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Abstract

The long-run behavior of multi-agent learning — and, in particular, no-regret learn-
ing — is relatively well-understood in potential games, where players have aligned
interests. By contrast, in harmonic games — the strategic counterpart of potential
games, where players have conflicting interests — very little is known outside the
narrow subclass of 2-player zero-sum games with a fully-mixed equilibrium. Our
paper seeks to partially fill this gap by focusing on the full class of (generalized) har-
monic games and examining the convergence properties of follow-the-regularized-
leader (FTRL), the most widely studied class of no-regret learning schemes. As
a first result, we show that the continuous-time dynamics of FTRL are Poincaré
recurrent, that is, they return arbitrarily close to their starting point infinitely often,
and hence fail to converge. In discrete time, the standard, “vanilla” implementation
of FTRL may lead to even worse outcomes, eventually trapping the players in a
perpetual cycle of best-responses. However, if FTRL is augmented with a suitable
extrapolation step — which includes as special cases the optimistic and mirror-prox
variants of FTRL — we show that learning converges to a Nash equilibrium from
any initial condition, and all players are guaranteed at most O(1) regret. These
results provide an in-depth understanding of no-regret learning in harmonic games,
nesting prior work on 2-player zero-sum games, and showing at a high level that
harmonic games are the canonical complement of potential games, not only from a
strategic, but also from a dynamic viewpoint.

1 Introduction

The question of “as if” rationality — that is, whether selfishly-minded, myopic agents may learn to
behave “as if” they were fully rational — has been one of the cornerstones of non-cooperative game
theory, and for good reason. Especially in modern applications of game theory to machine learning
and data science — from online ad auctions to recommender systems and multi-agent reinforcement
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learning — the standard postulates of rationality (knowledge of the game, capacity to compute an
equilibrium, flawless execution of equilibrium strategies, common knowledge of rationality, etc.) are
almost never met in practice; as a result, game-theoretic predictions that rely on these assumptions
are likewise put into question. By contrast, given the ease of implementing and deploying cheap,
computationally efficient learning algorithms and policies at a large scale, it is often more logical to
turn to the policy being deployed as the object of interest. The aim is then to understand its long-run
behavior — and, in particular, whether it ultimately leads to equilibrium.

A major obstacle in this approach is the complexity of computing a Nash equilibrium, a problem
which is known to be complete for PPAD — and hence intractable — by the seminal work of Daskalakis
et al. [12]. This result implies that it is not plausible to expect any algorithm to converge to Nash
equilibrium in all games (at least, not in a reasonable amount of time), so it dovetails naturally with
the impossibility results of Hart & Mas-Colell [22, 23] who showed that there are no uncoupled
learning dynamics that converge to Nash equilibrium in all games. On that account, it is natural to
ask in which classes of games we can expect a learning algorithm to converge, in which classes we
cannot, and under what conditions.

Perhaps the most well-behaved class of games in terms of learning is the class of potential games
[44, 55], where players have common interests — not necessarily driving them to play the same
strategy, but in the sense that externalities are symmetric and aligned along a common objective (the
potential of the game). In this class of games, the behavior of learning dynamics — and, in particular,
no-regret learning [8, 13, 19, 27, 28, 36, 40, 43, 59] — are relatively well understood, and there is
a wide range of equilibrium convergence results, from continuous to discrete time, and even with
bandit, payoff-based feedback [24, 25, 55].

By contrast, in the presence of conflicting interests, the situation can be quite different. In two-player
zero-sum games with a fully-mixed equilibrium — such as Matching Pennies — the continuous-time
dynamics of no-regret, regularized learning are recurrent in the sense of Poincaré — that is, the
induced trajectory of play returns arbitrarily close to where it started infinitely many times [41, 48]. In
discrete time, the situation becomes more complicated: the vanilla version of follow-the-regularized-
leader (FTRL) — the most widely studied family of no-regret algorithms — is no longer recurrent, but
it diverges away from equilibrium in the same class of games [18, 42]. On the other hand, if players
employ an optimistic / extra-gradient variant of FTRL, the induced trajectory of play converges to
equilibrium [15, 42] and, under certain conditions, it is even possible to show that it converges at a
geometric rate [62].

At the same time, zero-sum games may also admit a potential function, so it is not possible to
predict the outcome of a learning process based on where it stands along the potential / zero-sum
axis. The non-trivial intersection of these classes means that potential and zero-sum games are not
complementary, and this, not only from a strategic, but also from a dynamic viewpoint. Instead, the
true strategic complement of potential games is the class of harmonic games. This class was first
considered by Candogan et al. [6], who established a remarkable decomposition result: Every game
in normal form can be decomposed as the sum of a potential game and a harmonic game, and this
decomposition is unique up to affine transformations that do not alter the equilibrium outcomes of
the game. In particular, the class of potential and harmonic games intersect trivially (up to strategic
equivalence), and all two-player zero-sum games with an interior equilibrium are harmonic, thus
lending credence to the fact that it is harmonic games, not zero-sum games, that correctly capture the
notion of conflicting interests in this context.

This raises the question:
What is the behavior of no-regret algorithms and dynamics in harmonic games?

Except for a very recent paper by Legacci et al. [35] (which we discuss below), almost nothing is
known on this question. With this backdrop, our contributions can be summarized as follows:

1. Starting with a continuous-time model of no-regret learning, we show that all FTRL dynamics
are Poincaré recurrent in all harmonic games. This generalizes and extends the recent result
of Legacci et al. [35] for the replicator dynamics in uniform harmonic games (a subclass of
harmonic games in which the uniform distribution is always a Nash equilibrium).?

2In more detail, the way that Legacci et al. [35] obtained their result hinges on the so-called Shahshahani
metric, a choice which is essentially “mandated” by the structure of the replicator dynamics. Specifically, the key



2. In discrete-time models of learning, the standard implementation of FTRL cannot be expected
to converge (since it fails to do so in Matching Pennies). To correct this behavior, we consider
a flexible algorithmic template, inspired by Azizian et al. [3] and dubbed extrapolated FTRL
(FTRL+), which augments FTRL with a forward-looking, extrapolation step (including as
special cases the optimistic and extra-step variants of FTRL, cf. Section 4). We then establish
the following results:

(a) Under extrapolated FTRL, players are guaranteed constant individual regret (so, as a
consequence, the players’ empirical frequency of play converges to coarse correlated
equilibrium at a rate of @(1/T)).? This should be contrasted with the results of [13, 14]
who showed that players can achieve polylogarithmic regret in any game (finite or convex).

(b) The induced trajectory of play converges to Nash equilibrium from any initial condition.

Our results aim to provide an in-depth understanding of no-regret learning in harmonic games, nesting
prior work on 2-player zero-sum games — from Poincaré recurrence [41, 48] to constant regret [27]
and convergence under optimistic / extra-gradient schemes [11, 15, 18, 42, 62]. In partiucular, at a
high level, our results show that harmonic games are the canonical complement of potential games,
not only from a strategic, but also from a dynamic, learning viewpoint.

2 Preliminaries

2.1. Preliminaries on finite games. Throughout the sequel, we will work with finite games in normal

form. Formally, such games consist of (i) a finite set of playersi € N = {1, ..., N}; (ii) a finite set
of actions A; per player i € N; and (iii) an ensemble of payoff functions u;: T1; A;j — R, each
determining the reward u; (a) of player i € N in a given action profile @ = (a1, ..., ay). Putting

everything together, we will write A := []; A; for the game’s action space and " = I'(V, A, u) for
the game with primitives as above.

During play, each player selects an action according to some mixed strategy, that is, a probability
distribution x; over A; which assigns probability x;,, to @; € A;. In a slight abuse of notation, if x;
assigns all probability mass to some action a; € A; (that is, x;,, = 1), we will identify x; with a; and
we will call it pure. We will also write X; := A(A;) € R for the mixed strategy space of player i,
x = (x1,...,xn) for the strategy profile collecting the strategies of all players, and X = []; &; for
the game’s strategy space.

The mixed payoff of player i under a mixed strategy profile x € X may then be written as

ui(x) = Eqox[ui(@)] = Z ui(@) xq = Z ui(@i;x-;) Xia; (D

ac A a;€A;
where x, = [1; X;q, denotes the joint probability of @ = (a,...,an) € Aunder x € X, and, in
standard game-theoretic notation, we write (x;;x-;) = (x1,...,X;,...,xy) for the profile where

player i plays x; € A; against the strategy x_; € X_; = [];4 &} of all other players. We also
respectively define the individual payoff field of player i and the game’s payoff field as

v (x) = (ui(@i;x-i))ayes, and  v(x) = (01(x),...,0n(x)) 2

S0 Ui (X) = Xa,ed; Via; (X)Xiq, = (vi(x),x;), where (-, -) is the standard duality pairing on RA, By
multilinearity, each player’s individual payoff field is Lipschitz continuous on X, and we will write
G for its Lipschitz modulus, that is

;i (x") — v (X)|l« < Gi||x" = x|| forallx,x € X. 3)

Remark. In the above and throughout, ||-|| denotes an ambient norm on R (usually the L' norm),
and ||-]|« is the corresponding dual norm (usually the L* norm). To simplify notation, we will not
carry the player index i in ||-||, and we will instead rely on the context to resolve any ambiguities.

property of the Shahshahani metric is that incompressibility of the replicator field is equivalent to the underlying
game being uniformly harmonic; however, finding a variant of the Shahshahani metric attuned to FTRL seems
to be a formidable task, and likewise for non-uniform harmonic games. Because of this, the “incompressibility”
approach of [35] does not seem applicable to our setting — at least, not in a straightforward way.

3We clarify here that “constant” refers to the horizon T of play; the dependence on the number of actions
may be logarithmic or worse (depending on the specific regularized learning scheme employed by the players).



In terms of solution concepts, we will focus almost exclusively on the notion of a Nash equilibrium
(NE), i.e., a strategy profile x* € X that is unilaterally stable in the sense that

ui(x*) > u;i(x;;x*;) forallx; € Xy, i e V. (NE)
Equivalently, (NE) can be expressed in terms of the game’s payoff field as a variational inequality of
the form

™), x—x") <0 forallx e X. (VD)

Thus, writing supp(x) = {a; € A; : X;q, > 0} for the support of x;, it follows that x* is a Nash
equilibrium if and only if u; (a;;x* ;) > u;(B;;x*,) for all @; € supp(x}) and all §; € A;,i € N. We
will use all this freely in the rest of our paper.

2.2. Harmonic games. Our main focus in what follows will be the class of harmonic games, first
introduced by Candogan et al. [6] as a game-theoretic model for strategic situations with conflicting,
anti-aligned interests. Specifically, as was shown by Candogan et al. [6] — and, in a more general
setting, by Abdou et al. [1] — every game in normal form can be decomposed as the sum of a potential
game and a harmonic game, and this decomposition is unique up to affine transformations that do
not alter the equilibrium outcomes of the game.* In this decomposition, the potential component
of a game captures multi-agent strategic interactions with common interests, whereas the harmonic
component covers interactions with conflicting interests.’

Formally, adapting the more general setup by Abdou et al. [1], we have the following definition:

Definition 1. A finite game I' = T'(V, A, u) is said to be harmonic when it admits a harmonic
measure, i.e., a collection of weights p;q, € (0,00), @; € A;,i € N, such that

>0 27 mig lui(eiiasy) —ui(Biie—)] =0 foralle € A. (HG)
ieN BicA;
In particular, if I" is harmonic relative to the uniform measure p;q, = 1, @; € A;, i € N, we will say
that I" is a uniform harmonic game (UHG).

Remark. With regard to terminology, Candogan et al. [6] call “harmonic games” what we call
“uniform harmonic games”, and Abdou et al. [1] call “u-harmonic games” what we call “harmonic
games”.® We use this convention because it simultaneously simplifies notation and terminology while
capturing all relevant strategic features of the game; for a detailed discussion, see Appendix A. To
avoid needless repetition, and unless there is a danger of confusion, when we say that I is harmonic,
we will write u; for the corresponding measure, and we will write m; = |u;| = X, ¢ 4; pip; for the
total mass of y;. o

Broadly speaking, in harmonic games, for any player considering a deviation toward a specific pure
strategy profile, there exist other players with an incentive to deviate away from said profile. In
this regard, harmonic games can be seen as the strategic complement of potential games, where
player interests are aligned and sequences of unilateral best responses generate a finite improvement
path that terminates at a pure Nash equilibrium [44]. By contrast, except for trivial cases (like the
zero game) harmonic games do not admit pure Nash equilibria, and they possess non-terminating
best-response paths. For all these reasons, harmonic games can be considered as “orthogonal” to
potential games, in a sense made precise by the decomposition results of Candogan et al. [6] and
Abdou et al. [1].

It is of course natural to ask what is the relation between harmonic games and zero-sum games.
Games belonging to the latter class — such as Matching Pennies and Rock-Paper-Scissors — have long
been used as prototypical examples of strategic conflict; at the same time, there are zero-sum games
that are also potential (and even possess strict equilibria), so the potential / zero-sum distinction does
not capture the whole picture. As a matter of fact, it is not a coincidence that the textbook examples
of zero-sum games admit fully-mixed Nash equilibria: as we discuss in Appendix A, two-player
zero-sum games with a fully mixed Nash equilibrium are harmonic, so the existing results for such
games are, in a sense, more closely attuned to their harmonic character.

“We briefly recall here that T = T'(\V, A, ) is a potential game if it admits a potential function ¢: X — R
such that u; (Bi; a—;) — ui(ai;a—;) = ¢(Bi; a—;) — ¢(a;;a—;) forall @, B € Aand alli € N [44].

5The terminology “harmonic” is due to Candogan et al. [6] and alludes to the harmonic component of the
graphical Hodge decomposition [30].

5To be even more precise, the definition of Abdou et al. [1] involves an additional set of weights, called a
comeasure; however, as we explain in Appendix A, these weights do not change the preference structure of the
game, so we disregard this extra degree of generality.



3 Continuous-time analysis: Poincaré recurrence

The most basic rationality postulate in the context of online learning is the minimization of a player’s
(external) regret, i.e., the difference between a player’s cumulative payoff and that of the player’s
best possible strategy in hindsight. In more detail, assuming for the moment that play evolves in
continuous time, the regret of player i € A relative to a sequence of play x(¢) € X is defined as

T
Reg;(T) = max / (i (prs e (1)) — s (x(0))] dt 4

Pi€Xi Jo
and we say that the player has no regret under x(t) if Reg;(T) = o(T) as T — oo.

The most widely used scheme for attaining no regret is the family of policies known as follow-the-
regularized-leader (FTRL) [57, 58]. At a high level, the idea behind FTRL is that, at all times ¢ > 0,
each player i € N plays a mixed strategy x;(¢) € X; that maximizes the player’s cumulative payoff
up to time ¢ minus a certain regularization penalty. In our continuous-time setting, this gives rise to
the FTRL dynamics

t t
xi (1) = arg maX{/ui(pi;X-i(T)) dr - hi(pi)} = arg maX{/ (vi(x(7)), pi) d - hi(Pi)} 5
pi€Xi 0 Di€EX; 0

or, more compactly,

gi() =vi(x(0)  xi(t) = Qi(yi(1)) (FTRL-D)
where h;: X; — R is a convex penalty function known as the regularizer of the method, Q; denotes
the regularized choice map of player i, and Q = (Q1, ..., Qn) denotes the profile thereof. Formally,
writing ); = RA7 for the payoff space of player i € N — that is, the space of all possible payoff
vectors v; of player i — the regularized choice map Q;: V; — Aj is defined as

Qi(yi) = argmax,. ¢ v, {(i, x;) — hi(x;)} forally; € V. (6)

In essence, Q; is a “soft” version of the arg max correspondence y; — arg max,, ¢ v, (yi, X; ), suitably
regularized by a penalty term intended to incentivize exploration. For technical reasons, we will also
assume that each h; is strongly convex, i.e.,

hi(txi + (1= 0)x)) < thi(x;) + (1 = )hy(x]) = 3K;t(1 = 1)||lx; — x| @)

for some K; > 0 (commonly referred to as the strong convexity modulus of h;), and for all x;, x; € &,
t € [0, 1]. In plain words, this simply means that /; has “enough curvature” in the sense that it can
be bounded from below by a (positive) quadratic function which agrees with A; to first order.

The go-to example of this setup is the entropic regularizer

hi(x)) = D Xia logXia, (8)
aiE.Ai

which yields the so-called logit choice map

(exp(yia,» )) a; €A;

i) = Ni(yi) =
Gl = ) = A exD (i)

forall y; € );. )
By Pinsker’s inequality, the entropic regularizer is 1-strongly convex relative to the L'-norm on X;
[57], and by a standard calculation [37, 54], the induced sytem (FTRL-D) boils down to the replicator
dynamics of Taylor & Jonker [60]. Some other standard examples of (FTRL-D) include the Euclidean
projection dynamics of Friedman [17] when £; (x;) = (1/2)]|x; ||%, the g-replicator dynamics [21, 38],
etc. To streamline our presentation, we defer a detailed discussion of these examples to Appendix C,
and we proceed below to state the main regret guarantee of (FTRL-D), originally due to [33]:

Theorem 1. Under (FTRL-D), each player’s regret is bounded as Reg;(T) < H; := max h; — min h;.

Theorem 1 showcases the strong no-regret properties of (FTRL-D): it is not possible to guarantee
less than constant, O(1) regret, so (FTRL-D) is optimal in this regard. In turn, by standard results
[47], Theorem 1 implies further that the players’ (correlated) empirical frequencies zq,,... oy (f) =
(1/1) fot I1; xiq, (T) dT converge to the game’s set of coarse correlated equilibria (CCE) at a rate of
O(1/t).



Importantly, this result makes no assumptions about the underlying game, but it does not carry
the same predictive power in all games: for one thing, a game’s set of CCE may include highly
non-rationalizable outcomes (such as dominated strategies and the like) [61]; for another, the time-
averaging that is inherent in the definition of empirical distributions may conceal a wide range of
non-convergence phenomena, from cycles to chaos [48, 56]. On that account, the day-to-day behavior
of (FTRL-D) in harmonic games cannot be understood from Theorem 1 alone, and requires a closer,
more in-depth look.

Our first result below provides such a lense and shows that (FTRL-D) is almost-periodic in harmonic
games, a property known as Poincaré recurrence.

Theorem 2. Suppose I is harmonic. Then almost every orbit x(t) of (FTRL-D) returns arbitrarily
close to its starting point infinitely often: specifically, for (Lebesgue) almost every initial condition
x(0) = Q(y(0)) € X, there exists an increasing sequence of times t, T oo such that x(t,,) — x(0).

An immediate consequence of Theorem 2 is that no-regret learning under (FTRL-D) fails to converge
in any harmonic game; in particular, since the orbits of (FTRL-D) eventually return to (almost) where
they started, it is debatable if the players have learned anything at all, despite the fact that they incur
at most constant regret. This cyclic, non-convergent landscape is the polar opposite of the long-run
behavior of (FTRL-D) in potential games, where the dynamics are known to converge globally [24].
Thus, in addition to the strategic viewpoint of the previous section, Theorem 2 shows that harmonic
games are orthogonal to potential games also from a dynamic viewpoint.

Theorem 2 also provides a far-reaching generalization of existing results on Poincaré recurrence in
(possibly networked) two-player zero-sum games with an interior equilibrium [41] to general-sum,
N-player games. Combined with our previous remark, and given that the zero-sum property is not
as meaningful for N players as it is for two,” the class of harmonic games can be seen as the more
natural N-player generalization of two-player zero-sum games from a learning viewpoint.

To the best of our knowledge, the only comparable result to Theorem 2 in the literature is the very
recent paper of Legacci et al. [35] who showed that the replicator dynamics — a special case of
(FTRL-D) - are Poincaré recurrent in uniform harmonic games, that is, in harmonic games where the
uniform distribution is a Nash equilibrium, cf. (A.1) and the discussion surrounding Definition 1. In
this regard, Theorem 2 extends the recent results of Legacci et al. [35] along two axes: (i) it applies
to the entire class of FTRL dynamics (not only the replicator dynamics); and (ii) it applies to the
entire class of harmonic games (and not only uniformly harmonic games).

In terms of techniques, Legacci et al. [35] obtained their result through a surprising connection
between a certain Riemannian metric underlying the replicator dynamics and the defining relation
of uniformly harmonic games. This relation no longer holds for different instances of (FTRL-D)
or for non-uniform harmonic games, so the techniques of [35] cannot be extended — and, in fact,
Legacci et al. [35] stated this generalization as an open problem. Our techniques instead rely on the
fact that the orbits y(¢) of (FTRL-D) comprise a volume-preserving flow in the game’s payoff space
Y = I1; Vi (though not necessarily on X), and then deriving a suitable constant of motion. In the
case of the logit map (9), this constant of motion can be written as

G =[]11 xl’.z‘_” forall x € X, (10)
ieN a;eA; '

where 1t = (Uia;)a,eA;.icn 1 the harmonic measure on X" defining I'. In the more general case, the
construction of a constant of motion for (FTRL-D) involves a characterization of harmonic games in
terms of a “strategic center”’, which we carry out in detail in Appendix C.

4 Discrete-time analysis: Convergence and constant regret via extrapolation

We now proceed to examine the regret and convergence properties of regularized learning algorithms
in harmonic games. Starting with the standard, vanilla implementation of FTRL, we reproduce
a well-known observation that FTRL spirals out to a non-terminating cycle of best-responses in
Matching Pennies (which is a harmonic game). Subsequently, to correct this non-convergent behavior,
we examine a flexible algorithmic template, which we call extrapolated FTRL (FTRL+), and which
includes as special cases the optimistic and extra-gradient versions of FTRL.

7Recall that any N-player game can be turned into an equivalent zero-sum game by adding a fictitious player.



4.1. Vanilla implementation of FTRL. Building on the discussion of the previous section, the

standard implementation of FTRL in discrete time forn = 1,2, ... is
Xinet = argmax{> " ui(piix_in) — Aihi(pi)} = argmax{> " (vi(xi), pi) — Aihi(pi)} (11)
pPi€X; Pi€X;

or, in more compact, iterative notation

Yinel = Yin +0i0i(xn)  Xin = Qi(Yin) (FTRL)
where, as per (6), the map Q;: ); — X; denotes the regularized choice map of playeri € N, A; is a
player-specific regularization weight parameter, and r7; = 1/4; represents the learning rate of player i.
Apart from their obvious differences — discrete vs. continuous time — a salient point that sets (FTRL)

apart from (FTRL-D) is the inclusion of the parameter 7;; this parameter is necessary to control the
algorithm’s behavior, and we will discuss it in detail in the sequel.

As mentioned in the introduction, a major shortfall of (FTRL) — and one of the main reasons for
the increased popularity of optimistic /extra-gradient methods — is that it may spiral away from
Nash equilibrium, even in simple 2 X 2 games with a unique equilibrium. The standard example
of this behavior is Matching Pennies, a two-player zero-sum game with a fully-mixed equilibrium
which is also uniformly harmonic, so the trajectories of (FTRL-D) are Poincaré recurrent (and,
in fact, periodic). In more detail, this game can be compactly represented by the payoff field
v(xy,x2) = (4xy — 2,2 — 4xy) for x1, x5 € [0, 1], and its unique Nash equilibrium is x* = (1/2, 1/2).
Thus, if we run (FTRL) with a Euclidean reqularizer — that is, h;(x;) = )cl.2 /2 fori = 1,2 — and
the same learning rate n for both players, a straightforward calculation shows that the distance
Dy, = (x1,0 = x7)?/2 + (x2,, — X3)?/2 between x,, and x* evolves as

Dyt = $(xp0 +101(xn) = X)) + 3 (x2,0 + 02 (x) —x3)* = (1 + 167D, (12)
as long as x,, + quv(x,) € X. In other words, the distance of the iterates of (FTRL) from the game’s
equilibrium grows at a geometric rate until x,, reaches the boundary of X" and is ultimately trapped

in a non-terminating cycle of best responses, cf. Fig. 1. In this regard, the rationality properties of
(FTRL) are even worse than those of (FTRL-D) because the game’s equilibrium is now repelling.

4.2. Extrapolated FTRL. To mitigate this undesirable, divergent behavior of (FTRL), a standard
approach in the literature is the inclusion of a forward-looking, “extrapolation step”. Instead of
updating the algorithm’s “base state” x,, directly, players first move to an interim “leading state”
Xp+1/2 using payoff information from x,, (this is the extrapolation step); subsequently, players update
Xp using payoff information from the leading state x,,.1/2, and the process repeats. In this way, players
attempt to anticipate their payoff landscape and, in so doing, to take a more informed update step at
each iteration.

The seed of this idea goes back to Korpelevich [32] and Popov [49] in the context of solving monotone
variational inequality problems, and it has since percolated to a wide array of “extra-gradient” or
“optimistic” methods, such as the mirror-prox algorithm of Nemirovski [45], the dual extrapolation
variant of Nesterov [46], the optimistic mirror descent algorithm of Chiang et al. [9] and Rakhlin &
Sridharan [50], and many others. Given the different operational envelope of each of these methods,
we consider below an integrated algorithmic template, which we call extrapolated FTRL (FTRL+),
and which is sufficiently flexible to account for a broad range of these schemes.

Formally, the proposed algorithmic blueprint unfolds in two phases as follows:
a) Extrapolation phase: Yin+1/2 = Yin + Nibin Xin+1/2 = Qi(Yin+1/2)

. (FTRL+)
b) Update phase: Yin+l = Yion + NiDi ns1/2 Xin+1 = Qi (Yin+1)

In the above, ; > 0 is the learning rate of player 7, x,, and x,4,> denote respectively the method’s
base and leading states at stage n = 1,2,..., and 0; , and D; 412 are sequences of “black-box”
payoff models at x,, and x,,.1/> respectively.
Specifically, following Azizian et al. [3], we will assume throughout that

Din+1/2 = Vi(xps1p2) forallie Nandalln=1,2,... (13a)
i.e., players always update the base state x,, using payoff information from the leading state x,,.1>.

By contrast, the leading state x,41/> can be generated in many different ways, depending on the
targeted update structure. In this regard, we will consider the linear model

Din = a; vi(xn) + b Vi (x,—1p2) forallie Nandalln=1,2,... (13b)



where the player-specific coefficients a;, b; > 0 satisfy a; + b; < 1 and represent a mix of past and
present payoff information. In this way, depending on the values of a; and b;, we obtain the following
prototypical regularized learning methods as special cases of (FTRL+):

a) FTRL: if a; = b; = 0 for all i € N, players essentially forego any look-ahead efforts, so we get
U, =0 foralln=1,2,... (14a)
In turn, this gives x,,4+1/2 = Xy, i.e., (FTRL+) regresses to (FTRL).
b) Extra-Step FTRL: if a; = 1 and b; = 0 for all i € A/, we have
b = v(xp) forallm=1,2,... (14b)

i.e., players use payoff information from their current state to generate the leading state x,,11 /2.
This update structure requires two payoff queries per iteration and its origins can be traced back
to the work of Korpelevich [32]. Specifically, depending on the choice of #;, it is essentially
equivalent to the mirror-prox [45] and dual extrapolation [46] algorithms, it contains as a special
case the forward-looking algorithm of [15, 42], etc.

¢) Optimistic FTRL: if a; = 0 and b; = 1 for all i € N/, we have
bp = 0(xy—1y2) foralln=1,2,... (14¢)

i.e., players reuse the latest available payoff information instead of making a fresh query at x,, (so
the algorithm only requires one payoff query per iteration). In this way, (FTRL+) recovers the
optimistic algorithms of [9, 26, 50, 59], the OMW update scheme of [11, 59] when Q = A, etc.

Clearly, the list above is not exhaustive: many other configurations are possible, e.g., with different
players using different parameter settings for a; and b;, depending on the information they have at
hand and any other individual considerations. To avoid needlessly complicating the analysis, our
only standing assumption will be that a; + b; > 0 for all i € A/ (since, otherwise, the benefits of the
extrapolation step would vanish). In particular, by rescaling the players’ learning rates if needed, we
will normalize a; and b; to a; + b; = 1, leading to the convex model

bin = Ai 0 (xn) + (1 = 2;) v; (Xp—1/2) (15)

for some arbitrarily chosen ensemble of player-specific extrapolation coefficients A; € [0,1],i € N.

Remark. To simplify the presentation of our results, we will assume throughout the rest of our paper
that (FTRL+) is initialized with y; = y1/» = 0.

4.3. Analysis & results. With all this in hand, we are finally in a position to state our main results
for (FTRL+) in harmonic games. We begin by showing that (FTRL+) achieves order-optimal regret:

Theorem 3. Suppose that each player in a harmonic game T is following (FTRL+) with learning rate
n; < m;K;[2(N + 2) max; ijj]_l and payoff models as per (13a) and (15). Then the individual
regret of each playeri € N is bounded as

r H ZG,' Hj

Reo.(T) = (PiiX_in) — U <2y
eg;(T) If?eegéi;[“l(pl X_in) = ui(xp)] i N+2je_/\/' 1,G;

(16)

where H; = max h; — min h;, and G; is the Lipschitz modulus of v;.

Even though Theorem 3 invites a natural comparison with the constant regret bound of Theorem 1,
the continuous- and discrete-time settings are fundamentally different, so any conclusions drawn
from such a comparison would be specious. Indeed, constant regret guarantees in the spirit of (16)
are particularly rare in the context of discrete-time algorithms, and as far as we are aware, similar
bounds have only been established for optimistic methods in variationally stable and two-player
zero-sum games [27]; other than that — and always to the best of our knowledge — the tightest
regret bounds available for general games (finite or convex) seem to be (poly)logarithmic [13, 14].
In this regard, just like the recurrence result of Theorem 2, the O(1) regret bound of Theorem 3
represents a significant extension of existing results on zero-sum games (and polylogarithmic regret
in general games), and suggests that, from a learning viewpoint, harmonic games are the most natural
generalization of two-player zero-sum games to a general N-player context. We defer the proof of
Theorem 3 to Appendix D.
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Figure 1: The evolution of vanilla vs. extrapolated FTRL schemes in harmonic games. In the left figure, we
consider the game of Matching Pennies (blue: FTRL+; green: FTRL; red: continuous time FTRL); in the center
and to the right, two different orbits in a 2 X 2 X 2 harmonic game from two different viewpoints (blue: FTRL+;
green/orange:FTRL; payoff profiles on vertices). In all cases, we ran the optimistic variant of FTRL+ (4; = 0
for all players), and we see that the trajectories of (FTRL) diverge away from equilibrium and the trajectories of
(FTRL-D) are recurrent (actually, periodic), whereas (FTRL+) converges. We also see the highly non-convex
structure of harmonic games as evidence by their equilibrium set (thick red line in center and right subfigures).

As an immediate corollary of the above, we conclude that, under (FTRL+), the empirical frequencies
of play zg.n = (1/n) X}_, Xa.k» @ € A, converge to the game’s set of CCE at a rate of O(1/n).
This rate is, again, optimal, but as we discussed in Section 3, it offers little information in games
where the marginalization of CCE does not lead to Nash equilibrium — and, in general N-player
harmonic games, there is little hope that it would. In addition, even when the marginalization of CCE
is Nash, the actual trajectory of play may — and, in fact, often does — behave very differently from the
time-averaged frequency of play.

Despite these hurdles, we show below that (FTRL+) does converge to Nash equilibrium. To state this
result formally, we will focus on the case where each player’s regularizer is smooth in the sense that

hi(x; + t(x; —x;)) is continuously differentiable at t = 0 17

forall x; € imQ; and all x; € X;.% Our prototypical examples — the entropic and Euclidean regulariz-
ers — both satisfy this mild requirement, as do all regularizers of the form h;(x;) = X q,c 4, 0i (Xiq;)
for some smooth convex function 6;: [0, 1] — R. We then have the following convergence result:

Theorem 4. Suppose that each player in a harmonic game I follows (FTRL+) with learning rate
ni <m;K;[2(N + 2) max; ijj]‘1 and payoff models as per (13a) and (15). Then x,, converges to
the set of Nash equilibria of T.

To the best of our knowledge, Theorem 4 is the first result of its kind for harmonic games — and, in
that regard, it is somewhat unexpected. To be sure, two-player zero-sum games with a fully-mixed
equilibrium exhibit a comparable pattern: FTRL is Poincaré recurrent in continuous time, its vanilla
discretization is unstable, and its optimistic / forward-looking implementation is convergent. However,
the convex-concave structure of min-max games which enables this analysis is completely absent in
harmonic games, so it is less clear what to expect in this case (where even the set of Nash equilibria is
non-convex, cf. Fig. 1). By this token, the convergence of (FTRL+) in harmonic games is a property
that one could optimistically hope for, but not one that can be taken for granted.

From a technical standpoint, the proof of Theorems 3 and 4 involves two concurrent challenges:

1. Deriving a Lyapunov function with a “sufficient descent” property for all harmonic games.

2. Providing an integrated analysis for all possible update structures in (FTRL+).

With regard to the first point, our analysis hinges on the “energy function”

m;
E(p.y) = >, —Fi(piy) peX.ye), (18)
ieN i
In the above, p € X is a benchmark strategy profile acting as a “reference point” for the analysis
while
Fi(pi, yi) = max {(ys.xi) — hi(xi)} = [y pi) = hi(pi)] (19)

8The restriction to im Q; is technical in nature and is related to the subdifferentiability of h;, cf. Appendix B.



denotes the Fenchel coupling associated to the regularizer h; of player i € A/, and represents a
“primal-dual” measure of divergence between p; € X; and y; € ); (for an in-depth discussion, see
Appendices B and D). Then, letting E,, = E(p, yn), the heavy lifting for our analysis is provided by
the “template inequality”

Epe1 < En+ D mi{0;(Xne1/2), Xi nr1/2 = Pi)

ieN

+ Dm0 (Xpe1/2) = 0i(Xn) s Xi a1 = Xina1/2)
ieN

+ D mi(1 = 2) (i (xp) = 0; (Xn=1/2), Xione1 = Xins1/2)
ieN

m;K;

= > = Ixi e —Xins1 2l + ine1y2 = xinll?] - (20

ieN i
A first important consequence of (20) is that the sequences A, = ||Xp+1 — Xn+1 /2||2 and B, =

llxXn+1/2 = xn||? are both summable: this requires a repeated use of the Fenchel-Young inequality, and
an instantiation of p to the strategic center g of I'; we detail the relevant arguments in Appendices A
and D. Then, by establishing a similar template inequality for each player i € N, we are able to
bound the players’ individual regret by the same upper bound that we derived for 3, A, and X, B,
and which is (up to certain secondary factors) the bound (16).

For the convergence to Nash equilibrium, the summability argument above also plays a crucial
role. First, by a standard result on numerical sequences, the summability of A,, and B,, coupled
with the template inequality (20) implies that the energy E,, of the algorithm relative to the game’s
strategic center converges to some limit value E,. In turn, this implies that the score sequence y;,
is bounded up to a multiple of the vector (1, ..., 1), which corresponds to a constant payoff shift
in the underlying game. Then, by focusing on convergent subsequences of y,, and the optimality
condition resulting from the definition of Q, we are able to show that any limit point of v(x,,) satisfies
the variational characterization (VI) of Nash equilibria, from which our claim follows.

5 Concluding remarks

Our results suggest that the long-run behavior of no-regret algorithms and dynamics in harmonic
games is a very rich topic, and one which opens the door to an entirely new class of games where
positive convergence results can be obtained. We find this particularly appealing, not only because
harmonic games comprise the strategic complement of potential games, but also because they go
beyond standard problems with a convex structure — for instance, even their equilibrium set is
non-convex. As such, the fact that it is possible to obtain optimal regret guarantees and positive
equilibrium convergence results in this setting is very promising for future work on the topic.

In terms of open questions, it would be important to examine the rate of convergence of (FTRL+) to
equilibrium. Even though (FTRL+) has order-optimal regret bounds, this only helps in establishing a
convergence rate to the game’s set of coarse correlated equilibria; for Nash equilibria, earlier work
by Golowich et al. [19] and some more recent results by Cai et al. [S] and Gorbunov et al. [20] have
shed some light on the convergence of constrained Euclidean optimistic methods, but the technology
therein does not extend to non-monotone, non-Euclidean problems. Inspired by Wei et al. [62], we
conjecture that the convergence rate of (FTRL+) in harmonic games is linear: this is based on the
observation that any harmonic game admits a fully-mixed Nash equilibrium, and the weighted sum in
the definition of a harmonic game looks formally similar to the condition needed to establish metric
subregularity in [62]; however, a proof would likely require different techniques.

Another important research direction has to do with the information available to the players. A first
open question here concerns the case where players do not have access to full information on their
mixed payoff vectors, but can only observe their pure payoffs — either in a “what if”, counterfactual
manner, or in the form of bandit, payoff-based feedback. In a similar manner, the algorithms presented
here are not adaptive, in the sense that the players’ step-size policy has to satisfy a certain bound
that depends on correctly estimating some of the game’s parameters. Obtaining an adaptive version
of (FTRL+) which, in the spirit of Rakhlin & Sridharan [50] and Hsieh et al. [27, 28, 29], remains
convergent and attains order-optimal regret in both adversarial and game-theoretic settings without
any pre-play tuning is also an ambitious question for future research.
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A Harmonic Games

The class of uniform harmonic games (UHGs) introduced by Candogan et al. [6] provides a game-
theoretic framework for modeling strategic situations with conflicting, anti-aligned interests.® Broadly
speaking, the characterizing property of uniform harmonic games is the following: for any player
considering a deviation towards a specific pure strategy profile, there exist other players who are
motivated to deviate away from that profile.

Given a finite game I' = T'(\V, A, u), this is formalized by the condition that, for all @ € A,

>0 > |uwilesas) —ui(Ba—)] =0. (A.1)
ieN BicA;

From a strategic viewpoint, uniform harmonic games complement potential games: Candogan et al.
[6] showed that any finite game can be uniquely decomposed into the sum of a potential game and a
uniform harmonic game, up to linear transformations of the payoff functions that do not change the
strategic structure of the game.

Since their introduction, harmonic games have generated a substantial body of literature; for a brief
survey, we refer the reader to [35].

A.1. Harmonic games, measures and comeasures. The class of uniform harmonic games exhibits
intriguing, yet restrictive, properties. Notably, a UHG always admits the uniformly mixed strategy as

“We include here the word “uniform” to distinguish the class of harmonic games introduced by Candogan
et al. [6] from the more general class of harmonic games considered in this work, cf. Definition 1.
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a NE, and it generally possesses a continuum of Nash equilibria [6]. Additionally, the framework
of UHGs and the decomposition proposed by Candogan et al. [6] are incompatible with common
game-theoretical transformations, such as the duplication of strategies or rescaling of payoffs [1].
To address the above limitations, Abdou et al. [1] extended the definition of harmonic games by the
introduction of two parameters: a measure, that is a positive weight each player assigns to each of
their own strategy; and a comeasure, that is a positive weight each player assigns to each of the other
players’ action profiles.

Definition A.1. Let I'(NV, A, u) be a finite game. A player measure u; is a function u; : A; — Ryy;
a player co-measure vy; is a function y; : A_; — R,. Correspondingly, a collection p = {y; }ien
(resp. ¥ = {vi}ien) of player measures (resp. comeasures) is called game measure (resp. game
comeasure). If u; is a player measure, we will write |u;| := X, Hiq,. Finally, a probability measure
is a game measure u such that |u;| = 1 for all i € N; a uniform measure is a game measure u such
that u;q, = 1 foralli € N, a; € A;; and a uniform comeasure is a game comeasure 7y such that
Yia_; = 1foralli e N, a_; € A_i.

With these notions in place, Abdou et al. [1] define a finite game I" to be (u, y)-harmonic if there
exist a game measure u and a game comeasure y such that, for all @ € A,

D0 D Mg Yia [uilas asy) —ui(Biza—)] =0. (A2)
i Bi

In this work, we focus solely on harmonic games with uniform comeasure. As discussed after
Definition 1 in the main body of the article, this choice comes without loss of generality: the game
comeasure in Eq. (A.2) can be absorbed by a payoff rescaling to give a game that is still harmonic,
and preference equivalent to the original game — in a sense that we make precise in the next section.

A.2. Preference equivalence between harmonic games. The strategic structure of a game is
preserved under monotonic transformations of the utility functions, since the set of pure Nash
equilibria of a game is an ordinal object — it depends only on the signs of unilateral payoff differences,
and not on their absolute values. For this reason, two games I'(N, A, u) and IV (N, A, u’) are called
preference-equivalent (PE) if for all a, 8 € A and all i € N, we have

sgn [uf([a’i;a,i) - u;(ozl-; a',,-)] = sgn [ui(ﬁ[; a/,l-) - u,-(ai;a,i)]. (A3)
Two games are strategically equivalent (SE) — and we write I' ~ T'” — if they have the same unilateral
payoff differences, that is if
u;(Bisa-;) —uiais@—;) = ui(Bisa—;) — ui@i; a—;) (A4)
for all @, B € A and all i € N; strategically equivalent games are clearly preference-equivalent.

Lemma A.2. Let Ty, =Ty, (N, A, u) be a harmonic game in the sense of Eq. (A.2). Then the
game (N, A, u’) with u(a;;a—;) = Yia_ui(a;; a_;) is preference-equivalent to the game I'y, ,,, and
it is harmonic in the sense of Eq. (A.2) with measure u and uniform comeasure.

Proof. Letu! (a;;—;) = Hia;Yia_;ui(a;; @—;). Then replacing above, for all & € A,

0= 3 u/(aizai) ui(Bi;a) .

ieN BicA; Hia; Hip;
Letu;(a;;a-;) = %j_’) = ¥iq_ui(@;;@—;). The game u’ is preference-equivalent to u, and
0= Z Z Hip; [u;(ai;a/_,-) - “;(ﬂi;a—i)] (A.S)
ieN BicA;
for all @ € A, so «’ is harmonic in the sense of A.2 with measure y and uniform comeasure. [

In the proof above we perform the intermediate step u — u’’ rather than defining directly u — u’ to
stress the difference between rescaling the payoffs of a game by a game measure ¢ and by a game
comeasure y. The game with payoffs u” = yu (the meaning of this notation made precise in the
proof above) is preference-equivalent to the game with payoffs u, i.e., rescaling the payoffs by a
comeasure does not change the strategic structure of the game. On the other hand, the game with
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payoffs u”" = uu’ — again, the meaning made precise in the proof — is not PE to the game with payoffs
u’: rescaling the payoffs by a measure can change the preferences of the players, and leads to a game
with intrinsically different strategic structure.

Lemma A.2 motivates our choice to focus in this work on harmonic games with arbitrary measures
and uniform comeasures, and to adopt (HG) from Definition 1 to characterize harmonic games: a
harmonic game (HG) T, = T(y(N, A, u) is a finite game (N, A, u) with a game measure y such that
(HG) holds, i.e., Zien ZgeA; Mig; (Ui (i a—y) —ui(Bi;a—;)] = 0forall @ € A.

A.3. Mixed characterization of harmonic games. The defining property (HG) allows for an
equivalent characterization of harmonic games in terms of their mixed payoffs:

Lemma A.3. A finite game I = T'(N, A, u) is harmonic with measure u if and only if

S L] <vi(x),xi - “—> -0 forallxeX. (HG-mixed)
ieN |:ul|

Proof. Given a finite game I' = T'(NV, A, u) and a game measure y, let F;: A — R be defined by
Fi(a) = Zpgen,; Mig: [ui(@i; a—;) —u; (Bi;a—;)]. By definition, T is a y-harmonic game if and only
if F(a) = Y;en Fi(@) = 0 for all @ € A. Denote (with slight abuse of notation) by F: X — R the
multilinear extension of F: A — R, ie., F(x) = X4 xoF (), with x4 = [1; Xi0,.- Now, F(a) =0
for all @ € A if and only if F(x) = 0 for all x € X, which is the case if and only if

0=F(x) = Zaxa Zi Fi(a) = Z,- Zm Za_i XiaX—ia_; Zﬁi mig; [ui(ai; a—i) —ui(Bisa—)]
=D Zﬁi pip (i Ceizx i) — i (Bizx—)] = D, (1wl i (%), xi) = (03 (x), )] forall x € X,
from which we conclude by factoring out the |u;| terms. [

Remark. The first equality in the second line holds true for harmonic games with uniform comeasure
Yia.; = 1, since y;o_; # 1 terms would couple with the corresponding x_;,_; terms in the sum.

The above result can be reformulated as follows:

Proposition A.4. A finite game I' = T' (N, A, u) is harmonic if and only if it admits a strategic center
(m, q), viz. if there exist (i) a vector m € RY, and (ii) a fully mixed strategy q € X such that

Z m; (vi(x),x; —qi) =0 forallx € X. (HG-center)
ieN

This expression is intriguing: it suggest that a game is harmonic precisely if there exists a fully
mixed strategy ¢ such that, for all x € X, the payoff vector v(x) is perpendicular (with respect
to a m-weighted inner product) to x — g; cf. Example A.1 and Fig. 2. The striking dynamical
consequences of this “circular” strategic structure — hinted at in Fig. 2, showing a periodic orbit of
FTRL in continuous time — are captured precisely by Theorem 2 in the main text.

Proof of Proposition A.4. LetI',, =T, (N, A, u) be harmonic; then by Lemma A.3 that there exist
a strategic center (m, g) given by m; = |u;| and g; = u;/|u;| withi € N. Conversely let I' =
I'(V, A, u) admit a strategic center (m, g); then by the same argument I" is harmonic with y; = m;q;
foralli € V. [

An immediate corollary is the following:

Corollary A.5. If a finite game T admits a strategic center (m, q), then q is a Nash equilibrium.

Proof. By Proposition A.4 if T" admits a strategic center (m, ¢) then it is y-harmonic with u; = m;q;
foralli € N and (u;/|ui])ien is always a NE for u-harmonic games [1, Theorem 1]. [

Remark. The converse does not hold: a fully mixed Nash equilibrium is not necessarily a strategic
center. If it were, a game would be harmonic precisely if it admitted a fully mixed NE, which is not
the case — think for example of coordination or anti-coordination games, that admit a fully mixed
Nash equilibrium and are not harmonic.
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(A'/N) u=(2,-4) (N,N) :u=(0,0)

8
g

(AD):u=(3,1) (N,D) :u=(0,-1)
Figure 2: Representation of the harmonic payoff structure for the game in Example A.1. Each payoff vector v(x)
(black arrows) is perpendicular (with respect to a weighted inner product) to the vector x — g (dotted segment)
between the evaluation point x of the payoff field and the fully mixed Nash equilibrium ¢ (red point). As a
consequence every orbit of FTRL in continuous time (such as the one represented by the black curve) is Poincaré
recurrent (in this low-dimensional example, even periodic), as detailed in Theorem 2 in the main text. Color
shading and dotted lines represents player 1’s utility level sets, with brighter regions indicating higher payoffs.

Example A.1 (A harmonic game: Siege). Consider the following 2 X 2 game: an army (the row
player) must choose between Attacking a fortress (pure strategy A ) and Not attacking (pure strategy
N ). Simultaneously, the fortress (the column player) decides whether to activate its Defenses (pure
strategy D ) or Not (pure strategy N ). Engaging in either action (the attack or the defense) incurs
a preparation cost of ¢ > 0. The army gains as > c if it attacks an undefended fortress, but suffers
aloss of ay > 0 if it attacks and encounters defenses (the subscripts s and f standing respectively
for “successful” and “failed”). Conversely, the fortress benefits by dg > 0 if it is defended against an
attack, while it incurs a loss of d; > 0 if attacked without defenses; defeating the attacking army is
worth the preparation cost for the fortress, namely d; — ¢ > —dy. This scenario is captured by the
following payoff matrix, specialized on the right to the case ¢ = 1,ay = 3,a5 = 2,dy = 2,dy = 4:

| D N | D N
A | (-ap—c, ds—c) (as—c, —dy) Al-31 2,-4 (A.6)
N (0, —¢) (0, 0) N|0,-1 0,0
To determine if the game is harmonic, look for a solution of the linear system
D5 2 Higlui(ea) —ui(Bia-)] =0 foralla € A, (HG)

ieN BicA;

subject to the constraints 1,4, > 0 foralli € N, e; € A;. For a fixed payoff function u, this is a system
of [Tjen A; linear equations (one for each @ € A) in the X jenr A; variables ((ﬂia'i)aiEAi)ieN’
where A; is the number of pure actions of player i € A'. With u given by (A.6) — left,

2 ( c —C+df+ds)’(as—c 1)] (A7)

ar+c¢  ar+ec ag+c’

ﬂ:

is a feasible solution of (HG) for any 4 > 0, so the game is harmonic with a 1-dimensional set of
measures. The corresponding strategic center (m, q) with m; = X, fia;, qi = pi/m;, i € {1,2} is

(df+ds af+as) [( c —c+df+ds) (as—C af+c)
m:/l b 9 = b 9 b
ar+c ag+c dy +d; dy +ds ar+as ay+as

(A.8)

As a sanity check, compute the payoff field and verify that (HG-center) holds true in the spe-
cialized case (A.6) — right. Denoting the mixed strategies of players 1 and 2 respectively by
x € A({A,N}) and y € A({D, N}), the payoff fields are vy (x,y) = (-3yp +2yn,0), v2(x,y) =
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(x4 —xn,—4x4) . Choosing A = 3 the strategic center gives weights m = (6, 5) and Nash equilibrium
q =1[(1/6,5/6),(2/5,3/5)]. Condition (HG-center) boils down to 6 {v;,x —q1) +5{v2, y—q2) = 0,
which one readily verifies to hold true by replacing the expressions above and recalling that
xa +xy =1 =yp + yn. Fig. 2 illustrates the situation: each payoff vector v(x) (black arrows) is
perpendicular (with respect to a weighted inner product) to the vector x — g (dotted segment) between
the evaluation point x of the payoff field and the fully mixed Nash equilibrium g (red point). o

A.4. Harmonic and zero-sum games. Candogan et al. [6]’s uniform harmonic games, defined by
Eq. (A.1), are precisely the harmonic games with uniform measure, which makes uniform harmonic
games a strict subset of the set of HGs. Importantly, HGs include another archetypal class of perfect-
competition games: as we show in this section, two-player zero-sum games (2ZSGs) with an interior
NE x* are harmonic with (probability) measure yu = x*.

To show this, we will need the following definition and lemma:

Definition A.6 (Non-strategic game). A finite normal form game I' = I'(V, A, k) is called non-
strategic if the payoff of each player does not depend on their own choice, viz. if k;(a;, @—;) =

ki(ﬁi,a/_,-) foralli € /\/,a [S A,ﬁi S .Ai.

Lemma A.7. Two finite games T'(N, A, u),T" (N, A, u’) are strategically equivalent in the sense of
Eq. (A.4) if and only if their difference is a non-strategic game.

Proof. LetI' — I’ be non-strategic; then k := u’ — u fulfills the condition of Definition A.6, which
shows that u and u’ fulfill Eq. (A.4). Conversely let I" and I'” be strategically equivalent; set k := u’ —u
and rearrange the terms in Eq. (A.4) to immediately conclude that & is a non-strategic game. [

Proposition A.8. Let T, = T,(N, A, u) be a harmonic game. If the measure y fulfills |p;| = |u;]
foralli, j € N then T, is strategically equivalent to a zero-sum game.

Proof. Recall that |u;| = X, ftie;- Under the assumption |;| = || for all i, j € N, let ¢ := ||
for any i € N. By (HG), the payoff u of ', in this case fulfills X;epr[u; (@) — k;(@)] = 0 for all
@ € A, with k; (aj;a—;) = ¢! i Mip;ui(Bisa—;). Set u) := u; — k;. By definition u’ is a zero-sum
game; furthermore, the difference between u; and u; is non-strategic, since k;(a;; @—;) does not
depend on «;. Thus u; and u; are strategically equivalent by Lemma A.7. [

In particular we have the following:

Corollary A9. Let T',, = I'y(N, A, u) be a harmonic game. If the measure i is a probability
measure, then Iy, is strategically equivalent to a zero-sum game.

The converse holds true only in the case of two-player games:

Proposition A.10. Every two-player zero-sum game with an interior Nash equilibrium x* is harmonic,
with (probability) measure u = x*.

*

Proof. LetT =T'(V, A, u) be a two-player zero-sum game with interior Nash equilibrium x*. If we
i >=0 forall x € X, (A.9)

show that
Sl (w1 ()31 -
ieN 7 |
then we can conclude by Lemma A.3 that I" is harmonic with measure x*. Eq. (A.9) holds indeed
true: |x7| =1 foralli € N, and it is well known [41, 42] that two-player zero-sum games with an
interior equilibrium x* fulfill 3;c ar(vi (x),x; —x7) = 0 for all x € X, so we are done. [

X

Harmonic games thus encompass and substantially generalize two prototypical classes of games with
anti-aligned incentives, serving as an ideal complement to the class of potential games. This is made
precise in [1]: building on the work of Candogan et al. [6], Abdou et al. [1] showed that, for any
choice of game measure u, every finite game can be uniquely decomposed into the sum of a potential
and a u-harmonic game, up to strategic equivalence.

This establishes harmonic games as the natural complement of potential games from a strategic
perspective; Theorem 2 in the main text shows that this holds true from a dynamic perspective as
well.
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B Basic properties of regularizers and the induced choice maps

In this appendix, we collect a number of properties concerning regularizers and the associated choice
maps. To avoid carrying around the player index i € N, we state all our results for a generic convex
subset C of some real vector space V. The desired properties for FTRL will then be obtained by
specializing C to X; or X and V to R“ or [] j R/, depending on the context.

B.1. Preliminary definitions. To begin, let V be a d-dimensional normed space with norm ||-||. In
what follows, we will write ) := V* for the dual space of V, (y, x) for the canonical pairing between
x e€Vandy e V", and ||y||. = max{(y, x) : ||x|| < 1} for the induced dual norm on ). Following
standard conventions in convex analysis, functions will be allowed to take values in the extended real
line RU {oo}, and if f: V — R U {co} is a convex function on V, we will denote its effective domain
as

dom f={xeV: f(x) <oo}. (B.1)
In addition, assuming dom f # @, the subdifferential of f at x is defined as
Of(x) ={yeY: f(x)=f(x)+{y,x" —x)forallx’ € V} (B.2)
and we denote the domain of subdifferentiability of f as
domadf={xeV:0f(x)+2}. (B.3)

Finally, to ease notation, a convex function f: C — R will be identified with the extended-real-valued
function f: V — R U {co} that agrees with f on C and is identically equal to co on V' \ C.

With all this in hand, let C be a closed convex subset of V, and let 4: C — R be a K-strongly convex
regularizer on C, that is,

h(tx + (1 —6)x") < th(x) + (1 = )h(x") - gt(l —0)|lx’ = x|*. B.4)
By standard arguments in convex analysis, this readily implies that
h(x") = h(x) + Oh(x;x" —x) + §||x' —x|> forallx,x’ € X, (B.5)
where
Oh(x;x" —x) = ali—>n(}+[h(x +0(x" —x))—h(x)]/6 (B.6)

denotes the one-sided directional derivative of 4 at x along the direction of x” — x. To proceed, we
will need the following basic objects:

1. The convex conjugate h*: Y — R of h:
h*(y) = ma/%({(y,x) - h(x)} forally € Y. (B.7)
X€E

2. The regularized choice map — or mirror map — Q: Y — X induced by h:

0(y) = argmax{{y,x) — h(x)} forally € Y (B.8)
xeX

3. The associated Fenchel coupling F: X x Y — Rof h:
F(p,y) = h(p) + h*(y) = {y. p) forallpe X,y e ). (B.9)

Remark. The terminology “Fenchel coupling” is due to [38, 40], which we follow closely in terms of
notation and conventions.

The proposition below provides some basic properties concerning the first two objects above:
Proposition B.1. Let h be a K-strongly convex regularizer on C. Then:

(a) Q is single-valued on ); in particular, for all x € dom dh and all y € ), we have:

x=0(y) ifandonlyif ye dh(x). (B.10)
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(b) The image im Q of Q satisfies 1iC C imQ = domdh C C.
(c) The convex conjugate h*: Y — R of h is differentiable and

O(y) =Vh*(y) forallye). (B.11)
(d) Q is (1/K)-Lipschitz continuous, that is,

I0(y") =Wl < /Ky =yl forally.y €. (B.12)

(e) Fix some y € Y and set x = Q(y). Then, for all x’ € X we have:

Oh(x;x" —x) = (y,x" —x). (B.13)
In particular, if 0h admits a continuous selection Vh: domdh — ), we have
(Vh(x),x" —x) 2 {y,x’ —x) forall x € domdh and all x € C, (B.14)
or, equivalently,
Oh(x) = Vh(x) + PC(x) forallx € domoh, (B.15)
where
PC(x)={we Y :{(w,x"—x) <0 forallx’ € X} (B.16)

denotes the polar cone fo C at x.

Proof. These properties are fairly well known (except possibly the last one), so we only provide a
quick proof or a precise pointer to the literature.

(a) The maximum in (B.8) is attained for all y € V* and is unique because # is strongly convex.
Furthermore, x solves (B.8) if and only if y — dh(x) 3 0, i.e., if and only if y € dh(x).

(b) By (B.10), we readily get im Q = dom dh. Consequently, the rest of our claim follows from
standard results in convex analysis, see e.g., Rockafellar [52, Chap. 26].

(c) The equality Q = VA" follows immediately from Danskin’s theorem, see e.g., Bertsekas [4,
Proposition 5.4.8, Appendix B].

(d) See Rockafellar & Wets [53, Theorem 12.60(b)].
(e) Since y € dh(x) by (B.10), we readily get that
h(x +0(x" —x)) > h(x) + 6{y,x’ —x) foralld e [0,1]. (B.17)
Hence, by rearranging and taking the limit 6 — 0*,'° we conclude that

h(x +0(x" —x)) — h(x)

hix;x’ —x) = 1 > ’ - B.1
Oh(x;x" —x) Jim, 7 > (y,x" = x) (B.18)
as claimed. Finally, for our last assertion, let z = x” — x and set

#(0) = h(x +07) — [h(x) + (y,0z)] forall 6 € [0,1] (B.19)

so ¢(0) > K6?||z||?>/2 = 0 for all 6 € [0, 1]. By construction, it is straightforward to verify
that the function ¥ (0) = (Vh(x + 0z) — y, z) is a selection of subgradients of ¢, i.e.,

6(0') > ¢(0) +w(0)(0' —0) forallg,d € [0,1]. (B.20)

Since ¢ is in addition continuous (because V# is), it follows that ¢’(6) = (0) for all
0 € [0, 1] by a well-known characterization of the one-sided derivatives of convex functions,
cf. Rockafellar [52, Theorem 24.2]. Hence, with ¢ convex and ¢(6) > ¢(0) for all 6 € [0, 1],
we conclude that (VA(x) —y, z) = ¥(0) = ¢’(0) > 0, and our proof is complete. [ |

The next proposition collects some basic properties of the Fenchel coupling.

10The existence of the limit is guaranteed by standard results, see e.g., Bertsekas [4, Appendix B].

20



Proposition B.2. Let h be a K-strongly convex regularizer on C. Then, for all p € X and all
y,y €, we have:

(a) F(p,y) =0 with equality if and only if p = Q(y). (B.21a)
(b) F(p.y) > 5K 10y - pI*. (B.21b)
Proof. These properties are also fairly standard, but we provide a quick proof for completeness.

(a) By the Fenchel-Young inequality, we have h(p) + h*(y) > (y, p) forall p € X,y € ), with
equality if and only if y € dh(p). Our claim then follows from (B.10).

(b) Letx = Q(y) soy € dh(x) by (B.10). Then, by the definition of F, we have

F(p,y) = h(p) + h*(y) = (v, p)

= h(p) + {y,x) — h(x) = (y, p) % since y € h(x)
> h(p) — h(x) — Oh(x;p — x) % by Proposition B.1
> 5K~ plP? % by (B.4)
and our proof is complete. n

In view of Proposition B.2, F(p,y) can be seen a “primal-dual” measure of divergence between
p € X and y € ), and the alternate expression (19) is straightforward. This observation will play a
major role in the sequel.

B.2. Basic lemmas. Moving forward, we note that the various update steps in (FTRL+) can be
written as

y'=y+w and x"=Q0(y") (B.22)

for some y,w € ). With this in mind, we proceed below to state a series of basic lemmas for
the Fenchel coupling before and after an update of the form (B.22). These results are not new, cf.
[31, 40, 42] and references therein; however, the assumptions used to derive them vary significantly
in the literature, so we provide detailed proofs for completeness.

All of the results that follow below are stated for a K-strongly convex regularizer on C. The first
result is a primal-dual version of the so-called “three-point identity” for mirror descent [7]:

Lemma B.1. Fix some p € X, y € Y, and let x = Q(y). Then, for all y* € Y, we have:

F(p.y") =F(p,y) + F(x,y") + (y* —y.x - p). (B.23)

Proof. By definition, we have:

F(p,y") =h(p)+h"(y") —(y". p) (B.24a)
F(p,y) = h(p) + k" (y) - (y. p) (B.24b)
F(x,y") = h(x) + K" (y*) — (y*.x) (B.24¢c)

Thus, subtracting (B.24b) and (B.24c) from (B.24a), and rearranging, we get

F(p,y")=F(p,y) + F(x,y") — h(x) = h*(y) + (v*,x) = (y* -y, p) . (B.25)

Our assertion then follows by recalling that x = Q(y), so h(x) + h*(y) = (y, x). [

The next result we present concerns the Fenchel coupling before and after a direct update step; similar
results exist in the literature, but we again provide a proof for completeness.

Lemma B.2. Fix some p € X and y,w € Y. Then, letting x = Q(y), y* = y+w, and x* = Q(y*) as
per (B.22), we have:

F(p,y") = F(p,y) + (w,x* = p) = F(x",y) (B.26a)
< F(p.x) + (w,x = p) + 3K ||w]|? . (B.26b)
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Proof. By the three-point identity (B.23), we have
F(x,y) = Fx,y") + F(x*,x) + (y—y",.x" = p) (B.27)
so our first claim follows by rearranging. For our second claim, simply note that
F(p,y) +(w,x" = p) = F(x",y) = F(p,y) + (w,x = p) + (w,x" —x) = F(p,y)

1 K
< F(p,y) + (w,x — p) + ﬁllwllf + 5l - pll* = F(p,y)
(B.28)

so our claim follows from Proposition B.2. [

The last result we present here is sometimes referred to as a “four-point lemma”, and concerns the
Fenchel coupling before and after an extrapolation step:

Lemma B.3. Fix some p € X and y,wy, w2 € Y. Then, letting x = Q(y), yi = y + w;, and
xi=Q(y’), i =1,2, as per (B.22), we have:

F(p.y3) = F(p,y) + (w2, x] = p) + [(w2,x3 —x7) = F(x3,9)] (B.29a)
= F(p,y) + (wa,x{ —py + (wa —wi, x5 —x7) = F(x3,y]) = F(x],y) (B.29b)

1 K
< F(py) + (wa,xy = p) + ellws = w2 = Sl = x| (B.29¢)

Proof. By Lemma B.2, we have

F(p,y3) = F(p,y) + (w2, x3 — p) — F(x3,y) (B.30)

s0 (B.29a) follows by writing (w2, x3 — p) = (w2, x| — p) + (w2, x; — x7), and (B.29b) follows from
the three-point identity (B.23) for the Fenchel coupling. Finally, for (B.29c), the Fenchel-Young
inequality in Peter-Paul form yields

1 2 K 2
(wy = w33 =x7) < s llwa = w | + S g = (B.31)

and our claim follows again by invoking Proposition B.2 to write

K K
SIS =2 1P = FO3Lu]) = F(xly) < =F(xf,y) < ==l =] (B.32)
and then substituting the result in (B.31) [

Lemmas B.2 and B.3 will be responsible for most of the heavy lifting to derive a Lyapunov function
for (FTRL+). We discuss the relevant details in Appendix D.

We conclude this section with a variational characterization of the abstract update (B.22) in the case
where dh of h admits a continuous selection — or, alternatively, / is smooth in the sense of (17).

Lemma B.4. Fix some y,y* € ), and let x* = Q(y*). Then, for all p € X, we have

W=y, p—x") <(Vh(x*) —y,p —x*). (B.33)

Proof. Invoking (B.14) in Proposition B.1 with y « y*, x « x*, and x’ « p, we get
(' p—x") <(Vh(x"),p—x"). (B.34)

Our claim then follows by subtracting (y, p — x*) from both sides of the above. [
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C Continuous-time analysis

C.1. Dynamical systems notions. To fix notation, we recall here some basics from the theory of
dynamical systems, roughly following [2, 51]. In this section, M is an open subset of a Euclidean
space of dimension d.

We consider a system of ordinary differential equations (ODESs) of the form
x(1) = X(x(1)), (DS)

where x(¢) is a curve in M defined on an open interval Z C R (that without loss of generality we
assume to contain 0), and X : M — R is a smooth function. The function X is called vector field
because it assigns a vector X (x) to each point x in M, and (DS) is called dynamical system generated
by X.

Given xg € M, an orbit with initial condition x is a solution x(¢) of (DS) with x(0) = xo. The flow
generated by X is the smooth function ®: Z X M — M such that ®y(xy) = xq for all xy € M and
%@, (x) = X(0O;(x)) for all t € Z. In words, ©,(xq) is the orbit x(¢) with initial condition xg; the
existence and uniqueness of this function is guaranteed by the existence and uniqueness theorem of
solutions of ordinary differential equations.

A flow O is called volume-preserving if vol(®,(U)) = vol(U) for any (Lebesgue) measurable
subset / € M and all + € Z. Liouville’s theorem gives a sufficient condition for a flow to be
volume-preserving based on the divergence of its generating field:'!

Theorem (Liouville). Ifdiv X = 0 then the flow generated by X is volume-preserving.

Volume-preserving flows are closely related to recurrent dynamical patterns. A point x € M is said to
be recurrent under (DS) if, for every neighborhood U of x € M, there exists an increasing sequence
of time #, T oo such that ©,, (x) is defined and falls in ¢/ for all n. Moreover, (DS) is said to be
Poincaré recurrent if almost every point x € M is recurrent. The celebrated Poincaré recurrence
theorem gives a sufficient condition for a dynamical system to be Poincaré recurrent:

Theorem (Poincaré). Let X be a smooth vector field on M. If the flow induced by X is volume-
preserving and all the orbits of (DS) are bounded, then (DS) is Poincaré recurrent.

C.2. Basic properties of FTRL. In this section we survey some of the properties of the follow-
the-regularized-leader learning scheme in a continuous-time, multi-agent setting, in line with the
presentations of [16, 38, 41]. For ease of reference we recall here some of the notions introduced in
Appendix B and in Sections 2 and 3 from the main body of the paper.

LetI' = T'(V, A, u) be a finite normal form game, and let v denote its payoff field. The game’s
strategy space is X' = [Tjen A(A;) €V = [1; R, and the game’s payoff space is ) := V*. The
payoff field is a map v: ¥V — ) that evaluated at a strategy x € X acts linearly on any x” € X by

(v(x),x") = Zie/\/@i(x),x,{) = Zie,/\/ Za,EAi Viq; (%) xl’.ai
= Zie/\/ ui(x;,x_,-) eR.

Assume now that I is played continuously over time. As discussed in Section 3, the main idea behind
the follow-the-regularized-leader learning scheme is that, at any given time ¢ > 0, each playeri € A/
tracks their cumulative payoff up to time ¢ and plays a “regularized” best response strategy in light of
this information. Concretely, given a cumulative payoff vector y;(¢) € V;, each playeri € N selects
this optimal strategy x; (f) € X; by means of a regularized best response map Q;: V; — A, a single-
valued analogue of the best-response correspondence y; + argmax,. .y, (yi,X;). A standard way
[57] of obtaining such map is to introduce a regularizer function h; : X; — R that is (i) continuous on
A}, (i) smooth on ri &;, the relative interior of A}, and (iii) strongly convex on X; (as per Eq. (B.4));
and to consider the induced choice map Q;: V; — X; defined by

Qi(y:) = argmax,. ¢ v {(yi, x;) — hi(x;)} forally; € V. (6)

By Proposition B.1, Q; is well-defined and Lipschitz continuous, and it coincides with the differential
Vh;f of h;‘ : Vi — R, the convex conjugate of h;.

(C.1)

Recall here that the divergence is a differential operator mapping a vector field X on M to the real-valued
function div X (x) := 3¢ _ ,X?(x), where 9, is a shorthand for the partial derivative 8/dx

a=1
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In a continuous time setting, this regularized learning scheme translates into the following implicit
equations of motion, which govern the evolution of the cumulative payoff y(¢) € ) and of the mixed
strategy profile x(¢) € X as the players attempt to maximize their payoff over time:

Yiai (1) = Yia; (0) +/O Viey (X(7)) d7 with  x; (1) = Qi(yi (1)) , (C2)

foralli € N, a; € A;. A straightforward computation shows that this is equivalent to Eq. (5) from
Section 3 in the main text, that governs the evolution of the mixed strategy x(¢) € X:

x;(1) = arg maX{/ui(pi;x-i(T)) dr — hi(Pi)} = arg maX{/ (i (x(7)), pi) dt — hi(pi)} )
Pi€X; 0 pi€X; 0

Importantly, Eq. (C.2) can be cast in the form (DS) of a dynamical system in the game’s payoff space.
For each i € N, differentiation with respect to ¢ yields

gi() = vi(x(1))  xi(1) = Qi(yi (1)), (FTRL-D)
and by aggregating the player indices we obtain the system of ODEs
y=Y(), (C3)

where Y :==vo Q : Y — ) is acontinuous vector field on Y; cf. Fig. 3.

Existence and uniqueness of a global solution y(¢) € Y of Eq. (C.3) for any initial condition y(0) € )
are guaranteed by standard arguments [38, Prop. 3.1]; in line with the terminology of the previous
section we will refer to such a solution as a dual orbit.

C.3. Constant of motion for harmonic games. The following result shows that FTRL in harmonic
games admits a constant of motion.

Proposition C.1. Let T = T'(N, A, u) be a finite game and consider a vector m € RY, and a fully
mixed strategy q € X. Then the weighted Fenchel coupling Fy, 4: Y — R defined by

Fng(y) = > miFi(qi,yi) = D mi (hi(qi) + hi (i) = (qi.yi)) (C4)

is a constant of motion under (FTRL-D) if and only if T is harmonic with strategic center (m, q).

Proof. Let y(t) be a dual orbit. Then by chain rule

%Fm,q(y(t)) = > mil (VR (90). 4i) = (qi- ¥i)) = 2, mi xi () — qinvi(x(1))) (C5)

where the second equality holds by (FTRL-D) and Eq. (B.11). Then, by the characterization of
harmonic games in terms of a strategic center (HG-center), the time derivative of the weighted
Fenchel coupling vanishes identically along a dual orbit of (FTRL-D) precisely if the underlying
game is harmonic. [

The existence of this constant of motion is fundamental for proving Theorem 2, i.e., the Poincaré
recurrence of continuous-time FTRL in harmonic games. With this key element established, the
remainder of this appendix closely follows the proof technique described by [41] for the analogous
result in the context of two-player zero-sum games.

C.4. FTRL in the space of payoff differences. For any initial condition y(0) € ), a dual orbit of
(FTRL-D) induces a curve x(¢) = Q(y(t)) in the game’s strategy space X which solves Eq. (5) for
all + > 0; in the following we will refer to such curve as trajectory of play. Crucially, a trajectory
of play is in general not the global solution of a dynamical system X = X (x) for some vector field
X: X — X in the game’s strategy space. The reason for this is that the map Q: Y — X is not
necessarily invertible, so there is in general no way to identify a unique a vector field X on &’ that is
related to the vector field Y on ) via Q.
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V=I,;RY —% s y=y —F , R

b

Figure 3: FTRL diagram. Commutative diagram of the maps discussed in Appendices C.2—-C.4; note in
particular that v o Q is a vector field on ). The notation X < V is equivalent to X C V.

Related vector fields and induced dynamical systems. The concept of vector fields related by a
smooth map is standard in differential geometry (e.g., [34, p. 181]). Let M, M’ be open subsets of
Euclidean space: given a vector field Y on M and a smooth map F: M — M’ a vector field X on
M is called F-related to Y if, for all y € M, (Jac F), - Y(y) = X(x), withx = F(y). Here Jac F is
the Jacobian matrix of F, and - represents matrix-vector multiplication. If F' is invertible then such
vector field exists always and is unique; else, it might exist and not be unique, or not exist at all.

Vector fields that are related via a smooth map are useful inasmuch as they generate “compatible”
dynamical systems:

Lemma C.2. Let F: M — M’ be a smooth map between open subsets of Euclidean spaces, and
let y = Y (y) be a dynamical system on M. Let y(t) be an orbit with initial condition yy € M, and
consider the curve on M’ defined by x(t) = F(y(t)). If there exists a vector field X on M’ that is
F-related to Y, then the curve x(t) is an orbit of the dynamical system x = X (x) with initial condition
xo0 = F(yo).

Proof. By chain rule,

L x(0) = SF((0) = (ac Py - 500) = Uae Flyy - Y(4(0) = XG(0),  (€C6)

where the last equality follows by the assumption that X is F-related to Y. [

In the following, if F: M — M’ is a smooth function between open subsets of Euclidean spaces,
and Y, X are vector fields fulfilling the assumptions of Lemma C.2, we say that the dynamical system
=Y (y) on M induces the dynamical system % = X (x) on M’ via F.

FTRL induced in the space of payoff differences. The choice map Q: Y — X is in general
not smooth, and neither injective nor surjective [16, Sec.3], so it generally does not allow to induce
the dynamical system (C.3) from the game’s payoff space ) to the game’s strategy space X. 1> In
other words, the learning process (FTRL-D) in a finite game gives rise to a dynamical system in
the game’s payoff space ), to which the theorems presented in Appendix C.1 can in principle be
applied; however, it can be shown that the orbits of Eq. (C.3) in ) are not bounded, preventing the
application of Poincaré’s theorem. Furthermore, the dual orbits do not convey direct information on
the day-to-day behavior of the players, due to the lack of invertibility of the choice map.

Conversely, the objects of interest from a dynamical, learning viewpoint — that is, the trajectories of
play in the game’s strategy space X — present technical difficulties and do not easily fit the dynamical
systems framework depicted in Appendix C.1. In the following we show how these difficulties can be
circumvented by analyzing the dynamics induced by (FTRL-D) in yet a third space Z, that arises by
taking the differences between payoffs — rather than their absolute values — as the objects of study.

To make this precise, given the game I' = I'(\V,, A, u) fix a benchmark strategy &; € A; for every
player i € NV, and consider the hyperplane Z; := {z; € R4 : z;45, = 0} c R4, Clearly, Z; = R4
Each player’s strategy space ); = R4 can be mapped onto Z; by the linear operator

I;: Vi = Z; with  Zig; = Yia, — Yia; (C7)
for all o; € A;.

12A detailed treatment of the conditions under which a trajectory of play x(7) actually is a solution of
dynamical system in the game’s strategy space X’ is beyond the scope of this work; we refer the interested reader
to [38, 39] for an in-depth treatment.
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I1; is clearly smooth, and a standard check shows that II; is surjective and not injective: kerIl; =
{Ui : Yia; = yip; forall a;, B; € A;} is the 1-dimensional linear subspace spanned by the vector
1,=(1,...,1) € YVy;and 117! (z;) = z; + kerII; for any z; € Z;. In particular, for all Yi,y; € Vi, we
have that IT; (y;) = I1;(y;) if and only if y; — y! is proportional to 1;.

Since every z; € Z; is the image of some payoff y; via I1;, the space Z = []; Z; is called the game’s
payoff-difference space; we will denote by II the product map IT = []; I}, i.e., (cf. Fig. 3)

m: Y — 2, Iy = {L(yi))ien - (C.8)

Lemma C.3. The choice map Q: Y — X is invariant on the level sets of T1.

Proof. Lety,y’ € ). By the discussion above, I1(y) = I1(y’) iff y; — y; = A1; for some A € R. Then
foreachi € N,

Qi (y;) = argmax{{y;, x;) — h;(x;)} = argmax{(y;, x;) + AL, x;) — hi(x;)} = Qi(y;) . ™
Xi€X; X; €X;
Proposition C.4. The dynamical system (C.3) in the game’s payoff space ) induces a dynamical

system
2=2(2) (C.9

in the game’s payoff-difference space Z via the map (C.8).

Proof. By the discussion in the previous section (and in particular Lemma C.2), if we exhibit a vector
field Z on Z that is [1-related to Y, then our proof is complete. Thus we look for a vector field Z such
that, for all y € )/,

(JacIl), - Y(y) = Z(2), (C.10)

with z = II(y). By Eq. (C.7), (JacIl;) o;8, = 0o, — 9a,8,- Since Y = v o Q, the sought-after vector
field Z must fulfill, for all y € ) and all @; € A;,

(vi(l,' _Ui(i’j) OQi(yi) =Zi(li(zi)9 (Cll)
with z = I1(y). For each i € A/ define now (cf. Fig. 3)
0i: Zi > X, 0i(zi) = Q) (C.12)

for any y; € 1 '(z;), and denote by Q: Z — X the induced product map. Such map exists since IT;
is surjective, and is well-defined by Lemma C.3. It follows that the vector field on Z defined by

Zioy (20) = (Viay — Vig,) © Qi(2:) (C.13)
foralli e N, z; € Z;,a; € A, fulfills Eq. (C.11), and is hence I1-related to Y. [ |

This result shows that, for every dual orbit y(¢) of Eq. (C.3) with initial condition yy € ), the curve
z(t) = TI(y(t)) is an orbit of the dynamical system (C.9) in Z with initial condition IT(y,). To
conclude this section we give a result implying that if the weighted Fenchel coupling (C.4) is a
constant of motion constant then the solution orbits of (C.9) in Z are bounded.

Lemma C.5. For anyi € N, let y;, be a sequence in Y;, and let p; be a point in the relative
interior of X;. If sup,|h; (Yi,n) — (Yin, Pi)| < oo, then also the score differences remain bounded, i.e.,
|Yicy .0 — Yigi,n| < oo forall a;, B; € A; and all n.

Proof. See [41, Appendix D]. [

Lemma C.6. If the weighted Fenchel coupling (C.4) is a constant of motion under (FTRL-D) for
some fully mixed p € X then the orbits of 7 = Z(z) as in Eq. (C.9) are bounded in Z.

Proof. Assume that F, o (y) = X miF;(pi,yi) = Zim; (hi(pi) + b (i) — (pi, yi)) is a constant
of motion for (FTRL-D) for some fully mixed p € X and some m € RY,. Let y(¢) be an orbit
of (FTRL-D) in Y, and let y; ,, = y;(¢,) for any sequence of time #,. Let furthermore F;, =
h:(Yin) — (Pi>Yi,n). Then sup, |F; ,| < co. By Lemma C.5, this implies that |z;4,,,| < oo for all
a; € A;,alli € N, and all n. ]
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C.5. Recurrence of FTRL in harmonic games. We now have all the ingredients to prove that
almost every trajectory of play x(¢) of (FTRL-D) in harmonic games returns arbitrarily close to its
starting point infinitely often.

Theorem 2. Suppose I is harmonic. Then almost every orbit x(t) of (FTRL-D) returns arbitrarily
close to its starting point infinitely often: specifically, for (Lebesgue) almost every initial condition
x(0) = Q(y(0)) € X, there exists an increasing sequence of times t, T oo such that x(t,,) — x(0).

Proof of Theorem 2. The proof relies on the following steps:

1. the vector field Z defined in Eq. (C.13) has vanishing divergence, so its induced flow is volume-
preserving in Z by Liouville’s theorem;

2. the orbits of the dynamical system z = Z(z) of Eq. (C.9) are bounded in Z since the weighted
Fenchel coupling (C.4) is a constant of motion for FTRL in harmonic games;

3. the dynamical system Z = Z(z) is recurrent in Z by Poincaré theorem;

4. by continuity of Eq. (C.12), almost every trajectory of play x(¢) of (FTRL-D) with initial
condition in the image of O returns arbitrarily close to its starting point infinitely often.

Indeed, divZ(z) = 3; Zq; %((v,—m —Vig;) © Qi(z)). For the first term, by chain rule,

ai(r A 6iw A BQJ
divz(d) =3, 3, 0 = 33,5, 5, 3 afﬁjﬁ’_ (052 ()

— avia,j A 8QAi[gi _
=25 D 2 gy QNG 22 =0

id,‘

Ovia; _

g, = 0 by multilinearity of the payoff functions. The second term yields identical result with

&; « a;, so we conclude that divZ = 0. By Lemma C.6, the invariance of the weighted Fenchel
coupling under (FTRL-D) implies that the payoff differences z;qo, (f) = Yiq, (t) — zig, (t) remain
bounded for all ¢ € [0, o). So, by Poincaré theorem, the dynamical system z = Z(z) is Poincaré
recurrent, i.e., there exists a sequence of time #,, T oo such that lim,,,« z(#,) = z¢ for almost every
z0 € Z. By continuity of (C.12), almost every trajectory of play x(r) = Q(y(t)) = O(z(r)) with
xo € im Q fulfills lim,,_,c x(,) = xo, which concludes our proof by noting that the image of Q is the
same as the image of Q. [

since

D Discrete-time analysis

In this appendix, our aim is to provide the full proofs for the discrete-time guarantees of (FTRL+), as
presented in Section 4. Our analysis hinges on a series of energy functions and associated template
inequalities, which we introduce in the next section.

D.1. Lyapunov functions and template inequalities for (FTRL+). The main building block of
our analysis is a suitable Lyapunov function for the discrete-time algorithmic template (FTRL+).
Motivated by the continuous-time analysis of Appendix C, we begin by considering the player-specific
Fenchel couplings

Fi(pi-yi) = hi(pi) + hi (i) = (i, pi)  forp; € X y; € Vi (D.1)
induced by the regularizer h; of playeri € N.

Suppose now that the game is harmonic relative to some measure u = (uj,...,Un), let m; =
D aieA; Mia; denote the mass of y;, and assume further that each player is running (FTRL+) with
learning rate i7; > 0. Our analysis will hinge on the energy function

E(py) = > %"Fi(pi,y,-) peX,yed, (18)

ieN L

which, as we show below, satisfies the following template inequality:
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Proposition D.1. Suppose that each player is running (FTRL+) with learning rate n; > 0 in a
harmonic game as above. Then, for all p; € X;, i € N, and alln = 1,2, .. ., the algorithm’s energy
E, = E(p,yn) enjoys the iterative bound:

Epe1 < En+ D mi{0;(Xn41/2), Xins1/2 = Pi)
ieN
+ > miui (Xpe1/2) = 0i(Xn) s Xi a1 = Xina1/2)
ieN
+ > mi(1= )i (xn) = Vi (Xn=1/2), Xi,ne1 = Xins1/2)
ieN
.
= > = Fi(Xi e Yine1/2)
ieN i
m;
- > —Fi(Xine1/2:Yin) - (D.2)
ieN i

Proof. We begin by applying the bound (B.29b) of Lemma B.3 with the array of substitutions

L. pep;

2. wy — nibin = 7 v (Xn) +17:(1 = ) 0: (Xn-1/2)
3. wy — Midinr12 = Nivi(Xn+172)

4. Y < Yin s0  x — Qi(Yi,n) = Xin

5. Y] < Yint1j2 SO X{ < Xini1)2

6. U3 < Yinsl SO X3 ¢ Xyl

We then get

(wy —wi,x3 = x7) = 0 i (Xnr1/2) = i i (x0) = (1= A0) 0; (Xp—1/2)s Xinal = Xine1/2)
= 0i0i (Xp+1/2) = i (Xn)s Xisna1 = Xint1/2)
+1: (1 = ) (i (xn) = 0i (Xp-1/2) Xi 1 = Xions1/2) (D.3)
and hence, by (B.29b):

Fi(pisYin+1) < Fi(pi> Yin) + 0i0i (Xn11/2)s Xine1/2 — Pi)
+ i (Xn4172) = 0i(Xn), Xina1 = Xins172)
+1: (1 = ;) (vi (xn) = 0i (Xp-1/2) Xi 1 = Xion+1/2)
- Fi(xi,n+17yi,n+1/2)

- F; (xi,n+1/2’ yi,n) . (D.4)
Accordingly, with E,, = E(p, y,), the bound (D.2) follows by multiplying both sides by m;/n; and
summing overi € N. [

Thanks to Proposition D.1, we are now in a position to state and prove the following summability
guarantee for (FTRL+).

Proposition D.2. Suppose that each player in a harmonic game T" with harmonic measure u is
following (FTRL+) with learning rate n; < m;K;[2(N + 2) max; m ;G ] =L, Then, for all T, we have:

T , & ) 2E
;l|xn+l/2 = xu|I” + nzzzﬂxn = Xp-12I” < (N+2) max miG; (D.5)
In particular, the sequences A, = ||Xp11/2 — xn|> and By, = ||xns1 — )c,1+1/2||2 are both summable.
Proof. By reshuffling the terms of the template inequality (D.2), we get
> mivi(Xpe1/2)s Pi = Xina1/2) < En — Enit
ieN
+ > miui (Xpe1/2) = 0i(Xn) s Xi a1 = Xina1/2) (D.6a)

ieN

28



+ > mi(1 = A:)(0i (xn) = vi(Xn=1/2), Xi,ns1 = Xins172)  (D.6b)

ieN
m; m;
= > —Fi(Xinet: Yine1)2) = 2 —Fi(Xine1/2: Yin) - (D.6¢)
ien i ienN i

We now proceed to bound each term of (D.6) individually, paying no heed to make the resulting
bounds as tight as possible.

Bounding (D.6a). By the Fenchel-Young inequality, we have:

(D.6a) < > —||u, (nsrf2) = v )2+ > 2

2
|xl n+l — xi,n+l/2||

lEN lEN
<> = G etja =l + > it = XemilP % () is Gi-Lipschitz
ieN ieN
2
< %Nmaxi miG; - | Xns12 = Xnll* + %maxi m;G; - | Xp+1 = Xn41,2l (D.7)

Bounding (D.6b).  Again, by the Fenchel-Young inequality, we obtain:
l(l Ai) m;(1— /l )G

(D.6b) < Z ”Ul(xn) Ul(xn 1/2)”2 + Z ” Xi,n+l _xi,n+1/2||2
ieN ieN
m; (1 4;)G; m; (1 A )G
<O " xw —xmplF + Z i et — X nr1 2l
ieN
% v; (x) is G;-Lipschitz
< %Nmaxi m;G; - ||x, _xn—1/2||2 + %maxi m;Gi - ||Xn+1 _xn+1/2||2 (D.8)

Bounding (D.6¢c).  Finally, by the lower bound on the Fenchel coupling of Proposition B.2, we get:

s
- Z F (Xisnsts Yine1/2) = 2 — Fi(Xi n+1/2> Yin)

ienN 1 ien i
m;K; m;K;
<-> > X et = Xt et /2l = D #”xi,nH/Z —xinll® % by (B.21b)
ieN “Mi ieN <M
. omiK;
< —min; — [”xn+l _xn+1/2”2 + ||xn+1/2 _xn”z] (D.9)

i
Thus, by folding Egs. (D.7)—(D.9) back into (D.6), we obtain the bound

> mivi(Xps1/2), Pi = Xina1/2) < En = Enst
ieN

1 . m;K; 2
+ E(Nmaxi m;G; — min; —— l) Xns1/2 = xnll
L

. m;K; 2
—(2 max; m;G; — min; — l) IXn+1 = Xpe1,2ll

i

1
+ 5N max; m; G o = Xn_1/211% - (D.10)

Now, if we instantiate (D.10) to p < g where q is the strategic center of I', its left-hand side (LHS)
will vanish by (HG-center). Hence, summing over alln = 1,2,...,7T, (D.10) ultimately yields

miK; | &
. I)Z”xn+1/2_xn”2
i n=1

1
O0<E;+ E(Nmaxi m;G; — min;

1 o omiKi | &
+ —((N +2) max; m;G; — min; — l) Z||xn —)cn_1/2||2
2 ni n=2
1 . m;K;
+ z(zmaxi m;G; — min; —— l) lxrs1 = xre12]l”
1
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1
+ 5N max; miG; - |x1 = x1 2. (D.11)

Now, by our step-size assumption, we readily obtain
m;K;

1
(N +2)max; m;G; < 3 min; (D.12)

i

so (D.11) becomes

|
0<E - 1 mlnl Z”xn+l/2 xn” -7 m Z”xn —Xn- 1/2”2 (D.13)

i p=2
where we used our initialization convention x; = x1/, and the fact that the third line of (D.11) is
negative. We thus get

4E,
Z”xnﬂ/z xnI* +Z||xn_xn 12l < L (D.14)

from which our assertion follows immediately. [

D.2. Proof of Theorem 3. We are now in a position to prove the regret guarantees of (FTRL+),
which we restate below for convenience.
Theorem 3. Suppose that each player in a harmonic game I is following (FTRL+) with learning rate

n; < mK;[2(N + 2) max ; mJG 171 and payoff models as per (13a) and (15). Then the individual
regret of each player i € N is bounded as

H; 2G; H;
Reg,;(T) := max ui(pisx_in) —ui(xy)] < —+ (16)
gl Pi€X; HZ ni N + 2 jGN an/
where H; = max h; — min h;, and G; is the Lipschitz modulus of v;.
Proof. By a minor reshuffling of terms in (D.4), we readily get
1
i (Xn+1/2)s Pi = Xins1/2) < ;[Fi(phyi,n) — Fi(pi, Yin+1)]
+ (i (Xna1/2) = Vi (Xn), Xina1 = Xins1/2)
+ (1 =)0 (xn) = 0i(Xp-1/2)» Xi 1 = Xionw1/2)
1 1
= —Fi(Xi n+15 Yione172) = —Fi(Xi ns1/2- Yion) (D.15)
ni ni
and hence, by a repeated application of the Fenchel-Young inequality in its Peter-Paul form:
1
Wi (Xp41/2)s Pi = Xint1/2) < ;[Fi(phyi,n) = Fi(pisYins1)]
12
1 .
+ Z_Gi|lvi(xn+l/2) — v ()1 + 71”xi,n+1 = Xins1 2l
- 1-2,)G;
2Gil llvi () = 03 (a1 2) 112 + %”xi,nﬂ = Xi 1 2l?
K; 2 2
" [1xi et = Xine1 217 + 11X 12 = Xinll*] - (D.16)

Hence, by using the Lipschitz continuity of v;, we finally get
1
i (Xp+1/2)s Pi = Xin+172) < ;[Fi(piayi,n) - Fi(pi, Yin+1)]
L
+ Sl p = xall® + Sl ner = X2

G;
+ =0 = Xpo12ll? + =

) ”xl n+l — Xi n+1/2||

2
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K.
- 2_7;[||xi,n+1 = X120+ 1Xi 12 = Xiall?] (D.17)
12

Thus, summing over n = 1,2,...,7T, and keeping in mind that our assumptions for 7; also give
G; < K;/(27n;), we finally get

T H G| R ,
D i (Xns1/2), Pi = Xima1/2) < ” + 5 D ez = xall® + D lxn = xnz1 2]l (D.18)
n=1 v n=1 n=2

where we used the fact that F;(p;,0) = h(p) — minh; < max h; — min h; = H;. Our result then
follows by invoking (D.5) and using the fact that m;G; < max; m;G foralli € N. [

D.3. Proof of Theorem 4. With all this in hand, we are finally in a position to prove our main
equilibrium convergence result for (FTRL+). For convenience, we restate the relevant theorem below.

Theorem 4. Suppose that each player in a harmonic game I follows (FTRL+) with learning rate
7 <m;K;[2(N + 2) max; mJ-Gj]_l and payoff models as per (13a) and (15). Then x,, converges to
the set of Nash equilibria of T.

Proof. Our proof proceeds in a series of steps, as detailed below.

Step 1: Convergence of energy levels. We begin by showing that the energy E,, = E(q,y,) of
(FTRL+) relative to the game’s harmonic center converges to some finite value E. That this is so
follows from a well-known property of quasi-Fejér sequences [10, Lemma 3.1], whose proof we
reproduce below for completeness.

Indeed, by Eq. (D.10) and Proposition D.2, we have
E,.i<E,+¢, (D.19)
with €,,n =1,2,... summable. Letting E;, = E, + Z?:n &g, we further get
Eh =Epu+ >, ex<E,+>,ex=E, (D.20)
k=n+1 k=n

by (D.19), so E;, converges. Since &, is summable, it follows that E,, also converges, as claimed. ¢

Step 2: Boundedness of score differences. We now proceed to show that the normalized score
differences z,, = II(y,) where II is the normalization operator (C.8) are bounded. Indeed, by the
definition of E,, = E(q,yn) = Xien(mi/n:)Fi(qi,yi n), it follows that sup,, Fi(q;, yi.n) < oo for
all i € N. Thus, by Lemma C.5, we conclude that each component of z,, is bounded, so z is itself
bounded. o

Step 3: Convergent subsequences of (FTRL+). We now observe that (FTRL+) enjoys the following
series of properties:

1. The sequence z, = I1(y,) admits a subsequence z,,, that converges to some limit point z,, € Z
(a consequence of the fact that z,, is bounded, see above).

2. In turn, this implies that the subsequence x,,, = Q(yy,,) = Q(znk) converges to some X, € X.
3. Since the sequences A, = ||xn+1/2 — Xnl|* and By, = |[x41 — Xn+1/2]|* are both summable (by

Proposition D.2), we further have limg_,c X5, +1/2 = X and, more generally, by a straightfor-
ward induction:

klim Xnp+r = Xeo forany (fixed) r = 1/2,1,3/2,... (D.21)

4. Likewise, for the sequence of payoff signals ,,, we have

Ding = A Ui (X ) + (1= 27) 0; (X —1/2) p— Aivi (Xeo) + (1 = 4)0i(Xe0) = 0i(x00) (D.22)

80 limg 00 0(Xp, ) = V(Xco)- o
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Step 4: Variational characterization of limit points. We now proceed to show that v, = v(X)
belongs to the polar cone PC(xo) = {w € YV : (w,x —xe) <0 forall x € X'} to X at xo. To do so,
suppose that (FTRL+) performs r steps from ny so

.
Ynrr = Yng 1 D Dnr1 2 (D.23)

j=1
where, to ease notation, we have made the simplifying assumption that 1; = 1 for all i € A/.'> Then,
by invoking Lemma B.4 with y < y,, and y* < y,, 1., we obtain
r
n ﬁnk+l/25p _xnk+r < <Vh(xnk+r) _ynk,P _xnk+r>
j=1

= <Vh(xnk+r) Ty xnk+r> (D.24)

where, in the second line, we have used the fact that (y, x" — x) = (Il(y),x’ — x) for all x,x” € X and
all y € V. Thus, letting k — oo, we get from Step 3 and the continuity of V4 that

Nr{V(Xeo), X = Xoo) < (VA(Xeo) = Zoos X = Xoo) (D.25)

forallr = 1,2,... and all x € X.'* Since r can be chosen arbitrarily, we must have (v(Xe), X —Xoo) <
0 for all x € X. Hence, by the variational characterization (VI) of Nash equilibria, we conclude that
Xo must be itself a Nash equilibrium of I", and our proof is complete. [

13This assumption does not affect the core of our arguments, but it greatly streamlines the presentation.
14The fact that xeo € dom dh is a consequence of Lemma C.5 and the convergence of E,, to Es < co.

32



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction follows the same logic and mostly also order as the
technical results of the article.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss exact assumptions throughout. Moreover, in the concluding remarks
we focus on limitations that are also natural avenues for future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

33



Answer: [Yes]

Justification: We wrote the article with highest attention to rigor and mathematical detail. As
such we provide all assumptions for each result and use unambigious notation and language.

Guidelines:

» The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our simulations are merely illustrative and as such are not critical for the main
results of the paper. However, we fully disclose how they were performed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Justification: We do not release the code at this point as we don’t have time to anonymize it.
We describe in detail how simulations are performed and will make the code available at a later
stage.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide all details for the simulations.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.
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¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: All simulations were performed on standard laptops and as such do not carry any
particular computational burden.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss in the introduction the use of learning in games.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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