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Abstract

We initiate a study of supervised learning from many independent sequences (“trajectories”)
of non-independent covariates, reflecting tasks in sequence modeling, control, and reinforce-
ment learning. Conceptually, our multi-trajectory setup sits between two traditional settings
in statistical learning theory: learning from independent examples and learning from a single
auto-correlated sequence. Our conditions for efficient learning generalize the former setting—
trajectories must be non-degenerate in ways that extend standard requirements for independent
examples. Notably, we do not require that trajectories be ergodic, long, nor strictly stable.

For linear least-squares regression, given n-dimensional examples produced bym trajectories,
each of length T , we observe a notable change in statistical efficiency as the number of trajectories
increases from a few (namely m . n) to many (namely m & n). Specifically, we establish that
the worst-case error rate of this problem is Θ(n/mT ) whenever m & n. Meanwhile, when
m . n, we establish a (sharp) lower bound of Ω(n2/m2T ) on the worst-case error rate, realized
by a simple, marginally unstable linear dynamical system. A key upshot is that, in domains
where trajectories regularly reset, the error rate eventually behaves as if all of the examples
were independent, drawn from their marginals. As a corollary of our analysis, we also improve
guarantees for the linear system identification problem.
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1 Introduction

Statistical learning theory aims to characterize the worst-case efficiency of learning from example
data. Its most common setup assumes that examples are independently and identically distributed
(iid) draws from an underlying data distribution, but various branches of theory—not to mention
deployed applications of machine learning—consume non-independent data as well. An especially
fruitful setting, and the focus of this paper, is in learning from sequential data, where examples
are generated by some ordered stochastic process that renders them possibly correlated. Nat-
urally, sequential processes describe application domains spanning engineering and the sciences,
such as robotics [NTP11], data center cooling (e.g. [LBL+18]), language (e.g. [SVL14, BK15]),
neuroscience (e.g. [LJM+17, GWC+20]), and economic forecasting [MSS17]. Learning over sequen-
tial data can also capture some formulations of imitation learning [OPN+18] and reinforcement
learning [CLR+21, JLL21].

In supervised learning, one learns to predict output labels from input covariates, given example
pairings of the two. Formal treatments of learning from sequential data typically concern a single
inter-dependent chain of covariates. Where these treatments vary is in their assumptions about the
underlying process that generates the covariate chain. For instance, some assume that the process
is auto-regressive (e.g. [LW83, GZ01, GR20]) or ergodic (e.g. [Yu94, DAJJ12]). Others assume that
it is a linear dynamical system (e.g. [SMT+18, FTM18, SR19]).

In this paper, we examine what happens when we learn from many independent chains rather
than from one, as one does anyway in many applications (e.g. [Pom89, KZB11, BPX+07, JVS+16]).
Figure 1 depicts the data dependence structure of our setup in comparison with its two natural
counterparts. Learning from a dataset of many short (constant length) chains ought to be similar
to independent learning, even if each chain is highly intra-dependent. On the other hand, for any
non-trivial chain length, intuition suggests that the error can degrade relative to the total sample
size in the worst case, since a greater proportion of the data may contain correlations. Lower
bounds even show that, when one sees only a single chain, this degradation is outright necessary
in the worst case [BJN+20]. Do we see any such effect with many chains?

We study this question by sharply characterizing worst-case error rates of a fundamental task—
linear regression—imposed over a general sequential data model. Our findings reveal a remarkable
phenomenon: after seeing sufficiently many chains (m) relative to the example dimension n, no
matter the chain length T , the error rate matches that of learning from the same total number mT
of independent examples, drawn from their respective marginal distributions.

In our data model, each chain, called a trajectory, comprises a sequence of covariates {xt}
generated from a stochastic process. Each covariate is accompanied by a noisy linear response yt as

its label. A training set {(x(i)t , y
(i)
t )}m,T

i=1,t=1 comprisesm independent chains, each of length T . From
such a training set, an estimator produces a hypothesis that predicts the label of any covariate.
The resulting hypothesis is evaluated according to its mean-squared prediction error over a fresh
chain of length T ′, possibly unequal to T—a notion of risk defined naturally over a trajectory. All
of our risk upper bounds are guarantees for the ordinary least-squares estimator in particular.

A concrete, recurring example in this paper takes the covariate-generating process to be a linear
dynamical system (LDS). Specifically, fixing matrices A ∈ R

n×n, B ∈ R
n×d, and W? ∈ R

p×n, a
single trajectory {(xt, yt)}t>1 is generated as follows. Let x0 = 0, and for t > 1:

xt = Axt−1 +Bwt, (linear dynamics)

yt =W?xt + ξt, (linear regression)
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x1,1 x1,2 x1,3 · · · x1,T

x2,1 x2,2 x2,3 · · · x2,T

...

xm,1 xm,2 xm,3 · · · xm,T

(a) independent covariates

x1,1 x1,2 x1,3 · · · x1,T

x2,1 x2,2 x2,3 · · · x2,T

...

xm,1 xm,2 xm,3 · · · xm,T

(b) one long trajectory

x1,1 x1,2 x1,3 · · · x1,T

x2,1 x2,2 x2,3 · · · x2,T

...

xm,1 xm,2 xm,3 · · · xm,T

(c) independent trajectories

Figure 1: The covariate dependence structure induced by three data models onmT many training examples.
In (a): independent examples, typical of basic statistical learning. In (b): the data models often considered
in the sequential learning literature, comprising a long auto-correlated chain of examples. Learning in
this setting can be infeasible in general, so oftentimes ergodicity is assumed in order to rule out strong
long-range dependencies, essentially inducing an “independent resetting” effect across time. The effective
reset frequency then factors uniformly into error bounds, in a way suggesting that one learns only one
independent example’s worth within each effective reset window (cf. Section 2). In (c): our multi-trajectory
data model. Our accompanying assumptions allow for non-ergodic chains, and for arbitrary chain lengths T ,
while introducing explicit independent resets. Decoupling the m resets from the sequential data model lets
us vary the training set dimensions (m,T ) freely, without affecting other data assumptions, as we study their
effect on error rates. We find that with enough trajectories m, the worst-case error rate behaves the same as
in the independent setting depicted in (a); i.e., one learns as though every example were independently drawn
from its marginal distribution. Some recent work in system identification assumes a data model related to
ours (specifically linear dynamical data) and likewise avoids ergodicity; our bounds improve these guarantees
T -fold where applicable, and upgrade the regimes in which they apply (cf. Section 2).

where the {wt}t>1 are iid centered isotropic Gaussian draws and {ξt}t>1 is a sub-Gaussian mar-
tingale difference sequence (with respect to past covariates {xk}tk=1 and noise variables {ξk}t−1

k=1).
Incidentally, combining linear dynamical systems with linear regression captures the basic problem
of linear system identification (as in [SMT+18]) as a special case.

In other instantiations of learning from trajectories, the covariates {xt} may be generated by a
different process; what remains common is the superimposed regression task set up by the ground
truth W? and the noise {ξt}. The key condition that we will introduce, which renders a covariate
process amenable to regression, is that it satisfies a trajectory small-ball criterion (Definition 4.1).
Section 4.1 shows that LDS-generated data conforms to the trajectory small-ball condition in
particular, as do many other distributions.

Our main results (Sections 5 and 6) sharply characterize worst-case rates of learning from
trajectory data as a function of the training trajectory count m, the training trajectory length T ,
the evaluation length T ′, the covariate and response dimensions n and p, and scale parameters
of noise in the data model (such as the variance of the noise {ξt}). Restricting only to terms of
covariate dimension n, training set size m and T , and evaluation length T ′, our bounds imply the
following summary statement:

Theorem 1.1 (informal; error rate with many small-ball trajectories, T ′ 6 T ). If m & n, T ′ 6 T ,
and covariate trajectories are drawn from a trajectory small-ball distribution, then the worst-case
excess prediction risk (over evaluation horizon T ′) for linear regression from m many trajectories
of n-dimensional covariates, each of length T , is Θ(n/(mT )).

In drawing comparisons to learning from independent examples, it makes sense to consider
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training and evaluations lengths T and T ′ equal (cf. Section 3), rendering Theorem 1.1 applicable.
The theorem thus echoes our main point above: the same rate of Θ(n/(mT )) describes regression
on mT independent examples (details on this point are expanded in Section 3.3).

Further structural assumptions are needed (cf. Section 3.3) in order to cover the remaining range
of problem dimensions, namely few trajectories (m . n) or extended evaluations (T ′ > T ), and
to that end we return to linear dynamical systems as a focus. Our remaining risk upper bounds,
targeting learning under linear dynamics, require that the dynamics matrix A bemarginally unstable
(meaning that its spectral radius ρ(A) is at most one) and diagonalizable. When trajectories are
longer at test time than during training (i.e., T ′ > T ), marginal instability is practically necessary,
otherwise the risk can scale exponentially in T ′ − T . The assumption otherwise still allows for
unstable—and therefore non-ergodic—systems at ρ(A) = 1. For simplicity, we also require that
the control matrix B have full row rank. Our bounds then imply the following summary statement
about regression when the number of trajectories is limited:

Theorem 1.2 (informal; error rate with few LDS trajectories). If m . n, mT & n, and covariate
trajectories are drawn from a linear dynamical system whose dynamics A are marginally unstable
and diagonalizable, then the worst-case excess prediction risk (over evaluation horizon T ′) for linear
regression from m many trajectories of n-dimensional covariates, each of length T , is Θ̃(n/(mT ) ·
max{nT ′/(mT ), 1}).

If the evaluation horizon T ′ is a constant, the rate in Theorem 1.2 recovers that of Theorem 1.1,
up to log factors and extra assumptions. To draw further comparison, suppose that the training
and evaluation horizons are equal, i.e., that T ′ = T . On the face of it, the rate in Theorem 1.2 is
evidently weaker than that of Theorem 1.1, by up to a factor of the covariate dimension n. But the
varying premises—of many vs. few trajectories—necessarily constrain the risk definitions to differ.
Under a fixed data budget N := mT = mT ′, fewer trajectories m imply a longer horizon T ′ over
which the risk is evaluated. Intuitively, a longer evaluation horizon makes for a different problem,
and renders the rate comparison invalid.

A more sound comparison across regimes is possible by first normalizing the notion of perfor-
mance within a problem instance. To this end, we can consider the worst-case risk of learning from
trajectories relative to that of learning from independent examples in the same regime. Construct-
ing the latter baseline is somewhat subtle (cf. Section 3.2). To decorrelate the problem of learning
from trajectories while maintaining its temporal structure otherwise, we can imagine drawing from
its marginal distributions independently at each time step. The resulting dataset is independent,
but not identically distributed. Although the rates for the sequential and decorrelated regression
problems are—as already highlighted—remarkably the same under many trajectories, the few-
trajectory rate in Theorem 1.2 is indeed weaker than the Θ(n/(mT )) rate that we prove for its
decorrelated baseline (cf. Theorem 5.7).

Since the more general Theorem 1.1 already describes what happens under many trajectories
(m & n) and a strict evaluation horizon (T ′ 6 T ), what remains is a somewhat niche regime: many
trajectories and an extended evaluation horizon T ′ > T . For completeness, our bounds supply the
following summary statement:

Theorem 1.3 (informal; error rate with many LDS trajectories). If m & n and covariate tra-
jectories are drawn from a linear dynamical system whose dynamics A are marginally unsta-
ble and diagonalizable, then the worst-case excess prediction risk (over evaluation horizon T ′)
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for linear regression from m many trajectories of n-dimensional covariates, each of length T , is
Θ(n/(mT ) ·max{T ′/T, 1}).

Using the tools of our analysis, we also develop upper bounds for parameter error instead of
prediction risk, which inform recovery of the ground truth W? and (by reduction) of the dynamics
matrix A in LDS. The latter captures the linear system identification problem. Our upper bounds
improve on its worst-case guarantees by a factor of 1/T where applicable, and extend the parameter
ranges in which guarantees hold at all.

2 Related work

Linear regression is a basic and well-studied problem. The two treatments most closely related to
our work are [HKZ14] and [Mou22], who develop sharp finite-sample characterizations of the risk
of random design linear regression (i.e., from iid examples). Discussion and references therein cover
the broader problem over its long history.

A common approach to studying dependent covariates is to assume that the data-generating
process is ergodic (see e.g. [Yu94, Mei00, MR08, SC09, MR10, DAJJ12, KM17, MSS17, Sha21] and
references therein). The key phenomenon at play is that N correlated examples are statistically
similar to N/τmix independent examples, where τmix is the processmixing-time. Relying on this idea,
generalization bounds informing independent data can typically be ported to the ergodic setting,
where the effective sample size is simply “deflated” by a factor of τmix. Since mixing-based bounds
become vacuous as τmix →∞, they do not present an effective strategy for studying dynamics that
do not mix. A critical instance of this arises in linear dynamical systems: in LDS, the ergodicity
condition amounts to stability of the dynamics matrix A (i.e., ρ(A) < 1), where τmix → ∞ as
ρ(A)→ 1 [e.g. MT93, Thm. 17.6.2]. Marginally unstable systems, in which ρ(A) = 1, are thus not
captured.

A recent line of work uncovers ways to sharpen generalization bounds based on the specific
structure of realizable least-squares regression problems over an ergodic trajectory. For realizable
linear regression with stationary covariates, results from [BJN+20] imply that, after the trajectory
length exceeds an initial burn-in time scaling as τmixn, the minimax (excess) risk coincides with
the classic iid rates. Additionally, [ZT22] show that the empirical risk minimizer exhibits similar
behavior in realizable nonparametric regression problems, provided certain small-ball assumptions
of the underlying process hold. While these results sharpen our understanding of how the mixing
time τmix affects regression risk bounds, they ultimately rely on ergodicity. Since learning from a
single trajectory is generally impossible without ergodicity, we are led to study other sequential
learning configurations. The two, however, are not mutually exclusive: our results actually apply
when mixing, and in fact show that the empirical risk minimizer is minimax optimal (after a burn-in
time scaling with the mixing time). This eschews the need for algorithmic modifications to learning
from mixing trajectory data [BJN+20]. We give details on this in Appendix B.7.

Non-temporal dependency structures. Covariates and responses can be inter-dependent in
many ways, not only via temporal structure. A recent resurgence of work investigates learning
under an Ising model structure over covariates [Bre15, DDDJ19, GM20, DDDK21], as well as over
responses [DDP19, DDD+21] (conditioned on the covariates). At a conceptual level, the extension
from a single temporally dependent trajectory to multiple trajectories is analogous to the extension
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from single observations to Ising models with multiple independent observations. Incidentally, in
this area, investigations began by studying learning under multiple independent observations, and
progressed towards guarantees on learning from a single one. Relating these two data models—
trajectories and Ising grids—under intercompatible assumptions may reveal interesting connections
between these results.

System identification. A special case of our LDS-specific data model captures linear system
identification with full state observation: the task of recovering the dynamical system parameters
A from observations of trajectories. While classic results are asymptotic in nature (see e.g. [LW82,
LW83, Lju98]), recent work gives finite-sample guarantees for recovery of linear systems with fully
observed states [SMT+18, DMM+20, JP20, FTM18, SR19, JP19, TP21], and also partially observed
states [OO19, SBR19, TP19, SRD21, ZL21]. The proof of our upper bounds builds on the “small-
ball” arguments from [SMT+18] (that, in turn, extend [Men15, KM15]), which do not require
ergodicity.

To the best of our knowledge, our results are the first to quantify the trade-offs between few
long trajectories and many short trajectories. Nearly all finite-sample guarantees for linear system
identification consider a single trajectory, with a few notable exceptions. First, [DMM+20] allow for
m > 1 trajectories with fully observed states and make no assumptions on the dynamics matrix A.
However, their analysis discards all but the last state transition within a trajectory, reducing to iid
learning over only m examples. Second, [ZL21, XCS22] study the recovery of Markov parameters
from partially observed states over many trajectories. However, their error bounds do not decrease
with longer training horizons T , since the number of Markov parameters one must recover scales
with the trajectory length. Third, [XGH+21] consider multiple trajectories where the noise enters
multiplicatively instead of additively. Their main finite-sample parameter recovery result (Theorem
2) states that the operator norm of the parameter error scales as

√

T/m, with the additional
restriction that T & n2. To achieve consistency, this result fixes the trajectory length T and
takes the trajectory count m → ∞. By contrast, our analysis varies the two quantities T and
m independently. Finally, a line of work concurrent to ours investigates learning from multiple
sources of linear dynamical systems [CP22, MFTM22]. This is a latent variable model, where
the underlying index of the LDS must be disambiguated from data. This model is more general
than the one studied in this paper, and specializing the corresponding results to our setup yields
sub-optimal bounds and unnecessary requirements. We discuss this in Section 5.2, after presenting
upper bounds in detail.

Furthermore, our LDS setup (Section 3.4) decouples the covariate dynamics model A from the
observation modelW?, and our risk definition additionally allows for an arbitrary evaluation horizon
T ′. The risk over an arbitrary evaluation horizon is harder to control than parameter error, which
corresponds to an evaluation length of one. This is because the larger signal-to-noise ratio accrued
by a less stable system magnifies the prediction error over the entire evaluation horizon. Although
the observation model that we consider is mentioned in [SMT+18], the general setup with matching
upper and lower bounds are all, to the best of our knowledge, new contributions.

A complementary line of work studies the problem of online sequence prediction in a no-regret
framework, where the baseline expert class comprises of trajectories generated by a linear dynam-
ical system [HSZ17, HLS+18, GLS+20]. These results also allow for marginally unstable dynamics
but are otherwise not directly comparable. Other efforts look beyond linear systems to identify-
ing various non-linear classes, such as exponentially stable non-linear systems [SO20, FRS20] and
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marginally unstable non-linear systems [JKNN21]. These results again learn from a single trajec-
tory. We believe that elements of our analysis can be ported over to offer many-trajectory bounds
for these particular classes of non-linear systems.

3 Problem formulation

Notation. The real eigenvalues of a Hermitian matrix M ∈ C
k×k are λmax(M) = λ1(M) > . . . >

λk(M) = λmin(M). For a square matrix M ∈ C
k×k, M∗ denotes its conjugate transpose, and ρ(M)

denotes its spectral radius: ρ(M) = max{|λ| | λ is an eigenvalue of M}. The space of n × n real-
valued symmetric positive semidefinite (resp. positive definite) matrices is denoted Symn

>0 (resp.
Symn

>0). The non-negative (resp. positive) orthant in R
n is denoted as Rn

>0 (resp. Rn
>0), and S

n−1

denotes the unit sphere in R
n. Finally, the set of positive integers is denoted by N+.

3.1 Linear regression from sequences

Regression model. A covariate sequence is an indexed set {xt}t>1 ⊂ R
n. Any distribution Px

over covariate sequences is assumed to have bounded second moments, i.e., that E[xtx
T
t ] exists and

is finite for all t > 1. Also for such a distribution Px, let Pξ[Px] be a distribution over observation
noise sequences {ξt}t>1 ⊂ R

p. Denoting by {Ft}t>0 the filtration with Ft = σ({xk}t+1
k=1, {ξk}tk=1),

we assume that {ξt}t>1 is a σξ-sub-Gaussian martingale difference sequence (MDS), i.e., for t > 1:

E[〈v, ξt〉 | Ft−1] = 0, E[exp(λ〈v, ξt〉) | Ft−1] 6 exp(λ2‖v‖22σ2ξ/2) a.s. ∀λ ∈ R, v ∈ R
p.

Given a ground truth model W? ∈ R
p×n, define the observations (a.k.a. “responses” or “labels”):

yt =W?xt + ξt, t > 1. (3.1)

Denote by PW?
x,y [Px,Pξ] the joint distribution over covariates and their observations {(xt, yt)}t>1.

Regression task. Fix a ground truth model W? ∈ R
p×n, a covariate distribution Px, an obser-

vation noise model Pξ, a training horizon T , and a test horizon T ′. Draw m independent sequences

{(x(i)t , y
(i)
t )}i∈[m],t>1 from PW?

x,y [Px,Pξ], and call their length-T prefixes {(x(i)t , y
(i)
t )}m,T

i=1,t=1 the train-

ing examples. From these examples, the regression task is to find a hypothesis f̂m,T : Rn → R
p that

matches ground truth predictions fW?(x) :=W?x in expectation over unseen trajectories of length
T ′. Specifically, the excess risk of a hypothesis f̂ is:

L(f̂ ;T ′,Px) := EPx

[

1

T ′

T ′
∑

t=1

‖f̂(xt)− fW?(xt)‖22

]

. (3.2)

We say that the evaluation horizon T ′ is strict if T ′ 6 T and extended if T ′ > T . When the
hypothesis class is linear, meaning the hypotheses f̂ are of the form f̂(x) = Ŵx with Ŵ ∈ R

p×n,
the risk expression (3.2) simplifies as follows. For a positive definite matrix Σ ∈ R

n×n, define the
weighted square norm ‖M‖2Σ := tr(MΣMT) for M ∈ R

p×n. Denoting, for t > 1:

Σt(Px) := EPx [xtx
T
t ], Γt(Px) :=

1

t

t∑

k=1

Σk(Px), (3.3)
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we overload notation and write:

L(Ŵ ;T ′,Px) = ‖Ŵ −W?‖2ΓT ′ (Px)
. (3.4)

The risk (3.2), being a notion of error averaged over time steps, relates to that of [ZSM22] in the
study of learning dynamics (the difference lies in whether the error norm is squared).

By allowing unequal training and test horizons T 6= T ′, we cover two related scenarios at
once: system identification in linear dynamical systems (when T ′ = 1) and predicting past the
end of a sequence (when T ′ > T ). For the latter, the risk definition (3.2) is closely related
to a commonly studied notion of “final step” generalization (see e.g. [KM17, Eq. 5], [MSS17,
Def. 10]) that measures the performance of a hypothesis at T ′ − T time steps beyond the train-
ing horizon: Lend(f̂ ;T

′,Px) := EPx [‖f̂(xT ′) − fW?(xT ′)‖22]. Linear hypotheses enjoy the identity
Lend(Ŵ ;T ′,Px) = ‖Ŵ −W?‖2ΣT ′ (Px)

. In turn:

Lend(Ŵ ;T ′,Px) > L(Ŵ ;T ′,Px) & Lend(Ŵ ; bT ′/2c,Px).

In other words, provided the scale of the covariances Σt(Px) does not grow substantially over time
t, our risk definition L is comparable to the final-step risk Lend.

Minimax risk. To compare the hardness of learning across problem classes (i.e., families of co-
variate distributions Px), we measure the minimax rate of the risk L—i.e., the behavior of the best
estimator’s worst-case risk over valid problem instances—as a function of the amount of training
data m,T and other problem parameters such as n, p, σξ, and T

′. Recall that PW?
x,y denotes the dis-

tribution over labeled trajectories {(xt, yt)}t>1. For a collection of covariate sequence distributions
Px, the minimax risk over problem instances consistent with Px is:

R(m,T, T ′;Px) := inf
Alg

sup
Px∈Px

sup
W?,Pξ

E⊗m
i=1P

W?
x,y [Px,Pξ]

[

L
(

Alg({(x(i)t , y
(i)
t )}m,T

i=1,t=1);T
′,Px

)]

, (3.5)

where the infimum ranges over estimators Alg : (Rn × R
p)mT → (Rn → R

p) that map training
samples to hypotheses, the supremum over W? is over all p × n ground truth models, and the
supremum over Pξ is over all σξ-sub-Gaussian MDS processes determining the observation noise.

The ordinary least-squares estimator. Much like its classical role in iid learning, the ordinary
least-squares (OLS) estimator will be key to bounding the minimax risk (3.5) from above. We define
the OLS estimator to be the linear hypothesis Ŵm,T ∈ R

p×n that satisfies:

Ŵm,T ∈ argmin
W∈Rp×n

m∑

i=1

T∑

t=1

‖Wx
(i)
t − y

(i)
t ‖22. (3.6)

For i = 1, . . . ,m, let X
(i)
m,T ∈ R

T×n be the data matrix for the i-th trajectory (i.e., the t-th

row of X
(i)
m,T is x

(i)
t for t = 1, . . . , T ). Define Y

(i)
m,T ∈ R

T×p and Ξ
(i)
m,T ∈ R

T×p analogously. Put

Xm,T ∈ R
mT×n as the vertical concatenation of X

(1)
m,T , . . . , X

(m)
m,T , and similarly for Ym,T ∈ R

mT×p

and Ξm,T ∈ R
mT×p. Whenever Xm,T has full column rank, then we can write Ŵm,T as:

Ŵm,T = Y T
m,TXm,T (X

T
m,TXm,T )

−1. (3.7)
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x1 x2 x3 · · · xT

y1 y2 y3 · · · yT

(a) The Seq-LS problem (Problem 3.1): covari-
ates {xt} are drawn from a sequence distribu-
tion, and noisy observations {yt} are drawn con-
ditioned on these covariates.

x1 x2 x3 · · · xT

y1 y2 y3 · · · yT

Seq-LS

x′
1 x′

2 x′
3 · · · x′

T

y′
1 y′

2 y′
3 · · · y′

T

(b) The corresponding baseline Ind-Seq-LS problem (Prob-
lem 3.2): independent covariate-observation pairs {(xt, yt)} are
drawn, each from the marginal distribution of the correspond-
ing t’th step in the Seq-LS problem.

Figure 2: Formulations of regression from sequential data, illustrated as graphical models. Specifically, these
graphs depict a simplified special case of our data model, in which the observations {yt} across time are
independent conditioned on the covariates {xt}. In our general definitions (Problem 3.1 and Problem 3.2),
the observations {yt} can be conditionally interdependent, via a martingale difference sequence on the
observation noise (Section 3.1).

3.2 Problem classes

We formalize linear regression from sequential data generally as follows:

Problem 3.1 (Seq-LS). Assume a covariate sequence distribution Px in the linear regression model
(3.1). Fix an evaluation horizon T ′. On input m labeled trajectories of length T drawn from this

model, in the form of examples {(x(i)t , y
(i)
t )}m,T

i=1,t=1, output a hypothesis f̂m,T that minimizes excess

risk L(f̂m,T ;T
′,Px).

Our topmost goal is to study the effect of learning from sequentially dependent covariates in com-
parison with learning in the classical iid setup. Linear regression is well understood in the latter
setting. Focusing on well-specified linear regression further simplifies our presentation, allowing us
to isolate the effects of what interests us most—dependent covariates. Generalizing the supervision
aspect of Seq-LS (say, to unrealizable and non-parametric regression, or to classification) is left to
future work. We return to discuss this in Section 9.

To study how dependent data affects learning, we need to establish an “independent data”
baseline. The natural comparison point for Seq-LS is to remove all correlations across time. Namely,
instead of drawing covariates sequentially from the distribution Px, consider learning separately
from the marginals of Px at each time step. The resulting decorrelated distribution generates
independent examples, but typically not iid ones. We formalize linear regression from independent
data generally as follows:

Problem 3.2 (Ind-Seq-LS). Fix a sequence of distributions {Px,t}t>1. Consider their product over
time ⊗t>1Px,t as the covariate sequence distribution in the linear regression model (3.1). Fix an
evaluation horizon T ′. On input m labeled trajectories of length T drawn from this model, in the

form of examples {(x(i)t , y
(i)
t )}m,T

i=1,t=1, output a hypothesis f̂m,T that minimizes L(f̂m,T ;T
′,⊗t>1Px,t).

10



This Ind-Seq-LS problem generalizes the canonical iid learning setup slightly. Existing theory can
still characterize its minimax risk, provided the covariances of the distributions {Px,t} are roughly
equal in scale across time t. However, this equal-scale requirement rules out the marginals of
interesting applications, such as dynamical systems that are not stable or ergodic. We therefore
extend, in later sections, characterizations of the regression risk to handle covariances that can
scale polynomially across time instead.

3.3 Problem separations

To set up a baseline for a Seq-LS problem, we will specifically instantiate Ind-Seq-LS over its
marginals. Namely, for a sequence distribution Px over {xt}t>1, let µt[Px] be the marginal dis-
tribution of xt at time t > 1, and consider Ind-Seq-LS with covariates drawn from the sequence
{µt[Px]}t>1. Figure 2 illustrates such a Seq-LS problem and the corresponding Ind-Seq-LS instance
over its marginals.

This decorrelated baseline is a hypothetical benchmark: in a practical context, collecting in-
dependent marginal data, when nature only supplies its dependent form, can be expensive or
infeasible. However, we can expect that having such data on hand would make learning easier,
with risk rates that resemble iid learning. In what follows, we outline scenarios where a sequen-
tial learning problem and its decorrelated baseline coincide in difficulty, and others in which they
diverge. We then outline the possible assumptions that would allow us to always relate the two.

The iid special case. When T = T ′ = 1, the example trajectories {x(i)1 }mi=1 are trivially a set of
iid covariates. The problems Seq-LS and Ind-Seq-LS thus coincide, and reduce to the well-specified
random design linear regression problem over m iid covariates. It is well-known that under iid data,
and mild regularity conditions, the minimax risk scales as σ2ξpn/m, and is achieved by the OLS
estimator [HKZ14, Mou22, Wai19].

Extending the horizon. Considering nontrivial horizons T = T ′ > 1, both Seq-LS and its
corresponding Ind-Seq-LS baseline become more involved, but for different reasons.

The Ind-Seq-LS problem, as we show in Section 6, is not generally learnable with polynomially
many examples. Specifically, the minimax rate scales exponentially in the dimension n provided
the trajectory count m is constant. To address this, we will require that the covariances of its
constituent distributions {Px,t} grow at most polynomially with time t. Under this constraint,
the problem’s minimax risk again scales as the iid-like rate σ2ξpn/(mT ) times, at most, a factor
determined exponentially by the covariance growth.

The Seq-LS problem inherits the same growth limitation. Even then, it is still not generally
learnable without further assumptions on the dependence structure of covariates: the minimax risk
is otherwise bounded away from zero as the horizon T tends to infinity, provided the trajectory
count m is constant. To realize this, consider x1 ∼ N(0, In) and xt = xt−1 for t > 2, a sequence of
identical covariates whose marginals are all independent Gaussians. The resulting dataset presents
an underdetermined regression problem if m < n. In essence, its covariates lack sufficient “excita-
tion” across time. To rein Seq-LS back in to the realm of learnability, one must:

(a) make further modeling assumptions about covariates, or

(b) introduce excitation via independent resets.

11



For (a), as detailed in Section 2, the most common modeling assumption considers sequences
that mix rapidly to a stationary distribution. Another avenue—recently active in the literature,
and sometimes overlapping with the mixing approach—considers sequences generated by linear
dynamical systems. Among these two, mixing implies risk bounds that tend to zero with T , but
only hold in the worst case after a burn-in time that scales proportionally to the mixing time
[BJN+20]. This prevents a characterization of minimax risk uniformly across the full range of
problem instances Px that mix, unless one caps the mixing time to a fixed constant. Narrowing
instead to LDS models in the sequel, we manage to succinctly carve out a basic problem family,
with unbounded mixing time, and to characterize its minimax risk uniformly. One still pays a
price for sequential dependency, as this minimax risk turns out to be larger than its Ind-Seq-LS

counterpart by a factor of the dimension n.
Turning in addition to (b), by introducing (sufficiently many) resets, we can expand our data

model substantially: we manage to lift most of our LDS assumptions and extend to other dynamical
systems. Remarkably, we even show that for any controllable LDS—including ones that are unstable
and hence grow exponentially in time—having sufficiently many resets guarantees that the risk
exhibits, once again, the iid-like behavior of σ2ξpn/(mT ), up to mere constants.

3.4 Linear dynamical trajectories

Fix a dynamics matrix A ∈ R
n×n and a control matrix B ∈ R

n×d. Consider the n-dimensional
trajectory {xt}t>1 defined by the linear dynamical system:

xt = Axt−1 +Bwt, where wt ∼ N(0, Id), for t > 1, (3.8)

taking x0 = 0 by convention. We assume that the noise process {wt}t>1 is independent across
time, i.e., that wt ⊥ wt′ whenever t 6= t′. Overloading notation, let the matrix Σt(A,B) :=
∑t−1

k=0A
kBBT(Ak)T denote the covariance of xt, and let the matrix Γt(A,B) := 1

t

∑t
k=1Σk(A,B)

denote the average covariance. Denote by P
A,B
x the distribution over the trajectory {xt}t>1, and

let {x(i)t }t>1 for i > 1 denote independent draws from P
A,B
x . When B = In, we use the respective

shorthand notation Σt(A), Γt(A), and PA
x .

Modeling regression covariates as linear dynamical trajectories gives us the LDS-LS problem, a
specialization of Seq-LS (Problem 3.1):

Problem 3.3 (LDS-LS). Assume a dynamics matrix A ∈ R
n×n, a control matrix B ∈ R

n×d, and a
corresponding linear dynamical covariate distribution P

A,B
x in the linear regression model (3.1). Fix

an evaluation horizon T ′. On input m labeled trajectories of length T , drawn from this model, in the

form of examples {(x(i)t , y
(i)
t )}m,T

i=1,t=1, output a hypothesis f̂m,T that minimizes L(f̂m,T ;T
′,PA,B

x ).

Let P
A,B
x,t be the marginal distribution of xt under P

A,B
x at each t > 1. The natural decor-

related baseline for LDS-LS is a corresponding specialization of Ind-Seq-LS (Problem 3.2) to LDS
trajectories:

Problem 3.4 (Ind-LDS-LS). Assume a dynamics matrix A ∈ R
n×n, a control matrix B ∈ R

n×d,
and a corresponding trajectory distribution P

A,B
x . Consider covariates drawn independently from its

marginals, i.e., assume the linear regression model (3.1) under the covariate sequence distribution
⊗t>1P

A,B
x,t . Fix an evaluation horizon T ′. On input m labeled trajectories of length T , drawn from

this model, in the form of examples {(x(i)t , y
(i)
t )}m,T

i=1,t=1, output a hypothesis f̂m,T that minimizes

L(f̂m,T ;T
′,⊗t>1P

A,B
x,t ).
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Learning dynamical systems. LDS-LS generalizes linear system identification, the problem of

recovering the dynamics A from data. The reduction follows by setting W? = A and ξ
(i)
t = Bw

(i)
t+1,

so that y
(i)
t = x

(i)
t+1. Note that when B has full row rank, the squared parameter error in the

weighted BBT norm ‖·‖BBT is simply the risk L(Â;T ′,PA,B
x ) when T ′ = 1. Recent related work

typically assumes that B indeed has full row rank, but in later sections we touch on the more general
case where this is not required, so long as the pair (A,B) is controllable. Bounds in operator norm
are also easily obtainable from our proof techniques. However, our lower bounds will not inform
the system identification problem specifically; our hardness results rely on decoupling W? from A

and ξ
(i)
t from w

(i)
t+1, whereas this reduction naturally ties them.

4 Trajectory small-ball definition and examples

We establish risk upper bounds by studying the behavior of the ordinary least-squares estima-
tor. The key technical definition that drives the analysis is a “small-ball” condition on covariate
sequences:

Definition 4.1 (Trajectory small-ball (TrajSB)). Fix a trajectory length T ∈ N+, a parameter

k ∈ {1, . . . , T}, positive definite matrices {Ψj}bT/kcj=1 ⊂ Symn
>0, and constants csb > 1, α ∈ (0, 1].

The distribution Px satisfies the (T, k, {Ψj}bT/kcj=1 , csb, α)-trajectory-small-ball (TrajSB) condition if:

1. 1
bT/kc

∑bT/kc
j=1 Ψj 4 ΓT (Px),

2. {xt}t>1 is adapted to a filtration {Ft}t>1, and

3. for all v ∈ R
n \ {0}, j ∈ {1, . . . , bT/kc} and ε > 0:

P{xt}∼Px







1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 6 ε · vTΨjv

∣
∣
∣
∣
∣
F(j−1)k






6 (csbε)

α a.s. (4.1)

Above, F0 is understood to be the minimal σ-algebra. Additionally, the distribution Px satisfies

the (T, k,Ψ, csb, α)-TrajSB condition if it satisfies (T, k, {Ψj}bT/kcj=1 , csb, α)-TrajSB with Ψj = Ψ.
Finally, we call the parameter k the excitation window.

In Definition 4.1, we typically consider the matrices Ψj to be the sharpest almost-sure lower

bound that we can specify (in the Loewner order) on the quantity E[ 1k
∑jk

t=(j−1)k+1 xtx
T
t | F(j−1)k].

Section 4.1 lists examples of covariate sequence distributions Px that satisfy the TrajSB condition.
Definition 4.1 draws inspiration from the block martingale small-ball condition from [SMT+18].

There are two main differences: (a) we consider the small-ball probability of the entire block
1
k

∑jk
t=(j−1)k+1〈v, xt〉2 at once, instead of the average of small-ball probabilities:

1

k

jk
∑

t=(j−1)k+1

P

{

〈v, xt〉2 6 ε · vTΨjv | F(j−1)k

}

,

and (b) equation (4.1) is required to hold at all scales ε > 0, instead of at a single resolution. We
need the first modification (a) to prove optimal rates under many trajectories without assuming
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stability or ergodicity. Furthermore, condition (4.1) is implied by a bound on the average of small-
ball probabilities (Proposition 4.2). We need the second modification (b) in order to bound the
expected value of the OLS risk. Under weaker conditions, we would only have risk bounds that
hold with high probability, as detailed in the following remark:

Remark 4.1. In Appendix B.7, we consider the following modification to Definition 4.1, where
we instead suppose that (4.1) holds for some fixed ε (such that the inequality’s right-hand side
is strictly less than one), rather than for all ε; we refer to this modification as weak trajectory
small-ball (Definition B.1). As described above, a consequence of the weak trajectory small-ball
condition is that the main OLS risk bounds now hold with high probability (i.e., polylogarithmic
in 1/δ) rather than in expectation (Lemma B.23).1 A key upshot (Proposition B.24), however, is
that this change allows for an ergodic covariate sequence with φ-mixing time bounded by τmix to be
considered (weak) trajectory small-ball (with excitation window k � τmix), provided the stationary
distribution µ satisfies a standard (weak) small-ball condition [Men15, KM15, Oli16]:

sup
v∈Sn−1

Pµ{〈v, x〉2 6 ε · Eµ[〈v, x〉2]} < 1 for some ε > 0.

This in turn yields upper bounds for Seq-LS in the few trajectories (m . n) regime of the following
form: if mT > Ω̃(τmixn), then

L(Ŵm,T ;T,Px) 6 Õ
(

σ2ξ
pn

mT

)

,

with high probability. This statement generalizes the risk bound for a single ergodic trajectory
from [BJN+20, Theorem 1] to the ordinary least-squares estimator (3.6). We can interpret the
condition on mT as a “burn-in time” requirement. Meanwhile, at least in the single-trajectory
(m = 1) setting, [BJN+20, Theorem 9] tells us that that such a burn-in assumption (T & τmixn) is
necessary for a non-trivial risk guarantee.

4.1 Examples of trajectory small-ball distributions

We now turn to specific examples of distributions Px which satisfy the trajectory small-ball condi-
tion. First is the example introduced in Section 3.3, where x1 is drawn from a multivariate Gaussian
and subsequently copied as xt = xt−1 for all t > 2:

Example 4.1 (Copies of a Gaussian draw). Let Σ ∈ Symn
>0, and let Px denote the process x1 ∼

N(0,Σ) and xt = xt−1 for t > 2. Fix any T ∈ N+. Then Px satisfies the (T, T,Σ, e, 12)-TrajSB
condition.

Note that this process only satisfies the trajectory small-ball condition with excitation window
k = T . In other words, the conditional distribution xt+k | xt for k > 1 (a Dirac distribution on xt)
contains no excitation as needed for learning. This example can actually be generalized to arbitrary
Gaussian processes indexed by time:

1Such a high probability bound does not, in turn, imply a bound on the expected risk via integration over the
tail. The reason is that the high probability bound (Lemma B.23) requires that the number of data points mT grow
as log(1/δ), where δ is the failure probability.
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Example 4.2 (Gaussian processes). Let Px be a Gaussian process indexed by time, i.e., for every
finite index set I ⊂ N+, the collection of random variables (xt)t∈I is jointly Gaussian. Let Tnd :=
inf{t ∈ N+ | det(E[xtxTt ]) 6= 0}, and suppose Tnd is finite. Fix a T ∈ N+ satisfying T > Tnd. Then
Px satisfies the (T, T,ΓT (Px), 2e,

1
2)-TrajSB condition.

Our next example involves independent, but not identically distributed, covariates:

Example 4.3 (Independent Gaussians). Let {Σt}t>1 ⊂ Symn
>0, and let Px = ⊗t>1N(0,Σt). Fix a

T ∈ N+. Then Px satisfies the (T, 1, {Σt}Tt=1, e,
1
2)-TrajSB condition.

Example 4.3 allows us to select k = 1, reflecting the independence of the covariates across time.
We can also craft an example around a process that does not mix, but that still exhibits an

excitation window of k = 2:

Example 4.4 (Alternating halfspaces). Suppose that n > 4 is even, and let u1, . . . , un be a fixed
orthonormal basis of Rn. Put U0 = span(u1, . . . , un/2) and U1 = span(un/2+1, . . . , un). Let i1 ∼
Bern(12), it+1 = it mod 2 for t ∈ N+, and let Px denote the process with conditional distribution
xt | it uniform over the spherical measure on Uit ∩ S

n−1. For any T > 2, the process Px satisfies
the (T, 2, In/(2n), e,

1
2)-TrajSB condition.

To see that the covariate distribution {xt} does not mix, observe that the marginal distribution
for all t is uniform on S

n−1, whereas the conditional distribution xt+k | xt for any k ∈ N+ is either
uniform on U0 ∩ S

n−1 or uniform on U1 ∩ S
n−1. Although it does not mix at all, the trajectory

supplies ample excitation for learning in any mere two steps.
Even for a process that does mix, it may exhibit an excitation window far smaller than its

mixing time. The following sets up such an example, where again where sufficient excitation is
provided with k = 2 steps:

Example 4.5 (Normal subspaces). Suppose that n > 3. Let u1, . . . , un be a fixed orthonormal basis
in R

n, and let U¬i := span({uj}j 6=i) for i ∈ {1, . . . , n}. Consider the Markov chain {it}t>1 defined
by i1 ∼ Unif({1, . . . , n}), and it+1 | it ∼ Unif({1, . . . , n} \ {it}). Let Px denote the process with
conditional distribution xt | it uniform over the spherical measure on U¬it ∩ S

n−1. For any T > 2,
the process Px satisfies the (T, 2, In/(4n− 4), e, 12)-TrajSB condition.

In this example, a straightforward computation (detailed in Proposition B.11) shows that the mixing
time τmix(ε) of the Markov chain {it}t>1 scales as logn(1/ε).

2 In most analyses which rely on mixing
time arguments, one requires that the mixing time resolution ε tends to zero as either the amount
of data and/or probability of success increases; as a concrete example, [DAJJ12, Eq. 3.2] suggests
to set ε = 1/

√
T , where T is the number of samples drawn from the underlying distribution. On

the other hand, the trajectory small-ball condition in Example 4.5 holds with a short excitation
window of length k = 2, independently of T .

Next we consider linear dynamical systems. As setup, we first define the notion of controllability
for a pair of dynamics matrices (A,B):

2For concreteness, given a discrete-time Markov chain over a finite state-space S with transition matrix P and
stationary distribution π, we define the mixing time as: τmix(ε) := inf{k ∈ N | supµ∈P(S)‖µP

k−π‖tv 6 ε}. Here, P(S)
denotes the set of all probability distributions over S, and ‖·‖tv denotes the total variation norm over distributions.
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Definition 4.2 (Controllability). Let (A,B) be a pair of matrices with A ∈ R
n×n and B ∈ R

n×d.
For k ∈ {1, . . . , n}, we say that (A,B) is k-step controllable if the matrix:

[
B AB A2B · · · Ak−1B

]
∈ R

n×kd

has full row rank.

The classical definition of controllability in linear systems [cf. Rug96, Chapter 25] is equivalent
to n-step controllability. Definition 4.2 allows the system to be controllable in fewer than n steps.
Also note that k is restricted to {1, . . . , n}, since if a system is not n-step controllable, it will not
be n′-step controllable for any n′ > n (by the Cayley-Hamilton theorem). A few special cases of
interest to note are as follows. If B has rank n, then (A,B) is trivially one-step controllable for any
A. On the other hand, if (A,B) are in canonical controllable form (i.e., A is the companion matrix
associated with the polynomial p(z) = a0 + a1z + · · ·+ an−1z

n−1 + zn and B is the n-th standard
basis vector), then (A,B) is n-step controllable. The latter corresponds directly to the state-space
representation of autoregressive processes of order n, e.g. AR(n).

Example 4.6 (Linear dynamical systems). Let (A,B) with A ∈ R
n×n and B ∈ R

n×d be kc-step-
controllable (Definition 4.2). Let P

A,B
x be the linear dynamical system defined in (3.8). Fix any

T, k ∈ N+ satisfying T > k > kc. Then, PA,B
x satisfies the (T, k,Γk(A,B), e, 12)-TrajSB condition.

In all of the examples so far, the time-t marginal distribution of covariates xt has either been a
multivariate Gaussian or a spherical measure. To underscore the generality of the small-ball method,
we can create additional examples where this is not the case. In what follows, we consider Volterra
series [MS00], which generalize the classical Taylor series to causal sequences. Analogous to how
polynomials can approximate continuous functions arbitrarily well on a compact set, Volterra series
can approximate signals that depend continuously (and solely) on their history over a bounded set
of inputs [cf. Rug81, Section 1.5].

Example 4.7 (Degree-D Volterra series). Fix a D ∈ N+. Let {c(d,`)i1,...,id
}i1,...,id∈N for d ∈ {1, . . . , D}

and ` ∈ {1, . . . , n} denote arbitrary rank-d arrays. Let {w(`)
t }t>0 be iid N(0, 1) random variables

for ` ∈ {1, . . . , n}. Consider the process Px where for t > 1, the `-th coordinate of xt, denoted (xt)`,
is:

(xt)` =

D∑

d=1

t−1∑

i1,...,id=0

c
(d,`)
i1,...,id

d∏

d′=1

w
(`)
t−id′−1. (4.2)

Let Tnd := inf{t ∈ N+ | det(Γt(Px)) 6= 0}, and suppose Tnd is finite. There is a constant cD > 0,
depending only on D, such that for any T > Tnd, Px satisfies the (T, T,ΓT (Px), cD, 1/(2D))-TrajSB
condition.

The main idea behind Example 4.7 is that, while xt is certainly not Gaussian, the quadratic

form
∑T

t=1〈v, xt〉2 is a degree at most 2D polynomial in {w(`)
t }T−1

t=0 . It will hence exhibit anti-
concentration, according to a landmark result from [CW01]. The same result actually provides an
immediate extension of this example—as well as the previous examples—to noise distributions with
log-concave densities, such as Laplace or uniform noise.

We next present a special case of the Volterra series, where we can choose the excitation window
k in the small-ball definition strictly between the endpoints 1 and T . To set up, a few more
definitions are needed:
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Definition 4.3. Fix an integer d ∈ N+. A rank-d array of coefficients {ci1,...,id}i1,...,id∈N is called:

(a) symmetric if ci1,...,id = cπ(i1,...,id) for any permutation π of indices i1, . . . , id ∈ N,

(b) traceless if ci,...,i = 0 for all i ∈ N, and

(c) non-degenerate if there exists an knd ∈ N+ such that the following set is non-empty:

{(i1, . . . , id) | ci1,...,id 6= 0, i1, . . . , id ∈ {0, . . . , knd − 1}}.

The smallest knd such that {ci1,...,id} is the non-degeneracy index.

Example 4.8 (Degree-2 Volterra series). Consider the following process Px. Let {c(`)i,j }i,j>0 for

` ∈ {1, . . . , n} be symmetric, traceless, non-degenerate arrays (Definition 4.3). Let {w(`)
t }t>0 be iid

N(0, 1) random variables for ` ∈ {1, . . . , n}. For t > 1, the `-th coordinate of xt, denoted (xt)`, is:

(xt)` =
t−1∑

i=0

t−1∑

j=i

c
(`)
i,jw

(`)
t−i−1w

(`)
t−j−1. (4.3)

Let knd ∈ N+ denote the smallest non-degeneracy index for all n arrays. There is a universal positive
constant c such that for any T and k satisfying T > k > knd, Px satisfies the (T, k,Γk(Px), c,

1
4)-

TrajSB condition.

The assumptions pulled in from Definition 4.3 help simplify the construction of an almost
sure lower bound for conditional covariances E[ 1k

∑jk
t=(j−1)k+1 xtx

T
t | F(j−1)k], to establish that

Example 4.8 satisfies the trajectory small-ball condition. We believe that generalizations to higher
degree Volterra series with k strictly between 1 and T are possible by more involved calculations.

Of course, many other examples are possible. To help in recognizing them, the following state-
ment shows that condition (4.1) in the trajectory small-ball definition can be verified by separately
establishing small-ball probabilities for the conditional distributions:

Proposition 4.2 (Average small-ball implies trajectory small-ball). Fix T ∈ N+, k ∈ {1, . . . , T},
{Ψj}bT/kcj=1 ⊂ Symn

>0, and α, β ∈ (0, 1). Let Px be a covariate distribution, with {xt}t>1 adapted to
a filtration {Ft}t>1. Suppose for all v ∈ R

n \ {0} and j ∈ {1, . . . , bT/kc}:

1

k

jk
∑

t=(j−1)k+1

Pxt∼Px

{

〈v, xt〉2 6 α · vTΨjv
∣
∣
∣ F(j−1)k

}

6 β a.s., (4.4)

where F0 is the minimal σ-algebra. Then, for all v ∈ R
n \ {0}, j ∈ {1, . . . , bT/kc}, and ε ∈ (0, α)

P{xt}∼Px







1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 6 ε · vTΨjv

∣
∣
∣
∣
∣
F(j−1)k






6

β

1− ε/α a.s. (4.5)

An immediate corollary of Proposition 4.2 is the following: suppose that for all v ∈ R
n \ {0},

j ∈ {1, . . . , bT/kc}, and ε > 0,

1

k

jk
∑

t=(j−1)k+1

Pxt∼Px

{

〈v, xt〉2 6 ε · vTΨjv
∣
∣
∣ F(j−1)k

}

6 (csbε)
α a.s. (4.6)
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Then, the (T, k, {Ψj}bT/kcj=1 , 21+1/αcsb, α)-TrajSB condition holds. Equation (4.6) can be easier to
verify than (4.1), since the former allows one to reason about each conditional distribution individ-
ually, whereas the latter requires reasoning about the entire excitation window altogether.

The following two sections present upper and lower bounds for learning from trajectories, in-
volving various instances of the trajectory small-ball assumption where applicable. All main results
are summarized in Table 1.

5 Risk upper bounds

The trajectory small-ball definition allows us to carve out conditions for learnability. A key quantity
for what follows is the minimum eigenvalue of the ratio of two positive definite matrices:

λ(A,B) := λmin(B
−1/2AB−1/2), A,B ∈ Symn

>0. (5.1)

Our various upper bounds statements build on the following general lemma:

Lemma 5.1 (General OLS upper bound). There are universal positive constants c0 and c1 such that

the following holds. Suppose that Px satisfies the (T, k, {Ψj}bT/kcj=1 , csb, α)-TrajSB condition (Defini-

tion 4.1). Put S := bT/kc and ΓT := ΓT (Px). Fix any Γ ∈ Symn
>0 satisfying 1

S

∑S
j=1Ψj 4 Γ 4 ΓT ,

and let µ({Ψj}Sj=1,Γ) denote the geometric mean of the minimum eigenvalues {λ(Ψj ,Γ)}Sj=1, i.e.,

µ({Ψj}Sj=1,Γ) :=





S∏

j=1

λ(Ψj ,Γ)





1/S

. (5.2)

Suppose that:

n > 2,
mT

kn
>
c0
α

log

(

max{e, csb}
αλ(Γ,ΓT )µ({Ψj}Sj=1,Γ)

)

. (5.3)

Then, for any Γ′ ∈ Symn
>0:

E[‖Ŵm,T −W?‖2Γ′ ] 6 c1csbσ
2
ξ ·

pn

mTαλ(Γ,Γ′)µ({Ψj}Sj=1,Γ)
· log

(

max{e, csb}
αλ(Γ,ΓT )µ({Ψj}Sj=1,Γ)

)

. (5.4)

The proof of Lemma 5.1 blends ideas from the analysis of random design linear regression
[HKZ14, Oli16, Mou22] with techniques from linear system identification with full state observa-
tion [SMT+18, SR19, FTM18, DMM+20]. Note that Lemma 5.1 makes no explicit assumptions on
the ergodicity of the process Px. The role of Px is instead succinctly captured by the trajectory
small-ball condition, together with the minimum eigenvalue quantities that appear in the bound.
The proof of Lemma 5.1 also yields, with some straightforward modifications, bounds on the risk
that hold with high probability; we only present bounds in expectation for simplicity. Finally, if
the square norm ‖X‖2M is defined to be λmax(XMXT) instead of tr(XMXT), then (5.4) holds with
the expression p+ n replacing pn in the numerator.

As long as the process Px satisfies the trajectory small-ball condition with excitation window
k = T , Lemma 5.1 (with Ψ1 = Γ = ΓT (Px)) immediately yields the following result for learning
from many trajectories in the Seq-LS problem:
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Problem Many? Upper Lower Assumptions

Seq-LS Y pn
mT X TrajSB(a)

Seq-LS N pn
mT e−T/(τmixn) + pn

T Ergodicity of covariates(b)

LDS-LS Y pn
mT X kc-step controllability(c)

LDS-LS N γ pn2

m2T
pn2

m2T
Marginal stability, etc.(d)

Ind-Seq-LS N pn
mT X Small-ball, poly variance growth(e)

Ind-LDS-LS N γ pn
mT

pn
mT Diagonalizable(f)

LDS-SysID Y n2

mTλmin(ΓT ) - Same as LDS-LS (Y)(g)

LDS-SysID N γ n2

mTλmin(ΓmT/n)
n2

T 2 Same as LDS-LS (N)(h)

Table 1: Summary of main results presented in Section 5 and Section 6. All upper/lower bounds shown
suppress constant and polylogarithmic factors. The Many? column indicates whether the bounds apply in
the many trajectories regime (Y) wherem & n, or the few trajectories regime (N) wherem . n. A checkmark
(X) in the Lower column indicates that the lower bound matches the upper bound, up to polylogarithmic
factors. The LDS-SysID problem is classic linear system identification: recover the unknown dynamics matrix
A from linear dynamical trajectories, with error measured in squared Frobenius norm (see Equation (3.8)
and the discussion at the end of Section 3.4). Elaborations on assumptions:

(a) Upper bound follows from Theorem 5.2, treating as O(1) all constants related to trajectory small-ball
(Definition 4.1). Lower bound follows from iid linear regression being a special case.

(b) Upper bound follows from combining (i) Lemma B.23, a general OLS high probability upper bound
that utilizes a simple modification (Definition B.1) to our trajectory small-ball definition, with (ii)
Proposition B.24, which shows that a φ-mixing (Definition B.2) covariate process (where the marginal
distributions also fulfill a weak small-ball condition (B.29)) satisfies our modified trajectory small-ball
condition. The upper bound holds in high probability instead of in expectation, and requires a burn-in
time that satisfies T & τmixn log(1/δ), where δ denotes the failure probability. The lower bound is
from [BJN+20, Theorems 1 and 3], and holds for the single trajectory (m = 1).

(c) Upper bound follows from Theorem 5.5; see Definition 4.2 for definition of kc-step controllability.
Lower bound follows again from iid linear regression being a special case.

(d) Upper bound follows from Theorem 5.6, under Assumption 5.1 (marginal stability), Assumption 5.2
(diagonalizability), and Assumption 5.3 (one-step controllability). The condition number of the di-
agonalizing factor is denoted by γ (Definition 5.1). Lower bound follows from Theorem 6.3, and is
realized by a decoupled noise sequence (Definition 7.1).

(e) Upper bound follows from Theorem 5.3, treating as O(1) constants relating to small-ball (Equa-
tion (5.7)) and variance growth (Equation (5.8)). The necessity of the variance growth condition is
shown in Theorem 6.2. Note that in the many trajectories regime, the Seq-LS upper bound applies.
Lower bound again follows from iid linear regression.

(f) Upper bound follows from Theorem 5.7; γ is the condition number of the diagonalizing factor (Defi-
nition 5.1). Lower bound again follows from iid linear regression.

(g) Upper bound follows from Theorem 5.4; ΓT is the T -step average covariance matrix (Equation (3.3)).

(h) Upper bound follows from Theorem 5.8; γ is the condition number of the diagonalizing factor (Def-
inition 5.1), and ΓmT/n is the mT/n-step average covariance matrix (Equation (3.3)). Lower bound
applies to the single trajectory (m = 1) setting and follows from [SMT+18, Theorem 2.3]. (Techni-
cally, their bound applies to the operator, instead of Frobenius norm, but the proof can be adjusted to
apply.) Specializing the upper bound to one trajectory (m = 1), drawn from the lower bound’s hard
instance, implies a gap of n3/T 2 (upper) versus n2/T 2 (lower) as noted in [SMT+18, Section 2.2].
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Theorem 5.2 (Upper bound for Seq-LS, many trajectories). There are univeral positive constants
c0 and c1 such that the following holds. Suppose that Px satisfies the trajectory small-ball condition
(Definition 4.1) with parameters (T, T,ΓT (Px), csb, α). If:

n > 2, m >
c0n

α
log

(
max{e, csb}

α

)

,

then, for any Γ′ ∈ Symn
>0:

E[‖Ŵm,T −W?‖2Γ′ ] 6 c1csbσ
2
ξ ·

pn

mTαλ(ΓT (Px),Γ′)
· log

(
max{e, csb}

α

)

. (5.5)

This result provides the upper bound for the summary statement Theorem 1.1. To interpret
the bound (5.5), suppose that csb and α are universal constants. Then, the requirement on m
simplifies to m & n. Under any strict evaluation horizon T ′ 6 T , taking Γ′ = ΓT ′(Px), the risk
E[L(Ŵm,T ;T

′,Px)] scales as σ2ξpn/(mT ). The lower bound for Theorem 1.1 follows from the fact
that iid linear regression is a special case of Seq-LS.

Meanwhile, to obtain guarantees for parameter recovery, consider taking Γ′ = In. Then The-
orem 5.2 implies that the parameter error E[‖Ŵm,T −W?‖2F ] scales as σ2ξpn/[mT · λmin(ΓT (Px))].
Note that operator norm bounds on parameters also hold, with the expression p + n replacing pn
in the bound.

Lemma 5.1 also yields a bound for Ind-Seq-LS, assuming polynomial growth of the time-t co-
variances Σt (3.3). To state the result, let φ : [1,∞)× [0,∞)→ [1,∞) be defined as:

φ(a, x) :=

{

1 if x 6 1,

ax otherwise.
(5.6)

Note that 1 6 φ(a, x) 6 max{ax, 1}.

Theorem 5.3 (Upper bound for Ind-Seq-LS). There are universal positive constants c0 and c1 such
that the following holds. Fix any sequence of distributions {Px,t}t>1, and let Σt := Ext∼Px,t [xtx

T
t ]

for t ∈ N+. Suppose there exists csb > 0 and α ∈ (0, 1] such that for all v ∈ R
n \ {0}, ε > 0 and

t ∈ N+:

Pxt∼Px,t

{

〈v, xt〉2 6 ε · vTΣtv
}

6 (csbε)
α. (5.7)

Furthermore, suppose there exists a cβ > 1 and β > 0 such that for all s, t ∈ N+ satisfying s 6 t:

1

λ(Σs,Σt)
6 cβ(t/s)

β . (5.8)

If:

n > 2, mT >
c0n

α

(

β + log

(
max{e, csb}cβ

α

))

,

then, for Px = ⊗t>1Px,t:

E[L(Ŵm,T ;T
′,Px)] 6 c1csbσ

2
ξcβe

β · pn

mTα
· φ
(

cβ(β + 1), (T ′/T )β
)[

β + log

(
max{e, csb}cβ

α

)]

.

(5.9)
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Consider specializing Theorem 5.3 to the case when Σt = Σ for all t ∈ N+. Doing so yields
random design linear regression from mT covariates drawn iid from Px,1. The growth condition
(5.8) is trivially satisfied with cβ = 1 and β = 0. The small-ball assumption (5.7) simplifies
to Px1∼Px,1{|〈v, x1〉| 6 ε‖v‖Σ} 6 (

√
csbε)

2α for all v 6= 0 and ε > 0, which matches [Mou22,
Assumption 1] up to a minor redefinition of the constants csb, α. Treating csb and α as constants,
the conclusion of Theorem 5.3 in this setting is that E[‖Ŵm,T −W?‖2Σ] . σ2ξpn/(mT ) as long as
n > 2 and mT & n, which recovers [Mou22, Proposition 2].

On the other hand, Theorem 5.3 does not require that the covariates are drawn iid from the same
distribution, allowing the time-t covariances Σt to grow polynomially. As an example, suppose that
Σt = tβ ·In for some β > 0. In this case, 1/λ(Σs,Σt) = (t/s)β , so we can take cβ = 1 in (5.8). Again

treating csb and α as constants and taking T ′ 6 T , we have E[L(Ŵm,T ;T
′,Px)] . σ2ξβe

β · pn/(mT )
as long as mT & βn. If β is also considered a constant, then we further have the risk bound
E[L(Ŵm,T ;T

′,Px)] . σ2ξpn/(mT ). This matches the minimax rate for iid linear regression.
It is natural to ask if the covariance growth condition (5.8) is needed under strict evaluation

horizons T ′ 6 T .3 In Section 6, we show that if the covariances are set to Σt = 2t · In and
Px,t = N(0,Σt) (satisfying (5.7)), then the minimax risk R(m,T, T ; {⊗t>1Px,t}) must scale at least
2cn/m/T whenever m . n, for some positive constant c. Sub-exponential growth rates are therefore
necessary for polynomial sample complexity. Determining the optimal dependence of β in (5.9) is
left to future work.

Note that Theorem 5.3 is most interesting either when trajectories are few (m . n) or evalua-
tions are extended (T ′ > T ). When m & n and T ′ 6 T , one can usually apply Theorem 5.2 with
Γ′ = ΓT ′(Px) instead, and avoid placing any requirements on the growth of covariances.

Considering any of the small-ball examples in Section 4.1, recall that when the excitation window
k and the horizon T are equal, Theorem 5.2 provides an upper bound on the risk of OLS estimation
for the corresponding Seq-LS problem. Specifically, for Example 4.1 and Example 4.6 with k = T , if
T ′ = T and trajectories are abundant (m & n), then the OLS estimator’s rate σ2ξpn/(mT ) matches
its behavior in iid linear regression. Meanwhile, for the degree-D Volterra series (Example 4.7), we
require that m & cD · n, and the OLS risk bound scales as σ2ξc

′
D · pn/(mT ), for constants cD and

c′D that only depend on D.
In order to cover scenarios in which trajectories may be relatively scarce, namelym . n, we need

additional structure. More technically, when the small-ball condition is satisfied with k < T , one
needs to further control the various eigenvalues that appear in Lemma 5.1 in order to bound the risk
of OLS. Specifically for Ind-Seq-LS, a covariate growth assumption suffices: Example 4.3 combined
with Theorem 5.3 yields an OLS risk bound. Furthermore, both Example 4.4 and Example 4.5 can
be immediately combined with Lemma 5.1, since the matrices Ψj in these examples are bounded
above and below by ΓT (Px) up to universal constant factors. But arbitrarily large risk can still be
realized in the general Seq-LS problem, even when the trajectory small-ball condition is satisfied.
To study the behavior of OLS across all regimes of trajectory countm, example dimensions p and n,
and trajectory lengths T and T ′, we focus specifically on linear dynamical systems and the LDS-LS
problem for our remaining upper bounds.

3Some regularity is needed when under extended evaluations T ′ > T , otherwise the risk could be arbitrarily large.
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5.1 Upper bounds for linear dynamical system

In this section, we focus exclusively on dynamics P
A,B
x described by a linear dynamical system

(3.8). As discussed previously, in order to apply Lemma 5.1 in the few trajectories regime when
m . n (or when m & n and T ′ > T ), we must (a) show that the process P

A,B
x satisfies the

trajectory small-ball condition, and (b) bound the various eigenvalues which appear in Lemma 5.1.
Example 4.6 establishes that P

A,B
x satisfies the (T, k,Γk(A,B), e, 12)-TrajSB condition, as long as

(A,B) is kc-step controllable and k > kc, thus taking care of (a). To handle (b), we introduce
additional assumptions on the dynamics matrices (A,B):

Assumption 5.1 (Marginal instability). The dynamics matrix A in LDS-LS is marginally unstable.
That is, ρ(A) 6 1, where ρ(A) denotes the spectral radius of A.

Assumption 5.2 (Diagonalizability). The dynamics matrix A in LDS-LS is complex diagonalizable
as A = SDS−1, where S ∈ C

n×n is invertible and D ∈ C
n×n is a diagonal matrix comprising the

eigenvalues of A.

Assumption 5.3 (One-step controllability). The control matrix B in LDS-LS has full row rank,
i.e., rank(B) = n. Equivalently, the pair (A,B) is one-step controllable (Definition 4.2).

Assumption 5.1 is fairly standard in the literature. Going beyond the regime ρ(A) = 1 + ε,
where ε . 1/T , requires additional technical assumptions on the dynamics matrix A that we choose
to avoid in the interest of simplicity; the OLS estimator is in general not a consistent estimator
when ρ(A) > 1 and m = 1 (cf. [PM13, SR19]). The condition ρ(A) 6 1 is often referred to as
marginal stability in other work. We choose to call it marginally unstable instead, to emphasize
the fact that such systems, namely at ρ(A) = 1, may not be ergodic and that the state can grow
unbounded (e.g. have magnitude roughly tn at time t).

Diagonalizability (Assumption 5.2) is less standard in the literature. We use it together with
Assumption 5.1 and Assumption 5.3 to establish that λ(k, t;A,B) := λ(Γk(A,B),Γt(A,B)) & c·k/t
whenever k 6 t, where c is a constant that depends only on A and B (and not k and t). In
previous work on linear system identification, the term λ(k, t;A,B) only appears under a logarithm,
and so coarser analyses in the general case can still establish polynomial rates (cf. [SMT+18,
Proposition A.1] and [SR19, Proposition 7.6]).4 However, by allowing for evaluation lengths T ′ > 1,
the dependence on λ(k, t;A,B) is no longer entirely confined under a logarithm (cf. Lemma 5.1).
A sharp characterization is hence critical for deriving optimal rates. In Appendix A, we conjecture
the correct scaling of λ(k, t;A,B) as a function of the ratio k/t and the largest Jordan block size
of A, based on numerical simulation.

One-step controllability (Assumption 5.3) is also an assumption commonly made in linear sys-
tem identification. It is clear that some form of controllability is needed, otherwise learning may
be impossible (e.g. consider the extreme case of B = 0). General multi-step controllability does
not suffice either: [TP21, Theorem 2] show that under a single trajectory (m = 1), n-step control-
lability (where n remains the state dimension) does not ensure finite risk, and even a more robust
controllability definition [TP21, Definition 3] cannot ensure risk bounds better than exponential in
the dimension n. Considering these barriers, we simply choose to rely on one-step controllability
in the few-trajectory setting (m . n).

Finally, we introduce a condition number quantity that will feature commonly in our bounds:

4Note, however, that without diagonalizability, [SMT+18, Corollary A.2] can only guarantee a
√

n2/T rate for
the operator norm of the parameter error in general, and this is likely not optimal.
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Definition 5.1. For dynamics matrices (A,B) in LDS-LS satisfying Assumption 5.2 and Assump-

tion 5.3, the condition number γ(A,B) is defined as: γ(A,B) := λmax(S−1BBTS−∗)
λmin(S−1BBTS−∗)

.

5.1.1 Many trajectories

Our first result instantiates Theorem 5.2 in the special case of Γ′ = In, which yields a sharp bound
for parameter recovery without requiring stability of the dynamics matrix A:

Theorem 5.4 (Parameter recovery upper bound for LDS-LS, many trajectories). There are univer-
sal positive constants c0 and c1 such that the following holds for any instance of LDS-LS. Suppose
that (A,B) is kc-step controllable, If n > 2, m > c0n, and T > kc, then:

E[‖Ŵm,T −W?‖2F ] 6 c1σ
2
ξ ·

pn

mT · λmin(ΓT (A,B))
.

Theorem 5.4 improves on existing linear system identification results in the following way: it
replaces stability assumptions on the dynamics matrix A with a simpler assumption of relatively
many trajectories (m & n), and it guarantees a rate that is inversely proportional to the total num-
ber of examples mT instead of only one example per trajectory. In other words, our analysis does
not need to “discard” the data within a trajectory, which is the case in [DMM+20, Proposition 1.1].
Additionally, although OLS is generally not a consistent estimator from one trajectory (m = 1)
if the dynamics A are unstable, the results of [DMM+20] imply consistency as m → ∞, i.e., that
Ŵm,T converges in probability to W? as m→∞. Theorem 5.4 adds that, provided m & n, OLS is
consistent under unstable systems as T →∞ as well, even if the trajectory count m remains finite.
We will return to parameter recovery from relatively few trajectories (m . n) by this section’s end.

We now look beyond an evaluation horizon of length one, and consider the setting with many
trajectories (m & n). As noted previously, in order to handle an arbitrary evaluation horizon T ′

(in particular those that extend past the training horizon T ), some constraint on the admissible
dynamics matrices is needed to ensure that the minimax risk remains finite. Without assumptions,
the quantity λ(ΓT (A,B),ΓT ′(A,B)), whose inverse inevitably bounds the risk (3.2) from below,
can be arbitrarily small whenever T ′ > T , resulting in arbitrarily large risk. We will use our stated
assumptions from the beginning of this section. The following specializes Theorem 5.2 to LDS-LS:

Theorem 5.5 (Risk upper bound for LDS-LS, many trajectories). There are universal positive
constants c0 and c1 such that the following holds for any instance of LDS-LS. Suppose that (A,B)
is kc-step controllable. If n > 2, m > c0n, T > kc, and the evaluation horizon is strict (T ′ 6 T ),
then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c1σ
2
ξ ·

pn

mT
.

On the other hand, suppose that (A,B) satisfies Assumption 5.1, Assumption 5.2, and Assump-
tion 5.3, with γ := γ(A,B) (Definition 5.1). If n > 2, m > c0n, and the evaluation horizon is
extended (T ′ > T ), then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c1σ
2
ξ ·

pn

mT
· γ T

′

T
.

Setting T ′ = T , Theorem 5.5 states that the risk of LDS-LS in the many trajectories regime
satisfies E[L(Ŵm,T ;T,P

A,B
x )] . σ2ξpn/(mT ). This rate matches the corresponding independent
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baseline Ind-LDS-LS in the many trajectories regime. To see this, first observe that the marginal
distribution P

A,B
x,t at time t ∈ N+ isN(0,Σt(A,B)). Hence, the covariate distribution for Ind-LDS-LS

corresponds to the product distribution ⊗t>1N(0,Σt(A,B)), which is an instance of a Gaussian
process. Therefore, Example 4.2 combined with Theorem 5.2 yields that the Ind-LDS-LS problem
also has a risk bound that scales as σ2ξpn/(mT ) whenever m & n. Put differently, the dependent

structure of the covariate distribution P
A,B
x in LDS-LS does not add any statistical overhead to the

learning problem (compared to the independent learning problem Ind-LDS-LS), as long as m & n.

5.1.2 Few trajectories

We now cover the regime in which relatively few training trajectories are available (m . n). Our
first result bounds the OLS risk for the LDS-LS problem:

Theorem 5.6 (Risk upper bound for LDS-LS, few trajectories). There are universal positive con-
stants c0, c1, and c2 such that the following holds for any instance of LDS-LS. Suppose that (A,B)
satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B) (Definition 5.1).
If n > 2, m 6 c0n, and mT > c1n log(max{γn/m, e}), then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c2σ
2
ξ ·
pn log(max{γn/m, e})

mT
· φ
(

γ,
c1n log(max{γn/m, e})

m
· T

′

T

)

.

To interpret Theorem 5.6, consider γ a constant and suppose that T ′ = T . Then Theorem 5.6
states that E[L(Ŵm,T ;T,P

A,B
x )] . σ2ξ ·pn/(mT ) ·n log2(n/m)/m. We now see that this LDS-LS risk

is an extra n log2(n/m)/m factor larger than the risk of the baseline problem Ind-LDS-LS:

Theorem 5.7 (Risk upper bound for Ind-LDS-LS). There are universal positive constants c0 and
c1 such that the following holds for any instance of Ind-LDS-LS. Suppose that (A,B) satisfies
Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B) (Definition 5.1). If
n > 2 and mT > c0n log(max{γ, e}), then:

E[L(Ŵm,T ;T
′,⊗t>1P

A,B
x,t )] 6 c1σ

2
ξ ·
pnγ log(max{γ, e})

mT
· φ
(

γ,
T ′

T

)

.

Treating γ as a constant and setting T ′ = T , Theorem 5.7 states that E[L(Ŵm,T ;T,⊗t>1P
A,B
x,t )]

scales as σ2ξpn/(mT ), matching the risk of iid linear regression up to constant factors. In Section 6,
we will see that the result of Theorem 5.6 is sharp up to constants, and therefore the LDS-LS

problem is fundamentally more difficult than its corresponding baseline problem Ind-LDS-LS when
trajectories are relatively scarce.

We conclude with our final upper bound, using our assumptions to generalize [SMT+18, Theo-
rem 2.1] to the few-trajectory setting:

Theorem 5.8 (Parameter recovery upper bound for LDS-LS, few trajectories). There are universal
positive constants c0, c1, and c2 such that the following holds for any instance of LDS-LS. Suppose
that (A,B) satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B)
(Definition 5.1). If n > 2, and mT > c0n log(max{γn/m, e}), then:

E[‖Ŵm,T −W?‖2F ] 6 c1σ
2
ξ ·
pn log(max{γn/m, e})
mT · λmin(Γk?(A,B))

, k? :=

⌊
c2T

n/m · log(max{γn/m, e})

⌋

.

Theorem 5.8 complements Theorem 5.4; together they cover parameter recovery across all problem
regimes. Again, operator norm bounds also hold with p+ n in place of pn.
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5.2 Comparison to learning from trajectories of multiple unknown systems

As mentioned in Section 2, [CP22, MFTM22] both study the setup where a learner observes multiple
independent trajectories fromK different unknown linear dynamical systems. The task is to identify
the parameters of the K underlying systems. This is more general than the setting we consider,
which is recovered by fixing K = 1. However, specializing these rates to our setting yield either
unnecessary requirements, suboptimal bounds, or both.

To see this, first, if we specialize [CP22, Theorem 1] to our setup, we generate unnecessary
assumptions. Specifically, Theorem 1 requires strict stability, one-step controllability, and mT &
max{n3, 1/(1− ρ)}, where ρ is the spectral radius of A. In comparison, Theorem 5.4 only requires
kc-step controllability, T > kc, and m & n. However, note that Theorem 1, like Theorem 5.4, does
have the property that the parameter error (in operator norm) scales as

√

n/(mT ), reflecting that
all collected datapoints contribute to reducing error.

Next, we specialize [MFTM22, Theorem 2]. Theorem 2 bounds the error of an estimation pro-
cedure which outputs m different estimates {Âi}mi=1, one for each observed trajectory (cf. Eq. (3)).
Specifically, it gives an upper bound on the quantity 1

m

∑m
i=1‖Âi − Ai‖2F , where Ai is the dy-

namics matrix associated with the i-th trajectory. To specialize this to our setting, we aver-
age the estimates and apply Jensen’s inequality followed by Theorem 2. This yields the bound
‖Â − A‖2F . 1/T + n2/(mT ), where Â := 1

m

∑m
i=1 Âi is the averaged estimate. We see that, for a

fixed T , as m→∞, the rate tends to 1/T instead of zero (compared with the n2/(mT ) bound from
Theorem 5.4). Additionally, Theorem 2 requires both that the dynamics are one-step controllable
and that the spectral radius of A is bounded by 1 +O(1/T ).

6 Risk lower bounds

Our lower bounds rely on the following statement, that the expected trace inverse covariance—a
classic quantity in asymptotic statistics—bounds the minimax risk from below:

Lemma 6.1 (Expected trace of inverse covariance bounds risk from below). Fix m,T ∈ N+ and a
set of covariate distributions Px. Suppose that for every Px ∈ Px, the data matrix Xm,T ∈ R

mT×n

drawn from ⊗m
i=1Px has full column rank almost surely. The minimax risk R(m,T, T ′;Px) satisfies:

R(m,T, T ′;Px) > σ2ξp · sup
Px∈Px

E⊗m
i=1Px

[

tr
(

Γ
1/2
T ′ (Px)(X

T
m,TXm,T )

−1Γ
1/2
T ′ (Px)

)]

.

Lemma 6.1 is well known, possibly considered folklore; we state and prove it for completeness. Our
proof is inspired by a recent argument from [Mou22]. It smooths over problem instances according
to a Gaussian prior, and analytically characterizes the posterior distribution of the parameter W?

under a simple Gaussian observation model detailed in Section 7.2.
Our first lower bound underscores the need to make variance growth assumptions (5.8), in

Theorem 5.3, for Ind-Seq-LS in the few trajectories (m . n) regime:

Theorem 6.2 (Need for growth assumptions in Ind-Seq-LS when m . n). There exists universal
constant c0, c1, and c2 such that the following holds. Suppose that Px = ⊗t>1N(0, 2t · In), n > 6,
mT > n, and m 6 c0n. Then:

R(m,T, T ; {Px}) > c1σ
2
ξ ·
p · 2c2n/m

T
.
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Theorem 6.2 states that if the variances Σt are allowed to grow exponentially in t, then the
minimax risk of Ind-Seq-LS scales exponentially in n/m when m . n. Thus, some sub-exponential
growth assumption is necessary in order to have the risk scale polynomially in n/m.

We now turn to a lower bound for LDS-LS. We consider two particular hard instances for
LDS-LS dynamics matrices (A,B), where we set B = In and vary A. The first instance corresponds
to iid covariates, i.e., A = 0n×n. The second instance corresponds to an isotropic Gaussian random
walk, i.e., A = In. These two hard instances satisfy Assumption 5.1, Assumption 5.2, and Assump-
tion 5.3. Together they show that our upper bounds are sharp up to logarithmic factors, treating
the condition number γ(A,B) from Definition 5.1 as a constant:

Theorem 6.3 (Risk lower bound). There are universal positive constants c0, c1, and c2 such that
the following holds. Recall that PIn

x (resp. P
0n×n
x ) denotes the covariate distribution for a linear

dynamical system with A = In and B = In (resp. A = 0n×n and B = In). If T > c0, n > c1, and
mT > n, then:

R(m,T, T ′; {P0n×n
x ,PIn

x }) > c2σ
2
ξ ·

pn

mT
·max

{
nT ′

mT
,
T ′

T
, 1

}

.

We can interpret this lower bound by a breakdown of the quantity ϕ := max{nT ′/(mT ), T ′/T, 1}
across various regimes. When trajectories are limited (m . n), ϕ � max{nT ′/(mT ), 1}, and
therefore the minimax risk is bounded below by σ2ξ ·pn/(mT ) ·max{nT ′/(mT ), 1}. This is the same
rate prescribed by the OLS upper bound of Theorem 5.6, up to the condition number γ(A,B) and
logarithmic factors in n/m. We have thus justified the summary statement Theorem 1.2. On the
other hand, under many trajectories (m & n), ϕ � max{T ′/T, 1} and the minimax risk is bounded
below by σ2ξ · pn/(mT ) · max{T ′/T, 1}. By Theorem 5.5, the OLS risk is bounded above by the
same quantity times γ(A,B), justifying the summary statement Theorem 1.3.

7 Key proof ideas

In this section, we highlight some of the key ideas behind our results. Proofs of the upper bounds
are in Appendix B, and proofs of the lower bounds are in Appendix C.

Additional notation. For r ∈ N+ and M ∈ R
n×n, let Jr ∈ R

r×r denote the Jordan block of
size r with ones along its diagonal, let BDiag(M, r) ∈ R

nr×nr denote the block diagonal matrix
with diagonal blocks M , and let BToep(M, r) ∈ R

nr×nr denote the block Toeplitz matrix with first
column (In,M

T, . . . , (M r−1)T)T.

7.1 Upper bounds

The proof of Lemma 5.1 decomposes the risk using a standard basic inequality, which we now
describe. While Lemma 5.1 is stated quite generally, for simplicity of exposition we restrict ourselves
in this section to the case when the matrix parameters {Ψj}Sj=1 in Definition 4.1 are all set to Γ.

Under this simplification, we have that µ({Ψj}Sj=1,Γ) = 1.

Equation (3.1) yields the identity Ym,T = Xm,TW
T
? +Ξm,T . Plugging this relationship into the

formula (3.6) for Ŵm,T gives Ŵm,T −W? = ΞT
m,TXm,T (X

T
m,TXm,T )

−1. Define the whitened version
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of Xm,T as X̃m,T := Xm,TΓ
−1/2. From these definitions and after some basic manipulations, for

any Γ′ ∈ Symn
>0:

‖Ŵm,T −W?‖2Γ′ 6 min{n, p}
‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op
λmin(X̃T

m,T X̃m,T ) · λ(Γ,Γ′)
. (7.1)

This decomposes the analysis into two parts: (a) upper-bounding ‖(X̃T
m,T X̃m,T )

−1/2X̃T
m,TΞm,T ‖2op,

which is a self-normalized martingale term, and (b) lower-bounding the term λmin(X̃
T
m,T X̃m,T ). The

analysis for the martingale term is fairly standard [cf. AYPS11, Corollary 1], so for the remainder
of this section we focus on the minimum eigenvalue bound, which contains much of what is novel
in our analysis.

We first demonstrate how the trajectory small-ball definition (Definition 4.1) can be used to

establish pointwise convergence of the quadratic form χ(v) :=
∑m

i=1

∑T
t=1〈v, x̃

(i)
t 〉2 for v ∈ S

n−1,

where x̃
(i)
t := Γ−1/2x

(i)
t is a whitened state vector. Specifically, we show that for a fixed v ∈ S

n−1,
the probability of the event {χ(v) 6 ψ · ε} is small, for ψ, ε to be specified.

The key idea is that for any non-negative random variable X satisfying P{X 6 ε} 6 (cε)α

for all ε > 0, the moment generating function satisfies E[exp(−ηX)] 6 (c/η)α for all η > 0
(cf. Proposition B.4). Hence, by condition (4.1) from Definition 4.1, for any η > 0:

E



exp



−η
k

jk
∑

t=(j−1)k+1

〈v, x̃(i)t 〉2




∣
∣
∣
∣
∣
F(j−1)k



 6

(
csb
η

)α

a.s., i = 1, . . .m, j = 1, . . . S.

By a Chernoff bound, the tower property of conditional expectation, and the independence of the

trajectories {x̃(i)t }t>1 and {x̃(i
′)

t }t>1 when i 6= i′, for any ψ > 0:

P

(

1

k

m∑

i=1

T∑

t=1

〈v, x̃(i)t 〉2 6 ζ

)

6 inf
η>0

eηζE exp

(

−η
k

m∑

i=1

T∑

t=1

〈v, x̃(i)t 〉2
)

6 inf
η>0

eηζ
(
csb
η

)mSα

= exp

(

−mSα
(

log

(
mSα

csbζ

)

− 1

))

.

Now with a change of variables t := log
(
mSα
csbζ

)

− 1, we obtain:

P

(
m∑

i=1

T∑

t=1

〈v, x̃(i)t 〉2 6
mTα

2csb
e−(t+1)

)

6 exp(−mSαt) ∀t > 0. (7.2)

The key upshot of (7.2) is that it controls tail probability at all scales. This control is needed in
order to bound the expected value of (7.1) by integration. At this point, it remains to upgrade
(7.2) from pointwise to uniform over S

n−1. A natural approach is to use standard covering and
union bound arguments, as is done in [SMT+18]. However, straightforward covering argument
yields un-necessary logarithmic factors in the covariate dimension n. In order to circumvent this
issue, we utilize the PAC-Bayes argument from [Mou22] (which itself is an extension of [Oli16]) to
establish uniform concentration. The details are given in Appendix B.4.
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7.2 Lower bounds

7.2.1 Observation noise behind Lemma 6.1

Our definition of minimax risk R(m,T, T ′;Px) in (3.5) involves a supremum over the worst case
σξ-sub-Gaussian MDS distribution that models the observation noise. The proof of Lemma 6.1
bounds this supremum from below by considering a noise model that decouples the observation
noise {ξt}t>1 from the randomness that drives the trajectory {xt}t>1:

Definition 7.1 (Gaussian observation noise). The Gaussian observation noise model holds when
ξt ∼ N(0, σ2ξIp), ξt ⊥ ξt′ if t 6= t′, and the process {ξt}t>1 is independent from the process {xt}t>1.

Decoupling the noise processes orthogonalizes the two problems simultaneously present in
Seq-LS: learning the dynamics of covariates and learning the responses from covariates. Defi-
nition 7.1 draws attention to the latter. It will unfortunately exclude us from addressing linear
system identification specifically with our lower bound, but it allows a sharp and simple character-
ization of the minimax risk in general. The proof of Lemma 6.1 is given in Appendix C.2.

7.2.2 An analysis of non-isotropic gramian matrices

A key technical challenge for our analysis lies in constructing a sharp lower bound on the expected
trace inverse of a gramian matrix formed by random non-isotropic Gaussian random vectors. Specif-
ically, for integers q, n ∈ N+ with q > n, and for a fixed positive definite matrix Σ ∈ Sym

q
>0, we are

interested in a lower bound on the quantity E tr((WTΣW )−1), where W ∈ R
q×n has iid N(0, 1)

entries. The matrixWTΣW is equal in distribution to the gramian matrix Y ∈ R
n×n of the vectors

g1, . . . , gn ∈ R
q, which are drawn iid from N(0,Σ), i.e., Yij = 〈gi, gj〉.

The main tool we use to analyze E tr((WTΣW )−1) is the convex Gaussian min-max theorem
(CGMT) from [TOH14], which allows us to bound from below the expected trace inverse by studying
a two dimensional min-max game that is more amenable to analysis. The key idea is to cast the
expected trace inverse as a least-norm optimization problem, and apply CGMT to the value of the
optimization problem. We believe the following result to be of independent interest.

Lemma 7.1. Let q, n be positive integers with q > n and n > 2. Let W ∈ R
q×n have iid N(0, 1)

entries, and let Σ ∈ R
q×q be positive definite. Let g ∼ N(0, Iq) and h ∼ N(0, In−1), with g and h

independent. Also, let {ei}qi=1 be the standard basis vectors in R
q. We have:

E tr((WTΣW )−1) >
n

∑q
i=1 Eminβ>0maxτ>0

[

−β‖h‖2
τ + ‖βg − ei‖2(Σ−1+β‖h‖2τIq)−1

] . (7.3)

The proof of Lemma 7.1 appears in Appendix C.4. We now discuss how to analyze the two-
dimensional min-max game appearing in Lemma 7.1. We first start by heuristically replacing it
with a stylized problem, where the random quantities which appear in (7.3) are replaced by their
expected scaling:

SP(Σ, n) :=

q
∑

i=1

min
β>0

max
τ>0

[

−β
√
n

τ
+ β2 tr((Σ−1 + β

√
nτIq)

−1) + (Σ−1 + β
√
nτIq)

−1
ii

]

︸ ︷︷ ︸

=: `i(β,τ)

. (7.4)

28



While (7.4) is not a valid upper bound on the value of the min-max game appearing in (7.3), analyz-
ing (7.4) is simpler and gives the correct intuition; we give a rigorous upper bound in Lemma C.9.

We start by observing that if β = 0, then regardless of the choice of τ , `i(0, τ) = Σii, and
therefore

∑q
i=1 `i(0, τi) = tr(Σ) for any {τi}qi=1 ⊂ R

q
>0. On the other hand, if β > 0, then `i(β, τ)

tends to −∞ as τ → 0+ and to 0 as τ → ∞. Therefore, if we can show that there exists a
v ∈ (0, tr(Σ)), such that every set of points {(βi, τi)}qi=1 ⊂ R

2
>0 satisfying:5

∂`i
∂β

(βi, τi) =
∂`i
∂τ

(βi, τi) = 0, i = 1, . . . , q, (7.5)

also satisfies v =
∑q

i=1 `i(βi, τi), then SP(Σ, n) = v.
To uncover the critical points, we define the functions f and qi, for i = 1, . . . , q, as:

f(x) := −x
√
n+ x2 tr((Σ−1 + x

√
nIq)

−1), qi(x) := (Σ−1 + x
√
nIq)

−1
ii .

With these definitions, we can write:

`i(β, τ) =
1

τ2
f(βτ) + qi(βτ).

Calculating ∂`i
∂β (β, τ) =

∂`i
∂τ (β, τ) = 0 yields, for τ 6= 0:

0 =
∂`i
∂τ

(β, τ) = τ−2f ′(βτ)β − 2τ−3f(βτ) + q′i(βτ)β, (7.6)

0 =
∂`i
∂β

(β, τ) = τ−2f ′(βτ)τ + q′i(βτ)τ. (7.7)

The second condition (7.7) implies that q′i(βτ) = −τ−2f ′(βτ). Plugging this condition into (7.6)
implies that f(βτ) = 0, and hence `i(β, τ) = qi(βτ) for the critical point (β, τ). We now study the
positive roots of the equation f(x) = 0, or equivalently:

x
√
n = x2 tr((Σ−1 + x

√
nIq)

−1).

Using the variable substitution y := x
√
n, we have, when y > 0, the equivalent problem:

ψ(y; Σ) := y tr((Σ−1 + yIq)
−1) = n.

Observe that ψ(0; Σ) = 0 and limy→∞ ψ(y; Σ) = q. Furthermore, ψ(y; Σ) is continuous and mono-
tonically increasing with y. Therefore, as long as q > n, there is exactly one ȳ ∈ (0,∞) such
that ψ(ȳ; Σ) = n, or equivalently there is exactly one x̄ ∈ (0,∞) such that ψ(x̄

√
n; Σ) = n. Such a

quantity x̄ supplies the curve of critical points Crit(x̄) := {(β, τ) ∈ R
2
>0 | βτ = x̄}. Note that Crit(x̄)

is the set of critical points for every `i(β, τ), i = 1, . . . , q. Furthermore, for any (β?, τ?) ∈ Crit(x̄)
and i ∈ {1, . . . , q}, we have that `i(β?, τ?) = qi(β?τ?) = (Σ−1 + x̄

√
nIq)

−1
ii . Therefore:

{(βi, τi)}Ti=1 ⊂ Crit(x̄) =⇒
q
∑

i=1

`i(βi, τi) = tr((Σ−1 + x̄
√
nIq)

−1) ∈ (0, tr(Σ)),

5The conditions given in (7.5) are not in general necessary first-order optimality conditions for a noncon-
vex/nonconcave game [see e.g. JNJ20, Proposition 21]. However, since for every β > 0, the function τ 7→ `i(β, τ) has
only strictly concave stationary points (Proposition C.10), these conditions are necessary for this particular problem.
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and thus:

SP(Σ, n) =

√
n

x̄
, with x̄ the solution to ψ(x̄

√
n; Σ) = n. (7.8)

In light of (7.8), Lemma 7.1 then suggests that:

E tr((WTΣW )−1) '
n

SP(Σ, n)
= x̄
√
n, (7.9)

where the ' notation indicates the heuristic nature of replacing the expected min-max game ap-
pearing in the bound (7.3) with the approximation (7.4).

If we briefly check (7.9) in the simple case when Σ = Iq, we see that:

n = ψ(x̄
√
n; Iq) = x̄

√
n

q

1 + x̄
√
n
=⇒ x̄

√
n =

n

q
(1 + x̄

√
n) >

n

q
.

Hence, (7.9) yields that E tr((WTW )−1) ' n/q, which is the correct scaling; the exact result is
E tr((WTW )−1) = n/(q − n− 1) for q > n+ 2.

7.2.3 Ideas behind Theorem 6.2

We let Xm,T denote the data matrix associated with m iid copies of {xt}Tt=1, with xt ∼ N(0, 2t · In)
and xt ⊥ xt′ for t 6= t′. We also define ΓT := 1

T

∑T
t=1 2

t · In = 2
T (2

T − 1) · In, and observe that

ΓT < 2T

T ·In. By Lemma 7.1, it suffices to lower bound the quantity E tr(Γ
1/2
T (XT

m,TXm,T )
−1Γ

−1/2
T ).

Since each column of Xm,T is independent, the matrix Xm,T 2
−T/2 has the same distribution as

BDiag(Θ1/2,m)W , where Θ ∈ R
T×T is diagonal, Θii = 2i−T for i ∈ {1, . . . , T}, and W ∈ R

mT×n

has iid N(0, 1) entries. In other words, we have:

E tr(Γ
1/2
T (XT

m,TXm,T )
−1Γ

−1/2
T ) >

1

T
E tr((WTBDiag(Θ,m)W )−1).

By the arguments in Section 7.2.2, we have:

E tr((WTBDiag(Θ,m)W )−1) '
n

SP(BDiag(Θ,m), n)
,

where the notation ' indicates the heuristic nature of the inequality as explained previously. From
(7.8), we want to find x̄ such that:

n = ψ(x̄
√
n;BDiag(Θ,m)) = x̄

√
n ·m

T−1∑

j=0

1

2j + x̄
√
n
.

While solving this equation exactly for x̄
√
n is not tractable, we can estimate a lower bound on

x̄
√
n quite easily. For any integer Tc ∈ {0, . . . , T}, we have the following estimate:

n

m
= x̄
√
n

T−1∑

j=0

1

2j + x̄
√
n
6 Tc + 2x̄

√
n · 2−Tc .
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Let us first assume that x̄
√
n ∈ [1, 2T−1], so that dlog2(x̄

√
n)e ∈ {0, . . . , T}. Setting Tc =

dlog2(x̄
√
n)e then yields the lower bound x̄

√
n > 2n/m−3. On the other hand, if x̄

√
n > 2T−1,

then since we assume mT > c1n, we also have x̄
√
n > 2c1n/m−1. Finally, if x̄

√
n < 1, we have:

n

m
= x̄
√
n

T−1∑

j=0

1

2j + x̄
√
n
<

T−1∑

j=0

1

2j + x̄
√
n
6 2 =⇒ m > n/2.

This yields a contradiction, since by assumption m 6 c2n, if c2 < 1/2, so we must have x̄
√
n >

2c
′n/m−3 with c′ = min{1, c1}. Now by (7.8) and (7.9):

SP(BDiag(Θ,m), n) =
n

x̄
√
n
6 n2−c′n/m+3 =⇒ E tr(Γ

1/2
T (XT

m,TXm,T )
−1Γ

−1/2
T ) '

2c
′n/m

T
.

We make this argument rigorous in Appendix C.5.

7.2.4 Ideas behind Theorem 6.3

We focus here on the hard instance when A = In and m . n, since the cases when A = 0n×n

or A = In and m & n are straightforward applications of Jensen’s inequality and some basic
manipulations (see Lemma C.7).

The proof used by Theorem 6.3 when A = In and m . n is actually a special case of a general
proof indexed by the largest Jordan block size of the hard instance. For a maximum Jordan block
size r, the hard instances are A = BDiag(Jr, n/r), where we assume for simplicity that r divides n;
this reduces to A = In when r = 1. We associate two important matrices with these hard instances.
To define them, let Ir := {1, 1+r, . . . , 1+(T−1)r}, and let EIr ∈ R

T×Tr denote the linear operator
that extracts the coordinates in Ir. The following matrices then play a key role in our analysis:

Ψr,T,T ′ := BDiag(Γ
−1/2
T ′ (Jr), T )BToep(Jr, T ), Θr,T,T ′ := EIrΨr,T,T ′ΨT

r,T,T ′ET
Ir . (7.10)

The next step is to use a simple decoupling argument (see Lemma C.11) to argue that, for A =
BDiag(Jr, d):

E tr(Γ
1/2
T ′ (X

T
m,TXm,T )

−1Γ
1/2
T ′ ) > E tr((WTBDiag(Θr,T,T ′ ,m)W )−1),

where W ∈ R
mT×d has iid N(0, 1) entries. This positions us to use the arguments in Section 7.2.2

again. We first focus on the r = 1 case. We reduce the problem to assuming T ′ = T , by observing
that since Γt(In) =

t+1
2 · In for any t ∈ N+, then Θ1,T,T ′ = T+1

T ′+1 ·Θ1,T,T . Therefore,

E tr((WTBDiag(Θ1,T,T ′ ,m)W )−1) =
T ′ + 1

T + 1
· E tr((WTBDiag(Θ1,T,T ,m)W )−1) (7.11)

'
T ′ + 1

T + 1
· n

SP(BDiag(Θ1,T,T ,m), n)
,

where again the ' notation highlights the heuristic nature of the bound, used to build intuition.
To proceed, let LT ∈ R

T×T be the lower triangular matrix of all ones and define ST :=
(LTL

T
T )

−1. A computation yields that Θ−1
1,T,T = T+1

2 ST . Note that we can write ST as a rank-one

perturbation to a tri-diagonal matrix. Specifically, ST = Tri(2,−1;T ) − eT eTT , where Tri(a, b;T )
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Figure 3: Plot of Td

2m
(SP)−1 versus n in (a) and versus m in (b), both on a log-log scale. For (a), m and p

are fixed to one, d is fixed to n/r, and T is fixed to 2n. For (b), n is fixed to 150, p is fixed to one, and T is
fixed to 2n. In the legends, the slope of the line (in log-log space) computed via linear regression is shown.
Based on these plots, we conjecture that Td

2m
(SP)−1 & cr(d/m)2r, where cr depends only on r.

denotes the symmetric T × T tri-diagonal matrix with a on the diagonal and b on the lower and
upper off-diagonals. By the standard formula for the eigenvalues of a tri-diagonal matrix, we have

that λT−k+1(Tri(2,−1;T )) = 2
(

1− cos
(

kπ
T+1

))

� k2/T 2. In Appendix C.7, we apply the work

of [KST99] to show that the rank-one perturbation is negligible: λT−k+1(ST ) � k2/T 2 as well.
Therefore λT−k+1(Θ

−1
1,T,T ) � k2/T . With this bound, we have:

n = ψ(x̄
√
n;BDiag(Θ1,T,T ,m)) = x̄

√
n ·m

T∑

i=1

1

λi(Θ
−1
1,T,T ) + x̄

√
n

. x̄
√
n ·m

T∑

i=1

1

i2/T + x̄
√
n
6 x̄
√
n ·m

∫ T

0

1

x2/T + x̄
√
n
dx .

√

x̄
√
n ·m

√
T .

This implies that x̄
√
n & n2/(m2T ), and therefore by (7.8) and (7.9):

SP(BDiag(Θ1,T,T ,m), n) =
n

x̄
√
n
.
m2T

n
=⇒ E tr(Γ

1/2
T ′ (X

T
m,TXm,T )

−1Γ
1/2
T ′ ) '

T ′

T
· n2

m2T
.

We make this argument rigorous in Appendix C.8.

7.2.5 Beyond diagonalizability

When r > 2, the analytic complexity of characterizing the solution to n = ψ(x̄
√
n;BDiag(Θr,T,T ′ ,m))

increases significantly. Nevertheless, we can still solve for x̄
√
n by numerical root finding, to look

at the scaling patterns for small values of r and T ′ = T . This computation (Figure 3) leads us to

conjecture a general bound of R(m,T, T ; {PBDiag(Jr,n/r)
x }) ' crn

2r/(m2rT ) when m . n, where cr
is a constant depending only on r. A complete and precise statement is given in Appendix A.
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8 Numerical simulation

We conduct a simple numerical simulation illustrating the benefits of multiple trajectories on learn-
ing. We construct a family of LDS-LS problem instances, parameterized by a scalar ρ ∈ (0,∞) as
follows. The covariate distribution Px is the linear dynamical system xt+1 = Axt + wt with:

A = U diag( ρ, . . . , ρ
︸ ︷︷ ︸

bn/2c times

,−ρ, . . . ,−ρ)UT, U ∼ Unif(O(n)), wt ∼ N(0, I/4).

Here, O(n) denotes the set of n×n orthonormal matrices. By construction, ρ is the spectral radius
of A. The labels yt are set as yt = xt+1, so that the ground truth W? ∈ R

n×n is equal to A.
We compare the risk of the OLS estimator (3.6) on the LDS-LS problem instance, compared

with its risk on the corresponding Ind-LDS-LS baseline. Specifically, we plot the ratio between
OLS excess risks E[L(·;T,Px)] on the two problem instances (Px), respectively. We fix the co-
variate dimension n = 5 and the trajectory horizon length T = 10n, and vary the number of
trajectories m ∈ {1, . . . , 10}. Figure 4 shows the result of this experiment, where we also vary
ρ ∈ {0.98, 0.99, 1.0, 1.01, 1.02}. The error bars are plotted over 1000 trials. All computations are
implemented using jax [BFH+18], and run with float64 precision on a single machine.
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Figure 4: Plot of the ratio of excess risk for LDS-LS problem instances over its corresponding Ind-LDS-LS

baseline instance, as a function of the number of trajectories m, holding both covariate dimension n and
horizon length T fixed. The vertical blue line marks the transition between few trajectories (m 6 n) and
many trajectories (m > n).

In Figure 4, we see that for the few trajectories regime (m 6 n) appearing to the left of the
vertical blue line, the instability of the covariate process plays an outstanding role in determining
the value of the ratio. On the other hand, for the many trajectories regime (m > n) appearing
to the right of the blue line, the ratios quickly converge to a constant no greater than two (at
m = 10). This behavior is consistent with Theorem 5.5. Finally, Theorem 6.3 suggests that the
scaling behavior of the ρ = 1 curve with respect to m is on the order of 1/m.
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9 Concluding remarks

Having sharply characterized the worst-case excess risk of Seq-LS and LDS-LS, we see more precisely
the trade-offs—or arguably the lack thereof—presented by resetting a system, or by simply observ-
ing parallel runs from one, where possible. After sufficient resets, one learns roughly as though
examples were independent altogether (as reflected in the Ind-Seq-LS and Ind-LDS-LS baselines).

In addition to the theoretical upshot that it presents, this phenomenon seems encouraging inso-
far as the setup may describe reality: one does not learn to ride a bicycle by witnessing thousands
of unrelated pedal strokes, nor by watching one cyclist endure the entire Tour de France, but rather
by seeing and attempting many moderate rides and maneuvers.

We see a number of future directions for research, primarily in further charting out the reach of
the iid-like phenomenon in learning from multiple sequences. Our work offers the trajectory small-
ball criterion (Definition 4.1) as a vehicle for proving that this phenomenon occurs, or otherwise
for bounding the minimax rate from above. What other notable sequential processes, outside of
those covered in Section 4.1, can we capture as trajectory small-ball instances? One might look
to covariate sequences generated by, say, input-to-state stable (ISS) non-linear systems, stochastic
polynomial difference equations, or various Markov decision processes.

On the flip side, when must we necessarily pay a price for dependent data? One answer from
our work is that a necessary gap between independent and sequentially dependent learning appears
when there are insufficiently many trajectories (m . n). As outlined in Section 7.2.5 and Ap-
pendix A, we conjecture that this gap can be made much wider, namely by considering non-
diagonalizable linear dynamical systems. That said, other pertinent problems may exhibit gaps as
well. Finding them would help inform where the limits of learning from sequential data lie.

On the regression side, one might look to move beyond a well-specified linear regression model,
extend to other loss functions, analyze regularized least-squares estimators in place of OLS, or
consider a more adversarial analysis (e.g. measuring regret rather than risk, in an online setting).
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A Beyond diagonalizability: a conjecture for the general case

Recall that various results in Section 5.1 required a diagaonalizability assumption (Assumption 5.2)
on the dynamics matrix A, specifically in the many trajectories regime when T ′ > T (Theorem 5.5),
or in the few trajectories regime (Section 5.1.2). In this section, we conjecture how removing the
diagonalizability assumption would affect the results. For simplicity, we focus on the few trajectories
regime, and further assume that T ′ = T . Building on potential extensions of this paper’s analysis,
and numerical evidence detailed in Section 7, we conjecture the following extensions of Theorem 5.6
and Theorem 6.3:

Conjecture A.1 (Risk for LDS-LS with few trajectories under non-diagonalizable systems). There
are universal positive constants c0, c1, c2, c3, and a universal mapping ϕ : N+ → R>0 such that
the following holds for any instance of LDS-LS satisfying Assumption 5.1 (marginal stability) and
Assumption 5.3 (one-step controllability). Let A = SJS−1 denote the Jordan normal form of the

dynamics matrix A. Define γ := λmax(S−1BBTS−∗)
λmin(S−1BBTS−∗)

, and let r be the size of the largest Jordan block

in J . If n > c0, m 6 c1n, and mT > c2n, then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c3σ
2
ξϕ(r)γ ·

pn2r

m2rT
. (A.1)

Additionally, there exist universal positive constants c′0, c
′
1, c

′
2, c

′
3, and c

′
4 such that the following

is true. Suppose A ⊆ R
n×n is any set containing all n × n matrices with Jordan blocks of size at

most r. Let T > c′0, n > c′1, mT > c′2n, and m 6 c′3n. Then:

R(m,T, T ; {PA
x | A ∈ A}) > c′4σ

2
ξϕ(r)γ ·

pn2r

m2rT
. (A.2)

Lemma 5.1 provides a viable path towards proving the upper bound (A.1) from Conjecture A.1
up to logarithmic factors in the regime of constant Jordan block size r, by reducing the problem to
understanding the scaling of λ(k, t;A,B) = λ(Γk(A,B),Γt(A,B)) when k 6 t. Our analysis uses
diagonalizability (Assumption 5.2) of the dynamics matrices to show that λ(k, t;A,B) & γ−1 · k/t.
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Figure 5: A plot of the ratio α versus 1/λ(k, t) with k fixed to 5 and t fixed to kα. Here, λ(k, t) :=
λ(k, t; Jr, Ir). The slope of the line (in log-log space) computed via linear regression is reported. We
conjecture that in general, λ(k, t;A,B) & crγ

−1 · (k/t)2r−1.

Without such an assumption, analyzing λ(k, t;A,B) is substantially more involved. A numerical
simulation (Figure 5) suggests that λ(k, t;A,B) & crγ

−1 · (k/t)2r−1 is the general rate for dynamics
matrices A with Jordan blocks at most size r, where cr is a constant depending only on r. Assuming
this scaling to be correct and plugging the rate into Lemma 5.1 yields (A.1) up to logarithmic factors.
Partial progress towards analyzing λ(k, t;A,B) was made in [SR19, Proposition 7.6], where it is
shown that λ(k, t;A,B) & crγ

−1 · (k/t)r2 , with 1/cr depending exponentially on r. We do not
conjecture a form for the mapping ϕ(r); λ(k, t;A,B) becomes numerically ill-conditioned when r
is large, hindering simulation with large blocks.

On the other hand, the analytic arguments in Section 7.2.4 combined with the numerical evi-
dence in Figure 3 suggest that the bound (A.2) holds (up to the condition number factor γ). The
one caveat is that, even if we were to analytically characterize the eigenvalues of Θr,T,T for all r, our
proof strategy would most likely not be able to give a sharp characterization of the leading constant
ϕ(r) in the lower bound. This is because our proof inherently exploits the independence between
decoupled subsystems, and does not tackle the harder challenge of understanding the coupling
effects within a Jordan block.

We conclude this section by noting that Conjecture A.1 does not include any logarithmic factors
in the upper bound rate (A.1), and includes the condition number factor γ in the lower bound (A.2).
In other words, Conjecture A.1 applied to the special case of r = 1 conjectures that Theorem 5.6
is loose by log2(γn/m), and that Theorem 6.3 is loose by a factor of γ.

B Analysis for upper bounds

B.1 Preliminaries

We collect various technical results which we will use in the proof of the upper bounds. The first
result gives us a bound on the functional inverse of T 7→ T/ log T .
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Proposition B.1 ([SMT+18, Lemma A.4]). For α > 1, T > 2α log(4α) implies that T > α log T .

The next two results study various properties of functions involving λ.

Proposition B.2. For A ∈ Symn
>0, the map X 7→ λ(X,A) is concave over symmetric matrices.

Proof. Observe that λ(X,A) = λmin(A
−1/2XA−1/2) = inf{〈X,A−1/2vvTA−1/2〉 | v ∈ S

n−1} is the
pointwise infimum over a set of linear functions in X, and is therefore concave.

Proposition B.3. Fix T ∈ N+, {Ψt}Tt=1 ⊂ Symn
>0, and Γ ∈ Symn

>0. Suppose that 1
T

∑T
t=1Ψt 4 Γ.

Then
[
∏T

t=1 λ(Ψt,Γ)
]1/T

6 1.

Proof. We have that:

[
T∏

t=1

λ(Ψt,Γ)

]1/T

6
1

T

T∑

t=1

λ(Ψt,Γ) using the AM-GM inequality

6 λ

(

1

T

T∑

t=1

Ψt,Γ

)

using Proposition B.2 and Jensen’s inequality

6 λ(Γ,Γ) since
1

T

T∑

t=1

Ψt 4 Γ

= 1.

The next result relates the anti-concentration properties of a non-negative random variable to
its moment generating function on (−∞, 0).

Proposition B.4 ([Mou22, Lemma 7]). Let X be a non-negative random variable. Suppose there
exists an α ∈ (0, 1] and positive constant c such that:

P(X 6 t) 6 (ct)α ∀t > 0.

Then:

E[exp(−ηX)] 6 (c/η)α ∀η > 0.

The next few results involve various properties of Gaussian and spherical distributions.

Proposition B.5 ([Mag78, Lemma 6.2]). For w ∼ N(0, I) and symmetric matrices A,B:

E[wTAwwTBw] = 2〈A,B〉+ tr(A) tr(B).

Proposition B.6 ([DG03, Lemma 2.2]). Let n > 2 and v ∈ R
n \ {0} be fixed. Suppose that ψ is

drawn uniformly at random from the uniform measure over S
n−1. We have that for all ε > 0:

P

{

〈v, ψ〉2 6 ε

n
‖v‖22

}

6 (eε)1/2.
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Next, we state a classic result which gives us anti-concentration of arbitrary Gaussian (more
generally any log-concave distribution) polynomials of bounded degree.

Theorem B.7 ([CW01, Theorem 8]). Fix an integer d ∈ N+. There exists a universal positive
constant c such that the following is true. Let p : Rn → R be a degree d polynomial, and let ε > 0.
We have:

P{|p(x)| 6 ε · E|p(x)|} 6 c · dε1/d, x ∼ N(0, In).

For the case when d = 2 and p is non-negative, we can take c =
√

e/2.

Theorem B.7 can be further specialized as follows. Suppose w ∼ N(0, I), x is fixed, and
[
Q11 Q12

QT
12 Q22

]

is positive semidefinite. Then:

P

{[
x
w

]T [
Q11 Q12

QT
12 Q22

] [
x
w

]

6 ε · tr(Q22)

}

6 (eε)1/2 ∀ε > 0. (B.1)

Both (B.1) and the explicit constant in Theorem B.7 for d = 2 and p non-negative can be derived
by bounding the MGF of various Gaussian quadratic forms; see e.g. [TB23].

Next, we state a well-known result from [AYPS11], which yields an anytime bound for the size
of a self-normalized martingale difference sequence (MDS).

Lemma B.8 ([AYPS11, Theorem 3]). Fix a δ ∈ (0, 1) and positive definite matrix V ∈ R
d×d.

Let {xt}t>1 ⊂ R
d be a stochastic process adapted to the filtration {Ft}t>1. Let {ηt}t>1 ⊂ R be a

martingale difference sequence adapted to {Ft}t>2. Suppose there exists R > 0 such that E[exp(ληt) |
Ft] 6 exp(λ2R2/2) a.s. for all λ ∈ R and t > 1. Define Vt :=

∑t
k=1 xkx

T
k for t > 1. With probability

at least 1− δ,
∥
∥
∥
∥
∥

t∑

k=1

ηkxk

∥
∥
∥
∥
∥
(Vt+V )−1

6

√

2R2 log

(
det(Vt + V )1/2 det(V )−1/2

δ

)

∀t > 1.

Lemma B.8 is generalized to vector-valued self-normalized MDS via a covering argument:

Proposition B.9 ([SR19, Proposition 8.2]). Fix a δ ∈ (0, 1) and positive definite matrix V ∈ R
d×d.

Let {xt}t>1 ⊂ R
d be a stochastic process adapted to the filtration {Ft}t>1. Let {ηt}t>1 ⊂ R

p be a
stochastic process adapted to {Ft}t>2. Suppose that for every fixed v ∈ S

p−1, for every t > 1:

(a) E[〈v, ηt〉 | Ft] = 0 a.s.

(b) E[exp(λ〈v, ηt〉) | Ft] 6 exp(λ2R2/2) a.s. for every λ ∈ R.

Define Vt :=
∑t

k=1 xkx
T
k for t > 1. With probability at least 1− δ, for all t > 1:

∥
∥
∥
∥
∥

t∑

k=1

ηkx
T
k (Vt + V )−1/2

∥
∥
∥
∥
∥
op

6 2

√

2R2 log

(
5p det(Vt + V )1/2 det(V )−1/2

δ

)

.

The next result assumes Vt is invertible in order to simplify Proposition B.9.
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Proposition B.10. Under the same hypothesis of Proposition B.9, we have with probability at
least 1− δ, for all t > 1:

1{Vt < V }
∥
∥
∥
∥
∥

t∑

k=1

ηkx
T
kV

−1/2
t

∥
∥
∥
∥
∥
op

6 4 · 1{Vt < V }
√

R2 log

(
5p det(Vt + V )1/2 det(V )−1/2

δ

)

.

Proof. Observe that when Vt < V , we have:

2Vt < Vt + V =⇒ V −1
t 4 2(Vt + V )−1.

For two positive definite matrices M1 and M2 satisfying M1 4M2, and any matrix N ,

‖NM1/2
1 ‖op =

√

λmax(NM1NT) 6
√

λmax(NM2NT) = ‖NM1/2
2 ‖op.

Therefore,

1{Vt < V }
∥
∥
∥
∥
∥

t∑

k=1

ηkx
T
kV

−1/2
t

∥
∥
∥
∥
∥
op

6 2 · 1{Vt < V }
∥
∥
∥
∥
∥

t∑

k=1

ηkx
T
k (Vt + V )−1/2

∥
∥
∥
∥
∥
op

6 4 · 1{Vt < V }
√

R2 log

(
5p det(Vt + V )1/2 det(V )−1/2

δ

)

,

where the last inequality holds for every t with probability at least 1− δ by Proposition B.9.

B.2 Examples of trajectory small-ball

In this section, we prove that the examples listed in Section 4.1 satisfying the trajectory small-ball
condition (Definition 4.1).

Example 4.1 (Copies of a Gaussian draw). Let Σ ∈ Symn
>0, and let Px denote the process x1 ∼

N(0,Σ) and xt = xt−1 for t > 2. Fix any T ∈ N+. Then Px satisfies the (T, T,Σ, e, 12)-TrajSB
condition.

Proof. When k = T and Γ = In, the condition (4.1) simplifies to:

sup
v∈Sn−1

P

{

1

T

T∑

t=1

〈v, xt〉2 6 ε

}

6 (csbε)
α ∀ε > 0.

Since x1 = x2 = · · · = xT , this further simplifies to:

sup
v∈Sn−1

P
{
〈v, x1〉2 6 ε

}
6 (csbε)

α ∀ε > 0.

Since 〈v, x1〉 ∼ N(0, 1), Equation (B.1) yields that PX∼N(0,1){X2 6 ε} 6 (eε)1/2, so we can take
csb = e and α = 1/2.

Example 4.2 (Gaussian processes). Let Px be a Gaussian process indexed by time, i.e., for every
finite index set I ⊂ N+, the collection of random variables (xt)t∈I is jointly Gaussian. Let Tnd :=
inf{t ∈ N+ | det(E[xtxTt ]) 6= 0}, and suppose Tnd is finite. Fix a T ∈ N+ satisfying T > Tnd. Then
Px satisfies the (T, T,ΓT (Px), 2e,

1
2)-TrajSB condition.
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Proof. Since the covariates (x1, . . . , xT ) are jointly Gaussian, we can write,





x1
...
xT




 =






µ1
...
µT




+






M1

...
MT




w,

where µ1, . . . , µT ∈ R
n and M1, . . . ,MT ∈ R

n×nT are fixed, and w ∼ N(0, InT ). For any v ∈ R
n,

1

T

T∑

t=1

〈v, xt〉2 =
1

T

T∑

t=1

〈v, µt +Mtw〉2.

This is a degree 2 non-negative polynomial in w, and therefore by Theorem B.7, for all ε > 0:

P

{

1

T

T∑

t=1

〈v, xt〉2 6 εE

[

1

T

T∑

t=1

〈v, xt〉2
]}

6 (2eε)1/2.

Example 4.4 (Alternating halfspaces). Suppose that n > 4 is even, and let u1, . . . , un be a fixed
orthonormal basis of Rn. Put U0 = span(u1, . . . , un/2) and U1 = span(un/2+1, . . . , un). Let i1 ∼
Bern(12), it+1 = it mod 2 for t ∈ N+, and let Px denote the process with conditional distribution
xt | it uniform over the spherical measure on Uit ∩ S

n−1. For any T > 2, the process Px satisfies
the (T, 2, In/(2n), e,

1
2)-TrajSB condition.

Proof. For i ∈ {0, 1}, let ψi be uniform on the uniform measure over Ui ∩ S
n−1, let PUi denote the

orthogonal projector onto Ui, and let vi = PUiv.
Fix any v ∈ R

n \ {0}. We observe that for any t ∈ N+, 〈v, xt+1〉2 + 〈v, xt+2〉2 | it is equal
in distribution to 〈v, ψ0〉2 + 〈v, ψ1〉2, which itself is equal in distribution to 〈v0, ψ0〉2 + 〈v1, ψ1〉2.
Suppose first that ‖v0‖2 > ‖v1‖2. Then, since ‖v‖22 = ‖v0‖22 + ‖v1‖22 6 2‖v0‖22:

{

〈v0, ψ0〉2 + 〈v1, ψ1〉2 6
ε

n
‖v‖22

}

⊆
{

〈v0, ψ0〉2 + 〈v1, ψ1〉2 6
2ε

n
‖v0‖22

}

⊆
{

〈v0, ψ0〉2 6
2ε

n
‖v0‖22

}

.

Writing α0 = (〈u1, v〉, . . . , 〈un/2, v〉) ∈ R
n/2, by a change of coordinates we have that ‖α0‖22 = ‖v0‖22,

and that 〈v0, ψ0〉 is equal in distribution to 〈α0, ζ0〉, where ζ0 is uniform on S
n/2−1. Since we assumed

‖v0‖2 > ‖v1‖2, we must have that α0 6= 0. Hence by Proposition B.6,

P

{

〈v0, ψ0〉2 + 〈v1, ψ1〉2 6
ε

n
‖v‖22

}

6 P

{

〈α0, ζ0〉2 6
2ε

n
‖α0‖22

}

6 (eε)1/2.

Note that if ‖v1‖2 > ‖v0‖2, an identical argument yields the same bound. Hence, letting Ft =
σ(x1, . . . , xt), we have shown that for all t > 0:

P

{

1

2

2∑

`=1

〈v, xt+`〉2 6 ε · vT
(

1

2n
In

)

v

∣
∣
∣
∣
Ft

}

6 (eε)1/2,

from which the claim follows.
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Example 4.5 (Normal subspaces). Suppose that n > 3. Let u1, . . . , un be a fixed orthonormal basis
in R

n, and let U¬i := span({uj}j 6=i) for i ∈ {1, . . . , n}. Consider the Markov chain {it}t>1 defined
by i1 ∼ Unif({1, . . . , n}), and it+1 | it ∼ Unif({1, . . . , n} \ {it}). Let Px denote the process with
conditional distribution xt | it uniform over the spherical measure on U¬it ∩ S

n−1. For any T > 2,
the process Px satisfies the (T, 2, In/(4n− 4), e, 12)-TrajSB condition.

Proof. Fix any v ∈ R
n \ {0}, and for i ∈ {1, . . . , n}, let vi = PU¬iv, where PU¬i is the orthogonal

projector onto U¬i Let {ψi}ni=1 be independent random variables, where each ψi is uniform on the
uniform measure over U¬i ∩ S

n−1.
Let indices j, k ∈ {1, . . . , n} with j 6= k. We first observe that since j 6= k, we have that

U⊥
¬j = span(uj) ⊂ U¬k. Therefore:

‖v‖22 = ‖vj‖22 + ‖P⊥
U¬j

vj‖22 6 ‖vj‖22 + ‖vk‖22.

Hence, assuming that ‖vj‖2 > ‖vk‖2, we have:
{

〈vj , ψj〉2 + 〈vk, ψk〉2 6
ε

2(n− 1)
‖v‖22

}

⊆
{

〈vj , ψj〉2 + 〈vk, ψk〉2 6
ε

n− 1
‖vj‖22

}

⊆
{

〈vj , ψj〉2 6
ε

n− 1
‖vj‖22

}

.

Writing αj = (〈ui, v〉)i 6=j ∈ R
n−1, by a change of coordinates we have that ‖αj‖22 = ‖vj‖22, and

that 〈vj , ψj〉 is equal in distribution to 〈αj , ζj〉, where ζj is uniform on S
n−2. Since we assumed

‖vj‖2 > ‖vk‖2, we must have that αj 6= 0. Hence by Proposition B.6,

P

{

〈vj , ψj〉2 + 〈vk, ψk〉2 6
ε

2(n− 1)
‖v‖22

}

6 P

{

〈αj , ζj〉2 6
ε

n− 1
‖αj‖22

}

6 (eε)1/2.

On the other hand if ‖vk‖2 > ‖vj‖2, an identical argument yields the same bound.
Now, for any i ∈ {1, . . . , n} and t ∈ N+:

P

{

〈v, xt+1〉2 + 〈v, xt+2〉2 6
ε

2(n− 1)
‖v‖22

∣
∣
∣
∣
it = i

}

=
∑

j 6=i,k 6=j

P

{

〈v, xt+1〉2 + 〈v, xt+2〉2 6
ε

2(n− 1)
‖v‖22

∣
∣
∣
∣
it = i, it+1 = j, it+2 = k

}

P{it+1 = j, it+2 = k | it = i}

=
∑

j 6=i,k 6=j

P

{

〈vj , ψj〉2 + 〈vk, ψk〉2 6
ε

2(n− 1)
‖v‖22

}

P{it+1 = j, it+2 = k | it = i}

6 (eε)1/2
∑

j 6=i,k 6=j

P{it+1 = j, it+2 = k | it = i}

= (eε)1/2.

Note we also have that P

{

〈v, x1〉2 + 〈v, x2〉2 6 ε
2(n−1)‖v‖22

}

6 (eε)1/2 by a nearly identical argu-

ment. Hence, letting Ft = σ(x1, . . . , xt), we have shown that for all t > 0:

P

{

1

2

2∑

`=1

〈v, xt+`〉2 6 ε · vT
(

1

4(n− 1)
In

)

v

∣
∣
∣
∣
Ft

}

6 (eε)1/2,

from which the claim follows.
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For the next claim, recall that the mixing time of a Markov chain over state-space S with
transition matrix P and stationary distribution π is defined as:

τmix(ε) = inf

{

k ∈ N

∣
∣
∣
∣

sup
µ∈P(S)

‖µP k − π‖tv 6 ε

}

.

Here, P(S) denotes the set of distributions over S, and ‖·‖tv is the total-variation norm over
distributions.

Proposition B.11. Let n > 2. Consider the Markov chain {it}t>1 where i1 ∼ Unif({1, . . . , n})
and it+1 | it ∼ Unif({1, . . . , n} \ {it}). We have that:

τmix(ε) = inf

{

k ∈ N

∣
∣
∣
∣
(n− 1)−k 6

2ε

1− 1/n

}

.

Proof. Let 1 ∈ R
n denote the all ones vector. The transition matrix for this Markov chain is:

P =
1

n− 1
(11T − In),

and its stationary distribution is uniform over {1, . . . , n}. Note that for j > 1, (11T)j = nj−111T.
Since 11T and In commute, by the binomial theorem we have that:

P k =
1

(n− 1)k

k∑

j=0

(
k

j

)

(11T)k−j(−1)j

=
1

(n− 1)k





k−1∑

j=0

(
k

j

)

nk−j−1(−1)j11T + (−1)kIn





=
1

(n− 1)k

[
1

n

(

(n− 1)k − (−1)k
)

11T + (−1)kIn
]

=
1

n
11T +

(−1)k
(n− 1)k

[

In −
1

n
11T

]

.

Now, let µ ∈ R
n
>0 satisfy µT1 = 1. We have:

∥
∥
∥
∥
µTP k − 1

n
1T
∥
∥
∥
∥
1

=
1

(n− 1)k

∥
∥
∥
∥
µ− 1

n
1

∥
∥
∥
∥
1

.

It is straightforward to check that supµ∈Rn
>0,µ

T1=1

∥
∥µ− 1

n1
∥
∥
1
= 1− 1

n , from which the claim follows,

since the TV distance between two distributions µ, ν is ‖µ− ν‖tv = 1
2‖µ− ν‖1.

Example 4.6 (Linear dynamical systems). Let (A,B) with A ∈ R
n×n and B ∈ R

n×d be kc-step-
controllable (Definition 4.2). Let P

A,B
x be the linear dynamical system defined in (3.8). Fix any

T, k ∈ N+ satisfying T > k > kc. Then, PA,B
x satisfies the (T, k,Γk(A,B), e, 12)-TrajSB condition.
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Proof. Let Γk be shorthand for Γk(Px) and Σk be shorthand for Σk(Px). Let w = (w1, . . . , wk) ∈
R
nk denote the vertical concatenation of the process noise variables. Let Mt :=

[
At Φt

]
∈

R
n×n(k+1) denote the matrix such that xt =Mt

[
x
w

]

. With this notation, for any v ∈ R
n:

1

k

k∑

t=1

〈v, xt〉2 =
[
x
w

]T
(

1

k

k∑

t=1

MT
t vv

TMt

)[
x
w

]

.

By Equation (B.1), for any ε > 0,

P

{[
x
w

]T
(

1

k

k∑

t=1

MT
t vv

TMt

)[
x
w

]

> ε · tr
(

1

k

k∑

t=1

ΦT
t vv

TΦt

)}

6 (eε)1/2.

On the other hand:

tr

(

1

k

k∑

t=1

ΦT
t vv

TΦt

)

= vT

(

1

k

k∑

t=1

ΦtΦ
T
t

)

v = vT

(

1

k

k∑

t=1

Σt

)

v = vTΓkv.

Because we assumed that k > kc, then Γk is invertible. Thus, we can take csb = e and α = 1/2.

Proposition B.12. Consider the scalar stochastic process {xt}t>1 defined by:

xt =
t−1∑

i=0

t−1∑

j=0

ci,jwt−i−1wt−j−1,

where {ci,j}i,j>0 are the coefficients which describe the dynamics, and {wt}t>0 are iid N(0, 1) ran-
dom variables. Let {Ft}t>1 denote the filtration defined as Ft := σ(w0, . . . , wt−1), so that xt is
Ft-measurable. Suppose that {ci,j}i,j>0 is symmetric and traceless. For every t > 1 and k > 0,
almost surely we have:

E[x2t+k | Fk] > E[x2t ] + (E[xt+k | Fk])
2.

Proof. For t ∈ N+, define the symmetric matrices Mt ∈ R
t×t with (Mt)ii = 0 and (Mt)ij =

c(i−1),(j−1). With this notation and with w̄t ∼ N(0, It), we can write xt as:

xt = w̄T
t Mtw̄t.

Therefore, by Proposition B.5 and the assumption that tr(Mt) = 0:

E[x2t ] = E(w̄T
t Mtw̄t)

2 = 2‖Mt‖2F + tr(Mt)
2 = 2‖Mt‖2F .

Now, partition Mt+k as:

Mt+k =

[
Mt Dt,k

DT
t,k Et,k

]

.

Let v̄k = (wk−1, . . . , w0). Given Fk, we can write xt+k as:

xt+k =

[
w̄t

v̄k

]T [
Mt Dt,k

DT
t,k Et,k

] [
w̄t

v̄k

]

.
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With this notation:

E[xt+k | Fk] = v̄TkEt,kv̄k, E[x2t+k | Fk] = Ew̄t

([
w̄t

v̄k

]T [
Mt Dt,k

DT
t,k Et,k

] [
w̄t

v̄k

])2

.

Expanding the square:

([
w̄t

v̄k

]T [
Mt Dt,k

DT
t,k Et,k

] [
w̄t

v̄k

])2

= (w̄T
t Mtw̄t + 2w̄T

t Dt,kv̄k + v̄TkEt,kv̄k)
2

= (w̄T
t Mtw̄t)

2 + 4w̄T
t Mtw̄tw̄

T
t Dt,kv̄k + 2w̄T

t Mtw̄tv̄
T
kEt,kv̄k

+ 4(w̄T
t Dt,kv̄k)

2 + 4w̄T
t Dt,kv̄kv̄

T
kEt,kv̄k + (v̄TkEt,kv̄k)

2.

Using Proposition B.5 again:

E[x2t+k | Fk] = Ew̄t

([
w̄t

v̄k

]T [
Mt Dt,k

DT
t,k Et,k

] [
w̄t

v̄k

])2

= Ew̄t(w̄
T
t Mtw̄t)

2 + 2 tr(Mt)v̄
T
kEt,kv̄k + 4‖Dt,kv̄k‖22 + (v̄TkEt,kv̄k)

2

= 2‖Mt‖2F + 4‖Dt,kv̄k‖22 + (v̄TkEt,kv̄k)
2 > 2‖Mt‖2F + (v̄TkEt,kv̄k)

2.

To complete the proof, we recall that E[x2t ] = 2‖Mt‖2F and E[xt+k | Fk] = v̄TkEt,kv̄k.

Example 4.8 (Degree-2 Volterra series). Consider the following process Px. Let {c(`)i,j }i,j>0 for

` ∈ {1, . . . , n} be symmetric, traceless, non-degenerate arrays (Definition 4.3). Let {w(`)
t }t>0 be iid

N(0, 1) random variables for ` ∈ {1, . . . , n}. For t > 1, the `-th coordinate of xt, denoted (xt)`, is:

(xt)` =

t−1∑

i=0

t−1∑

j=i

c
(`)
i,jw

(`)
t−i−1w

(`)
t−j−1. (4.3)

Let knd ∈ N+ denote the smallest non-degeneracy index for all n arrays. There is a universal positive
constant c such that for any T and k satisfying T > k > knd, Px satisfies the (T, k,Γk(Px), c,

1
4)-

TrajSB condition.

Proof. Fix a v ∈ R
n. The relation (4.3) shows that 〈v, xt〉2 is a degree four polynomial in

{w(`)
i }

t−1,n
i=0,`=1. Let Ft = σ({w(`)

i }
t−1,n
i=0,`=1), so that xt is Ft-measurable. By Theorem B.7, there

exists a univeral positive constant c > 0 such that for any s > 0,

P

{

1

k

k∑

t=1

〈v, xt+s〉2 6 εE

[

1

k

k∑

t=1

〈v, xt+s〉2
∣
∣
∣
∣
Fs

] ∣
∣
∣
∣
Fs

}

6 (cε)1/4 a.s.

To conclude the proof, we need to lower bound E

[

1
k

∑k
t=1〈v, xt+s〉2

∣
∣
∣
∣
Fs

]

. For any t > 1,

E

[

〈v, xt+s〉2
∣
∣
∣
∣
Fs

]

= E





(
n∑

`=1

v` · (xt+s)`

)2 ∣
∣
∣
∣
Fs




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(a)
=

n∑

`=1

v2` · E[(xt+s)
2
` | Fs] +

n∑

`1 6=`2

v`1v`2 · E[(xt+s)`1 | Fs] · E[(xt+s)`2 ] | Fs]

(b)

>
n∑

`=1

v2` · E[(xt)2` ] +
n∑

`=1

v2` · (E[(xt+s)` | Fs])
2

+
n∑

`1 6=`2

v`1v`2 · E[(xt+s)`1 | Fs] · E[(xt+s)`2 ] | Fs]

=

n∑

`=1

v2` · E[(xt)2` ] +
(

n∑

`=1

v` · E[(xt+s)` | Fs]

)2

>
n∑

`=1

v2` · E[(xt)2` ]
(c)
= vTΣt(Px)v.

Above, (a) follows since each coordinate of xt is independent by definition, (b) follows from Propo-
sition B.12, and (c) follows since E[xt] = 0 and each coordinate is independent, so E[(xt)`1(xt)`2 ] =
E[(xt)`1 ]E[(xt)`2 ] = 0 for `1 6= `2. Hence, we have shown:

E

[

1

k

k∑

t=1

〈v, xt+s〉2
∣
∣
∣
∣
Fs

]

> vT

(

1

k

k∑

t=1

Σt(Px)

)

v = vTΓk(Px)v.

Note that because we assume that k > knd, the covariances Σt(Px) are all invertible (and hence so
is Γk(Px)). The claim now follows.

Example 4.7 (Degree-D Volterra series). Fix a D ∈ N+. Let {c(d,`)i1,...,id
}i1,...,id∈N for d ∈ {1, . . . , D}

and ` ∈ {1, . . . , n} denote arbitrary rank-d arrays. Let {w(`)
t }t>0 be iid N(0, 1) random variables

for ` ∈ {1, . . . , n}. Consider the process Px where for t > 1, the `-th coordinate of xt, denoted (xt)`,
is:

(xt)` =

D∑

d=1

t−1∑

i1,...,id=0

c
(d,`)
i1,...,id

d∏

d′=1

w
(`)
t−id′−1. (4.2)

Let Tnd := inf{t ∈ N+ | det(Γt(Px)) 6= 0}, and suppose Tnd is finite. There is a constant cD > 0,
depending only on D, such that for any T > Tnd, Px satisfies the (T, T,ΓT (Px), cD, 1/(2D))-TrajSB
condition.

Proof. Fix a v ∈ R
n. The definition (4.2) expresses 〈v, xt〉 as a degree at most D polynomial in the

noise variables {w(`)
t }. By Theorem B.7, there exists a positive constant cD, only depending on D,

such that:

P

{

1

T

T∑

t=1

〈v, xt〉2 6 εE

[

1

T

T∑

t=1

〈v, xt〉2
]}

6 (cDε)
1/(2D).

Since T > Tnd, the matrix ΓT (Px) is invertible. The claim now follows.
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B.3 Proof of Proposition 4.2

Proposition 4.2 (Average small-ball implies trajectory small-ball). Fix T ∈ N+, k ∈ {1, . . . , T},
{Ψj}bT/kcj=1 ⊂ Symn

>0, and α, β ∈ (0, 1). Let Px be a covariate distribution, with {xt}t>1 adapted to
a filtration {Ft}t>1. Suppose for all v ∈ R

n \ {0} and j ∈ {1, . . . , bT/kc}:

1

k

jk
∑

t=(j−1)k+1

Pxt∼Px

{

〈v, xt〉2 6 α · vTΨjv
∣
∣
∣ F(j−1)k

}

6 β a.s., (4.4)

where F0 is the minimal σ-algebra. Then, for all v ∈ R
n \ {0}, j ∈ {1, . . . , bT/kc}, and ε ∈ (0, α)

P{xt}∼Px







1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 6 ε · vTΨjv

∣
∣
∣
∣
∣
F(j−1)k






6

β

1− ε/α a.s. (4.5)

Proof. The following proof builds on the argument given in [SMT+18, Section E.1]. We note that
a similar style of proof is used in [BLLT20, Lemma 15].

Define the shorthand notation Pt{·} := P{ · | Ft}, and similarly Et[·] := E[ · | Ft]. Now fix a
v ∈ R

n \ {0}, j ∈ {1, . . . , bT/kc}. Markov’s inequality yields that:

1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 > αvTΨjv ·
1

k

jk
∑

t=(j−1)k+1

1{〈v, xt〉2 > αvTΨjv},

and therefore for all ε > 0:

P(j−1)k







1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 6 ε · vTΨjv






6 P(j−1)k







1

k

jk
∑

t=(j−1)k+1

1{〈v, xt〉2 > αvTΨjv} 6 ε/α






.

Define Zj :=
1
k

∑jk
t=(j−1)k+1 1{〈v, xt〉2 > αvTΨjv}, and observe that Zj ∈ [0, 1]. By (4.4), we have:

E(j−1)k[Zj ] > 1− β.

On the other hand:

E(j−1)k[Zj ] = E(j−1)k[Zj1{Zj > ε/α}] + E(j−1)k[Zj1{Zj 6 ε/α}]
6 P(j−1)k{Zj > ε/α}+ ε/α · P(j−1)k{Zj 6 ε/α} since Zj 6 1

= 1− (1− ε/α)P(j−1)k{Zj 6 ε/α}.

Combining both these inequalities, and further restricting ε ∈ (0, α), we obtain,

P(j−1)k{Zj 6 ε/α} 6 β

1− ε/α,

which implies (4.5).

51



B.4 General ordinary least-squares estimator upper bound

In this section, we supply the proof of Lemma 5.1. We first start with a result which bounds the
minimum eigenvalue of the empirical covariance matrix.

Lemma B.13 (Minimum eigenvalue bound via trajectory small-ball). Suppose that Px satisfies

the (T, k, {Ψj}bT/kcj=1 , csb, α)-trajectory-small-ball condition (Definition 4.1). Put S := bT/kc, and

ΓT := ΓT (Px). Fix any Γ ∈ Symn
>0 satisfying 1

S

∑S
j=1Ψj 4 Γ 4 ΓT . Define X̃m,T := Xm,TΓ

−1/2,
and:

µ({Ψj}Sj=1,Γ) :=





S∏

j=1

λ(Ψj ,Γ)





1/S

. (B.2)

Suppose that:

n > 2,
mT

kn
>

32

α
log

(

320csb
αλ(Γ,ΓT )µ({Ψj}Sj=1,Γ)

)

. (B.3)

For any t > 0, with probability at least 1− 2e−t, the following statements simultaneously hold:

tr(X̃T
m,T X̃m,T ) 6

mTnet

λ(Γ,ΓT )
, λmin(X̃

T
m,T X̃m,T ) >

mTαµ({Ψj}Sj=1,Γ)

8ecsb
exp

(

− 16kn

mTα
t

)

. (B.4)

Proof. The proof uses the PAC-Bayes argument for uniform convergence from [Mou22]. The first
step is to construct a family of random variables, indexed by both v ∈ S

n−1 and a scale parameter
η > 0, such that its moment generating function is pointwise bounded by one. For notational
brevity, let:

λ := λ(Γ,ΓT ), µ := µ({Ψj}Sj=1,Γ).

Since Γ 4 ΓT by assumption, we have λ ∈ (0, 1]. Similarly, since 1
S

∑S
j=1Ψj 4 Γ, we also have

µ ∈ (0, 1] by Proposition B.3.
The trajectory small-ball condition (4.1) implies for any v ∈ S

n−1, j ∈ {1, . . . , S}, and ε > 0,

P







1

k

jk
∑

t=(j−1)k+1

〈v,Γ−1/2xt〉2 6 ελ(Ψj ,Γ)

∣
∣
∣
∣
∣
F(j−1)k






6 (csbε)

α.

Using a change of variables ε← ε/λ(Ψj ,Γ),

P







1

k

jk
∑

t=(j−1)k+1

〈v,Γ−1/2xt〉2 6 ε

∣
∣
∣
∣
∣
F(j−1)k






6 (csb/λ(Ψj ,Γ) · ε)α .

By Proposition B.4, for any η > 0,

E



exp



−η
k

jk
∑

t=(j−1)k+1

〈v,Γ−1/2xt〉2 + α log

(
ηλ(Ψj ,Γ)

csb

)




∣
∣
∣
∣
∣
F(j−1)k



 6 1 a.s. (B.5)
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For i ∈ {1, . . . ,m} and j ∈ {1, . . . , S}, define the random variables Z
(i)
j (v; η), Z(i)(v; η), and Z(v; η):

Z
(i)
j (v; η) := −η

k

jk
∑

t=(j−1)k+1

〈v,Γ−1/2x
(i)
t 〉2 + α log

(
ηλ(Ψj ,Γ)

csb

)

,

Z(i)(v; η) :=
S∑

j=1

Z
(i)
j (v; η),

Z(v, η) :=

m∑

i=1

Z(i)(v; η).

We first claim that E[exp(Z(v; η))] 6 1 for every v ∈ S
n−1 and η > 0. Since Z(i)(v; η) is independent

of Z(i′)(v; η) whenever i 6= i′, we have that:

E[exp(Z(v; η))] = E

[

exp

(
m∑

i=1

Z(i)(v; η)

)]

=
m∏

i=1

E[exp(Z(i)(v; η))].

Furthermore, by repeated applications of the tower property and (B.5), for every i ∈ {1, . . . ,m},

E[exp(Z(i)(v; η))] = E



exp





S∑

j=1

Z
(i)
j (v; η)









= E



exp





S−1∑

j=1

Z
(i)
j (v; η)



E[exp(Z
(i)
S (v; η)) | F(S−1)k]





6 E



exp





S−1∑

j=1

Z
(i)
j (v; η)









...

6 1.

Hence E[exp(Z(v; η))] 6 1 for every v ∈ S
n−1 and η > 0.

Let us now import some notation from [Mou22]. First, let π denote the spherical measure on
S
n−1, and let ρv,γ denote the uniform measure over the spherical cap

C(v, γ) := {w ∈ S
n−1 | ‖v − w‖2 6 γ}.

Next, let Fv,γ(Σ) :=
∫

C(v,γ)〈w,Σw〉 dρv,γ for any symmetric matrix Σ.
Fix any positive t, η. For two measures µ and ν with µ absolutely continuous w.r.t. ν, let

KL(µ, ν) := Eµ log
(
dµ
dν

)

denote the KL-divergence between µ and ν. By the PAC-Bayes deviation

bound (cf. [Cat07]), there exists an event Et,1 with probability at least 1 − e−t, such that on Et,1,
we have for every v ∈ S

n−1 and γ > 0,

− η

k
Fv,γ

(

Γ−1/2
m∑

i=1

kS∑

t=1

x
(i)
t (x

(i)
t )TΓ−1/2

)

+mSα log

(
ηµ

csb

)

6 KL(ρv,γ , π) + t. (B.6)
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Next, by [Mou22, Sections 5.3 and 5.4], we can write Fv,γ in terms of a scalar function φ such that:

Fv,γ(Σ) = (1− φ(γ))〈v,Σv〉+ φ(γ)
1

n
tr(Σ), φ(γ) ∈

[

0,
n

n− 1
γ2
]

. (B.7)

Furthermore, for every v ∈ S
n−1 and γ > 0, the KL-divergence term can be upper bounded by:

KL(ρv,γ , π) 6 n log

(

1 +
2

γ

)

. (B.8)

Therefore on Et,1, plugging (B.7) and (B.8) into (B.6),

λmin

(

X̃T
m,T X̃m,T

)

>
k

η(1− φ(γ))

[

mSα log

(
ηµ

csb

)

− n log
(

1 +
2

γ

)

− t
]

− φ(γ)

1− φ(γ)
1

n
tr
(

X̃T
m,T X̃m,T

)

.

Restricting γ ∈ [0, 1/2], we have from (B.7) that 0 6 φ(γ) 6 n
n−1γ

2 6 2γ2 6 1/2. Hence,

1− φ(γ) ∈ [1/2, 1]. Furthermore, 1 + 2/γ 6 5/(4γ2). Therefore,

λmin

(

X̃T
m,T X̃m,T

)

>
k

η

[

mSα log

(
ηµ

csb

)

− n log
(

5

4γ2

)

− t
]

− 4γ2

n
tr
(

X̃T
m,T X̃m,T

)

.

Define the non-negative random variables ψi :=
∑T

t=1‖Γ−1/2x
(i)
t ‖22, for i = 1, . . . ,m. It is straight-

forward to verify that tr(X̃T
m,T X̃m,T ) =

∑m
i=1 ψi. By Markov’s inequality, for any β > 0:

P

(

tr(X̃T
m,T X̃m,T ) > β

)

= P

(
m∑

i=1

ψi > β

)

6
E [
∑m

i=1 ψi]

β

=
mT tr(Γ−1ΓT )

β
6
mTnλmax(Γ

1/2
T Γ−1Γ

1/2
T )

β
=
mTn

λβ
.

Therefore, setting β = etmTn
λ , there exists an event Et,2 such that P(Ect,2) 6 e−t and on Et,2,

tr(X̃T
m,T X̃m,T ) 6

etmTn

λ
.

Therefore on Et,1 ∩ Et,2, which we assume holds for the remainder of the proof, we have:

λmin

(

X̃T
m,T X̃m,T

)

>
k

η

[

mSα log

(
ηµ

csb

)

− n log
(

5

4γ2

)

− t
]

− 4mTet

λ
γ2

Next, we further restrict
ηµ

csb
> e so that log(ηµ/csb) > 1. Now consider, for positive constants

A,B,C, the function x 7→ A log(B/x) + Cx on the domain (0,∞). The derivative vanishes at
x = A/C, and the function attains a minimum value of A(1 + log(BC/A)) with this choice of x.
Let us set:

A← kn

η
, B ← 5

4
, C ← 4mTet

λ
, x← γ2.
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Then by choosing γ2 = knλ
4ηmTet , we have that:

kn

η
log

(
5

4γ2

)

+
4mTet

λ
γ2 =

kn

η

[

1 + log

(
5mTetη

knλ

)]

.

Note that this choice of γ satisfies γ ∈ [0, 1/2], since:

knλ

4ηmTet
6

1

4
⇐= kn

ηmT
6 1 since t > 0 and λ 6 1

⇐=
knµ

ecsbmT
6 1 since η > ecsb/µ

⇐⇒
nµ

ecsb
6
mT

k

⇐= n

ecsb
6
mT

k
since µ 6 1,

and the last condition holds by (B.3). With this choice of γ, we have:

λmin

(

X̃T
m,T X̃m,T

)

>
k

η

[

mSα log

(
ηµ

csb

)

− t− n
(

1 + log

(
5mTetη

knλ

))]

=
k

η

[

(mSα− n) log
(
ηµ

csb

)

− t− n
(

1 + log

(
5csbmTe

t

knλµ

))]

>
k

η

[
mSα

2
log

(
ηµ

csb

)

− t− n
(

1 + log

(
5csbmTe

t

knλµ

))]

since mS > 2n/α

=
k

η

[
mSα

2
log

(
ηµ

csb

)

− (1 + n)t− n
(

1 + log

(
5csbmT

knλµ

))]

>
k

η

[
mSα

2
log

(
ηµ

csb

)

− 2nt− n
(

1 + log

(
5csbmT

knλµ

))]

>
k

η

[
mSα

4
log

(
ηµ

csb

)

− 2nt

]

since
mSα

4n
> 1 + log

(
5csbmT

knλµ

)

=
kmSα

4csb/µ

[

log(ηµ/csb)− 8nt
mSα

ηµ/csb

]

. (B.9)

It remains to optimize over η ∈ [ecsb/µ,∞). For any G ∈ R, the function η′ 7→ log η′−G
η′ on (0,∞)

attains a maximum of exp(−1−G) at η′ = exp(1+G). Hence, setting η = csb
µ exp(1+8nt/(mSα)),

which satisfies η > ecsb/µ, we have:

λmin

(

X̃T
m,T X̃m,T

)

>
kmSαµ

4ecsb
exp

(

− 8nt

mSα

)

>
mTαµ

8ecsb
exp

(

− 16kn

mTα
t

)

since S > T/(2k).

The claim now follows by gathering the requirements on the quantity mT
kn and simplifying as in

(B.3).
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Corollary B.14. Assume the hypothesis of Lemma B.13 hold. Then, X̃T
m,T X̃m,T is invertible

almost surely.

Proof. For any t > 0, define the event Et as:

Et :=
{

λmin

(

X̃T
m,T X̃m,T

)

<
mTαµ

8ecsb
exp

(

− 16kn

mTα
t

)}

.

The event {λmin(X̃
T
m,T X̃m,T ) = 0} is the intersection

⋂∞
t=1 Et. By Lemma B.13, we have that

P(Et) 6 2e−t. Since the events Et′ ⊆ Et whenever t′ > t, by continuity of measure from above,

P(λmin(X̃
T
m,T X̃m,T ) = 0) = P

( ∞⋂

t=1

Et
)

= lim
t→∞

P(Et) 6 lim
t→∞

2e−t = 0.

We are now ready to restate and prove Lemma 5.1.

Lemma 5.1 (General OLS upper bound). There are universal positive constants c0 and c1 such that

the following holds. Suppose that Px satisfies the (T, k, {Ψj}bT/kcj=1 , csb, α)-TrajSB condition (Defini-

tion 4.1). Put S := bT/kc and ΓT := ΓT (Px). Fix any Γ ∈ Symn
>0 satisfying 1

S

∑S
j=1Ψj 4 Γ 4 ΓT ,

and let µ({Ψj}Sj=1,Γ) denote the geometric mean of the minimum eigenvalues {λ(Ψj ,Γ)}Sj=1, i.e.,

µ({Ψj}Sj=1,Γ) :=





S∏

j=1

λ(Ψj ,Γ)





1/S

. (5.2)

Suppose that:

n > 2,
mT

kn
>
c0
α

log

(

max{e, csb}
αλ(Γ,ΓT )µ({Ψj}Sj=1,Γ)

)

. (5.3)

Then, for any Γ′ ∈ Symn
>0:

E[‖Ŵm,T −W?‖2Γ′ ] 6 c1csbσ
2
ξ ·

pn

mTαλ(Γ,Γ′)µ({Ψj}Sj=1,Γ)
· log

(

max{e, csb}
αλ(Γ,ΓT )µ({Ψj}Sj=1,Γ)

)

. (5.4)

Proof. For notational brevity, let:

λ := λ(Γ,ΓT ), µ := µ({Ψj}Sj=1,Γ).

We choose c0 > 64 such that (5.3) implies (B.3), and also so that mT
kn > 64/α. By Corollary B.14,

Xm,T has full column rank almost surely, hence:

Ŵm,T −W? = ΞT
m,TXm,T (X

T
m,TXm,T )

−1.

Put X̃m,T := Xm,TΓ
−1/2. With this decomposition, we have:

‖Ŵm,T −W?‖2Γ′ = ‖ΞT
m,TXm,T (X

T
m,TXm,T )

−1‖2Γ′
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= ‖ΞT
m,TXm,T (X

T
m,TXm,T )

−1Γ1/2‖2
Γ−1/2Γ′Γ−1/2

6 λmax(Γ
−1/2Γ′Γ−1/2)‖ΞT

m,TXm,T (X
T
m,TXm,T )

−1Γ1/2‖2F
= λmax(Γ

−1/2Γ′Γ−1/2)‖(X̃T
m,T X̃m,T )

−1X̃T
m,TΞm,T ‖2F

6 min{n, p}λmax(Γ
−1/2Γ′Γ−1/2)‖(X̃T

m,T X̃m,T )
−1X̃T

m,TΞm,T ‖2op

6 min{n, p}λmax(Γ
−1/2Γ′Γ−1/2)

‖(X̃T
m,T X̃m,T )

−1/2X̃T
m,TΞm,T ‖2op

λmin(X̃T
m,T X̃m,T )

= min{n, p}
‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op
λ(Γ,Γ′) · λmin(X̃T

m,T X̃m,T )
.

Fix any t > 0. By Lemma B.13, there exists an event Et,1 with probability at least 1 − 2e−t,
such that on Et,1 we have:

tr(X̃T
m,T X̃m,T ) 6

mnTet

λ
, λmin(X̃

T
m,T X̃m,T ) >

mTαµ

8ecsb
exp

(

− 16kn

mTα
t

)

.

Recall by our cohice of c0, we have mT/k > 64n/α. Hence, on Et,1,

λmin(X̃
T
m,T X̃m,T ) > ζt :=

mTαµ

8ecsb
exp(−t/4).

We now apply Proposition B.10 with V ←Mt := ζtIn and:

x1, . . . , xT , xT+1, . . . , x2T , . . . , x(m−1)T+1, . . . , xmT ←
Γ−1/2x

(1)
1 , . . . ,Γ−1/2x

(1)
T ,Γ−1/2x

(2)
1 , . . . ,Γ−1/2x

(2)
T , . . . ,Γ−1/2x

(m)
1 , . . . ,Γ−1/2x

(m)
T ,

to conclude that there exists an event Et,2 with probability at least 1− e−t such that on Et,2:

1{X̃T
m,T X̃m,T <Mt}‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op

6 16σ2ξ

[

p log 5 +
1

2
log det

(

In + ζ−1
t X̃T

m,T X̃m,T

)

+ t

]

6 32σ2ξ

[

p+ log det
(

In + ζ−1
t X̃T

m,T X̃m,T

)

+ t
]

6 32σ2ξ

[

p+ n log(1 + ζ−1
t tr(X̃T

m,T X̃m,T )/n) + t
]

.

Above, the last inequality holds since log det(X) 6 n log(tr(X)/n) for any X ∈ Symn
>0 by the

AM-GM inequality. By Proposition B.1, whenever t > 8 log 16, we have t 6 et/4. Furthermore, for
any t > 0 we have 1 6 et/4. Therefore, for t > 8 log 16, on Et,1 ∩ Et,2:

‖(X̃T
m,T X̃m,T )

−1/2X̃T
m,TΞm,T ‖2op

λmin(X̃T
m,T X̃m,T )

6
256ecsb
mTα

et/4σ2ξ

[

p+ n log

(

1 +
8ecsb
αλµ

e(1+1/4)t

)

+ t

]

6
256ecsb
mTα

et/4σ2ξ

[

p+ n log

(
16ecsb
αλµ

)

+ n(1 + 1/4)t+ t

]
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6
256ecsb
mTα

et/4σ2ξ

[

p+ n log

(
16ecsb
αλµ

)

+ 3nt

]

6
256ecsb
mTα

σ2ξ

[

p+ n log

(
16ecsb
αλµ

)

+ 3n

]

et/2.

Define the random variable Z as:

Z :=
‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op
λmin(X̃T

m,T X̃m,T )

(
256ecsb
mTα

σ2ξ

[

p+ n log

(
16ecsb
αλµ

)

+ 3n

])−1

.

We have shown that:

P(Z > et/2) 6 3e−t ∀t > 8 log 16⇐⇒ P(Z > s) 6 3s−2 ∀s > 164.

Hence,

E[Z] =

∫ ∞

0
P(Z > s) ds 6 164 + 3

∫ ∞

164
s−2 ds = 164 + 3/164.

That is, for some universal positive c1,

E[‖Ŵm,T −W?‖2Γ′ ] 6 c1σ
2
ξ min{n, p}csb




p+ n log

(
max{e,csb}

αλµ

)

mTαλ(Γ,Γ′)µ



 . (B.10)

Now, if p 6 n, (B.10) is upper bounded by:

c1σ
2
ξpcsb




p+ n log

(
max{e,csb}

αλµ

)

mTαλ(Γ,Γ′)µ



 6 2c1σ
2
ξpcsb




n log

(
max{e,csb}

αλµ

)

mTαλ(Γ,Γ′)µ



 .

On the other hand, if p > n, (B.10) is upper bounded by:

c1σ
2
ξncsb




p+ n log

(
max{e,csb}

αλµ

)

mTαλ(Γ,Γ′)µ



 < 2c1σ
2
ξncsb




p log

(
max{e,csb}

αλµ

)

mTαλ(Γ,Γ′)µ



 .

B.5 Proof of Theorem 5.3

Theorem 5.3 (Upper bound for Ind-Seq-LS). There are universal positive constants c0 and c1 such
that the following holds. Fix any sequence of distributions {Px,t}t>1, and let Σt := Ext∼Px,t [xtx

T
t ]

for t ∈ N+. Suppose there exists csb > 0 and α ∈ (0, 1] such that for all v ∈ R
n \ {0}, ε > 0 and

t ∈ N+:

Pxt∼Px,t

{

〈v, xt〉2 6 ε · vTΣtv
}

6 (csbε)
α. (5.7)
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Furthermore, suppose there exists a cβ > 1 and β > 0 such that for all s, t ∈ N+ satisfying s 6 t:

1

λ(Σs,Σt)
6 cβ(t/s)

β . (5.8)

If:

n > 2, mT >
c0n

α

(

β + log

(
max{e, csb}cβ

α

))

,

then, for Px = ⊗t>1Px,t:

E[L(Ŵm,T ;T
′,Px)] 6 c1csbσ

2
ξcβe

β · pn

mTα
· φ
(

cβ(β + 1), (T ′/T )β
)[

β + log

(
max{e, csb}cβ

α

)]

.

(5.9)

Proof. Equation (5.7) shows that Px satisfies the (T, 1, {Σt}Tt=1, csb, α)-TrajSB condition. Let Γt :=
1
t

∑t
k=1Σk for t ∈ N+. For any s, t ∈ N+ with s 6 t,

λ(Γs,Γt) > λ(Γs,Σt) since Γt 4 Σt

>
1

s

s∑

k=1

λ(Σk,Σt) using Proposition B.2 and Jensen’s inequality

>
1

cβs

s∑

k=1

(k/t)β using (5.8)

>
1

cβ(β + 1)
(s/t)β since x 7→ xβ is increasing.

Next, the growth condition (5.8) implies that:

µ({Σt}Tt=1,ΓT ) =

[
T∏

t=1

λ(Σt,ΓT )

]1/T

>

[
T∏

t=1

λ(Σt,ΣT )

]1/T

since ΓT 4 ΣT

>

[
T∏

t=1

1

cβ
(t/T )β

]1/T

using (5.8)

=
1

cβT β
(T !)β/T

>
1

cβeβ
since T ! > (T/e)T .

We now apply Lemma 5.1 with Γ = ΓT . In doing so, the requirement (5.3) simplifies to:

n > 2,
mT

n
>
c0
α

log

(
max{e, csb}cβeβ

α

)

.

59



We first assume that T ′ 6 T , in which case (5.4) yields:

E[L(Ŵm,T ;T
′,Px)] 6 c1csbσ

2
ξ ·

pn

mTα
· cβeβ · log

(
max{e, csb}cβeβ

α

)

.

On the other hand, when T ′ > T , we have λ(ΓT ,ΓT ′) > 1
cb(β+1)(T/T

′)β , and (5.4) yields:

E[L(Ŵm,T ;T
′,Px)] 6 c1csbσ

2
ξ ·

pn

mTα
· cβeβ · cβ(β + 1)

(
T ′

T

)β

· log
(
max{e, csb}cβeβ

α

)

.

B.6 Proofs for linear dynamical systems

B.6.1 Control of ratios of covariance matrices

Proposition B.15. Let (A,B) be the dynamics matrices for an LDS-LS instance, and suppose
(A,B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put Σt := Σt(A,B) for
t ∈ N+ and γ := γ(A,B). For any integers T1, T2 satisfying 1 6 T2 6 T1,

λmin(Σ
−1/2
T1

ΣT2Σ
−1/2
T1

) >
1

γ

T2
T1
.

Proof. Observe that for any t > 1,

Σt =

t−1∑

k=0

AkBB∗(Ak)∗ =
t−1∑

k=0

SDkS−1BB∗S−∗(Dk)∗S∗.

By Assumption 5.3, we have that BB∗ is invertible, and hence S−1BB∗S−∗ is also invertible.
Therefore we have the following lower and upper bound on Σt:

λmin(S
−1BB∗S−∗) · S

(
t−1∑

k=0

Dk(Dk)∗
)

S∗ 4 Σt 4 λmax(S
−1BB∗S−∗) · S

(
t−1∑

k=0

Dk(Dk)∗
)

S∗.

(B.11)

Now recall that for two square matrices X,Y , the eigenvalues of XY coincide with the eigenvalues
of Y X. Letting Qt :=

∑t−1
k=0D

k(Dk)∗, we have:

λmin(Σ
−1/2
T1

ΣT2Σ
−1/2
T1

) > λmin(S
−1BB∗S−∗)λmin(Σ

−1/2
T1

SQT2S
∗Σ−1/2

T1
)

= λmin(S
−1BB∗S−∗)λmin((SQT2S

∗)1/2Σ−1
T1

(SQT2S
∗)1/2)

>
λmin(S

−1BB∗S−∗)
λmax(S−1BB∗S−∗)

λmin((SQT2S
∗)1/2(S−∗Q−1

T1
S∗)(SQT2S

∗)1/2)

=
λmin(S

−1BB∗S−∗)
λmax(S−1BB∗S−∗)

λmin(QT2Q
−1
T1

).

Let λ ∈ C be an eigenvalue of A. We have

t−1∑

k=0

|λ|2k =

{
1−|λ|2t
1−|λ|2 if |λ| < 1,

t if |λ| = 1.
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Therefore, (QT2Q
−1
T1

)ii is:

(QT2Q
−1
T1

)ii =

{
1−|λi|2T2
1−|λi|2T1 = 1−(|λi|2T1 )T2/T1

1−|λi|2T1 if |λi| < 1,

T2/T1 if |λi| = 1.

Note that infx∈(0,1)
1−xc

1−x = c for c ∈ [0, 1]. Therefore, we can lower bound:

λmin(QT2Q
−1
T1

) >
T2
T1
.

The claim now follows.

Proposition B.16. Let (A,B) be the dynamics matrices for an LDS-LS instance, and suppose
(A,B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put Γt := Γt(A,B) for
t ∈ N+ and γ := γ(A,B). For any integers k, t ∈ N+ satisfying k 6 t, we have:

λ(Γk,Γt) >
1

8γ

k

t
.

Proof. Let Σt := Σt(A,B) for t ∈ N+. We first consider the case when k > 2. Observe that
Γt 4 Σt. Furthermore, for any k > 2, we have:

Γk =
1

k

k∑

k′=1

Σk′ <
1

k

k∑

k′=bk/2c
Σbk/2c =

k − bk/2c+ 1

k
Σbk/2c <

1

2
Σbk/2c.

Therefore,

λ(Γk,Γt) = λmin(Γ
−1/2
t ΓkΓ

−1/2
t ) >

1

2
λmin(Σ

−1/2
t Σbk/2cΣ

−1/2
t )

(a)

>
1

2γ

bk/2c
t

>
1

8γ

k

t
.

Above, (a) follows from Proposition B.15. When k = 1, we have Γ1 = Σ1, and therefore by
Proposition B.15:

λ(Γ1,Γt) = λ(Σ1,Γt) > λ(Σ1,Σt) = λmin(Σ
−1/2
t Σ1Σ

−1/2
t ) >

1

γ

1

t
.

The claim now follows.

Fact B.17. Let (A,B) be the dynamics matrices for an LDS-LS instance. For any s, t ∈ N+ with
s 6 t:

Γs(A,B) 4 Γt(A,B).

Proposition B.18. Let (A,B) be the dynamics matrices for an LDS-LS instance, and suppose
(A,B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put Γt := Γt(A,B) for
t ∈ N+, Σt := Σt(A,B) for t ∈ N+, and γ := γ(A,B). For any T , we have:

[
T∏

t=1

λ(Σt,ΓT )

]1/T

>
1

8eγ
.
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Proof. By Proposition B.16, we have that λ(Γt,ΓT ) >
1
8γ

t
T for all t ∈ {1, . . . , T}. Therefore, since

λ(Σt,ΓT ) > λ(Γt,ΓT ), and since n! > (n/e)n for all n ∈ N+,

[
T∏

t=1

λ(Σt,ΓT )

]1/T

>
(T !)1/T

8γT
>

1

8eγ
.

B.6.2 Many trajectory results

Lemma B.19. There are universal positive constants c0 and c1 such that the following holds for
any instance of LDS-LS. Suppose that (A,B) is kc-step controllable. If n > 2 and m > c0n, then
for any Γ′ ∈ Symn

>0:

E[‖Ŵm,T −W?‖2Γ′ ] 6 c1σ
2
ξ ·

pn

mT · λ(ΓT (A,B),Γ′)
. (B.12)

Proof. Let ΓT := ΓT (A,B). By Example 4.6, LDS-LS satisfies the (T, T,ΓT , e, 1/2)-TrajSB condi-
tion. We therefore invoke Lemma 5.1 with k = T and Γ = ΓT . In this case, µ from (5.2) simplifies
to µ = λ(ΓT ,ΓT ) = 1, and the requirement (5.3) simplifies to n > 2 and m > c0n. Finally, the rate
(5.4) simplifies to (B.12).

Theorem 5.4 (Parameter recovery upper bound for LDS-LS, many trajectories). There are univer-
sal positive constants c0 and c1 such that the following holds for any instance of LDS-LS. Suppose
that (A,B) is kc-step controllable, If n > 2, m > c0n, and T > kc, then:

E[‖Ŵm,T −W?‖2F ] 6 c1σ
2
ξ ·

pn

mT · λmin(ΓT (A,B))
.

Proof. Follows by invoking Lemma B.19 with Γ′ = In.

Theorem 5.5 (Risk upper bound for LDS-LS, many trajectories). There are universal positive
constants c0 and c1 such that the following holds for any instance of LDS-LS. Suppose that (A,B)
is kc-step controllable. If n > 2, m > c0n, T > kc, and the evaluation horizon is strict (T ′ 6 T ),
then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c1σ
2
ξ ·

pn

mT
.

On the other hand, suppose that (A,B) satisfies Assumption 5.1, Assumption 5.2, and Assump-
tion 5.3, with γ := γ(A,B) (Definition 5.1). If n > 2, m > c0n, and the evaluation horizon is
extended (T ′ > T ), then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c1σ
2
ξ ·

pn

mT
· γ T

′

T
.

Proof. Let Γt := Γt(A,B) for t ∈ N+. Invoking Lemma B.19 with Γ′ = ΓT ′ yields the bound:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c1σ
2
ξ ·

pn

mT · λ(ΓT ,ΓT ′)
.

If T ′ 6 T , then λ(ΓT ,ΓT ′) > 1 since ΓT < ΓT ′ by Fact B.17. On the other hand, if T ′ > T , by
Proposition B.16, λ(ΓT ,ΓT ′) > 1

8γ
T
T ′ . The claim now follows.
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B.6.3 Few trajectory results

Theorem 5.6 (Risk upper bound for LDS-LS, few trajectories). There are universal positive con-
stants c0, c1, and c2 such that the following holds for any instance of LDS-LS. Suppose that (A,B)
satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B) (Definition 5.1).
If n > 2, m 6 c0n, and mT > c1n log(max{γn/m, e}), then:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c2σ
2
ξ ·
pn log(max{γn/m, e})

mT
· φ
(

γ,
c1n log(max{γn/m, e})

m
· T

′

T

)

.

Proof. Let Γt := Γt(A,B) for all t ∈ N+. By Example 4.6, for any k ∈ {1, . . . , T}, LDS-LS satisfies
the (T, k,Γk, e, 1/2)-TrajSB condition. We will apply Lemma 5.1 with Γ = Γk. The quantity µ

from (5.2) simplifies to µ = λ(Γk,Γk) = 1. By Proposition B.16, we have that λ(Γk,ΓT ) >
1
8γ

k
T .

Hence the requirement (5.3) simplifies to n > 2 and

mT

kn
> c log

(

γ′
T

k

)

, γ′ := max{e, γ} (B.13)

for some universal positive constant c. Thus, for (B.13) to hold, it suffices to require:

T

k
> max

{
2cn

m
log γ′,

2cn

m
log

(
T

k

)}

. (B.14)

As long as 2cn/m > 1, then by Proposition B.1,

T

k
>

4cn

m
log

(
8cn

m

)

=⇒ T

k
>

2cn

m
log

(
T

k

)

.

Hence, for (B.14) to hold, it suffices to require

T

k
>

4cn

m
log

(
8cγ′n
m

)

. (B.15)

Based on (B.15), we choose k as:

k =

⌊
T

4cn/m · log(8cγ′n/m)

⌋

. (B.16)

To ensure that k > 1, we need to ensure that:

mT > 4cn log(8cγ′n/m). (B.17)

On the other hand, since 2cn/m > 1, we have that:

4cn

m
log

(
8cγ′n
m

)

> 1,

which ensures that k 6 T . Thus, our choice of k from (B.16) ensures that (B.13) holds. We now
ready to invoke Lemma 5.1 with Γ′ = ΓT ′ , and conclude for a universal c′:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c′σ2ξ ·
pn log(e/λ(Γk,ΓT ))

mTλ(Γk,ΓT ′)
. (B.18)
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First, we assume that T ′ 6 k. By Fact B.17 we have Γk < ΓT ′ , and therefore λ(Γk,ΓT ′) > 1.
Equation (B.18) yields:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c′σ2ξ ·
pn log(e/λ(Γk,ΓT ))

mT
(B.19)

By Proposition B.16,

λ(Γk,ΓT ) >
1

8γ

1

T

⌊
T

4cn/m · log(8cγ′n/m)

⌋

>
m

64cγn log(8cγ′n/m)
. (B.20)

Plugging (B.20) into (B.19), and using the inequalities log x 6 x for x > 0 and φ(a, x) > 1 for all
a > 1 yields, for another universal c′′:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c′σ2ξ ·
pn

mT
· log(e · 64cγn/m · log(8cγ′n/m))

6 c′σ2ξ ·
pn log(512e · (cγ′n/m)2)

mT

6 c′′σ2ξ ·
pn log(max{γn/m, e})

mT

6 c′′σ2ξ ·
pn log(max{γn/m, e})

mT
· φ
(

γ, c1
n log(max{γn/m, e})

m

T ′

T

)

.

On the other hand, if T ′ > k, then by Proposition B.16,

λ(Γk,ΓT ′) >
1

8γ

1

T ′

⌊
T

4cn/m · log(8cγ′n/m)

⌋

>
m

64cγn log(8cγ′n/m)
· T
T ′ . (B.21)

Plugging (B.20) and (B.21) into (B.18) and using again the inequality log x 6 x for x > 0 yields,
for a universal c′′′:

E[L(Ŵm,T ;T
′,PA,B

x )]

6 c′σ2ξ ·
pn

mT
· log(e · 64cγn/m · log(8cγ′n/m)) · 64cγn/m · log(8cγ′n/m) · T

′

T

6 c′′′σ2ξ ·
pn log(max{γn/m, e})

mT
· γn log(max{γn/m, e})

m
· T

′

T
.

Furthermore, when T ′ > k, by choosing c1 sufficiently large:

8c
n log(8cγ′n/m)

m

T ′

T
> 1 =⇒ c1

n log(max{γn/m, e})
m

T ′

T
> 1

=⇒ γc1
n log(max{γn/m, e})

m

T ′

T
= φ

(

γ, c1
n log(max{γn/m, e})

m

T ′

T

)

.

The claim now follows.

Theorem 5.7 (Risk upper bound for Ind-LDS-LS). There are universal positive constants c0 and
c1 such that the following holds for any instance of Ind-LDS-LS. Suppose that (A,B) satisfies
Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B) (Definition 5.1). If
n > 2 and mT > c0n log(max{γ, e}), then:

E[L(Ŵm,T ;T
′,⊗t>1P

A,B
x,t )] 6 c1σ

2
ξ ·
pnγ log(max{γ, e})

mT
· φ
(

γ,
T ′

T

)

.
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Proof. Let Γt := Γt(A,B) and Σt := Σt(A,B) for t ∈ N+. From Example 4.3, we have that
Ind-LDS-LS satisfies the (T, 1, {Σt}Tt=1, e, 1/2)-TrajSB condition. We will apply Lemma 5.1 with
Γ = ΓT , k = 1, and Γ′ = ΓT ′ . By Proposition B.18, we have that:

µ({Σt}Tt=1,ΓT ) >
1

8eγ
.

The requirement (5.3) simplifies to n > 2 and mT
n > c log(max{γ, e}) for a universal constant c.

By Lemma 5.1, for a universal c′:

E[L(Ŵm,T ;T
′,PA,B

x )] 6 c′σ2ξ ·
pn log(max{γ, e})
mT · λ(ΓT ,ΓT ′)

· 8eγ.

If T ′ 6 T , then λ(ΓT ,ΓT ′) > 1 since ΓT < ΓT ′ by Fact B.17. On the other hand, if T ′ > T , then
by Proposition B.16, λ(ΓT , γT ′) > 1

8γ
T
T ′ . The claim now follows.

Theorem 5.8 (Parameter recovery upper bound for LDS-LS, few trajectories). There are universal
positive constants c0, c1, and c2 such that the following holds for any instance of LDS-LS. Suppose
that (A,B) satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with γ := γ(A,B)
(Definition 5.1). If n > 2, and mT > c0n log(max{γn/m, e}), then:

E[‖Ŵm,T −W?‖2F ] 6 c1σ
2
ξ ·
pn log(max{γn/m, e})
mT · λmin(Γk?(A,B))

, k? :=

⌊
c2T

n/m · log(max{γn/m, e})

⌋

.

Proof. The proof is identical to that of Theorem 5.6 until (B.18), after which we set T ′ = 1 from
which the result follows.

B.7 High probability upper bounds

B.7.1 Weak trajectory small ball

We first present a modified definition of trajectory small-ball (cf. Definition 4.1) which we will use
to establish high probability bounds.

Definition B.1 (Weak trajectory small-ball (wTrajSB)). Fix a trajectory length T ∈ N+, a param-

eter k ∈ {1, . . . , T}, positive definite matrices {Ψj}bT/kcj=1 ⊂ Symn
>0, and constants α, β ∈ (0, 1). The

distribution Px satisfies the (T, k, {Ψj}bT/kcj=1 , α, β)-weak-trajectory-small-ball (wTrajSB) condition
if:

1. 1
bT/kc

∑bT/kc
j=1 Ψj 4 ΓT (Px),

2. {xt}t>1 is adapted to a filtration {Ft}t>1, and

3. for all v ∈ R
n \ {0}, j ∈ {1, . . . , bT/kc}:

P{xt}∼Px







1

k

jk
∑

t=(j−1)k+1

〈v, xt〉2 6 α · vTΨjv

∣
∣
∣
∣
∣
F(j−1)k






6 β a.s. (B.22)

The main difference between Definition B.1 vs. Definition 4.1 is the third condition (B.22), which
only needs to hold for a fixed resolution α and failure probability β. By contrast, in Definition 4.1,
the condition must hold of for all resolutions—there denoted by ε—with failure probabilities that
tend to zero as the resolution ε→ 0 (cf. (4.1)).
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B.7.2 Ordinary least squares bounds

Lemma B.20 (Minimum eigenvalue bound via weak trajectory small-ball). Suppose that Px sat-

isfies the (T, k, {Ψj}bT/kcj=1 , α, β)-wTrajSB condition (Definition B.1). Put S := bT/kc and Γt :=

Γt(Px) for t ∈ N+. Fix any Γ ∈ Symn
>0 satisfying 1

S

∑S
j=1Ψj 4 Γ 4 ΓT , and define the constants:

CS :=
1
S

∑S
j=1 λ(Ψj ,Γ)

2

(
1
S

∑S
j=1 λ(Ψj ,Γ)

)2 , µ̄ :=
1

S

S∑

j=1

λ(Ψj ,Γ). (B.23)

(Note that 1 6 CS 6 S always). Fix δ ∈ (0, 1), and suppose that:

n > 2,
mT

kn
>

64CS

1− β log

(
1280CS

α(1− β)λ(Γ,ΓT )µ̄δ

)

.

With probability at least 1− δ, the following events simulatenously hold:

λmin

(

Γ−1/2
m∑

i=1

T∑

t=1

x
(i)
t (x

(i)
t )TΓ−1/2

)

>
α(1− β)mTµ̄

8
, (B.24)

tr

(

Γ−1/2
m∑

i=1

T∑

t=1

x
(i)
t (x

(i)
t )TΓ−1/2

)

6
2mTn

λ(Γ,ΓT ) · δ
.

Proof. The proof proceeds quite similarly to the proof of Lemma B.13. Thus, we focus mostly on
the parts that differ. For notational brevity, let:

β′ := 1− β, λ := λ(Γ,ΓT ), λj := λ(Ψj ,Γ).

Since Γ 4 ΓT by assumption, we have λ ∈ (0, 1].
The first step, in preparation for applying the PAC-Bayes deviation inequality, is to construct

a family of random variables with moment generating function upper bounded by one. To do this,
we utilize the weak trajectory small-ball condition (B.22), which implies for any v ∈ S

n−1 and
j ∈ {1, . . . , S}:

P







1

k

jk
∑

t=(j−1)k+1

〈v,Γ−1/2xt〉2 6 αλ(Ψj ,Γ)

∣
∣
∣
∣
∣
F(j−1)k






6 β.

Let x̃t := Γ−1/2xt be the whitened vector. Define the random indicator variables for i = 1, . . . ,m
and j = 1, . . . , S:

B
(i)
j := 1







1

k

jk
∑

t=(j−1)k+1

〈v, x̃(i)t 〉2 > αλ(Ψj ,Γ)






.

By Markov’s inequality:

T∑

t=1

〈v, x̃(i)t 〉2 > kα

S∑

j=1

λj1{B
(i)
j = 1}.
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Hence for any η > 0 and v ∈ S
n−1:

E exp

(

−η
T∑

t=1

〈v, x̃(i)t 〉2
)

6 E exp



−ηkα
S∑

j=1

λj1{B
(i)
j = 1}



 .

Now observe:

E[exp(−ηkαλj1{B
(i)
j = 1}) | F(j−1)k] = e−ηkαλjP(B

(i)
j = 1 | F(j−1)k) + P(B

(i)
j = 0 | F(j−1)k)

= (e−ηkαλj − 1)P(B
(i)
j = 1 | F(j−1)k) + 1

6 (e−ηkαλj − 1)β′ + 1

(a)

6 1 +

(

−ηkαλj +
1

2
η2k2α2λ2j

)

β′

(b)

6 exp

((

−ηkαλj +
1

2
η2k2α2λ2j

)

β′
)

.

Above, we used the facts (a) for x > 0, we have e−x − 1 6 −x + x2

2 , and (b) for x ∈ R, we have
1 + x 6 ex. Hence by the tower property:

E exp

(

−η
T∑

t=1

〈v, x̃(i)t 〉2
)

6 exp





S∑

j=1

(

−ηkαλj +
1

2
η2k2α2λ2j

)

β′





6 exp



−ηkαβ′
S∑

j=1

λj +
1

2
η2k2α2β′

S∑

j=1

λ2j





= exp



−ηkαβ′




S∑

j=1

λj





(

1− ηkα

2

∑S
j=1 λ

2
j

∑S
j=1 λj

)

 .

Now, let us set

η =
1

kα

∑S
j=1 λj

∑S
j=1 λ

2
j

=
1

kα
· 1
µ̄
· 1

CS
,

from which we conclude:

E exp

(

−η
T∑

t=1

〈v, x̃(i)t 〉2
)

6 exp




−

β′

2

(
∑S

j=1 λj

)2

∑S
j=1 λ

2
j




 = exp




−

Sβ′

2

(
1
S

∑S
j=1 λj

)2

1
S

∑S
j=1 λ

2
j






= exp

(

− Sβ
′

2CS

)

.

By independence across the m trajectories:

E exp

(

−η
m∑

i=1

T∑

t=1

〈v, x̃(i)t 〉2 +
mSβ′

2CS

)

6 1.
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As desired, we have constructed a family of random variables indexed by v ∈ S
n−1, with MGF

bounded by one.
Using the PAC-Bayes arguments from Lemma B.13 followed by Markov’s inequality, with prob-

ability at least 1− 2e−t, for all v ∈ S
n−1 and γ ∈ [0, 1/2]:

∑

i,t

〈x̃(i)t , v〉2 > 1

η

[
mSβ′

2CS
− n log

(
5

4γ2

)

− t
]

− 4γ2etmT

λ
. (B.25)

Choosing γ2 = nλ
4ηmTet , we have that:

n

η
log

(
5

4γ2

)

+
4mTet

λ
γ2 =

n

η

[

1 + log

(
5mTetη

nλ

)]

. (B.26)

Note that this choice of γ satisfies γ ∈ [0, 1/2], since:

nλ

4ηmTet
6

1

4
⇐= n

ηmT
6 1 since t > 0 and λ 6 1.

The RHS above is ensured by:

mT

kn
> α

∑S
j=1 λ

2
j

∑S
j=1 λj

= αCS · µ̄⇐=
mT

kn
> CS since α, µ̄ 6 1.

If we further enforce that:

mSβ′

4CS
> (n+ 1)

[

t+ log

(
5mTη

nλ

)]

, (B.27)

then combining (B.25) with (B.26):

∑

i,t

〈x̃(i)t , v〉2 > 1

η

[
mSβ′

2CS
− t− n− n log

(
5mTetη

nλ

)]

=
1

η

[
mSβ′

2CS
− (n+ 1)t− n− n log

(
5mTη

nλ

)]

>
1

η

[
mSβ′

2CS
− (n+ 1)t− (n+ 1) log

(
5mTη

nλ

)]

>
mSβ′

4ηCS
=
αβ′mTµ̄

8
.

For (B.27), it suffices that:

mT

kn
>

32CSt

β′
,

mT

kn
>

16CS

β′
log

(

5

λα

∑S
j=1 λj

∑S
j=1 λ

2
j

mT

kn

)

=
16CS

β′
log

(
5

λαµ̄CS

)

+
16CS

β′
log

(
mT

kn

)

.

For the RHS inequality, by Proposition B.1 it suffices that:

mT

kn
>

32CS

β′
max

{

log

(
5

λαµ̄CS

)

, 0

}

,
mT

kn
>

64CS

β′
log

(
128CS

β′

)

.
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Note that x log(1/x) 6 1/e for all x > 0, and therefore:

CS log

(
5

λαµ̄CS

)

= CS log

(
5

αλµ̄

)

+ CS log

(
1

CS

)

6 CS log

(
5

αλµ̄

)

+ 1 6 2CS log

(
5

αλµ̄

)

.

Hence it suffices that:

mT

kn
>

64CS

β′
max

{

log

(
5

αλµ̄

)

, log

(
128CS

β′

)}

.

The claim now follows by simplifying all the required inequalities for the quantity mT/kn.

To contrast the effects of the wTrajSB assumption from those of the TrajSB assumption, let
us compare Lemma B.20 to its counterpart Lemma B.13. The minimum eigenvalue bound (B.24)
from Lemma B.20 differs from the corresponding TrajSB bound (B.4) in the role of the eigenvalues

of the matrices {Ψj}bT/kcj=1 from the small-ball definition. However, due to the differing requirements
on the amount of data mT , neither result is necessarily sharper than the other, as detailed in the
following remark:

Remark B.21. When the matrices {Ψj}bT/kcj=1 from the trajectory small-ball definition vary across

j, both Lemma B.13 and Lemma B.20 yield different dependencies on the eigenvalues {λ(Ψj ,Γ)}bT/kcj=1 .
In particular, Lemma B.13 yields a minimum eigenvalue bound scaling as mTµ, where µ is the ge-
ometric mean of the eigenvalues {λ(Ψj ,Γ)}, whereas Lemma B.20 yields a bound scaling as mTµ̄,
where µ̄ is the arithmetic mean of the eigenvalues. By the AM-GM inequality, we have that µ̄ > µ,
so the latter bound is stronger than the former. However, Lemma B.20 has a stronger requirement
on the amount of data, requiring that mT & knCS , where CS ∈ [1, S] is defined in (B.23), whereas
Lemma B.13 has the weaker requirement that mT & kn. In the worst case when CS � S, then
the mT & knCS requirement simplifies to the many trajectories assumption m & n. Thus, the
qualitative behavior of these two bounds are not necessarily comparable.

Meanwhile, although neither bound is strictly sharper than the other, if we assume polynomial
growth of the {Ψj} matrices, then the two bounds are roughly on par:

Remark B.22. When the matrices {Ψj} exhibit low degree polynomial growth, both Lemma B.13
and Lemma B.20 yield similar qualitative behavior. Concretely, let us suppose that k = 1, Ψj = jp·I
for j ∈ [T ], and Γ = 1

T

∑T
j=1Ψj . Then, µ̄ = 1, whereas µ > 1+p

ep . Thus, if we consider p as constant,
then µ̄ � µ.

We now state our general OLS upper bound under the weak trajectory small-ball condition.

Lemma B.23 (General OLS upper bound, high probability). There are universal positive constants

c0 and c1 such that the following holds. Suppose that Px satisfies the (T, k, {Ψj}bT/kcj=1 , α, β)-wTrajSB
condition (Definition B.1). Put S := bT/kc and Γt := Γt(Px) for t ∈ N+. Fix any Γ ∈ Symn

>0

satisfying 1
S

∑S
j=1Ψj 4 Γ 4 ΓT , and the constants:

CS :=
1
S

∑S
j=1 λ(Ψj ,Γ)

2

(
1
S

∑S
j=1 λ(Ψj ,Γ)

)2 , µ̄ :=
1

S

S∑

j=1

λ(Ψj ,Γ).
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Fix δ ∈ (0, 1/e). Suppose that:

n > 2,
mT

kn
>
c0CS

1− β log

(
CS

α(1− β)λ(Γ,ΓT )µ̄δ

)

.

Then, for any Γ′ ∈ Symn
>0, with probability at least 1− δ:

‖Ŵm,T −W?‖2Γ′ 6 c1σ
2
ξ




pn log

(
1

α(1−β)λ(Γ,ΓT )µ̄δ

)

λ(Γ,Γ′)α(1− β)mTµ̄



 .

Proof. Put β′ := 1− β and X̃m,T := Xm,TΓ
−1/2. By the arguments in the proof of Lemma 5.1,

‖Ŵm,T −W?‖2Γ′ 6 min{n, p}
‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op
λ(Γ,Γ′) · λmin(X̃T

m,T X̃m,T )
.

Put M := (αβ′mTµ̄/8) · I := ζ · I. By Proposition B.10, with probability at least 1− δ/2:

1{X̃T
m,T X̃m,T <M}‖(X̃T

m,T X̃m,T )
−1/2X̃T

m,TΞm,T ‖2op

6 16σ2ξ

[

p log 5 +
1

2
log det

(

In + ζ−1X̃T
m,T X̃m,T

)

+ log(2/δ)

]

6 32σ2ξ

[

p+ log det
(

In + ζ−1X̃T
m,T X̃m,T

)

+ log(2/δ)
]

6 32σ2ξ

[

p+ n log(1 + ζ−1 tr(X̃T
m,T X̃m,T )/n) + log(2/δ)

]

.

Now, by Lemma B.20, with probability at least 1− δ/2, we also have:

λmin(X̃
T
m,T X̃m,T ) > ζ, tr(X̃T

m,T X̃m,T ) 6
4mTn

λδ
.

On both events:

‖(X̃T
m,T X̃m,T )

−1/2X̃T
m,TΞm,T ‖2op 6 32σ2ξ

[

p+ n log

(

1 +
32

αβ′λµ̄δ

)

+ log(2/δ)

]

6 64σ2ξ

[

p+ n log

(
33

αβ′λµ̄δ

)]

.

Combining the inequalities:

‖Ŵm,T −W?‖2Γ′ 6 512σ2ξ min{n, p}




p+ n log

(
33

αβ′λµ̄δ

)

λ(Γ,Γ′)αβ′mTµ̄



 6 1024σ2ξ




pn log

(
33

αβ′λµ̄δ

)

λ(Γ,Γ′)αβ′mTµ̄



 .

By a union bound, both events hold with probability at least 1− δ, which concludes the proof.
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B.7.3 Mixing implies weak trajectory small-ball

One advantage of Definition B.1 is that it is implied by the standard notions of φ-mixing in the
literature (see e.g. [MR08, DAJJ12, KM17]). In this section, we prove this reduction. First, we
state the definition of φ-mixing.

Definition B.2 (φ-mixing covariate sequence). Let {xt}t>1 be a covariate sequence which is adapted
to a filtration {Ft}t>1. Define the function φ(k) as:

φ(k) := sup
t∈N+

sup
B∈Ft

‖Pxt+k
(· | B)− Pxt+k

‖tv. (B.28)

The process {xt}t>1 is called φ-mixing if limk→∞ φ(k) = 0. We also let φ̄(k) denote the upper
envelope of φ(k), i.e., φ̄(k) := supk′>k φ(k).

The following result shows that a φ-mixing covariate sequence where each marginal distribution
is weakly small-ball satisfies the weak trajectory small-ball condition.

Proposition B.24. Fix α ∈ (0, 1) and β ∈ (0, 1/4). Suppose that the covariate sequence {xt}t>1

is φ-mixing, and that for every t ∈ N+ and v ∈ R
n \ {0} we have:

Pxt{〈v, xt〉2 6 αvTΣtv} 6 β, Σt := E[xtx
T
t ]. (B.29)

Let kmix := inf{k ∈ N+ | φ̄(k) 6 β} and assume that T > 2kmix. Put S := bT/(2kmix)c and suppose
that {Ψj}Sj=1 satisfies:

Ψj 4
1

4
Σt ∀j ∈ [S], t ∈ [kmix(2j − 1) + 1, 2jkmix].

Then, Px satisfies the
(

T, 2kmix, {Ψj}T/(2kmix)
j=1 , α, 43

(
1
2 + β

))

-wTrajSB condition (cf. Definition B.1).

Proof. Fix j ∈ [S]. Since Ψj 4
1
4Σt for all t ∈ [kmix(2j − 1) + 1, 2jkmix], we have:

Ψj 4
1

4kmix

2jkmix∑

t=kmix(2j−1)+1

Σt.

Hence,

1

S

S∑

j=1

Ψj 4
1

4Skmix

S∑

j=1

2jkmix∑

t=kmix(2j−1)+1

Σt 4
1

4Skmix

T∑

t=1

Σt 4 ΓT .

Above, the last inequality holds since bT/(2kmix)c > T/(4kmix). By definition of φ-mixing (cf. Def-
inition B.2) and the upper envelope φ̄, for any j ∈ [S] and t > kmix(2j − 1) + 1:

Pxt

{

〈v, xt〉2 6 4α · vTΨjv
∣
∣
∣ F(j−1)2kmix

}

6 Pxt

{

〈v, xt〉2 6 4α · vTΨjv
}

+ β

6 Pxt

{

〈v, xt〉2 6 α · vTΣtv
}

+ β

6 2β.
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Therefore:

1

2kmix

2jkmix∑

t=(j−1)2kmix+1

Pxt

{

〈v, xt〉2 6 4α · vTΨjv
∣
∣
∣ F(j−1)2kmix

}

6
1

2kmix
[kmix + 2βkmix] =

1

2
+ β.

The claim now follows from Proposition 4.2.

We conclude by noting that φ-mixing is a stronger notion of mixing than β-mixing, where (B.28)
is only required to hold in expectation. We leave to future work an analysis that only relies on the
weaker β-mixing.

C Analysis for lower bounds

C.1 Preliminaries

Here, we collect the necessary auxiliary results we will use to prove the lower bound. The first result
is an instance of the well-known fact that the conditional mean is the estimator which minimizes
the mean squared error.

Proposition C.1. Let T ∈ N+ and {Px,t}Tt=1 be a sequence of distributions over R
n with finite

second moments Σt := Ext∼Px,t [xtx
T
t ]. Let PW be any arbitrary distribution on R

p×n. Put ΓT :=
1
T

∑T
t=1Σt. We have:

inf
Ŵ

EW∼PW

[

1

T

T∑

t=1

Ext∼Px,t‖Ŵ (xt)−Wxt‖22

]

= EW∼PW
‖EW ′∼PW

[W ′]−W‖2ΓT
,

where the infimum ranges over measurable functions Ŵ : Rn → R
p.

Proof. Let µT := 1
T

∑T
t=1 Px,t denote the uniform mixture distribution, so that

1

T

T∑

t=1

Ext∼Px,t‖Ŵ (xt)−Wxt‖22 = Ex̄∼µT ‖Ŵ (x̄)−Wx̄‖22.

By repeated applications of Fubini’s theorem,

inf
Ŵ

EW∼PW
Ex̄∼µT ‖Ŵ (x̄)−Wx̄‖22 = inf

Ŵ
Ex̄∼µTEW∼PW

‖Ŵ (x̄)−Wx̄‖22

= Ex̄∼µT

[

inf
ŷ∈Rp

EW∼PW
‖ŷ −Wx̄‖22

]

= Ex̄∼µTEW∼PW
‖EW ′∼PW

[W ′]x̄−Wx̄‖22
= EW∼PW

Ex̄∼µT ‖EW ′∼PW
[W ′]x̄−Wx̄‖22

= EW∼PW
‖EW ′∼PW

[W ′]−W‖2ΓT
.
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The next result is a simple fact which states that if a function is strictly increasing and concave
on an interval, then any root of the function is lower bounded by the root of the linear approximation
at any point in the interval.

Proposition C.2. Let f : I → R be a C1(I) function that is strictly increasing and concave on an
interval I ⊆ R. Suppose that f has a (unique) root x0 ∈ I. For any x ∈ I, we have that:

x− f(x)

f ′(x)
6 x0.

Proof. Because f is concave on I, we have that:

0 = f(x0) 6 f(x) + f ′(x)(x0 − x).

Next, because f is strictly increasing on I, we have that f ′(x) > 0. The claim now follows by
re-arranging the previous inequality.

The next result states that the trace inverse of any positive definite matrix is lower bounded
by the trace inverse of any priciple submatrix. The claim is immediate from Cauchy’s eigenvalue
interlacing theorem, but we give a more direct proof.

Proposition C.3. Let M ∈ R
q×n have full column rank. Let I ⊆ {1, . . . , n} be any index set, and

let EI : Rn → R
|I| denote any linear map which extracts the coordinates associated to I. We have:

tr((MTM)−1) > tr((EIM
TMET

I )
−1).

Proof. Fix a z ∈ R
n. SinceM has full column rank, we have that (MT)† =M(MTM)−1. Therefore,

min
c∈Rq :MTc=z

‖c‖22 = ‖(MT)†z‖22 = zT(MTM)−1z.

Taking expectation with z ∼ N(0, In),

tr((MTM)−1) = Ez∼N(0,In)

[

min
c∈Rq :MTc=z

‖c‖22
]

.

On the other hand, we have that:

min
c∈Rq :MTc=z

‖c‖22 > min
c∈Rq :EIMTc=EIz

‖c‖22.

This is clear because for any c ∈ R
q satisfying MTc = z, the equality EIM

Tc = EIz trivially holds.
This means we have the following set inclusion:

{c ∈ R
q |MTc = z} ⊆ {c ∈ R

q | EIM
Tc = EIz}.

Therefore, minimizing any function over the first set will be lower bounded by minimizing the same
function over the second set. From this inclusion, we conclude for any index set I:

tr((MTM)−1) = Ez∼N(0,In)

[

min
c∈Rq :MTc=z

‖c‖22
]

> Ez∼N(0,In)

[

min
c∈Rq :EIMTc=EIz

‖c‖22
]

= Ez∼N(0,I|I|)

[

min
c∈Rq :EIMTc=z

‖c‖22
]

= tr((EIM
TMET

I )
−1).
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Next, we state well-known upper and lower tail bounds for chi-squared random variables.

Lemma C.4 ([LM00, Lemma 1]). Let g1, . . . , gD be iid N(0, 1) random variables, and let a1, . . . , aD
be non-negative scalars. For any t > 0, we have:

P







D∑

i=1

ai(g
2
i − 1) > 2

√
t

√
√
√
√

D∑

i=1

a2i + 2t max
i=1,...,D

ai






6 e−t,

P







D∑

i=1

ai(g
2
i − 1) 6 −2

√
t

√
√
√
√

D∑

i=1

a2i






6 e−t.

Finally, we conclude with a convex extension of Gordon’s min-max theorem.

Theorem C.5 ([TOH14, Theorem II.1]). Let A ∈ R
m×n, g ∈ R

m, and h ∈ R
n have iid N(0, 1)

entires and be independent of each other. Suppose that S1 ⊂ R
n and S2 ⊂ R

m are non-empty
compact convex sets, and let ψ : S1 × S2 → R be a continuous, convex-concave function. For every
t ∈ R, we have:

P

{

min
x∈S1

max
y∈S2

[

yTAx+ ψ(x, y)
]

> t

}

6 2P

{

min
x∈S1

max
y∈S2

[

‖x‖2gTy + ‖y‖2hTx+ ψ(x, y)
]

> t

}

.

C.2 Proof of Lemma 6.1

We first prove the following intermediate result, which holds under the Gaussian observation noise
model (Definition 7.1).

Lemma C.6. Let T ∈ N+, {Px,t}Tt=1 be a sequence of distributions over R
n with finite second

moments Σt := Ext∼Px,t [xtx
T
t ], and σξ > 0. Let PX be a distribution on R

q×n with q > n such
that for X ∼ PX , XTX is invertible almost surely. For W ∈ R

p×n, let PW be the distribution over
R
q×n × R

q×p with (X,Y ) ∼ PW satisfying X ∼ PX and Y | X = XWT + Ξ, where Ξ ∈ R
q×p has

iid N(0, σ2ξ ) entries (and is independent of everything else). Put ΓT := 1
T

∑T
t=1Σt. We have that:

inf
Ŵ

sup
W∈Rp×n

E(X,Y )∼PW

[

1

T

T∑

t=1

Ext∼Px,t‖Ŵ (X,Y, xt)−Wxt‖22

]

> σ2ξp · EX∼PX
tr(Γ

1/2
T (XTX)−1Γ

1/2
T ),

where the infimum ranges over all measurable functions Ŵ : Rq×n × R
q×p × R

n → R
p.

Proof. The proof extends the Bayesian argument from [Mou22, Theorem 1]. Let pλ be any prior
distribution over Rp×n. Let µT := 1

T

∑T
t=1 Px,t denote the uniform mixture. Bounding the minimax

risk from below by the Bayes risk:

inf
Ŵ

sup
W∈Rp×n

E(X,Y )∼PW
Ex̄∼µT ‖Ŵ (X,Y, x̄)−Wx̄‖22

> inf
Ŵ

EWλ∼pλE(X,Y )∼PWλ
Ex̄∼µT ‖Ŵ (X,Y, x̄)−Wλx̄‖22

= inf
Ŵ

E(X,Y )EWλ|(X,Y )Ex̄∼µT ‖Ŵ (X,Y, x̄)−Wλx̄‖22 using Fubini’s theorem
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= E(X,Y ) inf
ŴX,Y

EWλ|(X,Y )Ex̄∼µT ‖ŴX,Y (x̄)−Wλx̄‖22 where ŴX,Y maps Rn → R
p

= E(X,Y )EWλ|(X,Y )‖E[Wλ | X,Y ]−Wλ‖2ΓT
using Proposition C.1.

Now let Wλ ∼ pλ have iid N(0, 1/λ) entries for λ > 0. Noting that

vec(Y ) = (Ip ⊗X)vec(WT
λ ) + vec(Ξ),

we see that the vector

[
vec(WT

λ )
vec(Y )

]

is jointly Gaussian conditioned on X:

[
vec(WT

λ )
vec(Y )

]

| X ∼ N
(

0,

[ 1
λIpn

1
λ(Ip ⊗XT)

∗ 1
λ(Ip ⊗XXT) + σ2ξIqp

])

.

Therefore, the distribution of vec(WT
λ ) | X,Y is:

vec(WT
λ ) | X,Y ∼ N(µλ,Σλ),

µλ :=
1

λ
(Ip ⊗XT)

[
1

λ
(Ip ⊗XXT) + σ2ξIqp

]−1

vec(Y ),

Σλ :=
1

λ
Ipn −

1

λ2
(Ip ⊗XT)

[
1

λ
(Ip ⊗XXT) + σ2ξIqp

]−1

(Ip ⊗X).

A generalization of the identity XT( 1λXX
T + σ2ξIq)

−1 = ( 1λX
TX + σ2ξIn)

−1XT yields:

(Ip ⊗XT)

[
1

λ
(Ip ⊗XXT) + σ2ξIqp

]−1

=

[
1

λ
(Ip ⊗XTX) + σ2ξInp

]−1

(Ip ⊗XT).

Therefore,

E[vec(WT
λ ) | X,Y ]− vec(WT

λ )

= µλ − vec(WT
λ )

=
[

(Ip ⊗XTX) + σ2ξλInp

]−1
(Ip ⊗XT)vec(Y )− vec(WT

λ )

=

[[

(Ip ⊗XTX) + σ2ξλInp

]−1
(Ip ⊗XTX)− Inp

]

vec(WT
λ )

+
[

(Ip ⊗XTX) + σ2ξλInp

]−1
(Ip ⊗XT)vec(Ξ).

Observing that

‖E[Wλ | X,Y ]−Wλ‖2ΓT
= ‖E[vec(WT

λ ) | X,Y ]− vec(WT
λ )‖2Ip⊗ΓT

,

and defining MX(λ) := (Ip ⊗XTX) + σ2ξλInp, we have the following bias-variance decomposition:

EX,Ξ,Wλ
‖E[Wλ | X,Y ]−Wλ‖2ΓT

= EX,Ξ,Wλ

∥
∥
∥

[

M−1
X (λ)(Ip ⊗XTX)− Inp

]

vec(WT
λ )
∥
∥
∥

2

Ip⊗ΓT
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+ σ2ξEX tr
(

(Ip ⊗ Γ
1/2
T )M−1

X (λ)(Ip ⊗XTX)M−1
X (λ)(Ip ⊗ Γ

1/2
T )

)

> σ2ξEX tr
(

(Ip ⊗ Γ
1/2
T )M−1

X (λ)(Ip ⊗XTX)M−1
X (λ)(Ip ⊗ Γ

1/2
T )

)

.

Since λ 7→ tr
(

(Ip ⊗ Γ
1/2
T )M−1

X (λ)(Ip ⊗XTX)M−1
X (λ)(Ip ⊗ Γ

1/2
T )

)

is non-negative and decreasing

in λ for λ > 0, by the monotone convergence theorem:

lim
λ→0+

EX,Ξ,Wλ
‖E[Wλ | X,Y ]−Wλ‖2ΓT

> σ2ξ lim
λ→0+

EX tr
(

(Ip ⊗ Γ
1/2
T )M−1

X (λ)(Ip ⊗XTX)M−1
X (λ)(Ip ⊗ Γ

1/2
T )

)

= σ2ξEX tr
(

(Ip ⊗ Γ
1/2
T )M−1

X (0)(Ip ⊗XTX)M−1
X (0)(Ip ⊗ Γ

1/2
T )

)

= σ2ξEX tr((Ip ⊗ Γ
1/2
T (XTX)−1Γ

1/2
T ))

= σ2ξp · EX tr(Γ
1/2
T (XTX)−1Γ

1/2
T ).

Since the first expression above lower bounds the minimax risk, this concludes the proof.

We now restate and prove Lemma 6.1.

Lemma 6.1 (Expected trace of inverse covariance bounds risk from below). Fix m,T ∈ N+ and a
set of covariate distributions Px. Suppose that for every Px ∈ Px, the data matrix Xm,T ∈ R

mT×n

drawn from ⊗m
i=1Px has full column rank almost surely. The minimax risk R(m,T, T ′;Px) satisfies:

R(m,T, T ′;Px) > σ2ξp · sup
Px∈Px

E⊗m
i=1Px

[

tr
(

Γ
1/2
T ′ (Px)(X

T
m,TXm,T )

−1Γ
1/2
T ′ (Px)

)]

.

Proof. Fix a Px ∈ Px, and let {Px,t}T
′

t=1 denote its marginal distributions up to time T ′. Let P
g
ξ

denote the σξ-MDS corresponding to the Gaussian observation noise model (Definition 7.1). Note
that for any hypothesis f : Rn → R

p, we have from (3.2):

L(f̂ ;T ′,Px) = EPx

[

1

T ′

T ′
∑

t=1

‖f̂(xt)−W?xt‖22

]

=
1

T ′

T ′
∑

t=1

Ext∼Px,t‖f̂(xt)−W?xt‖22.

By the definition of R(m,T, T ′;Px) from (3.5) and Lemma C.6:

R(m,T, T ′;Px) > inf
Alg

sup
W?

E⊗m
i=1P

W?
x,y [Px,P

g

ξ]

[

L
(

Alg({(x(i)t , y
(i)
t )}m,T

i=1,t=1);T
′,Px

)]

> σ2ξp · E⊗m
i=1Px

[

tr
(

Γ
1/2
T ′ (Px)(X

T
m,TXm,T )

−1Γ
1/2
T ′ (Px)

)]

.

Since the bound above holds for any Px ∈ Px, we can take the supremum over Px ∈ Px, from the
which the claim follows.

C.3 A general risk lower bound

We now state a lower bound which applies with an arbitrary number of trajectories.
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Lemma C.7. Suppose that Px is any set containing P
0n×n
x and PIn

x . Let mT > n. Then:

R(m,T, T ′;Px) >
σ2ξ
2
· pn
mT
·max

{
T ′

T
, 1

}

.

Proof. Define ζ(A) := E⊗m
i=1P

A
x

[

tr
(

Γ
1/2
T ′ (A)(XT

m,TXm,T )
−1Γ

1/2
T ′ (A)

)]

. By Lemma 6.1:

R(m,T, T ′;Px) > σ2ξp ·max{ζ(0n×n), ζ(In)}. (C.1)

Next, for any M ∈ Symn
>0, the function X 7→ tr(M1/2X−1M1/2) is convex on the domain

Symn
>0. To see this, we define f(X; v) := vTX−1v for X ∈ Symn

>0. We can write f(X; v) as
f(X; v) = sup

{
−zTXz + 2vTz | z ∈ R

n
}
; therefore X 7→ f(X; v) is convex on Symn

>0, since it is

the pointwise supremum of an affine function in X. Now we see that X 7→ tr(M1/2X−1M1/2)
is convex, since tr(M1/2X−1M1/2) =

∑n
i=1 f(X;M1/2ei), which is the sum of convex functions.

Therefore by Jensen’s inequality, whenever XT
m,TXm,T is invertible almost surely,

ζ(A) = E⊗m
i=1P

A
x

[

tr
(

Γ
1/2
T ′ (A)(X

T
m,TXm,T )

−1Γ
1/2
T ′ (A)

)]

> tr
(

Γ
1/2
T ′ (A)(E⊗m

i=1P
A
x
[XT

m,TXm,T ])
−1Γ

1/2
T ′ (A)

)

= tr
(

Γ
1/2
T ′ (A)(mT · ΓT (A))

−1Γ
1/2
T ′ (A)

)

=
tr(ΓT ′(A)Γ−1

T (A))

mT
.

We first consider the case when A = 0n×n. Under these dynamics, it is a standard fact that
when mT > n, then XT

m,TXm,T is invertible almost surely. Furthermore, Γt(0n×n) = In for all t,
Hence, ζ(0n×n) >

n
mT .

Next, we consider the case when A = In. We first argue that as long as mT > n, the matrix

XT
m,TXm,T is invertible almost surely. We write x

(i)
t =

∑t
k=1w

(i)
k , where {w(i)

t }
m,T
i=1,t=1 are all iid

N(0, In) vectors. Let p : RmTn → R be the polynomial p({w(i)
t }) = det(XT

m,TXm,T ). The zero-set

of p is either all of RmTn, or Lebesgue measure zero. We will select {w(i)
t } so that p({w(i)

t }) 6= 0,
which shows that the zeros of this polynomial are not all of RmTn, and hence Lebesgue measure
zero. Since the Gaussian measure on R

mTn is absolutely continuous w.r.t. the Lebesgue measure
on R

mTn, this implies that det(XT
m,TXm,T ) 6= 0 almost surely.

To select {w(i)
t }, we introduce some notation. Let ei ∈ R

n denote the i-th standard basis vector.
For any positive integer k, let U(k) ∈ R

k×k be the upper triangular matrix with ones for all its non-
zero entries. Let S(k) = U(k)U(k)T. By construction, S(k) is invertible since U(k) is invertible.

We put w
(i)
t = e(i−1)T+t · 1{(i − 1)T + t 6 n}. We now claim that with this choice of {w(i)

t }, the
matrix XT

m,TXm,T is invertible.

Suppose first that T > n. Then we have thatXT
m,TXm,T = S(n), and therefore det(XT

m,TXm,T ) 6=
0. On the other hand, suppose that T < n. Because mT > n, then we have that:

XT
m,TXm,T = BDiag(S(T ), . . . , S(T )

︸ ︷︷ ︸

bn/T c times

, S(n− T bn/T c)),
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where BDiag(M1, . . . ,Mk) denotes the block diagonal matrices with block diagonals M1, . . . , Mk.
Since S(T ) and S(n−T bn/T c) are both invertible, so is XT

m,TXm,T and therefore det(XT
m,TXm,T ) 6=

0. Thus, XT
m,TXm,T is invertible almost surely.

Next, we note that Σt(In) = t · In and Γt(In) =
(
1
t

∑t
k=1 k

)
· In = t+1

2 · In. Hence we have

ΓT ′(In)Γ
−1
T (In) =

T ′+1
T+1 · In < T ′

2T · In, and therefore ζ(In) >
n

2mT
T ′

T .
Combining our bounds on ζ(0n×n) and ζ(In), we have the desired claim:

R(m,T, T ′;Px) > σ2ξp ·max

{
n

mT
,

n

2mT

T ′

T

}

>
σ2ξ
2
· pn
mT
·max

{
T ′

T
, 1

}

.

C.4 Non-isotropic random gramian matrices

The goal of this subsection is to prove Lemma 7.1, which gives a bound on the expected trace
inverse of a non-isotropic random gramian matrix. We first prove an auxiliary lemma, which will
be used as a building block in the proof.

Lemma C.8. Fix any x ∈ R
q. Let g ∈ R

q and h ∈ R
n be random vectors with iid N(0, 1) entries,

and let W ∈ R
q×n be a random matrix with iid N(0, 1) entries. Let Σ ∈ R

q×q be positive definite.
We have that:

E min
α∈Rn

‖Σ1/2Wα− x‖22 6 Emin
β>0

max
τ>0

[

−β‖h‖2
τ

+ ‖βg − Σ−1/2x‖2(Σ−1+β‖h‖2τIq)−1

]

.

Proof. The proof invokes the convex Gaussian min-max lemma (Theorem C.5) via a limiting argu-
ment. In what follows, let {αk}k>1 and {vk}k>1 be any two positive, increasing sequences of scalars
tending to +∞. It is clear that for every W ,

lim
k→∞

min
‖α‖26αk

‖Σ1/2Wα− x‖22 = min
α∈Rn

‖Σ1/2Wα− x‖22.

Since α = 0 is always a feasible solution to min‖α‖26αk
‖Σ1/2Wα− x‖22, we have for every k > 1:

0 6 min
‖α‖26αk

‖Σ1/2Wα− x‖22 6 ‖x‖22.

Therefore, by the dominated convergence theorem,

E min
α∈Rn

‖Σ1/2Wα− x‖22 = E lim
k→∞

min
‖α‖26αk

‖Σ1/2Wα− x‖22 = lim
k→∞

E min
‖α‖26αk

‖Σ1/2Wα− x‖22. (C.2)

We next state two variational forms which we will use:

1

2
‖x‖22 = max

v∈Rq

{

vTx− ‖v‖
2
2

2

}

, (C.3)

‖x‖2 = min
τ>0

{‖x‖22τ
2

+
1

2τ

}

. (C.4)
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Using the first variational form (C.3), we have for every W and k1 > 1,

min
‖α‖26αk1

1

2
‖Σ1/2Wα− x‖22 = min

‖α‖26αk1

max
v∈Rq

[

vT(Σ1/2Wα− x)− ‖v‖
2
2

2

]

= min
‖α‖26αk1

max
v∈Rq

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

= min
‖α‖26αk1

max
‖v‖26‖ΣW‖opαk1

+‖Σ1/2x‖2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

= lim
k2→∞

min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

.

Observe that for every k2 > 1,

0 6 min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

6 max
‖v‖26vk2

[

−vTΣ−1/2x− vTΣ−1v

2

]

6 max
v∈Rq

[

−vTΣ−1/2x− vTΣ−1v

2

]

=
1

2
‖x‖22.

Therefore, by (C.2) and another application of the dominated convergence theorem:

E min
α∈Rn

‖Σ1/2Wα− x‖22 = lim
k1→∞

E min
‖α‖26αk1

‖Σ1/2Wα− x‖22

= lim
k1→∞

E lim
k2→∞

min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

= lim
k1→∞

lim
k2→∞

E min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

. (C.5)

We now apply Theorem C.5 to the expectation on the RHS of (C.5):

E min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

=

∫ ∞

0
P

{

min
‖α‖26αk1

max
‖v‖26vk2

[

vTWα− vTΣ−1/2x− vTΣ−1v

2

]

> t

}

dt

(a)

6 2

∫ ∞

0
P

{

min
‖α‖26αk1

max
‖v‖26vk2

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

> t

}

dt

= 2E min
‖α‖26αk1

max
‖v‖26vk2

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

6 2E min
‖α‖26αk1

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

. (C.6)
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Above, inequality (a) is an application of Theorem C.5. Now for every k1, g, and h, define

ψk1(g, h) := min
‖α‖26αk1

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

.

For every k1, g, and h, we have

0 6 ψk1(g, h) 6 max
v∈Rq

[

−vTΣ−1/2x− vTΣ−1v

2

]

=
‖x‖22
2

.

Furthermore, since {αk} is an increasing sequence, the sequence {ψk(g, h)}k>1 is montonically
decreasing. Therefore, by the monotone convergence theorem,

lim
k→∞

ψk(g, h) = inf{ψk(g, h) | k ∈ N+}

= min
α∈Rn

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

.

Therefore by another application of the dominated convergence theorem, we have that:

lim
k1→∞

E min
‖α‖26αk1

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

= E lim
k1→∞

min
‖α‖26αk1

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

= E min
α∈Rn

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

. (C.7)

Chaining together inequalities (C.5), (C.6), (C.7), we have:

E min
α∈Rn

‖Σ1/2Wα− x‖22 6 2E min
α∈Rn

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

. (C.8)

We now proceed to study the RHS of (C.8), which we denote by (AO) (the auxiliary optimization
problem):

(AO) := min
α∈Rn

max
v∈Rq

[

‖α‖2gTv + ‖v‖2hTα− vTΣ−1/2x− vTΣ−1v

2

]

= min
β>0

min
θ∈[−1,1]

max
v∈Rq

[

βgTv + β‖v‖2‖h‖2θ − vTΣ−1/2x− vTΣ−1v

2

]

(a)
= min

β>0
max
v∈Rq

[

βgTv − β‖v‖2‖h‖2 − vTΣ−1/2x− vTΣ−1v

2

]

(b)
= min

β>0
max
v∈Rq

max
τ>0

[

βgTv − β‖h‖2‖v‖22
τ

2
− β‖h‖2

2τ
− vTΣ−1/2x− vTΣ−1v

2

]

= min
β>0

max
τ>0

max
v∈Rq

[

βgTv − β‖h‖2‖v‖22
τ

2
− β‖h‖2

2τ
− vTΣ−1/2x− vTΣ−1v

2

]

= min
β>0

max
τ>0

[

−β‖h‖2
2τ

+
1

2
‖βg − Σ−1/2x‖2(Σ−1+β‖h‖2τIq)−1

]

.
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Above, (b) holds by the variational form (C.4). The proof is now finished after justifying (a). First,
let hβ(θ, v) denote the term in the bracket, so that

(AO) = min
β>0

min
θ∈[−1,1]

max
v∈Rq

hβ(θ, v).

Fix a β > 0. By weak duality,

min
θ∈[−1,1]

max
v∈Rq

hβ(θ, v) > max
v∈Rq

min
θ∈[−1,1]

hβ(θ, v) = max
v∈Rq

hβ(−1, v).

On the other hand,

min
θ∈[−1,1]

max
v∈Rq

hβ(θ, v) 6 min
θ∈[−1,0]

max
v∈Rq

hβ(θ, v) = max
v∈Rq

min
θ∈[−1,0]

hβ(θ, v) = max
v∈Rq

hβ(−1, v).

The first equality above is Sion’s minimax theorem, since the function θ 7→ hβ(θ, v) is affine for
every v and the function v 7→ hβ(θ, v) is concave for θ ∈ [−1, 0]. Therefore,

min
θ∈[−1,1]

max
v∈Rq

hβ(θ, v) = max
v∈Rq

hβ(−1, v).

With Lemma C.8 in hand, we can now restate and prove Lemma 7.1.

Lemma 7.1. Let q, n be positive integers with q > n and n > 2. Let W ∈ R
q×n have iid N(0, 1)

entries, and let Σ ∈ R
q×q be positive definite. Let g ∼ N(0, Iq) and h ∼ N(0, In−1), with g and h

independent. Also, let {ei}qi=1 be the standard basis vectors in R
q. We have:

E tr((WTΣW )−1) >
n

∑q
i=1 Eminβ>0maxτ>0

[

−β‖h‖2
τ + ‖βg − ei‖2(Σ−1+β‖h‖2τIq)−1

] . (7.3)

Proof. We rewrite E tr((WTΣW )−1) in a way that is amenable to Lemma C.8. Let w1 ∈ R
q denote

the first column of W , so that W =
[
w1 W2

]
with W2 ∈ R

q×(n−1). We write:

WTΣW =

[
‖w1‖2Σ wT

1ΣW2

WT
2 Σw1 WT

2 ΣW2

]

.

Using the block matrix inversion formula to compute the (1, 1) entry of (WTΣW )−1:

((WTΣW )−1)11 = (wT
1 (Σ− ΣWT

2 (W
T
2 ΣW2)

−1WT
2 Σ)w1)

−1

= (wT
1Σ

1/2(I − PΣ1/2W2
)Σ1/2w1)

−1

= (wT
1Σ

1/2P⊥
Σ1/2W2

Σ1/2w1)
−1.

Since the columns of W are all independent and identically distributed, this calculation shows that
the law of ((WTΣW )−1)ii is the same as the law of ((WTΣW )−1)11 for all i = 1, . . . , n. Therefore:

E tr((WTΣW )−1) =
n∑

i=1

E((WTΣW )−1)ii = n · E(wT
1Σ

1/2P⊥
Σ1/2W2

Σ1/2w1)
−1
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>
n

E tr(Σ1/2P⊥
Σ1/2W2

Σ1/2)
.

The last inequality follows from Jensen’s inequality combined with the independence of w1 andW2.
By decomposing tr(Σ1/2P⊥

Σ1/2W2
Σ1/2) =

∑q
i=1‖P⊥

Σ1/2W2
Σ1/2ei‖22 and observing that

‖P⊥
Σ1/2W2

x‖22 = min
α∈Rn−1

‖Σ1/2W2α− x‖22 ∀x ∈ R
q,

we have the following identity:

E tr(Σ1/2P⊥
Σ1/2W2

Σ1/2) =

q
∑

i=1

E min
αi∈Rn−1

‖Σ1/2W2αi − Σ1/2ei‖22.

Invoking Lemma C.8 with x = Σ1/2ei for i = 1, . . . , q yields

E tr(Σ1/2P⊥
Σ1/2W2

Σ1/2) 6
q
∑

i=1

Emin
β>0

max
τ>0

[

−β‖h‖2
τ

+ ‖βg − ei‖2(Σ−1+β‖h‖2τIq)−1

]

,

where g ∼ N(0, Iq) and h ∼ N(0, In−1). The claim now follows.

We conclude this section with the following technical result which we will use in the sequel.

Lemma C.9. Let q, n ∈ N+ with q > n and n > 6, and let Σ ∈ Sym
q
>0. Let g ∼ N(0, Iq) and

h ∼ N(0, In−1) with g and h independent. Define the random variables Zi for i ∈ {1, . . . , q} as:

Zi := min
β>0

max
τ>0

[

−β‖h‖2
2τ

+ β2‖g‖2(Σ−1+β‖h‖2τIq)−1 + (Σ−1 + β‖h‖2τIq)−1
ii

]

. (C.9)

Let {λi}qi=1 denote the eigenvalues of Σ−1 listed in decreasing order. Define n1 and the random
function p(y) as:

n1 :=
n

64
, p(y) :=

q
∑

i=1

y

λi + y
g2i −

n1
2
. (C.10)

There exists an event E (over the probability of g and h) such that the following statements hold:

(a) P(Ec) 6 e−n/128 + e−q/16.

(b) On E, there exists a unique root y∗ ∈ (0,∞) such that p(y∗) = 0.

(c) The following bounds hold for i ∈ {1, . . . , q}:

Zi 6 Σii, 1{E}Zi 6 1{E}(Σ−1 + y∗Iq)
−1
ii . (C.11)

Proof. First, we observe that we can trivially upper bound the value of Zi by setting β = 0 and
obtaining the bound Zi 6 Σii. Furthermore, by the rotational invariance of g and the fact that g
and h are independent, we have that Zi is equal in distribution to:

Zi = min
β>0

max
τ>0

[

−β‖h‖2
2τ

+ β2
q
∑

i=1

g2i
λi + β‖h‖2τ

+ (Σ−1 + β‖h‖2τIq)−1
ii

]

.
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Define the following events:

Eh :=
{
‖h‖2 >

√
n/8

}
, Eg :=

{
q
∑

i=1

g2i > q/2

}

,

and put E := Eh ∩ Eg. Since n > 6, by a standard computation we have that E‖h‖2 >
√
n/4.

Therefore, by Gaussian concentration of Lipschitz functions [cf. Wai19, Chapter 2], P(Ech) 6 e−n/128.
Furthermore, Lemma C.4 yields that P(Ecg) 6 e−q/16. By a union bound, P(Ec) 6 e−n/128 + e−q/16.

We now focus on upper bounding the quantity:

1{E}Zi 6 1{E}min
β>0

max
τ>0

[

−β
√
n

16τ
+ β2

q
∑

i=1

g2i
λi + β

√
nτ/8

+ (Σ−1 + β
√
nτ/8Iq)

−1
ii

]

︸ ︷︷ ︸

=:`i(β,τ)

.

Let us bracket the value of the game minβ>0maxτ>0 `i(β, τ). We previously noted that `i(0, τ) =
Σii for all τ ∈ [0,∞). Next, for any β > 0, limτ→∞ `i(β, τ) = 0. Hence,

min
β>0

max
τ>0

`i(β, τ) ∈ [0,Σii].

Recalling from (C.10) that n1 = n/64 (so that
√
n1 =

√
n/8) and defining f, qi as:

f(x) := −x
√
n1
2

+ x2
q
∑

i=1

g2i
λi + x

√
n1
,

qi(x) := (Σ−1 + x
√
n1)

−1
ii ,

we have that `i(β, τ) =
1
τ2
f(βτ) + qi(βτ).

In order to sharpen our estimate for the value of the game, we will study the positive crit-
ical points (β, τ) ∈ R

2
>0 of the game minβ maxτ `i(β, τ), i.e., the points (β, τ) ∈ R

2
>0 satisfying

∂`i
∂β (β, τ) = 0 and ∂`i

∂τ (β, τ) = 0. Note that in general for a nonconvex/nonconcave game, this is not
a necessary first order optimality condition for the global min/max value [see e.g. JNJ20, Propo-
sition 21]. However, for every fixed β > 0, stationary points of the function τ 7→ `i(β, τ) on R>0

are strictly concave by Proposition C.10. Hence, by the implicit function theorem (or alternatively
[JNJ20, Theorem 23]), the first order stationarity conditions ∂`i

∂β (β, τ) = 0 and ∂`i
∂τ (β, τ) = 0 are

necessary for global min/max optimality. For τ 6= 0, this yields:

0 = τ−2f ′(βτ)β − 2τ−3f(βτ) + q′i(βτ)β,

0 = τ−2f ′(βτ)τ + q′i(βτ)τ.

Together, these conditions imply that f(βτ) = 0, and that the value of the game at such a critical
point is qi(βτ). Thus, we are interested in the positive roots of f(x) = 0. To proceed, recall the
definition of p(y) from (C.10):

p(y) =

q
∑

i=1

y

λi + y
g2i −

n1
2
.
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Note that y∗ is a positive root of p iff y∗/
√
n1 is a positive root of f . Since q > n by assumption,

observe that on E :

lim
y→∞

p(y) =

q
∑

i=1

g2i − n1/2 > q/2− n1/2 > n/2− n/64 > 0.

On the other hand, p(0) = −n1/2 < 0. Since p(y) is continuous and strictly increasing, on E there
exists a unique y∗ ∈ (0,∞) such that p(y∗) = 0. Thus,

1{E}Zi 6 1{E}(Σ−1 + y∗Iq)
−1
ii .

Proposition C.10. Let M,A be n× n positive definite matrices, and let α, β be positive numbers.
Consider the function:

f(τ) := −α
τ
+ 〈(A+ βτI)−1,M〉.

Suppose there exists a τ ∈ (0,∞) satisfying f ′(τ) = 0. Then, f ′′(τ) < 0.

Proof. A straightforward computation yields the following expressions for f ′(τ) and f ′′(τ):

f ′(τ) = ατ−2 − β〈(A+ βτI)−2,M〉,
f ′′(τ) = −2ατ−3 + 2β2〈(A+ βτI)−3,M〉.

The assumed condition f ′(τ) = 0 implies that:

ατ−2 = β〈(A+ βτI)−2,M〉 =⇒ −2ατ−3 = −2βτ−1〈(A+ βτI)−2,M〉.

Next, let A = QΛQT be the eigendecomposition of A, with Λ = diag({λi}ni=1). For any integer k:

〈(A+ βτI)−k,M〉 = tr(MQ(Λ + βτI)−kQT) = 〈QMQT, (Λ + βτI)−k〉 =
n∑

i=1

(QMQT)ii
(λi + βτ)k

.

Now, since M is positive definite, (QMQT)ii > 0 for all i ∈ [n]. Furthermore, since A is positive
definite, λi > 0 for all i ∈ [n]. Hence plugging these expressions into the expression of f ′′(τ):

f ′′(τ) = −2β2
n∑

i=1

(QMQT)ii
(λi + βτ)2βτ

+ 2β2
n∑

i=1

(QMQT)ii
(λi + βτ)2(λi + βτ)

< −2β2
n∑

i=1

(QMQT)ii
(λi + βτ)2βτ

+ 2β2
n∑

i=1

(QMQT)ii
(λi + βτ)2βτ

= 0.
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C.5 Proof of Theorem 6.2

Theorem 6.2 (Need for growth assumptions in Ind-Seq-LS when m . n). There exists universal
constant c0, c1, and c2 such that the following holds. Suppose that Px = ⊗t>1N(0, 2t · In), n > 6,
mT > n, and m 6 c0n. Then:

R(m,T, T ; {Px}) > c1σ
2
ξ ·
p · 2c2n/m

T
.

Proof. Let ΓT := ΓT (Px). We have that ΓT = 2
T (2

T − 1)In < 2T

T In. By Lemma 6.1:

R(m,T, T ; {Px}) > σ2ξp · E tr(Γ
1/2
T (XT

m,TXm,T )
−1Γ

1/2
T ) >

σ2ξp

T
· E tr((2−T/2XT

m,TXm,T 2
−T/2)−1).

Since each column of Xm,T is independent, the matrix Xm,T 2
−T/2 has the same distribution as

BDiag(Θ1/2,m)W , where Θ ∈ R
T×T is diagonal, Θii = 2i−T for i ∈ {1, . . . , T}, and W ∈ R

mT×n

has iid N(0, 1) entries. Let λt = 2T−t for t ∈ {1, . . . , T}. With this notation:

E tr((2−T/2XT
m,TXm,T 2

−T/2)−1) = E tr((WTBDiag(Θ,m)W )−1).

Let {gj}mj=1 be independent isotropic Gaussian random vectors in R
T , and let h ∼ N(0, In−1)

be independent from {gj}. Define the random variables {Zi}Ti=1 as:

Zi := min
β>0

max
τ>0



−β‖h‖2
2τ

+ β2
m∑

j=1

T∑

t=1

g2j,t
λt + β‖h‖2τ

+
1

λi + β‖h‖2τ



 . (C.12)

By Lemma 7.1,

E tr((WTBDiag(Θ,m)W )−1) >
n

2m

[
T∑

i=1

E[Zi]

]−1

.

Next, define

n1 :=
n

64
, p(y) :=

m∑

j=1

T∑

t=1

y

λt + y
g2j,t −

n1
2
.

Since n > 6 and mT > n, we can invoke Lemma C.9 to conclude there exists an event E1 (over the
probability of {gj} and h) such that:

(a) on E1, there exists a unique root y∗ ∈ (0,∞) such that p(y∗) = 0,

(b) the following inequalities holds:

Zi 6
1

λi
, 1{E1}Zi 6 1{E1}

1

λi + y∗
, (C.13)

(c) the following estimate holds:

P(Ec1) 6 e−n/128 + e−mT/16.
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Now, let c = 1/20, and assume that cn1/m > 4. We can check easily that dcn1/me 6 T . Fix a
δ ∈ (0, e−2] to be chosen later. Define the integer Tc := dcn1/me ∈ {4, . . . , T}, and the events (over
the probability of {gj} and h):

Eg,Tc
2 :=







m∑

j=1

Tc∑

t=1

g2j,t 6 5mTc






, Eg,+2 :=






max

t=1,...,T

m∑

j=1

g2j,t 6 2m+ 4 log

(
t2π2

6δ

)





.

By Lemma C.4, P((Eg,Tc
2 )c) 6 e−mTc . Next, Gaussian concentration for Lipschitz functions [cf

Wai19, Chapter 2] yields, for any η ∈ (0, 1):

max
t=1,...,T

P







√
√
√
√

m∑

j=1

g2j,t >
√
m+

√

2 log(1/η)






6 η.

Hence by a union bound, and the fact that 6δ/π2
∑T

t=1 t
−2 6 6δ/π2

∑∞
t=1 t

−2 = δ, we have that

P((Eg,+2 )c) 6 δ. Putting E := E1 ∪ Eg,Tc
2 ∪ Eg,+2 , we have:

P(Ec) 6 e−n/128 + e−mT/16 + e−mTc + δ

6 e−n/128 + e−mT/16 + e−cn1 + δ. (C.14)

Next, noting that t/2 > log2 log((t+ 1)2π2/6) for all t > 4:

T−1∑

t=Tc

2−t log((t+ 1)2π2/(6δ))

=
T−1∑

t=Tc

2−t+log2 log((t+1)2π2/6) + log(1/δ)
T−1∑

t=Tc

2−t

6
T−1∑

t=Tc

2−t/2 + log(1/δ)

T−1∑

t=Tc

2−t since Tc > 4

=
√
2/(
√
2− 1)(2−Tc/2 − 2−T/2) + 2 log(1/δ)(2−Tc − 2−T )

6 (4 + 2 log(1/δ))2−Tc/2

6 4 log(1/δ)2−Tc/2 since δ ∈ (0, e−2). (C.15)

Now, on E :

n1
2

=

m∑

j=1

T∑

t=1

y∗

λt + y∗
g2j,t since p(y∗) = 0

6
m∑

j=1

Tc∑

t=1

g2j,t + y∗
m∑

j=1

T−1∑

t=Tc

2−tg2j,t+1

=
m∑

j=1

Tc∑

t=1

g2j,t + y∗
T−1∑

t=Tc

2−t





m∑

j=1

g2j,t+1




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6 5mTc + y∗
T−1∑

t=Tc

2−t
[
2m+ 4 log((t+ 1)2π2/(6δ))

]
using E

6 5mTc + 4my∗2−Tc + 16y∗ log(1/δ)2−Tc/2 using (C.15)

6 5mTc + 18my∗ log(1/δ)2−Tc/2 since δ ∈ (0, e−2).

This inequality implies the following lower bound on y∗:

y∗ >
2cn1/(2m)

18 log(1/δ)

[ n1
2m
− 5c

n1
m
− 5
]

=
2cn1/(2m)

18 log(1/δ)

[ n1
4m
− 5
]

since c = 1/20

>
2cn1/(2m)

144 log(1/δ)

n1
m

since cn1/m > 4 =⇒ n1/(8m) > 5

=: y∗.

We now bound,

T∑

i=1

E[Zi] =

T∑

i=1

[E[1{E}Zi] + E[1{Ec}Zi]]

6
T∑

i=1

(

E

[

1{E} 1

λi + y∗

]

+ P(Ec) 1
λi

)

using (C.13)

6
T∑

i=1

1

λi + y∗
+ P(Ec)

T∑

t=1

1

λi
since y∗ > y∗ on E

6
T−1∑

t=0

1

2t + y∗
+ 2

(

e−n/128 + e−mT/16 + e−cn1 + δ
)

using (C.14)

6
Tc
y∗

+ 2 · 2−Tc + 2
(

e−n/128 + e−mT/16 + e−cn1 + δ
)

6 288c log(1/δ)2−cn1/(2m) + 2 · 2−cn1/m

+ 2
(

e−n/128 + e−mT/16 + e−cn1 + δ
)

.

Since cn1/m > 4, we can choose δ = e−cn1/(2m) ∈ (0, e−2] and obtain:

T∑

i=1

E[Zi] 6 144c2
n1
m

2−cn1/(2m) + 2 · 2−cn1/m + 2
(

e−n/128 + e−mT/16 + e−cn1 + e−cn1/(2m)
)

.

Since 1 6 cn1/(4m), mT > n, and m > 1, this inequality implies there exists universal positive
constants c1, c2 such that:

T∑

i=1

E[Zi] 6
c1n

m
2−c2n/m.
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Hence:

R(m,T, T ; {Px}) >
σ2ξp

T

n

2m

[
T∑

i=1

E[Zi]

]−1

>
σ2ξp

T

n

2m

m

c1n
2c2n/m =

σ2ξp2
c2n/m

2c1T
.

C.6 Block decoupling

We now use a block decoupling argument to study lower bounds on the risk. The first step is the
following result, which bounds the risk from below by a particular random gramian matrix.

Lemma C.11. Let n = dr with both d, r positive integers. Define Ir := {1, 1+ r, . . . , 1+(T −1)r},
and let EIr ∈ R

T×Tr denote the linear operator which extracts the coordinates in Ir, so that
(EIrx)i = x1+(i−1)r for i = 1, . . . , T . Recall the following definitions from Equation (7.10):

Ψr,T,T ′ = BDiag(Γ
−1/2
T ′ (Jr), T )BToep(Jr, T ) ∈ R

Tr×Tr,

Θr,T,T ′ = EIrΨr,T,T ′ΨT
r,T,T ′ET

Ir ∈ R
T×T .

Then, for A = BDiag(Jr, d) we have:

E⊗m
i=1P

A
x

[

tr
(

Γ
1/2
T ′ (A)(X

T
m,TXm,T )

−1Γ
1/2
T ′ (A)

)]

> E tr((WTBDiag(Θr,T,T ′ ,m)W )−1),

where W ∈ R
mT×d is a matrix with independent N(0, 1) entries.

Proof. We apply Proposition C.3 with:

M = Xm,TΓ
−1/2
T ′ , I = {1, 1 + r, 1 + 2r, . . . , 1 + (d− 1)r}, |I| = d.

Note that the block diagonal structure of A yields the same block diagonal structure on ΓT ′ and its

inverse square root, specifically ΓT ′(A) = BDiag(ΓT ′(Jr), d) and Γ
−1/2
T ′ (A) = BDiag(Γ

−1/2
T ′ (Jr), d).

Hence, it is not hard to see that the columns ofMET
I are not only independent, but also identically

distributed. Furthermore, the distribution of each column obeys a multivariate Gaussian in R
mT .

Hence, MET
I is equal in distribution to Q

1/2
m,TW , where W ∈ R

mT×d is a matrix of iid Gaussians

and Qm,T ∈ SymmT
>0 is a positive definite covariance matrix to be determined. Furthermore, be-

cause MET
I contains the vertical concatenation of m independent trajectories, Qm,T itself is block

diagonal:

Qm,T = BDiag(QT ,m), QT ∈ SymT
>0.

Let us now compute an expression for QT . Consider the dynamics:

xrt+1 = Jrx
r
t + wr

t , xr0 = 0, wr
t ∼ N(0, σ2wIr).

It is not hard to see that, with wr
0:T−1 = (w0, . . . , wT−1) ∈ R

rT ,







Γ
−1/2
T ′ (Jr)x

r
1

...

Γ
−1/2
T ′ (Jr)x

r
T






= Ψr,T,T ′wr

0:T−1.
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From this, we see that every column of MET
I is equal in distribution to EIrΨr,T,T ′wr

0:T−1, and

therefore has distribution N(0, EIrΨr,T,T ′ΨT
r,T,T ′ET

Ir). Therefore:

QT = EIrΨr,T,T ′ΨT
r,T,T ′ET

Ir = Θr,T,T ′ .

The claim now follows.

C.7 Eigenvalue analysis of a tridiagonal matrix

For any T ∈ N+, recall that LT denotes the T × T lower triangle matrix with ones in the lower
triangle, and Tri(a, b;T ) denotes the symmetric T × T tri-diagonal matrix with a on the digonal
and b on the lower and upper off-diagonals. In this section, we study the eigenvalues of (LTL

T
T )

−1,
which we denote by ST :

ST = (LTL
T
T )

−1 = Tri(2,−1;T )− eT eTT . (C.16)

Understanding the eigenvalues of this matrix will be necessary in the proof of Lemma C.15. The
following result sharply characterizes the spectrum of ST up to constant factors.

Lemma C.12. Suppose T > 8. For all k = 1, . . . , T , we have that:

0.02
k2

T 2
6 λT−k+1(ST ) 6 π2

k2

T 2
.

Proof. We prove the upper bound in Proposition C.13, and the lower bound in Proposition C.14.

The next result gives the necessary upper bounds on the eigenvalues of ST .

Proposition C.13. We have that:

λT−k+1(ST ) 6 π2
k2

T 2
, k = 1, . . . , T.

Proof. By (C.16), we immediately produce a semidefinite upper bound on ST :

ST = Tri(2,−1;T )− eT eTT 4 Tri(2,−1;T ).

Therefore by the Courant min-max theorem, followed by the closed-form expression for the eigen-
values of Tri(2,−1;T ), we have:

λT−k+1(ST ) 6 λT−k+1(Tri(2,−1;T )) = 2

(

1− cos

(
kπ

T + 1

))

, k = 1, . . . , T.

Next, we have the following elementary lower bounds for cos(x) on x ∈ [0, π]:

cos(x) >

{

1− x2/2 if x ∈ [0, 2π/3],

(x− π)2/4− 1 if x ∈ [2π/3, π].

Therefore, when k ∈
{

1, . . . ,
⌊
2(T+1)

3

⌋}

, we immediately have that:

λT−k+1(ST ) 6 π2
k2

(T + 1)2
.
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For the case when k ∈ {b2(T+1)
3 c+ 1, . . . , T}, we use the cosine lower bounds to bound:

λT−k+1(ST ) 6 4− π2

2

(

1− k

T + 1

)2

6 4

[

1−
(

1− k

T + 1

)2
]

= 4

(
k

T + 1

)(

2− k

T + 1

)

= 4

(
k

T + 1

)(
2(T + 1)− k

T + 1

)

6 4

(
k

T + 1

)(
3k − k
T + 1

)

since k > 2(T + 1)/3

= 8
k2

(T + 1)2
.

The claim now follows by taking the maximum over the upper bounds.

We now move to the lower bound on λT−k+1(ST ). At this point, it would be tempting to use
Weyl’s inequalities, which imply that λi(ST ) > λi(Tri(2,−1;T ))− 1. However, this bound becomes
vacuous, since λT (Tri(2,−1;T )) . 1/T 2. To get finer grained control, we need to use the eigenvalue
interlacing result of [KST99]. This is done in the following result:

Proposition C.14. Suppose that T > 8. We have that

λT−k+1(ST ) > 0.02
k2

T 2
, k = 1, . . . , T.

Proof. The proof relies on the interlacing result from [KST99, Theorem 4.1]. However, the interlac-
ing result does not cover the minimum eigenvalue of ST , so we first explicitly derive a lower bound
for λmin(ST ). To do this, we note that:

λmin(ST ) = λmin((LTL
T
T )

−1) =
1

‖LT ‖2op
.

Letting li ∈ R
T denote the i-th column of LT , by the variational form of the operator norm followed

by Cauchy-Schwarz,

‖LT ‖op = max
‖v‖2=1

‖LT v‖2 6 max
‖v‖2=1

T∑

i=1

‖li‖2|vi| 6

√
√
√
√

T∑

i=1

‖li‖22 =

√
√
√
√

T∑

i=1

i =
√

T (T + 1)/2.

Hence:

λmin(ST ) >
2

T (T + 1)
>

1

T 2
.

Now we may proceed with the remaining eigenvalues. We can write ST as the following block
matrix, with eT−1 ∈ R

T−1 denoting the (T − 1)-th standard basis vector:

ST =

[
Tri(2,−1;T − 1) −eT−1

−eTT−1 1

]

.
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This matrix is of the form studied in [KST99, Theorem 4.1]; for what follows we will borrow their
notation. Let UT (x) denote the T -th degree Chebyshev polynomial of the 2nd kind. We know that
the eigenvalues of ST are given by λ = 2(1 − x), where x are the roots of the polynomial pT (x)
defined as:

pT (x) := (1 + 2x)UT−1(x)− UT−2(x). (C.17)

Therefore, letting ψ1 6 . . . 6 ψT denote the roots of (C.17) listed in increasing order, we have:

λi(ST ) = 2(1− ψi), i = 1, . . . , T.

Let η1 < · · · < ηT−2 denote the T −2 roots of UT−2(x) listed in increasing order. Put η0 := −∞
and ηT−1 := +∞. Because the roots of UT−2(x) are given by x = cos( kπ

T−1), k = 1, . . . , T − 2, we
have that:

ηi = cos

(
(T − 1− i)π

T − 1

)

, i = 1, . . . , T − 2.

[KST99, Theorem 4.1] states that there is exactly one root of pT (x) in each of the intervals (ηj , ηj+1)
for j ∈ {0, . . . , T − 2} \ {i?}, with i? satisfying:

i? ∈
{

{b2(T−1)
3 c} if 2(T − 1) mod 3 6= 0,

{2(T−1)
3 , 2(T−1)

3 + 1} otherwise,

and furthermore (ηi? , ηi?+1) contains exactly two roots of pT (x). Therefore, for i ∈ {i?+3, . . . , T−1}:

ψi 6 ηi−1 =⇒ λi(ST ) > 2(1− ηi−1) = 2

(

1− cos

(
(T − i)π
T − 1

))

.

For i ∈ {i? + 3, . . . , T − 1}, we have:

T − i
T − 1

6
T − i? − 3

T − 1
=
T − (2(T−1)

3 − 1)− 3

T − 1
=

1

3
− 1

T − 1
6

1

3
.

It is elementary to check that:

2(1− cos(x)) >
x2

2
∀x ∈ [0, π/3].

Therefore for i ∈ {i? + 3, . . . , T − 1},

λi(ST ) >
π2

2

(
T − i
T − 1

)2

.

Furthermore, for i ∈ {1, . . . , i? + 2},

ψi 6 ηi?+1 =⇒ λi(ST ) > 2(1− ηi?+1) = 2

(

1− cos

(
(T − 1− i? − 1)π

T − 1

))

> 2(1− cos(π/21)).

The last inequality holds by:

cos

(
(T − 1− i? − 1)π

T − 1

)

6 cos

(
(T − 1)− (2(T − 1)/3 + 2)

T − 1
π

)

since i? 6
2(T − 1)

3
+ 1
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= cos

((
1

3
− 2

T − 1

)

π

)

6 cos(π/21) since T > 8.

Summarizing, we have shown that:

λT−k+1(ST ) >







1
T 2 if k = 1,

π2

2

(
k−1
T−1

)2
if k ∈ {2, . . . , T − i? − 2},

2(1− cos(π/21)) if k ∈ {T − i? − 1, . . . , T}.

Since k−1
T−1 > k

2T when k > 2, and since 2(1 − cos(π/21)) > 2(1 − cos(π/21)) k
2

T 2 trivially, we have
shown the desired conclusion:

λT−k+1(ST ) > min

{

1,
π2

8
, 2(1− cos(π/21))

}
k2

T 2
> 0.02

k2

T 2
, k = 1, . . . , T.

C.8 A risk lower bound in the few trajectories regime

Lemma C.15. There exist universal positive constants c0, c1, c2, and c3 such that the following
is true. Suppose A ⊆ R

n×n is any set containing In. Let T > c0, n > c1, mT > n, and m 6 c2n.
We have that:

R(m,T, T ′; {PA
x | A ∈ A}) > c3σ

2
ξp ·

n2

m2T
· T

′

T
.

Proof. Let {gj}mj=1 be independent N(0, IT ) random vectors, and let h ∼ N(0, In−1) be independent

from {gj}. Let {λt}Tt=1 denote the eigenvalues of Θ−1
1,T,T listed in decreasing order. Define the

random variables {Zi}Ti=1 as:

Zi := min
β>0

max
τ>0



−β‖h‖2
2τ

+ β2
m∑

j=1

T∑

t=1

g2j,t
λt + β‖h‖2τ

+ (Θ−1
1,T,T + β‖h‖2τIT )−1

ii



 . (C.18)

We now lower bound the minimax risk as follows:

R(m,T, T ′; {PIn
x })

> σ2ξp · E⊗m
i=1P

In
x

[

tr
(

ΓT ′(In)
1/2(XT

m,TXm,T )
−1ΓT ′(In)

1/2
)]

by Lemma 6.1

> σ2ξp · E tr((WTBDiag(Θ1,T,T ′ ,m)W )−1) by Lemma C.11

= σ2ξp ·
T ′ + 1

T + 1
· E tr((WTBDiag(Θ1,T,T ,m)W )−1) using (7.11)

> σ2ξp ·
T ′

2T
· E tr((WTBDiag(Θ1,T,T ,m)W )−1)

> σ2ξp ·
T ′

2T
· n
2m
·
[

T∑

i=1

E[Zi]

]−1

by Lemma 7.1. (C.19)

92



Next, define:

n1 :=
n

64
, p(y) :=

m∑

j=1

T∑

t=1

y

λt + y
g2j,t −

n1
2
.

Assuming that c1 > 6 so that n > 6 and mT > n, we can invoke Lemma C.9 to conclude there
exists an event E1 (over the probability of {gj} and h) such that:

(a) on E1, there exists a unique root y∗ ∈ (0,∞) such that p(y∗) = 0,

(b) the following inequalities holds:

Zi 6 (Θ1,T,T )ii, 1{E1}Zi 6 1{E1}
1

λi + y∗
, (C.20)

(c) the following estimate holds:

P(Ec1) 6 e−n/128 + e−mT/16.

The remainder of the proof is to estimate a lower bound on y∗. Towards this goal, we define an
auxiliary function:

p̃(y) := E[p1(y)] = m

T∑

t=1

y

λt + y
− n1

2
.

Let ȳ∗ be the unique solution to p̃(y) = 0. A unique root exists because p̃(0) < 0, limy→∞ p̃(y) =
mT − n1/2 > n− n/64 > 0, and p̃ is continuous and strictly increasing. We derive a lower bound
on y∗ through a lower bound on ȳ∗. For any fixed α > 0, the function x 7→ x

α+x is monotonically
increasing and concave on R>0. Therefore, the function p(y) is monotonically increasing and concave
on R>0. By Proposition C.2, the root of the linear approximation to p(y) at ȳ∗ is a lower bound
to y∗:

1{E1}y∗ > 1{E1}
[

ȳ∗ − p(ȳ∗)
p′(ȳ∗)

]

. (C.21)

Equation (C.21) is a crucial step for the proof, because it turns analyzing y∗, which is the root of a
random function, into analyzing the pointwise evaluation of a random function on a deterministic
quantity. To lower bound the RHS, we need a upper bound on p(ȳ∗) and lower bounds on both ȳ∗

and p′(ȳ∗).

Upper and lower bounds on ȳ∗. We first derive a crude upper bound by Jensen’s inequality.
Observe that p̃(ȳ∗) = 0 implies that:

mT − n1
2

= m

T∑

t=1

λt
λt + ȳ∗

.
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The function x 7→ x/(x + ȳ∗) is concave on R>0. Let λ̄ := 1
T

∑T
t=1 λt. Jensen’s inequality states

that T λ̄
λ̄+ȳ∗

>
∑T

t=1
λt

λt+ȳ∗ . Therefore:

1− n1
2mT

6
λ̄

λ̄+ ȳ∗
=⇒ ȳ∗ 6 λ̄

n1
2mT

1

1− n1/(2mT )
.

Recalling the definition of ST from (C.16), we can immediately bound

λ̄ =
1

T

T∑

t=1

λt =
1

T
tr(Θ−1

1,T,T ) =
1

T
tr

(
T + 1

2
ST

)

6 tr(ST ) 6 2T.

Therefore, since mT > n,

ȳ∗ 6
n1
m

1

1− n1/(2mT )
6

2n1
m

.

Now for the lower bound on ȳ∗. Noting that λT−k+1 = λT−k+1(Θ
−1
1,T,T ) =

T+1
2 λT−k+1(ST ), Corol-

lary C.12 implies (assuming that c0 > 8 so T > 8) that

0.01
k2

T
6 λT−k+1 6 π2

k2

T
, k = 1, . . . , T. (C.22)

Therefore, p̃(ȳ∗) = 0 implies that:

1

ȳ∗
=

2m

n1

T∑

t=1

1

λt + ȳ∗
6

2m

n1

T∑

t=1

1

0.01t2/T + ȳ∗

6
2m

n1

∫ T

0

1

0.01x2/T + ȳ∗
dx =

20m
√
T

n1
√
ȳ∗

tan−1

( √
T

10
√
ȳ∗

)

6
10πm

√
T

n1
√
ȳ∗

.

Solving for ȳ∗ yields:

ȳ∗ >
1

100π2
n21
m2T

.

Next, we use this lower bound on ȳ∗ to bootstrap our upper bound ȳ∗ 6 2n1/m into something
stronger. Using the upper bounds on λt from (C.22),

1

ȳ∗
=

2m

n1

T∑

t=1

1

λt + ȳ∗
>

2m

n1

T∑

t=1

1

π2t2/T + ȳ∗
>

2m

n1

∫ T+1

1

1

π2x2/T + ȳ∗
dx

=
2m
√
T

πn1
√
ȳ∗

[

tan−1

(
(T + 1)π√

T ȳ∗

)

− tan−1

(
π√
T ȳ∗

)]

.

The function tan−1(x) is increasing. Using the ȳ∗ 6 2n1/m upper bound and the assumption that
mT > n,

(T + 1)π√
T ȳ∗

> π

√

mT

2n1
> π
√
32 =⇒ tan−1

(
(T + 1)π√

T ȳ∗

)

> tan−1(π
√
32).
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On the other handing, using the bound ȳ∗ > 1
100π2

n2
1

m2T
and the assumption that m 6

√
2n/320,

π√
T ȳ∗

6 10π
m

n1
6 π
√
32/2 =⇒ tan−1

(
π√
T ȳ∗

)

6 tan−1(π
√
32/2).

Combining these inequalities:

1

ȳ∗
>

2m
√
T

πn1
√
ȳ∗

[

tan−1(π
√
32)− tan−1(π

√
32/2)

]

>
2 · 0.05
π

m
√
T

n1
√
ȳ∗

=⇒ ȳ∗ 6 791π2
n21
m2T

.

Therefore we have the following upper and lower bounds on ȳ∗:

1

100π2
n21
m2T

6 ȳ∗ 6 min

{

791π2
n21
m2T

, 2
n1
m

}

. (C.23)

For the remainder of the proof, in order to avoid precisely tracking constants, we let c0, c1, c2, c3 be
any positive universal constants such that:

c0
k2

T
6 λT−k+1 6 c1

k2

T
, k = 1, . . . , T, (C.24)

c2
n21
m2T

6 ȳ∗ 6 c3
n21
m2T

. (C.25)

Equations (C.22) and (C.23) give one valid setting of these constants.

Upper bound on p(ȳ∗). To upper bound p(ȳ∗), we note that:

p(ȳ∗) =
m∑

j=1

T∑

t=1

ȳ∗

λt + ȳ∗
g2j,t −

n1
2

=
m∑

j=1

T∑

t=1

ȳ∗

λt + ȳ∗
(g2i,j − 1) +

m∑

j=1

T∑

t=1

ȳ∗

λt + ȳ∗
− n1

2

=
m∑

j=1

T∑

t=1

ȳ∗

λt + ȳ∗
(g2i,j − 1) since p̃(ȳ∗) = 0.

Therefore, by Lemma C.4,

P



p(ȳ∗) > 2
√
t

√
√
√
√m

T∑

t=1

(
ȳ∗

λt + ȳ∗

)2

+ 2t max
t=1,...,T

ȳ∗

λt + ȳ∗



 6 e−t ∀t > 0. (C.26)

We upper bound:

m
T∑

t=1

(
ȳ∗

λt + ȳ∗

)2

6 m
T∑

t=1

(
ȳ∗

c0t2/T + ȳ∗

)2

using (C.24)

6 m

∫ T

0

(
ȳ∗

c0x2/T + ȳ∗

)2

dx
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=
m(ȳ∗)2T

2c0T ȳ∗ + 2(ȳ∗)2
+

√
T ȳ∗

2
√
c0

tan−1

(√

c0T

ȳ∗

)

6
mȳ∗

2c0
+
π
√
T ȳ∗

4
√
c0

6
c3
2c0

n21
mT

+
π

4

√
c3
c0

n1
m

using (C.25)

=

[
c3

128c0
+
π

4

√
c3
c0

]

n1 since mT > n and m > 1

=: c4n1. (C.27)

Next, we immediately have:

max
t=1,...,T

ȳ∗

λt + ȳ∗
6 1. (C.28)

Thus, combining (C.26), (C.27), and (C.28), we have:

P
(
p(ȳ∗) > 2

√
tu
√
c4n1 + 2tu

)
6 e−tu ∀tu > 0. (C.29)

Lower bound on p′(ȳ∗). Differentiating p(y) yields:

p′(y) =
m∑

j=1

T∑

t=1

λt
(λt + y)2

g2j,t.

Applying Lemma C.4 yields,

P



p′(ȳ∗) < m

T∑

t=1

λt
(λt + ȳ∗)2

− 2
√
t

√
√
√
√m

T∑

t=1

λ2t
(λt + ȳ∗)4



 6 e−t ∀t > 0. (C.30)

Our first goal is to lower bound m
∑T

t=1
λt

(λt+ȳ∗)2
. The function x 7→ x/(x + ȳ∗)2 is increasing

when x ∈ [0, ȳ∗] and decreasing when x ∈ (ȳ∗,∞). Let t∗ ∈ {0, . . . , T} be such that c1t
2/T 6 ȳ∗

for t ∈ {1, . . . , t∗} and c1t2/T > ȳ∗ for t ∈ {t∗ + 1, . . . , T} (t∗ = 0 if c1/T > ȳ∗). We write:

m
T∑

t=1

λt
(λt + ȳ∗)2

>
c0
c1
m

T∑

t=1

c1t
2/T

(c1t2/T + ȳ∗)2
using (C.24)

=
c0
c1
m

[
t∗∑

t=1

c1t
2/T

(c1t2/T + ȳ∗)2
+

T∑

t=t∗+1

c1t
2/T

(c1t2/T + ȳ∗)2

]

>
c0
c1
m

[
∫ t∗

0

c1x
2/T

(c1x2/T + ȳ∗)2
dx+

∫ T+1

t∗+1

c1x
2/T

(c1x2/T + ȳ∗)2
dx

]

=
c0
c1
m

[
∫ T+1

0

c1x
2/T

(c1x2/T + ȳ∗)2
dx−

∫ t∗+1

t∗

c1x
2/T

(c1x2/T + ȳ∗)2
dx

]

.
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The function z 7→ z
(z+ȳ∗)2

is upper bounded by 1
4ȳ∗ . Therefore,

∫ t∗+1

t∗

c1x
2/T

(c1x2/T + ȳ∗)2
dx 6

1

4ȳ∗
6

1

4c2

m2T

n21
.

Next,

∫ T+1

0

c1x
2/T

(c1x2/T + ȳ∗)2
dx = c1T

[

1

2c
3/2
1

√
T ȳ∗

tan−1

(
(T + 1)

√
c1√

T ȳ∗

)

− T + 1

2c21(T + 1)2 + 2c1T ȳ∗

]

> c1T

[

m

2c
3/2
1

√
c3n1

tan−1

(
(T + 1)

√
c1√

T ȳ∗

)

− 1

2c21T

]

> c1T

[

m

2c
3/2
1

√
c3n1

tan−1

(

64

√
c1
c3

)

− 1

2c21T

]

.

The last inequality holds because:

(T + 1)
√
c1√

T ȳ∗
> (T + 1)

√
c1
c3

m

n1
>

√
c1
c3

mT

n1
> 64

√
c1
c3
.

Above, the first inequality holds using (C.25) and the last inequality holds sincemT > n. Therefore,

assuming that mT > 2
√

c3
c1

1

tan−1(64
√

c1/c3)
n1,

∫ T+1

0

c1x
2/T

(c1x2/T + ȳ∗)2
dx >

tan−1(64
√

c1/c3)

4
√
c1c3

mT

n1
.

Combining these inequalities, assuming that m 6 c2
2
√
c1c3

tan−1(64
√

c1/c3)n1, we have:

m
T∑

t=1

λt
(λt + ȳ∗)2

>
c0
c1
m

[

tan−1(64
√

c1/c3)

4
√
c1c3

mT

n1
− m2T

4c2n21

]

>
c0 tan

−1(64
√

c1/c3)

8c
3/2
1

√
c3

=: c5
m2T

n1
.

(C.31)

Next, we turn to upper bounding m
∑T

t=1
λ2
t

(λt+ȳ∗)4
. Again the function x 7→ x2/(x + ȳ∗)4 is

increasing when x ∈ [0, ȳ∗] and decreasing when x ∈ (ȳ∗,∞), and therefore x2/(x+ ȳ∗)4 6 1
16(ȳ∗)2

for all x > 0. Let t∗ ∈ {0, . . . , T} be such that c0t
2/T 6 ȳ∗ for t ∈ {1, . . . , t∗} and c0t2/T > ȳ∗ for

t ∈ {t∗ + 1, . . . , T}. In the case when c0/T > ȳ∗, we set t∗ = 0. We have:

m

T∑

t=1

λ2t
(λt + ȳ∗)4

6
c21
c20
m

T∑

t=1

(c0t
2/T )2

(c0t2/T + ȳ∗)4
using (C.24)

=
c21
c20
m

[
t∗−1∑

t=1

(c0t
2/T )2

(c0t2/T + ȳ∗)4
+

T∑

t=t∗+2

(c0t
2/T )2

(c0t2/T + ȳ∗)4
+

(c0(t
∗)2/T )2

(c0(t∗)2/T + ȳ∗)4
+

(c0(t
∗ + 1)2/T )2

(c0(t∗ + 1)2/T + ȳ∗)4

]
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6
c21
c20
m

[
∫ t∗

1

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx+

∫ T

t∗+1

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx+

(c0(t
∗)2/T )2

(c0(t∗)2/T + ȳ∗)4
+

(c0(t
∗ + 1)2/T )2

(c0(t∗ + 1)2/T + ȳ∗)4

]

6
c21
c20
m

[∫ T

0

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx+

(c0(t
∗)2/T )2

(c0(t∗)2/T + ȳ∗)4
+

(c0(t
∗ + 1)2/T )2

(c0(t∗ + 1)2/T + ȳ∗)4

]

6
c21
c20
m

[∫ T

0

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx+

1

8(ȳ∗)2

]

since max
x>0

x2

(x+ ȳ∗)4
6

1

16(ȳ∗)2

6
c21
c20
m

[∫ T

0

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx+

1

8c22

m4T 2

n41

]

.

We now bound:

∫ T

0

(c0x
2/T )2

(c0x2/T + ȳ∗)4
dx = c20T

2




(3c0T + ȳ∗)(c0T − 3ȳ∗)

48c20T ȳ∗(c0T + ȳ∗)3
+

tan−1
(√

c0T
ȳ∗

)

16c
5/2
0 T 3/2(ȳ∗)3/2





6 c20T
2

[

1

16c0ȳ∗(c0T + ȳ∗)2
+

π

32c
5/2
0 T 3/2(ȳ∗)3/2

]

6 c20T
2

[

1

16c30ȳ
∗T 2

+
π

32c
5/2
0 T 3/2(ȳ∗)3/2

]

6 c20T
2

[

1

16c30c2

m2

n21T
+

π

32c
5/2
0 c

3/2
2

m3

n31

]

using (C.25)

6

[

1

1024c0c2
+

π

32c
1/2
0 c

3/2
2

]

m3T 2

n31
since mT > n.

Combining these inequalities, assuming that m 6 n1:

m

T∑

t=1

λ2t
(λt + ȳ∗)4

6
c21
c20

[[

1

1024c0c2
+

π

32c
1/2
0 c

3/2
2

]

m4T 2

n31
+

1

8c22

m5T 2

n41

]

6
c21
c20

[

1

1024c0c2
+

π

32c
1/2
0 c

3/2
2

+
1

8c22

]

m4T 2

n31
since m 6 n1

=: c6
m4T 2

n31
. (C.32)

Combining (C.30), (C.31), and (C.32) yields

P

(

p′(ȳ∗) < c5
m2T

n1
− 2
√
t`
√
c6
m2T

n
3/2
1

)

6 e−t` ∀t` > 0. (C.33)

Lower bounds on y∗. We now combine (C.29) with (C.33) to established a lower bound on y∗.
Equations (C.21) and (C.25) imply that:

y∗ > ȳ∗ − p(ȳ∗)
p′(ȳ∗)

>
c2n

2
1

m2T
− p(ȳ∗)
p′(ȳ∗)

.
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We first set t` =
c25

16c6
n1, so that by (C.33),

P

(

p′(ȳ∗) <
c5
2

m2T

n1

)

6 e
− c25

16c6
n1 .

We next set tu = βn1 for a β > 0 to be specified. By (C.29),

P

(

p(ȳ∗) > 2(
√

c4β + β)n1

)

6 e−βn1 .

Let E2 denote the event:

E2 :=
{

p′(ȳ∗) >
c5
2

m2T

n1

}

∩
{

p(ȳ∗) 6 2(
√

c4β + β)n1

}

.

By a union bound, P(Ec2) 6 e
− c25

16c6
n1 + e−βn1 . Furthermore,

1{E2}
[
c2n

2
1

m2T
− p(ȳ∗)
p′(ȳ∗)

]

> 1{E2}
[

c2 −
4(
√
c4β + β)

c5

]
n21
m2T

.

Setting β = c7 := min
{

c2c5
16 ,

c22c
2
5

162c4

}

, we have that c2− 4(
√
c4β+β)
c5

> c2/2, and therefore from (C.21),

1{E1}y∗ > 1{E1 ∩ E2}
[
c2n

2
1

m2T
− p(ȳ∗)
p′(ȳ∗)

]

> 1{E1 ∩ E2}
c2
2

n21
m2T

. (C.34)

Finishing the proof. Define E := E1 ∩ E2 and define y∗ := c2
2

n2
1

m2T
. By a union bound,

P(E) 6 e−n/128 + e−mT/16 + e
− c25

16c6
n1 + e−c7n1

6 e−n/128 + e−n/16 + e
− c25

1024c6
n
+ e−

c7
64

n since mT > n

6 4 exp

(

−min

{
1

128
,
1

16
,

c25
1024c6

,
c7
64

}

n

)

=: 4e−c8n. (C.35)

From (C.20), since y∗ > y∗ on E by (C.34),

1{E}Zi 6 1{E} 1

λi + y∗
6

1

λi + y∗
. (C.36)

Next, by Proposition B.1, if n > 2max{1, c−1
8 } log(4max{1, c−1

8 }), then we have

n > c−1
8 log n⇐⇒ ne−c8n 6 1.

We now bound,

T∑

i=1

E[Zi] =
T∑

i=1

[E[1{E}Zi] + E[1{Ec}Zi]]
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6
T∑

t=1

[
1

λt + y∗
+ P(Ec)(Θ1,T,T )tt

]

using (C.36) and Zi 6 (Θ1,T,T )ii

=

T∑

t=1

1

λt + y∗
+ P(Ec)T since tr(Θ1,T,T ) = T

6
T∑

t=1

1

c0t2/T + y∗
+ 4Te−c8n using (C.24) and (C.35)

6

∫ T

0

1

c0x2/T + y∗
dx+ 4Te−c8n

6
π

2

√

T

c0y∗
+ 4Te−c8n =

√
2π

2
√
c0c2

mT

n1
+ 4Te−c8n

6

[ √
2π

2
√
c0c2

+
1

16

]

mT

n1
=: c8

mT

n1
since ne−c8n 6 1 and m > 1.

Plugging this upper bound into (C.19):

R(m,T, T ′; {PIn
x }) > σ2ξp ·

T ′

2T
· n
2m
· 1
c8

n1
mT

=
1

256c8
σ2ξ ·

pn2

m2T
· T

′

T
.

The claim now follows.

C.9 Proof of Theorem 6.3

Theorem 6.3 (Risk lower bound). There are universal positive constants c0, c1, and c2 such that
the following holds. Recall that PIn

x (resp. P
0n×n
x ) denotes the covariate distribution for a linear

dynamical system with A = In and B = In (resp. A = 0n×n and B = In). If T > c0, n > c1, and
mT > n, then:

R(m,T, T ′; {P0n×n
x ,PIn

x }) > c2σ
2
ξ ·

pn

mT
·max

{
nT ′

mT
,
T ′

T
, 1

}

.

Proof. Let Px := {P0n×n
x ,PIn

x }. We let c′0, c
′
1, c

′
2, and c

′
3 denote the universal positive constants in

the statement of Lemma C.15. We first invoke Lemma C.7 to conclude that:

R(m,T, T ′;Px) >
σ2ξ
2
· pn
mT
·max

{
T ′

T
, 1

}

. (C.37)

The proof now proceeds in three cases:

Case nT ′/(mT ) 6 1. In this case, we trivially have max
{

T ′

T , 1
}

= max
{

nT ′

mT ,
T ′

T , 1
}

. Therefore,

(C.37) yields:

R(m,T, T ′;Px) >
σ2ξ
2
· pn
mT
·max

{
nT ′

mT
,
T ′

T
, 1

}

.
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Case nT ′/(mT ) > 1 and m 6 c′2n. In this case, we can invoke Lemma C.15 to conclude that:

R(m,T, T ′;Px) > c′3σ
2
ξ ·

pn

mT
· nT

′

mT
= c′3σ

2
ξ ·

pn

mT
·max

{
nT ′

mT
, 1

}

. (C.38)

Since n/m > 1/c′2, we have that nT ′/(mT ) > T ′/(c′2T ). Therefore:

max

{
nT ′

mT
, 1

}

= max

{
nT ′

mT
,
T ′

c′2T
, 1

}

> min{1, 1/c′2}max

{
nT ′

mT
,
T ′

T
, 1

}

.

Hence, from (C.38),

R(m,T, T ′;Px) > min{c′3, c′3/c′2}σ2ξ ·
pn

mT
·max

{
nT ′

mT
,
T ′

T
, 1

}

.

Case nT ′/(mT ) > 1 and m > c′2n. In this case, we have T ′/T > c′2nT
′/(mT ). Therefore, we

have:

max

{
T ′

T
, 1

}

= max

{

c′2
nT ′

mT
,
T ′

T
, 1

}

> min{1, c′2}max

{
nT ′

mT
,
T ′

T
, 1

}

.

Hence, from (C.37),

R(m,T, T ′;Px) > min{1/2, c′2/2}σ2ξ ·
pn

mT
·max

{
nT ′

mT
,
T ′

T
, 1

}

.

The claim now follows taking c0 = c′0, c1 = c′1, and c2 = min{1/2, c′3, c′3/c′2, c′2/2}.
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