








values are valid. This is also done via SMT solving as demonstrated in Figure 3b where we use the
SMT formulas and, this time, check if all the concrete values generated are valid according to the
constraints. Note that such light-weight constraint solving can support much faster validation than
actually executing the generated DS programs, while still providing the same guarantee.

3 Experimental Setup

3.1 Subjects

We construct a dataset with 28 representative APIs in total from two popular DS libraries: PyTorch (18)
and NumPy (10). For our API selection process, we begin by referencing prior work NNSmith [32]
and examined all 73 core operators it supports. From these, we select 22 core APIs that have
numeric parameter constraints and add additional 6 APIs to obtain the 28 APIs used in our study for
both the full program prediction setting (Section 4.1) and the full API parameter prediction setting
(Section 4.2). For a more detailed analysis, we select 12 APIs to cover the representative types of
numeric constraint for examination in the single API parameter prediction setting (Section 4.3) and in
our DSEVAL benchmark (Section 4.4). We use “representative” to mean representative with respect
to the numeric parameter constraints in DS library APIs. Table 1 shows the categorization of the
different types of numeric constraints that exist in DS libraries. Our selection criteria aim to select a
list of APIs that have interesting numeric parameter constraints that can cover all the major constraint
categories. A complete list of the 12 APIs and their corresponding constraints is provided in Table 3
in the Appendix.

We focus on the 3 settings described previously to analyse the performance of LLMs. For the full
program setting, we generate a single input prompt per each studied API and ask the LLMs to
synthesize the complete DS program by varying the sampling temperature. For the all parameters
setting, we have 14 difficulty settings, each with 200 different inputs per API, and use greedy decoding
to obtain the LLM solutions. The difficulty setting is controlled by increasing the rank of input_data
(from 2 to 8 in intervals of 1) with default dimension value as [1,16], and increasing the dimension
value (i.e., [1,4), [4,8),... , [128,256]) with default rank as 3, separately. Finally, in the single
parameter setting, we select one parameter for each API for the LLM to generate. For any parameters
irrelevant to the constraint, we use the default value if it is an optional parameter, and randomly
choose from a reasonable value range if it is a required parameter (Appendix C). We adopt the same
difficulty setup and greedy decoding strategy as the all parameter setting.

3.2 Metrics

Validity. To measure validity, we directly extract the LLM output predictions and evaluate according
to the process described in Section 2.3. We define accuracy as the percentage of valid programs
produced by the LLMs in each difficulty setting.

Diversity. To measure diversity, we compute the unique valid rate: the percentage of unique valid
programs generated via sampling. Note that we deduplicate by extracting the input shapes and
numeric parameters, ignoring the irrelevant parameters and irrelevant code suffix.

3.3 Studied models.

We evaluate 8 popular state-of-the-art LLMs, including both closed-source and open-source models
(detailed list shown in Table 2). For both the full program and all parameter settings, we only present
the results for DeepSeek Coder-33b [22], state-of-the-art open-source model, due to the space limit
(other models follow similar trends). For the individual parameter setting (the main setting), we focus
on the DeepSeek Coder family models (33b, 6.7b, and 1.3b) as well as GPT-4-Turbo (2024-04-09),
covering both state-of-the-art open-source and close-source models, as well as models with different
sizes. Apart from the full program setting, where the LLM generates a complete program, we perform
infilling using the studied LLMs’ model-specific infilling format. To perform infilling using GPT-4-
Turbo, we design a specialized prompt (see Appendix H). Unless otherwise stated, we use greedy
decoding (i.e., temperature = 0) and temperature of 1 when sampling for diversity evaluation.

5







dimension. We observe that the DeepSeek Coder models drop from around 0.7⇠0.8 to less than 0.5,
while GPT-4’s performance stays around 0.9 throughout different difficulty levels.

Finding: Overall, we found that smaller LLMs even struggles with even the simple constraint of
copying an existing value, while large state-of-the-art LLMs can maintain its high performance.

Inequality. max in PyTorch computes the maximum value along a dimension. The parameter we
target is dim with the valid range being [-rank, rank). In Figure 6b, when using greedy decoding,
all 4 LLMs achieve close to perfect accuracy. Therefore, we also conduct sampling experiments and
present the pass@1 accuracy and diversity in Figure 6b and 6c. For max we compute the diversity
differently from Section 3.2 (see Appendix G), since the number of possible unique valid outputs is
very small. Interestingly, the smaller DeepSeek Coder-1.3b model achieves highest sampling accuracy
for rank=8, but has the lowest diversity. This is because the smaller model often predicts common
values like 1, whereas the larger model (33b) can explore various correct answers like -1,2.

Findings: We found that larger models are indeed better at capturing the simple inequality constraints
and modeling the true probability of various possible values, while smaller models tend to memorize
common patterns, leading to less diverse predictions.

Arithmetic. reshape in both PyTorch and NumPy attempts to rearrange the dimensions in the
input_data, with the constraint being

Q
i input_shapes[i] ==

Q
j new_shape[j]. Since we found

that it is common for the LLMs to simply predict the same shape or a permutation of the original, we
add an additional constraint: we specify the first dimension of the new_shape to be different from any
dimensions in input_shapes. Figure 6d shows the results as we vary the ranks of the input_data

for PyTorch (similar trend in NumPy). We observe that most LLMs in the beginning perform well;
however, as the difficulty increases, their performance drastically lowers. Meanwhile, GPT-4-Turbo
performance does not drop even with more difficult inputs. We found the reason is that GPT-4-Turbo
tends to always predict the special -1 value for reshape where the new_shape will be automatically
inferred by the library. Figure 6d showcases this exact phenomenon in PyTorch (similar trend as
NumPy) where dotted lines present the accuracy of any outputs without -1. We see that now even
GPT-4-Turbo struggles in generating valid parameters without using the -1 crutch for the constraint.

Conv2d in PyTorch applies a 2D convolution over a 4D input tensor. The LLMs are asked to predict
the parameter groups, where they have to divide both in_channels and out_channels evenly. The
default value for groups is the trivial 1 (and therefore always valid). To ensure that there is at least one
non-trivial value for groups, we randomly sample in_channels and out_channels within the value
range such that their greatest common divisor is greater than 1. Figure 6e shows that the accuracy
steadily drops as we increase the magnitude of values: even GPT-4-Turbo can only solve ⇠24% of
the hardest subset of problems, which other models drop below 14% for the same problems.

Fold in PyTorch aims to combine an array of sliding local blocks into a large containing tensor. The
constraint required for fold is the most complex out of all studied APIs where the LLM tries to
generate a k_size tuple, and the product of the tuple must divide the 2nd index of the input_shapes

evenly. Furthermore, it also needs to satisfy a complex equation over multiple parameters as shown in
Figure 6f. We use the default values for all parameters other than out_size and ask LLMs to produce
the correct k_size. Shown in Figure 6f, due to the complexity of the constraint, even on the lowest
difficulty with small values, LLMs achieve relatively poor accuracy compared to other APIs. As we
increase the values, the accuracy drops to nearly 0%. This highlights the high degree of difficulty in
many DS APIs which current LLMs cannot reliably solve.

Findings: Arithmetic parameter constraints in DS APIs are extremely challenging for all LLMs. Our
results show that current state-of-the-art LLMs cannot effectively solve such complex constraints with
their performance drops drastically and even sometimes drops to zero as we increase the difficulty.

Set-related. transpose in NumPy attempts to rearrange/transpose the input_data according to
the given new_dim. In transpose, the constraint is that the model-predicted new_dim must be a
permutation of the original dimensions in input_data. We found that the LLMs tend to predict very
simple permutations; as such, similar to reshape, we directly provide the first dimension of new_dim
to increase the difficulty. We see that in Figure 6g, LLMs generally perform well on solving this
constraint, and their performance improves with larger model sizes. Interestingly, the lowest difficulty
of rank = 2 has a drop in performance. We theorize that this is because when the rank is 2, it is

8





problems, showing that different LLMs can perform differently depending on the input and constraint
required to satisfy.

We also study the diversity (see Appendix G for more details) of the LLM outputs, except we do
not study GPT-4-Turbo due to its cost. Interestingly, LLMs which achieve high ranking in accuracy
do not necessarily perform well in generating diverse correct solutions. This indicates that certain
LLMs generate similar solutions to satisfy the constraint, without paying attention to the specific
context. Therefore, they are not suitable for tasks like fuzz testing [16] which requires efficiently
exploring a large solution space, or for tasks involving uncommon API usage. We further categorize
some common mistakes made by LLMs on DSEVAL and provide additional insights in Appendix E.
Overall, DSEVAL serves as the first benchmark to systematically evaluate the performance of LLMs
on satisfying complex numeric API constraints for popular DS libraries and can be extended to
support additional APIs and DS libraries.

5 Related work

LLMs for code. LLMs have made remarkable advancements in a wide range of coding tasks,
including code synthesis [60, 10, 2], debugging [11, 8], repair [53, 54, 7], and analysis [36, 56, 55].
Notably, recent works [29, 16] also demonstrated LLMs’ effectiveness in synthesizing DS code,
which requires programming proficiency in DS APIs from specialized libraries such as NumPy [38]
and PyTorch [41]. Trained on billions of code including such DS code, LLMs, such as StarCoder [31]
and DeepSeek Coder [22], have been extensively evaluated on DS code synthesis tasks. However,
no prior study has systematically examined whether LLMs can indeed understand numerical API
constraints of these scientific libraries instead of just memorizing the trained data [14].

Coding benchmarks for LLMs. Most code generation benchmarks [10, 33, 2, 22] are formulated
with a natural language description and tests to verify the functional correctness of LLM-generated
code. However, these benchmarks mostly target general-purpose code. To access LLM code generation
for DS tasks, DS-1000 [29] is created by collecting real DS problems from StackOverflow, and
ARCADE [58] evaluates LLMs’ ability to solve multiple interrelated problems within DS notebooks.
Compared to existing DS benchmarks, our study explores different granularity levels to systematically
evaluate to what extent LLMs can implicitly learn DS APIs’ numeric parameter constraints.

Math reasoning of LLMs. To evaluate LLMs’ arithmetic reasoning performance, GSM8K and other
benchmarks [12, 42, 35, 24, 28] construct math problems in natural language requiring mathematical
computations to solve. Compared to these existing benchmarks, problems designed in our study
implicitly encode the arithmetic logic inside the DS library API, and thus can evaluate the LLMs’
capability in understanding and solving numerical API constraints in the important DS libraries.

6 Conclusion

In this paper, we present the first systematic study on how LLMs understand the numerical API
constraints for important DS libraries. Our study results show that current LLMs often memoize
common patterns rather than truly understanding the actual numerical API constraints. Moreover,
GPT-4-Turbo largely outperforms other open-source models and can well understand some simple
arithmetic constraints using CoT. Based on our finding results, we also constructed DSEVAL, the first
benchmark (with 19,000 problems) for systematically evaluating LLMs’ capabilities in understanding
the important numerical API constraints for popular DS libraries (such as PyTorch and NumPy).

10



Acknowledgments and Disclosure of Funding

This work was partially supported by NSF grant CCF-2131943 and Kwai Inc. This project is supported,
in part, by funding from Two Sigma Investments, LP. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of Two Sigma Investments, LP.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[4] Silvio Barra, Salvatore M. Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Re-
forgiato Recupero. Deep learning and time series-to-image encoding for financial fore-
casting. IEEE/CAA Journal of Automatica Sinica, 7:683–692, 2020. URL https://api.
semanticscholar.org/CorpusID:218468218.

[5] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking,
pp. 305–343, 2018.

[6] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

[7] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous,
llm-based agent for program repair. arXiv preprint arXiv:2403.17134, 2024.

[8] Nghi Bui, Yue Wang, and Steven C.H. Hoi. Detect-localize-repair: A unified framework
for learning to debug with CodeT5. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 812–823,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-emnlp.57. URL https://aclanthology.org/2022.
findings-emnlp.57.

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance
for direct perception in autonomous driving. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2722–2730, 2015. doi: 10.1109/ICCV.2015.312.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. ArXiv, abs/2304.05128, 2023. URL https://api.semanticscholar.
org/CorpusID:258059885.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

11

http://www.twosigma.com/
https://api.semanticscholar.org/CorpusID:218468218
https://api.semanticscholar.org/CorpusID:218468218
https://aclanthology.org/2022.findings-emnlp.57
https://aclanthology.org/2022.findings-emnlp.57
https://api.semanticscholar.org/CorpusID:258059885
https://api.semanticscholar.org/CorpusID:258059885


[13] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

[14] Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Benchmark
probing: Investigating data leakage in large language models. In NeurIPS 2023 Workshop on
Backdoors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[16] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language
models. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2023, pp. 423–435, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598067. URL
https://doi.org/10.1145/3597926.3598067.

[17] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3623343. URL
https://doi.org/10.1145/3597503.3623343.

[18] Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforce-
ment learning for financial signal representation and trading. IEEE Transactions on Neural
Networks and Learning Systems, 28:653–664, 2017. URL https://api.semanticscholar.
org/CorpusID:9398383.

[19] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In Proceedings of the 45th International
Conference on Software Engineering, ICSE ’23, pp. 1469–1481. IEEE Press, 2023. ISBN
9781665457019. doi: 10.1109/ICSE48619.2023.00128. URL https://doi.org/10.1109/
ICSE48619.2023.00128.

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages, 2020.

[21] Ken Gu, Madeleine Grunde-McLaughlin, Andrew McNutt, Jeffrey Heer, and Tim Althoff. How
do data analysts respond to ai assistance? a wizard-of-oz study. In Proceedings of the CHI
Conference on Human Factors in Computing Systems, pp. 1–22, 2024.

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[23] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen.
Audee: automated testing for deep learning frameworks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’20, pp. 486–498, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450367684. doi:
10.1145/3324884.3416571. URL https://doi.org/10.1145/3324884.3416571.

[24] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

12

https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://api.semanticscholar.org/CorpusID:9398383
https://api.semanticscholar.org/CorpusID:9398383
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/3324884.3416571


[26] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study
on deep learning bug characteristics. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of software
engineering, pp. 510–520, 2019.

[27] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi: 10.
1109/TITS.2021.3054625.

[28] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow
(eds.), Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1152–1157, San Diego,
California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136.
URL https://aclanthology.org/N16-1136.

[29] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

[30] Meiziniu Li, Jialun Cao, Yongqiang Tian, Tsz On Li, Ming Wen, and Shing-Chi Cheung.
Comet: Coverage-guided model generation for deep learning library testing. ACM Trans.
Softw. Eng. Methodol., 32(5), jul 2023. ISSN 1049-331X. doi: 10.1145/3583566. URL
https://doi.org/10.1145/3583566.

[31] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[32] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming
Zhang. Nnsmith: Generating diverse and valid test cases for deep learning compilers. In
Proceedings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023, pp. 530–543, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575707. URL https://doi.org/10.1145/3575693.3575707.

[33] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

[34] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. Large language model-based agents for software engineering: A survey. arXiv
preprint arXiv:2409.02977, 2024.

[35] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR),
2023.

[36] Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei, Alvine Boaye
Belle, Hung Viet Pham, and Song Wang. Skipanalyzer: A tool for static code analysis with
large language models, 2023.

[37] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In International Conference on Learning Representations, 2022. URL
https://api.semanticscholar.org/CorpusID:252668917.

[38] Numpy. The fundamental package for scientific computing with python. https://numpy.org,
Accessed: May, 2024.

13

https://aclanthology.org/N16-1136
https://doi.org/10.1145/3583566
https://doi.org/10.1145/3575693.3575707
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:252668917
https://numpy.org


[39] Numpy. Numpy documentation. https://numpy.org/doc/, Accessed: May, 2024.

[40] Numpy. Numpy unit tests. https://github.com/numpy/numpy/tree/main/numpy/
tests, Accessed: May, 2024.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[42] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems?, 2021.

[43] PyTorch. Pytorch documentation. https://pytorch.org/docs/stable/index.html, Ac-
cessed: May, 2024.

[44] PyTorch. Pytorch unit tests. https://github.com/pytorch/pytorch/tree/main/test,
Accessed: May, 2024.

[45] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interaction with a large language model for software
development. In Proceedings of the 28th International Conference on Intelligent User Interfaces,
IUI ’23, pp. 491–514, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701061. doi: 10.1145/3581641.3584037. URL https://doi.org/10.1145/
3581641.3584037.

[46] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving, 2016.

[47] Yiyin Shen, Xinyi Ai, Adalbert Gerald Soosai Raj, Rogers Jeffrey Leo John, and Meenakshi
Syamkumar. Implications of chatgpt for data science education. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1, pp. 1230–1236, 2024.

[48] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al
Rifat, and Vinicius Carvalho Lopes. Using large language models to generate junit tests: An
empirical study, 2024.

[49] Wil Van Der Aalst and Wil van der Aalst. Data science in action. Springer, 2016.

[50] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. Free lunch for testing:
fuzzing deep-learning libraries from open source. In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, pp. 995–1007, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392211. doi: 10.1145/3510003.3510041.
URL https://doi.org/10.1145/3510003.3510041.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[52] Wikipedia contributors. Plagiarism — Wikipedia, the free encyclopedia, 2024. URL https:
//en.wikipedia.org/wiki/Hellinger_distance. [Online; accessed 20-May-2024].

[53] Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting
automated program repair via zero-shot learning. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 959–971, 2022.

14

https://numpy.org/doc/
https://github.com/numpy/numpy/tree/main/numpy/tests
https://github.com/numpy/numpy/tree/main/numpy/tests
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/index.html
https://github.com/pytorch/pytorch/tree/main/test
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3510003.3510041
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Hellinger_distance


[54] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, pp. 1482–1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.2023.
00129.

[55] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via
large language models. arXiv preprint arXiv:2401.00563, 2023.

[56] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and
Lingming Zhang. Whitefox: White-box compiler fuzzing empowered by large language models.
Proceedings of the ACM on Programming Languages, 8(OOPSLA2):709–735, 2024.

[57] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations.

[58] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code
generation in interactive data science notebooks. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 126–173, 2023.

[59] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023.

[60] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Lr8cOOtYbfL.

15

https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

	Introduction
	Study Approach
	Scope of study
	Evaluation settings
	Input creation and output validation

	Experimental Setup
	Subjects
	Metrics
	Studied models.

	Evaluation
	Full program prediction
	Full API parameter prediction
	Single API parameter prediction
	DSeval: A public benchmark for numerical DS API constraints

	Related work
	Conclusion
	Problem statement
	Benchmark details
	Common parameter value ranges
	Case study of the Linear API
	Common mistakes made by LLMs
	Additional individual API parameter results
	Diversity metric
	GPT-4-Turbo infilling prompt
	Single API parameter results for instruction model with CoT prompting
	Single API parameter results for instruction model with ReAct prompting
	Single API parameter results with documentation-augmented prompting
	Computation Environment

