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Abstract

We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event

mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored

generative models to deliver state-of-the-art performance. However, such generative models cannot handle

document-level ECI where long context between event mentions must be encoded to secure correct predictions. In

addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary

training signals. To address these limitations, we propose a novel generative framework that leverages Optimal

Transport (OT) to automatically select the most important sentences and words from full documents. Specifically,

we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The

selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to

generate both the causal relation label and salient contexts. This allows richer supervision without external tools.

We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and

state-of-the-art performance of ECI.
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1. Introduction

Aiming to identify causal relations between event

mentions in text, Event Causal Identification (ECI),

serves as an important task in Information Ex-

traction (IE) to reveal event structures for text un-

derstanding. For instance, in the sentence “The

dam collapse caused severe flood in the neigh-

borhood.”, ECI models need to predict the causal

relation between the two event mentions/triggers

“collapse” and “flood”, i.e., “collapse”
cause
−−−→ “flood”.

When deployed for real-world applications, an ECI

system can provide useful information for differ-

ent natural language processing (NLP) tasks such

as machine reading comprehension (Berant et al.,

2014), question answering (Oh et al., 2016), and

event forecasting (Hashimoto, 2019).

A key challenge for ECI models is effectively cap-

turing text context information for two input events

to facilitate causal relation prediction. In the liter-

ature, sentence-level ECI models only focus on

cases where two input events are presented in

the same sentences (Do et al., 2011; Hashimoto,

2019; Zuo et al., 2020; Shen et al., 2022; Man

et al., 2024). In contrast, document-level ECI mod-

els extend the focusing context to allow the event

mentions to appear in different sentences of a doc-

ument, potentially involving long distances with

greater challenges for context encoding (Gao et al.,

2019; Tran and Nguyen, 2021; Chen et al., 2022).

To be clear, this work addresses document-level

ECI to achieve the most flexibility for context mod-

eling.

A majority of previous work has formulated ECI

as a classification problem by employing a discrim-

inator on top of a pre-trained encoder language

models such as BERT (Devlin et al., 2019). How-

ever, classification-based methods for ECI cannot

leverage the semantics of labels and their depen-

dencies with important context words to boost pre-

diction performance (Man et al., 2022b). To this

end, a few recent ECI work has explored a new

generation-based approach for ECI to produce

state-of-the-art performance (Man et al., 2022b;

Shen et al., 2022). In such methods, a model

was trained to generate an output containing the

label rather than classify inputs into predefined cat-

egories. Further, important context words in the in-

put texts for causal prediction can also be included

in the output texts for generation, serving as a com-

plementary task to aid ECI (Man et al., 2022b).

However, current generative ECI models can only

solve sentence-level ECI due to their requirements

to consume entire input texts that cannot accept

longer context beyond the pre-defined limitations

of generative PLMs (Man et al., 2022b; Shen et al.,

2022). In addition, the important context words

for generation in previous ECI work are obtained

via dependency parsing tools (i.e., using words in

the dependency paths between two events) (Man
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et al., 2022b) or human annotation (i.e., human-

annotated cue words)(Shen et al., 2022), which

might not be ideal for training ECI models in prac-

tice. However, dependency parsing tools might not

be perfect and the dependency path-based heuris-

tics might not always effectively extract important

context words in input texts for causal prediction,

especially for document-level ECI where depen-

dency parsing for documents is less well-defined.

On the other hand, human annotation for important

context words can be expensive and less practical

in different domains and languages.

To address the aforementioned limitations, we in-

troduce a novel generative model for ECI based on

a hierarchical Optimal Transport alignment to se-

lect important contexts in the input document. First,

we formulate the identification of important con-

texts as an OT problem (Peyre and Cuturi, 2019)

between event pairs and the document to auto-

matically extract relevant contexts without using

third-party tools or manual annotation. Specifically,

we solve the OT problem at both sentence and

word levels to hierarchically align event pairs to

sentences and words in the document. We then

identify salient contexts based on the OT align-

ments.

Second, we propose a new learning paradigm

to enhance important context extraction and ECI

performance. The generative PLMs will consume

the selected important sentences as input, which is

often much shorter than the whole document due

to the sparsity of OT alignment (Swanson et al.,

2020), and then aim to generate both salient con-

text words and causal labels to achieve richer train-

ing signals for ECI. To further improve the OT con-

text selection, we optimize these components with

reinforcement learning, rewarding selections that

improve ECI performance.

Finally, motivated by the benefits of background

knowledge for causal prediction between events

(Kadowaki et al., 2019; Liu et al., 2020), we

propose retrieving sentences expressing relevant

event background knowledge from ConceptNet for

input documents to enhance our generative mod-

els. However, there may be multiple potentially

relevant sentences, and it is unclear which are

directly useful for the causal prediction task. To

address this, we include the knowledge-retrieved

sentences in the OT framework for sentence selec-

tion to determine their importance for ECI to select

those most useful for ECI.

To demonstrate the benefits of the proposed

ECI method, we conduct extensive experiments

on different benchmark datasets over different lan-

guages to produce state-of-the-art performance

for ECI. To our knowledge, this is the first work to

explore Optimal Transport and background knowl-

edge retrieval for generative ECI.
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Word-level OT

Reward 

Reward 

Knowledge
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Figure 1: Illustration of our HOTECI framework

for ECI. It consists of components for Sentence-

level Optimal Transport (left-lower part), Word-level

Optimal Transport (left-upper part), and Generative

ECI Model (right part).

2. Model

Given an input text S and two event mentions

es and et, ECI models need to predict whether

there is a causal relation between the two events.

We explore a generative approach for ECI where

sequence-to-sequence architectures will be used

for the core causal model. The design of a

sequence-to-sequence model requires designing

a prompt for input and output sequences I and O

respectively: the model will consume the input I

and attempt to generate the output sequence O

in a defined template. In particular, our input se-

quence I for generative ECI involves a text W to

capture necessary context information for the input

event mentions es and et. Following (Man et al.,

2022b), we include a prompt P (es, et) to specify

the causal relation prediction task for es and et in

the input sequence:

I = W : P (es, et)

with P (es, et) = “Is there a causal relation between

es and et?”. The design of W with important con-

text sentence selection using OT alignments will

be described in Section 2.1.

For the output sequence O of generative ECI,

our method first obtains a sequence C to con-

tain the most important context words in S for the

causal relation prediction of es and et. Also, let

L(es, et) be either the word “Yes” or “No” to show

the existence of causal relation between es and et
in S. To this end, our output sequence for genera-

tive ECI will be the concatenation:

O = C : L(es, et)
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In this way, our generative ECI model will be trained

simultaneously for two highly related tasks, i.e., im-

portant context word generation and event causal-

ity prediction, thus achieving multi-task training to

boost performance for ECI. The word-level OT to

select important context words for C will be dis-

cussed in Section 2.2. We employ the pre-trained

encoder-decoder model T5 (Raffel et al., 2020) to

solve the designed sequence-to-sequence prob-

lem.

In the end, our model was trained by using a

novel training strategy, which will be discussed

in Section 2.3, that alternates between updating

the generative ECI model and the context selec-

tion components. Specifically, we use the stan-

dard supervised word prediction objective to train

the T5 model while we apply the REINFORCE

algorithm (Williams, 1992) to train the OT-based

context selection components to select the con-

texts that enhance the performance of the gener-

ative ECI model. For convenience, the proposed

model in our work is called HOTECI (Hierarchical

OT for ECI). Figure 1 provides an overview for our

HOTECI model.

2.1. Sentence-level Optimal Transport

As discussed earlier, the input sequence I for our

generative ECI model involves a text W to present

context information for the two input events es and

et. Previous generative ECI models (Man et al.,

2022b) use the whole input text S as W , which can

exceed the length limit of PLMs. (Man et al., 2022a)

try to address this by iteratively selecting important

sentences from S as W . However, their approach

can lead to suboptimal solutions due to the num-

ber of selected sentences is fixed for all data as a

hyperparameter. To address these issues, we pro-

pose casting the sentence selection into an optimal

transport problem between candidate sentences

and host-event sentences. The resulting OT align-

ment scores each candidate sentence based on its

relevance to the input events. This allows adaptive

selection of the most informative context sentences

for each event pair, without fixing the number of

sentences. This way, our model can adaptively

select the most informative sentences for each

event pair, without fixing the number of sentences.

Moreover, our proposed framework can reduce the

context length significantly, as the OT alignment is

sparse (Swanson et al., 2020).

Let S = {s1, . . . , sN} be the input text with N

sentences. Let ss and st contain the input events es
and et respectively (possibly the same sentence).

Our goal is to select the most relevant sentences in

S to facilitate predicting the causal relation between

es and et. We treat ss and st as anchor sentences

and define the candidate set X = S \ {ss, st}. We

also define the anchor set Y = {ss, st, snull}, with

snull being a null sentence. Our framework casts

context selection as an optimal transport problem

between X and Y . By solving this alignment, sen-

tences in X aligned to ss or st are considered

highly relevant context and selected. Sentences

aligned to snull are discarded as irrelevant.

The application of OT requires definitions of two

distributions over X and Y that will be aligned un-

der the transportation cost function Tsent:

Tsent : X × Y −→ R+

In this work, we propose to obtain the transporta-

tion cost Tsent via contextual semantic similarity

while distributions for X and Y will be computed

via the distance information. Our motivation is to

prefer the sentences in X that have similar con-

textual semantics and are closer physically to the

anchor sentences ss and st in S due to their poten-

tial to capture relevant context for es and et.

In particular, to capture contextual semantics for

sentences, we first send each sentence in X and Y

into the encoder of the T5 model where the repre-

sentation vector of the <CLS> token in the last layer

is used as the representation for the sentence. For

convenience, we rename the elements in X and

Y by X = {x1, x2, . . . , x|X|} and Y = {y1, y2, y3}
(y3 = snull). Also, let x̄i and ȳj be the representa-

tions from T5 for the sentence xi ∈ X and yj ∈ Y .

Here, the representation for y3 (or snull) is ob-

tained via the average of the representations in

X: ȳ3 = average(x̄i|xi ∈ X). The transportation

cost Tsent(xi, yj) for xi ∈ X and yj ∈ Y is then

computed via:

Tsent(xi, yj) = 1− cosine(FF1(x̄i), FF1(ȳj))

where FF1 is a learnable two-layer feed-forward

network. For the distribution over X, let dssi and

dsti be the numbers of sentences from xi ∈ X to

ss and st respectively. The distance dsi from xi

to the anchor sentences ss and st is then defined

by: dsi = min(dssi , ds
t
i). As such, the distribution

PX(xi) over X is obtained via softmax:

PX(xi) = softmax(dsi|xi ∈ X)

For Y , its distribution PY (yj) will be uniform due

to the equal importance of ss, st, and snull in our

model. Given PX(xi), P
Y (yj), and Tsent(xi, yj),

the optimal joint alignment/distribution π∗
sent(xi, yj)

over X and Y with the marginals PX(xi) and

PY (yj) can be achieved via solving the optimiza-

tion of OT problem1. As such, the distribution

π∗
sent(xi, yj) is a matrix; its element (xi, yj) rep-

resents the probability of transforming xi ∈ X to

yj ∈ Y in the optimal alignment.

1The Sinkhorn algorithm (Peyre and Cuturi, 2019) is

employed to solve the entropy-based approximation of

OT.
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Using the optimal alignment π∗
sent(xi, yj), the

probability for a sentence xi ∈ X to be aligned

with an anchor sentence (i.e., ss or st) π
∗
sent(xi) is

computed:

π∗
sent(xi) = π∗

sent(xi, y1) + π∗
sent(xi, y2)

We also consider π∗
sent(xi) as a probability for

xi ∈ X to be selected for important context in

our model. Eventually, we select the sentences in

X with probability π∗
sent(xi) greater than 0.5 and

their concatenation will be used as the context text

W in our input sequence I. For convenient com-

putation, we also obtain a distribution Qsent over

X to represent the probability that each sentence

xi is selected for important context via the softmax

operation: Qsent(xi) = softmax(π∗
sent(xi)|xi ∈ X).

2.2. Word-level Optimal Transport

Given the selected sentences for the context text

W , our next step involves selecting important con-

text words in W to form the sequence C for the

output sequence O (i.e., O = C : L(es, et)) that will

be generated by the generative model to improve

performance for ECI. Similar to sentence selection,

we consider the input event triggers es and et as

the most important context words for ECI (i.e., the

anchor words). We thus propose to solve the word

selection problem via an OT framework between

anchor words and the other words in W . In par-

ticular, let V = {es, et, wnull} = {v1, v2, v3} be the

set of input event triggers along with a special to-

ken wnull (v3 = wnull). Also, let U = W \{es, et} =
{u1, u2, . . . , u|U |} be the set of non-anchor words in

W . To capture relevant context words for es and et,

similar to sentence-level, our method also empha-

sizes words in U with similar contextual semantics

and close distances. To this end, OT methods

are also employed to solve the alignment problem

between U and V to effectively combine the two

information preferences.

In particular, the text W is first sent into the en-

coder of T5 to obtain representations for every

word (using hidden vectors of the first sub-tokens in

the last layer). The representations from T5 for the

words ui ∈ U and vj ∈ V are then denoted by ūi

and v̄j . Here, the representation for v3 (or wnull) is

computed via the average over the representations

for the words in U , i.e., v̄3 = average(ūi|ui ∈ U).
The transportation cost function Tword(ui, vj) for

the OT between U and V is then defined via:

Tword(ui, vj) = 1− cosine(FF2(ui), FF2(vj))

with FF2 as a two-layer feed-forward network. To

compute the distributions over U and V for OT, we

also employ the uniform distribution PV (vj) for V .

For U , we compute the numbers of words dasi and

dati from the word ui ∈ U to the event triggers es

and et in W respectively. Afterward, the distance

to anchor words dai = min(dasi , da
t
i) is computed

for each ui ∈ U and the distribution PU (ui) for U

is returned from the softmax operation:

PU (ui) = softmax(dai|ui ∈ U)

To this end, by solving this word-level OT problem,

we obtain the OT optimization problem for our align-

ment problem between U and V for word selection.

The solution for this problem from OT methods is

called π∗
word(ui, vj), an alignment matrix/joint dis-

tribution over U and V .

Similar to the sentence selection component, we

use the score π∗
word(ui):

π∗
word(ui) = π∗

word(ui, v1) + π∗
word(ui, v2)

to represent the probability for the word ui ∈ U

to be selected for important context words. As

such, the words ui in U with probability score

π∗
word(ui) greater than 0.5 will be selected for the

context C in our output sequence. Finally, we

also obtain a distribution Qword over U to cap-

ture selection probability for each word ui via:

Qword(ui) = softmax(π∗
word(ui)|ui ∈ U).

2.3. Training

Using the input and output sequences I and O,

one way to train the encoder-decoder model T5 is

to only optimize the negative log-likelihood loss:

Llikelihood = − logP (O|I)

where the probability P (O|I) is computed via the

returned distributions from the decoder. However,

this approach cannot update the parameters for the

OT components for context selection (i.e., the learn-

able networks FF1 and FF2 for Tsent and Tword)

due to the discreteness of the selected sentences

and words in I and O. To this end, we further em-

ploy the REINFORCE algorithm (Williams, 1992)

to enable training of OT-based context selection

components.

In particular, let W = {w1, . . . , wNs
} be the se-

lected sentence set for the context text W and

C = {c1, . . . , cNw
} be the selected word set. Also,

let L̂(es, et) be the word generated by the decoder

of T5 after its encoder has consumed the input I

and the decoder has produced “C :” for the output.

The reward R for context selection in W and C for

the input and output sequences is set to 1 if the

generated label L̂(es, et) is the same as the golden

one L(es, et), and 0 otherwise. The REINFORCE

loss to train our model is thus:

LRL = −R logP (W,C|S)
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. Here, P (W,C|S) is computed via the selection

distributions Qsent and Qword:

P (W,C|S) =

Ns∏

i=1

P (wi|S)

Nw∏

j=1

P (cj |W )

=

Ns∏

i=1

Qsent(wi)

Nw∏

j=1

Qword(cj)

As the parameters for the OT-based components

are involved in P (W,C|S), LRL will allow us to

update the parameters for learning.

To this end, we design an alternating training

procedure for our model. In each iteration with a

batch of data, our model first uses the current pa-

rameters to obtain the selected context W and C

to form the input and output sequences I and O.

The T5 model for generative ECI is then updated

using the loss Llikelihood. Afterward, the parame-

ters for the OT components for sentence and word

selections will be updated using the loss LRL.

2.4. Background Knowledge Retrieval

Background knowledge has been shown to be help-

ful for ECI in previous work, especially for implicit

relations (Kadowaki et al., 2019; Liu et al., 2020).

Accordingly, Therefore, we propose to use Con-

ceptNet (Speer et al., 2017) as a source of back-

ground knowledge for our generative ECI model.

ConceptNet is a large-scale knowledge graph that

contains concepts (including events) and their re-

lations. Some of the relations in ConceptNet are

relevant for ECI, such as “Causes”, “Causes De-

sire”, “Created By”, and “DerivedFrom”. Each rela-

tion in ConceptNet can be represented as a triple

of the form < Concept1, Relation, Concept2 >. To

use ConceptNet for ECI, we first identify the con-

cepts in ConceptNet that match the event trig-

gers in the input document S. Then, we re-

trieve the triples from ConceptNet that involve

at least one of these concepts. These triples

represent the background knowledge about the

events in the document. Next, we convert

each triple < Concept1, Relation, Concept2 >

into a natural language sentence of the form

“Concept1RelationConcept2”. We denote the set

of these sentences as B = {b1, . . . , b|B|}. Finally,

we append the sentences in B to the original docu-

ment to form an enriched input S that contains both

the document and the background knowledge.

3. Experiments

Datasets and Hyperparameters: Following previ-

ous work (Gao et al., 2019; Liu et al., 2020; Man

et al., 2022b), we employ two widely-used English

datasets for ECI to evaluate our model HOTECI,

i.e., EventStoryLine (ESL) (Caselli and Vossen,

2017) and Causal-TimeBank (CTB) (Mirza, 2014).

ESL (version 0.9) includes 258 documents in 22

topics with 4316 sentences and 5334 event men-

tions. There are 7805 intra-sentence and 46521

inter-sentence mention pairs in ESL; 1770 and

3855 of them have causal relation respectively. Fol-

lowing the same data split in prior work (Liu et al.,

2020; Tran and Nguyen, 2021), the last two top-

ics of ESL is used as development data; the other

20 topics are leveraged for 5-fold cross-validation

evaluation. Also, CTB presents 184 documents

with 6813 events; there are 7608 event mention

pairs with 318 positive examples for causal rela-

tion. We use the same data split as previous work

(Liu et al., 2020; Zuo et al., 2021b) with 10-fold

cross-validation for the evaluation on CTB.

In addition, we evaluate our model on MECI (Lai

et al., 2022b), the recent dataset for multilingual

ECI that annotates causal event relation for text

over five different languages, i.e., English, Danish,

Spanish, Turkish, and Urdu. The documents in

MECI are based on Wikipedia and the annotation

schema follows those for ESL. As such, MECI con-

tains both intra-sentence and inter-sentence exam-

ples. To facilitate comparison, for each language,

we utilize the same data split for training/dev/test

data portions as in (Lai et al., 2022b) in the evalua-

tion.

We tune the hyperparameters for HOTECI on

the development data of ESL and leverage the

chosen parameters for CTB and MECI datasets

for consistency. Our tuning process returns the

following hyper-parameters: 2e-5 for the learning

rate with the Adam optimizer; 16 for the mini-batch

size; and 512 dimensions for hidden vectors in the

feed-forward networks FF1 and FF2. Finally, we

use the base versions of T5 (Raffel et al., 2020) for

the evaluation on ESL and CTB, and multilingual

T5, i.e., mT5 (Xue et al., 2021), for MECI.

Baselines: This section compares our model

HOTECI with state-of-the-art (SOTA) models for

ECI. For ESL, we consider the following base-

line methods: (1) LSTM (Gao et al., 2019); (2)

Seq (Gao et al., 2019) adopted from (Choubey

and Huang, 2017) for ECI; and (3) LR+ and LIP

(Gao et al., 2019): document structure models.

For CTB, we evaluate ML: a feature-based model

in (Mirza, 2014). For both ESL and CTB, we

also compare with the following transformer-based

models for ECI: (1) BERT: a BERT-based base-

line in (Zuo et al., 2021b); (2) KnowDis (Zuo

et al., 2020): a distant supervision-based model;

(3) Know (Liu et al., 2020): a ConceptNet-based

model; (4) RichGCN (Tran and Nguyen, 2021): a

rich graph convolutional model, (5) LearnDA (Zuo

et al., 2021b): a data augmentation method, (6)

CauSeRL (Zuo et al., 2021a): a self-supervised
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ESL (Intra-sentence) ESL (Inter-sentence) ESL (Intra + Inter) CTB (Intra-Sentence)

Model P R F1 P R F1 P R F1 P R F1

LSTM (Gao et al., 2019) 34.0 41.5 37.4 13.5 30.3 18.7 17.6 33.9 23.2 - - -

Seq (Gao et al., 2019) 32.7 44.9 37.8 11.3 29.5 16.4 15.5 34.3 21.4 - - -

LR+ (Gao et al., 2019) 37.0 45.2 40.7 25.2 48.1 33.1 27.9 47.2 35.1 - - -

LIP (Gao et al., 2019) 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9 - - -

ML (Mirza, 2014) - - - - - - - - - 67.3 22.6 33.9

BERT (Tran and Nguyen, 2021) 39.2 49.3 43.7 22.3 29.2 25.3 27.3 35.3 30.8 38.5 43.9 41.0

KnowDis (Zuo et al., 2020) 39.7 66.5 49.7 - - - - - - 42.3 60.5 49.8

Know (Liu et al., 2020) 41.9 62.5 50.1 - - - - - - 36.6 55.6 44.1

RichGCN (Tran and Nguyen, 2021) 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6 39.7 56.5 46.7

LearnDA (Zuo et al., 2021b) 42.2 69.8 52.6 - - - - - - 41.9 68.0 51.9

CauSeRL (Zuo et al., 2021a) 41.9 69.0 52.1 - - - - - - 43.6 68.1 53.2

ERGO-BERT (Chen et al., 2022) 49.7 72.6 59.0 - - - - - - 58.4 60.5 59.4

ERGO-Longformer (Chen et al., 2022) 57.5 72.0 63.9 - - - - - - 62.1 61.3 61.7

CF-ECI (Mu and Li, 2023) 47.1 66.4 55.1 - - - - - - 50.5 59.9 54.8

CHEER (Chen et al., 2023) 59.9 69.9 62.6 45.2 52.1 48.4 49.7 53.3 51.4 56.4 69.5 62.3

SemSIn (Hu et al., 2023) 64.2 65.7 64.9 - - - - - - 52.3 65.8 58.3

SENDIR (Yuan et al., 2023) 65.8 66.7 66.2 33 90 48.3 37.8 82.8 51.9 65.2 57.7 61.2

GenECI* (Man et al., 2022b) 58.7 65.7 61.9 - - - - - - 58.6 59.3 58.6

DPJL (Shen et al., 2022) 65.3 70.8 67.9 - - - - - - 63.6 66.7 64.6

HOTECI (ours)* 66.1 72.3 69.1 81.4 40.6 55.1 63.1 51.2 56.5 71.1 65.9 68.4

Table 1: Model’s performance on ESL and CTB. The performance improvement of HOTECI over the baselines is

significant with p < 0.01. * designates models that use T5.

Model English Danish Spanish Turkish Urdu

P R F1 P R F1 P R F1 P R F1 P R F1

PLM 48.7 59.9 53.7 35.9 36.2 36.0 50.6 49.1 49.9 44.0 59.4 50.5 40.4 43.2 41.8

Know 39.3 42.6 40.9 31.4 11.4 16.7 39.9 28.4 33.2 36.5 46.7 41.0 41.1 22.2 28.9

RichGCN 50.6 68.0 58.1 31.9 50.0 38.9 50.7 55.0 52.8 50.5 64.6 56.7 37.7 56.0 45.1

HOTECI (ours) 66.6 67.1 66.8 50.5 63.7 56.3 60.7 60.7 60.7 72.5 76.6 74.5 59.1 71.0 64.5

Table 2: Model’s performance on MECI for different languages. The baselines use the base version of the multilingual

RoBERTa model, i.e., XLMR (Conneau et al., 2020). PLM is similar to the BERT baseline in Table 1, but replaces

BERT with XLMR.

method with external causal statements, (7) ERGO-

BERT and ERGO-Longformer (Chen et al., 2022):

relational graph transformer frameworks; (8) CF-

ECI (Mu and Li, 2023): a counterfactual reasoning

mdoel to explicitly estimate the influence of con-

text keywords and event pairs for debiasing; (9)

CHEER (Chen et al., 2023): a graph framework

considering the centrality of events and their inter-

actions in a document-level graph; (10) SemSIn
(Hu et al., 2023): a graph model integrating event-

centric and event-associated semantic structures;

(11) SENDIR (Yuan et al., 2023): a document-

level ECI framework using sparse attention and

discriminative reasoning; (12) GenECI (Man et al.,

2022b): a T5-based generative ECI model, and

(13) DPJL (Shen et al., 2022): a derivative prompt-

based model. Among the baselines, DPJL has the

best-reported performance for sentence-level ECI

on ESL while SENDIR currently observes the state-

of-the-art performance on CTB and inter-sentence

ECI over ESL.

Comparison: Table 1 shows the performance

of the models on test data of the ESL and CTB

datasets. For ESL, similar to previous work (Tran

and Nguyen, 2021; Yuan et al., 2023), we report

the performance in different scenarios for intra-

sentence, inter-sentence, and both intra- and inter-

sentence examples. As can be seen, the pro-

posed model HOTECI significantly outperforms the

state-of-the-art model DPJL for sentence-level ECI

over ESL. HOTECI is also substantially better than

the best baseline model SENDIR for inter- and

intra+inter-sentence ECI on ESL and CTB (i.e.,

more than 7% for inter-sentence ECI on ESL and

CTB). The improvement is significant with p < 0.01,

thus clearly demonstrating the benefits of the pro-

posed generative framework for ECI in this work.

Notably, HOTECI can achieve state-of-the-art per-

formance for ECI without relying on additional an-

notation or third-party tools. This is in contrast to

recent work on ECI that requires those resources

to ensure good performance, e.g., human anno-

tation for causal signals in DPJL or dependency

parsing in GenECI and RichGCN.

In addition, Table 2 compares HOTECI with the

best-reported models (Lai et al., 2022b) on the

multilingual dataset MECI over different languages.

Here, to adapt HOTECI to multilingual setting, we

translate the simple English prompt P (es, et) to the

target languages to form the input sequences I.

For ConceptNet, we utilize its multilingual version

(Speer et al., 2017) in RichGCN and HOTECI. It

is clear from the table that HOTECI performs sig-

nificantly better than the baselines over different

languages. The improvement gaps are large for

all the languages, thus clearly testifying to the ef-

fectiveness of hierarchical context selection and

generative models for multilingual ECI.
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Ablation Study: To evaluate the design of the com-

ponents in HOTECI, we perform an ablation study

over the model architecture. Table 3 reports the

performance of the ablated models for HOTECI.

First, we analyze the context selection modules.

Removing the reinforcement learning (RL) loss for

training the context selection (line 2) decreases

performance, demonstrating the importance of RL

for optimizing these components. Line 3 shows a

poorer performance of HOTECI when background

knowledge retrieval from ConceptNet is not em-

ployed, thus suggesting its importance for ECI.

Eliminating word selection (WS) with optimal

transport (OT) (line 4) substantially reduces accu-

racy, highlighting the benefits of extracting salient

words with OT alignments. Replacing WS with

baseline strategies like selecting words similar to

the event triggers (lines 5-6) also harms perfor-

mance. We observe similar trends when ablating

the sentence selection (SS) module. Simply using

the hosting sentences of the event mentions (line

7) or heuristics like surrounding sentences (lines

8-10) are inferior to SS with OT. This validates OT’s

ability to extract the most relevant sentences.

Further ablations analyze other modeling

choices. Feeding the selected words to the en-

coder rather than decoder (line 12) is ineffective,

confirming the advantages of modeling salient

words in the output. Removing distance-based

distributions in OT (lines 13-14) also degrades per-

formance, showing the utility of distance-aware

alignments.

# Model P R F1

1 HOTECI (full) 63.1 51.2 56.5

2 - RL loss 61.2 49.8 54.9

3 - Background Knowledge 62.2 50.5 55.7

4 - WS 61.1 47.5 53.4

5 - WS (five most similar words) 61.1 43.9 51.1

6 - WS (ten most similar words) 60.3 43.1 50.3

7 - SS (hosting sentences) 60.8 48.7 54.1

8 - SS (max surrounding sentences) 55.8 48.9 52.1

9 - SS (max most similar sentences) 61.2 50.1 55.1

10 - SS (five surrounding sentences) 58.9 47.6 52.7

11 - SS (five most similar sentences) 60.7 48.4 53.9

12 Selected Words to T5 Encoder 55.8 45.9 50.4

13 Uniform Dist for WS 63.2 49.8 55.7

14 Uniform Dist for SS 66.4 48.6 56.1

Table 3: Ablation study over test data of ESL using

intra+inter sentence performance. WS and SS stand

for word selection and sentence selection (respectively)

with OT.

Analysis: We analyze the contribution of the

background knowledge for our generative HOTECI

model. In particular, we find that HOTECI selects at

least one sentence in the background knowledge

sentence pools B for 50.5% of test data examples

in ESL while this percentage for selected words

in the background knowledge sentences is 20%.

These results highlight the important contributions

of background knowledge to aid ECI for generative

models. In addition, we examine the examples in

the test data of ECI that are correctly predicted

by HOTECI due to the introduction of background

knowledge (i.e., the model without background

knowledge fails to predict these examples). Our

analysis shows that a majority of such examples

require a complicated reasoning processing, involv-

ing implicit/common sense knowledge to success-

fully realize causal relations between events. For

example, consider the following input document:

Powerful Quake in Iran Kills 10; 80 Hurt and 7

Villages Damaged. Published: November 28, 2005.

A powerful earthquake hit southern Iran on Sunday

, causing major destruction in seven villages and killing

10 people, and injuring 80. The tremor shook Oman

and the United Arab Emirates as well, forcing many

office workers to evacuate their buildings. The official

IRNA news agency and the United States Geological

Survey said it had a magnitude of 5.9. Iran’s seismologic

center said the epicenter of the earthquake was in

the waters of the Persian Gulf, 35 miles southwest

of the port of Bandar Abbas. Iran is on seismic fault

lines. A major earthquake killed more than 31, 000

in the city of Bam in central Iran in 2003, and 600

were killed in the city of Zarand in February in an

earthquake with a magnitude of 6.4. The tourist

Island of Qeshm on the Persian Gulf and seven of

its villages were most strongly affected by the quake.

[It] hit at 1:53 p.m. local time and was followed by at

least four strong aftershocks, IRNA reported. The

news agency also reported that one of the major

hospitals on the island, in the village of Jeyhian, was

destroyed and the village’s power lines were cut.

The island’s airport was also [damage]. Abdolreza

Sheikholeslami, the governor of Hormozgan Province,

the center of the damaged area, said 40 percent to 70

percent of the buildings in seven villages were destroyed,

IRNA reported. Two helicopters began moving the

injured to the hospital in Bandar Abbas, and aid workers

began distributing food, blankets, and tents in the region,

the governor said. Qeshm is Iran’s largest island in the

Persian Gulf, with a population of 120, 000. The quake

jolted several cities in the United Arab Emirates, across

the Persian Gulf from Iran. Office workers in Dubai,

United Arab Emirates, evacuated several buildings in

the city, pouring onto the streets and snarling traffic.

There were no reported injuries in Dubai. Mehdi Zareh,

director of the seismological center in Tehran, dismissed

concerns that the earthquake would cause tsunamis,

IRNA reported. ”The Persian Gulf is not deep enough

so that we can expect tsunamis,” he was quoted as

saying. Map of Iran highlighting epicenter of earthquake:

A tremor shook southern Iran yesterday, causing major

damage.

In this document, input event triggers are shown

in brackets (i.e., “It” and “damaged”). The selected

sentences from this document of our HOTECI
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model are underlined while the selected words

are written in red. The selected context W from

our HOTECI model for this document is thus as

follows:

A powerful earthquake hit southern Iran on Sunday,

causing major destruction in seven villages and killing 10

people, and injuring 80. [It] hit at 1:53 p.m. local time and

was followed by at least four strong aftershocks, IRNA

reported. The island’s airport was also [damaged]. A

tremor shook southern Iran yesterday, causing major

damage. Earthquake causes ruined streets, pipelines

, and houses. Shock is a type of earthquake.

Here, the last two sentences (underlined) are the

background knowledge sentences retrieved from

ConceptNet while the other sentences are selected

from the input document S. The selected context

words in C are written in red. As such, HOTECI

is able to select the first sentence in the example

to provide necessary context for the coreference

of the pronoun event trigger “It” to an earthquake.

In addition, HOTECI can include the background

knowledge sentence “Earthquake causes ruined

ruined streets, pipelines, and houses.”, which is

related to the trigger “damaged”, to reveal impor-

tant information for causal relation prediction. In

all, it demonstrates the operation of HOTECI and

the benefits of background knowledge retrieval in

our model.

4. Related Work

The early approaches have explored rule-based

(Riaz and Girju, 2014) and feature-based (Beamer

and Girju, 2009; Do et al., 2011; Hidey and McK-

eown, 2016; Ning et al., 2018; Hashimoto, 2019;

Gao et al., 2019) models to solve ECI. Recently,

the advent of deep learning models has introduced

significant advances for ECI. In addition to PLMs,

these methods have leveraged different resources

to boost ECI performance (Chen et al., 2022), in-

cluding distant supervision (Zuo et al., 2020), back-

ground knowledge (Liu et al., 2020), dependency

parsing (Tran and Nguyen, 2021), data augmenta-

tion (Zuo et al., 2021b), and external causal state-

ments (Zuo et al., 2021a). However, such previous

work has only employed the classification setting

for ECI. Due to its relation prediction nature, ECI

can also be viewed as a form of the general prob-

lem of Relation Extraction in Information Extraction

(Pouran Ben Veyseh et al., 2020; Veyseh et al.,

2020; Nguyen et al., 2022).

Motivated by the recent success of the gener-

ative reformulation for different NLP tasks (Athi-

waratkun et al., 2020; Yan et al., 2021; Zhang

et al., 2021), there have been two recent works

to explore generative models for ECI. In particu-

lar, (Shen et al., 2022) introduces a declarative

prompt joint learning method using RoBERTa to

generate labels while (Man et al., 2022b) studies a

generative method based on T5 for ECI. Recently,

(Man et al., 2024) explores a diffusion model to

generate effective representations for ECI. How-

ever, none of these works has considered impor-

tant context selection to improve generative models

for ECI. In addition, we also note some related work

that leverage optimal transport to solve NLP prob-

lems, e.g., Relation Extraction (Pouran Ben Veyseh

et al., 2022; Lai et al., 2022a) and Event Detection

(Guzman-Nateras et al., 2022).

The closest work to ours is SCS-EERE (Man

et al., 2022a), which models document-level con-

text by iteratively choosing relevant context sen-

tences to address temporal event relation and sub-

event relation tasks. However, their method has

some limitations, such as the fixed number of sen-

tences to select for the whole data. Moreover, SCS-

EERE employs a classification setting thus it pre-

vents SCS-EERE from leveraging the semantics

of the labels for learning. Additionally, SCS-EERE

only explores sentence selection that might still

contain irrelevant context words, then can lead to

limit in the performance.

5. Conclusion

Formulating ECI as a generation-based problem,

we present a novel method for ECI that hierar-

chically selects important context sentences and

words in input documents via Optimal Transports.

Our method can effectively handle document-level

ECI with long context and inter-sentence event

mention pairs to achieve state-of-the-art perfor-

mance on different benchmark datasets. In the

future, we will extend our context selection method

to improve generative models for other NLP tasks.
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