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Abstract

Instruction tuning is a supervised fine-tuning approach that significantly improves
the ability of large language models (LLMs) to follow human instructions. For
programming tasks, most models are finetuned with costly human-annotated
instruction-response pairs or those generated by large, proprietary LLMs, which
may not be permitted. We propose SelfCodeAlign, the first fully transparent and
permissive pipeline for self-aligning code LLMs without extensive human annota-
tions or distillation. SelfCodeAlign employs the same base model for inference
throughout the data generation process. It first extracts diverse coding concepts
from high-quality seed snippets to generate new tasks. It then samples multiple
responses per task, pairs each with test cases, and validates them in a sandbox
environment. Finally, passing examples are selected for instruction tuning. In our
primary experiments, we use SelfCodeAlign with CodeQwen1.5-7B to generate
a dataset of 74k instruction-response pairs. Finetuning on this dataset leads to a
model that achieves a 67.1 pass@1 on HumanEval+, surpassing CodeLlama-70B-
Instruct despite being ten times smaller. Across all benchmarks, this finetuned
model consistently outperforms the original version trained with OctoPack, the
previous state-of-the-art method for instruction tuning without human annotations
or distillation. Additionally, we show that SelfCodeAlign is effective across LLMs
of various sizes, from 3B to 33B, and that the base models can benefit more from
alignment with their own data distribution. We further validate each component’s
effectiveness in our pipeline, showing that SelfCodeAlign outperforms both direct
distillation from GPT-4o and leading GPT-3.5-based distillation methods, such
as OSS-Instruct and Evol-Instruct. SelfCodeAlign has also led to the creation
of StarCoder2-Instruct, the first fully transparent, permissively licensed, and self-
aligned code LLM that achieves state-of-the-art coding performance. Overall,
SelfCodeAlign shows for the first time that a strong instruction-tuned code LLM
can result from self-alignment rather than distillation.

1 Introduction

Recent studies have demonstrated the outstanding performance of large language models (LLMs) [33,
40, 19, 57, 45, 69, 8, 70] in various code-related tasks, e.g., program synthesis [8, 3], program
repair [78, 27, 24, 79, 73], code optimization [59, 9], code completion [11, 40, 19], code transla-
tion [56, 1, 51], software testing [32, 10, 42, 77], and software agents [80, 67, 75, 37]. The reason is
that modern LLMs are pre-trained over trillions of code tokens in the wild using various training ob-
jectives (as such next-token prediction [52]), making the base models natively good at understanding
and generating code snippets. Furthermore, to fully unleash the power of LLMs, the base models are
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typically further fine-tuned on high-quality instruction-following data to boost their performance in
following natural language instructions and solving more general software engineering tasks [25].
This step is known as instruction tuning [50].

Curating high-quality data for instruction tuning is crucial yet challenging. One source of acquiring
instruction data is to employ human annotation [50]. For example, Llama-3 [14] uses a corpus
of 10 million human-annotated examples in instruction tuning. Due to the high cost of human
annotation, knowledge distillation is widely adopted to train a weaker LLM with outputs generated by
stronger LLMs [18]. However, distillation may violate the terms of service [48, 17, 2] of proprietary
LLMs and the prerequisite of using a stronger LLM limits its generalizability. Therefore, recent
proposals focus on instruction tuning without relying on human annotation or distillation [34, 60, 82].
One cornerstone work along this direction is SELF-INSTRUCT [68], which finetunes GPT-3 with
self-generated instruction data using in-context learning.

There is a growing number of instruction-tuned open-source LLMs in the code domain. However,
some models, such as DeepSeek-Coder [19], Llama-3 [14], and CodeQwen1.5 [64], either use propri-
etary data or do not disclose their instruction-tuning strategies. Others, including WizardCoder [41],
Magicoder [72], WaveCoder [81], and OpenCodeInterpreter [83], rely on knowledge distillation. The
only exception is OctoCoder [43], which is instruction-tuned over heavily filtered GitHub commits,
with commit messages as instructions and the changed code as responses, as well as data from Ope-
nAssistant, a human-generated corpus of user-assistant conversations [29]. Despite its transparency
and permissive licensing, OctoCoder’s performance, at 32.9 HumanEval+ pass@1, lags behind
other mainstream code LLMs. Meanwhile, previous attempts at applying SELF-INSTRUCT for code
generation have resulted in performance degradation over training on natural instruction-response
pairs [43]. Our findings imply that effective self-alignment requires a combination of data diversity
control and response validation, which is not present in the traditional SELF-INSTRUCT approach.

In this paper, we propose SelfCodeAlign, the first fully transparent pipeline to successfully self-align
base code LLMs with purely self-generated instruction data. First, SelfCodeAlign extracts diverse
coding concepts from high-quality seed functions in The Stack V1 [28], a large corpus of permissively
licensed code. Next, using these concepts, we prompt the base model to generate new coding tasks
through in-context learning. We then instruct the base model to produce multiple responses for each
task, each paired with test cases for self-validation. Finally, we select only the instruction-response
pairs that pass the test cases. This method ensures the model practices various coding concepts and
validates the consistency between instructions and responses.

To evaluate our method, we train CodeQwen1.5-7B, a state-of-the-art open-source base LLM for
code, on both a dataset generated with SelfCodeAlign and OctoPack, a naturally-generated and
meticulously-filtered dataset used for training OctoCoder [43]. We benchmark both, along with
OctoCoder and other models, on a series of tasks: code generation (both function- and class-
level) [38, 21, 76, 13], data science programming [30], and code editing [6]. On all tasks, training
CodeQwen with SelfCodeAlign significantly improves performance over the base model and over
training it on OctoPack. For instance, on HumanEval+, our model achieves a pass@1 score of 67.1,
21.4 points higher than CodeQwen1.5-7B and 16.5 points higher than CodeQwen1.5-7B-OctoPack.
This highlights the effectiveness of our synthetic data generation method compared to natural data in
enhancing the capabilities of code LLMs.

In the component analysis, we justify the different components of the pipeline. We demonstrate that
SelfCodeAlign is general to different LLMs whose sizes range from 3B to 33B. In particular, we find
that a base LLM could learn more effectively from data within its own distribution than a shifted
distribution from a teacher LLM. Additionally, we show that seed selection, concept generation,
and execution filtering all contribute positively to the pipeline. Furthermore, on HumanEval+, Self-
CodeAlign (67.1 pass@1) outperforms state-of-the-art, GPT-3.5-Turbo-based distillation methods,
including OSS-Instruct [72] (61.6) and Evol-Instruct [65] (59.1), as well as direct output distillation
from GPT-4o [49] (65.9).

SelfCodeAlign has also led to the creation of StarCoder2-Instruct, the first fully transparent, permis-
sively licensed, and self-aligned code LLM that achieves state-of-the-art coding performance. We
discuss StarCoder2-Instruct in Appendix A.

Overall, we make the following main contributions: (i) We introduce SelfCodeAlign, the first fully
transparent and permissive pipeline for self-aligning code LLMs to follow instructions. Our method
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teacher models, such as GPT-4, which hopefully exhibit higher quality. However, distilling proprietary
models leads to non-permissive licensing and a stronger teacher model might not always be available.
More importantly, teacher models can be wrong as well, and the distribution gap between teacher and
student can be detrimental.

We propose to self-align the base model by explicitly instructing the model to generate tests for
self-validation after it produces a response interleaved with natural language. This process is similar
to how developers test their code implementations. Specifically, for each instruction, the base model
samples multiple outputs of the format (response, tests), and we filter out those responses falsified by
the test execution under a sandbox environment. We then randomly select one passing response per
instruction to the final instruction tuning dataset.

3 Main Evaluation

In this section, we comprehensively evaluate SelfCodeAlign over a diverse set of coding tasks:

• Function generation (§3.1): Given a natural-language description, LLMs are asked to generate a
self-contained function whose correctness and efficiency is checked through test execution [8, 3,
38, 21, 76, 39].

• Class generation (§3.2): Given a code skeleton with both class- and method-level information,
LLMs are asked to generate the class and its methods [13].

• Data science programming (§3.3): Given a description of a data science task and a partial code
snippet, LLMs are asked to complete the code snippet to pass corresponding tests [30].

• File-level code editing (§3.4): Provided with the contents of a file, the model is asked to edit the
program following a natural language instruction [6].

3.1 Function-level Code Generation

Table 1: Pass@1 (%) of different LLMs on EvalPlus computed using greedy decoding.

Model Instruction data
Benchmark Artifact

HumanEval+ MBPP+ Transparent Non-proprietary Non-distilled

GPT-4-Turbo [47] Not disclosed 81.7 70.7 # #  

Mistral Large [22] Not disclosed 62.8 56.6 # #  

Gemini Pro [63] Proprietary 55.5 57.9 # #  

Llama3-70B-Instruct [14] Proprietary 70.7 66.4 # #  

CodeLlama-70B-Instruct [57] Proprietary 65.2 61.7 # #  

WizardCoder-33B-v1.1 [41] GPT distillation 73.2 66.9 #  #

OpenCodeInterpreter-DS-33B [83] GPT distillation 73.8 67.7   #

Magicoder-S-DS-6.7B [72] GPT distillation 70.7 65.4   #

DeepSeekCoder-33B-Instruct [19] Not disclosed 75.0 66.7 # - -

CodeQwen1.5-7B-Chat [64] Not disclosed 77.7 67.2 # - -

Snowflake Arctic (480B) [55] Not disclosed 64.3 64.3 # - -

Mixtral-8x22B-Instruct-v0.1 [23] Not disclosed 70.1 62.9 # - -

Command-R+ (104B) [16] Not disclosed 56.7 58.6 # - -

Mixtral-8x7B-Instruct-v0.1 [23] Not disclosed 39.6 49.7 # - -

OctoCoder-16B [43] Publicly available 32.9 49.1    

StarCoder2-15B [40] - 37.8 53.1    

CodeQwen1.5-7B-Base [64] - 45.7 60.2 # - -

CodeQwen1.5-7B-OctoPack Publicly available 50.6 63.2    

SelfCodeAlign-CQ-7B Self-generated 67.1 65.2    

HumanEval+ and MBPP+. HumanEval [8] and MBPP [3] are the two most widely-used benchmarks
for function-level code generation. We use their test augmented versions, i.e., HumanEval+ and
MBPP+, with 80⇥/35⇥ more test cases for rigorous evaluation [38].

As baselines, we consider a diverse set of state-of-the-art instruction-tuned models over various
dimensions, including weight openness, data openness, transparency, and performance. Table 1
compares the pass@1 of the self-aligned SelfCodeAlign-CQ-7B against other baseline models on
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HumanEval+ and MBPP+. Among those trained using a fully transparent pipeline without any
proprietary data or distillation, SelfCodeAlign-CQ-7B stands out as the best LLM by drastically
outperforming the base model, OctoCoder-16B, StarCoder2-15B, and CodeQwen1.5-7B-OctoPack.
Meanwhile, compared to much larger models, SelfCodeAlign-CQ-7B outperforms Arctic, Command-
R+, and Mixtral-8x7B-Instruct, while closely matching Mixtral-8x22B-instruct. Even compared
to LLMs trained using proprietary data (e.g., manually annotated), SelfCodeAlign-CQ-7B remains
competitive, surpassing Gemini Pro, Mistral Large, and CodeLlama-70B-Instruct. Additionally,
SelfCodeAlign-CQ-7B, fine-tuned on purely self-generated data, closely rivals models finetuned with
distillation-based or non-transparent synthetic data.

LiveCodeBench. In subsequent evaluations, we benchmark our model against state-of-the-art
open-source LLMs of similar sizes for a fair comparison. LiveCodeBench [21] is a benchmark for
contamination-free evaluation. It features 400 recent Python algorithm challenges from May 2023 to
February 2024. These tasks are curated from online judge websites such as Codeforce and LeetCode,
each with over 20 test cases on average. While LiveCodeBench is a holistic benchmark covering four
problem types, we focus on the code generation task for assessing LLM function generation.

Table 2 reports the pass@1 results for problem subsets created after three specific start dates. It
shows that SelfCodeAlign-CQ-7B consistently outperforms most baseline models and closely matches
CodeQwen1.5-7B-Chat. In addition, moving the start date forward has minimal impact on the pass@1
of SelfCodeAlign-CQ-7B, indicating that our pipeline is less likely to suffer from contamination.

Table 2: Pass@1 (%) of LLMs on LiveCodeBench. Newer start dates imply lower contamination risk.

Model
Start date

2023-09-01 2023-07-01 2023-05-01

DeepSeek-Coder-6.7B-Instruct 19.2 20.8 21.6

CodeGemma-7B-IT 15.2 14.1 13.6

Llama-3-8B-Instruct 18.3 18.4 17.3

CodeQwen1.5-7B-Base 19.3 20.7 21.8

CodeQwen1.5-7B-Chat 23.2 24.1 25.0

OctoCoder-16B 12.6 11.2 9.8

StarCoder2-15B 14.5 14.7 15.4

CodeQwen1.5-7B-OctoPack 19.3 21.8 22.5

SelfCodeAlign-CQ-7B 22.4 22.8 23.4

EvoEval. To mitigate the impact of potential data contamination, EvoEval [76] includes 828
programming problems created by prompting GPT-4 to evolve original HumanEval tasks across 5
semantic-altering and 2 semantic-preserving benchmarks. Following the leaderboard of EvoEval, we
use the 5 semantic-altering benchmarks, each of which has 100 problems.

Table 3 shows that SelfCodeAlign-CQ-7B achieves the best pass@1 score among all transparently
finetuned models. Meanwhile, it also surpasses most open LLMs (except CodeQwen1.5-7B-Chat)
trained on unknown instruction-tuning data.

Table 3: Pass@1 (%) of code LLMs on EvoEval.

Model Average Difficult Creative Subtle Combine Tool use

DeepSeek-Coder-6.7B-Instruct 41.4 40 37 61 18 51

CodeGemma-7B-IT 35.4 31 32 49 9 56

Llama-3-8B-Instruct 40.6 34 39 57 15 58

CodeQwen1.5-7B-Base 36.2 26 30 46 18 61

CodeQwen1.5-7B-Chat 48.0 39 38 71 31 61

OctoCoder-16B 30.6 19 26 43 11 54

StarCoder2-15B 25.8 16 19 41 5 48

CodeQwen1.5-7B-OctoPack 42.2 35 36 59 22 59

SelfCodeAlign-CQ-7B 43.6 33 40 60 20 65
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EvalPerf. While the earlier benchmarks focus on code correctness, we use EvalPerf [39] to evaluate
the efficiency of LLM-generated code. EvalPerf includes 118 performance-exercising tasks with
computation-intensive test inputs to fully exercise the efficiency of LLM-generated code.

Since code efficiency only matters when the generated code is correct, in Table 4 we only evaluate
baselines that can achieve a decent pass@1 (i.e., over 50%) on HumanEval+. Specifically, we run
EvalPerf by following its default settings: (i) Each model generates 100 samples per task at the
temperature of 1.0; (ii) We evaluate the efficiency of up to 20 correct samples per model for tasks
where it can at least generate 10 passing samples; and (iii) Finally we rank the models based on
their win rates, where each model pair compares their differential performance score (DPS) over the
common set of passing tasks. Notably, DPS is a LeetCode-inspired metric that indicates the overall
efficiency ranking of submissions. For example, Table 4 shows that SelfCodeAlign-CQ-7B achieves
a DPS of 79.9, indicating that its correctly generated solutions can overall outperform or match the
efficiency 79.9% of reference solutions across various efficiency levels.

Table 4 shows that SelfCodeAlign-CQ-7B ranks second among the evaluated models of comparable
size. Specifically, SelfCodeAlign-CQ-7B is only next to DeepSeek-Coder-6.7B-Instruct whose
training data is not disclosed. Surprisingly, the efficiency of SelfCodeAlign-CQ-7B-generated code
surpasses many recent open models trained using private data, including the latest Llama-3.1-8B-
Instruct.

Table 4: Ranking of model code efficiency based on the EvalPerf win rates, which are computed over
the common set of passing tasks for each model pair. Each model generates 100 samples per task at a
temperature 1.0. To exemplify differential performance score (DPS) with SelfCodeAlign-CQ-7B, it
means its generations if correct can match the efficiency of 79.9% LLM samples.

Model DPS (%) pass@1 (%) Win-rate (%)

DeepSeek-Coder-6.7B-Instruct 83.6 73.6 63.9

Llama-3.1-8B-Instruct 80.9 64.3 52.1

Llama-3-8B-Instruct 77.0 43.7 51.5

CodeQwen1.5-7B-Chat 80.7 74.1 51.2

CodeQwen1.5-7B-OctoPack 74.0 49.1 26.9

SelfCodeAlign-CQ-7B 79.9 65.2 54.0

3.2 Class-level Code Generation

We evaluate code LLMs on class-level code generation using ClassEval [13], a collection of 100
class-level Python code generation tasks, covering 100 classes and 410 methods, with an average of
33 tests per class and 8 tests per method.

Following the ClassEval paper [13], we set the maximum model context size as 2048 tokens and
report the best class-level pass@1 (and corresponding method-level pass@1) of each model among
three generation strategies: (i) Holistic Generation: generating the entire class given a class skeleton,
(ii) Incremental Generation: generating class methods iteratively by putting earlier generated methods
in the prompt, and (iii) Compositional Generation: generating each class method independently
without looking at other methods. Specifically, class-level pass@1 in Table 5 refers to the pass rate
of generated classes given both the method- and class-level tests. In contrast, method-level pass@1
is computed by only checking if the generated methods can pass the method-level tests. Table 5
shows, in terms of class-level performance, SelfCodeAlign-CQ-7B is the best transparently finetuned
model, surpassing the second-best transparent model (i.e., CodeQwen1.5-7B-OctoPack) by 28%,
while performing no worse than those using unknown or proprietary instruction-tuning data. For
method generation, SelfCodeAlign-CQ-7B also stands out in transparently finetuned models.

3.3 Data Science Programming

DS-1000 [30] is a benchmark of 1000 realistic data science challenges across 7 popular Python data
science libraries. In DS-1000, a model must complete a partial code snippet to solve the problem.
The solution is then evaluated through test execution. Table 6 shows that SelfCodeAlign-CQ-7B,
despite being trained on limited data science code, stands out as the best in the transparent model
category, while remaining competitive among the other evaluated baselines.
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Table 5: Pass@1 (%) of code LLMs on ClassEval using greedy decoding.

Model Class-level Method-level

DeepSeek-Coder-6.7B-Instruct 27.0 57.2

CodeGemma-7B-IT 21.0 44.8

Llama-3-8B-Instruct 23.0 52.4

CodeQwen1.5-7B-Base 23.0 52.8

CodeQwen1.5-7B-Chat 27.0 54.6

OctoCoder-16B 19.0 38.0

StarCoder2-15B 9.0 24.9

CodeQwen1.5-7B-OctoPack 21.0 45.2

SelfCodeAlign-CQ-7B 27.0 52.6

Table 6: Pass@1 (%) on DS-1000 with temperature 0.2 and top-p 0.95 over 40 samples, following
the same hyperparameter setting used in StarCoder2 [40].

Model Avg. Pandas NumPy Matplotlib TensorFlow SciPy Sklearn PyTorch

DeepSeek-Coder-6.7B-Instruct 44.6 34.0 51.1 58.4 45.9 34.2 45.8 50.6

CodeGemma-7B-IT 30.8 21.9 34.4 54.7 25.1 21.8 22.6 34.5

Llama-3-8B-Instruct 31.1 21.5 33.1 51.9 34.4 25.2 23.8 37.2

CodeQwen1.5-7B-Base 32.4 21.6 35.9 56.7 28.8 28.2 30.9 23.8

CodeQwen1.5-7B-Chat 47.1 34.4 51.7 67.2 46.0 38.9 47.9 52.8

OctoCoder-16B 28.3 13.1 34.0 53.8 22.4 22.8 30.0 25.9

StarCoder2-15B 38.9 26.2 45.8 61.4 38.1 36.0 40.5 22.5

CodeQwen1.5-7B-OctoPack 38.2 26.7 42.6 61.8 37.7 32.7 36.6 31.4

SelfCodeAlign-CQ-7B 39.1 28.2 42.6 57.2 38.3 35.6 42.8 33.3

3.4 Code Editing

We further evaluate LLMs on code editing tasks using the CanItEdit benchmark [6], comprised of
210 code editing tasks from three change kinds (70 tasks each): corrective (fixing bugs), adaptive
(adding new features), and perfective (improving existing features). The tasks are evaluated based on
the correctness of the generated code changes, according to a set of hidden test cases. For each task,
the model is given as input the original code snippet and a natural-language instruction describing
the desired code change; then it is expected to produce an updated code snippet that satisfies the
instruction. We follow the setting from the original benchmark [6] to generate 20 completions per
task at a temperature of 0.2. Table 7 reports the pass@1 for each change kind and the average pass@1
across all tasks. Despite not being specifically tuned for code editing, SelfCodeAlign-CQ-7B exhibits
strong performance on CanItEdit, achieving a pass@1 of 39.0%, outperforming all other models
except CodeQwen1.5-Chat, whose instruction tuning details are not disclosed.

Table 7: Pass@1 (%) of code LLMs on CanItEdit.

Model Average Corrective Adaptive Perfective

DeepSeek-Coder-6.7B-Instruct 36.3 34.9 38.8 35.3

CodeGemma-7B-IT 34.2 30.9 39.3 32.5

Llama-3-8B-Instruct 36.0 34.9 39.1 34.0

CodeQwen1.5-7B-Base 38.4 34.7 45.6 34.9

CodeQwen1.5-7B-Chat 39.9 38.1 46.6 35.1

OctoCoder-16B 30.2 38.4 31.6 20.5

StarCoder2-15B 36.7 32.1 43.8 34.2

CodeQwen1.5-7B-OctoPack 36.5 36.9 40.6 31.9

SelfCodeAlign-CQ-7B 39.0 37.4 42.4 37.2
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4 Component Analysis

In this section, we extensively study how different components contribute to the SelfCodeAlign
pipeline. To make the comparison tractable, we fix a subset of seed code snippets by randomly
sampling 37k examples from the 250k corpus and evaluate finetuned models on HumanEval+ [38].

4.1 Self-Alignment with Different Models

To assess whether SelfCodeAlign is generalizable and how performance varies with finetuning data
generated by different models, we run the same data generation pipeline end to end with different
LLMs. We include four diverse state-of-the-art model architectures and sizes ranging from 3B to 33B
to observe how SelfCodeAlign performs across small, medium, and large-scale LLMs.

Table 8 shows the comparison and guides us to reach the following findings. Looking at the diagonal
cells, SelfCodeAlign consistently improves the performance of the base models with varying sizes,
from 3B to 33B. Comparing each diagonal cell and the cell immediately to its right (i.e., using base
models with slightly better HumanEval+ performance as the teacher models), we can see that a base
model may benefit more from self-generated data than a stronger teacher model, when they don’t
have a large performance gap. However, when the teacher model is clearly stronger, the base model
learns better by distilling the teacher’s knowledge. For example, StarCoder2-3B achieves higher
pass@1 trained on its own data (35.4) compared to Llama-3-8B data (34.1), but when tuned with
stronger models, StarCoder2-3B further improves (e.g., 42.1 with DeepSeek-Coder-33B data). Also,
the last row shows that a stronger model can still learn from a weaker model, but less effectively. We
provide qualitative examples in Appendix D.2.

Table 8: HumanEval+ pass@1 when finetuning the base models on different data (37k seeds).

Base model (pass@1)
Data-generation model

StarCoder2-3B Llama-3-8B StarCoder2-15B DeepSeek-Coder-33B CodeQwen1.5-7B

StarCoder2-3B (27.4) 35.4 34.1 39.0 42.1 40.2

Llama-3-8B (29.3) - 42.7 40.2 41.5 43.3

StarCoder2-15B (37.8) - - 55.5 53.0 57.3

DeepSeek-Coder-33B (44.5) - - - 65.9 62.2

CodeQwen1.5-7B (45.7) 48.8 54.9 56.1 59.1 65.2

4.2 Effectiveness of Execution-based Filtering

The SelfCodeAlign pipeline samples multiple responses for an instruction and each response is
equipped with self-generated test cases. Responses with failing tests are filtered out and each
instruction will be paired with a randomly selected passing response. To answer the question of “to
what extent is execution information helpful”, in Table 9, we conduct 4 controlled experiments by
varying how responses are selected while keeping the other components unchanged:

• Random selection (all): pair each instruction with a random response without response filtering.

• Random selection (subset): 15.6k subset of “Random selection (all)” for a consistent data amount.

• Failures only: pair each instruction with a failing response.

• Passes only: pair each instruction with a passing response.

Table 9: Pass@1 on HumanEval+ with different response selection strategies.

Selection strategy Data size Execution pass rate Pass@1

Random selection (all) 27.7k 24.1% 61.6

Random selection (subset) 15.6k 24.2% 61.6

Failures only 15.6k 0% 57.9

Passes only 15.6k 100.0% 65.2

First, we can observe that random pairing performs worse than using only passing examples, both
when data sizes are aligned and when they scale up by 1.8⇥. Meanwhile, the “Failure only” setting
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results in the worst performance where we deliberately use failing responses for each instruction.
These results suggest the importance of execution filtering and code correctness for self-alignment.

4.3 Importance of Seed Selection and Concepts Generation

For instruction generation, SelfCodeAlign applies Self-OSS-Instruct that first selects high-quality
seed code snippets, then mines code concepts from the seeds, and finally generates the instructions.
To validate the usefulness of concept generation and high-quality seeds, we compare two variants of
SelfCodeAlign in Table 10: 1) directly generating instructions from seeds, where the model produces
an instruction based solely on a seed snippet, and 2) using the default pipeline except for the initial
seeds, where random snippets are sampled from different code documents in The Stack V1.

Table 10: Pass@1 on HumanEval+ using different seeds and pipelines.

Source of seeds Pipeline Pass@1

Filtered functions Seed ! instruction 59.8

Random snippets Seed ! concepts ! instruction 64.0

Filtered functions Seed ! concepts ! instruction 65.2

It is shown that directly generating instructions from seeds leads to the poorest performance. This is
because a direct generation from seeds requires the seed snippet to be presented in the context, whose
format is not well represented in the wild and may not be in distribution for the model. The generated
instructions will then be distracted and thus be of lower quality. Concept generation neutralizes this
effect and produces more realistic and natural instructions. Using random snippets produces a more
diverse but less coherent set of concepts, leading to slightly worse performance compared to using
high-quality seeds. Appendices D.3 and D.4 illustrate some qualitative examples.

4.4 Comparing Self-Alignment to Distillation

Table 11: SelfCodeAlign versus distillation using CodeQwen1.5-7B as the base model.

Method Dataset size Teacher model Execution filtering Pass@1

Evol-Instruct 74k GPT-3.5-Turbo # 59.1

OSS-Instruct 74k GPT-3.5-Turbo # 61.6

Direct distillation 74k GPT-4o # 65.9

SelfCodeAlign 74k CodeQwen1.5-7B  67.1

To compare self-alignment with distillation, we evaluate SelfCodeAlign against two state-of-the-art
distillation methods for code instruction tuning: OSS-Instruct [72] and Code Evol-Instruct [65].
We use the official OSS-Instruct dataset. As the official implementation of Code Evol-Instruct is
unavailable, we opt for the most popular open-source version [44] on Hugging Face. Both datasets
are generated using GPT-3.5-Turbo [46] and we randomly select their subsets to match the 74k
samples generated by SelfCodeAlign. Table 11 shows that SelfCodeAlign substantially outperforms
both methods, indicating the strength and promising future of self-alignment for code. Additionally,
SelfCodeAlign outperforms direct distillation, where we use the same set of SelfCodeAlign instruc-
tions but rely on GPT-4o [49] to generate each response at temperature 0. This suggests that weaker
models, combined with more post-validation compute, can produce higher-quality responses.

5 Related Work

Instruction tuning for code. To build more powerful code assistants, pre-trained code models are
fine-tuned over a small amount of high-quality instruction-response pairs that are either collected from
real-world [43] or synthetically generated [7, 57, 41, 72]. This step is known as instruction tuning.
OctoPack [43] compiles a large set of real-world Git commits which are partially used for code
fine-tuning. Code Alpaca [7] applies SELF-INSTRUCT to the code domain, which prompts ChatGPT
to generate synthetic instruction data for code. Similarly, the instruction data for CODELLAMA [57]
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includes coding problems generated by prompting LLAMA 2 [66] and solutions and tests by prompting
base CODELLAMA. Code Evol-Instruct [41] uses harder programming challenges as instruction
data to fine-tune more capable models. Specifically, Code Evol-Instruct prompts ChatGPT with
heuristics to evolve existing instruction data to more challenging and complex ones. Besides data
complexity, the widely-adopted [14, 62, 71] OSS-INSTRUCT [72] looks at the data diversity and
quality dimension. Specifically, given a source code snippet, OSS-INSTRUCT prompts ChatGPT
to get inspired and imagine potential instruction-response pairs, which inherit the diversity and
quality of sampled code snippets. Besides instruction tuning, recent work on training code LLMs
for performance improvement also explores multi-turn code generation [83], model merging [12],
preference tuning [74, 36], and reinforcement learning [15]. Recently, various strong instruction-tuned
code models have been released by major organizations [19, 64]. However, their instruction-tuning
recipes (e.g., data and strategies) are not fully disclosed. This lack of transparency underscores the
need for fully transparent and permissive instruction-tuning methods to advance the field.

Self-alignment. Self-alignment is an approach to instruction tuning that utilizes an LLM to learn from
its own output without depending on an existing well-aligned teacher LLM. SELF-INSTRUCT [68]
is one of the first endeavors that allow GPT-3 to improve itself by generating new instructions and
responses for instruction-tuning using its in-context learning capability. SELF-ALIGN [61], based on
in-context learning, utilizes topic-guided SELF-INSTRUCT for instruction generation and pre-defines
principles to steer the LLM towards desired responses. These instruction-response pairs are used to
fine-tune the base model, followed by a final refinement stage to ensure the model produces in-depth
and detailed responses. Instruction backtranslation [35] offers an alternative self-alignment method
by initially training a backward model to generate instructions from unlabeled web documents using
limited seed data. It then iteratively produces new instructions from new web documents and selects
high-quality data for self-training. Most code LLM work targets knowledge distillation. Haluptzok et
al. [20] share a relevant idea to our work but only consider program puzzles specified in symbolic
forms. This setting cannot be generalized to real-world tasks with natural language involved.

6 Limitations and Future Work

We limit our data generation within a ⇠3000 window, skewing our distribution towards medium-sized
samples. Therefore, generating and training on long-context instruction-response pairs can be a
promising avenue [4]. Second, we gather several negative samples during response generation, which
are currently filtered out. These negatives could be used in a reinforcement-learning loop to steer the
model away from incorrect responses [31, 53]. Furthermore, the good responses are labeled by test
execution, while the generated unit tests might be erroneous, calling for research to study and improve
the generation of valid test cases. Finally, we plan to apply SelfCodeAlign to more challenging
domains such as complex program generation [84] and agentic software engineering [26].

7 Conclusion

We introduce SelfCodeAlign, the first fully transparent and permissive pipeline for self-aligning
code LLMs without extensive human annotations or distillation. SelfCodeAlign-CQ-7B, finetuned
from CodeQwen1.5-7B using SelfCodeAlign, outperforms the 10⇥ larger CodeLlama-70B-Instruct
on HumanEval+ and consistently surpasses CodeQwen1.5 trained with OctoPack on all studied
benchmarks. We evaluate SelfCodeAlign across various model sizes, illustrating that stronger base
models benefit more from self-alignment than distillation. We also examine the effectiveness of
different components in the pipeline, showing that SelfCodeAlign is better than GPT-3.5 and GPT-4o
distillation. Overall, we demonstrate for the first time that a strong instruction-tuned code LLM can
be created through self-alignment, without expensive human annotations or distillation.
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