana-Champaign,
USA *Tsinghua University, China. Correspondence to: Yuxiang
Wei <ywei40@illinois.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Zhe Wang? ' Jiawei Liu' Yifeng Ding' Lingming Zhang'

2023a) for domain-specific tasks. Until recently, Large Lan-
guage Models (LLMs) trained on code (Austin et al., 2021;
Chen et al., 2021) has shown outstanding breakthroughs in
generating code that accurately satisfies user intents, and
they are widely deployed to assist real-world software de-
velopment (Microsoft, 2023b; Services, 2023).

Initially, closed-source models such as GPT-3.5 Turbo (Ope-
nAl, 2022) (i.e., ChatGPT) and GPT-4 (OpenAl, 2023) mas-
sively dominated various coding benchmarks and leader-
boards (Chen et al., 2021; Austin et al., 2021; Liu et al.,
2023b; Lai et al., 2022; Xia & Zhang, 2023). To further push
the boundaries of code generation with open source LLMs,
SELF-INSTRUCT (Wang et al., 2023a) is adopted to boot-
strap the instruction-following ability of LLMs. In the realm
of code, practitioners commonly devise synthetic coding
instructions using a stronger teacher model (e.g., ChatGPT
and GPT-4) and then finetune a weaker student model (e.g.,
CODELLAMA (Roziere et al., 2023)) with the generated data
to distill the knowledge from the teacher (Taori et al., 2023;
Chaudhary, 2023). For example, Code Alpaca (Chaudhary,
2023) consists of 20K automatically generated code instruc-
tions by applying SELF-INSTRUCT on ChatGPT using 21
seed tasks. To further enhance the coding abilities of LLMs,
Luo et al. (2023b) proposes Code Evol-Instruct that employs
various heuristics to increase the complexity of seed code
instructions (Code Alpaca in this case), achieving state-of-
the-art (SOTA) results among open-source models.

While these data generation methods can effectively im-
prove the instruction-following capability of an LLM, they
rely on a narrow range of predefined tasks or heuristics
under the hood. For example, on the one hand, Code Al-
paca that adopts SELF-INSTRUCT only relies on 27 seed
tasks to generate new code instructions using an identical
prompt template. On the other hand, Code Evol-Instruct
takes Code Alpaca as seeds and merely depends on 5 heuris-
tics to evolve the dataset. As partly suggested by Yu et al.
(2023) and Wang et al. (2023a), such approaches may sig-
nificantly inherit the system bias inherent in the LLMs as
well as the predefined tasks.

Therefore, in this paper, we propose OSS-INSTRUCT to
mitigate the inherent bias of LLMs and to unleash their
potential to craft diverse and creative code instructions via
direct learning from the open source. As shown in Figure 1,

Magicoder: Empowering Code Generation with OSS-INSTRUCT

O Open-source codebase B seed code snippet

learn_model(
B Program.cs

3 strength.swift

E

@ PosNeg.py
B Log.cpp

[Grantinfo.ts "[*a-zA-Z]",

tf_idfSVM, tf_idfNB, target)

def get_clean_review(raw_review):
letters_only = re.sub(
", raw_review)

Prompt (details omitted)

Language
Model

Please gain inspiration from the
code snippet to create a high-
quality programming problem...

Q Generated solution (details omitted)
from sklearn.feature_extraction.text import TfidfVectorizer ...

def get_clean_review(raw_review): ...
def train_model(tf_idfSVM, tf_idfNB, reviews, labels): ...
def classify_review(clean_review, tf_idfSVM, tf_idfNB): ...

train_model(tf_idfSVM, tf_idfNB, reviews, labels)
cleaned_review = get_clean_review(...)...

HumanEval
227247 HumanEval+
80

707

70 665

Pass@1

20

OSS-INSTRUCT

Generated problem (details omitted)
You are working on a natural language processing (NLP)
project and need to create a program to preprocess and
classify movie reviews...

Your program should be able to preprocess new movie
reviews, train the model, and classify new reviews accurately.

10

i
|
1
i
i

60 /; 7, = i 7/77 A

50 ////‘ /: 1 48.2 i/ //// ////; 519 51.8

10 //// //// /"‘” 515 i/// //// /// o /427 z:

30 /// /// // 341 03 %7 ://// /A /// //// /// 2L = o
v // /// 777 v B i P // % /// RN
M7, VoA VA v 7

o o o0 Cal .0 o © ox

m@“@e\ e \m\w 0§ aex\“ge?:;e \e§° « f:“\ Yi® @ gt ‘“;« wlna‘@u%mﬂ ésvg e \3@:& Oﬁ,;\“ \i‘f"’\ 0066%2‘30 :""

Figure 1: Overview of OSS-INSTRUCT and the pass@1 results of different LLMs on HumanEval (+)

OSS-INSTRUCT leverages a powerful LLM to automati-
cally generate new coding problems by drawing inspira-
tion from any random code snippets collected from the
open source. In this example, the LLM gets inspired by
two incomplete code fragments from different functions
and manages to relate them and craft a realistic machine
learning problem. Thanks to the “infinite” real-world open-
source code, OSS-INSTRUCT can directly produce diverse,
realistic, and controllable code instructions by providing
distinct seed code snippets. In the end, we generate 75K
synthetic data to finetune CODELLAMA-PYTHON-7B, re-
sulting in Magicoder-CL. While being simple and effective,
OSS-INSTRUCT is orthogonal to existing data generation
methods, and they can be combined to further boost the
models’ coding capabilities. Therefore, we continually fine-
tune Magicoder-CL on an open-source Evol-Instruct dataset
with 110K entries, producing MagicoderS-CL.

We evaluate Magicoder and MagicoderS on a wide range
of coding tasks, including HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) for Python text-to-code gen-
eration, MultiPL-E (Cassano et al., 2022) for multilingual
code completion, and DS-1000 (Lai et al., 2022) for solving
data science problems. We further adopt EvalPlus (Liu et al.,
2023b), which includes the augmented HumanEval+ and
MBPP+ datasets for more rigorous model evaluation. Both
Magicoder-CL and MagicoderS-CL substantially boost the
base CODELLAMA-PYTHON-7B. Additionally, Magicoder-

CL even outperforms WizardCoder-CL-7B, WizardCoder-
SC-15B, and all studied SOTA LLMs with less than or equal
to 16B parameters on all the benchmarks we tested. Also,
the pass@1 result of the enhanced MagicoderS-CL is on
par with ChatGPT on HumanEval (70.7 vs. 72.6) and sur-
passes it on the more rigorous HumanEval+ (66.5 vs. 65.9),
indicating that MagicoderS-CL can generate more robust
code. It also achieves SOTA results among all code models
at the same scale.

Additionally, we notice a very recent advancement in the
development of the DeepSeek-Coder series (Guo et al.,
2024) which has shown exceptional coding performance.
However, due to the limited technical details disclosed,
we only briefly discuss them in §3.4. Despite this, we
applied OSS-INSTRUCT on DeepSeek-Coder-Base 6.7B,
resulting in the creation of Magicoder-DS and MagicoderS-
DS. In addition to the consistent findings on the previous
results with CODELLAMA-PYTHON-7B as the base model,
Magicoder-DS and MagicoderS-DS benefit from the more
powerful DeepSeek-Coder-Base-6.7B. This advantage is
demonstrated by MagicoderS-DS, which achieves a remark-
able 76.8 pass@1 on HumanEval. MagicoderS-DS also out-
performs DeepSeek-Coder-Instruct-6.7B on HumanEval (+)
and MBPP (+) with 8x less finetuning tokens.

To justify the design of OSS-INSTRUCT, i.e., generating
instruction-tuning data from open-source references rather

Magicoder: Empowering Code Generation with OSS-INSTRUCT

than using the references directly, we demonstrate that fine-
tuning the base models with semantically relevant comment-
function pairs extracted from open-source projects even
negatively impacts the model performance (§4.2).

In general, we make the following contributions:

* We introduce OSS-INSTRUCT, a pioneering approach to
enlightening LLMs with open-source code snippets to
generate more diverse, realistic, and controllable coding
instruction data, which can be leveraged to substantially
boost the performance of various LLMs via instruction
tuning. It opens a new dimension for creating low-bias
and diverse instruction-tuning data from the abundance of
open-source references.

* We build the Magicoder series trained with OSS-
INSTRUCT and MagicoderS series trained on a combi-
nation of OSS-INSTRUCT and Evol-Instruct. Our eval-
uation across 6 benchmarks shows that all Magicoders
significantly improve the base LLMs. Notably, both
MagicoderS-CL and MagicoderS-DS outperform Chat-
GPT on HumanEval+ with only 7B parameters.

* We fully open source the model weights, training data, and
source code at https://github.com/ise-uiuc/
magicoder to facilitate future research.

2. OSS-INSTRUCT: Instruction Tuning from
Open Source

In this section, we elaborate on our OSS-INSTRUCT ap-
proach. From a high level, as shown in Figure 1, OSS-
INSTRUCT works by prompting an LLM (e.g., ChatGPT)
to generate a coding problem and its solution according to
some seed code snippet collected from the wild (e.g., from
GitHub). The seed snippet offers controllability of the gen-
eration and encourages the LLM to create diverse coding
problems that can reflect real-world programming scenarios.

2.1. Generating Coding Problems

OSS-INSTRUCT is powered by seed code snippets that can
be easily collected from open source. In this work, we
directly adopt starcoderdata as our seed corpus, a fil-
tered version of The Stack (Kocetkov et al., 2022) dataset
that StarCoder is trained on, containing permissively li-
censed source code documents in various programming lan-
guages. We chose starcoderdata because it is widely
adopted, includes massive high-quality code snippets, and
is even post-processed for data decontamination (Li et al.,
2023; Allal et al., 2023). For each code document from
the corpus, we randomly extract 1-15 consecutive lines
as the seed snippet for the model to gain inspiration from
and produce coding problems. In total, we collected 80K

initial seed snippets from 80K code documents, 40K from
Python, and 5K from each of C++, Java, TypeScript, Shell,
C#, Rust, PHP, and Swift respectively. Then, each collected
seed code snippet is applied to the prompt template shown
in Appendix A.l, which a teacher model takes as input and
outputs both a coding problem and its solution.

2.2. Data Cleaning and Decontamination

We perform data cleaning by excluding samples that are
identical or share the same seed code snippet. While there
exist other sorts of noisiness (e.g., the solution is incom-
plete) in the generated data, inspired by Honovich et al.
(2023), they are not removed as we believe they still con-
tain valuable information for LLMs to learn. More experi-
mental details can be found in Appendix C.3. Finally, we
apply the same logic as StarCoder Li et al. (2023) to decon-
taminate our training data by removing coding problems
that contain docstrings or solutions from HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021), docstrings
from APPS (Hendrycks et al., 2021), prompts from DS-
1000 (Lai et al., 2022), or questions from GSM8K (Cobbe
et al., 2021). As part of our analysis, the decontamination
procedure only filters out 9 additional samples. Since the
seed corpus starcoderdata has already gone through
rigorous data decontamination, this observation suggests
that OSS-INSTRUCT is unlikely to introduce additional data
leakage beyond the seeds. The eventual OSS-INSTRUCT
dataset contains about 75K entries. An overview of the
dataset statistics can be found in Appendix A.3.

2.3. Qualitative Examples of OSS-INSTRUCT

Figure 2 shows some qualitative examples of how OSS-
INSTRUCT can help LLM get inspiration from a seed code
snippet to create new coding problems and solutions. For
example, the shell script example shows how an LLM crafts
a Python coding problem with just one line of shell script.
The library imports example demonstrates how an LLM
can create a realistic machine learning problem using just
a few import statements. Meanwhile, the class signature
instance illustrates the ability of LLM to draw inspiration
from an incomplete class definition featuring annotations
like SpringBootApplication and keywords such as
bank. From this, the LLM generates a problem that re-
quires implementing a complete banking system based on
Spring Boot. Overall, OSS-INSTRUCT can inspire an LLM
with distinct code structures and semantics to create diverse
coding tasks, including algorithmic challenges, realistic
issues, single-function code generation, library-based pro-
gram completion, whole-program development, and even
whole-application construction.

Similarity with HumanEval To study whether our data
generation process produces more HumanEval-like prob-

https://github.com/ise-uiuc/magicoder
https://github.com/ise-uiuc/magicoder

Magicoder: Empowering Code Generation with OSS-INSTRUCT

B seed: shell script
python3 makeErrorFile.py data/test_dataset_14 14

Problem
Create a Python program that generates an error file
based on a given dataset...

O Code
def generate_error_file(dataset_file, ...):
error_lines = []
with open(dataset_file, 'r') as file:
for line in file:

import numpy as np

Problem

Q code
import numpy as np

with open(error_file_name, 'w') as error_file:
for error_line in error_lines:
error_file.write(error_line + '\n')

class DQNAgent:

dataset_file = sys.argv[1]

generate_error_file(...) state

B seed: library imports
import gym_electric_motor as gem

import matplotlib.pyplot as plt

Create a reinforcement learning agent to control an
electric motor using the OpenAl Gym environment...

import gym_electric_motor as gem
env = gem.make("DcSeriesCont-v1")

def __init__(self, state_dim, action_dim): ...

def train(self, state, action, reward, ...): ...

if __name__ == "__main__": def build_model(self): ...
if len(sys.argv) != 3: def act(self, state): ..
print("Usage: ...")
else:

for episode in range(episodes):
dataset_number = sys.argv[2] state = env.reset()
= np.reshape(state, [1, state_dim])

B Seed: class signature
@SpringBootApplication
e@Import({ AxonConfig.class })
public class AxonbankApplication {
public static void main(String[] args) {

Problem
Create a simple Java Spring Boot application
for a banking system...

Q Code
import org.axonframework.commandhandling. ..
import org.axonframework.config...

@SpringBootApplication

@Import({ AxonConfig.class })

public class AxonbankApplication {...}
public class BankAccount {...}

public class CreateAccountCommand {...}
public class DepositFundsCommand {...}
public class WithdrawFundsCommand {...}
public class AccountCreatedEvent {...}
public class FundsDepositedEvent {...}
public class FundsWithdrawnEvent {...}

Figure 2: Examples showing how OSS-INSTRUCT generates problems and solutions from seed code snippets. Detailed
problem requirements, implementations, and explanations are omitted for brevity. More examples can be found in

Appendix A.2.

Self-Instruct; Avg Score: 0.169
Evol-Instruct; Avg Score: 0.131
OSS-Instruct; Avg Score: 0.105

Percentage

0.0 0.1 0.2 0.3 0.4 0.
Cosine Similarity Score

ot

Figure 3: Cosine similarities between HumanEval and syn-
thetic data generated by different methods.

lems or solutions that contribute to high performance, we
pair each sample from our 75K dataset with each of the
164 HumanEval (Chen et al., 2021) samples and compute
their cosine similarity using TF-IDF (SPARCK JONES,
1972) embeddings. We then associate each OSS-INSTRUCT
sample with a HumanEval sample with the highest simi-
larity score. We also compare our dataset against Code
Alpaca, a 20K dataset applying SELF-INSTRUCT to code,
and evol-codealpaca-vl (theblackcat102, 2023), an
open-source reproduction of Evol-Instruct containing 110K
coding instructions. We resort to the open-source implemen-
tation because the official Code Evol-Instruct (Luo et al.,
2023b) dataset is not released. We decontaminate all the
datasets beforehand using the same way discussed in §2.2.
Figure 3 shows that OSS-INSTRUCT exhibits the lowest
average similarity among all the studied data generation
techniques while SELF-INSTRUCT shows the highest aver-

age similarity. This result indicates that the improvements
from OSS-INSTRUCT are not merely due to including data
from the same distribution.

3. Evaluation

We choose CODELLAMA-PYTHON-7B and DeepSeek-
Coder-Base 6.7B as the base LLMs. To derive Magicoder
series, we first finetune them on 75K synthetic data
generated through OSS-INSTRUCT. We then obtain
MagicoderS by continuing finetuning Magicoder with the
evol-codealpaca-vl dataset, an open-source Evol-
Instruct implementation containing about 110K samples.
More implementation details and additional evaluation re-
sults are listed in Appendices B and C. We also present
interesting use cases that reflect the effectiveness of instruc-
tion tuning in Appendix D and demonstrate Magicoder’s
capability to generate complex programs in Appendix E.

3.1. Python Text-to-Code Generation

HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021) are two of the most widely used benchmarks for code
generation. Each task in these benchmarks includes a task
description (e.g., docstring) as the prompt, where LLMs
generate corresponding code whose correctness is checked
by a handful of test cases. Because tests in these benchmarks
can be insufficient, for more rigorous evaluation, we use
HumanEval+ and MBPP+, both powered by the EvalPlus
framework (Liu et al., 2023b) to obtain 80x/35 x more tests.
Following prior work (Liu et al., 2023b; Chen et al., 2023),
for each task and LLM we use greedy decoding to generate
one sample and focus on comparing the pass@ 1 metric.

We consider a wide range of baseline models, including

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 1: Pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding. The
abbreviations “CL” and “SC” refer to the base models CODELLAMA-PYTHON and StarCoder, respectively. We report the
results consistently from the EvalPlus (Liu et al., 2023b) Leaderboard.

Benchmark Open-Source

Model Release Date Size
HumanEval (+) MBPP (+) Weight Data
GPT-3.5 Turbo Nov 2023 - 72.6 (65.9) 81.7 (69.4) O O
GPT-4 Turbo Nov 2023 - 85.4 (81.7) 83.0 (70.7) O O
CODELLAMA-PYTHON Aug 2023 34B 51.8 (42.7) 67.2 (52.9) () O
WizardCoder-CL Sep 2023 34B 73.2 (64.6) 73.2 (59.9) ® O
CodeT5+ May 2023 16B 31.7 (26.2) 54.6 (44.4) ® o
CodeGen-Mono Mar 2022 16B 329 (27.4) 52.6 (43.6)) o
StarCoder May 2023 15B 34.1 (29.3) 55.1 (46.1)) [}
CODELLAMA-PYTHON Aug2023 13B 42.7 (36.6) 61.2 (50.9) ® O
WizardCoder-SC Sep 2023 15B 51.9 (45.1) 61.9 (50.6) o O
StarCoder May 2023 7B 24.4 (20.7) 33.1 (28.8) ® o
Mistral Oct 2023 7B 28.7 (23.2) 50.1 (40.9) [O
CodeT5+ May 2023 6B 29.3 (23.8) 51.9 (40.9) ® o
CodeGen-Mono Mar 2022 6B 29.3 (25.6) 49.9 (42.1) o []
CODELLAMA-PYTHON Aug 2023 7B 37.8 (34.1) 57.6 (45.4) [) @)
WizardCoder-CL Sep 2023 7B 48.2 (40.9) 56.6 (47.1) ® O
Magicoder-CL Dec 2023 7B 60.4 (55.5) 64.2 (52.6) ())
MagicoderS-CL Dec 2023 7B 70.7 (66.5) 68.4 (56.6) o o

CODELLAMA-PYTHON (Roziére et al., 2023), Wizard-
Coder (Luo et al., 2023b), GPT-3.5 Turbo (OpenAl, 2022),
GPT-4 Turbo (OpenAl, 2023), StarCoder (Li et al., 2023),
CodeT5+ (Wang et al., 2023b), CodeGen-Mono (Nijkamp
et al., 2023), and Mistral (Jiang et al., 2023a). All the re-
sults are consistently reported from the EvalPlus (Liu et al.,
2023b) leaderboard (EvalPlus hash: 1895d2f).

Table 1 shows the pass@]1 results of different LLMs on
these benchmarks. From the results, we can first observe
that Magicoder-CL has a clear improvement over the base
CODELLAMA-PYTHON-7B, and outperforms all studied
open-source models except CODELLAMA-PYTHON-34B
and WizardCoder-CL-34B. Notably, Magicoder-CL sur-
passes WizardCoder-SC-15B and has a substantial improve-
ment on HumanEval and HumanEval+ over CODELLAMA-
PYTHON-34B. MagicoderS-CL demonstrates further im-
provements by being trained with the orthogonal Evol-
Instruct method. MagicoderS-CL outperforms ChatGPT
and all other open-source models on HumanEval+. More-
over, although it scores slightly lower than WizardCoder-
CL-34B and ChatGPT on HumanEval, it surpasses both of
them on the more rigorous HumanEval+ dataset, indicating
that MagicoderS-CL may produce more robust code.

3.2. Multilingual Code Generation

In addition to Python, as shown in Table 2, we perform
an extensive evaluation on 6 widely used programming
languages, i.e., Java, JavaScript, C++, PHP, Swift, and
Rust, using the MultiPL-E benchmark (Cassano et al.,
2022). We report available results from the WizardCoder pa-
per (Luo et al., 2023b) and evaluate our models consistently
through bigcode—-evaluation—harness (Ben Allal
et al., 2022). We skip proprietary models such as Chat-
GPT and GPT-4 as they are not supported by the frame-
work. Due to a significant inference latency when running
WizardCoder-CL-7B using the harness in our environment,
we choose not to include it in our analysis.

The results indicate that Magicoder-CL improves the base
CODELLAMA-PYTHON-7B by a large margin among all
the studied programming languages. Moreover, Magicoder-
CL also achieves better results than the SOTA 15B
WizardCoder-SC among half of the programming lan-
guages. Additionally, MagicoderS-CL demonstrates fur-
ther improvement over Magicoder-CL on all program-
ming languages, achieving comparable performance against
WizardCoder-CL-34B with only 7B parameters. It is worth
noting that Magicoder-CL is only trained with very limited
multilingual data but still outperforms other LLMs with
similar or even larger sizes. Also, although the harness

Magicoder: Empowering Code Generation with OSS-INSTRUCT

evaluates models in completion formats which are for base
models, Magicoders still show significant improvements de-
spite being only instruction-tuned. This implies that LLMs
can learn knowledge from the data beyond its format.

3.3. Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) contains 1K distinct
data science coding issues ranging from 7 popular data sci-
ence libraries in Python. It evaluates the realistic and practi-
cal use case of an LLM and offers unit tests for validating
each problem. DS-1000 has both completion and insertion
modes, but here we only evaluate completion because the
base CODELLAMA-PYTHON does not support infilling. Ta-
ble 3 shows the evaluation results where we include the
recent INCODER (Fried et al., 2023), CodeGen (Nijkamp
et al., 2023), Code-Cushman-001 (Microsoft, 2023a), Star-
Coder (Li et al., 2023), CODELLAMA-PYTHON (Roziere
et al., 2023), and WizardCoder (Luo et al., 2023b). We
can see from the table that Magicoder-CL-7B already out-
performs all the baselines we evaluate, including state-
of-the-art WizardCoder-CL-7B and WizardCoder-SC-15B.
MagicoderS-CL-7B further breaks the limit by introduc-
ing an 8.3 percentage point absolute improvement over
WizardCoder-SC-15B.

3.4. Comparison with DeepSeek-Coder

DeepSeek-Coder (Guo et al., 2024) is a series of models
released concurrently to our work and they demonstrate su-
perior coding performance. We only briefly discuss it in
this section because its data and instruction tuning details
are not publicly available at the time of writing. We apply
the same finetuning strategy on DeepSeek-Coder-Base-6.7B
as we performed on CODELLAMA-PYTHON-7B, leading
to Magicoder-DS and MagicoderS-DS. Table 4 shows a
similar trend as Table 1 that the base model can be sig-
nificantly improved after applying OSS-INSTRUCT. Re-
markably, the MagicoderS-DS variant surpasses DeepSeek-
Coder-Instruct-6.7B on all the benchmarks with x8 fewer
training tokens, and it also closely matches DeepSeek-
Coder-Instruct-33B on these datasets.

4. Ablations of Data Source
4.1. Impact of the Language Distribution

To understand the correlation between the programming lan-
guages appearing in the training data and the downstream
performance of different languages, we conduct an addi-
tional ablation study about the training data. We classify the
75K training data into approximately 43K Python-only, and
32K non-Python data according to whether * * ‘python
is a substring of the generated data. We do not classify
the data based on the seed code snippet because LLMs per-

forming OSS-INSTRUCT may produce code in a different
programming language than the seed.

Table 5 shows the evaluation results, where we consistently
finetune the base CODELLAMA-PYTHON-7B for 2 epochs
on different data partitions using the same training hyper-
parameters explained in Appendix B. From the table, we
can see that, as can be imagined, training on Python or
non-Python data can substantially boost the performance of
the base model in Python or non-Python tasks, respectively.
Interestingly, instruction tuning on different programming
languages can still boost the overall coding performance
that includes out-of-distribution languages. For example,
when trained on only non-Python data, Magicoder-CL still
achieves a 10.4 percentage point improvement over the base
model in the Python-only evaluation. This implies LLMs
can establish correlations between different programming
languages and perform transfer learning of deeper code se-
mantics. Finally, we observe a more significant boost in
Python evaluation when combining data from both sources,
with a slight decrease in multilingual performance compared
with only finetuning on multilingual data. We attribute this
decrease to the dominant amount of Python data (around
57%) during instruction tuning.

4.2. OSS-INSTRUCT vs. Direct Finetuning

The fact that OSS-INSTRUCT gets an LLM inspired from
open-source code snippets may lead to a natural question:
why not directly finetuning on these open-source code? To
answer this question, we follow CodeSearchNet (Husain
et al., 2020) to mine semantically relevant comment-function
pairs from the same seed document corpus we use to con-
struct the 75K OSS-INSTRUCT dataset. We then train the
model to predict the function bodies from the function signa-
tures and comments. We prioritize comment-function pairs
that overlap with our 75K seed snippets, resulting in about
11K data points. To align with our 75K samples, we collect
the remaining 64K samples using the whole corpus of 75K
seed documents. Eventually, we have the same number of
comment-function pairs with OSS-INSTRUCT data.

We finetune the base CODELLAMA-PYTHON-7B for 2
epochs using the paired data, following the same training
setup discussed in Appendix B. From Table 6, we observe
that finetuning on 75K paired comment-function data even
worsens the base model, while OSS-INSTRUCT helps to
introduce a substantial boost. We conjecture that the degra-
dation is owing to the substantial noise and inconsistency
that exists intrinsically in the data pairs, even though these
paired data exhibit very similar format as HumanEval or
MultiPL-E problems. This further shows that data factual-
ity, rather than the format, is essential to code instruction
tuning. It also indicates the superiority of OSS-INSTRUCT
which can translate these loosely related code fragments

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 2: Pass@1 results of different LLMs on MultiPL-E (Cassano et al., 2022) following the same hyperparameter
settings as the WizardCoder paper (Luo et al., 2023b): temperature = 0.2, top_p = 0.95, max_length = 512, and
num_samples = 50. We evaluate all 7B models using bigcode-evaluation-harness (Ben Allal et al., 2022) and
report other results from WizardCoder.

Programming Language

Model Size

Java JavaScript C++ PHP Swift Rust
CODELLAMA 34B 40.2 417 414 404 353 387
CODELLAMA-PYTHON 34B 395 447 39.1 398 343 39.7
CODELLAMA-INSTRUCT 34B 41.5 459 415 370 37.6 393
WizardCoder-CL 34B 44.9 553 472 472 44.3 46.2
StarCoderBase 15B 285 317 306 268 16.7 245
StarCoder 15B 30.2 30.8 316 26.1 227 21.8
WizardCoder-SC 15B 35.8 419 39.0 393 337 27.1
CODELLAMA 7B 293 31.7 27.0 25.1 25,6 255
CODELLAMA-PYTHON 7B 29.1 357 302 29.0 27.1 27.0
Magicoder-CL 7B 36.4 459 365 395 334 306
MagicoderS-CL 7B 429 575 444 47.6 44.1 40.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top_p = 0.5, max_length =
1024, and num_samples = 40, following the same hyperparameter setting used in WizardCoder (Luo et al., 2023b). We
evaluate all the 7B models with their preferred prompt formats and report other results from WizardCoder.

+155 +220 +291 +68 +106 +115 +45 =1000
Model Size Matplotlib NumPy Pandas PyTorch SciPy Sklearn TensorFlow Overall
INCODER 6.7B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 - 40.7 21.8 7.9 124 113 18.0 12.2 18.1
StarCoder 15B 51.7 29.7 114 214 20.2 29.5 24.5 26.0
WizardCoder-SC 15B 55.2 33.6 16.7 26.2 242 249 26.7 29.2
CODELLAMA-PYTHON 7B 55.3 345 16.4 199 223 17.6 28.5 28.0
WizardCoder-CL 7B 53.5 344 15.2 25.7 21.0 24.5 28.9 28.4
Magicoder-CL 7B 54.6 34.8 19.0 247 25.0 22.6 28.9 29.9
MagicoderS-CL 7B 55.9 40.6 28.4 404 28.8 35.8 37.6 37.5

Table 4: Pass@1 (greedy decoding) comparison between Magicoder and DeepSeek-Coder (Guo et al., 2024) on Hu-
manEval (+) and MBPP (+). DeepSeek-Coder results are reported from EvalPlus (Liu et al., 2023b) Leaderboard.

Benchmark Open-Source
Model Size Training Tokens

HumanEval (+) MBPP (+) Weight Data

1.3B 2T - 55.4 (46.9)) @)

DeepSeek-Coder-Base 6.7B 2T 47.6 (39.6) 70.2 (56.6) o O
33B 2T 51.2 (43.3) - [} @)

1.3B +2B 64.6 (58.5) 63.7 (53.1) ® O

DeepSeek-Coder Instruct 6.7B +2B 73.8 (70.1) 72.7 (63.4)] O
33B +2B 78.7 (72.6) 78.7 (66.7) ® O

Magicoder-DS 6.7B +90M 66.5 (60.4) 75.4 (61.9) (] o
MagicoderS-DS 6.7B +240M 76.8 (70.7) 75.7 (64.4) ® [)

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 5: Ablation study of using different programming languages as training data. We show the pass@1 results on
HumanEval+ (Liu et al., 2023b) for Python and the average pass@1 results on MultiPL-E (Cassano et al., 2022) for the
same set of programming languages used in Table 2 (i.e., Java, JavaScript, C++, PHP, Swift, and Rust). All the variants are
finetuned with 2 epochs and evaluated through greedy-decoding.

Model (7B) Finetuning Data Python (HumanEval+) Others (MultiPL-E)
CODELLAMA-PYTHON - 34.1 29.6
Magicoder-CL Python (43K) 47.6 32.7
Magicoder-CL Others (32K) 44.5 38.3
Magicoder-CL Both (75K) 55.5 37.8

Table 6: Comparison between OSS-INSTRUCT and directly
finetuning on comment-function pairs with CODELLAMA-
PYTHON-7B as the base model.

Finetuning Data HumanEval+ MultiPL-E
Base model w/o finetuning 34.1 29.6
Comment-function pairs (75K) 34.1 24.1
OSS-INSTRUCT (75K) 55.5 37.8

into semantically-consistent instruction-tuning data.

4.3. OSS-INSTRUCT with A Less Powerful Teacher

In this section, we explore the factors contributing to the
effectiveness of OSS-INSTRUCT beyond just the distillation
of the teacher model. We propose two potential key reasons.
First, since the base model is pretrained with comprehen-
sive code data, the distillation process likely activates the
model’s internal capabilities, leading to improved perfor-
mance in coding tasks. Second, OSS-INSTRUCT uses seed
code snippets to generate problem-solution pairs in one shot.
These seed snippets provide valuable context, enabling the
model to create better solutions than a plain teacher model
lacking such seed information. These enhanced solutions
can then be used to train more effective student models. To
verify these points, we conduct an additional experiment
by generating a subset of 20K OSS-INSTRUCT data using
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024), a state-of-
the-art, general-purpose, open-source LLM.

Table 7: Pass@1 on HumanEval+ and MBPP+ when fine-
tuning CODELLAMA-PYTHON-7B for 2 epochs on 20K
OSS-INSTRUCT data generated by Mixtral-8x7B-Instruct-
v0.1 (Jiang et al., 2024).

Model HumanEval+ MBPP+
Mixtral-8x7B-Instruct-v0.1 39.6 474
CODELLAMA-PYTHON-7B 34.1 45.4
Magicoder-CL-Mixtral-7B 55.5 504

Table 7 indicates that Magicoder-CL-Mixtral-7B not
only significantly improves over the base CODELLAMA -
PYTHON, but is also better than Mixtral-8x7B-Instruct-v0.1
(i.e., the teacher model) across HumanEval+ and MBPP+.
These results suggest that OSS-INSTRUCT is not simply dis-
tilling a teacher model, but also triggering the base model’s
own capability and effectively leveraging the information
encapsulated in seed code snippets.

5. Related Work

Foundation models for code Trained over billions of
lines of code, LLMs have demonstrated outstanding per-
formance in a wide range of software engineering tasks,
including code generation (Chen et al., 2021; Austin et al.,
2021), program repair (Xia & Zhang, 2022; Wei et al.,
2023; Xia et al., 2023b; Jiang et al., 2023b; Bouzenia et al.,
2024), and software testing (Xia et al., 2023a; Deng et al.,
2023; Yuan et al., 2023; Schifer et al., 2023; Lemieux et al.,
2023). In particular, prominent base models, such as Code-
Gen (Nijkamp et al., 2023), CodeT5 (Wang et al., 2021),
StarCoder (Li et al., 2023), and CODELLAMA (Rozicre
et al., 2023), are pre-trained over a huge number of code-
base from scratch, establishing the fundamental ability of
general code generation and understanding. More recent
code LLMs, such as DeepSeek-Coder (Guo et al., 2024) and
StarCoder2 (Lozhkov et al., 2024), additionally organize
the pretraining data at the repository level to enhance the
model’s contextual understanding capabilities. Furthermore,
these base models are also finetuned (Luo et al., 2023b) or
prompted (Chen et al., 2023) to unlock their true potential
to specialize in solving domain-specific coding tasks.

Instruction tuning with synthetic data Instruction tun-
ing aims to improve pretrained LLMs by finetuning them
with a mixture of instructions and corresponding re-
sponses (Wei et al., 2022). However, obtaining high-
quality instructional data is oftentimes laborious. Hence,
researchers are increasingly focusing on the development
of methods to generate synthetic instruction data. Wang
et al. (2023a) introduces SELF-INSTRUCT, where a founda-

Magicoder: Empowering Code Generation with OSS-INSTRUCT

tion LLM (GPT-3 (Brown et al., 2020)) is used to gen-
erate synthetic instruction-response pairs with carefully
crafted prompts. The same LLM is then instruction-tuned on
the synthetic data to distill such self-generated knowledge.
This technique has been further extended to create synthetic
data with different LLMs. For example, Alpaca (Taori et al.,
2023) and Code Alpaca (Chaudhary, 2023) apply SELF-
INSTRUCT to finetune LLAMA with ChatGPT-generated
instructions. To improve SELF-INSTRUCT, WizardLM (Xu
et al., 2023) and WizardCoder (Luo et al., 2023a) propose
Evol-Instruct and Code Evol-Instruct by guiding ChatGPT
with heuristic prompts to make the synthetic data more com-
plex and diverse. More recently, Gunasekar et al. (2023)
shows that textbook-quality synthetic data alone can help
the model achieve remarkable coding and reasoning capa-
bilities. Orthogonal to all existing methods, our proposed
OSS-INSTRUCT allows LLMs to get inspired from real-
world code snippets for better controllability, quality, and
creativity in coding tasks.

Evaluating LLMs for code Most code benchmarks eval-
uate LLLMs on generating single-function programs from
natural language descriptions. Such benchmarks include
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and CodeContests (Li et al.,
2022). A handful of manual tests are used to assess the
functional correctness of LLM-generated solutions. How-
ever, insufficient tests can lead to false negatives. Conse-
quently, the EvalPlus framework (Liu et al., 2023b) pro-
duces HumanEval+ and MBPP+ by extending 80x/35x
more tests. To address dataset contamination issues, re-
searchers propose LiveCodeBench (Jain et al., 2024), which
compiles fresh coding problems not included in model
training, and EvoEval (Xia et al., 2024), which strategi-
cally leverages LLMs to evolve existing benchmarks into
new coding tasks. Meanwhile, there are comprehensive
benchmarks evaluating code generation for data science
(DS-1000 (Lai et al., 2022)), addressing open-source issues
(SWE-bench (Jimenez et al., 2023)), and repository-level
code generation (CROSSCODEEVAL (Ding et al., 2023) and
RepoEval (Zhang et al., 2023)).

6. Conclusion and Future Work

We propose OSS-INSTRUCT, a novel data generation
method using Large Language Models to generate diverse
coding challenges from open-source code snippets. This
approach enables Magicoder, which significantly improves
the base LLM. Despite having less than 7B parameters, it
can outperform all evaluate LLMs with less than or equal to
16B parameters, including the 15B WizardCoder. Combin-
ing OSS-INSTRUCT with Evol-Instruct allows us to build
the enhanced MagicoderS models. They achieve remark-
able results by rivaling leading models like ChatGPT in

HumanEval benchmarks. We fully open source the model
weights, training data, and source code, to enable future
research in LLMs for code. In the near future, we will ap-
ply OSS-INSTRUCT to larger base models. We will also
continue advancing OSS-INSTRUCT by generating higher-
quality data with a strategically designed distribution of the
seed code snippets and with more advanced teacher LLMs
such as GPT-4.

Acknowledgement

We thank all the reviewers for their insightful comments and
suggestions for our paper. This work was partially supported
by NSF grant CCF-2131943, as well as Kwai Inc.

Impact Statement

This work is motivated to boost large language models
in terms of their code generation and understanding ca-
pabilities through instruction tuning. The proposed OSS-
INSTRUCT method leverages the abundance of open source
to generate diverse and controllable instruction data. We ex-
pect this idea to also foster innovative software solutions tai-
lored to domain-specific needs, particularly in areas where
real data is private and scarce, by generating extensive syn-
thetic data. Additionally, our method reinforces the value
of community-driven content and knowledge sharing by
incorporating open-source code as references.

However, it is essential to recognize the potential for misuse,
such as the deliberate generation of vulnerable code that can
be exploited for malicious purposes. Ultimately, adhering
to ethical guidelines is crucial to ensure the responsible use
of this technique.

References

Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Fer-
randis, C. M., Muennighoff, N., Mishra, M., Gu, A., Dey,
M., Umapathi, L. K., Anderson, C. J., Zi, Y., Poirier, J. L.,
Schoelkopf, H., Troshin, S., Abulkhanov, D., Romero,
M., Lappert, M., Toni, F. D., del Rio, B. G., Liu, Q.,
Bose, S., Bhattacharyya, U., Zhuo, T. Y., Yu, L., Villegas,
P., Zocca, M., Mangrulkar, S., Lansky, D., Nguyen, H.,
Contractor, D., Villa, L., Li, J., Bahdanau, D., Jernite, Y.,
Hughes, S., Fried, D., Guha, A., de Vries, H., and von
Werra, L. Santacoder: don’t reach for the stars!, 2023.

Austin, J., Odena, A., Nye, M. 1., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Ben Allal, L., Muennighoff, N., Kumar Umapathi,

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Magicoder: Empowering Code Generation with OSS-INSTRUCT

L., Lipkin, B., and von Werra, L. A framework
for the evaluation of code generation models.
https://github.com/bigcode-project/
bigcode—evaluation—harness, 2022.

Bouzenia, 1., Devanbu, P., and Pradel, M. Repairagent: An
autonomous, llm-based agent for program repair. arXiv
preprint arXiv:2403.17134, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/

1457c0d6ebfcb4967418bfb8acl42f64a-Paper.

pdf.

Cambronero, J., Gulwani, S., Le, V., Perelman, D., Rad-
hakrishna, A., Simon, C., and Tiwari, A. Flashfill++:
Scaling programming by example by cutting to the
chase. Proc. ACM Program. Lang., 7T(POPL), jan 2023.
doi: 10.1145/3571226. URL https://doi.org/10.
1145/3571226.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-
Costin, L., Pinckney, D., Yee, M.-H., Zi, Y., Anderson,
C. J., Feldman, M. Q., Guha, A., Greenberg, M., and
Jangda, A. Multipl-e: A scalable and extensible approach
to benchmarking neural code generation, 2022.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P, Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, 1., and Zaremba,
W. Evaluating large language models trained on code,
2021.

10

Chen, X., Lin, M., Schirli, N., and Zhou, D. Teaching large
language models to self-debug, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Deng, Y., Xia, C. S., Peng, H., Yang, C., and Zhang, L.
Large language models are zero-shot fuzzers: Fuzzing
deep-learning libraries via large language models, 2023.

Ding, Y., Wang, Z., Ahmad, W. U., Ding, H., Tan, M.,
Jain, N., Ramanathan, M. K., Nallapati, R., Bhatia, P.,
Roth, D., and Xiang, B. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code comple-
tion. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2023. URL https://openreview.net/forum?
id=wgDcbBMSfth.

Feng, Y., Martins, R., Bastani, O., and Dillig, I. Program
synthesis using conflict-driven learning. SIGPLAN Not.,
53(4):420-435, jun 2018. ISSN 0362-1340. doi: 10.
1145/3296979.3192382. URL https://doi.org/
10.1145/3296979.3192382.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,
E., Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and
Lewis, M. Incoder: A generative model for code infilling
and synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hQwb-1bM6EL.

Gulwani, S., Polozov, O., and Singh, R. Program syn-
thesis. Foundations and Trends® in Programming Lan-
guages, 4(1-2):1-119, 2017. ISSN 2325-1107. doi:
10.1561/2500000010. URL http://dx.doi.org/
10.1561/2500000010.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G, Bi, X, Wu, Y., Li, Y. K,, Luo, F,, Xiong, Y.,
and Liang, W. Deepseek-coder: When the large language
model meets programming — the rise of code intelligence,
2024.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps, 2021.

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3296979.3192382
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Honovich, O., Scialom, T., Levy, O., and Schick, T. Unnat-
ural instructions: Tuning language models with (almost)
no human labor. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 14409-14428, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.806. URL https:
//aclanthology.org/2023.acl-1long.806.

Hugging Face. Hugging face: The ai community build-
ing the future. https://huggingface.co/, 2023.
Accessed: 2023-12-01.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search, 2020.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F.,, Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation of
large language models for code, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023a.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Jiang, N., Liu, K., Lutellier, T., and Tan, L. Impact of code
language models on automated program repair, 2023b.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
0., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues?, 2023.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
Bahdanau, D., von Werra, L., and de Vries, H. The stack:
3 tb of permissively licensed source code, 2022.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., tau Yih, S. W,, Fried, D., Wang, S., and Yu, T. Ds-
1000: A natural and reliable benchmark for data science
code generation, 2022.

Lemieux, C., Inala, J. P, Lahiri, S. K., and Sen, S. Co-
damosa: Escaping coverage plateaus in test genera-
tion with pre-trained large language models. In 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 919-931. IEEE, 2023.

11

Li, R, Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
0., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C.J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., Hubert, T., Choy, P., de Masson d’ Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Sutherland Robson, E., Kohli, P.,, de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-
level code generation with alphacode. Science, 378
(6624):1092—-1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abql1158. URL http://dx.doi.
org/10.1126/science.abgll58.

Liu, J., Peng, J., Wang, Y., and Zhang, L. Neuri: Di-
versifying dnn generation via inductive rule inference.
In Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023,
pp. 657-669, New York, NY, USA, 2023a. Associa-
tion for Computing Machinery. ISBN 9798400703270.
doi: 10.1145/3611643.3616337. URL https://doi.
0rg/10.1145/3611643.3616337.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/
forum?id=1gqvx610Cu7.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, 1., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,
E., Dade, N. O. O., Yu, W., KrauB3, L., Jain, N., Su, Y.,
He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,
Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,
C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,
Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,

https://aclanthology.org/2023.acl-long.806
https://aclanthology.org/2023.acl-long.806
https://huggingface.co/
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3611643.3616337
https://doi.org/10.1145/3611643.3616337
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,
Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,
Ferrandis, C. M., Zhang, L., Hughes, S., Wolf, T., Guha,
A., von Werra, L., and de Vries, H. Starcoder 2 and the
stack v2: The next generation, 2024.

Luo, Z., Xu, C., Zhao, P,, Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568, 2023a.

Luo, Z., Xu, C., Zhao, P,, Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct, 2023b.

Microsoft. Azure openai service models. https:
//learn.microsoft.com/en-us/azure/
cognitive-services/openai/concepts/
models, 2023a.

Microsoft. GitHub Copilot — Your Al pair pro-
grammer. https://github.com/features/
copilot, 2023b.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large
language models, 2023.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and
Solar-Lezama, A. Is self-repair a silver bullet for code
generation? In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=y0GJIJXRungR.

OpenAl. Chatgpt: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt/, 2022.

OpenAl. Gpt-4 technical report, 2023.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E.,, Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, 1., Bitton, J., Bhatt, M., Ferrer, C. C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and
Synnaeve, G. Code llama: Open foundation models for
code, 2023.

Schifer, M., Nadi, S., Eghbali, A., and Tip, F. An empirical
evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software En-
gineering, 2023.

12

Services, A. W. Al Code Generator - Amazon Code-
Whisperer - AWS. https://aws.amazon.com/
codewhisperer/, 2023.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost, 2018.

SPARCK JONES, K. A statistical interpretation of term
specificity and its application in retrieval. 28(1):11-21,
2023/11/30 1972. doi: 10.1108/eb026526. URL https:
//doi.org/10.1108/eb026526.

Su, H., Shi, W., Kasai, J., Wang, Y., Hu, Y., Ostendorf,
M., Yih, W.-t., Smith, N. A., Zettlemoyer, L., and Yu, T.
One embedder, any task: Instruction-finetuned text em-
beddings. 2022. URL https://arxiv.org/abs/
2212.09741.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P, and Hashimoto, T. B.
Stanford alpaca: An instruction-following Illama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

theblackcat102. The evolved code alpaca dataset.
https://huggingface.co/datasets/
theblackcatl02/evol-codealpaca-vl,
2023.

Wang, X., Dillig, I., and Singh, R. Program synthesis using
abstraction refinement. Proc. ACM Program. Lang., 2
(POPL), dec 2017. doi: 10.1145/3158151. URL https:
//doi.org/10.1145/3158151.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. CodeT5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In Moens,
M.-F.,, Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 86968708, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.685. URL https://
aclanthology.org/2021.emnlp-main.685.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language models with self-generated instructions. In
Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484-13508, Toronto, Canada, July 2023a. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.
org/2023.acl-1long.754.

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://github.com/features/copilot
https://github.com/features/copilot
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openai.com/blog/chatgpt/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D. Q., Li, J., and
Hoi, S. C. H. Codet5+: Open code large language models
for code understanding and generation, 2023b.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N, Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners, 2022.

Wei, Y., Xia, C. S., and Zhang, L. Copiloting the copilots:
Fusing large language models with completion engines
for automated program repair, 2023.

Xia, C. S. and Zhang, L. Less training, more repairing
please: Revisiting automated program repair via zero-
shot learning, 2022.

Xia, C. S. and Zhang, L. Keep the conversation going:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt.
arXiv preprint arXiv:2304.00385, 2023.

Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang,
L. Universal fuzzing via large language models, 2023a.

Xia, C. S., Wei, Y., and Zhang, L. Automated program
repair in the era of large pre-trained language models.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1482—1494, 2023b. doi:
10.1109/ICSE48619.2023.00129.

Xia, C. S., Deng, Y., and Zhang, L. Top leaderboard ranking
= top coding proficiency, always? evoeval: Evolving
coding benchmarks via 1llm, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Yu, Y., Zhuang, Y., Zhang, J., Meng, Y., Ratner, A., Krishna,
R., Shen, J., and Zhang, C. Large language model as
attributed training data generator: A tale of diversity and
bias, 2023.

Yuan, Z., Lou, Y., Liu, M., Ding, S., Wang, K., Chen, Y.,
and Peng, X. No more manual tests? evaluating and
improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan,
D., Mao, Y., Lou, J.-G., and Chen, W. Repocoder:
Repository-level code completion through iterative re-
trieval and generation, 2023.

13

	Introduction
	OSS-Instruct: Instruction Tuning from Open Source
	Generating Coding Problems
	Data Cleaning and Decontamination
	Qualitative Examples of OSS-Instruct

	Evaluation
	Python Text-to-Code Generation
	Multilingual Code Generation
	Code Generation for Data Science
	Comparison with DeepSeek-Coder

	Ablations of Data Source
	Impact of the Language Distribution
	OSS-Instruct vs. Direct Finetuning
	OSS-Instruct with A Less Powerful Teacher

	Related Work
	Conclusion and Future Work
	More Details of OSS-Instruct
	Prompt Design
	Qualitative Examples
	Breakdown of OSS-Instruct Dataset

	Implementation Details
	Data Generation
	Data Decontamination
	Training

	More Evaluation Results
	Evaluation on APPS for Competitive Programming
	Fill-in-the-Middle Evaluation on DS-1000
	Impact of Removing Noisy Data

	Cases where OSS-Instruct Improves Code Understanding
	More Precise Understanding of Requirements
	Handling Corner Cases
	Generalizing to Unseen Tasks

	Generating Complex Programs
	Implementing Snake Game in Python
	Building Othello Game in Java
	Writing Specific Gradio Application
	Developing Machine Learning Pipeline with PyTorch

	Limitations

