Can LLMs Implicitly Learn Numeric Parameter
Constraints in Data Science APIs?

Yinlin Deng ¥ Chungiu Steven Xia X Zhezhen Cao = Meiziniu Li & Lingming Zhang X

X University of Illinois Urbana-Champaign
= Southern University of Science and Technology
@ The Hong Kong University of Science and Technology

{yinlind2,chunqiu2,lingming } @illinois.edu, 12110529 @mail.sustech.edu.cn, mlick@cse.ust.hk

Abstract

Data science (DS) programs, typically built on popular DS libraries (such as Py-
Torch and NumPy) with thousands of APIs, serve as the cornerstone for various
mission-critical domains such as financial systems, autonomous driving software,
and coding assistants. Recently, large language models (LLMs) have been widely
applied to generate DS programs across diverse scenarios, such as assisting users for
DS programming or detecting critical vulnerabilities in DS frameworks. Such appli-
cations have all operated under the assumption, that LLMs can implicitly model the
numerical parameter constraints in DS library APIs and produce valid code. How-
ever, this assumption has not been rigorously studied in the literature. In this paper,
we empirically investigate the proficiency of LLMs to handle these implicit numer-
ical constraints when generating DS programs. We studied 28 widely used APIs
from PyTorch and NumPy, and scrutinized the LLMs’ generation performance
in different levels of granularity: full programs, all parameters, and individual
parameters of a single API. We evaluated both state-of-the-art open-source and
closed-source models. The results show that LLMs are great at generating simple
DS programs, particularly those that follow common patterns seen in training data.
However, as we increase the difficulty by providing more complex/unusual inputs,
the performance of LLMs drops significantly. We also observe that GPT-4-Turbo
can sustain much higher performance overall, but still cannot handle arithmetic
API constraints well. In summary, while LLMs exhibit the ability to memorize
common patterns of popular DS API usage through massive training, they overall
lack genuine comprehension of the underlying numerical constraints.

1 Introduction

Data science (DS) is an emerging and important area that combines classic fields like statistics,
databases, data mining, and machine learning (ML) to gain insights via complex operations on the
abundance of available data [49]. DS libraries (such as PyTorch [41] and NumPy [38]) contain
thousands of APIs used by developers and data scientists to process/analyse data. These DS APIs serve
as the fundamental building blocks for almost all important ML/DS pipelines, and have penetrated
into almost every corner of modern society, including financial systems [18, 4], autonomous driving
software [9, 27, 46], coding assistants [45, 37], etc. Due to their high importance and wide usage,
automatically synthesizing valid DS programs has been a critical research area [29, 21, 47].

One key challenge of DS code generation is to satisfy the complex constraints within each DS library
API. DS library APIs perform transformations (e.g., matrix multiplication) on inputs (i.e., arrays or
array-like objects) with numeric constraints on API parameters and inputs. Figure 1 shows an example

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

of a typical DS program where the DS library (i.e., PyTorch) is first imported, followed by creating
some input_data, and then performing the data manipulation operation on the input_data using a
DS API (torch.nn.Conv2d). The parameters of the API (e.g., kernel_size, groups) must satisfy the
corresponding constraints between API parameters and the properties of the input_data. We refer to
API constraints as the set of relationships between properties of input_data and API parameters that,
if and only if when satisfied, leads to a valid DS API invocation. As seen in Figure 1, not only are
there constraints between the properties of the input_data and API parameters (e.g., kernel_size <
H + 2*padding), but there are also constraints within API parameters (e.g., out_channel % groups
= 0). These constraints are defined by developers according to the functionality of each DS API, and
are usually specified in natural language within the API documentation. Such complex constraints
are critical for DS applications, and DS users or even DS experts may unintentionally violate such
constraints [29, 26].

Large language models (LLMs) have achieved
tremendous success in processing code [10, 2].
Due to their powerful code understanding and ¢, ps ibrary: pyrorch L 5 S = 0

ut_channels % groups = 0

generation ability, LLMs have been applied to ,%"e < s repading
various coding tasks [34], such as code comple- ;™5 e oL ﬂJmua)'—‘

tion [20, 6], program repair [19, 54], and test 3:;?:?."“.%(16, 35, kernel_size=3, padding=2, groups=1)
generation [16, 17, 48]. For DS libraries, LLMs

have been applied to solve practical user queries
on StackOverflow [29] and even generate test
programs to detect bugs in modern ML frame-
works [16]. Prior work assumes LLMs, through massive training, can already implicitly model
constraints in DS APIs by learning from numerous correct DS API uses [47, 21, 16]. However, this
assumption has not been systematically verified. Furthermore, popular DS-specific benchmarks like
DS-1000 [29] do not specially test the LLM’s ability to satisfy implicit constraints and instead focus
on how to apply DS APIs to solve data analysis tasks. These gaps in prior research raise a critical
question: Can LLMs implicitly learn the numeric constraints in data science APIs?

Figure 1: Example DS program with constraints

Our work. To answer the question, we conduct a rigorous study on the performance of LLMs
in generating valid DS programs satisfying diverse numerical API constraints. We collected a set
of 28 representative DS library APIs across two widely-used Python DS libraries (PyTorch and
NumPy), each with their unique constraints/setup. Additionally, we categorize each API’s constraints
into different categories (e.g., equality and arithmetic) and perform in-depth experiments on each
constraint type. To support our analysis, we systematically created 3 generation settings: full program,
all parameters, and individual parameters, designed to test the LLMs under different evaluation
scenarios. Additionally, we vary the difficulty level by adjusting the inputs to explore LLM behaviours
when asked to solve more complex API constraints or given more unnatural inputs.

Interestingly, contrary to the popular assumption in prior work, while LLMs can easily satisfy
constraints when the inputs are simple, we observe that the performance drops drastically as we
increase the difficulty or provide more unusual inputs. We found that LLMs tend to generate simple
and common inputs seen during training, highlighting that LLMs are often memorizing patterns
instead of truly understanding the actual DS API constraints. For example, for the widely used
Conv2d API shown in Figure 1, when max (in_channels,out_channels) is set to [128, 256), even
GPT-4-Turbo [1] can only predict the correct value of groups ~24% of the time, while the other
models are below 14%. Furthermore, based on our experimental findings, we constructed DSEVAL,
the first benchmark for systematically evaluating LLMs’ capabilities in understanding the important
numerical API constraints for popular DS libraries. DSEVAL contains 19,600 different problems
across 12 representative APIs to extensively compare and contrast the performance of different
LLMs. DSEVAL supports lightweight and fast evaluation by extracting LLM generated parameters
and quickly verifying the correctness using state-of-the-art SMT solvers (such as Z3 [13]) to avoid
time-consuming execution-based evaluations. Our evaluation on eight state-of-the-art open-source
and closed-source models shows that while all studied models struggle with more difficult problems,
GPT-4-Turbo consistently achieves the highest accuracy across all difficulty levels. For example,
GPT-4-Turbo achieves an average accuracy of 57.5% for hard constraints of PyTorch APIs, while
the best open-source model can only achieve 39.2%, demonstrating the huge gap between large
proprietary models and other open-source LLMs. Our design of DSEVAL is general and can be easily
extended to additional libraries and APIs for the DS domain and even beyond.

Table 1: Categorization of constraint types with exemplar API names, description, and examples.

Category API names Description Example
Equalit OBatchNorm2d, OLinear Copying specific dimension nfeat = input_shapes[1]
q y Wisqueeze, Wisplit Indexing the correct dimension input_shapes[axis] = 1
Inequalit OSoftMax, (mean Single value related to rank -rank < dim < rank
q y Osum, ¥max Multiple values related to rank -rank < dim < rank for dim in dims
(GMaxPool2d, OAvgPool2d Multiplies a constant number kernel_size < H + padding * 2
Arithmetic OConv2d, OConvid Divides a parameter in_channels % groups = 0

Oreshape, Wireshape
OFold, OConvid

Product of parameters
Complex arithmetic

input_shapes = target_shape
g
_ o_size[d]+2xpad[d]-dil[d]x(k_size[d]-1)-1
t=]1L stride[d] +1]

|{dims}| = |dims|
{input_shapes} = {axes}

V¥max, Osum
Wtranspose

Uniqueness

Set-related Completeness

2 Study Approach

2.1 Scope of study

Instead of considering all possible DS programs and APIs, we focus on simple DS programs with
only a single API call. This allows us to isolate the evaluation to individual APIs or even individual
API parameters, facilitating fine-grained analysis and a detailed examination of the LLMs’ limitations
with respect to various types of numerical constraint.

We specifically target the core APIs commonly used by users that perform operations on the
input_data. Additionally, we also only consider numeric API constraints: constraints with only
numeric parameters such as integers. We ignore any other types of parameters (e.g., string) since they
do not affect the validity of numeric constraints. As such, any non-numeric parameters produced by
the model will be discarded during constraint validation.

Table 1 shows the types of constraints we considered in the study with the corresponding categories.
We group the constraints into i) Equality: constraints where the values have to match exactly. We see
that equality constraints are related to selecting or generating the right shape in the input_data. ii)
Inequality: constraints where values have to be greater or less than. Inequality constraints include
mainly rank related operations to stay within the valid rank range. iii) Arithmetic: constraints
involving arithmetic operations such as division, modulus or products. There are also more complex
API constraints that includes combination of many arithmetic operations. iv) Set-related: constraints
where the satisfaction criteria depend on different set-based properties. For example, there are
constraints that require parameters to be unique or complete with respect to input_shapes.

Full program input

All parameters input

import torch
X = torch.randn(16, 19, 25, 24)
m = torch.nn.MaxPool2d(<FILL_IN>)

y = m(x) é’
kernel_size=(2, 2), stride=(2, 2)

Step 1: import torch
Step 2: Generate one input tensor with torch.randn
Step 3: Compute an output tensor with the API torch.sum

Step 1: import torch
import torch b)
Step 2: Generate one input tensor with torch.randn (‘)

—

Individual parameter input

import numpy as np
orch.randn(3, 4, 5) X = np.random.rand(11, 8, 5, 6, 3)

X =t
Step 3: Compute an output tensor with the API torch.sum
y=t

a y = np.reshape(x, (2, <FILL_IN>)) N
orch.sun(x, dim=0) S5
c) o’

a) 3, 10, 6, 22

Figure 2: Example problem input and LLM output for each evaluation setting

2.2 Evaluation settings

Next, we describe our settings to evaluate the performance of LLM on handling the numeric con-
straints. In total, we have 3 settings: i) full program, ii) all parameters, and iii) individual parameter.

Full program. For the full program setting, we want the LLM to synthesize a complete DS program
using a specific API from scratch. To do this, we provide a 3-step instruction and the basic starting
code of importing the DS library. Figure 2a shows an example of the full program input for the
API torch.sum as well as an example LLM output. We note that in this setting, the LLM has full

freedom to generate any type or size for the input_data. As such, the LLM may choose very simple
input_data and API parameter values that can easily satisfy the constraint.

All parameters. In the all parameters setting, we directly provide the input_data for the APL
Figure 2b also shows an example of the input for the API torch.nn.MaxPool2d where the LLM just
needs to output the API parameters. This setting evaluates if/how LLMs can accurately solve the
constraints as we vary the input_data with more difficult or uncommon cases. Still the LLM has full
freedom to pick the full combination of parameters to satisfy the required constraint.

Individual parameter (main setting). To perform a finer-grained evaluation, we introduce the
individual parameter setting where we ask the LLM to generate a single parameter of the APIL
Figure 2¢ additionally demonstrates an example for np.reshape where we only allow the LLM to
fill in a single parameter value of newshape. Furthermore, we can also add an additional constraint
by directly providing the first value of newshape (2 in the example). This makes the problem even
more challenging where instead of being able to simply copy the input_shapes, the LLM now has
to reason with the partial shape given and compute the final correct shape to satisfy the constraint.
Compared to the prior two settings, the choices here are much limited. This makes the task harder to
fully evaluate how LLMs solve complex API constraints, and serves as our main setting.

2.3 Input creation and output validation

Creation. To produce the inputs for each of the 3 settings, we use a fixed set of templates for each
APIL. For the full program setting, we produce one input per API, changing only the API name in
the input instruction. For the all parameters setting, we vary the input_data given to the APL. In
particular, we focus on two properties of the input_data: 1) rank of the input_data and 2) each
dimension value. We create randomized inputs and increase the difficulty by either increasing the rank
or the dimension values to measure the LLLM performance. Note that input rank or dimensionality
can affect different APIs depending on the specific numeric constraints (Table 1). For example, an
API like torch.nn.SoftMax that has a constraint of -rank < dim < rank will have its difficulty
influenced by the actual rank of the input tensor. On the other hand, an API like torch.nn.Conv2d
has a constraint of in_channels ¥ groups = 0, which depends on the actual dimension value of the
input (i.e., in_channels). As the dimension value of in_channels increases, it will be more difficult
to select the groups parameter that can divide it evenly. Therefore, we increase the difficulty of
different APIs based on whether the constraint depends on the rank, dimension, or both. Similarly,
for the individual parameter setting, we also randomize the input_data based on the previous two
properties. Additionally, we pick the parameters with interesting constraints for the LLM to predict
in order to be representative and cover the major constraint types. Furthermore, since we only ask the
LLM to produce a single parameter value, we also vary the other parameter values in the API to add
additional constraints (details discussed in Section 4.3).

To ensure the input is valid, we leverage satisfi-
ability modulo theory (SMT) solvers as shown

in Figure 3a. SMT solvers, such as Z3 [13], are ST i

tools which can be used to solve an SMT prob- | s chamets e size ﬁiﬁngiaiigg }rgﬁ‘%i;:*fpgdgm) Satisfiable?
lem of determining whether a mathematical or - smism..
first-order logic formula is satisfiable [5]. We first

encode the API constraints into an SMT formula. gy et £ gows -0y LZ20 s
We then randomly generate concrete values for = zs | teresize < i+« paising | o G i e

. cvcs SMT formula P | LLM output
the input_shapes and leave the other parameters b) PAYRS L.

that we want the LLLM to generate as symbolic

variables. Next, we use an SMT solver to check Figure 3: .Example usage of constraint solvers to
if the constraints are satisfiable (i.e., there exists generate inputs and validate outputs.

a set of values for each symbolic variable that can

satisfy the constraint). If it is satisfiable, the input we provide to the LLM is valid, otherwise we
restart the process by randomly selecting the concrete values. In our study, we reuse the encoded API
constraints provided by NNSmith [32] (a popular tool for testing ML libraries via formal constraint
solving) and add additional ones when needed.

Evaluation. To evaluate the validity of the DS programs generated by the LLMs, we first parse
the output to extract the input_data and API parameters. We then check if the LLM predicted

values are valid. This is also done via SMT solving as demonstrated in Figure 3b where we use the
SMT formulas and, this time, check if all the concrete values generated are valid according to the
constraints. Note that such light-weight constraint solving can support much faster validation than
actually executing the generated DS programs, while still providing the same guarantee.

3 Experimental Setup

3.1 Subjects

We construct a dataset with 28 representative APIs in total from two popular DS libraries: PyTorch (18)
and NumPy (10). For our API selection process, we begin by referencing prior work NNSmith [32]
and examined all 73 core operators it supports. From these, we select 22 core APIs that have
numeric parameter constraints and add additional 6 APIs to obtain the 28 APIs used in our study for
both the full program prediction setting (Section 4.1) and the full API parameter prediction setting
(Section 4.2). For a more detailed analysis, we select 12 APIs to cover the representative types of
numeric constraint for examination in the single API parameter prediction setting (Section 4.3) and in
our DSEVAL benchmark (Section 4.4). We use “representative” to mean representative with respect
to the numeric parameter constraints in DS library APIs. Table 1 shows the categorization of the
different types of numeric constraints that exist in DS libraries. Our selection criteria aim to select a
list of APIs that have interesting numeric parameter constraints that can cover all the major constraint
categories. A complete list of the 12 APIs and their corresponding constraints is provided in Table 3
in the Appendix.

We focus on the 3 settings described previously to analyse the performance of LLMs. For the full
program setting, we generate a single input prompt per each studied API and ask the LLMs to
synthesize the complete DS program by varying the sampling temperature. For the all parameters
setting, we have 14 difficulty settings, each with 200 different inputs per API, and use greedy decoding
to obtain the LLM solutions. The difficulty setting is controlled by increasing the rank of input_data
(from 2 to 8 in intervals of 1) with default dimension value as [1,16], and increasing the dimension
value (i.e., [1,4), [4,8),..., [128,256]) with default rank as 3, separately. Finally, in the single
parameter setting, we select one parameter for each API for the LLM to generate. For any parameters
irrelevant to the constraint, we use the default value if it is an optional parameter, and randomly
choose from a reasonable value range if it is a required parameter (Appendix C). We adopt the same
difficulty setup and greedy decoding strategy as the all parameter setting.

3.2 Metrics

Validity. To measure validity, we directly extract the LLM output predictions and evaluate according
to the process described in Section 2.3. We define accuracy as the percentage of valid programs
produced by the LLMs in each difficulty setting.

Diversity. To measure diversity, we compute the unique valid rate: the percentage of unique valid
programs generated via sampling. Note that we deduplicate by extracting the input shapes and
numeric parameters, ignoring the irrelevant parameters and irrelevant code suffix.

3.3 Studied models.

We evaluate 8 popular state-of-the-art LLMs, including both closed-source and open-source models
(detailed list shown in Table 2). For both the full program and all parameter settings, we only present
the results for DeepSeek Coder-33b [22], state-of-the-art open-source model, due to the space limit
(other models follow similar trends). For the individual parameter setting (the main setting), we focus
on the DeepSeek Coder family models (33b, 6.7b, and 1.3b) as well as GPT-4-Turbo (2024-04-09),
covering both state-of-the-art open-source and close-source models, as well as models with different
sizes. Apart from the full program setting, where the LLM generates a complete program, we perform
infilling using the studied LLMs’ model-specific infilling format. To perform infilling using GPT-4-
Turbo, we design a specialized prompt (see Appendix H). Unless otherwise stated, we use greedy
decoding (i.e., temperature = 0) and temperature of 1 when sampling for diversity evaluation.

4 Evaluation

4.1 Full program prediction

—

e (pt)
-
x

- nax(pt)
reshape(pt)
Maxpool2d(pt)

~o- Fold(pt)

1.0

@
©

@

u

3

)
-3
>

accuracy
@
ES
o
w

©
N

unique valid rate

@
N

o

-

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.8
temperature temperature

Figure 4: Full program prediction result on all 28 APIs (O PyTorch and & NumPy).

To start with, we ask the LLM (DeepSeek Coder-33b) to predict the entire DS program from scratch
given just simple instructions. Figure 4a shows the overall accuracy of the 18 APIs in PyTorch and 10
APIs in NumPy. We see that with low temperature the model has near perfect accuracy on almost
all the APIs and as temperature slowly increases, the accuracy tends to drop (ending with around
0.5~0.8 with temperature=1). Surprisingly, we found that for torch.nn.Fold, which contains the
most complex constraint, the LLM failed to produce any valid DS programs. This demonstrates
that LLMs may still struggle with satisfying the extremely difficult constraints even when given the
full freedom of generating any input values. Furthermore, in Figure 4b, we plot the proportion of
unique valid programs generated by the model as we vary temperature. Of course when sampling at
low temperatures, many of the inputs will be repeated, leading to low number of unique programs
in general. In particular, the input shapes are often from widely-used computer vision datasets like
3%x224x%224 from ImageNet [15]. This indicates the LLMs tend to memorize some common patterns
from either documentation or user programs. However, we see that even though the unique valid rate
increases with high temperatures to give more diverse and creative outputs, the percentage of unique
valid programs can still be mostly below 50%. This demonstrates that while models are successful in
generating a high percentage of valid programs, a lot of generated programs are repeated.

4.2 Full API parameter prediction

1.0 £ 7 VN A--——- A--———4

0.8

accuracy
(-]
(-]

<%= Convid(pt)
¥~ Softmax(pt) <%= Conv2d(pt)
<%~ Linear(pt) 0.4 <~ Linear(pt)

~W- reshape(pt) MaxPool2d(pt)
0.4 argmax(np) reshape(pt)
reshape(np) 0.2 ~¥~ BatchNorm2d(pt)
@ split(np) -@ reshape(np)
@ squeeze(np) @ split(np)
0.2 -@- argmin(np) ¥~ Fold(pt)
b = others(13) 0.0| = others(17)
2 3 4 5 6 7 8 [1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (rank) difficulty (input_dim)

Figure 5: Full API parameter prediction result on all 28 APIs (O PyTorch and & NumPy). The LLM
has near 100% accuracy on some APIs, which are collectively referred to as others(x), where x is
the number of grouped APIs.

Figure 5 shows the setting where we randomly provide an input_data and ask DeepSeek Coder-33b
to complete the valid parameters of the API. We vary the difficulty by changing either the rank
or the dimension value ranges of the input_data to produce more complex and unnatural inputs.
We use greedy decoding (temperature 0) to generate one solution per problem, and compute the

average valid rate across the randomly created problems to compute accuracy for each difficulty level.
Compared to Section 4.1 where LLMs achieve near-perfect accuracy for almost all APIs with low
temperature like 0.2, we observe that the accuracy quickly drops when simply randomizing the input
shape, especially for APIs with more complex constraints. This indicates that the learned patterns
cannot easily generalize to less common input shapes. We further performed an interesting case
study on the PyTorch API Linear, and found this phenomenon holds true across different models
(Appendix D). However, we see that the majority of APIs maintain high accuracy even as difficulty
increases (others(x) in Figure 5). This is because these APIs have relatively easy constraints. For
example, APIs like max or argmax only require predicting a single integer representing the dimension
to operate on, and the LLMs learn to predict dim=1 or just rely on the default parameter values of the
API which are always valid.

4.3 Single API parameter prediction

We now focus on the main finer-grained evaluation setting where we ask LLMs to predict a single
parameter value and discuss the input setup, results, and findings for each API separately. Here, we
only discuss representative API constraints from each category and full results are in Appendix F.

0.
1.0 @ 05-1.3b 1.000 “'---'::--“\ —_—— @ Ds-1.3b
—A- DS-6.7b S S —k— DS-6.7b
0.0 -¥- 0s-33b 0.975 0.55 ~¥- DS-33b
input_shapes[1] = nfeat GPT4-Turbo
<
0.8 X = torch.rand(9, 13, 14, 5) 0.950 \ ‘\\\\’ 0.50
y = torch.nn.BatchNorn2d (nfeat) —rank <= dim <rank \‘ S~ -
g $0.925 N AN Yoy 5
Se.7 B x = toreh.randn(7, |4, 4) N N £o.a5
o) o y = torch.max(x, dim) N, N\, 2
® © 0.900 “ Y s
06 @~ D5-1.3b(tenp=0) S~ 0.40
~@- 05-6.7b(tenp=0) ¥
0-875| g bs-33b(tenp=0) o~
0.5 GPTa-turbo(temp=0) Y
. 0.850| ¥ 05-1.3b(tenp=1) N 0.3
. ¥ 05-6.7b(tenp=1) R
0.4 ¥ 0S-33b(temp=1) A7
1,4 4, 116! 16, ,64) [64,1 128,256 2 3 4 5 6 7 8 2 3 4 5 6 7 8
[1,4) [4,8) [8,16) [16,32) (32,64) [64,128)[128,256) 0.
difficulty (input dim) difficulty (rank) difficulty (rank)

(a) O PyTorch BatchNorm2d (b) © PyTorch max w/ temp={0,1} (c) O PyTorch max diversity

1.0 - 0s-1.3b 1.0(& -@- DS-1.3b @ DS-1.3b
~#— DS-6.7b —&— DS-6.7b —A~ DS-6.7b
—¥- DS-33b -¥- Ds-33b 0.5 ¥ 0S-33b
0.8 GPT4-Turbo 0.8 GPT4-Turbo GPT4-Turbo
Ninput_shapes == finew_shapes k 0.4 € % (N k_size) == @

E

input_shapes N partial_shape == (}

o
°
w

L==l, (out_size+2*pad-dilation*(-1)-1)/stride+1,
X = torch.Fandn(7,)|
'\ m = torch.nn.Fold((Z, I size,
dilation=1, pad=e, stride=1)

accuracy
accuracy
accuracy

x = torch.rand(§, 13, 1,
y = torch.reshape(x, (6, new shapes))

ES

in_channels % groups = 6
oups =

out_channels % gr [

x = torch.rand(9, 13, 14, 5)
i y = torch.nn.Conv2d(13, 33, groups)

2 3 a4 5 6 7 8 [1,4) [4,8) (8,16) [16,32) [32,64) [64,128)[128,256) [1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (rank) difficulty (input_dim) difficulty (input_dim)
(d) 0 PyTorch reshape (e) © PyTorch Conv2d (f) © PyTorch Fold

S N el 4 1.8 ',—O\\
A 5-6.7b \

—¥- DS-33b

GPT4-Turbo

accuracy
°
®
8
accuracy

°
S

accuracy

{input_dim} = (Dlrtili_dim, new_drn)

LU et S

0.65 7 o R, e) ::7*::::
0.60 0.0 w-==-Y
2 3 4 5 6 7 8 1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (rank) difficulty (input_dim) difficulty (rank)
(g) ¥ NumPy transpose (h) © Conv2d on IT models (i) © PyTorch Fold on IT models

Figure 6: Single API parameter result. Solid lines (except Fig. 6¢) show the accuracy of using greedy
decoding (temp=0). In Fig. 6b, dashed lines show the pass@1 accuracy in sampling experiments with
temp=1. In Fig. 6d, dotted lines show the accuracy after excluding trivial solutions. In Fig. 6h and 6i,
we use *-Inst. to distinguish between the generation settings: infilling (GPT4-Turbo) and free-form
generation (GPT4-Turbo-Inst.). More details are provided in Appendix H and 1.

Equality. BatchNorm2d in PyTorch applies batch normalization [25] on a 4D input tensor, with the
second dimension as the number of features. We select the parameter num_features for the models
to predict, with the equality constraint that num_features = input_shapes|l]. Figure 6a shows
the results as we increase the difficulty by changing the maximum possible value for each input

dimension. We observe that the DeepSeek Coder models drop from around 0.7~0.8 to less than 0.5,
while GPT-4’s performance stays around 0.9 throughout different difficulty levels.

Finding: Overall, we found that smaller LLMs even struggles with even the simple constraint of
copying an existing value, while large state-of-the-art LLMs can maintain its high performance.

Inequality. max in PyTorch computes the maximum value along a dimension. The parameter we
target is dim with the valid range being [-rank, rank).In Figure 6b, when using greedy decoding,
all 4 LLMs achieve close to perfect accuracy. Therefore, we also conduct sampling experiments and
present the pass@ 1 accuracy and diversity in Figure 6b and 6¢. For max we compute the diversity
differently from Section 3.2 (see Appendix G), since the number of possible unique valid outputs is
very small. Interestingly, the smaller DeepSeek Coder-1.3b model achieves highest sampling accuracy
for rank=8, but has the lowest diversity. This is because the smaller model often predicts common
values like 1, whereas the larger model (33b) can explore various correct answers like -1, 2.

Findings: We found that larger models are indeed better at capturing the simple inequality constraints
and modeling the true probability of various possible values, while smaller models tend to memorize
common patterns, leading to less diverse predictions.

Arithmetic. reshape in both PyTorch and NumPy attempts to rearrange the dimensions in the
input_data, with the constraint being | [, input_shapes|i] == Hj new_shape|[j]. Since we found
that it is common for the LLMs to simply predict the same shape or a permutation of the original, we
add an additional constraint: we specify the first dimension of the new_shape to be different from any
dimensions in input_shapes. Figure 6d shows the results as we vary the ranks of the input_data
for PyTorch (similar trend in NumPy). We observe that most LLMs in the beginning perform well;
however, as the difficulty increases, their performance drastically lowers. Meanwhile, GPT-4-Turbo
performance does not drop even with more difficult inputs. We found the reason is that GPT-4-Turbo
tends to always predict the special -1 value for reshape where the new_shape will be automatically
inferred by the library. Figure 6d showcases this exact phenomenon in PyTorch (similar trend as
NumPy) where dotted lines present the accuracy of any outputs without -1. We see that now even
GPT-4-Turbo struggles in generating valid parameters without using the -1 crutch for the constraint.

Conv2d in PyTorch applies a 2D convolution over a 4D input tensor. The LLMs are asked to predict
the parameter groups, where they have to divide both in_channels and out_channels evenly. The
default value for groups is the trivial 1 (and therefore always valid). To ensure that there is at least one
non-trivial value for groups, we randomly sample in_channels and out_channels within the value
range such that their greatest common divisor is greater than 1. Figure 6e shows that the accuracy
steadily drops as we increase the magnitude of values: even GPT-4-Turbo can only solve ~24% of
the hardest subset of problems, which other models drop below 14% for the same problems.

Fold in PyTorch aims to combine an array of sliding local blocks into a large containing tensor. The
constraint required for fold is the most complex out of all studied APIs where the LLM tries to
generate a k_size tuple, and the product of the tuple must divide the 2nd index of the input_shapes
evenly. Furthermore, it also needs to satisfy a complex equation over multiple parameters as shown in
Figure 6f. We use the default values for all parameters other than out_size and ask LLMs to produce
the correct k_size. Shown in Figure 6f, due to the complexity of the constraint, even on the lowest
difficulty with small values, LLMs achieve relatively poor accuracy compared to other APIs. As we
increase the values, the accuracy drops to nearly 0%. This highlights the high degree of difficulty in
many DS APIs which current LLMs cannot reliably solve.

Findings: Arithmetic parameter constraints in DS APlIs are extremely challenging for all LLMs. Our
results show that current state-of-the-art LLMs cannot effectively solve such complex constraints with
their performance drops drastically and even sometimes drops to zero as we increase the difficulty.

Set-related. transpose in NumPy attempts to rearrange/transpose the input_data according to
the given new_dim. In transpose, the constraint is that the model-predicted new_dim must be a
permutation of the original dimensions in input_data. We found that the LLMs tend to predict very
simple permutations; as such, similar to reshape, we directly provide the first dimension of new_dim
to increase the difficulty. We see that in Figure 6g, LLMs generally perform well on solving this
constraint, and their performance improves with larger model sizes. Interestingly, the lowest difficulty
of rank = 2 has a drop in performance. We theorize that this is because when the rank is 2, it is

Table 2: DSEVAL benchmark result. Each column shows both the accuracy/diversity and ranking ().

O PyTorch & NumPy
Easy Medium Hard Easy Medium Hard

Size acc(z) Acc(@) Acc® PVE | Acc(z) Acc(z) Acc(z) PV
®GPT-4-Turbo NA 772(1) 662(1) 57.5(1) SO | 953() 8s1(1) 714(1) -0
@ DeepSeek 67b 662(3) 39.8(5) 334(4) 388(d) | 733(5) 458(8) 356(7) 17.6(7)

1.3b 59.0(8) 344(6) 268(6) 36.2(5)

13b 64.7 (6) 446(3) 3483) 39203
76 62.6(7) 32.7(8) 13.8(8) 21.2(7)

StarCoder 15b 65.6 (4) 46.3(2) 392(2) 399(2)

63.4 (8) 46.3(7) 30.5(8) 17.8 (6)

74.4 (4) 485(6) 36.8(6) 189(3)
67.1 (7) 532(5) 454(5) 18.7 (4)

70.8 (6) 56.7(3) 515(2) 18.3(5)
80.0 (2) 547(4) 4714 19.3(2)

0Q CodeLlama

|

33b 647(5) 41.5(d) 282(5) 25.8(6) ’ 785(3) 57.0(2) 488(3) 20.9(1)
|
|

2 CodeQwenl.5 76 67.5(Q2) 332(7) 252(7) 532()

more common to directly call transpose () without any additional arguments. Therefore, the LLMs
struggle a bit when given this unnatural task when asked to predict new_dim in low ranks.

Findings: We found that LLMs generally perform well across the set-related constraints, and their
performance scales with increasing model sizes. However, they still struggle with uncommon or
unnatural inputs that are no commonly seen during training.

Instruction-tuned models. We additionally investigate the performance of instruction-tuned (IT)
LLMs [59] with chain-of-thought (CoT) prompting [51]. Due to computational limitations, we
selected 3 constraints from PyTorch on which GPT-4-Turbo (without CoT) performs poorly for this
experiment and analysis. The detailed experimental setup is described in Appendix I. Recall that
for Conv2d, the task is essentially to predict groups such that it is a common divisor of two integers.
As we observe that some models tend to predict a trivial answer 1, we specifically mention “Don’t
set groups=1" in the prompt and consider such answer as invalid in evaluation. From Figure 6h, we
observe that GPT-4-Turbo with CoT performs well at this non-trivial task, maintaining over 85%
accuracy even with values up to 255. By contrast, the best open-source model can only solve 22%!
This shows that although models like CodeQwen achieves close performance to GPT-4-Turbo on
existing popular benchmarks like HUMANEVAL [10], there is still a huge gap in terms of coding
and math reasoning ability between GPT-4-Turbo and other open-source models. Meanwhile, when
we use the same setup on the extremely difficult constraint in Fold, we see that even GPT-4-Turbo
fails to perform well (less than 5% accuracy in later difficulty settings). This demonstrates that while
CoT prompting may elicit better performance in constraints like in Conv2d, it still cannot effectively
handle other more complex arithmetic constraints. In addition to CoT, we also test ReAct [57],
another prompting strategy to elicit more reasoning process from LLMs. We observe that while ReAct
can perform better than CoT, it still fails to solve more complex arithmetic constraints (detailed in
Appendix J). Additionally, we attempt to include API documentation in prompts, but found that this
does not always improve performance on our tasks (detailed in Appendix K).

4.4 DSEVAL: A public benchmark for numerical DS API constraints

Based on the above findings, we further construct a public benchmark — DSEVAL with the same
individual parameter prediction setting and the same representative set of APIs as studied in the
Section 4.3. For each API in the benchmark, there are 7 different difficulty settings (grouped as 2
easy, 3 medium, and 2 hard ones) and each with 200 randomly created problems. In total, this gives
us 19,600 problems in DSEVAL to extensively evaluate the performance of different LLMs.

Table 2 shows the accuracy and diversity of all 8 models. First, we observe that the LLMs’ accuracy
drops when increasing the difficulty levels on the benchmark problems. This is also reflected by prior
results where LLMs across the board struggle with more difficult problems. Next, we see that GPT-4-
Turbo consistently achieves the highest accuracy across all difficulty levels, showing the gap between
state-of-the-art proprietary models and other open-source LLMs. Furthermore, we observe some
interesting ranking changes across difficulty levels. For example, while CodeQwen1.5 [3] achieves
the second-best performance in the lowest difficulty level, its performance drops substantially on
the medium and hard problems (second worst on PyTorch medium and hard). Other models like
StarCoder [31] improve their relative performance and achieve higher ranking on more difficult

problems, showing that different LLMs can perform differently depending on the input and constraint
required to satisfy.

We also study the diversity (see Appendix G for more details) of the LLM outputs, except we do
not study GPT-4-Turbo due to its cost. Interestingly, LLMs which achieve high ranking in accuracy
do not necessarily perform well in generating diverse correct solutions. This indicates that certain
LLMs generate similar solutions to satisfy the constraint, without paying attention to the specific
context. Therefore, they are not suitable for tasks like fuzz testing [16] which requires efficiently
exploring a large solution space, or for tasks involving uncommon API usage. We further categorize
some common mistakes made by LLMs on DSEVAL and provide additional insights in Appendix E.
Overall, DSEVAL serves as the first benchmark to systematically evaluate the performance of LLMs
on satisfying complex numeric API constraints for popular DS libraries and can be extended to
support additional APIs and DS libraries.

5 Related work

LLMs for code. LLMs have made remarkable advancements in a wide range of coding tasks,
including code synthesis [60, 10, 2], debugging [11, 8], repair [53, 54, 7], and analysis [36, 56, 55].
Notably, recent works [29, 16] also demonstrated LLMs’ effectiveness in synthesizing DS code,
which requires programming proficiency in DS APIs from specialized libraries such as NumPy [38]
and PyTorch [41]. Trained on billions of code including such DS code, LLMs, such as StarCoder [31]
and DeepSeek Coder [22], have been extensively evaluated on DS code synthesis tasks. However,
no prior study has systematically examined whether LLMs can indeed understand numerical API
constraints of these scientific libraries instead of just memorizing the trained data [14].

Coding benchmarks for LLLMs. Most code generation benchmarks [10, 33, 2, 22] are formulated
with a natural language description and tests to verify the functional correctness of LLM-generated
code. However, these benchmarks mostly target general-purpose code. To access LLM code generation
for DS tasks, DS-1000 [29] is created by collecting real DS problems from StackOverflow, and
ARCADE [58] evaluates LLMs’ ability to solve multiple interrelated problems within DS notebooks.
Compared to existing DS benchmarks, our study explores different granularity levels to systematically
evaluate to what extent LLMs can implicitly learn DS APIs’ numeric parameter constraints.

Math reasoning of LLMs. To evaluate LLMs’ arithmetic reasoning performance, GSM8K and other
benchmarks [12, 42, 35, 24, 28] construct math problems in natural language requiring mathematical
computations to solve. Compared to these existing benchmarks, problems designed in our study
implicitly encode the arithmetic logic inside the DS library API, and thus can evaluate the LLMs’
capability in understanding and solving numerical API constraints in the important DS libraries.

6 Conclusion

In this paper, we present the first systematic study on how LLMs understand the numerical API
constraints for important DS libraries. Our study results show that current LLMs often memoize
common patterns rather than truly understanding the actual numerical API constraints. Moreover,
GPT-4-Turbo largely outperforms other open-source models and can well understand some simple
arithmetic constraints using CoT. Based on our finding results, we also constructed DSEVAL, the first
benchmark (with 19,000 problems) for systematically evaluating LLMs’ capabilities in understanding
the important numerical API constraints for popular DS libraries (such as PyTorch and NumPy).

10

Acknowledgments and Disclosure of Funding

This work was partially supported by NSF grant CCF-2131943 and Kwai Inc. This project is supported,
in part, by funding from Two Sigma Investments, LP. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of Two Sigma Investments, LP.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuangqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[4] Silvio Barra, Salvatore M. Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Re-
forgiato Recupero. Deep learning and time series-to-image encoding for financial fore-
casting. IEEE/CAA Journal of Automatica Sinica, 7:683-692, 2020. URL https://api.
semanticscholar.org/CorpusID:218468218.

[5] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking,
pp. 305-343, 2018.

[6] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

[7] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous,
Ilm-based agent for program repair. arXiv preprint arXiv:2403.17134,2024.

[8] Nghi Bui, Yue Wang, and Steven C.H. Hoi. Detect-localize-repair: A unified framework
for learning to debug with CodeT5. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 812-823,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-emnlp.57. URL https://aclanthology.org/2022.
findings-emnlp.57.

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance
for direct perception in autonomous driving. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2722-2730, 2015. doi: 10.1109/ICCV.2015.312.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language
models to self-debug. ArXiv, abs/2304.05128, 2023. URL https://api.semanticscholar.
org/CorpusID:258059885.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

11

http://www.twosigma.com/
https://api.semanticscholar.org/CorpusID:218468218
https://api.semanticscholar.org/CorpusID:218468218
https://aclanthology.org/2022.findings-emnlp.57
https://aclanthology.org/2022.findings-emnlp.57
https://api.semanticscholar.org/CorpusID:258059885
https://api.semanticscholar.org/CorpusID:258059885

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp.
337-340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Benchmark
probing: Investigating data leakage in large language models. In NeurIPS 2023 Workshop on
Backdoors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language
models. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2023, pp. 423-435, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598067. URL
https://doi.org/10.1145/3597926.3598067.

Yinlin Deng, Chungiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE °24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3623343. URL
https://doi.org/10.1145/3597503.3623343.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforce-
ment learning for financial signal representation and trading. IEEE Transactions on Neural
Networks and Learning Systems, 28:653-664, 2017. URL https://api.semanticscholar.
org/CorpusID:9398383.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In Proceedings of the 45th International
Conference on Software Engineering, ICSE 23, pp. 1469-1481. IEEE Press, 2023. ISBN
9781665457019. doi: 10.1109/ICSE48619.2023.00128. URL https://doi.org/10.1109/
ICSE48619.2023.00128.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages, 2020.

Ken Gu, Madeleine Grunde-McLaughlin, Andrew McNutt, Jeffrey Heer, and Tim Althoff. How
do data analysts respond to ai assistance? a wizard-of-oz study. In Proceedings of the CHI
Conference on Human Factors in Computing Systems, pp. 1-22, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming—the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen.
Audee: automated testing for deep learning frameworks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’20, pp. 486-498, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450367684. doi:
10.1145/3324884.3416571. URL https://doi.org/10.1145/3324884.3416571.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

12

https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://api.semanticscholar.org/CorpusID:9398383
https://api.semanticscholar.org/CorpusID:9398383
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/3324884.3416571

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study
on deep learning bug characteristics. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of software
engineering, pp. 510-520, 2019.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2022. doi: 10.
1109/TITS.2021.3054625.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow
(eds.), Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1152—1157, San Diego,
California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136.
URL https://aclanthology.org/N16-1136.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319—18345.
PMLR, 2023.

Meiziniu Li, Jialun Cao, Yongqgiang Tian, Tsz On Li, Ming Wen, and Shing-Chi Cheung.
Comet: Coverage-guided model generation for deep learning library testing. ACM Trans.
Softw. Eng. Methodol., 32(5), jul 2023. ISSN 1049-331X. doi: 10.1145/3583566. URL
https://doi.org/10.1145/3583566.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming
Zhang. Nnsmith: Generating diverse and valid test cases for deep learning compilers. In
Proceedings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023, pp. 530-543, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575707. URL https://doi.org/10.1145/3575693.3575707.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. Large language model-based agents for software engineering: A survey. arXiv
preprint arXiv:2409.02977, 2024.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured

mathematical reasoning. In International Conference on Learning Representations (ICLR),
2023.

Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei, Alvine Boaye
Belle, Hung Viet Pham, and Song Wang. Skipanalyzer: A tool for static code analysis with
large language models, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In International Conference on Learning Representations, 2022. URL
https://api.semanticscholar.org/CorpusID:252668917.

Numpy. The fundamental package for scientific computing with python. https://numpy.org,
Accessed: May, 2024.

13

https://aclanthology.org/N16-1136
https://doi.org/10.1145/3583566
https://doi.org/10.1145/3575693.3575707
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:252668917
https://numpy.org

[39] Numpy. Numpy documentation. https://numpy.org/doc/, Accessed: May, 2024.

[40] Numpy. Numpy unit tests. https://github.com/numpy/numpy/tree/main/numpy/
tests, Accessed: May, 2024.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/bdbca288fee7£92f2bfa9f7012727740-Paper . pdf.

[42] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems?, 2021.

[43] PyTorch. Pytorch documentation. https://pytorch.org/docs/stable/index.html, Ac-
cessed: May, 2024.

[44] PyTorch. Pytorch unit tests. https://github.com/pytorch/pytorch/tree/main/test,
Accessed: May, 2024.

[45] Steven L. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interaction with a large language model for software
development. In Proceedings of the 28th International Conference on Intelligent User Interfaces,
IUI ’23, pp. 491-514, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701061. doi: 10.1145/3581641.3584037. URL https://doi.org/10.1145/
3581641.3584037.

[46] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving, 2016.

[47] Yiyin Shen, Xinyi Ai, Adalbert Gerald Soosai Raj, Rogers Jeffrey Leo John, and Meenakshi
Syamkumar. Implications of chatgpt for data science education. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1, pp. 1230-1236, 2024.

[48] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al
Rifat, and Vinicius Carvalho Lopes. Using large language models to generate junit tests: An
empirical study, 2024.

[49] Wil Van Der Aalst and Wil van der Aalst. Data science in action. Springer, 2016.

[50] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. Free lunch for testing:
fuzzing deep-learning libraries from open source. In Proceedings of the 44th International
Conference on Software Engineering, ICSE *22, pp. 995-1007, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392211. doi: 10.1145/3510003.3510041.
URL https://doi.org/10.1145/3510003.3510041.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[52] Wikipedia contributors. Plagiarism — Wikipedia, the free encyclopedia, 2024. URL https:
//en.wikipedia.org/wiki/Hellinger_distance. [Online; accessed 20-May-2024].

[53] Chungiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting
automated program repair via zero-shot learning. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 959-971, 2022.

14

https://numpy.org/doc/
https://github.com/numpy/numpy/tree/main/numpy/tests
https://github.com/numpy/numpy/tree/main/numpy/tests
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/index.html
https://github.com/pytorch/pytorch/tree/main/test
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3510003.3510041
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Hellinger_distance

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Chungqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE *23, pp. 1482-1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.2023.
00129.

Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via
large language models. arXiv preprint arXiv:2401.00563, 2023.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and
Lingming Zhang. Whitefox: White-box compiler fuzzing empowered by large language models.
Proceedings of the ACM on Programming Languages, 8(OOPSLA2):709-735, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code
generation in interactive data science notebooks. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 126-173, 2023.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Lr8c00tYbfL.

15

https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

	Introduction
	Study Approach
	Scope of study
	Evaluation settings
	Input creation and output validation

	Experimental Setup
	Subjects
	Metrics
	Studied models.

	Evaluation
	Full program prediction
	Full API parameter prediction
	Single API parameter prediction
	DSeval: A public benchmark for numerical DS API constraints

	Related work
	Conclusion
	Problem statement
	Benchmark details
	Common parameter value ranges
	Case study of the Linear API
	Common mistakes made by LLMs
	Additional individual API parameter results
	Diversity metric
	GPT-4-Turbo infilling prompt
	Single API parameter results for instruction model with CoT prompting
	Single API parameter results for instruction model with ReAct prompting
	Single API parameter results with documentation-augmented prompting
	Computation Environment

