Published as a conference paper at COLM 2024

On Limitations of the Transformer Architecture

Binghui Peng

Department of Computer Science
Columbia University
bp2601@columbia.edu

Srini Narayanan
Google DeepMind
srinin@google.com

Christos Papadimitriou
Department of Computer Science
Columbia University
christos@columbia.edu

Abstract

What are the root causes of hallucinations in large language models (LLMs)?
We use Communication Complexity to prove that the Transformer layer is
incapable of composing functions (e.g., identify a grandparent of a person
in a genealogy) if the domains of the functions are large enough; we show
through examples that this inability is already empirically present when
the domains are quite small. We also point out that several mathematical
tasks that are at the core of the so-called compositional tasks thought to
be hard for LLMs are unlikely to be solvable by Transformers, for large
enough instances and assuming that certain well accepted conjectures in
the field of Computational Complexity are true.

1 Introduction

The Transformer architecture (Vaswani et al., 2017), an otherwise singularly promising
approach to Al, is known to be plagued by the problem of hallucinations: an answer to a user
prompt is too often incompatible with the device’s training data and prompt. There is now
a vast literature on hallucinations and their nature, typology, and remedies, see for example
the survey (Ji et al., 2023).

Are there root causes of the hallucination phenomenon that can be imputed to the Trans-
former architecture? Theoretical limitations of Transformers have been pointed out in the
past, starting with Hahn's 2020 paper (Hahn, 2020), where it was proved that Transformers
cannot recognize simple patterns such as parity (e.g., whether a phrase contains an even
number of negations) or balanced parentheses. However, the elegant proofs in Hahn (2020),
inspired by Complexity Theory, are asymptotic in nature, and it appears that the proven
limitations take hold only for unrealistically large inputs; in fact, it has been demonstrated
that there are Transformers on which these functions can be computed reliably for all practi-
cal purposes (Ebrahimi et al., 2020; Yao et al., 2021). Transformers have also been studied
through Complexity Theory — an important lens for understanding the limitations of com-
putational systems — culminating to Merrill & Sabharwal (2023b), where it was shown that,
computationally, Transformers belong to a rather weak complexity class, namely logspace-
uniform TC?; we elaborate on this point of view in Section 4. Also recently, Sanford, Hsu,
and Telgarsky (Sanford et al., 2023) identified a particular mathematical problem called
3-Matching, which cannot be computed by single-layer multi-head Transformers: Given a
sequence of integers, identify three numbers in the sequence that add up to zero modulo a
given large number. Very interestingly, (a) the easier problem of 2-Matching can be solved



Published as a conference paper at COLM 2024

by Transformers, but cannot be solved by feed-forward deep nets, establishing a kind of
supremacy of Transformers over the rest of ML; and (b) these negative results manifest
themselves for rather small prompt sizes. Note that, the conceptual contribution of this
result notwithstanding, the 3-matching function identified in Sanford et al. (2023) is not a
compelling example of the kinds of problems that Transformers are meant to solve. The
question arises, can we identify impossible tasks that are closer to the intended use of the
architecture? This is our focus here. We point out a new fundamental limitation of the
Transformer architecture, namely that it has serious difficulties computing a very simple,
and practically important, semantic operation we call function composition, explained next.

In a recent paper on the topic of hallucinations (Guan et al., 2024), the opening example
is a wrong answer to the question what is the birthday of Frédéric Chopin’s father?,
when these two facts were included in the prompt: (a) the father of Frédéric Chopin

was Nicolas Chopin and (b) Nicolas Chopin was born on April 15, 1771!. This is an
example of function composition, where the functions to be composed are birthday-of and
father-of. Interestingly, the aforementioned paper (Guan et al., 2024) goes on to propose
retrofitting Transformers with Knowledge Graphs — precisely the right tool for performing
function composition — in order to mitigate hallucinations. Another example of function
composition would be, given the facts London is in the UK, Alan Turing was born in
London, among other such facts, to ask: In which country was Turing born? Or, presented
with Matthew’s genealogy (Mat): Abraham was the father of Isaac, Isaac was the the
father of Jacob, ... and so on with 39 more sentences of this type, to ask: Did Isaac
have any grandchildren?

Besides its critical role in combining relational information in the data, function composition
is also an important ingredient of language understanding, the core competence of Trans-
formers. In the field of pragmatics, indexicals are words referring to entities in the context
in which the utterance occurs. For example his in the sentence I have a brother and his
name is John, or this in the sentence this dog has style are indexicals. Now, when in
an utterance one indexical refers to another, understanding the utterance entails function
composition. Consider this:

Transformers occasionally hallucinate, that is, they generate
output inconsistent with the training data and prompt. However,
this deficiency 1is rather rare, and techniques such as
post-filtering can alleviate it.

Understanding what is meant by the last word it of this utterance, one needs to compose
two indexicals: First one has to recognize that the indexical it points to this deficiency,
and then that this deficiency refers to the particular deficiency that Transformers
occasionally hallucinate. It appears that humans have little difficulty composing idexi-
cals — but how about Transformers?

So it seems desirable — indeed important — that LLMs perform function composition
reliably. In this paper we prove that they cannot: function composition is an inherent weakness
of the Transformer architecture. In particular, we show that a single Transformer attention
layer cannot compute the answer to a function composition query correctly with significant
probability of success, as long as the size n of the domain of the function satisfies nlogn >
H(d 4 1)p, where d is the embedding dimension, p is the precision, in bits, required for the
calculation, and H is the number of attention heads. In fact, the proof of our impossibility
theorem suggests that this weakness has its roots in the nature of the softmax computation
that allows the next embedding of a token to be computed with very scant non-local
information.

Our impossibility result holds for a single, multi-headed attention layer; however, we
suspect that the weakness that it exposes also burdens multi-layer Transformers, and in
Appendix B we see anecdotal evidence that LLMs appear unable to reliably compose
functions with domains that are far smaller.

!t is a tragic coincidence that the great romantic composer Frédéric Chopin was tormented by
hallucinatory episodes throughout his brief life...



Published as a conference paper at COLM 2024

The chain of thought maneuver (CoT) (Wei et al., 2022) is known to help with the problem
of hallucinations by inducing the LLM to generate prompts which break down the task
in hand into smaller steps eventually leading to the correct answer. Indeed, a simple CoT
scheme can plausibly mitigate our impossibility result on composition by generating a short
prompt. However, we also prove a theorem implying that a Transformer layer with CoT
needs far more tokens in the generated CoT prompt to solve the composition problem for a
cascade of many compositions (Theorem 2)

We also provide a different impossibility argument that holds for any number of layers, and
concerns a different genre of hallucinations: wrong answers to compositionality tasks. In Dziri
et al. (2023), it is demonstrated through extensive experimentation that Transformers have
trouble carrying out tasks that require sequential composition of elementary tasks, such as
multiplying multi-digit integers and solving logical puzzles, and in fact this failure grows
quickly with the required depth of composition. We point out (Theorem 3) that, under a
widely accepted complexity assumption — akin to P # NP albeit in the domain of memory
— multi-layer Transformers are incapable of performing several elementary computations

that are crucial in carrying out compositionality tasks such as those discussed in Dziri et al.
(2023).

Finally, it has been often pointed out that it is the very nature of Transformers as probabilistic
language generators that renders them likely to veer off their grounding on the training data
and prompt — see for example McCoy et al. (2023), where it is demonstrated through
extensive experimentation that low-probability answers (as well as low-probability inputs,
or low-probability tasks) are harder for transformers to get right. In general, LLM models
maximize the probability of generating the next token given the context in an auto-regressive
manner, and this must continue even when there is no clear winner. That is, the LLM gener-
ates outputs even when the probability of the predicted token is low. When this intensifies,
the model will generate a low-likelihood series of tokens, resulting in an unreliable output.

There are many situations when this could happen. First, as McCoy et al. (2023) point out,
LLM are particularly bad when there is a low probability of the input, task, or output, even
if the underlying training sequence is deterministic. Yet another case is one where the input
context is under-specified or ambiguous. When the input context does not provide sufficient
information for a clear and optimal token choice, the estimated probabilities obtained from
applying the logit function to the softmax output of the transformer are distributed such
that the difference between the highest and subsequent probabilities is relatively small, there
is a higher chance that in the auto-regressive model, the incorrect token will be picked. This
situation is also correlated to the case where the conditional entropy is likely high. In all
these cases, the generation of the incorrect token is more likely; and once the sequence has an
incorrect next token, there is a significant chance that this error cascades into a hallucination.
In a recent paper (Kalai & Vempala, 2023), this phenomenon is studied more formally by
considering the statistics of very rare patterns in the training data.

2 Preliminary definitions

Transformer. To model mathematically computation by Transformers, we adapt slightly
the formal model of (Sanford et al., 2023). A self-attention unit is a function A : (RP)N
(R)N, where N is the sequence length, D is the embedding dimension, and d is the output

dimension. A is defined in terms of three real matrices K, Q, V € R?*P. For simplicity, we
assume that the key, query, value matrices K, Q, V share the same dimension. On input

X = (x1,...,xn) € (RP)N, the attention unit A calculates, for eachi = 1,..., N, the output

Yi = 2 rl-,]-ij € ]Rd (1)
JEIN]



Published as a conference paper at COLM 2024

where the attention probability
(ri1, ..., 7in) = softmax(x; Q"Kxy,...,x Q" Kxy)
_ exp(x; Q" Kxy) exp(x; QT Kxy)
N exp(x] QTKxj)" "’ Yiein exp(x QTKx))

We assume that the computations of the self-attention unit are carried out with a precision
of p bits.

An H-headed transformer layer L consists of H self-attention units sharing the same input,
together with a combining function ® which maps, for each i, the H outputs of the layer to

an output token in R?. Finally, a Transformer T is the cascade of several transformer layers.

Notice that our definition ignores certain features of the Transformer architecture, such
as input embedding and pre- and post-processing of individual tokens by feed-forward
networks; however, it is easy to see that input embedding and the pre-processing can be
absorbed in the input tokens, while post-processing can be incorporated into the combining
function ®, and therefore, this omission does not affect the validity of our argument.

Function composition. We next define the function composition problem. Consider two
functions, ¢ mapping a domain A to a domain B, and f mapping B to another domain C —
for example, g(a) could be the mother of person a € A, and f(b) is the profession of person
b € B. These functions will be described in a prompt X. The N tokens of X are divided into
three parts:

e Part 1. The first part describes the function g through |A| sentences in simple,
unambiguous language separated by punctuation, e.g. the mother of John is
Helen; the mother of Charlotte is Eve; etc.;

e Part 2. Similarly, the second part consists of | B| sentences describing the function f,
e.g. Helen is a doctor; Jane is a teacher; etc. and

e Part 3. The query, e.g. what is the profession of John’s mother??

Notice that the number N of input tokens is a small multiple of the domain size of the
functions. We say that an H-headed Transformer layer £ computes the function composition
correctly if, for any input prompt in the correct format, the output of the layer corresponding
to the token of the query (to the token ? or potentially <eos> in this example) is the correct
answer of the composition query.

In the body of the paper we also introduce similar tasks, such as iterated function composi-
tion and reachability, whose definitions are simple extensions of the above.

Information theory. We use standard notation from information theory. If X,Y,Z are
random variables, H(X) is the entropy of X and I(X;Y) is the mutual information between
X and Y. We write In(-) for the natural logarithm and log(-) for base two.

3 The Impossibility of Composition

We prove the following:

Theorem 1. Consider a function composition problem with input domain size |A| = |B| = |C| = n,
and an H-headed transformer layer £ with embedding dimension d and computation precision p,
and assume that H(d + 1)p < nlogn. Then L cannot solve correctly the function composition
problem. In particular, if R = nlogn — H(d 4+ 1)p > 0, then the probability, over all possible

functions and queries, that L answers the query incorrectly is at least %

The proof relies on Communication Complexity (Kushilevitz & Nisan, 1996), a subfield of
Complexity Theory in which one measures the number of bits that need to be exchanged

21t is fine to think that these sentences come in this order, but the proof does not require it.



Published as a conference paper at COLM 2024

between distributed computational agents possessing different parts of the input, in order
for one of them to obtain the result of the computation. The agents are assumed to have
unbounded computational capabilities, and to be restricted only in terms of their communi-
cation. One important classical result in Communication Complexity is the communication
difficulty of the set disjointness problem: 1f Bob and Alice are each given a vector of n bits
and they want to compute the Boolean inner product of these bit vectors — that is, to tell
if there is an index i such that the ith bit of both Bob and Alice is a 1 — then they must
communicate 7 bits. In fact, this result used is in the impossibility proofs in Sanford et al.
(2023). Another classical problem in this field is pointer chasing: Alice and Bob are given two
functions A and B, respectively, from [n] to [1], and they need to compute a composition
of these functions, say A(B(A(B(A(0))))). Compositions can obviously be computed by
the agents alternatingly communicating logn bits to each other: in this example, Alice
communicates to Bob the value of A(0), then Bob tells Alice the value of B(A(0)), and so on.
But what if one less rounds of communication is allowed? Or, if the same number of rounds
is allowed, but Bob must start? Over the four decades since this problem was first posed
(Papadimitriou & Sipser, 1982), it has been shown that, if one less round of communication
is desired, or if Bob has to start the communication, then exponentially more bits must
be exchanged. These lower bounds have been used to inform many fields of Complexity,
including lower bounds of bounded-depth circuits, see for example Kushilevitz & Nisan
(1996), and even the complexity of Machine Learning (Chen et al., 2022).

Here we use a slight variant of this classical framework. We assume three agents, whom we
call Faye, Grace, and Xavier. Faye knows a function f from [n] to [n], Grace knows another
such function g, and Xavier knows a number x € [n]. We can actually assume that Faye
and Grace both know Xavier’s value x. The only communication allowed is from Faye and
Grace to Xavier — not between Faye and Grace. Our goal is for Xavier to know the value
f(g(x)) so that Faye communicates to Xavier as few bits as possible. Notice that we do not
restrict the number of bits Grace can communicate to Xavier.

Lemma 1. If fewer than nlog n bits are communicated by Faye to Xavier, then Xavier cannot know
the value f(g(x)). In particular, if only nlogn — R bits are communicated from Faye to Xavier
for some R > 0, then the probability, over all pairs of functions, that the composition is computed

incorrectly is at least 5. Togn"

The proof can be found at Appendix A

Remark 1. The lower bound on the error probability in the statement of the Lemma is

R
logn
following construction (we assume n is a power of 2 for simplicity): Faye sends to Xavier nlogn — R
bits, by which she encodes the the first n — [10{; | values of the function. With this scheme, an error

R

happens if one of the last [@1 values of the function is queried, and answered the wrong way. This

R
7 3nlogn’

optimal within a small constant factor. In proof, an upper bound of %f | is possible, by the

probability is at most L[

o |, which is just a factor of three greater than the lower bound.

R
logn
We now turn to the proof of the theorem.

Proof. For the purposes of contradiction, suppose that there is a self-attention layer £ that
can reliably combine any two functions f and g on any domains A, B, C of size n, such that
nlogn > H(d + 1)p. We will show that this contradicts Lemma 1.

Suppose that the three agents Faye, Grace, and Xavier are as in the lemma, and they wish to
compute f(g(x)); we claim that they could do so by using £ as follows: They put together
the prompt of a function composition problem to be solved by £, where Faye supplies the
token strings associated with function f — say, the value of f applied to @ is 3, etc.
Grace supplies similarly the tokens associated with function g, and Xavier supplies the
query part: what is the result of f applied to g applied to 23? — recall that Xavier
knows x, and it happens to be 23. We assume the token corresponding to 23 is token ¢, that is,
x¢ = 23. Then the three agents compute the result of the computation of £ that corresponds
to the token t, as explained below. Recall that, by our assumption that £ performs function
composition, this result must be the required answer f(g(x)).



Published as a conference paper at COLM 2024

The three agents communicate to compute, for each head, the final embedding that corre-
sponds to the token ¢, and then Xavier applies the finishing function ® to compute the final
result, which will be the answer of the composition problem. For each head, the result at
token N can be written as

N

Yt = ——x——— wherer;; = exp(xtTQTKxj). (4)
Lj=17j
The key observation now is that this expression can be written as y; = %, where F

is the part of the numerator that corresponds to Faye’s tokens x; , similarly G corresponds
to Grace’s tokens, X corresponds to Xavier’s tokens, and similarly for the denominator.
Hence, Faye can compute and communicate to Xavier quantities F and F/, and similarly
for Grace and G, G’; then Xavier can add to these the terms X and X’, divide, and thus
compute yy. Repeating for all heads and combining with ®, Xavier can compute f(g(x))
and obtain the desired answer to the composition problem. But now notice that this was
accomplished through a communication of only H(d + 1)p bits from Faye to Xavier — dp
bits for F and p bits for F’ for each of the H heads. By hypothesis, this quantity is less than
nlogn, contradicting Lemma 1. The second part on error probability follows from the same
reduction, completing the proof. O

Remark 2. The proof of the probabilistic statement assumes that f is a uniformly random function
from [n] to [n]. To prove a negative result, some probabilistic assumption is necessary; for example,
if f(x) happens to be a for all x, far fewer bits need be communicated from Faye to Xavier. The
statement can be extended to cover more general distributions, but then the entropy of f would
replace nlog n in the denominator of the statement.

Remark 3. It is clear from the proof that function g plays a minimal role in the lower bound, since its
value on x is communicated for free to Xavier. Indeed, one can argue that what is proved impossible
for the Transformer layer is the evaluation of a function f. The reasoning in the proof of the Theorem
can be repeated for prompts which, after listing the birthplaces of many luminaries end like this:
¢¢...where was Einstein born?’’, as long as the answer must appear at the position of the last
token.

Chain of Thought

Can CoT help solve the composition problem? Intuitively, the answer is “yes.” For any
composition problem — for example, the prompt about Turing, London, and England in
the introduction — we can help the LLM successfully answer the question ‘ ‘In which
country was Turing born?’’ by generating a short CoT prompt that breaks the question
into simpler ones, e.g. ‘ ‘Let’s see, Turing was born in GENERATE, and GENERATE is
in the country of GENERATE, so Turing was born in GENERATE.’’ However, we prove
below that an arbitrarily large number of CoT steps are needed to solve the generalization
of composition to many function applications. In the iterated function composition problem
we are given K functions f1, f, ..., fk, and we need to calculate fx(fr_1(...(f1(x)))) for
x € [n]. In fact, in our proof we shall consider f&) (x) = f(f(... f(x))) — that is, we shall
takef1 = :fK-

Theorem 2. Let H be the number of attention heads, d the embedding dimension, p the computation
precision, and n be the domain size of the iterated composition problem. A Transformer layer requires

O/ ga p) CoT steps for answering correctly iterated function composition prompts.

Proof. We reduce from another classical problem in Communication Complexity called
pointer chasing. Let n and ¢ be two positive integers. In the (7, ¢)-pointer chasing problem,
Alice knows a function f4 : [n] — [n] and Bob knows another function fg : [n] — [n]. The

pointers w(!),w(?), . . . are recursively defined as

wV =1, w® :fA(w(l)), w® =fB(w(2)), w® :fA(w(3)), w®) :fB(w(4)),



Published as a conference paper at COLM 2024

The communication proceeds for 2r rounds, with Alice starting. The goal is for Bob to

output the binary value of w(**2) (mod 2). The following summarizes what is known
about this problem:

Lemma 2 (Nisan & Widgerson (1991); Klauck (2000); Yehudayoff (2020)). Any randomized
protocol for the pointer chasing problem with error probability at most 1/3 under the uniform
distribution must involve the transmission of at least n/(2000c) — 2clog n.

The connection between pointer chasing and CoT is summarized below, the proof can be
found at Appendix A

Lemma 3. Forany K > 1, suppose there is a Transformer layer £ with H attention heads, dimension
d, and precision p that solves the K-iterated function composition within R CoT steps, then there is a
communication protocol for (n, K — 1)-pointer chasing, communicates in 2R rounds and exchanges
2RH(d +1)p bits.

Combining Lemma 2 and Lemma 3, and taking K = 1%0 Hidp, we complete the proof. O

4 Compositionality and Logarithmic Space

In a recent paper (Dziri et al., 2023) a novel genre of hallucinations was identified: extensive
experimental evidence is presented that Transformers perform poorly on compositional tasks,
that is, tasks requiring the repeated iteration of elementary tasks; similar phenomena have
been observed elsewhere (Merrill & Sabharwal, 2023b; Feng et al., 2023; Merrill & Sabharwal,

2023a). The main examples of compositional® tasks explored in Dziri et al. (2023) are:

¢ multiplication of multi-digit integers modeled as an arithmetic circuit with single-
digit values and inputs;

¢ asimple sum maximization problem over a sequence of integers under the restric-
tion that two successive integers cannot be both added to the sum; this again can be
reduced through dynamic programming to an arithmetic circuit with plus and max
gates; and

e Logic puzzles such as “Einstein’s Riddle”*

Wrong answers to large families of simple questions such as these constitute a special
category of hallucinations, and it is of interest to explore its causes. It turns out that, to do so,
we must turn the page of our negative results of the previous section and Communication
Complexity arguments, and employ the theory of Computational Complexity (Papadim-
itriou, 1993; Arora & Barak, 2009) to study certain basic computational problems underlying
the tasks studied in Dziri et al. (2023):

Circuit evaluation: Given the description of a circuit with gates, which can be either
Boolean or arithmetic operations, as well as the values of all input gates of the circuit,
evaluate the output(s) of the circuit. Multiplying decimal integers with multiple digits is an
example of such a circuit; solving the adjacency-restricted largest sum problem of Dziri et al.
(2023) is also the evaluation of a circuit, this time with 4 and max gates.

Derivability is yet another generalization of our composition task of the previous section
which we believe captures many aspects of the informal notion of compositionality. We are
given a finite domain S — intuitively, the partial solutions of the problem in hand — and a
relation D C S x S — intuitively, legal one-step derivations. We are also given two subsets

3We note here that, despite the obvious linguistic affinity of the two terms “composition” studied
in the previous section and the “compositionality” of Dziri et al. (2023), the two terms are further than
they seem. Compositionality is an informal category that is vastly more general than composition,
which is a specific mathematical concept.

4https ://en.wikipedia.org/wiki/Zebra_Puzzle


https://en.wikipedia.org/wiki/Zebra_Puzzle

Published as a conference paper at COLM 2024

of S, I (for initial partial solutions) and F (for final partial solutions). The question is: are
there elements a1, 4, ...,a; € S such that (a) ag € I; (b) ax € F, and (c) for all j such that

0< ] <k, D(a]-_l,aj)?

Logical reasoning: Logic puzzles can be typically formulated as instances of satisfiability
(or SAT). This problem is NP-complete and, even though large instances arising in practice
can be solved by sophisticated techniques developed over decades of research, it would
not be surprising if LLMs may have problems in dealing with arbitrary logical expressions.
There are, however, three tractable special cases of SAT that underlie much of tractable
common-sense reasoning: 2-SAT, the satisfiability of CNF formulas with two literals in each
clause; Horn SAT, the corresponding problem for Horn clauses, that is, clauses with at most
one positive literal; and Mod 2 SAT, the solution of a system of linear equations modulo 2.
Note that these are the only nontrivial tractable special cases of SAT. Can we expect LLMs
to handle them?

We point out below that, assuming certain well accepted conjectures in Computational
Complexity, all of these tasks are impossible for a multi-layer Transformer to perform
reliably and for large enough prompts. We start with the following;:

Theorem 3. The computation of of an L-layer Transformer on a prompt of length N can be carried
out with O(Llog(n)) bits of memory, when the precision, the number of heads and the embedding
dimension is polynomially bounded p, H, D < poly(N).

Proof. The Observation is not hard to verify for a single Transformer layer: In each head of
each layer of a Transformer, one only has to compute the next layer embedding y; for each
token, through the formula in Equation (1). This formula can be computed by a program
with two loops over i and j, both ranging over all N tokens. These loops nest three more
loops over d, D and the Taylor iteration for computing the exponentiation function. Since
the precision of all numbers involved is logarithmic with respect to the problem size N (the
prompt length), everything else, including arithmetic operations, can be carried out with
log(N) memory.

This observation can be made more formal by defining a Turing machine with an input
tape containing the data of the computation (the N tokens and the entries of the matrices
Q,K, V), as well as six work tapes: Two for maintaining the indices i and j, three for the
indices ranging over [d] and [D] and one for the partial results of the arithmetic operations;
the work tapes, taken together, use a total number of bits that is O(log N). When there are
multiple attention heads, as long as the combination function ® can be carried out also
in log-space (which is true for both finite-depth neural networks as well as matrix-vector
multiplication), the output at each token can be computed in logarithmic space.

So far we have argued that, given access to the input tokens and the attention matrices, the
computation of the first layer can be carried out in logarithmic space. To extend this to two
layers, recall that the computation of the second layer is just like that of the first, except that
access to the outputs y; of the first layer is needed, instead of the input tokens. This can also
be performed in O(log N) space by recomputing, in a separate set of tapes, the y; values one
by one as needed by the computation of the second layer — incidentally, this recomputation
maneuver is a common way of saving memory by exploiting a memory-time trade-off. In
the same way, any constant number of layers can be computed in logarithmic space, through
nested loops. The number of layers will appear as a multiplicative constant of the space
requirement of the computation, as well as in the exponent of the time requirement. O

It follows that the computation of a constant layer Transformer belongs in the complexity
class L (standing for logarithmic space (Papadimitriou, 1993; Arora & Barak, 2009)).

Observation 1. The computation of a constant layer Transformer on a prompt of length N can be
carried out with O(log N) bits of memory.

This is not a new result; it has been recently established in Merrill & Sabharwal (2023b) that
the computation of Transformers lies in the complexity class log-uniform TC?, which is more



Published as a conference paper at COLM 2024

restrictive than logarithmic memory; in fact, the implications of this result for the capabilities
of Transformers are also briefly discussed in Merrill & Sabharwal (2023b). However, we feel
that the simple arguments we present here, both for proving the observation and point out
its connections to compositionality tasks, are simple, intuitive and useful.

Now, next to the paramount P # NP conjecture about time complexity, there is another
important, classical, and also broadly accepted analogous conjecture about memory: L # NL.
It states that nondeterministic logarithmic memory is more powerful than its deterministic
counterpart (Papadimitriou, 1993; Arora & Barak, 2009). Just as NP has complete problems,
such as SAT, which witness its conjectured difference from P, there are NL-complete prob-
lems, and two of the best known among them are 2-SAT and Derivability (classically known
as Reachability). Circuit evaluation and Horn-SAT are even harder: they are both complete
for P, which includes NL.

We summarize the previous discussion as follows:

Observation 2. The four problems of Derivability, 2-SAT, Horn SAT, and Circuit evaluation cannot
be solved by multi-layer Transformers unless L = NL. In fact, for the latter two problems the result
is true unless the stronger statement L = P holds. For Mod 2 SAT, the result is true unless the
weaker statement L = Mod 2 L holds.

We believe that this theorem goes a long way towards explaining the shortcomings of
Transformers identified in Dziri et al. (2023), given the affinity between the problems proved
impossible above and the tasks studied in that paper. Importantly, it is demonstrated
experimentally in Dziri et al. (2023) that the performance of Transformers on these tasks
deteriorates rapidly as the depth of the task increases. This is in good agreement with our
complexity explanation, because the relevant complexity results kick in only when the depth
is larger than log N — for compositional tasks of depth smaller than that, it is not hard to
see that logarithmic memory is enough.

5 Discussion

We used complexity arguments of two different genres — Communication Complexity and
Computational Complexity — in order to elucidate certain shortcomings of the transformer
architecture, namely an information bottleneck as well as difficulties in dealing with depth.
We showed that the elementary function composition problem cannot be solved by a
single Transformer layer, and that CoT can solve the iterated composition problem only by

generating a prompt that has length Q(v/N). These mathematical results are limited in two
ways: (a) they take hold when the domain size is larger than the dimension parameters
(which are typically in the hundreds), and (b) they break down for multiple layers. We
also provide evidence from Complexity Theory — of the classical Turing machine variety
— that the compositionality tasks known empirically to be hard for Transformers contain
computational ingredients and primitives that are impossible for Transformers to deal with.

The reader is reminded that the complexity arguments we employ here come with caveats.
The impossibility result for composition holds for a single layer, in a probabilistic way (the
error probability is nonzero but not one), and only when the domain of the functions is
larger than the parameters of the Transformer layer. The results based on Computational
Complexity come with a different set of caveats: They hold only if certain yet unproven,
if widely accepted, conjectures are true, and even then they are asymptotic, holding for
instances larger than an unknown size, for which the assumed asymptotic conjectures take
effect. Complexity results such as these are mere warnings that these problems have a
fundamental incompatibility with the Transformer architecture, and therefore one should
not expect that these problems to be solvable in practice ad infinitum. However, as with
other complexity conjectures such as P # NP, it is often the case that computational dif-
ficulties start happening for instances of reasonably small size. For example, we already
know (Dziri et al., 2023) that Transformers have difficulties with compositionality tasks
of rather small sizes, and in Appendix B we present anecdotal evidence that LLMs often
respond erroneously to prompts of small sizes related to function composition. Naturally,
the opposite phenomenon is also common: some NP-complete problems such as 3SAT



Published as a conference paper at COLM 2024

seem to be amenable to efficient solutions in practice for very large instances; however,
this is typically accomplished by extensive exploration over decades of a large arsenal of
algorithmic techniques relying on the kinds of instances that appear in practice, and not
through a fixed algorithmic architecture.

The real tragedy of complexity lower bounds is not their tentative and asymptotic nature; it
is that (a) they are rare and hard to come by, and they come in very few known kinds; and
(b) they tend to be overly conservative, in that they often vastly overestimate the capabilities
of the computational agents they are trying to delimit. Lemma 1 is a good example: it is
designed to hold even if Grace uses the most sophisticated math to encode her input into
her message. But when the lemma is applied in Theorem 1, Grace is very restricted, in that
her message to Xavier is not a clever coding of her tokens, but the two particular simple
numerical expressions that we call G and G’ in the proof. It is intuitively clear that this
computation — the token values projected, exponentiated, and then cross-multiplied and
averaged — is a very poor way to encode the n values of function g so that Xavier can
recover each one of them readily. This observation highlights an interesting open problem,
the opportunity to develop a more sophisticated variant of Communication Complexity for
computationally restricted agents in order to study the limitations of devices such as the
Transformer.

Finally, our two genres of negative results suggest an intriguing challenge: What would
it take to design a different attention layer that is immune to these two lower bound
techniques, while maintaining the architecture’s efficiency and effectiveness in practice?
Our proof suggests a version of the softmax computation in the attention layer that is
either not commutative or not associative, or one that requires more than logarithmic space.
But, of course, simply evading a lower bound technique does not guarantee a tangible
improvement in performance...

Acknowledgement

We are grateful to Fernando Pereira for his insights, engagement, and constructive critiques
throughout this project. Thanks also to Olivier Bousquet for many insightful comments on
an earlier draft. This work was done when the third author was a visiting scientist at Google
DeepMind in Zurich. The work of the first and third authors was partially supported by an
NSF grant.

References

Holy Bible, Matthew 1, 1-17.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Xi Chen, Christos Papadimitriou, and Binghui Peng. Memory bounds for continual learning.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp.
519-530. IEEE, 2022.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of
transformers on compositionality. Advances in neural information processing systems, 2023.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize
dyck-n languages? In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 4301-4306, 2020.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in
neural information processing systems, 2023.

10



Published as a conference paper at COLM 2024

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun.
Mitigating large language model hallucinations via autonomous knowledge graph-based
retrofitting. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transac-
tions of the Association for Computational Linguistics, 8:156-171, 2020.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin
Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language
generation. ACM Computing Surveys, 55(12):1-38, 2023.

Adam Tauman Kalai and Santosh S Vempala. Calibrated language models must hallucinate.
arXiv preprint arXiv:2311.14648, 2023.

Hartmut Klauck. On quantum and probabilistic communication: Las vegas and one-way
protocols. In Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pp. 644-651, 2000.

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1996.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths.
Embers of autoregression: Understanding large language models through the problem
they are trained to solve. arXiv preprint arXiv:2309.13638, 2023.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain
of thought. arXiv preprint arXiv:2310.07923, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023b.

Noam Nisan and Avi Widgerson. Rounds in communication complexity revisited. In
Proceedings of the 23rd Annual ACM symposium on Theory of computing, pp. 419-429, 1991.

Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1993.

Christos H Papadimitriou and Michael Sipser. Communication complexity. In Proceedings of
the 14th Annual ACM symposium on Theory of computing, pp. 196200, 1982.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limita-
tions of transformers. Advances in neural information processing systems, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems, 35:24824-24837, 2022.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3770-3785, 2021.

Amir Yehudayoff. Pointer chasing via triangular discrimination. Combinatorics, Probability
and Computing, 29(4):485-494, 2020.

11



Published as a conference paper at COLM 2024

A Missing proof from Section 3

Proof of Lemma 1. The proof of the first statement of the lemma is elementary. Since Faye
and Grace cannot communicate, and communication from Grace to Xavier is free, we
may assume that Grace communicates to Xavier the value of g(x) — intuitively, the only
information he needs from her. Even though progress seems to have been made, Xavier must
now apply f to g(x), and he knows nothing about f. This difficulty must be solved through
communication from Faye to Xavier, as further communication from Grace obviously cannot
help. There are n" possible functions f, and to describe the actual one completely Faye
needs to send Xavier at least 1 log 1 bits, the logarithm base two of n" — in fact n[log n| bits
suffice, because Faye can send to Xavier the values f(0), f(1), ... in this order. If Faye sends
to Xavier fewer than nlog n bits, say B bits, the precise bitstring she sends is determined by
the function f she knows, and thus this communication subdivides the n" candidates for
the f function into 28 categories — one for each value of the B bits sent by Faye to Xavier.

Since B < nlogn, we have that 28 < 1", and hence, by the pigeonhole principle, at least
two different candidate functions f and f’ result in the same communication from Faye to
Xavier, and Xavier has no way of knowing which of the two functions is the correct one.
These two functions must differ in at least one value, say f(z) # f'(z). But what if it so
happens that g(x) = z? In this case, Xavier has no way of knowing the correct answer to
the problem he is supposed to solve, completing the proof of the first statement.

The proof of the second, quantitative, statement is more technical and relies on Information
Theory and mutual information®. Recall the input of Grace is a random mapping g : [n]
[n], for any fixed input of Xavier x € [n]. Let i* = g(x) € [n], then we know that i* is
uniform over [n]. Let IT be the message sent from Faye to Xavier, it has nlog(n) — R bits.
We first bound the mutual information between IT and f(i*) = f(g(x)):

A I
Sl Sle Sy
gk
1= L[2=
~ ~
~— —
SR R
‘\H \'\
~— —
= =
— ~—
—
-
=
~—
=
A
N

1=
—~
—
=
~
—
—_
:—/
=
—
=
N—
SN—

I(IT; £ () 1) Pr(i® =] - I(IT; f(i")[i* = 1)

I
—

|
[
—_ —

=
—

<

Il
—_
o

o5
=
|

\

@

The first step follows from the definition of conditional mutual information. The second
step follows from the facts that i* is uniform over [n] and IT is independent of i*. The third
step follows from (f(j));<; are independent of f(i), and the fourth step is the chain rule.

=|

Notice that Xavier’s output is just a post-processing of IT and i*, and denote by 4 its error
probability. Then by Fano’s Inequality, we have

H(6) +dlog(n) = H(f(i*)[TLi%) = H(f(")|i*) — I(IL; f(i*)[i")

R R
> 1 —(1 ——)=—.
> logn — (logn — =) =~ 3)
Here the first step follows from Fano’s inequality, the third step follows from Eq. (2).
From Eq. (3), we can derive that § > % O

We next prove Lemma 3

SStrictly speaking, the second statement implies the first; however, the simple proof of the first
statement is included for reasons of exposition.

12



Published as a conference paper at COLM 2024

Proof of Lemma 3. Recall that in the pointer chasing problem, Alice receives a function f4 :
[n] — [n] and Bob receives a function f : [n] — [n]. Define a single mapping f : [2n] — [2n]

such that fa) e
. 1) +n 1€ |n
f(l):{fg(i—n) ien+1:2n

For any i € [n], we have that f*) (i) = (fg o f4)®) (i) holds for any integer k > 1.

Suppose there is a Transformer layer £ that solves the K-iterated function composition
problem using R CoT steps; we shall construct a communication protocol for pointer chasing
based on it. Alice and Bob put together the function composition task for £, where Alice
supplies the description of f(1),..., f(n), using her knowledge of f4, and Bob supplies the
description of f(n +1),..., f(2n), using his knowledge of fg. For simplicity, we assume
the i-th input token, x;, contains the information of f (i), for any i € [2n]; the query x2,11

appears at position 21 4 1 and it asks for f(K)(1). Let K}, Qy, V}, be the key, query, value
matrices of the h-th attention head.

The communication protocol proceeds in 2R rounds, where the 2r — 1,27 rounds simulate
the r-th step of CoT. Formally, forr = 1,2,..., R, the protocol proceeds as follows:

e At round 2r — 1, for each attention head h € [H|, Alice computes
Yic[n) exp(xZTnHQ;Khx,-) € Rand Yy (sznJer;Khxi)thi € RY, and sends them
to Bob;

e At round 2r, for each attention head h € [H|, Bob computes
Yicin+iom P (X, 1, Qn Knxi) € R, Licpirom exp(xy, ,Qy Kpxi)Viyxi € R
and sends them to Alice;

* Alice and Bob compute, locally, the output v, (h € [H]) as

y  Yiepon) P (%5, Qy Kinxi) Vixi + Licpy exp (x5, ,Qp KnXon+i) ViXan i
2t =
" Yicion P (x5, ,Qp Knxi) + Licpy exp(x3,,,,Qp Knxan i)

and the next token X2, 41 = P(Yontr1,-- - Yonstr,H)

After 2R rounds, Bob knows the output of R-fold CoT, and can compute f K1) =

(fz o f4)K)(1), this resolves the (1, K — 1)-pointer chasing task. The total number of bits
communicated are 2R - H(d + 1)p, as required by the lemma. O

B Examples

We show here a few qualitative results that illustrate the difficulty of composition for state-of-
the-art LLMs. A full empirical exposition for the case of compositional failures can be found
in Dziri et al. (2023). The experiments here are conducted on ChatGPT 3.5, ChatGPT 4 and
Bard. The prompts used involve simple composition over spatial, temporal or relationship
relations. The experiments were performed before March 26th, 2024. We allow all three
LLMs to perform step-by-step reasoning, and we only show their final answer. The answers
displayed are typical.

Spatial composition When the prompt involves spatial information, transformer based
systems appear to have problems with composition, see examples in Figure 1.

Temporal composition Figure 2 shows two simple cases where temporal composition
fails and all the state-of-the-art models return incorrect answers.

Relationship composition We also see incorrect and hallucinatory answers when the
prompt involves the composition of relationship information, see the two examples in
Figure 3.

13



Published as a conference paper at COLM 2024

Prompt: Fayes is to the west of Xaive, Jill is to the north of Ken, Fayes is to the south
of Ken, where is Ken with respect to Xaive?

GPT 3.5: East
GPT 4: Northeast
Bard: Not enough information

Correct answer: Northwest

Prompt: If Amy is to the southwest of Ben, Cindy is to the northeast of Amy and
directly north of Ben, is Amy further from Ben or Cindy?

GPT 3.5: Ben
GPT 4: Ben
Bard: Ben

Correct answer: Cindy

Figure 1: Spatial composition produces incorrect answers

Prompt: Jan’s birthday is one year after Nancy, Nancy is older than John by seven
years. What's the age different between Jan and John?

GPT 3.5: 8 days
GPT 4: 8 years
Bard: 8 years

Correct answer: 6 years

Prompt: Alice is the younger sister of Bob, Bob is the elder brother of Tim. Is Alice
younger than Tim?

GPT 3.5: Yes
GPT 4: Not enough information
Bard: Yes

Correct answer: Not enough information

Figure 2: Hallucinations in temporal composition

14



Published as a conference paper at COLM 2024

Prompt: Aig is the son of Bef, Caf is the son of Aig. Does Aig have any grandchildren?
GPT 3.5: Yes

GPT 4: Yes

Bard: Yes

Correct answer: Not enough information.

Prompt: Aya is the father of Bob, Charlie is the father of Cindy, Bob is the mother of
Cindy. Does Aya have a grandchild?

GPT 3.5: Not enough information
GPT 4: Yes
Bard: No

Correct answer: Yes

Figure 3: Hallucinations in relationship composition

15



	Introduction
	Preliminary definitions
	The Impossibility of Composition
	Compositionality and Logarithmic Space
	Discussion
	Missing proof from Section 3
	Examples

