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In real-world scenarios, data collection limitations often result in par-
tially labeled datasets, leading to difficulties in drawing reliable causal infer-
ences. Traditional approaches in the semi-supervised (SS) and missing data
literature may not adequately handle these complexities, leading to biased
estimates. To address these challenges, our paper introduces a novel decay-
ing missing-at-random (decaying MAR) framework. This framework tack-
les missing outcomes in high-dimensional settings and accounts for selection
bias arising from the dependence of labeling probability on covariates. No-
tably, we relax the need for a positivity condition, commonly required in the
missing data literature, and allow uniform decay of labeling propensity scores
with sample size, accommodating faster growth of unlabeled data. Our de-
caying MAR framework enables easy rate double-robust (DR) estimation of
average treatment effects, succeeding where other methods fail, even with
correctly specified nuisance models. Additionally, it facilitates asymptotic
normality under model misspecification. To achieve this, we propose adap-
tive new targeted bias-reducing nuisance estimators and asymmetric cross-
fitting, along with a novel semi-parametric approach that fully leverages large
volumes of unlabeled data. Our approach requires weak sparsity conditions.
Numerical results confirm our estimators’ efficacy and versatility, addressing
selection bias and model misspecification.

1. Introduction. Semi-supervised (SS) learning’s importance in estimating the average
treatment effect (ATE) is increasingly recognized in a wide range of fields. Despite having a
large total sample size (denoted as V), practical restrictions often result in missing outcomes
(or labels) Y € R. The primary objective of this research is to explore how to effectively uti-
lize this rich yet intricate dataset to study the causal impact of a binary treatment denoted as
T €{0,1} on Y. For instance, in autonomous driving, exploiting abundant unlabeled cam-
era footage could improve the detection of rare incidents. In the cybersecurity sector, the
evaluation of extensive unlabeled data might enhance fraud detection capabilities. Wildlife
conservation could benefit from using unlabeled images for population monitoring strate-
gies. Similarly, integrative genomics studies can identify novel gene-disease associations by
incorporating and analyzing large unlabeled datasets.

Under the potential outcome framework (Rubin, 1974; Imbens and Rubin, 2015), we con-
sider potential outcomes Y (0) and Y (1), corresponding to treatment assignments 7' = 0 and
T = 1, respectively. The observed outcome is denoted by Y = Y (7) and under consistency
assumption Y =TY (1) + (1 — 7)Y (0). The ATE characterizes the average causal effect of
T on Y and is defined as

(11) Mo = 61 — 00, where 01 = E{Y(l)} and 90 = E{Y(O)}
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Estimating the ATE in observational studies, where the treatment 7" and outcome Y are
influenced by a shared set of confounders X € RY, presents challenges due to confounding.
The complexity deepens in semi-supervised (SS) settings. In this context, a labeled dataset
L= (X;,Y;)", coexists with a substantial amount of unlabeled data U = (X;)}¥,, |, where
the outcome variable is missing. Classical semi-supervised (SS) approaches assume that the
labeled dataset (£) and the unlabeled dataset (If) share the same distribution, assuming miss-
ingness completely at random (MCAR) for the outcomes (Cheng, Ananthakrishnan and Cai,
2021; Zhang and Bradic, 2022; Hou, Mukherjee and Cai, 2021; Chakrabortty, Dai and Tchet-
gen, 2022). This assumption enables effective utilization of both labeled and unlabeled data.
However, in real-world scenarios, MCAR is often violated. The objective of this paper is
to address these limitations and tackle challenges associated with selection bias, where the
missingness of the observed outcome Y, denoted as the labeling indicator R € {0,1}, is it-
self observational and possibly dependent on both (7', X). Furthermore, in situations where
the unlabeled dataset is much larger than the labeled dataset (/N >> n), the probability of ob-
serving Y decreases as NV increases, which violates the positivity assumption (Crump et al.,
2009).

1.1. Decaying MAR setup. Unlike ‘traditional’ SS settings, we treat R as random here.
We allow the labeled fraction n/N > 0 to be arbitrarily close to zero, and study the theory
when both P(R =1) — 0 and N — co. Note that we consider the labeling probability py :=
P(R = 1), the marginal distribution of R = Ry, as well as the conditional distribution of
R | (T,X) as (decaying) functions of NV and let N — oo; see Section 2 for the usefulness and
necessity of this construction.

We define the true outcome regression (OR) models, the propensity score (PS) models
corresponding to the treatment 7" and the labeling indicator 2, as well as the PS models for a
‘product’ indicator as follows. For j € {0,1} and x in X C R?, the support of X, we define:

(1.2) OR models: m(j,x) :=E{Y(j) | X =x},

(1.3) T-PSmodels: 7(x):=P(I'=1|X=x), 7(j,x)=P(T'=j|R=1,X=x),

(1.4) R-PSmodels: py(x):=P(R=1|X=x), pn(j,x) =P(R=1|T=5X=x),

(1.5) Product PS models: vy (j,x) := P(I'V) =1|X =x), and v, :=P(TY) =1),

where T .= TR and T'® .= (1=T)R are the product indicators.

ASSUMPTION 1 (Basic assumptions). (a) We assume the ‘no unmeasured confounding’

(NUC) and overlap assumptions for the treatment 7', so that for some constant ¢ € (0,1/2):
T1{Y(0),Y(1)}|X ~(T-NUC) and c<m(x)<1l—cVxeX ~-(T-overlap).

(b) We further assume missing at random (MAR) condition and a ‘decaying overlap’ con-
dition (DOC) for the labeling indicator R = Ry as follows:

RLUY |(I,X) ~ (R-MAR); and forany x € X, j € {0,1}, and for each fixed N,
{p~n(x),pn(4,%x)} > 0, while possibly, {pn(x), pn(j,x)} = 0as N — oo ~ (R-DOC).

The T-NUC assumption (‘ignorability’), and the T-overlap condition are commonly as-
sumed (Rosenbaum and Rubin, 1983; Crump et al., 2009; Imbens and Rubin, 2015). The
R-MAR condition was used recently in Wei et al. (2022), but the authors didn’t consider the
full semi-supervised setting of N > n. Kallus and Mao (2020) discuss it but only develop
theory under a relaxed case of R AL T'| X with a troublesome assumption P(R = 1) =0,
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which leads to n = Zf\; 1 i = 0 almost surely, i.e., a degenerate unsupervised setting. For
this, the R-DOC assumption plays a critical role and is a non-standard condition. It is weaker
than the traditional positivity condition, which requires the existence of a constant ¢ > 0 in-
dependent of N such that px(x) > ¢ (and pn (j,x) > ¢ in causal setups) (Bang and Robins,
2005; Tsiatis, 2007). Recently, Zhang, Chakrabortty and Bradic (2023) considered a slightly
different version of the R-DOC condition that only involves conditions for py(-). When both
the R-MAR and R-DOC conditions are satisfied, we refer to it as the ‘decaying MAR setting’.

1.2. Our contributions. We introduce a decaying MAR setting, redefining the non-
MCAR SS setup. This transformative approach addresses a previously uncharted intersec-
tion: it tackles the often-ignored selection bias in the SS literature and challenges the tra-
ditional positivity condition in the missing data domain; see Table 1.1. By doing so, our
research contributes to the literature on the ‘generalizability’ of randomized controlled trials
(RCTs), where RCT is combined with unlabeled, external data; see Dahabreh et al. (2019),
Lesko et al. (2017) and also Shi, Pan and Miao (2023) for a review. In our context, R denotes
whether an individual is involved in the RCT or not and lack of strict positivity condition
allows our work to be impactful when external data size surpasses that of an RCT.

TABLE 1.1
Comparison of the missing outcome settings. ‘Selection bias” allows R to be dependent on (Y, X). ‘Causal setup
+ missing Y’ allows for the observed outcome Y =Y (T') to be possibly missing with R, T # 1.

Settings Selection | Decaying Causal +
Bias PS missing Y

Kawakita and Kanamori (2013); Azriel et al. (2022); Chakrabortty

and Cai (2018); Zhang, Brown and Cai (2019); Cai and Guo (2020); « v «

Chan et al. (2020); Xue, Ma and Li (2021); Chakrabortty, Dai and

Carroll (2022)

Cheng, Ananthakrishnan and Cai (2021); Hou, Mukherjee and Cai

(2021); Zhang and Bradic (2022); Chakrabortty, Dai and Tchetgen X v v

(2022)

Rubin (1976); Robins, Rotnitzky and Zhao (1994); Robins and Rot-

nitzky (1995); Bang and Robins (2005); Tsiatis (2007); Kang and v X X

Schafer (2007); Graham (2011); Chakrabortty et al. (2019)

Dahabreh et al. (2019); Lesko et al. (2017); Kallus and Mao (2020); v « v

Wei et al. (2022)

Zhang, Chakrabortty and Bradic (2023) v v X

The proposed (causal) decaying MAR setting v v v

As we improve DR properties, understanding their definitions is crucial. The model DR
property states that the ATE estimator is asymptotically normally distributed when either of
the nuisances is correctly specified. See Tan (2020) and Dukes, Avagyan and Vansteelandt
(2020), with minor modifications in Smucler, Rotnitzky and Robins (2019). The rate DR
property requires both nuisances to be correctly specified with the product of their sparsities
of the order of o(N). The sparsity DR' property of Bradic, Wager and Zhu (2019), needs
correct model specifications with one ultra-sparse nuisance at o(/N), while the other is at
o(N) for PS with ultra-sparse OR, or o( N3/%) for the OR with ultra-sparse PS.

We highlight the utility of decaying MAR framework by discussing the ease of attain-
ing rate DR; see (A.7) and Theorem A.2 with adaptive rates accounting for PS decay. Prior

'Note that the rate DR property and the sparsity DR property are distinct and not mutually implied. Moreover,
the definitions above should be interpreted up to a logarithmic factor.
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research, even those based on simpler MCAR conditions or neglecting N > n scenarios,
has been limited; see Remark 1. Decaying MAR extends to missing treatment cases as well;
see Corollary 3.1. We then propose two new DR method classes, each anchored in distinct
PS representations. The first is parametric, introducing the sparsity DR and model DR bias-
reduced doubly robust decaying MAR (DR-DMAR) SS estimator, abbreviated as BRSS (Sec-
tion 4.1). The second approach is semi-parametric, named the semi-parametric bias-reduced
DR-DMAR SS estimator (abbreviated as SP-BRSS, see Section 4.3). This approach takes
advantage of the fully observed pairs (7;,X;) and advances a broader range of sparsity DR
and model DR robust techniques with a new nuisance model class. Our primary findings
are Theorems 4.4, 4.5, and Corollary 4.6. Our method, subsumes existing (special) cases:
Chernozhukov et al. (2018)’s rate DR method with R = 1, Zhang and Bradic (2022) and
Chakrabortty, Dai and Tchetgen (2022) DR method under a consistent PS of n/N, and
Zhang, Chakrabortty and Bradic (2023)’s non-causal DR with 7' = 1; see Remark 3. We how-
ever, exhibit better robustness and outperform these methods, even in the canonical cases, as
evidenced in Figure 1 and Table 4.1.

1.3. Organization. Section 2 introduces the decaying MAR setting and ATE’s identifica-
tion. Section 3 proposes the DR-DMAR SS estimator and its theoretical properties. Sections
3.2 and 3.3 discuss decaying PS estimation and missing treatments. Section 4 defines a BRSS
estimator with a parametric and a semi-parametric approaches and showcases main theoret-
ical results. Sections 5 and 6 provide numerical results on simulated and pseudo-random
datasets. Concluding discussion is in Section 7 whereas additional results, and the proofs are
relegated to the Supplement.

1.4. Notation. Throughout this work we will use various positive constants independent
of N denoted as lower or capital letters ¢ and C. P(-) and E(-) indicate the joint distri-
bution and expectation of random vector Z. Px and Ex{f(X)} denote the marginal dis-
tribution of X and expectation for any function f, respectively. For any subset A, P 4 and
E 4(-) signify its joint distribution and respective expectation. For any r > 0, || f(-)||p, :=
{E|£(Z)|"}"/" and for any vector z € R, ||z||, := (Z?Zl 12|V, ||zl == |{j : zj # 0}
and ||z||oo := max; |z;|. For any square matrix ¥ € R4, ||Z|, := sup|vijzo 1 Zv Il /[1v |l

B

an =< by denotes equivalent sequences. Lastly, e; € R¢ refers to the j-th column of identity
matrix I; € R4¥4,

2. The decaying MAR setting and estimation of the ATE. In the context of SS in-
ference assuming MCAR, the goal is to improve the supervised approach’s efficiency using
unlabeled data. However, in a decaying MAR framework, this becomes invalid, and MCAR-
based methods introduce bias. Hence, we face a more challenging task: addressing identifi-
cation issues from scratch to achieve consistent, optimal, and efficient SS estimation within
a non-standard asymptotic regime.

Necessity and usefulness of the decaying PS. One primary contribution of this paper is
the introduction of the decaying MAR schema, which addresses the dependence of py,
pN(X), R= R(y),and R | (T,X) on N and X in N >> n semi-supervised (SS) contexts.
This schema accounts for the asymptotic scenario where N — oo and P(R = 1) — 0. Pre-
vious studies may have overlooked this aspect, leading to limitations in exploring the cru-
cial N > n setting and only allowing P(R =1) = ¢ = limy_,oc /N > 0. In conventional
doubly-robust (DR) literature, estimation error control relies on py°[|@ — a* |2 = o(1) for a
nuisance parameter o* and its corresponding estimator &; see, e.g., the control of Zy in Step
5 of the proof of Theorems 5.1 and 5.2 of Chernozhukov et al. (2018). However, this con-
dition becomes excessively demanding when px — 0, rendering accurate estimation of the
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nuisance parameters practically unattainable. For instance, as the expected labeled sample
size is only E(n) = Npy, we have ||& — a*||a = O,((Npx)~'/?) even in low dimensions.
This leads to a very restrictive requirement on the decaying probability, Np3, — oo. Through
refined analysis on the decaying PS, our results only require E(n) = Npny — 0.

Identification of the parameter(s). Given definitions in (1.2)-(1.4) and Assumption 1, we
identify multiple versions of our parameters, each with unique benefits and interpretations
and involving estimable nuisance functions from observed data. These include conditional
mean regression (Reg.), inverse probability weighting (IPW) with propensity score (PS) mod-
eling, and augmented IPW representations that use both the conditional mean and PS. We
illustrate these for ¢; = E{Y (1)} without loss of generality, with analogous versions for
0o =E{Y (0)} by substituting (7, Y (1)) with (1 —7,Y(0)). To simplify the notation, we let

I':= F(1)7 YN ‘=N, PYN() = 7N(17)7 and m() = m(17)

LEMMA 2.1 (Identification of 61). Let Assumption 1 hold. Then, we have the following
Reg. and IPW representations (Rep.):

01 = E{m(X)} ~» (Reg.Rep.), 6; = ]E{ } ~> (IPW Rep.),

N (X)
where m(-) is identifiable as m(x) =E(Y | X = x,I" = 1). Additionally, for any arbitrary
functions m*(-) and ¥, (-), as long as either m*(-) = m(-) or vx(-) = Y~ (-) holds but not
necessarily both, we have:

2.1

E{Yn1(Z)} =0 ~ (DRRep.), with )} 1(Z) = m*(X) — 01 + —— {Y —m*(X)}.

r
T (X)

The aforementioned representations elucidate that this can be seen as a mean estimation
issue with a MAR labeling, with the effective labeling indicator being I' =T'R. The DR rep-

resentation tolerates misspecification in m(-) or yx(+), resulting in a consistent #; estimator
if either, but not necessarily both, are correctly estimated.

3. The general DR-DMAR SS ATE estimator: construction and asymptotics. We
split the samples into K > 2 parts, 7, ...,Zk of equal sizes |Zy| = M = N/K and define
T =T\ Ty Vk <K. Let m(=*)(j,.) and ﬁj(\,_k) (4,-) be estimators of m(j,-) and yn (7, ),
respectively, using the samples from Z_j, based on suitable (working) models with one but
not necessarily both required to be correctly specified. The estimator yx(-) = yn(1,+) can
be obtained in multiple ways: directly modelling I' | X = T'R | X or modeling 7" | X and
R | (T'=1,X) or by modeling R | X and T"| (R = 1,X); see more discussions in Section
3.2. The estimator m(-) = m(1, -), on the other hand, can be simply obtained via any suitable
(working) regression model for (Y |T'=1,R=1,X)= (Y | TR =1,X). For each i € 7y,
m(j,X;) = m{R(4,X;) and Fn (5, X;) = %(V_k) (j,X;). We now define our DR decaying
MAR (DR-DMAR) SS estimator ;s of 0; (j € {0,1}) as

() ~

1 . P (Y; —m(j,X))

3.1 = — g m(7, L - ,
G-b lis = poe G X v (7, Xi)

where Fz(l) :=T;R; and Fgo) := (1 —T;)R;. The DR-DMAR SS ATE estimator is defined as:

(3.2) ﬁss = é\l,ss - (/g\o,s&



3.1. Asymptotic properties. Let vx(j,-) = Y~v(j,-) and m*(j,-) = m(j,-). The Sup-
plement’s Theorems A.2-A.3 provide a full description of the main and supporting re-
sults; see Supplement. Here, we emphasize conclusions and their significance. Assume
E{yy' (j,X)} < oo and define

anj = [E{v5'(45,X)}]"" and ay :=min(ay 1,an).
For each j € {0, 1}, define the DR score
@) , )
m{y(ﬁ —m(j,X)}.

Under the listed full conditions in the Supplement and with the product rate condition satis-
fied for each j € {0,1},

UAZ) == m(j,X) - 0; +

(3:3) Ex{m(j,X) —m(j, X)}"Ex {1 - m

the DR-DMAR SS estimator is rate DR in that

~ opt\ /2
(3.4) \/NaN(MSS — ,UO) = Op(l) and \/ﬁ (E]\Z;t) (Mss — MO) i>-j\/‘(ov 1)7

where X% .= Var{ib%ﬁ(Z) - w?\%(Z)} = ay'. Here, Nay denotes the ‘effective sample
size” within a decaying MAR context, while ay signifies the deceleration factor result-
ing from the decaying PS, giving rise to atypical convergence rates. A simpler non-causal
problem was studied in Zhang, Chakrabortty and Bradic (2023). In causal scenarios, Kallus
and Mao (2020) proposed a rate DR theory for the ATE, setting semi-parametric efficiency
bounds for possible missing outcomes and observable surrogate variables. However, their
modeling is founded in a critically flawed P(R = 1) = 0 (see discussion in Section 1.1) and
their Theorems 4.1 and 4.2 rely on R 1L 7" | X which we remove. Yet our result achieves
their semi-parametric efficiency bound.

2
} = Opley jdiv j) = op(1/ (Nax)),

REMARK 1 (Comparing with Special Cases of Decaying MAR Studies). In the super-
vised causal setting, Y is always observable (R = 1). Our findings in (A.7) (and Theorem
A.2) are in line with but are distinct from those of double machine learning (Chernozhukov
et al., 2018); directly adopting their result would lead to sub-optimal convergence rates. For
accuracy, we control the non-standard ratio FZ(J ) /AN (4, X;) of (3.1) where most FZ(J ) are ze-
ros, and Yy (7, %) may decay uniformly over x € X. A low-dimensional DR solution of Wei
et al. (2022) uses strict positivity condition (py > ¢ > 0) which forbids a truly SS setting
where N > n. The regular SS setup includes MCAR-missing outcomes only (Cheng, Anan-
thakrishnan and Cai, 2021; Zhang, Brown and Cai, 2019; Hou, Mukherjee and Cai, 2021).
The ATE estimators of Zhang and Bradic (2022); Chakrabortty, Dai and Tchetgen (2022) are

special case of ours, but exhibit bias when missingness is not completely at random.

3.2. Estimation of the PS. Estimating PS in the decaying MAR setting is challenging
due to extreme imbalance: the proportion of the labeled group relative to the full data size
becomes exceptionally small. However, the decaying MAR provides three representations of
the v (7, -) function, enhancing flexibility in model formulation, robustness, and theoretical
prerequisites. For simplicity, we consider ay,1 < an, =< ay — 0. The PS function yn(-) =
v~ (1,-) can be represented as

() =BT =1]-) or ww()=n(1,)pn() or () =7()pn(1,).

We will explore each case individually, assuming a linear OR model with a slope of spar-
sity sq,1, and a Lasso estimate resulting in ¢y 1 < \/sa,l logd/(Nay) of (3.3).
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Model 1: alogistic yn(-). This setting is especially suitable when the treatment and labeling
indicators, 7" and R, are affected by the same set of covariates. Here 7y (x) is modeled
directly as a logistic function with a diverging offset:

wexp(x"8)  exp(x’B+logn)
L+ yvexp(xTB)  1+exp(x?B+logn)

where 3 € R? and the decaying nature of the PS function is captured by the diverging ‘offset’
term logyy where vy :=E(I') — 0 as N grows. Zhang, Chakrabortty and Bradic (2023)
considered the offset-based logistic model to capture py(X) =P(R =1 | X) in non-causal
contexts. Under conditions of Theorem 4.2 and Lemma 4.3 therein, an offset estimator above
satisfies Assumptions 8, 9, and 10 with any =< vy, dy;1 < \/35,1 logd/(Nan) (see (3.3)),
and sg 1 := || B||o. implying the ‘product-rate’ condition: sa,1581 = o( Nay /log? d).

3.5 (%) = , Vxe X,

Model 2: a logistic py(1,-) and a non-parametric 7(-). Model 2 is preferable when distinct
covariates influence 7" and R, especially if only a fraction affects R. We propose a semi-
parametric approach, modeling vy (x) = 7(x)pn(1,x). Here, 7(X) is non-parametrically
representing P(T" = 1|X), and py(1,X) = P(R = 1|T = 1,X) is modeled as an offset-
based logistic function parameterized by 3,1 € R:

pnaexp(x? Bp1)
(3.6) 1,x) = N ’
P (1) 1+ pn1exp(xTBp1)

where py 1 :=E{pn(1,X)} < yn decays to zero with growing N. In this semi-parametric
approach, we exploit the entire dataset, including both labeled and unlabeled samples
denoted as N, to estimate m(-). In contrast, the estimation error of py(1,-) is con-
trolled by the rate Nay, considerably smaller than N as per the decaying MAR with
ay — 0 as N grows. For example, an optimally tuned random forest yields an estima-
tion error O,(N—1/(111eaVI6-1)y for some a; > 0 (Chi et al., 2022). With the estima-
tion error of px(1,-) being Op(\/smlogd/(NaN)), with sp1 = ||Bp,1]j0, Whenever ay <
sp1 N2/ (H101V161)=1 160§ the non-parametric error of 7r(-) is of smaller order than py/(1,-),
resulting in a ‘product-rate’ condition of s4 151 = o( Nay /log? d) arises. In Section 4.3 be-
low, we will revisit and refine the approach here and provide ATE inference even under model
misspecification along with weaker sparsity conditions.

, VXEeX,

Model 3: a logistic pn(+) and a logistic w(1,-). In the data integration context, we general-
ize causal inference from randomized trials to a broader population containing both clinical
trial data, where outcome Y is observed, and non-randomized data with missing Y. Random-
ization indicator R is confounded by X, and treatment 7" is often assigned after R. We pro-
pose alternative identification assumptions: R 1L {Y(0),Y (1)} | X and 7" 1L {Y'(0),Y (1)} |
(R,X), aligned with Dahabreh et al. (2019). Our framework accommodates diminishing
trial participation, allowing py(x) — 0 as N — oo. Lemma 2.1 and Theorem A.2 con-
tinue to apply, ensuring the validity of the DR-DMAR SS estimator, including its asymp-
totic normality. Here, we model vy (-) = pn(-)7(1,-), where py(x) =P(R=1| X =x)
and 7(1,x) =P(T'=1| R =1,X = x) follow offset-based and standard logistic models,
respectively,

Vx € X,

__pvesp(xTB,) e Br)
PO e B " T T e ()

with B, Br1 € R4 and sp:=||Bpllo and sz 1 := ||Bx,1]/0o. The decaying nature is captured in
pNn = E(R) — 0 as N — oo. The product estimate Y (-) = pn(-)7(1, ) yields

i) e R - - R H )]




~ ~ (sp +57,1)logd
=0y (1B~ Bl + 18es ~ Beal3) = 0 (L2208t

NCLN

if X is sub-Gaussian, where one can leverage existing results to obtain |3, — Bpll2 =

0,(v/splogd/(Nay)) and ||Bz1 — Brilla = Op(y/sz1logd/(Nay)). Then, dy =
\/(sp + sx,1)logd/(Nan) and the product-rate condition is sq.1(Sx,1+5p) = o(Nan/ log? d).

3.3. Missing treatment settings. Our methods and findings extend to cases with severe
missingness in the treatment 71" across four different setups. In setting a (Missing outcome),
we observe R, T, RY,X. In setting b (Missing treatment), R, RT,Y, X, where R indicates
T observation. In setting ¢ (Simultaneously missing treatment and outcome), R, RT, RY, X,
with R signifying observation of both (7',Y"). In Setting d (Non-simultaneously missing
treatment and outcome), Rr, Ry, R7T, RyY, X, where Rt and Ry signify the observation
of I'and Y, and R := Ry Ry is their simultaneous observation indicator. A uniform approach
for identifying causal effects across these settings is provided in the following corollary.

COROLLARY 3.1. Let Assumption 1 hold with R := Rt Ry. Definel' .=TR=TRrRy,
v(x) =P =1|X=x), and m(x) :=E{Y (1) | X}. Then, m(x) =E(Y | X =x,I'=
1). Additionally, for any arbitrary functions m*(-) and v (), we have (2.1) holds as long as
either m*(-) =m(-) or Yy (-) = ().

Under Setting d (and consequently, under Settings b and c), both I' = TRy Ry and
I'Y = TRrY Ry are observable. This allows us to estimate the nuisance functions m(X) =
EY |X,'=1)=E(RyY | X,['=1) and y5(X) = E(T" | X). As a result, the DR-DMAR
SS estimator (3.2) remains valid, Theorem A.2 still holds with the newly defined R and T, al-
lowing the asymptotic results (A.7) to remain applicable; check Section B in the Supplement
for estimating nuisance functions without complete 7; data. Corollary 3.1 assumes an R-
MAR condition, where Ry Ry 1L Y | (T, X). Unlike previous studies that rely on restrictive
monotone conditions (Manski, 1997; Manski and Pepper, 2000; Molinari, 2010; Mebane and
Poast, 2013), our results avoid such assumptions between treatment and potential outcomes.
Another MAR condition considered by Zhang et al. (2016), R 1L T'| (X,Y’), is generally
inappropriate as Y is usually evaluated after the treatment assignment.

4. Refined DR estimators. We introduce two DR estimates and their theoretical prop-
erties when d is large compared with the ‘effective sample size’, Nay. We first propose the
bias-reduced DR-DMAR SS estimator based on parametric nuisance models in Section 4.1.
Section 4.2 explains the rationale behind the construction of the proposed estimator. Then,
making full use of the unlabeled samples, we propose a new semi-parametric approach in
Section 4.3. Theoretical properties of the proposed nuisance and ATE estimators are pro-
vided in Sections 4.4 and 4.5, respectively.

4.1. DR-DMAR SS (BRSS) ATE estimator. We improve the estimator from Section 3 by
defining refined nuisance estimates to minimize bias. While employing the DR representation
(2.1), we introduce an asymmetric cross-fitting. Model 1 from Section 3.2 is used. We define
the following working models for m(-) and v () with ‘targets’:

T %
4.1 *(x) =xTa* and ~%(x) = g(xTB* +1 _ _wexple f)
@n ) =x"at and 900 = g("8 +log ) = =,

where g(u) := exp(u)/{1 + exp(u)} is the logistic function, vy := E(I"). In the above,
o, B* € RY are the targeted bias-reducing nuisance parameters defined as follows:

B'= agmin E(I(N.X.8.7x)} and o = arg min E(h(I.X.Y.c. 8" 7))
ER acRd



with the loss functions [ and h defined as

U1, X, B,9%) = (1~ T)XT 8+ fexp<—xTﬂ> and
N

T
h(F7X7K an@a’YN) = exp(—XTﬁ)(Y - XTa)Z'
TN

Let sg := ||3*]|o and sq := ||a*||o be the corresponding sparsity levels, and assume sg, 5o >
1 for the sake of simplicity. Note that o™ and 3* always exist, and also equal the correspond-
ing ‘true’ model parameters when the working models in (4.1) are correctly specified for
m(-) or yn(+). In what follows, we only require either m*(-) = m(-) or v5(-) =y~ (:), but
not necessarily both.

We define rargeted bias-reducing nuisance estimators as

4.2) AW =My
1€y
(4.3) B = arg min M~ 37 1(Ts Xe 8.5%)) + AllBlh,
€Ly,
4.4 o) = M 'S WTL XY e, 807 A
4.4) 8% argg}éﬁl ZEZLC ) i, 8 77N )+ ||aH1a

where Ao, Ag > 0 denote the respective tuning parameters for the ¢1-regularizations above.
To build robust inference for the ATE, Tan (2020); Smucler, Rotnitzky and Robins (2019);
Avagyan and Vansteelandt (2021) examined nuisance estimates akin to (4.3) and (4.4) under
degenerate supervised settings only. We adapt these to the decaying MAR context with our
proposed bias-reducing estimators, incorporating an apriori chosen estimate ‘y\](\];) to counter-
balance the impact of diminishing PSs. In (4.3), we aggregate two sums: » ;.7 . _o X! 3

and ) ;7 pog exp(—X7B)/ %(\]f) The set where I'; = 0 predominates over the set where
I'; = 1. To compensate for this imbalance, we amplify the latter group by a large factor of

1/ ﬁj(\]f), ensuring a balanced influence from both groups.

With a special asymmetrlc Cross- ﬁttlng, we propose the bias-reduced DR-DMAR SS coun-

terfactual mean estimator 01 srss Of 01 as: 9, BRSS : ((/9\1(]133155 Al(iRss) /2, where k £ k' € {1,2},
N DY = XTa®)
(45) 91 BRSS = -1 Z {XT k ( A(k) . < ) } I
€Ly, ’YN (XZ)

with ﬁj(\]f)(Xi) = g(XZ-TB\(k) + log ?1(\];)). Analogously, we propose a bias-reduced estimator
Bosrss Of 0o, and the bias-reduced DR-DMAR SS (BRSS) ATE estimator as:

(4.6) ﬁBRSS = é\l,BRSS - é\o,BRSS-

4.2. The asymmetric cross-fitting. In the following, we introduce the rationale behind
the asymmetric cross-fitting strategy focusing on the simplest case where both the OR and
PS models are correctly specified. For i € Z;, the PS function vy (X;) is estimated using a

non-cross-fitted ,@(1) M Z;, whereas the OR function m(X;) is estimated using a cross-fitted
a® 1 Z;. Wlo.g., we consider eﬁ(}gss = M7 Y ir, Ui (Z) + Ay + Ag + Az, where
Vna(2) = dnva(Zsar, B7) = m*(X) — 01+ T{Y —m*(X)} /75 (X), and

F *
—_Mlz{Au) X 7N(X)}XT( @ —a),

i€Z,
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DN IEE )}X;f(&(?)—a*),

€1,
MY S . )
€1, A(l) z ’YN<X)

The ‘drift term’ A in the influence function ¢y 1(Z;a*, 3*) represents estimation er-
ror linked to the product of two nuisance parameters. A condition involving sparsity in this
product is sufficient to minimize this error. To demonstrate the doubly robust (DR) property,
it’s crucial to manage the expectations of the remaining terms, Ag and As. Our asymmetric
cross-fitting approach controls the former term, sometimes merging it with A, depending on
active sparsity conditions. In contrast, we use in-sample control through the Karush-Kuhn-
Tucker (KKT) condition to handle the latter term. The asymmetry of our approach is that
the propensity score (PS) estimator does not require cross-fitting. This leads to less stringent
sparsity conditions for valid inference, as demonstrated in Theorems 4.4 and 4.5 below.

Our proposed approach innovatively combines the strengths of existing strategies to en-
hance robustness for ATE inference. We draw on the methodology of Farrell (2015); Tan
(2020); Avagyan and Vansteelandt (2021) for non-cross-fitted PS estimates and the cross-
fitted OR estimate approach of Chernozhukov et al. (2018); Smucler, Rotnitzky and Robins
(2019). As opposed to previous works, our method relaxes the ultra-sparsity requirements on
both a* and B* by introducing asymmetric cross-fitting. This novel combination provides
superior robustness under degenerate supervised settings and requires weaker sparsity con-
ditions. To our knowledge, only Bradic, Wager and Zhu (2019) employs cross-fitting akin to
ours. Our method proves easier to implement, provides ATE inference even with a misspec-
ified nuisance model — unlike their requirement for both models to be accurate — and under
correctly specified models, demands weaker sparsity conditions for valid inference. Detailed
comparisons can be found in Table 4.1 and Remark 3.

4.3. A semi-parametric bias-reduced DR-DMAR SS (SP-BRSS) estimator. Here, we in-
troduce a semi-parametric model. Unlike the BRSS method, which combines missingness
patterns of R and T"as I' = R - T, our approach separates them, concentrating on R directly
and allowing non-parametric modeling of 7'. This transition offers numerous benefits. First,
it enriches the complexity and robustness of the model, providing a clearer understanding of
the involved components. Secondly, fully utilizing all N of the (7;,X;) pairs enables accu-
rate estimation of 7(x) = P(7 =1 | X = x), thereby improving overall estimation accuracy.
Third, non-parametric treatment modeling for 7" allows greater flexibility, capturing complex
treatment effects with precision. Simultaneously, focusing on R enhances method robust-
ness by addressing the unique challenge of missingness in the outcome variable, ultimately
yielding more reliable causal inference, particularly in complex dependency scenarios.

The semi-parametric approach posit the following working models,

Tar, y(x) = T (x)pn,1(x), and py,(x) = Q(XTIB;,1 +logpn,1)-

where 7*(+) is (possibly) a non-parametric model of 7(-) and pjy , (-) is an offset-based lo-

m*(x) =x

gistic model of py 1(-) := pn(1,-). The new (target) nuisance parameters &, 3; | € R use
novel-reparametrization together with the loss functions of Section 4.1 and are deﬁned as

r
Bpl—argénﬁ}iE{l<ﬂ_*()()7Xw6apN,l)} and

acR?

r *
o = arg min E{h(M,X,Y,a,ﬂpJ,le) }
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Let sp1 = [|B;1llo and sg := [[a*|lo be the corresponding sparsity levels, and assume
Sp,1,5a = 1 for the sake of simplicity..

The semi-parametric bias-reduced SS ATE estimator. Let 7)(-) and 7()(-) be (non-
parametric) estimates of 7(+), using samples Z; and Z,, respectively. For k € {1, 2}, let

le—ZFz/ZTu

1€y 1€y
(k) 1
B 1= arg nrgé}iM Zl( Xz,ﬁ PNl)“‘)‘ﬁH:BHlv and
k 1
a( ) — argol}élR%M Zh< Xz,Yzaa pl,le)-i—)\aHOéHl,

1€L,
where with a slight abuse of notations, A\, Ag > 0 denote the tuning parameters. Then, the

semi-parametric bias-reduced SS counterfactual mean estimator @,SP,BRSS of 01 is aysp,BRss =
(é\l(él))_BRss + 51(32,_“55) /2, where for any k # k' € {1,2},

, _XTa®)
Whams = 217 Y { ) LY XE)
icTy Py, 1( i)ﬁ(k) (X3)

with ﬁN)l (X;) = (XTﬁ 1 T log ﬁN)l) Analogously, we define By sp.prss and the ATE esti-

mator [igp.prss := 91,51, BRSS 90,51) srss- The variance estimator is also considered

4.7)

. _ Ty(Y; — XTa) - S
L —1 T 1\ 1 _

Y1 spBRSS ‘= ;zezl {X )(Xi)g(X?BﬁLlogpN’l) QLSP-BRSS} , with
_avta® _ gN+3% B+
= Bp1i=—"— 5 , and pN 1= f

4.4. Theoretical properties of the targeted bias-reducing nuisance estimators. Theorems
4.1 - 4.3 discuss adaptive nuisances and should be of independent interest — owing to the non-
parametric initial step, the high dimensionality, and the decaying PS setting.

ASSUMPTION 2 (Sub-Gaussian covariates). Assume that X is a sub-Gaussian random
vector with | XTv||,, < o||v]||2 forall v € R? and | XT&*||,, < o, for some constant o > 0.
Additionally, for some constant r; > 0, assume that inf|jy |, =1 E{T(X”v)?} > vy 5.

ASSUMPTION 3 (Moment condition on the PS). There exists some ¢ > 1, such that
E{v%(X)} < C~%, for some constant C' > 0.

ASSUMPTION 4 (Non-parametric estimation of 7(-)). With some constant ¢ > 0, let:
(@) ¢ < m(x) < 1 —c for all x € X and (b) the events &; := {c < 7*)(x) < 1 —¢,Vk €
{1,2},x € X} and & := {(Myn) " Y icr, {70 (X;) — 7%(X)}2 < %, Vk € {1,2}}
occur with probability approaching one as N — oo with some (x = o(1/+/log N).

ASSUMPTION 5 (Bounded covariates and coefficients). Let: (a) ||x||oo < Cx for all x €
X and (b) [|3; 1 l1 < Cg, for some constants Cx,Cg > 0.
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If Assumption 2 holds and p}; () = pn,1(-) then Assumption 3 holds for any con-
stant ¢ > 1, although we only need it for some q > 1. Conditions similar to Assumption
4 (a) appear in Tan (2020); Ning, Sida and Imai (2020) as ‘overlap conditions’. Moreover,
Assumption 4 (b) can be simplified to an in sample mean squared error of 7(*) as long
as Assumption 3 holds for ¢ = oo, i.e., yn(X)/yn is bounded almost surely. Assump-
tion 5 (b), is an implication of a T-overlap condition. Consider R =1 and let 73,(-) be
correctly specified. Then, the T-overlap implies |xT,6; 1| < ¢ almost surely with ¢ > 0.
This in turn implies |3, [/1 < oo, provided that the marginal distribution of X fulfills:
IP’(XTej < —c1) > co and IP(XTej >c1) > cg, Vj <d, with any c1,cy > 0. These in-
equalities hold for example when the marginal distribution of X is Uniform with mean zero
and bounded (possibly different) supports. In general decaying MAR, a bounded [|3; ;|1
is implied by the same condition together with the ratio yx(X)/yn being bounded almost
surely.

THEOREM 4.1 (PS estimator). Let Assumptions 1-5 hold. If Nyn > max(log N, sp,1) log d,

then with some \g < \/logd/(Nvyn), as N,d — oo,

~ . sp,1logd ~ . logd 9 | NN
1Bp.1 — Biall2 = op(\/Tw+ CN)s 181 = Byalli = Op(sp,u/iN,yN +CN logd).

Moreover, if (y = o({log d/(N~yn)}/*) then as N — oo, P(% = {HBp,lul < 8C5}>% 1.

The estimation of 7(-) shifts @%1 away from the conventional sparse cone set, C(sp,1, ko).
This set is typically described as: C(sp1,ko) := {A € R : 385 C {1,...,d} with |S]| <
sp1 and [[Age|l1 < kol[Ag|l1}. Due to this deviation, we cannot rely on standard tech-
niques to prove estimation quality. Our solution involves a more encompassing cone set,
C(rn): Clrn) == {A € RY: |Ally < ry||All2}, where ry is of the order of \/s,1 +
(N Nvn/logd. More details can be found in (F.18) of the Supplement. Adopting this
broader cone set necessitated new restricted strong convexity properties, which cater to this
extended sparsity framework. Additionally, it required us to develop uniform bounds for
quadratic forms, like |ATQA |, as well as uniform gradient control over what are now more
complex sets. For further insights, see Lemmas F.4-F.7 in the Supplement. Importantly, these
new techniques are of potential interest for other estimators that deviate from traditional cone
set constraints. Notably, achieving an ‘effective sample size’ measure as N~y depends cru-
cially on ensuring the adaptability to yx.

THEOREM 4.2 (Correctly specified OR). Let m(x) = m*(x) = x a* forall x € X. Let
Assumptions 1-5 hold. Then, for

(4.8) Nvyn > max(log N, sp1,55)logd and (n = o({log d/(NVN)}l/‘l),

with some \g < Ao, < /logd/(Nvn), we have as N, d — oo,

-~ o~ salogd ~ o~ | logd
4‘ — * = o — * = ~ _— .
4.9) |l — a™||2 Op< Now ) , Jla—a*i1 =0, (sa N’YN)

If the OR model is misspecified, we assume the following additional condition.

ASSUMPTION 6 (Conditional sub-Gaussian noise). Let, conditional on X, ¢ := Y (1) —
X”a* be a sub-Gaussian random variable with a constant ¢5-norm o, > 0.
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THEOREM 4.3 (Misspecified OR). Consider the general case of (possibly) m(x) #
m*(x) = xT a*. Let Assumptions 1-6 hold. Then, as long as (4.8) holds, with \g < A\ =

V9ogd/(Nvn) and § = sg + sp1, we have as N, d — oo,

sy slogd ~ sy _ [logd 9 | NN
lex a||2_0p< Now +CN>7||0¥ 0é||1—0p<8\/N7N+CN ogd |

For R =1 and (v = 0, Tan (2020); Smucler, Rotnitzky and Robins (2019) showed the
consistency rate is influenced by both s, and sg, as in the above. In contrast, Bradic, Wager
and Zhu (2019) found the rate only depends on s, but always assume accurate PS and OR,
YN () =75 (-) and m(-) = m*(-). Our study adopts a distinctive approach. Instead of relying

on out-of-sample B\p,l’ we utilize in-sample estimates. This choice allows us to fully exploit
the dataset for enhanced efficiency, achieve reduced variance, and simplify the complexities
of data partitioning. However, this approach also brings forward unique challenges. For in-
stance, we handle the intricate dependencies of imputation errors and our training samples,
leading to dependencies that are not straightforward. Yet, we achieve rates that are adaptive
to the correctness of the OR model. On another front, we’ve integrated an innovative nui-
sance estimation step centered around 7 (-) and achieved rates independent of the correctness
of such estimates.

4.5. Asymptotic properties of the bias-reduced DR-DMAR SS estimators. In this sec-
tion, we provide theoretical properties of the semi-parametric approach while also providing
corollaries for the BRSS estimator.

THEOREM 4.4 (Correctly specified OR but not PS). Let the OR model be correctly spec-
ified, i.e., m(-) = m*(-). Let Assumptions 1- 6 hold. Let Nyn > log(d vV N)log N and
sp1+ sa =o(Nvyn/(log dlog'/? N))). Let either one of the following hold:

N alogd (+/ logd A logd 1
(a)Sp,1=0< 7N>, Salogd (/5511084 31 logd) =o(1), CNZO( >;
logd Nan VNN

(b) sq =0 VNN Sp1=0 Nyw (N=o0 logd v
* logd )’ P! logd )’ N Nryn '

Then, with some \g =< \/logd/(N~yn) and Ao < \/logd/(N~yn), as N,d — oo,
(4.10) é\l,SP—BRSS -t = Nt ZQZ}‘(V,:[(ZZ') +0p <(N7N)_1/2) ,

1€L
where Uiy (Z) = m*(X) — 61 + T{Y — i (X)} /7 (X) with E{y}1(Z)} =0, S, =
Var{ty 1(2)} = O(0y'), and N™'32,cq 0 1 (Zi) = Op(Nyw) /%), If further Assump-
tion 7 holds, then i?\n = *y;[l = a;[}l, and as N,d — oo,

4.11) VN (i}‘m)_m (@,SP.BRSS — 91) 2 N(0,1),

-~

~ ~. ~ -1/2 d
(4.12) EI,SP-BRSS = E]\/’71{1 + Op(l)}> and \/N (EI,SP-BRSS) (91,SP»BRSS - 91) — N(07 1)-
For misspecified OR models, the following condition is further assumed.

ASSUMPTION 7 (Lower bound). Let E(? | X) > cyin almost surely.
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THEOREM 4.5 (Correctly specified PS but not OR). Let the PS model be correctly spec-
ified, i.e., YN(x) = YN (x). Let Assumptions 1- 7 hold. Let Nyy >> log(d vV N)log N and
Sp1+Sa = O(N')/N/(logallogl/2 N)). If Condition (a) of Theorem 4.4 holds, then all of the
conclusions of Theorem 4.4 also hold: (4.10)-(4.12).

REMARK 2 (Robust inference). As shown in Theorems 4.4 and 4.5 above, the estima-
tor 0, spsrss 1S model DR. In Theorem 4.5 above, we only require the product PS model
Y (1) = 7()p1(+) to be correctly specified, which occurs if and only if v () /7*() is
logistic, i.e., there exists 3 |, such that vy (x)/7*(x) = g(x 2,1 + logpn,1). The treat-
ment PS model 7*(-) can be parametric or non-parametric — all we need is it satisfies the
‘high-level’ conditions assumed in Theorems 4.4 and 4.5. Moreover, the treatment PS is also
not necessarily well specified, and 7(-) # 7*(+) is allowed. We can therefore use many di-
mension reduction and non-parametric methods to estimate 7*(-) and utilize the full sam-
ple size N. If for instance we shrink the dimension to some s < d, when 7*(-) is in a
Holder class with parameter o > 0, 7*(-) can be estimated through kernel methods with
(n =< N~/(22+5) Theorem 4.4 Conditions (a) and (b) are achieved for vy = o( N~/ (22+9))
and vy = o(N(22=9)/(a+5) 1og d), respectively, with the later holding for o > s/2 even
when vy < 1. We can also directly implement non-parametric methods without dimen-
sion reduction techniques. For instance, with a diverging number of covariates satisfying
d=O(N¥®) (¢ > 0is aconstant), Chi et al. (2022) showed that a random forest estimate leads
to an estimation error ( < N~V (111eaV16.1) "where o) > 0 is the ‘sufficient impurity de-
crease’ parameter; see Condition 1 therein. Hence, Conditions (a) and (b) above are reached
when yy = o( N?/(111axVI61) =1y and ~n = o( N4/ (11-1eaVI6-1) =150 ) respectively.

As we allow () # 7*(-), we can set 7(%)(-) = 7*(-) = 1, and the estimator 0, spnrss will

degenerates to the parametric version 6, zss, (4.5), apart from difference between the offset

terms log%(\]f) and logﬁ(]\]f)l. Whenever 7*(-) = 1, we have a* = a*, 8, , = 3", and the

following result for the BRSS estimator.

COROLLARY 4.6 (BRSS). Let Assumptions 1- 3 and 5- 7 hold with &* = o* and By =

B*. Let Nyn > log(dV N)log N and sg+ sa = o(N~y/(logdlog'/? N)). Let either (i) or
(ii) hold with (i) m(-) = m*(-) and either (a) or (b) below holds, and (ii) yn(-) = vx (-) and
(a) below holds, where

N alogd (\/sglogd A sglogd
(@ 5a—o (Y selond(Vonlosd hoplogd) _
logd Ny
(b) S =0 Nyw sg=o0 Now
* logd )’ P logd /-

With |} 1(Z) := m*(X) =61 +T{Y —m(X)}/v§(X), as N,d — o0, X} | 1= Var{yy 1(Z)} =
O(vy') and

\/N (E*N,l)_l/2 <§I,BRSS - 91) i>./\/'(0, 1).

REMARK 3 (Comparative Analysis). We detail comparisons with existing literature.

Decaying MAR causal. Zhang, Chakrabortty and Bradic (2023) provided rate DR results
only for the estimation of the non-causal mean response, equivalent to estimating ¢ :=
E{Y (1)} in causal scenarios when 7" = 1. In contrast, our method offers superior robust-
ness with model DR results and weaker sparsity conditions achieving the sparsity DR. While
Kallus and Mao (2020) introduced a SS estimator addressing selection bias, they did not
allow N > n (see Section 1.1) and achieve the rate DR only.
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TABLE 4.1
Comparison of the sparsity conditions required for the asymptotic normality of the DR estimators with R = 1.
(C1) denotes the sparse outcome soe = o(N/logd), (C2) the sparse propensity sg= o(N/logd), (C3) the
product rate condition sasg = o(N/ log? d) , (C4) the ultra-sparse outcome so, = o(v/N [log d), (C5) the
ultra-sparse propensity s 8= o(\/ﬁ /log d). For brevity and without prejudice, we’ve abbreviated "Avagyan’ as
"Av.’, ’Bradic’ as 'Br’, ’Chakrabortty’ as ’Chakr’, ’Chernozhukov’ as 'Chern.’, 'Kallus’ as 'Kal.’, and
"Vansteelandt’ as "Vdt.’.

M1 M2 M3
Literature both models are correct missed PS missed OR
Farell (2015) (C4) and (C5) X X

Chern. et al.(2018)
Kal. and Mao (2020)
Hou et al. (2021) (C1), (C2), and (C3) X X
Chakr. et al. (2022)
Zhang and Br. (2022)

Athey et al. (2018) (C4) and (C5) M1) X

Tan (2020)

Ning et al. (2020) (C4) and (C5) M1) M1

Av. and Vdt. (2021)

Dukes et al.(2020)

Dukes and Vdt. (2021) (C1), (C3), and (C5) (C4) and (C5) | (M2)

Smucler et al. (2019) (Cl1), (C2), and (C3) M1) (C1), (C3), and (C5)
sa = o(N3/* /log d) and (C5)

Br. et al. (2019) or X X

(C4) and (C2)

(C1), (C2), and (C3)

or (C1), (C3), and (C5)
This paper Br. et al. (2019)(M1) M1) or
or 32,13[3 = O(N2/10g3 d) and (C5)

S%‘sﬁ = o(N2/log3 d) and (C5)

Regular MAR causal. Wei et al. (2022) introduced model DR method for N =< n, focus-
ing solely on low dimensions, where nuisance estimates reliably achieve root-n rate. They
estimate 7(-) and py () separately, and require either (a) the OR function is correctly
parametrized, or (b) both the labeling and treatment PS functions are correctly parametrized.
Our DR-DMAR SS estimators achieve model DR in high dimensions, where achieving a
root-n rate for nuisances is not guaranteed, even under correct model assumptions. Moreover,
our semi-parametric approach allows fully non-parametric estimates for 7(-) and, different
from condition (b), we only require the fraction yx(-)/7*(-) to be correctly parametrized and
7 (+) # m(-) is allowed; see Remark 2.

Regular SS. Hou, Mukherjee and Cai (2021) presented ATE estimators with surrogates,
ensuring normality under a more restrictive MCAR condition R Il (Y,7,X). Zhang and
Bradic (2022) and Chakrabortty, Dai and Tchetgen (2022) introduced SS estimates that retain
normality despite misspecified OR models, especially as py 1 (X) stabilizes. In their method,
R; and n are non-random, and the error for 7(-) depends on total N rather than labeled size
n. However, accurate PS models with consistent labeling remain essential.

Supervised causal. With R = 1, our approach outperforms existing methods by relaxing
model correctness and sparsity; see Table 4.1. Our proposal is closest to model DR estima-
tors of Smucler, Rotnitzky and Robins (2019), Tan (2020) and Avagyan and Vansteelandt
(2021). Our approach introduces an additional parameter tailored to the decaying MAR set-
ting, and we utilize asymmetric cross-fitting, leading to more relaxed sparsity conditions.
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Fig 1: Plots of log(1 +s) = (log(1 + sa),log(1 + sg)) satisfying sparsity conditions with
N =500, d = 1000 for (a)-(c) and N = 1000, d = 5000 for (d)-(f) : Green = { fi(s) < r,
fa(s) <r,and f3(s) <r};Red = {fi(s) <7, f3(s) <r,and fa(s) > r}; Blue = { fa(s) <,
fa(s) <r,and fi(s) > r}; Purple = { f3(s) <r, fi(s) >r, and fa(s) > r}. Lines { fi(s) =
r}, {f2(s) =7}, and {f3(s) = r} are dashed, solid, and dotted. With R = 1 and all models
well specified, Chernozhukov et al. (2018) requires f1(s) = o(1) (green + red), Bradic, Wager
and Zhu (2019) requires f2(s) = o(1) (green + blue), and the proposed method only requires
f3(s) = o(1) (green + red + blue + purple).

While previous work required the product of two sparsity levels to be on the order of n, our
approach allows for this product to be on the order of n3/2 or n®/# depending on which model
is correctly specified. Although Bradic, Wager and Zhu (2019) shares a similar cross-fitting
strategy, their estimator’s implementation is challenging due to non-convex constraints. Fur-
thermore, our proposed estimator exhibits model DR and rate DR with weaker sparsity.

In the following, we clarify the above and consider the following cases: (M1) both nui-
sance models are correctly specified, (M2) only the OR model is correctly specified, and
(M3) only the PS model is correctly specified. Important quantities with s = (sq, s3) are

fi(s) :=sqlogd/N V sglogd/N Vv mlogd/\/ﬁ,
fa(s):= (sa logd/N3/* Vsg logd/\/ﬁ) A (sa logd/VN V sg logd/N> , and
f3(s) :== f1(s) A fa(s) A {(sa logd/N) Vv (3B logd/\/ﬁ) \Y <s2a/3sg/3 logd/N2/3> }

M1) m(-) = m*(-) and yn(-) = 75 (-). While Chernozhukov et al. (2018) requires
fi(s) = o(1) for rate DR, and Bradic, Wager and Zhu (2019) relies on fa(s) = o(1) for
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sparsity DR, our method allows for a more flexible and general sparsity setting f3(s) = o(1),
as illustrated in Figure 1 — our work combines all four colors, where the area colored in purple
denotes the sparsity scenario new to the literature.

(M2) m(-) =m*(-) and yn(-) # Y5 (). We achieve the coveted model DR property while
requiring the same sparsity as in (M1), i.e., f3(s) = o(1). Comparatively, the best result in
the existing literature, Smucler, Rotnitzky and Robins (2019), still necessitates a stronger
condition of fi(s) = o(1), while Bradic, Wager and Zhu (2019) is valid only for correctly
specified models. Further details and comparisons can be found in Table 4.1.

(M3) m(-) # m*(-) and yn(-) = yx/(-). Our sparsity conditions are once again weaker.
The correctness of OR and PS models affects the required sparsity conditions differently.
When the PS model is misspecified, we do not require any additional assumptions compared
with (M1). However, when the OR model is misspecified, Smucler, Rotnitzky and Robins
(2019) and our proposed method further require an ultra-sparse PS — this is originated from
the linear approximation of the non-linear PS model; see A3 in Section 4.2. By using the non-
cross-fitted PS estimate, we allow a weaker product rate condition sq /53 = o( V) (omitting
the logarithm terms) instead of the usual product rate condition s 53 = o(/N') — a condition
that is always required in Smucler, Rotnitzky and Robins (2019). Although Tan (2020); Ning,
Sida and Imai (2020); Avagyan and Vansteelandt (2021); Dukes and Vansteelandt (2021);
Dukes, Avagyan and Vansteelandt (2020) also provide robust inference for the ATE when the
OR model is misspecified, they require ultra-sparse conditions for both nuisances, whereas
we only need the PS model to be ultra-sparse.

S. Simulation studies. We evaluate the general DR-DMAR SS estimator and the bias-
reduced DR-DMAR SS estimators using various data-generating processes (DGPs).

5.1. Results under the decaying MAR setting. We consider three types of DGPs in our
simulation studies: (a) linear OR models, logistic (product) PS models; (b) linear OR models,
non-logistic PS models; and (c) non-linear OR models, logistic PS models. We consider
i.i.d. truncated normal covariates X;; ~Aid Zirun,2 and X1 =1 foreach ¢ € {1,..., N} and
Jj€{2,...,d}, where Ziyun2 ~ Z | {|Z| <2} and Z ~ N(0,1).

(a) Linear OR models, logistic PS models. For j € {0,1} and any x € R?, we set

CRY w(i,x)=g(xIB())), m(x)= v (1,x) + ; - 7N(0,x)’
(5.2) pn(1,x) = Wﬂ(&’)x), and py(0,x) = 1711(2’(33‘

We then consider

(5.3) T; | X; ~ Bernoulli(7(X;)) and R; | (X;,T; = j) ~ Bernoulli(pn (j, X;))-
Finally, we set linear OR models as follows:

(5.4) Y;(j) = XFa(j) + 6;, and R;Y; = R;Y;(T;), where &; ~ N(0,1).

(b) Linear OR models, non-logistic PS models. We use 7(x) = 0.3sin(x’w) + 0.5 and
pn(j,x) = g(xT'B(j)). The treatment and missingness indicators (T}, R;) follow (5.3), and
the outcomes Y;(j) are determined as in (5.4).
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TABLE 5.1
Simulation results for DGP (a). Bias: empirical bias; RMSE: root mean square error; Length: average length of
the 95% confidence intervals; Coverage: average coverage of the 95% confidence intervals; ESD: empirical
standard deviation; ASD: average of estimated standard deviations. Bias, RMSE, Length, ESD, and ASD are
calculated based on medians.

Estimator Bias RMSE Length Coverage ESD ASD

DGP (a) N = 10000, d = 51, sa = 3, sg = 3, 7n,; = 0.05 (Nyy ; = 500) Vj € {0,1}
Horacle 0.007 0.102 0.540 0.948 0.154 0.138
IIMCAR 0.003 0.090 0.374 0.828 0.136 0.095
11SS-Lasso 0.008 0.100 0.470 0.906 0.147 0.120
1LSS-RF -0.026 0.151 0.619 0.832 0214 0.158
HiBRss 0.004 0.102 0.503 0.908 0.152 0.128

DGP (a) N =10000, d =51, s =3, 53 =3, 7,5 =0.1 (N'vaj =1000) Vj € {0,1}
Horacle 0.006 0.075 0.428 0.956 0.111 0.109
HMCAR 0.003 0.067 0.329 0.902 0.101 0.084
Hss-Lasso 0.004 0.073 0.391 0.934 0.107 0.100
Hss-RF -0.023 0.097 0.422 0.848 0.139 0.108
1IBRSS 0.008 0.073 0.409 0.942 0.111 0.104

DGP (a) N = 5000, d =201, sa =3, sg =3, yn,; = 0.1 (Nyy ; =500) Vj € {0,1}
Horacle -0.014 0.098 0.597 0.954 0.145 0.152
JIMCAR -0.011 0.091 0.466 0.878 0.136 0.119
Hiss-Lasso -0.011 0.095 0.522 0.936 0.144 0.133
fiBRss -0.012 0.099 0.555 0.924 0.145 0.142

DGP (a) N = 10000, d = 201, sac = 3, sg = 3, 7,; = 0.1 (N ; = 1000) Vj € {0,1}
Horacle -0.013 0.080 0.424 0.964 0.112 0.108
HMCAR -0.010 0.069 0.329 0.900 0.103 0.084
11SS-Lasso -0.012 0.074 0.379 0.946 0.109 0.097
HiRss -0.014 0.079 0.402 0.958 0.114 0.103

(c) Non-linear OR models, logistic PS models. 'We consider (5.1)-(5.3) as in part (a) but set
quadratic OR models with X? := (X% ,..., X2 and

(5.5) Yi(j) = X7 a(j) + (XH)Tn(j) + &, R;Y;=R;Yi(Ty).

The parameter values across all the DGPs above are chosen as follows: a(1) :=
3(1,1,17 _1/Vsa—1,0,...,0)" € R%, a(0) := —a(1), B(1) := (B (1), 1,11, /(sp —
1),0,...,0)" € RY, B(0) := (Bn(0),—1,-11 _,/(sg — 1),0,...,0)" € RY, w := (0,1,
17 1 /(sp—1),0,...,00" e RY, n(1) := (0,1,1] /50 —1,0,...,0)" € R, n(0) :=
—mn(1), where for any positive integer s > 1, 1, := {1,...,1} € R® and 1p := (), and
Bn(1), Bn(0) are chosen such that E(RT') = vy, and E{R(1 —T')} = yn .

We consider: (1) Oracle estimator fiorace: DR-DMAR SS estimator with true values as
nuisances. (2) Jimcar: SS estimator treating missingness as MCAR (the selection bias is
ignored), estimated using Lasso for OR and PS. (3) [iss.Lasso: DR-DMAR SS estimator with
Lasso for OR and PS. (4) fiss.rr: DR-DMAR SS estimator with random forest estimates (up
to d = 51 dimensions). (5) The bias-reduced jiggss of (4.6). The tuning parameters are chosen
using 5-fold cross-validation and results, repeated 500 times, are presented in Tables 5.1-5.3.

Among the four estimators, jissgr exhibits larger bias and RMSE due to slower conver-
gence rates, while the remaining estimators demonstrate smaller biases compared to RMSE
in Tables 5.1 and 5.2. In contrast, in Table 5.3, notable biases and larger RMSEs are ob-
served for [igsge, fss-Laso> aNd fiycar, While [igrss outperforms them significantly. The poor
performance of [iycar in all DGPs is attributed to its incorrect treatment of the labeling indi-
cator’s PS as a constant, resulting in significant undercoverage, particularly in Table 5.3. On
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TABLE 5.2
Simulation results for DGP (b). The rest of the caption details remain the same as those in Table 5.1.

Estimator Bias RMSE Length Coverage ESD ASD

DGP (b) N = 10000, d =51, sae =2, 53 =6, 7y, = 0.05 (Nyy ; = 500) Vj € {0,1}
Horacle -0.012 0.084 0.565 0.964 0.125 0.144
Himcar -0.005 0.067 0.286 0.812 0.099 0.073
TLss-Lasso -0.004 0.079 0.390 0.912 0.118 0.099
T1SS-RF -0.023 0.101 0.403 0.824 0.147 0.103
ILBRSS 0.001 0.075 0.470 0.946 0.111 0.120

DGP (b) N = 10000, d =51, sae =2, 53 =6, 7, = 0.1 (Nyy ; = 1000) Vj € {0,1}
Horacle -0.007 0.075 0.412 0.954 0.110 0.105
HMCAR -0.001 0.061 0.250 0.856 0.090 0.064
Hss-Lasso -0.005 0.065 0.312 0.916 0.096 0.080
Hss-RF -0.015 0.070 0.297 0.852 0.097 0.076
TBRSS -0.005 0.068 0.366 0.942 0.100 0.093

DGP (b) N = 5000, d =201, sac =2, sg =6, 7y j = 0.1 (Nyy ; = 500) Vj € {0,1}

Horacle -0.008 0.106 0.572 0.936 0.156 0.146
Hmcar -0.008 0.078 0.354 0.872 0.118 0.090
Hss-Lasso -0.006 0.089 0.418 0.884 0.135 0.107
HiBRss -0.010 0.089 0.480 0.918 0.129 0.122

DGP (b) N = 10000, d =201, s =2, sg =6, vy j = 0.1 (N ; = 1000) Vj € {0,1}
Horacle 0.001 0.078 0.412 0.952 0.115 0.105
IIMCAR -0.004 0.062 0.270 0.880 0.094 0.069
TLss-Lasso -0.001 0.066 0.300 0.920 0.099 0.077
ILBRSS 0.001 0.074 0.357 0.952 0.110 0.091

the other hand, Jigs .. provides valid inference with correct nuisance model specification (as
per Theorem A.2), but its reliability diminishes when model misspecification occurs, leading
to underestimation of variance and large bias in Tables 5.2 and 5.3. In contrast, the [issgr
estimator, relying on non-parametric nuisance estimators, fails to satisfy the ‘product-rate’
condition, resulting in undercoverage in all DGPs. The coverage results in Tables 5.1-5.3
support the inference quality of fizzss When one nuisance is misspecified, as per Corollary
4.6. Notably, Table 5.2 exhibits excellent coverage with minor deviations for smaller effec-
tive sample size and higher dimension, while in Table 5.3, [igrss consistently delivers strong
performance for higher sample sizes wWhere fiycar, fss.Lasso aNd fissrr fail, respectively.

5.2. A degenerate setting with outcomes fully observed. In the setting of fully observed
outcomes (R; =1 for all i € 1,...,N), we examine the cases where one of the nuisance
models is misspecified and highlight what is different from Section 5.1.

(d) Linear OR models, non-logistic PS model.
m(x) = exp(x” Ba) /{1 + exp(x” Ba) HO.3sin(x" Ba) + 0.7} and Y;(j) = X7 awa(j) + ;-
(e) Non-linear OR models, logistic PS model.

m(x) = exp(x" Be) /{1 + exp(x” Be)} and Yi(j) = X[ exe(j) + (XF) () + .

The parameters for DGPs (d) and (e) are ag(1) := 3(1,0.9,...,0.99" )T c R, a4(0) =
_ad(l)v ae(j) = ad(j)a ne(l) = (0’0'91’ e 70'9d_1)T € Rd? 776(0) = _776(1)7 Ba =
(0.99,0.5-0.7%,...,0.5- 0.7 )T e R?, B, :=(0.2247,0.7',...,0.79")T c RY. Here, we
compare the numerical performance of our proposed bias-reduced estimator figgss With [gmucter
by Smucler, Rotnitzky and Robins (2019); as per Table 4.1 their estimator is the most compet-
itive in the existing literature. The nuisance parameters in DGPs (d) and (e) exhibit a ‘weakly
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Simulation results for DGP (c). The rest of the caption details remain the same as those in Table 5.1.

TABLE 5.3

Estimator Bias RMSE Length Coverage ESD ASD

DGP (c) N = 10000, d =51, s =6, 5g = 2, 7y ,; = 0.05 (Nyy ; = 500) Vj € {0, 1}
Horacle -0.013 0.077 0.463 0.948 0.110 0.118
IIMCAR -0.722 0.722 0.484 0.002 0.168 0.124
J1SS-Lasso -0.255 0.263 0.752 0.712 0.193 0.192
J1SS-RF -0.282 0.288 0.749 0.668 0.221 0.191
JIBRSS -0.116 0.139 0.637 0.884 0.153 0.163

DGP (c) N = 10000, d =51, sa =6, 5g =2, 7,; = 0.1 (Nyyy,; = 1000) Vj € {0, 1}
Horacle -0.010 0.063 0.390 0.954 0.092 0.099
IIMCAR -0.642 0.642 0.394 0.000 0.132 0.101
Hiss-Lasso -0.181 0.182 0.576 0.740 0.151 0.147
T1Ss-RF -0.186 0.188 0.525 0.674 0.164 0.134
JIBRSS -0.044 0.095 0.493 0.930 0.133 0.126

DGP (c) N = 5000, d =201, s =6, sg = 2, 7y ; = 0.1 (Nyy; =500) Vj € {0,1}

Horacle -0.009 0.096 0.550 0.956 0.143 0.140
JIMCAR -0.652 0.652 0.566 0.026 0.186 0.144
TIss-Lasso -0.292 0.292 0.745 0.648 0.199 0.190
IBRSS -0.134 0.160 0.685 0.862 0.179 0.175

DGP (c) N = 10000, d = 201, s =6, sg =2, 7y,; = 0.1 (Ny_; = 1000) Vj € {0,1}
Horacle -0.009 0.064 0.391 0.964 0.090 0.100
JIMCAR -0.637 0.637 0.395 0.000 0.128 0.101
J1SS-Lasso -0.223 0.223 0.556 0.660 0.134 0.142
1IBRSS -0.065 0.091 0.488 0.894 0.117 0.125

DGP (c) N = 20000, d = 201, s =6, sg =2, 7y ; = 0.1 (N7, ; = 2000) Vj € {0,1}
Horacle -0.010 0.050 0.276 0.948 0.071 0.070
IIMCAR -0.628 0.628 0.278 0.000 0.089 0.071
FIsS-Lasso -0.168 0.168 0.407 0.622 0.103 0.104
T1BRSS -0.033 0.063 0.349 0.930 0.090 0.089

sparse’ nature, with bounded ¢;-norms but /p-norms equal to the dimension. In Table 5.4, it
is observed that the estimator jig,,q., suffers from substantial biases. Consequently, the cover-
ages based on [l are relatively poor. In contrast, our proposed estimator figgss €xhibits sig-
nificantly smaller biases, leading to improved coverages. Additionally, Jizss achieves smaller
RMSEs compared to gy for both DGPs (d) and (e).

TABLE 5.4
Simulation results for DGPs (d) and (e). The rest of the caption details remain the same as those in Table 5.1.
Estimator Bias RMSE Length Coverage ESD ASD
DGP (d) N =300, d =51, sa =51, sg =51
Horacle 0.002 0.411 2.518 0.948 0.608 0.642
Hsmucler -0.560 0.637 2.626 0.870 0.645 0.670
FIBRSS -0.208 0.460 2471 0.928 0.662 0.630
DGP (e) N =400, d =51, soe =51, sg =51
Horacle -0.012 0.375 2.305 0.958 0.564 0.588
Ismucler 0.484 0.584 2.479 0.896 0.628 0.632
IBRSS 0.104 0.471 2.315 0.942 0.655 0.591
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5.3. Results based on the semi-parametric approach. In this section, we further examine
the behavior of the semi-parametric bias-reduced DR-DMAR SS estimator, jisp.ggss, proposed
in Section 4.3. The following case is considered.

(f) Non-linear OR models, non-logistic treatment PS model, logistic labeling PS model.
Generate 7(x) = 0.3cos(x”3) + 0.5, pn(j,x) = exp{xT B'(4)}/[1 + exp{xTB'(5)}], and
(5.5). Choose «(j) and n(j) as in Section 5.1 with s, = 5, B :=2(0,0.91,...,0.9¢" 1T,
B'(1) := (By(1),1,11/4,0,...,0)T € R4, and B'(0) := (B (0),-1,-11/4,0,...,0)T €
R4, where B (1) and B (0) are chosen such that E(RT) = vy 1 and E{R(1 — T)} = vn 0.

We compare the numerical performance of the estimators considered in Section 5.1 with
Iisp.srss, Where the treatment PS function 7(-) is estimated using random forests. As shown
in Table 5.5, jiycar provides large biases and very poor coverages since the true labeling
mechanism is not MCAR. The performance of [igg. .. is also relatively poor since both nui-
sance models are misspecified — the OR models are non-linear and the product PS models
are non-logistic. The parametric BRSS estimator jizss provides slightly smaller biases and
RMSEs, although the working models are still misspecified. The fully non-parametric esti-
mator [iss g performs similarly as, better than, and worse than /igrss When (d, vy ;) are chosen
as (31,0.05), (51,0.05), and (51,0.1), respectively. Although the non-parametric nuisance
estimates are consistent, the convergence rates are relatively slow as the ‘effective sample
size’ for the OR and product PS estimation is only 500 when vy ; = 0.05 and 1000 when
n,; = 0.1 (with a moderate dimension d = 31 or d = 51), resulting in relatively large biases
for the final ATE estimation. Lastly, by making full use of the large sized (7;,X;) and es-
timate 7r(-) non-parametrically while keeping other working models parametrically, the pro-
posed semi-parametric BRSS estimator jigpgrss Outperforms all the ATE estimators above,
although the OR models are misspecified.

TABLE 5.5
Simulation results for DGP (f). The rest of the caption details remain the same as those in Table 5.1.

Estimator Bias RMSE Length Coverage ESD ASD
DGP (f) N = 10000, d =31, v ; = 0.05 (N’YN,j =500) Vj € {0,1}
Horacle -0.007 0.083 0.500 0.954 0.122 0.127
IMCAR -0.724 0.724 0.493 0.004 0.186 0.126
11SS-Lasso -0.224 0.233 0.774 0.736 0.217 0.198
1SS-RF -0.172 0.198 0.736 0.774 0.246 0.188
1IBRSS -0.170 0.180 0.640 0.800 0.182 0.163
Hisp-BRSS -0.127 0.158 1.144 0.988 0.195 0.292
DGP (f) N = 10000, d =51, vy ; = 0.05 (Nyy ; = 500) Vj € {0,1}
Horacle -0.011 0.085 0.499 0.942 0.126 0.127
TIMCAR -0.727 0.727 0.495 0.006 0.170 0.126
11SS-Lasso -0.284 0.290 0.746 0.664 0.213 0.190
Hss-RF -0.165 0.206 0.732 0.828 0.216 0.187
TiBRSS -0.190 0.200 0.634 0.780 0.184 0.162
Hisp-BRSS -0.139 0.179 1.136 0.988 0.197 0.290
DGP (f) N = 10000, d =51, vy ; =0.1 (N’YN,j =1000) Vj € {0,1}
Horacle -0.018 0.074 0.405 0.944 0.104 0.103
HMCAR -0.614 0.614 0.402 0.002 0.137 0.103
Hss-Lasso -0.255 0.255 0.521 0.534 0.141 0.133
Hss-RF -0.151 0.161 0.498 0.732 0.154 0.127
FiBRss -0.135 0.143 0.478 0.760 0.140 0.122

11SP-BRSS -0.084 0.109 0.799 0.992 0.142 0.204
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6. Applications to a pseudo-random dataset. We compare the performance of the
proposed estimators using a synthetic dataset obtained from the Atlantic Causal Inference
Conference (ACIC) 2019 Data Challenge. > We focus on 14 scenarios from the ACIC 2019
dataset, as two scenarios share the same covariate matrix. To examine the performance under
model misspecification, we construct 7; and R; as in (5.1)-(5.3) and generate the outcome
variable Y; as in (5.5) — that is, we consider a correctly specified (logistic) PS model and a
misspecified (quadratic) OR model. We set (1) := (2,2,1,1,1,1,0,...,0)T € R%, «(0) :=
—a(1), B(1) := (-1.5,0.5,0,...,00" € R, B(0) := (-1.5,-0.5,0,...,0)T € R?, and
n(1):=0.35(0,2,1,1,1,1,0,...,0)7 € R? n(0):= —n(1). We generate 100 sets for each
scenario resulting in 14 x 100 = 1400 pseudo-random datasets in total. The covariate ma-
trices have dimensions of (NV,d) = (1000,201) in Scenarios 1, 2, 3, 6, 8, and 14, and
(N, d) = (2000,201) in the other scenarios. We consider fiyicag, fss-Lasso» A0 [igrss. The results
are reported in Table 6.1.

Except for Scenario 3, the MCAR estimator exhibits poor performance with large biases
and inadequate coverage. In Scenarios 2, 3, 4, 6, 8, and 14, both the SS-Lasso and BRSS esti-
mators perform well, showing similar biases, RMSEs, and coverages close to 95%. However,

’The hi gh-dimensional datasets (with continuous outcomes) provided by ACIC 2019 are available at: https:
//sites.google.com/view/acic2019datachallenge/data-challenge, and these are con-
structed based on 16 scenarios.

TABLE 6.1
Results for the pseudo-random dataset. Bias: empirical bias; RMSE: root mean square error; Length: average
length of the 95% confidence intervals; Coverage: average coverage of the 95% confidence intervals.

Estimator Bias RMSE Length Coverage Bias RMSE Length Coverage

Scenario 1 N = 1000, d = 201 Scenario 2 N = 1000, d = 201

JIMCAR -0.341  0.403 1.209 0.880 -0.231  0.307 0.994 0.900

J1SS-Lasso -0.257  0.398 1.248 0.900 -0.157  0.260 1.057 0.960

TiBRSS -0.263  0.322 1.142 0.940 -0.164  0.244 1.004 0.940
Scenario 3 N = 1000, d = 201 Scenario 4 N = 2000, d = 201

JIMCAR -0.080  0.400 1.879 0.960 -0.237  0.273 0.652 0.760

Hiss-Lasso -0.102  0.408 1.958 0.920 -0.144  0.200 0.696 0.930

JIBRSS -0.114 0411 1.906 0.930 -0.095 0.161 0.672 0.960
Scenario 5 N = 2000, d = 201 Scenario 6 N = 1000, d = 201

HIMCAR -0.290 0.316 0.665 0.650 -0.247  0.313 0.997 0.860

Hss-Lasso -0.187  0.231 0.717 0.870 -0.168  0.266 1.058 0.920

JIBRSS -0.118  0.167 0.686 0.980 -0.171  0.245 1.006 0.950
Scenario 7 N = 2000, d = 201 Scenario 8 N = 1000, d = 201

HIMCAR -0.254  0.290 0.656 0.670 -0.272  0.337 0.956 0.810

J1SS-Lasso -0.152 0.217 0.709 0.880 -0.180  0.285 1.019 0.910

ILBRSS -0.095 0.158 0.679 0.980 -0.186  0.270 0.975 0.940
Scenario 9 N = 2000, d = 201 Scenario 12 N = 2000, d = 201

JIMCAR -0.247  0.289 0.666 0.710 -0.250  0.283 0.662 0.710

Hiss-Lasso -0.140  0.209 0.718 0.900 -0.147  0.198 0.711 0.890

TiBRSS -0.082  0.156 0.687 0.960 -0.093  0.159 0.678 0.990
Scenario 13 N = 2000, d = 201 Scenario 14 N = 1000, d = 201

JIMCAR -0.236  0.275 0.665 0.720 -0.211  0.297 0.956 0.910

Hiss-Lasso -0.132  0.199 0.714 0.860 -0.122  0.259 1.020 0.950

JIBRSS -0.084  0.155 0.682 0.990 -0.134  0.242 0.970 0.960
Scenario 15 N = 2000, d = 201 Scenario 16 N = 2000, d = 201

HIMCAR -0.245  0.278 0.661 0.730 -0.356  0.388 0.832 0.590

JLSS-Lasso -0.148  0.202 0.708 0.900 -0.228 0.321 0911 0.820

1IBRSS -0.087  0.149 0.679 0.990 -0.159  0.204 0.812 0.980



https://sites.google.com/view/acic2019datachallenge/data-challenge
https://sites.google.com/view/acic2019datachallenge/data-challenge
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in Scenarios 5,7,9, 12,13, 15, and 16, BRSS outperforms SS-Lasso with smaller biases, RM-
SEs, and improved coverages. Additionally, in Scenario 1, BRSS achieves a smaller RMSE
and a coverage closer to 95%, while its bias remains comparable to SS-Lasso. Overall, the
MCAR estimator’s poor performance is attributed to the mischaracterization of the labeling
PS function, while the BRSS estimator exhibits greater stability compared to SS-Lasso due
to the misspecified OR model.

7. Discussion. This paper addresses the estimation of the average treatment effect (ATE)
in settings where selection bias may occur. We introduce a novel framework called the ‘de-
caying MAR setting,” which encompasses both regular selection bias and missing outcome
scenarios, providing a more general approach. Within this framework, we propose flexible
ATE estimators based on flexible nuisance model estimators, including non-parametric ones.
To tackle the challenges of model misspecification, we propose bias-reduced ATE estima-
tors that incorporate carefully designed nuisance estimates and an asymmetric cross-fitting
strategy. Our results highlight the crucial role of these design choices in ensuring robust esti-
mation and inference of the ATE, particularly in high-dimensional settings.

In addition to the ATE estimation problem, our framework opens up possibilities for study-
ing estimation and inference of other parameters of interest in the decaying MAR setting. One
such parameter is the decaying PS function, which serves as a vital intermediate step for ATE
estimation. Further research is needed to explore the validity of non-parametric PS estimators
in the decaying PS setup. Additionally, alternative methods like inverse probability weighting
and residual balancing can be employed in degenerate supervised settings, but their validity
and theoretical properties in this context require further investigation for future research.
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APPENDIX: SUPPLEMENTARY MATERIAL

Supplement to ‘The Decaying Missing-at-Random Framework: Doubly Robust Causal
Inference with Partially Labeled Data’. In the Supplement, we provide additional theoret-
ical results, discussions, and proofs related to our main findings. In Section A, we present
theoretical results for the estimation of the counterfactual mean and the ATE. Further discus-
sions on estimating PS when the treatment variable 7" is missing are included in Section B.
The proofs of all the main results can be found in Sections C-G.
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SUPPLEMENT TO ‘THE DECAYING MISSING-AT-RANDOM FRAMEWORK:
DOUBLY ROBUST CAUSAL INFERENCE WITH PARTIALLY LABELED DATA’

This supplementary document contains further discussions, additional theoretical results,
and proofs of the main results that could not be accommodated in the main paper. All re-
sults and notations are numbered and used as in the main text unless stated otherwise. We
summarize the key notations used throughout the main paper and the supplement in Table
S.1.

Organization. The rest of the document is organized as follows. We first provide some
additional theoretical results for the estimation of the counterfactual mean and the ATE (as
extensions of the results in Section 3.1) in Section A. Then, we provide further discussions
on the PS’s estimation when the treatment variable 7" is missing in Section B. In Section C,
we prove Lemma 2.1, which demonstrates several representations of 1. In Section D, we
show the theoretical results for the general DR-DMAR SS estimator proposed in Sections 3
and A. Before we show the results in Section 4, we first provide some important preliminary
lemmas in Section E. In Section F, we demonstrate the theoretical properties of the targeted
bias-reducing PS and OR nuisance estimators based on the semi-parametric approach, as in
Section 4.3. Lastly, we prove the asymptotic results (in Section 4.5) for the semi-parametric
bias-reduced DR-DMAR SS estimator in Section G.

APPENDIX A: ADDITIONAL THEORETICAL RESULTS UNDER THE GENERAL
FRAMEWORK

As the ATE parameter can be represented as the difference between two counterfactual
means that o = E{Y (1)} — E{Y(0)} = 61 — 6y, we first establish the theoretical results
for the estimation (and inference) of #; (Theorem A.1). Analogous results also hold for the
estimation of 6y, and the final asymptotic theory for the estimation of wg (Corollaries A.2
and A.3) follows if we combine the results for the estimation of ; and 6 together.

_In the following, we demonstrate the asymptotic results for the DR-DMAR SS estimator

61,55 of 01. For the sake of notational simplicity, we let
P=TW, gy =g, w ()= (L), m)=m(1,),
() =an ), mi()i=mi(1,0), An() =N, ), m() = m(l,-).

We assume the following conditions.

ASSUMPTION 8 (High-level conditions on the nuisance function estimators). For each
j € {0,1}, consider the full data estimators m(j,-) and Yn(j,-) of m(j,-) and vn(7,-),
and suppose they have some limits m*(j,-) and v (j,) with, either m*(j,-) = m(j,-) or
Yx (4,+) =~ (J,-) but not necessarily both.

Assume the following conditions hold (recall Ex (-) from Section 1.4): for each j € {0, 1},

(A1) [Ex [rm{mu,){) - m*(j,X)}2] = Op(ak;) withsome ay ;= o(1),

an,;j WX ?
7N(]>X) {1 I/V\N(.%X)}

(A3)  Ex{m(j,X)—m(j,X)}*=0p(ck,;) withsome cy;=0(1), and

(A2) Ex

= Op(ﬁ]%m) with some Sy j = o(1),

, 2
(Ad) Ex {1 - M} = Op(d?vjj) with some dy ; = o(1).
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TABLE S.1
Table of notations (we let j € {0,1} and k € {1,2} in the following table)

Notation Description
X;, X The vector of covariates
T;,T The treatment indicators
R;,R The labeling indicators
FZ( ), r(7) = Fgl) = r®) The product indicators
Y;,Y The observed outcome of interest
Y;(5),Y(5) The potential outcomes
N The total sample size
n The labeled sample size n = Zf\il R;
d The dimension of the covariates
K Number of folds
M =N/K Number of samples in each fold
PN>PN,1 The labeling probabilitiess P(R=1) and P(R=1|T =1)
TN The product probability P(I" = 1)
ay,j The inverses of the inverse product PS functions’ expectations
an The smaller rate among apy 1 and ay o
Napn The ‘effective sample size’
0; The counterfactual means 0; := E{Y ()}
10 The ATE parameter p := 601 — g
m(j,),m(-):=m(1,-) The true OR functions
(), 7(4,") The true treatment PS functions
pN(),pN(F,):pN,1(-) =pn(1,-) | The true labeling PS functions
YN ), an ) =vn(1,0) The true product PS functions
m(j,),m(-) :=m(1,-), The OR estimators
AN, ), AnE) =an(1,) The product PS estimators
m(4,), YN, ") The cross-fitted nuisance estimators
m*(4,),m*(-) = m™*(1,-) The limiting OR functions
YNNG =n (L) The limiting PS functions
aj,ss The DR-DMAR SS estimator for the counterfactual mean
Iiss The DR-DMAR SS estimator for the ATE
g(+) The logistic function
o™, 3" The nuisance parameters based on the parametric approach
a*, ;71 The nuisance parameters based on the semi-parametric approach
Sa, 53,5, 5p,1 The sparsity levels of o™, 3%, a™, ;71
%(\];)ﬁN = ﬁ](\}) AN The estimates of vy
j)ﬂc) DN 1:= 7D 5 The estimates of

N1'PN,1=PN 1PN, e estimates of pyy 1
ak) ,Oi= a The OR estimators based on the parametric approach
ﬁ(k) , B = ,@(1) The PS estimators based on the parametric approach
ak) SO = a ,a The OR estimators based on the parametric approach
,é\(lfl) , Bp,l = B(}f , ,Bp’l The PS estimators based on the parametric approach
‘9j,§12557 é],BRSS, éjiPBRss, @,sp,BRss The bias-reduced DR-DMAR SS estimators for t9j
JLBRSS , [ISP-BRSS The bias-reduced DR-DMAR S8 estimator for the ATE

ASSUMPTIO

ASSUMPTIO

N 9 (Tail condition 1). For any é > 0,
2
—1 opt
ay E {{wij(Z)} I WW] 0 as N — oo,

N 10 (Tail condition 2). For a constant ¢ > 0 and each j € {0, 1}, let

N*l/ca}vfj/QE{|¢;’§j§(z>|2+0} 0 as N — oo,
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where S := Var{u%? (2)} = ayy! with v (Z) := 452% (2) — U ().
Assumptlons 8 — 10 are analogous to the required COIldlthIlS in Theorem 3.2 of Zhang,
Chakrabortty and Bradic (2023), where the authors considered the estimation of E(Y') in

a non-causal setup. In our causal setup, if we treat Y = Y (1) as the outcome of interest,
the estimation of ; = E(Y) can also be seen as a mean estimation problem with missing

outcomes. However, in our causal and missing data problem, Y suffers from two different
types of missingness: (a) missing due to the labeling procedure (occurs when R = 0) and
(b) missing due to the treatment assignment (occurs when 7' = 0). We can only observe Y
if ' =TR = 1. Hence, as also indicated in Lemma 2.1, I' can be viewed as the effective
labeling indicator. Based on the triple (Y, I", X), we show Theorem A.1 and Corollaries A.2
— A.3 applying the results developed in Theorem 3.2 of Zhang, Chakrabortty and Bradic
(2023).

THEOREM Al (Asymptotic results of 91 ss).  Let Assumptions 1 and 8 hold. Let
an1 = [E{yy" (X)}]~Y, assume Nayi — oo and possibly, ani — 0, as N — oo. Fur-
ther, with m*(-) and ~y(-) as in Assumption 8, define the function Yy, 1(Z) as in (A.10)

and Y7 (2) = m (3, X) = 0+ TOLY () = m(5, X)} /7w (5, X). Assume that ¥ ,(Z) €
Eg(]P’X) and note that E{{y (Z)} = 0 whenever m*(-) = m(-) or yx(-) = yn(-) but not
necessarily both. Let ¥y, | := Var{yy, ,(Z)} and E?\I,)tl = Var{yy; " (Z)}. Then the proper-

ties of 51755 as defined in (3.1) under different cases are as follows.
(a) Suppose vy (-) = vn(-) and m*(-) = m(-). Assume E[{Y (1) —m(X)}?|X] < C < 0.
Then, 01 s satisfies the following (‘optimal’) asymptotic linear expansion:

a opt aN.1 5]\/,1 D
(1,ss Z”tb <\/NGN,1+\/NCLN,1 + N

]1[2_; {5N1(ﬂ;(z) ”)/NI(‘;( ) } {m(Xs) - m*(XZ)}‘ = Op(enpdn),

and we note further that E{wOpt (Z)} =0 and E(])\’;tl =Va {wozat (Z2)} =< aN |- Further, as-

sume E[{Y (1) — m(X)}2|X] > ¢ > 0 and Var{Y (1)} < C < co. Then, under Assumption
9, and as long as the product rate cy1dy,1 from (A.3) and (A.4) additionally satisfies:

cn1dn =o(1/y/Nan,), we have:
. o\ =172~
VNan 1 (Brg —01) = 0p(1) and VN (S25) 7 (Brss— 01) SN (0, 1),

Further, let Assumption 10 hold. Then, as N,d — oo,

where |Dy|:=

) ) cop\ 2
ZN,l :E]\?’tl{l—i—op( )} and f( pt) (91,53_91) i>-A/'(Ovl)'

(b) Suppose either v, () = yn(-) or m*(-) = m(-), but not necessarily both. Assume v () >
cyn (-) with some ¢ > 0. Then, 01 s satisfies the following expansion.:

N
~ 1 QN1 BN N

01— 01)=— v1(Z;)+ 0O s+ ’ + Dy + Apn1,
(1755 1) NZZIwNJ( ) p(\/NaN,l \/NaN7l) N N1

where

N
A9 Brui= g3 {1 TR K0 —mO) i) =)
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1o~ T {I_VN(Xz')

N & (Xi) v (Xi)
Assume 0 < ¢ <E[{Y (1) — m*(X)}?|X] < C < o0, Var{Y (1)} < C < oo, and v} (-) <
CYN(:). We note further that E{y; ;(Z;)} = 0 and Xy | := Var{{p}y 1 (Z)} = ajv’ll, and in

general, under Assumption 8 and accounting for both cases (A.5) and (A.6) above, A N1
always satisfies:

(A.6) or Ay,:=

} () — m(X0)} if m*() = m()

AN = O0p (AN Line () m() + N Log () yn () -

Corollary A.1 characterizes the asymptotlc behavior of the counterfactual mean estlmator
91 ss» and similar results also hold for 90 ss- Combining the results for 91 ss and 90 555 we
can establish the theoretical properties for the general DR-DMAR SS ATE estimator fhss =
91,SS 00 ss- When all the models are correctly specified, we provide the asymptotic normality
of Jiss in Corollary A.2 below.

COROLLARY A.2 (Asymptotic results when both nuisance models are correctly specified).
Let Assumptions I and 8 hold and assume N ay — oo and possibly, any — 0, as N — co. Let
E[{Y (j) —m(j,X)}? | X] < C < oco. Then Jigs satisfies the following (‘optimal’) asymptotic
linear expansion:

1 ani+PBn1  ano+ Bno
opt ) ) > »
— E i)+ O, + + Dn1+ Dy, where
(Mss N £ ( NaN,l NGN,O ) N,1 N,0
) o) P
Dl = — 2 *( ){z — . )
‘ NJ‘ N EZ:{:?N(J’X 7N(]7X) {m(J7 ) m (]7 )} Op (CN,]dNJ)

Note that E{)"(Z)} = 0 and S%" = Var{y T (Z)} < ay.
Assume further that E[{Y (5) — m(j,X)}? | X] > ¢ > 0 and Var{Y (j)} < C < cc. Then
under Assumption 9, as long as the product-rates satisfy

en1dn, +enpdno =o(1/v/Nay),

we have:

(A7) V' Na (fiss — o) = Op(1) and VN (2"”) 1/2(ﬁss_ﬂo)i>f\/(0,1)-

1Y 2
If we assume further that Ex [75(’;’)() {1 - %Zg’%} {m(j,X) — m(j,X)}?*]= o0p(1) and
Assumption 10 holds, then, as N,d — oo,
« opt opt 12 _ d
A8) Sy =XP{1+0,(1)} and VN (SF') " (fiss — o) SN (0,1),

where we propose the following plug-in estimate of the asymptotic variance, Z%’t:

(A9)
LY, —m(1, X)) TOY; - m(0,X;)}

a 1
Yy i=— m(1,X;) —m(0,X;) — jigs + —+——= - ~
N Zl[ (20 =m0, %) = fis (LX) v (0,X5)

In the following, we further provide a full characterization of jiss when at least one nui-
sance model is correctly specified (but not necessarily both).
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COROLLARY A.3 (Consistency of fiss when one nuisance model is correctly specified).
For each j € {0,1}, with m*(j,-) and ~vx (J,-) as in Assumption 8, suppose either v (j,) =
N (F, ) orm*(4,-) = m(4,-), but not necessarily both. Let Assumptions I and 8 hold. Assume
Nayn — oo and possibly, ay — 0, as N — co. Define

B Y G) - (. X)

Tr s~ J)—m 7,
a7, X)

Let )y (Z) = ¢7v,1(z) *%k\f,o(z) and ¥, := Var{yy,(Z)}. Assume v (j,-) > cyn(j, ) with
some ¢ > 0. Then, [iss satisfies the following expansion.:

(A.10) N (Z) == m*(j,X) —6; +

an1+ Bna A + Bn,o
w/NaNJ w/NCL]\[,()

= Op (endng +enodnp)- I vy (d, ) =

N
_ 1 I
fss — fo = NZ;Z/JN(ZJ*FO;) ) +Dn+Ang+Anp,
1=

where E{1)};(Z)} =0 and |Dy| =

Ifm*(J’ ) = m(]’ )’
(

~ N fj) NG » |
m*(j,
~(Z

(X
X)}? [ X] < C, Var{Y (j)} < C, and 73(5,7) < Cn(j,)-
)} =0 and % := Var{yi(Z)} < ay', and in general, ac-

Assume ¢ <E[{Y (j) —
We note further that E{%,(Z;
counting for both cases yx (J,-) = Y~ (J,-) or m*(4,-) =m(j,-) above, Ay = AN+ BN,O
always satisfies:

1

Ay=0,p Z NG Ly ()2 yn () T Z AN 3 Ly () #m(,r)
§=0

APPENDIX B: ESTIMATION OF THE PS WHEN 7' IS MISSING

In this section, we discuss the estimation of the product PS function yy(x) =P(I' =1 |
X =x) (I'=TR =TRyrRy) under the case that 7" and Y are both possibly missing (Section
3.3). Since 7' is no longer always observable, we consider the following representations: for
any x € X,

W(x)=P(TRr=1|X=x)P(Ry =1|TRr =1, X=x) :=vn(x)yy.n(1l,X%)
=P(Ry =1|X=x)P(TRr=1|Ry =1,X=x) :=yy.n(x)y7r,n(1,%).

We first focus on Setting d of Section 3.3 and consider the following three models for
N ()

Model 1’: a logistic yn(+). This is the same as in Model 1 of Section 3.2.
Model 2’: a logistic yr N (-) and a logistic vy,n(1,-). Consider the following offset logistic
models: with some B, By € R,

Yy.naexp(x’ By)
L+y,n1exp(xTBy1)’

YT,N GXP(XTﬂT)
1 +~7,nexp(xT Br

1N (X) = ik YN (1,%) =
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where ypr n := E(TR7) and vy, n1 := E(Ry | TRy = 1) =y~ /yr,n, where vy = E(I).
Here, we allow decaying PS functions with yr n,vy,n,1, 7~ — 0 as N,d — 0o, and how fast
the PS functions decay may differ from each other. For instance, when Y is always observable
(i.e., the degenerate Setting b of Section 3.3) or Y and T are always observable simultane-
ously (i.e., the degenerate Setting ¢ of Section 3.3), we have vyy,n,1 = 1 and v v = yn. As
in Section 3.2, y7 n(-) and 7y, n (1, -) can be estimated by offset logistic estimators (Zhang,
Chakrabortty and Bradic, 2023) with consistency rates Oy (1/||Br[lolog(d)/(Nvr,n)) and
Op(\/11By1llolog(d)/(Nyn)). As a result, we can choose dy,1, defined as (A.4), as
dnvi = O(/1Brllolog(d)/(Nyr,n) + +/IIBvallolog(d)/(N+yn)) for the estimation of
yn(-). Consider a linear OR model with sparsity level sq 1, to achieve (A.7), we need
the product-sparsity conditions sa.1]|B7]l0 = o(Nyrn/{log(d)}?) and sa.1|Byillo =
o(Nyn/{log(d)}?).

Model 3’: a logistic yr,n(1,-) and a logistic vy n(-). Consider the following offset logistic
models: with some 371, 8y € R,

(L) = ENASDETBrY) s v exp(x By)
o L+~rnvpexp(xTBry)” 1 +~y,nexp(xTBy)’

where vy, n :=E(Ry) and vy n1 :=E(TRr | Ry =1) = yn/7y,n. Similarly as in Model
2, to achieve (A.7), we need the product-sparsity conditions s, 1|8y |lo = o( N7y, n /{log(d)}?)
and Sa,1 ||BT,1 0= O(N’)/N/{IOg(d)}Q).

As discussed in Section 3.3, Settings a, b, ¢ (see definitions therein) are all special cases
of Setting d. In the following, we further discuss the estimation of the product PS function
under the degenerate Settings a, b, and c.

The estimation of ~yx(-) under Setting a has been discussed in Section 3.2. Under
the degenerate Setting a, we have R =1 and hence y7y < 1, and Models 1’ and 3’
above are the same as Models 1 and 3 of Section 3.2, respectively. In the following,
we revisit Setting a under Model 2’°. Recall that, to achieve (A.7), we need the product-
sparsity conditions sq 1]|B7]l0 = o( Ny n/{log(d)}?) (where yr x < 1) and 54,1 ||By1lo =
o(Nvx/{log(d)}?). Note that, in our decaying MAR setting, the ‘effect sample size’ is
Napy < N~y for sub-Gaussian X (Zhang, Chakrabortty and Bradic, 2023). Hence, we re-
fer the ‘high-dimensional’ setting as the case that Ny < d, where N > d is still possible
since yy is potentially very small. When the total sample size is large enough in that N >>
sa1d{log(d)}?, the first product-sparsity condition s 1]|B7]l0 = o( Nyr.n/{log(d)}?) is al-
ways satisfied even for a dense B7. As a result, here we only require the second product-rate
condition that s 1||By:1l0 = o(Nvn /{log(d)}?).

For the degenerate Setting b, we have Ry = 1andhenceI' = TRy, vy v (1,-) = vy n(-) =
1. That is, Models 2’ and 3” degenerate to Model 1’ where ~yx (+) is modeled through a logistic
function directly. We can see that the observations (Y;);. Rr,—0 are redundant for the ATE
estimation. This is because if T; is missing, we can not tell the observed outcome Y; = Y;(T;)
corresponds to which potential outcome among Y;(1) and Y;(0).

For the degenerate Setting ¢, we have Ry = Ry and hence ~y n(1,-) = 1 that Model 2’
degenerates to Model 1’ (and hence the same as Model 1 of Section 3.2). Additionally, we
also have vy n(x) =P(R=1|X =x) =pny(x) and y7n(1,x) =P(T'=1|R=1,X =
x) =m(1,x), i.e., Model 3’ is the same as Model 3 of Section 3.2.

Note that, the general formula for the estimator figs (as a function of 4 (-)) and the gen-
eral asymptotic results are the same among Settings a — d. The difference is only on the
approaches for the PS’s estimation and the conditions required for the PS models, e.g., the
sparsity conditions for logistic parameters.
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APPENDIX C: PROOF OF LEMMA 2.1
PROOF OF LEMMA 2.1. The regression representation can be denoted as

61 = E{Y (1)} = E[E{Y (1) | X}] = E{m(X)},
and since Y (1) 1L 7' | X, we have

m(X)=E{Y (1) | X} =E{Y (1) | X, T =1}.
Additionally, since R 1L Y| (T',X), we have R Il Y (1) | (X,T = 1). Therefore,
(C.1) ETY | X)=E(RTY | X)=E{Y(1) | X, T=1,R=1}P{RT =1| X}
(C2) =E{Y(1) | X, T=1}P(I'=1|X) =m(X)yn(X).
Hence, we have the following IPW representation:

QI:E{m(X)}ZE{W}:E{W}:E{wf(};()}'

Let either m*(-) = m(-) or 7x () = v~ (-) hold. Then, it follows that

r . B
g O] -
T

—i{ (|0 + YO -] 1) -6y
[

N (X) o CEim
T %) (X)}| ~ E(m(X)}

—[{ 208 - 1} ) -0 0,

N
where (i) holds by (C.2) and E(T" | X) = vn(X). n

m*(X) +

APPENDIX D: PROOF OF RESULTS IN SECTION A

PROOF OF THEOREM A.1. We first show that Y (1) 1L I' | X under Assumption 1. Ob-

serve that
E(v()|X,T=1} YE | X,R=T=1) YEY | X,T=1)

(idi (iv

ey X,T=1) D E{Y1)|X),

where (i) holds since Y =Y (T') and I" = T'R; (ii) holds since R 1L Y | (T, X); (iii) holds
since Y =Y (T); (iv) holds since 7' 1L Y'(1) | X. In addition, by the tower rule,

E{Y (1) | X} =E{Y(1) [ X,['= 1}y (X) + E{Y(1) [ X, = OH{1 — (X))}
=E{Y(1) [ X}yv(X) + E{Y (1) [ X, T = 0H{1 — yv(X)}-
It follows that
E{Y (1) | XH1 = 9w (X)} = E{Y (1) | X,T = 0}{1 — 7y (X)}.
Since yn (X) = 7(X)pn(1,X) > 0 almost surely under Assumption 1, we have
E{Y(1) | X,I'=0}=E{Y (1) | X} =E{Y (1) | X,['=1} almost surely.
Thatis, V(1) AL I' [ X, ie., the missing at random (MAR) condition holds if we consider

Y =Y(1) and I as the outcome variable and labeling indicator. The remaining results hold
as long as we apply the results in Theorem 3.2 of Zhang, Chakrabortty and Bradic (2023),
with (Y, R, X) replaced with the triple (Y, I, X). [
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Repeating the proofs above, we obtain analogous results for GAO,SS as in Theorems A.1.

Together with the results for 50755, Corollary A.2 is a corollary of part (a) of Theorem A.1,
and Corollary A.3 is a corollary of part (b) of Theorem A.1.

APPENDIX E: PRELIMINARY LEMMAS

We first provide some preliminary lemmas before we analyze the biased reduced DR-
DMAR SS estimators and the considered nuisance estimators.

LEMMA E.l1 (Lemma D.1 of Zhang, Chakrabortty and Bradic (2023)). Let (Xn)n>1
and (Yn)n>1 be sequences of random variables in R. If E(|Xn|" | Yn) = Op(1) for any
r>1, then Xy = Op(1).

LEMMA E.2. The following are some useful properties regarding the 1 q-norms.

(a) If | X| < |Y] as., then || X ||, <||Y||g,- If | X| < C a.s. for some constant C > 0, then
1X[ly, < {log(2)}~"/*C.

(b) If || X ||y, < 0, then P(|X| > t) < 2exp(—t*/c?) forall t > 0.

() If | X |lg, < o for some (a,0) > 0, then E(|X|™) < CTo™m™/* for all m > 1,
for some constant C,, depending only on «. In particular, if | X|y, < o, E(|X|™) <
20T (m/2 + 1), for all m > 1, where T'(a) := [ #*~ ! exp(—x)da denotes the Gamma
function. Hence, E(|X|) < o/ and B(|X|™) < 20™(m/2)™/? for m > 2.

(d) For any o, 3> 0, let vy := (o™t + =1L, Then, for any X,Y with || X||y, < oo and
Yy < o0, [[XY ||y, <00 and [ XY [y, < | X[l [[Y [l

(e) Let X € R? be a random vector with supy <<, | X(j) [y, < 0. Then, |[||X][ool[y, <
a{log(p) + 2}/

Lemma E.2 follows from Lemma D.1 of Chakrabortty et al. (2019).

LEMMA E.3. If X € R is a random variable and there exists constants a1, as,as, a4 > 0,
such that

P(|X| > a1u? + agu + a3) < agexp(—u?), Vu>0.
Then,

E(|X]) < a3+ as(da; + /Tas).
PROOF OF LEMMA E.3. Observe that

IE(|X|):/OOOIP’(]X>t)dt
:/a3 P(|X| >t)dt+/ooIP’(\X| > t)dt
0 as

o
§a3+/ P(|X| >t + as)dt.
0

For any ¢ > 0, let u > 0 satisfies aju® + asu = t. Then,

«/a% + 4a1t — as _

2t 2t
— > .
2a1 V¥ dart+ay  VAart +2az
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Hence,

oo

/ P(|X|>t+a3)dt:/ P(|X| > aju? +a2u+a3)dt</ ay exp(—u?)dt
0 0

00 4t2

< € e

a4/0 Xp{ (V4ait + 2a9)? } *P ( 2a1t+2a2>

‘7'2/0‘1

- ( 2a1t + 2a2> az/al P ( 2a1t + 2a2>
az/al

<a ( > + a4 exp ( >

2/(11

Notice that

/oag/ale’{p<‘:j§) 2o [ e (- t2> v

> t a3
/ exp v dajexp | ——5 | <4ay.
a%/al al 4&1

E(|X]) < a3 + as(4ay + V7Tas).

and

Therefore,

We establish some empirical process results in Lemmas E.4, E.5, and E.6.

LEMMA E4. Let Q € R™ ", ky > 0, and s > 1. Then, for any ¢ € (0,1), there exists
some k =< s such that

(E.1) sup ATQA < (1-6)"" sup |ATQA,

A, AeC(s,ko)NSE—1 Aq,A€0,
where S .= {A € R?: |Alls = 1}, C(s,ko) := {A € R?: 38 C {1,...,d}, |S]| <
8, S.t. ||Agc <kol|Asl|l1}, and O :={A € R ||Aljg <k, ||Al]2 =1}

Lemma E.4 holds by repeating the proof of Lemma 16 of Bradic, Wager and Zhu (2019).

LEMMA E.5.  Let Q € R¥. Then, for any A € R? and ko > 0,

6] A
(E.2) IATQA| < inf <” ”1+4||A\2> sup  [67Q6| ;.
521 ks 8EC(5,ko)NSA—1

PROOF OF LEMMA E.5. Forany s < d, choose some S C {1,2,...,d} satisfying | S| = s.
For any A € RY, define 6 = (6%,0%.)T € R? as

(E.3) 05 = (kos) AL (L,...,1)T €R®, g = Age e RY>,
Then, [|ds]l1 = [|Al1/ko and [|ds]l2 = || A1/ (koy/5). Hence,
10sell1 = [Asells < [|AllL = Kol ds]]1-
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That is, & € C(s, ko). Also, note that A — & € C(s, ko) since (A — §)g- = 0. Hence,
IATQA| < [67Q6] + |(A —8)"QA —6)| +2/67Q(A - 6)|

< (1013 + 1A= 5]3+2(0]2lA = d)  sup 5708
8€C(s ko) N1

< 5 T4lAl3 sup Z( i 0)7vi,
ks SEC(s k)84 7

since
16115+ A = 6113 +2[|6]|l| A — 8|2 < 2[|6]15 + 2[|A — 8]|3

= 2||85 |3 + 2/10s¢ I3 + 2l| A — 0513 < 2|81 + 2l Ase |3 + 4] As13 + 4] 5513

< 610513 + 4| AlI3 = 6]| A7/ (k§s) + 4] All5.
When s > d, since A € R =C(d, ko) = C(s, ko), we also have

IATQA| <A sup 167029).
8EC(s,ko)NS4—1

To sum up, we conclude that (E.2) holds. [ ]

LEMMA E.6. Let Assumptions 2 and 3 hold. Let j € {1,2}.
(a) For any s = o(M /log(d)), we have
Mt e, (XfAa)?

sup =0p(1).
acrigor  AlT/s+ A3 ?
(b) Let so := [ Nyn/{log(d) log(N)}], then
Myn)~1> . Ty(XTA)?
(E.4) sup Scki) QZZEIJ' ( > ) Sc{l-i- ! +ﬂ°g(N)}
Acr?\ {0} [A[l$/s0 + [|All5 Nyny ~ Non

with probability at least 1 — 3exp(—t) and some constant ¢ > 0.

(c)Let f(-): X — Rand |f(x)| < cforall x € X with some constant ¢ > 0. Then, for any
s>1,as N,d— oo,

)AL [Sier, T (X)XiX] BT/ OOXXT)] Ay
anaernoy A A 1A/ GIATE) + A/ (T A2[5) + 1}

o < slog(d) n slog(d) log(N)) .

NN Nyn
(d) Let rq > 2 be a constant. Then, for any s > 1,

Myn) ™! Y, TilXT A" log(d) ~ {slog(M)log(d)}"/?
wp (M) Zfzj X7Al _ () [sloald) | {slog(M)log(d)}
aeri\{oy  [lA[7 /s +[|A[Y Mryn My

with probability at least 1 — 2 exp(—t) and some constant ¢ > 0. Hence, as N,d — oo,

sup (MAn)™t Zite ;| X7 Al _0 (1 N slog(d) N {slog(M) 10g(d)}r0/2>
o o To - P .
acri\fo} Al /5= + Al MnN Mnyn
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(e) Further assume that || X| o < Cx. Let (¢;)icz, € R be i.i.d. random variables satisfy-
ing E(|e;] | X4, =1) =E(|e;| | X;) and ||e||y, < oc with some constants «, e > 0. Then,
forany s > 1,

(Myn) ™) Tileil (X] A)?
ieT,

<c|Alf3 +

t+slog(d) . slog!/“(M){t+ slog(d)}"/® ||A||1 p
+ +[[Allz
Nyn Nyn

uniformly for all A € R? with probability at least 1 — 3 exp(—t) and some constant c > 0.
(f) Let (&;)icz, € R be i.i.d. random variables satisfying E{€? | (I';,X;)} < C. Then,

(Myn)™ Dier, i€ ((X7A)? t tlog(N)
sup 5 <cql+ +
AcR?\ {0} A3 /s0+ A3 Nyy Ny

with probability at least 1 — 3exp(—t) — t~! and some constant ¢ > 0, where s is defined
as in part (b).

PROOF OF LEMMA E.6. (a) By Theorem 15 of Rudelson and Zhou (2012), for any s =
o(M/log(d)), we have
wp D XAE
A€C(s,3)NSd—1 ME(XTA)?2 p\L);

where SUp A cc(s,3)nse-1 E(XTA)% = O(1) under Assumption 2. Therefore,

sup MUY (XTAP =0,(1).

AeC(s3)NSi iz

Together with Lemma E.5,

MY (XTA)
sup T 5
aeri\{oy A[lT/s+ A3
(b) Fix 6 € (0,1) and let @ = M~ 37, ., I'X,X] — E(TXXT"). For any s > 1, by

Lemma E.4, (E.1) holds with some k =< s. Since X is sub Gaussian, under Assumption 3,
we have

sup Var {( rx’a)? )*} < sup E{I( xXTAa) }= sup E{yn(X X)XTa) )*} =0(w).
A€EO, AEO,, Ac

By Theorem 4.3 of Kuchibhotla and Chakrabortty (2022),

- (:2& ATQA|> [ \/mw Flog(d) +1og<N>{tA+4k1og<d>}]) > Sexp(—1),

= 0,(1).

with some constant ¢ > 0. Together with (E.1), Lemma E.5 and note that k < s and M < N,
we have for any s > 1,

|ATQA | <, [\/'yN{t + slog(d)} n log(N){t + slog(d)}]

(E.5) sup

acke |A[/s+ 1A N N

with probability at least 1 — 3 exp(—t) and some constant ¢ > 0. Note that
v E{D(XTA)} <yt o (X) g XT AR 5 = O(1).
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Hence, we conclude that uniformly for all A € R,

Yoz, Ti(XTA)? t+slog(d) log(N){t—l—slog(d)}] <||AH? N HAII%)

1+
M~y Nyn Non s

<c

with probability at least 1 — 3exp(—t) and some constant ¢ > 0. Choose s = sy :=
[Nvn/{log(N)log(d)}], then it follows that (E.4) holds with probability at least 1 —
3exp(—t) and some constant ¢ > 0.

(c) Fix 6 € (0,1) and let @ = MY, T f(X;)X; X! — E{T'f(X)XX”}. For any
s >1,by Lemma E.4, (E.1) holds with some k= s. Since X is sub-Gaussian and the function
f(-) is bounded, under Assumption 3, we also have

sup Var [{Tf(X)XTA)?*}] < sup E{T'f(X)(X"A)*}
A€Oy A€O;

= sup E{yn(X)fA(X)(XTA)*} =0 ).
A€O;

By Theorem 4.3 of Kuchibhotla and Chakrabortty (2022),
1 log(N 1
WN{t T klog(d)} | log(N){t +k og(d)}] ) > Sexp(—t),

Pp;, (Asggk |ATQA‘ >c Y 7

with some constant ¢ > 0. Together with (E.1), Lemma E.5 and note that k < s and M < N,
we have for any s > 1,

|ATQA | \/ny{t + slog(d)}  log(N){t+ slog(d)}
sup 5 5 =0p + .
acra |AllT/s +[|A]l3 N N
For any A1, A, € R%\ {0}, note that
Ay N Ay < A1 N ||A2||17
(A2 [[Azll2]l; ~ 1Alz  [[Az]l2
A1 Az || _[Adflr | [[Aefh
A2 [[Azllz2]l; T [A1llz Az’
A A A A
1, B || 1Al 1Al o,
[A1flz  (|Azfl2]ly ~ (A1l [[Azll2
A A A A
1 A | Al 1Asfl2
[All2  [[Azll2]ly ~ |ALllz  [[Az]l2

Hence, uniformly for all A, As € R4,

AT A
[A1]l2 [[Az]l2

Ay Ay )T ( Ay Ay )
+ Q +
(HAle [ Azl2 A1l [[Azll2
< A A )TQ< A Ay )
[A1ll2  [[Az]l [A1ll2  [[Az]l

slog(d) _ slog(d) log(N) (Jal , aoli )
=0 + A A + +1 .
(( Now T Ny ) ARl A A,

TN AT QA =75 | A]2]| Az

< (29n) M| Adl2]| Azl

+ (29n) M Ad]l2]| Az
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(d) For any o > 2, we have supa cga—1 ||T|XT A" [, < o™ using part (d) of Lemma
E.2. By the Holder inequality and part (c) of Lemma E.2,

AsgglE{FIXTA\”}— sup E{yv(X)XTA[}

(E.6) < lwX)lleq S XTALE,,, = O0w),

with r > 0 satisfying 1/r+1/¢=1.Let W = W(A) =T|XTA|"* —E{T'|XTA|™}. By part
(d) of Lemma E.2 and note that v < 1, we have supa ega—1 [[W|ly,,,, = O(1). Additionally,
we have

sup E(W?)< sup E{TIXTAP"} < [1(X)]lz, sup [IXTAJZS,, = Olyw).
AgSd-1 AgcSa-1 AgcSa-1

By Theorem 3.2 and Proposition A.3 of Kuchibhotla and Chakrabortty (2022), for any A €
S and u > 0,

Pp, ( (M) ST XA — A3 E{T|XT A}
ieT,

{log(M)} /22
< _
>c [ Mon + Moy < 2exp(—u),

with some constant ¢ > 0 independent of A. For any s > 1, repeating Step 2 of proof of
Lemma 17 in Bradic, Wager and Zhu (2019) (with || - ||4 replaced by | - ||, ), We obtain
1/70 1/7o

(E.8) sup Li(XFA)r <(1-6)""1 max Li(XFA)ro ,
AEC(s,3)NSd—1 Z Ac Z

(E.7)

1€
with some constant § € (0,1) and a set 7 C S9! satisfying
17| < (cdtd)*,

where ¢ > 0 is a constant. By the union bound and (E.7), choosing u = cslog(cd—td) +t
with ¢ > 0, we have

—1 . T To __ —1 T To
P, o () S TIXT AP 2 E(XT A

=
oo |, [Slosld +t {log(M)}/?{slog(d) + t}7/? )
Myn M~n
(E.9) < 2(ed71d) exp(—u) = 2exp(—t),

with some constant ¢’ > 0. Together with (E.6) and (E.8), we have
(E.10)

7‘0/2
sup  (Myn)™' D TXTA <e| 1+ slog(d) | {slog(IV)log(d)} |
AcC(sHns* i€T, NN Ny

with probability at least 1 — 2 exp(—t) and some constant ¢ > 0. Now, for any A € R?, define
d as in (E.3) with ko = 3. Then, we also have ||ds|[1 = ||A]|1/3, |ds]l2 = || Al]1/(3+/s), and



39

8, A — 6 €C(s,3). Therefore,

SoriXFApe <ot | YT XT e+ Ty X (A - )"
=9 = i€z,

(E.11) e (R - s Zr X7 8.
6eC(s,3)NS4—1

Note that
1815 + 1A = 85 = I35 + (| As = ds]l2)"
< (1852 + 1852 ll2)™ + (| Asll2 + [1s]12)™
={IAl1/BVs) + | Ase ]2} + {[[Asllz + [ All1/(B3Vs)}™
<27 ALY /(B3Vs)™ 4 [ Aselly + [[Asly + A/ (3Vs)™ }
<2 {[lA[/(BVs)™ + A5}
Together with (E.10) and (E.11), we have

MAyn) Y cr Ti| XT A 1 log(M)]1 ro/2
sup (M) : Zizj | zr | <e (1 e og(d) n {slog(M)log(d)} 7
aeri\{o}  [|A[["/s= +[|A[)y Mryn Mryn

with probability at least 1 — 2 exp(—t) and some constant ¢ > 0.
(e) By the tower rule, for any A € R4,

(E.12)

E{T[e|(X"A)%} = E[E{T|e|(X" A)? | X}] = E{yn(X)le|(XT A)*} < e || AI3,
with some constant ¢ > 0 under Assumption 3, as X is sub-Gaussian and € has a bounded
Yo-norm. Let @ = M~ 37, 7 Tile;|X; X — E(T'|e]XXT). For any 6 € (0,1) and s > 1,
by Lemma E.4, we have (E.1) holds with k:g = 3 and some k =< s. Similar to (E.12), we also
have

sup Var {Ie[(XTA)?} < S E{T(X"A)'} = sup E {yv(X)e*(XTA)*} < e,
AcO, Ac
with some constant ¢ > 0. Note that || = max (e, —€). By part (e) of Lemma E.1, |||¢]]|,.,
oc{log(2) + 2}/, Together with the definition of 1/, -norms, we further have ||/]€[||,..
Vae{log(2) + 2}1/(2). By part (a) of Lemma E.2, ||y/]e|X”e;| s, < Cx+\/ae{log(2) +
2}1/ (20) where ej € R denotes the j-th column of an identity matrix. By Theorem 4.3 of

Kuchibhotla and Chakrabortty (2022) and note that k =< s and M < N, we have
[\/’YN{t + SlOg(d)} n 510g2/(20‘) (M){t + Slog(d)}Q/(Qa)]

<
<

(E.13) sup |ATQA|<c

AcOy; N N

with probability at least 1 — 3 exp(—t) and some constant ¢ > 0. Together with (E.1), (E.12),
and Lemma E.5,

(Myn) ™) Tileil (X] A)?
€T

<c|Al?+
Az Now Now

t+slog(d) |, slogl/a(M){tJrslog(d)}l/a] <||A“2 + ||A||2)
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uniformly for all A € R? with probability at least 1 — 3 exp(—t) and some constant ¢ > 0.
(f) For any A € R?,

Epy, q M7 Y D (XA | (Ti Xiier,
=M1 XTI A Ep, { | (T4, Xi)ier, } <OM 1Y Ty(XTA)2
i€l i€,
By Markov’s inequality,
(E.14) Pp, (Ml Y Ti(XTayP >tCM™ ) Ty(XTA) | (Pi,Xoiezj) <t
i€y i€,
Together with (E.4), we conclude that
(MN) ™' e, Lie} (X7 A)? t tlog(N)
sup 5 5 <cql+ + )
Acr\{0} IA[[T/s0+ A2 Nyy — Nyy

with probability at least 1 — 3exp(—t) —t ™1, s = [Nyn/{log(d)log(N)}], and some con-
stant ¢ > 0. [

APPENDIX F: PROOF OF THE PROPERTIES OF THE NUISANCE ESTIMATOR FOR
THE SP-BRSS ESTIMATOR

In this section, we analyze the properties of Py = ﬁ(]\l,)l, BPJ = B\](;), a = aW, with

analogous results applicable to pN 1 ,Bp 1, and &?). We also denote 7(-) = 7(1), Dy, = Dg),
J:=Ij,and M :=|J|=N/2 throughout

F.1. Preliminary analysis of the semi-parametric PS estimator. We first study a gen-
eral RSC property. For any v € [0,1], 8, A € R%, and ¢ : R — (0, 00), we define

F(Aa,0,8%¢(-) = (aM) "> "Tig (X] (8" +vA)) (X A)?.
1€J

LEMMA F.1. Let Assumptions 2 and 3 hold and ¢(-) is a continuous function. Let
ko > 0 be any fixed number, let ki,ko,C1,Co,c1,c0 > 0 be some constants depend-
ing only on (o,ko,k,v,¢(:)). For any (possibly random) a € (0,1], when M~y >
max{Cy,C1log(M)log(d)} and k <2,

oy (008700 2 X LA - ma g2 AR L VA <0 )

>1—crexp(—coaMyn).
The following lemma demonstrates the properties of 7.

LEMMA E2. Foranyt > 0, define

. tYN t
. = — < —
(E.1) &y {\’YN NI <24/ 5+ T M}

Then,
Pp,, (&) <1 —2exp(—t).



41

On &, when 0 <t < 0.01M~y, we have

t ~
' — 1‘ <2664/ ——, 0.79vy <y <1.219yn.
V My

The following lemma demonstrates the properties of py .

LEMMA E3. Foranyt > 0, define

9.32  [tyn
VvV M [

(F.2) Ep = {\ﬁN,l —pNna| < =N

Then,
]P)DEV (Sp) < 1-— 4exp(—t).
On &,, when 0 <t < 0.01M~y, we have

t ~
b1 _ 1‘ <12y /-——, 0.46py,;1 <pn1 < 1.54pN1.
PN 1 M~y

For any 3 € R%, a € (0,1], and 7(-) : X + [O, 1], define the following loss function

Ta(B:0:7) = 12[{ [ exp(XI'B)

= am(X;)
In addition, for any 3, A € R%, a € (0,1], and 7(-) : X + [0, 1], further define
0lp(Asa; B;7) = lg(B+ Asa;7) — lg(B;a;7) — Vpla(B;a; 7)T A

In the following, we show the RSC property required for the labeling PS estimation and
control the gradient ||V glg (8} 1;Pn,137") | o-

}XT,B+

LEMMA F.4 (The PS model’s RSC property). Let Assumption 1 hold. Then, pn1 < Y.
Further let Assumptions 2 and 3 hold. For any constant kg > 1 and some k1, ko > 0, define

(F.3)
By = {5zg(A;ﬁN,1§/3;,1;7?) Z =

)

1 log
{mla-m 2 1a), vialk<w}.

Then, with some constants C1,Cy > 0, when M~y > max{Cq, C1log(M)log(d)},
PD;\,(gl | Ex) > 1 —crexp(—caMyn),

with some constants c1,cy > 0.

REMARK 4 (Technical challenges of showing Lemma F.4). The proof of Lemma F.4 is
an analog of showing the RSC property of a generalized linear model (GLM) (Negahban
et al., 2010; Wainwright, 2019). However, we have additional challenges because of the non-
standard loss function and also the decaying PS. By Taylor’s theorem, we have

00a(A; PN By 7) = (Mpn,1) ™ ZA eXp{ X781 +vA) XA,

with some v € (0,1). Unlike a generalized linear model (GLM), 5!7,3(A; PN,1; B, 1;7) is also

a function of T';. Without the presence of I'; (or when I'; = 1), S¢, 3(A;DN1; B

)15 7) can be
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directly lower bounded by, e.g., Proposition 2 of Negahban et al. (2010) or Theorem 9.36
of Wainwright (2019), as 7(X;) is bounded below under Assumption 4. However, with the
presence of I'; and the decaying MAR setting mechanism, we need to carefully track on the
impact of I'; since only a few of them are non-zero that E(I') = vy — 0 as N,d — oco. The
usual Bernstein inequality with the usage of ¢),-norms is suboptimal here. To construct a
tight lower bound for §/g(A;pn.1; 8, 13 T), we utilize concentration inequalities that involve
random variables’ 12-norm and also second moment (Kuchibhotla and Chakrabortty, 2022).
Here, the second moment helps us to capture the decaying value vy ; see more details in
Section F. In addition, the same challenges also arise in the proofs of Lemmas F.5 — F.10
below.

LEMMA E.5 (Upper bound for Hvﬁzﬁ(@;,ﬁﬁN,l; ) |o). Let Assumptions 1, 4, and 5
hold. For any 0 <t < M~y /{100 + log(M)log(d)}, define
(F4) By = {Hvﬁgﬁ(ﬂg,l;ﬁN,l;ﬂ*)Hoo < K3 W} ,

with some constant k3 > 0 and Y is defined as (4.3). Then, when M~y > Cylog(M )log(d),
]P)DN (gg) 2 1-— 10exp(—t).
Define

v :=Vala(By1;Pn1;T) — Vala(By1:Dn1; ")

_ 1 1
£ - Z {%(Xz’) (X
ieJ

The following lemma controls the treatment PS’s estimation error’s effect on the labeling
PS’s estimation.

] } L {1+ B exp(—XT 85, | X

LEMMA F.6. Let Assumptions 2, 3, and 4 hold. Then, on the event 54,
~ log(d) log(N
(F6) By {\rZAr < ety (HAIh BB HA||2> N Rd}

occurs with some constant ¢ > 0 with probability at least 1 — 3exp{ N~y /log(N)}.

In order to utilize the RSC property of Lemma F.4, we need to first show that the error
18p,1 — By 112 is bounded. For any A € RY, define

F(8) :=0lp(A:pN.: By1:7) + Aall By + Alls + Vala(By1: v )T A = Ag[18;,4]1
=503(A:PN .1 By i T) + AgllBpa + Al + Vala(B)1:Pn,iim) T A

(E7) +rlA = AsllBy 1l

By construction, we have .F(Bp,l — B, 1) <0. For any ry > 0, define K(ry,1) :={A €

Re: |All; < rn||All2, |All2 = 1}. The following Lemma shows that the function F(A)

is strictly positive with high probability for any A € K(ry,1). As we will show that
|All1 < rn||All2 with some ry > 0 (see (F.18)), the following Lemma indicates that

1Bp,1 — By 1ll2 # 1. In fact, we can further show that |3, 1 — 3, ; [|2 < 1 using the convexity
of the function F(-); see details in the proof of Theorem 4.1.
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LEMMA E7. Let s, 1 = o(M~vyy/log(d)). For 0 <t < M~y /{100 + log(M)log(d)},
choose any \g =< +/log(d)/(M~n) satisfying Ag > 2r3+/{t +1og(d)}/(M~n). Then, on
the event Bo N Bs, when N is large enough,

F(A) > 6la(A; N1 B T) + AsllAll1/4 — (2455108 + cCv) | All2, YA €RY

Further condition on the event Bi N Ep. Let vy = o(/M~n/log(d)), when N is large
enough, we have F(A) >0, VA € K(rn, 1).

F.2. Preliminary analysis of the OR estimator. For any o, 3, A € R%, a € (0,1], and
function 7(-) : X — [0, 1], define the loss function for the corresponding OR model as

(oza,@7 = 12

exp X?B)(YZ — XiTa)2.

In addition, let
5lq (A'aﬁ;a'%): la(a+ Asa, B;7) — lo(a;a, B;7) — Vala(osa, B;7)TA

_Mlz

We first characterize the RSC property for the OR model in the following Lemma.

exp (—X7B8)(X] A).

LEMMA E.8 (The OR model’s RSC property). Let Assumptions I, 2, 3, and 5 hold. For
some constants K1, ks > 0, define

~ ~ PSRN lo
A= {oTa(Bipwa Bpasaid) 2 2 Ll Al - e pi AR |, vaert).
PN,

Then, with some constants Cy,Co > 0, when M~y > max{Cs,C;log(M)log(d)},
Pp;, (ﬂl | Ex N gﬁ) >1—cpexp(—caMyn),

with some constants cq,co > 0.

If the OR model is correctly specified, we control the gradient ||V o (6; D, N1 prl, )|l oo
in the following lemma.

LEMMA F.9 (Upper bound for ||Valq(&* ;DN, 1,[3p,1;%)||oo). Let m(x) = m*(x) =
xTa* for all x € X. Let Assumptions 1, 6, and 5 hold. For any 0 < t < M~y /{100 +

log(M)log(d)}, define

~ t+1 d
A21={HV lor (a 7lea/8p,17 )|loo < K4 og()}7

M~y

with some constant k4 > 0. Then, when g > 2k3+/{t + log(d)}(M~n),
Ppy (Az | £ N E5) > 1 — 2exp{—tlog(d)} — dexp(—t).

Now, we further consider the case that the OR model is misspecified. We control the
gradient [|Vala(a™;pn,1, 8, 1; 7)o in the following lemma.
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LEMMA F.10 (Upper bound for Hvaza(&*;ﬁNJ,BZI;7r*)||oo). Consider the general
case that m(x) # m*(x) = x a* is allowed. Let Assumptions 3, 6, 4, and 5 hold. For any
0<t< Myn/{100 + log(M)log(d)}, define

~ ~ . . t +log(d
Ty = {Hvae,,(a B By < s va()}

with some constant k4 > 0. Let My > Cy log(M ) log(d) and Ag > 2k3+/{t + log(d) } (M),
then

Ppy, (As) > 1— Texp(—1).
F.3. Proof of the results in Section F.1.

PROOF OF LEMMA F.1. For any A € RY, define
A; =Ty (X] (8" +vA)) (X] A).
Then,
FA N, 0,8%,6() = (aM) ">~ A;.
eJ
For truncation levels 7' > 7 > 0, we define the following truncation functions

or(u) = u21l|u|§7—/2 + (1 — u>2]l7—/2<|u|§7'a ar(u) = u£|u|§7“
Now, we show that, for each 7 € 7,
(F.8) A; > Ti¢ (ar(X] B) +var (XT A)) o7 (X Alxrge|<r) -

Case 1: X 3*| > T or | XTA| > 7. We can see that ¢, (X,LTA]]_‘XITI@*‘ST) = 0 and hence
(E.8) follows.
Case 2: | X73*| < T, and | X} A| < 7. Then,

ar(XiB)=X{B" ar(X{A)=X{A, (X]A)>¢r (X]Alxrg-|<r)
and hence (F.8) follows. Define

K3 :=8ro?log {24+1/(2T)cr02/$f1} , Ly:= min o(u).
[u| <VEKs(1+k0)

For some § € (0, ko], we choose the truncation levels as
T?°=Ks,  7°=7%(6)=K3s8".
Then, for each 7 € 7,
¢ (ar(X] B%) + var(X{ A)) > Ly,
Note that, for any x1,k2 >0 and A € R4,
log(d)
Mryn

Hence, it suffices to show that

M Z Pr(6) (XiTA11|X,.T,6*|§T)
ieJ

ril| All3 — k2 1A < 2mll A3 2

ko log(d)

22L71N k1| A2 —
o {1|| gy et

HAIE} , V6 €(0,k0], [[A]2=4,
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with high probability. By rescaling the vector that A = A /|| A |2 and notice that ©r(5)(6%u) =
6%, (1) (u), it suffices to show

(F.9)

_ _ Ko log(d
MY ert) (KT Al 22L¢17N{m— QMjfv)nAnl}, VIAl=1.

Hence, we will restrict § = 1 and 7 = 7(1) = \/K3. Define ga (x) = 7 (xT Alxrg.|<r),
R1 = /ﬁ;l/(2L¢), and Ro = 26/12/L¢.
Step 1. We first demonstrate that, for any ||A|ls =1,

(F.10) E{lga(X)} = ynki/2.
Under Assumption 2, we have
E{T(X"A)?*} > ynr.
Besides, observe that, for > 0 satisfying 1/r +1/qg =1,
E [T {(X"A)? = ga(X)}] =E [w(X) {(X"A)* = ga(X)}]
< v O)lleg (X A)2 — ga(X) |5,

< e [[(XTAP Lxrpe o7l + e [(XT A Lixragsr |5,

2r
< ev||(XTA)? :

P,2r [{P(‘XT5*| > T)}l/(

Under Assumption 2, || XTAl|y, <o and || X3*||,, < 0. By part (b) of Lemma E.2,

+{P(XTA| > 7/2) )]

H(XTA)QHIP’,QT < 21+1/(2r)7,0,2.

By part (b) of Lemma E.2,

K K
P(|XTﬁ*| >T)<2exp <—23> < 2exp <_43> :
o

o2

Ks
P(IXTA|>7/2)<2 2,
(] |>7/2) < eXP( 402)

Hence, by the construction of K3,

E[T {(XTA)2 —ga(X)}] < 22/ era® exp <— R ) YN S INKL/2.

8ro?

Therefore,
E{Tga(X)} =E{T(X"A)*} —E [T {(X"A)? = ga(X) }] = yvri/2.
Step 2. Define

IN(A) = MY Tiga(Xi) — E{Tga(X)}
ieJ

, Zt)=sup  fn(A).
1A e=1, Al <t

We prove that, with some constant C' > 0, when My is large enough,

Y log(d)

(F.11) Ep {Z(t)} <1016 K3rat i
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Let (¢;)iez be i.i.d. Rademacher variables. With a slight abuse of notation, we let Z =
(R, T,Y(0),Y(1),X,¢) and Dy = {Z;}ics. Then,

= 2ED§V { sup ]\4_1 Z EiFigOT (X?Aﬂp{}"ﬁqu)
PNESHPNRS 7
]\4_1 Z GZFZXz
ieJ

where (i) holds by utilizing Ledoux-Talagrand contraction inequality in Ledoux and Ta-
lagrand (2013), notice that o(-) is a (2K3)-Lipschitz continuous and ¢,(0) = 0. Here,
E(eI'X) = 0, sup; < j<g4 [eI'X(j) [y, < o, and with r > 0 satisfying 1/r +1/¢ =1,

sup E{eI‘X(j)}Q: sup E{’YN(X)XZ(])}
1<5<d 1<j<d

oz < { oS s
NN R

}

M) aliX[ Alxrge<r

(4)
< 8K3Ep, sup
SV

A=Al <t

< 8K3tE7_)§V

9

oo

, (i)
<) egXG)I 2 < 2V 120y < 20?0,

where (i) holds by Assumption 3 and ||X(5)||p2, < 2"/ 7o using part (c) of Lemma E.2.
By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022), for any « > 0, with probability at
least 1 — 3exp(—u),

‘Ml Z 61X
ieJ

<Tro \/ 2eyn{u+log(d)} | ¢ioy/log(M){u +log(d)}
M M

oo
< aju+ agy/u + as,
where ¢} > 0 is a constant and

_ Co/log(M)
=7

. 2eyN
as =Troy\ ——
2= TN T

ay

2cyn log(d) — cyoy/log(M)log(d)
ag ="Tro + .
M M
By Lemma E.3,
ED;, ‘M‘lzezf‘zxz <12a; +3ﬁa2+a3
ieJ

o0

e 20%{\/@4_ 37} + c’lm/log(M])\ilog(d) +12}

2 1
< ldro %{ log(d) +3v/7} < 12770 C'VNMOgM),
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when M~y > C;log(M)log(d), where Cy = ¢ (4cr ). Hence, (F.11) follows.
Step 3. We showcase that, with some constants 02, c1,c2 >0,

YNKIL N log(d)

(F12)  Pp, (Z(t) + 205 Al ,Vt>0> <cjexp(—caMn).

Define z*(t) = yv{ri/8 + 2K30t\/log(d)/(M~n)} and F = {£f(-): f(x) =Tga(x) —
E{Tga(X)}, ||All2 =1,]|Al1 =t}. Notlce that 0 < ga(x) < K33 for all x € RP, it follows

that | f(x)| < K33 for all f € F. Besides, notice that

supE{f*(X)} <  sup  E{Tga(X)} < K.
feF 1Al2=1,] A=t

By Theorem 3.27 of Wainwright (2019) and (F.11), we have
Ppy, (Z(t) > Ep, {Z(t)} + 2*(t))

M{z* (1)}
=X <_ Re[KP + 2KE{Z(1)}] + 4K3Z*(t)>

Mrynk}E/64 + AK20%t%1og(d)

<expq -
22K3 + 2032K3rto /W89 + Kary /2 + 8KZoty /D
Mrynk? /64 4+ K2o2t?log(d
— exp NKp /64 + K30t log(d)

22K3 + Ky /2 + (8 + 2032r) Koty /244

It follows that

Ppy, ( sup  fn(A) Zg(t)) < h(t),
lAll=L[[All.<t

where a = K??UQ, b= /<a12/64, c=(8+ 20327")K§o" d= 22]{% + K3ry/2, dh = (2 +

10167’)K30’, Cg = fﬂ/&

_at2 log(d) + bM~yy

et/ D +d

n log(d)
M

g(t) =cht + c5vN, h(t) =exp

Now we apply a peeling argument to extend the radii ||A||;. For each m > 1, define
An={AeR?: Al =1,2" oy < g(| A1) < 2" |

Notice that g(t) is a strictly increasing function, g~ (t) = (c}) 1 (t — cyyn )/ M/{yn log(d)},
and g(t) > c4yy for all ¢t > 0. Let ¢ = logy{ch/(cch) + 1} and t,, = 5(2™ — 1)/c}, >
cym/ch for all m > 1. Then,

Pp, (HA eR? st |Allz=1, fn(A) > 29(IIAH1))

(i) &
< Y Py (A€ Ay st fn(A)>2g(|AlL))

m=1

?z%( sup mmmmw@

A=Al <g='(2myNe2)
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IN

M 30

> M
h(g~ (2N K /4)) = hitpy]| ——
at? +b
_M m
eXp( Vtherd)

b atm
—MyNy——F— —M
o (M) X e

ty >0t

1

3
I

<

(]

28

b atm
= —MyN——— -M
/exp( 7N00_1+d>+ Zexp{ 7N6+da}

m<c) m>c)

, acgm

exp{ Myng fffdg)}

1—exp{ Myn - (C+d0)}

IN

o

IN

b
=) exp <—M7NCU_1 n d) +

<cyexp(—coMyy),

when M~yy > ch(c + do)log(2)/(acy), where ¢ = cﬁl + 2 and ¢ = max[b/(co™! +
d),2acy /{ch(c + do)}]. Here (i) holds since Pp; (Upe_;A,,) = 1, (ii) holds since A, €
{A:|Allz=1,]|Al1 < g Y(2™ynch)}. Hence, (F 12) holds.

Combining (F.10) and (F.12), with probability at least 1 — ¢; exp (—caMyn),

lo
MY Liga(X, >7N{m/4—2cg Af”mu}, VAl =1
1€Ty

It follows that

K lo
Pm( > Tiga(X; >’7N{4[_202 ]\5( )HAH }) >1—crexp(—c2Myn).

€Ly

Choose a =y, k1 = k;/8 and kg = ¢, when M~y > max{Cy, c? log(M)log(d)/(4r?)},

where Cy = %&d(") log(2), we have (F.9) holds with probability at least 1 — ¢ exp(—co M~yy).
n

PROOF OF LEMMA F.2. By Theorem 1 of van de Geer and Lederer (2013), we have
Pp, (&) <1 —2exp(—t).
Moreover, On &, when 0 <t < 0.01M vy,

I 0.01M~2%  0.01M~n
Ay vl <2y = + M7 —0.217y.

0.79’}/]\7 < :Y\N < 1.21’)/]\[.

Hence,

In addition,

VN_I‘:WN—VN’<2\/tVN/M+vt'0-01M7N/M<266 t
N N T 0.79vn - Mn
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PROOF OF LEMMA F.3. For any 0 < ¢ < 0.01M~yy <0. OlME( ), similar to Lemma

F.2, we also have Ep := {|M 'Y, T; —E(T)| < 24/tE(T)/M +t/M} occurs with prob-
ability at least 1 — 2exp(—t). On the event ET,

t
—1l<2. S TIE(TY < M~ T, < 1.21E(T).

‘_ 66 MET) 0.79E(T) < 'Eej ; < (T)
1

E(T)
M-t Ziej 1;
Hence, on the event £ N E,,

MUl BO| Fv-awl
M1 ZieJTi E(T)|~ M~! ZiejTi 7

1 tYN t t
< (o /N4 ") 12 S
= 0.79E(T) ( M M> 2600814 [ SR
< 2.1 tYN n 2.66 [tynpNa < 5.32  [tyn
=0V TEMV T M SEMV M

since 0 <t < 0.01M~vyn, yv =pn,1 E(T), and py1 < 1.1t follows that
_ 532 [0.01M~2,
— < <0.54 .
2! =g ) M > PN,1

0.46pn1 <pn,1 < 1.54pn 1.

E(T)
ieJTZ

-1

\5N,1 *pN,1| = ‘

Hence,

Moreover,

PN,1_1‘ DN — D1 532{E VI tyw /M <12

PN PN 0.46pN 1 M N

PROOF OF LEMMA F.4. Under Assumption 1, we have
g =E{pn(1,X)} = E{yw(X)/7(X)} = E{yn(X)} =7~ and
png =E{yw(X)/m(X)} SE{yw(X)}/c=n/c

Therefore, py,1 < yn. By Taylor’s theorem, we have

30a(A;PN1; By1; ) = (M) ~ exp{ X7 By, +oA)HXTA)?
ZEJ
> (cMpn,)~" ZD’ exp{—X] (85, +vA)}(X] A)?,
ie T

with some v € (0, 1) on the event £;. Hence, Lemma F.4 follows directly from Lemma F.1,
with a =pn 1, v =, and ¢(u) = exp(—u) using the fact that py 1 < . =

PROOF OF LEMMA F.5. For any a € (0, 1],

~ x FZ *
Vﬁeﬁ(lgp7l7 a;m ! Z { - a/ﬂ'*(Xz) eXp(_X’LTBp,l)} X

ieJ
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Let U; = [1 — I';/n*(X;) — Tiexp(=X{ B 1) /{pn,17*(Xi)}]X; and set U as an indepen-
dent copy of U;. By the construction of IBp,l’ E(U)=0.Foreach 1 <j <d,

S UGl < {log(2)} 2 {1+ + (epn1) " exp(CxCp)Cx } = O(vi1),
<j<

since p]_v 1 <7 as in Lemma F.4. In addition,

1iu1<>dE{U2(j)} <2E{1+T/*(X)}* + 2E { (cpn1) v (X) exp(—-X T 8)X2(5) }

< (1+ ¢ )%+ 2(epwa) 2w exp(20xCp)Ck = 0113 ).
By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022),
t+1 1 t+1
hir o] o [ER eV BROTI 01

= M’YN Myn

o0

with some constant ¢ > 0. When M~y > C log(M) log(d), we have

t+ 12+ log(d)

Pp. | [IVals(8*; >y | —— O ) < Bexp(—t),
D, (H Bl (B W) o Mo ) p(—1)

with some constant ¢ > 0. Besides, observe that
IVala(By1;Dn1m) = Vla(B%pn1; 7)o

_|PN1 1‘
PN1

|(MPN,1)1 Z W*?)Z() exp(—XTB3%)X;

i€l

oo

LetW; =T} exp(—XlTB*)Xi /7*(X;) set W as an independent copy of W;. Note that
sup [[W(j)|l,, =O(1) and sup E{W?(j)} < exp(2CxC)Cxyn/c=O(n).
1<j<d 1<j<d

By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022) and note that py 1 < vy, we have

D<H(MPN1 Wi - pyLE(W)
ieJ

o0

t +log(d \/log ){t + log(d > < 3exp(—t)

M'YN M~yn

with some constant ¢ > 0. Notice that, we also have |[py}E(W)| o < exp(CxCg)Cx/c.
Hence, when 0 < ¢ < M~y /{log(M)log(d)} and M~y > C1log(M)log(d) with some

constant C'; > 0, we have
log(d)
>cql+ < 3Jexp(—t),
{ Mo p(—1)
0

Po, '|<M7N>—lzwi
1€

with some constant ¢ > 0. For any 0 < ¢t < 0.01M~y, by Lemma F.3, we have

t t
‘IZN*l—1‘ <12 =)
PN, Mpn1 My
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with probability at least 1 — 4exp(—t). It follows that, when 0 < t < M~y /{100 +
log(M)log(d)} and M~y > Cylog(M)log(d),

~ ko~ " ~ N t+ log(d
Ppy, (Hvﬁ%(ﬂp,l;pw,l;w ) = Vgla(By 10817 ) loo > € va()> < Texp(—t),

with some constant ¢ > 0. Therefore, we have

<10exp(—t),

S~ s t 4 log(d)
Pp, (IIVﬁfﬁ(ﬂp,l;pN,mr Moo > K3 Mow

with some constant «3 > 0. ]

PROOF OF LEMMA F.6. By the Cauchy-Schwarz inequality, for any A € R¢,

1 1 2 2
ey T Fi{l pnexp(—X] B; } XTI A2
{W(Xz) W*(Xz)} Z +hy1exp(=X; B,1) X7 A
i€J
<2 M {14y exp(2CxCp)} > T {R(X:) — 7 (Xi) 12 TulXT AP
ieJ 1eJ

rfAP2 < M2
v —
ieJ

By Lemma F.3 and note that py 1 < v, we have P>, = Op(75>). Under Assumptions
4, we have (Myn) ™' ;e Di {R(X;) — 7%(X4)} < €% on the event &, with Ppy (£) =
1 —o(1). In addition, by part (b) of Lemma E.6, we also have
Yier, TilXT A2 [, tlog(N) } (\\Ayflog(d) log(N) , IIAH2>
Mryn Nyn ~ Non Noyw 2)

uniformly for all A € R? with probability at least 1 — 3exp(—t). Set t = Ny /log(N) and
note that M =< N, we have

(Myn) ™' Vg, TilXT AP
Pp, sup - <c|>1-3exp{Nyn/log(N)},
(AE]Rd\{O} |A[[log(d) log(N) /(M) + [|A[3

with some constant ¢ > 0. Combining the results above, on the event £, we have uniformly
for all A € R?,

§c{1+

NINETS (HAh log(d)log(N) , \IAb)

M~y

with probability at least 1 — 3exp{/Nyy/log(/N)} and some constant ¢ > 0. (]

PROOF OF LEMMA F.7. Let S C {1,...,d} be the support set of 3 ;. For any A € R?,
we have [|B), + Alli = [[8;1 5 + Asll + |Ase[l1 = (851 sl = [[Aslly + [|[Age]lr =
185101 — | Asll1 + [ Ase|l1. On the event By, we also have [V gl (8 Pn.1;7)lloc <
rgy/{t +log(d)}/(M~y). Choose \g > 2k3+/{t +log(d)}/(M~y), then it follows that
|vl3hzﬂ(18;1;ﬁN,1;7r*)TA’ < AgllAll1/2 < Ag([|Asellr + | Asll1)/2. Together with (E.7),
we nave

F(A) > 6la(A;pn1; Bh1i ) + Ag(|| Ase

1/2— ||Agll1/2) + A

1— |Aslli — [|Ase

= 50p(AiPx 13 B51:7) + Aa(| AL — 4| As]h)/2+ T A
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Moreover, on the event B3,

log(d) log(N)

F.14 TAl< A
(F14)  |r; \_CCN<H 1 Mo

+ HAIZ) < AsllAllr/4+ cCnl|All2,

since Ag > 2k3+/log(d)/(M~n) and (n < k3/{2c/log(N)} under Assumption 4 when N
is large enough. Together with (F.13) and (F.16), we have

F(A) 2 6lp(A:;Dxa: By ) + Ag(| A1 = 4] As]1)/2 = Mgl All1/4 = eCn || A2
(E15) > 805(A:PN1; By 1iT) + Asl AllL/4 = (2y/551 s + cCx) 1ALz,

since [|Agll1 < /5p1l|Asll2 < \/spil|Alla.
Additionally, if A € K(ry,1), we have ||A||; < ryl||All2 and ||All2 = 1. Hence, on the

event B1 N E,,

~ N N log(d)

5la(A; PN, B3 7) > e | AllF - Al
o ipwasB5.7) 2 o AR - P A
73 log(d)

(F.16) zc{yAug— Vo

HAH%} > | AIR/2= /2

when 0 <t < 0.01M~yN and N is large enough, with some constant ¢ > (. Besides, we
also have (2,/5,1Ag + c(n)||All2 < ¢/2 when N is large enough since |All2 =1 and

2/Spidg + (v =< \/sp1log(d)/(Mvn) + (v = o(1). Together with (F.15) and (F.16), we
have

F(A)>c/44+ Ng||All1/4>0.

F.4. Proof of Theorem 4.1. In the following proofs, we will consider the events &, &,
B1, B2, and Bz, defined as in (F.1) — (F.6). Additionally, the events &£ and & are defined in
Assumption 4, and £ 5 is defined in Theorem 4.1.

PROOF OF THEOREM 4.1. By the construction of 3,1, we have

£a(Bp,1;Pn,157) + Asl|Bpallt < La(Bp1: PN T) + AsllBpalli-

Let A = Bp,l — 3.1, then we have F (A) < 0. Condition on the event gg N l§3. Together

with Lemma F.7, when NV is large enough, we have
(F17) 0> F(A)>dlg(Aipna; By i 7) + AgllAll/4— (255108 + cCn) | All2.

Since the loss function £g(-; D,1;7) is convex, 5275(A;@V71; B;1;7) > 0, and it follows that
AgllAll1/4< (255128 + ()| All2- That is,

2¢ M
(F.18) HAHI < 4(2,/8;771 —|—CCN/A3)HAH2 < (8‘ /Sp.1 + REN log’zg)) HAHQ,

since A\g > 2k3+/log(d)/(Mrn). Let ry = 8,/8p1 + 3 ' 2¢(n+/M~n/log(d). Then

|All1 < ry||Azll2 with ry = o(y/M~yn/log(d)) under Assumption 4 and since s); =
o(Mrn/log(d)).
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In the following, we further prove that [|Al[|2 <1 by contradiction. Suppose that [|Allz >
1. Define A := A/||Al|2, then ||Aljz =1 and | A, = |All1/||All2 < ry = ry]||All2. That
is, A € K(ry,1). By LemmaF.7, F(A) > 0. Define u = 1 /|| A ||z, then 0 < u < 1. Note that
F(-) is a convex function, F(0) =0, and F(A) < 0. Hence,

0< F(A)=F(uA + (1 —u)0) <uF(A)+ (1 —u)F(0) = uF(A) <O0.

Therefore, we must have ||A|l < 1.
Now, further condition on B1 N &,. As in (F.16), we also have

~ N .~ log
Mﬂ(A;pN,l;ﬁp,l;w)zc{HAH% ”HAHl}

4 log(d)
.19) N NN
when N is large enough, with some constant ¢ > 0. Together with (F.17), we have
c|Al3/2+ AgllAllL/4 < (255108 + cCn) | All2.

It follows that A = /@p,l — B, satisfies
(F20) [1Bp1 — Byall2 < 4y/spirg/c+ 2y,

~ 2 M
(F21) \ﬂp,l—ﬂ;,1|hsTNuA||zs(8M+ fj 1OgZN)>(4\/mﬁ/c+2cN>-

Since Ag =< /log(d)/(M~n) and Bl N Bg N Bg NE,NEr =1—o0(1), we conclude that

1 1 M
||A\z=op< Og”wv) |Ali=0 <sp,\/°g cN\/logW)

In addition, by (E.7), (F.19), and F(A) < 0, we also have

MsllBpall <Vl (Byaibv.as m) T Al + Al Byl + [rr Al = | A[13/2

(i .
< Ml All/2+ 2118511+ Agll Al /4+ cCnl[All2 — ¢l A13/2

i) .
< 32gl1Bpalli/4+7Ag]1 Byl /4 + eCn | A2 = cll All3/2,

where (i) holds by ]V[;Zg( ;jl;ﬁN,l;w*)TA\ < Ag||Al|1/2 and (F.14); (ii) holds since
[A[[1 <[[Bpllr + I8, 111- Then, it follows that

AalBpall < TAIBy 1 [+ 4cCwl| Al = 2¢| A3 < TAgCp + 2R,

since [|3,1]1 < Cg under Assumption S and 4c(y|[Afl2 — 2c||Al3 = —2¢(||All2 —
(n)? + 2¢C3 < 2¢(%. Hence, we have HB\pJHI < 8Cpg as long as (% < (2¢) " 'A\gCs =

log(d)/(M~y), which occurs when ¢y = o({log(d)/(M~x)}'/*) and N is large
enough. ]
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FE.5. Proof of the results in Section F.2.

PROOF OF LEMMA F.8. By Lemma F4, py 1 =< vn. Under Assumptions 4 and on the
event £, NE 5 we have

(F22)  6la(AsDn,1,B; &% 7) = (MPn,1) 1ZA 7 exP( (X7 Bp1)(XT A)?

(E.23) > exp(—8CxCp)(cMpn 1)~ Zr (XTA)?
eJ

Hence, Lemma E.8 follows directly from Lemma F.1, with a = pn 1, v =0, and ¢(u) =1
using the fact that py 1 < yn.

PROOF OF LEMMA F.9. Assume that m(x) = m*(x) = x’ &*. Note that

2> ieq T eXP(*XiTBp,l)Xﬁz
Mpn7(X5)

Vala (65 pN,1, By i) = — = (Mpn1) DV,

ieJ
where \A/'Z = -2I'; exp(—X?ﬁnl)Xiei/ﬁ(Xz’). Foreach1 <j<dandi€ J, we have

Eo, {Vi() | (Re 1 Xi)ies )
2 17 (Xy) exp(—XT By 1) Xi()Epy, {ei | (Ri, T Xadie )
. —QFi%_l(Xi) eXP(_XiT@p,l)Xi(j)EDN (e [ Xq) =0,

where (i) holds since by construction, 7(-) and ,@p,l are only dependent on (R;,T;,X;)ic.7;
(ii) holds under Assumption 1. By Proposition 2.5 (Hoeffding bound) of Wainwright (2019),

for any u > 0,
u2
>U| Rzanvx)zéj <2€Xp aAa~— 9 9

2
2 Zie] Oij
if \Afl (j) is sub-gaussian with parameter o;; > 0 conditional on (R;, T}, X;);c7. Condition

> Vi)

i€J

on&,NE 5 Under Assumption 6, U?j can be chosen such that

of < 40217 (X;) exp(—2X] By1) X3 (j) < T,

with some constant ¢ > 0. Let u = c(1 +t), /log(d) >, ; I';. By the union bound,

>V

eJ

>u | (R, T, Xi)ieq | < 2exp{—tlog(d)}.

(o)

By Lemma E.3, when 0 < ¢t < 0.01Mpy 1, with probability at least 1 — 4exp(—t), we have

PN, > 0.46py 1. Meanwhile, we also note that py,1 = > ic 7 Ti/ D i s Ti <D i 7 Ti/M =
A~ . Hence

u  c(l+1) log(d)M’yN log(d 1) log(d)
Mpn,1 Mpn,1 MPN 1 0.46MpN,1
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In addition, note that px;1 < vy by Lemma F.4. Therefore, on the event &, N £ 5

log(d)
Myn’

||V f ( valw@pJ’ )||00§H4(1+t)
with probability at least 1 — 2exp{—tlog(d)} — 4exp(—t) and some constant x4 > 0. [

PROOF OF LEMMA F.10. Consider the general case that m(x) # m*(x) = x a* is al-
lowed. Let V; = —2T; exp(—XTB* 1)Xiei/m*(X;) and let V be its independent copy. Then,

IVala(@:x. B0l = (M) 3V
eJ
By the construction of a*, we have E(V) = 0 € R%. Under Assumptions 6, 4, and 5, we
have sup;<;j<q |V (j)lly, < 2¢ 'ocexp(CxCp)Cx for each j < d. In addition, under As-
sumption 3, with some r > 1 satisfies 1/r +1/q =1,

sup E{V?(j)} < 4c ?exp(20xC)CxE{yn(X)e*}
1<j<d

<42 exp(20xCp) Cx v ()llzgllellE 2r = O(yw).
By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022), with some constant ¢ > 0,
MYV > c\/’YN{t +log(d)} Y log(M){t + log(d)}
ieJ Z M M
7

Together with Lemma F.3, when 0 < ¢t < M~y /{100 + log(M)log(d)} and M~y >
Cilog(M)log(d),

< 3exp(—t).

[e.e]

. s t + log(d)
. < _
<||v K ( 7pN17/8p7177T )||OO>KV4 M’)/N _7exp( t)?

with some constant k4 > 0. ]
F.6. Proof of Theorems 4.2 and 4.3.

PROOF OF THEOREM 4.2. Let the OR model be correctly specified. For any 0 <t <
0.01My, let Ag > 2r3/{t +log(d)}/(Myn) and Aa > 2w4+/{t +log(d)}(Mv).
Then, on the event Ay, we have 2||V o lq(a* ,pN1 ﬂpl, 7)|loo < Aa- By Proposition 9.13
of Wainwright (2019), on the event Ay, we have & — a* € C(S5,3) := {A € RY: || Ag:|; <
3||As|l1}, where S C {1,...,d} is the support set of a*. By Corollary 9.20 of Wainwright

(2019), on A; N Ay, when M~y > 32k255 log(d) /K1,
~ 3s5A ~ o~ 3\/ SaA
m"ﬂ la—a|y < =5,

la =y <

Here, by Lemmas E.5, E.§, and F.9, as well as Theorem 4.1 and Assumption 4,
Pp,, (A N Ay) >1—12exp(—t) — 2exp{—tlog(d)} — c1 exp(—caMryn) — o(1).

Hence, if M~y > max{log(M), sp1,sa}log(d), with some \g < \/log(d)/(M~y) and
Aa =< /log(d)/(M~n), as N,d — oo,

~ o~k _ log(d) ~ o~k Sa lOg(d)
||a_a|1_op<5a M7N>, ||a—0é|!2—0p< Mox |
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PROOF OF THEOREM 4.3. Consider the case that the OR model is possibly misspeci-
fied. For any 0 < t < M~n /{100 + log(M)log(d)}, let Ag > 2x3+/{t +log(d) }(Mn)
and A\g > 4r4/{t + log(d)} (M~y). Condition on the event A3. Then, we have

(F24) 4”v € ( 7pN1716;71;7T*)H00§Aa-

By Lemma F.9, Pp, (A3) > 1 — 2exp{—tlog(d)} — 4exp(—t). By the construction of &,
we have

la(@:5n,1,Bp157) + Aall@lls < la(@*;Pn1, By 157) + Aalla*1.
Let A = o« — ™. Then,

0la (A PN 1. B: &5 7) + Aall@lt < Vala(@ Py, B D) A+ Aald* |y
(F.25) = Vala(&pn1, 817 A+ Aal &1 + (rp1 +1p2)T A,

where

rp1 =Vala(@ N1, Bp1i®) — Vala(&pn1, 815 7)
=—2(Mpn,1)~" Z {eXp(—X?Bp,l) - eXp(—X?/B;,l)} ' Xie /7(X5)
eJ
and

rp2 _v f ( 7pN1w6p17 ) v f ( 7leaBpla )

— Q(M]/?\N,l)il Z {%(;2) - 7r*(1Xl) } exp(—XZ-Tﬁ;,l)FiXiei.

eJ

We first consider the error term rg:zA. For any a; > 0, we have

1’ _ ;
|I‘p2A| < (Mpna)~ ZF [al { X)) - W*(X‘)} 6? +ay leXp(_2XZTBp,1)|XzTA’2]
ieJ t

Under Assumptions 1 and 6, we have

1?2
(Mpn,1) 'Ep, I { ” } &7 | (Ri, T3, Xs)ieg
ZGZJ T (X5) :
= (Mpn,1)~ ZF { " ! }2ED§V {2 | (Ri, T;,Xs)ies }
eJ T (XZ)
= (Mpn1)~ Zr ! ZED/ (e X;) < e
(X)) VAT =

on the event £ N &, with some constant ¢ > 0. By Markov’s inequality, for any ¢ > 0, the

event
1 2
51 { M’}/N E F { 71'*( Z)} g; _CtCN}

i€eJ
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occurs with probability at least 1 — ¢! conditional on & N &p. Additionally, together with
(F.23), we have

(Mpn,1) "D Tiexp(—2X] 85 1)1 X] A* <exp(20xCa)(Mpn,1) ' > _TilXT AP
ieJ i€J

< coxp(100x C)dla(Ai Py, B; &3 7).
Choose a1 = 4cexp(10Cx Cg), we obtain that, on the event &,
]y A <arety + o (AsPN,1, B &5 7) /4.

Now, we control the term rg’lA. By Taylor’s theorem, with some H lies between 3, ; and

Bp,1, we have

) Al =[2(Mpn1)~! ZGXP(*XZTE)DX?(B;:J — By )X Aci /T(X)
ieJ

~ 2
< exp(8CxCp)(eMpva) ' DT [ {(XIBra-B;0)} e+ a;wx?Arﬂ ,
ieJ

for any as > 0 on the event c‘% since || 8|1 < H,@nlﬂl V IBy 1l < 8Cp. Choose sq :=

[Nyn /{log(d)log(N)}], then sy 1 = o(sp) and CJQV)\%/SO = 0(1) since Nyy > log(d) log(N),
(v =0(1), \g=0(1), and sp, 1 = o(Nyn/{log(d)log(N)}). When (F.20) and (F.21) hold,
we have

1Bor = Ball} | 5
T 1B = Bl = O ((spadh + R+ spa/s0) + (N + RGN/ 50)

= O(sp,l)‘%a + ()

Together with part (f) of Lemma E.6, we also have the event

52::{ Mle ZF { ,Bp,l_ﬁpl)}25?§0(3p71)‘%+gz\7)}

eJ

occurs with probability at least 1 — 3 exp(—t) — ¢! and some constant ¢ > 0 when N is large

enough, conditional on By N By N Bs NENEy forany 0 < t < M~y /{100+1og(M)log(d)}.
In addition, chose as = 4c¢ exp(16CXCg) we also have

exp(8Cx Cg)(azeMpy,) 1D Ti|XT AP < 6la(Aspya. B; &% 7) /4.
ieJ
Condition on the event & N &;. Then,
[(tp1 +1p2) Al et + 1)CR + esp 1\ + lal(A; Py, B @5 7) /2.

Besides, with S C {1,...,d} denoting the support set of a*, we have |||/ = ||as]|1 +
8511 > 18511 = IAs]h + 15y = [ — |As]: + A1 On the even
As, we also have |V /o (&* iDNL By 13T ™ TA| < |Vala(a® DN By 1T oo [ AL <

Agl|Al|1/2 as long as A\ > 2k3 Hlog( ) Together with (F.25), it follows that

5la(A; PN, B &57) + Aa([|Ase |l — [ As]lh)
<AallAll/2+ et + 1) + cspi XS + 6la(A; D1, B; &5 7) /2.
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That is,
(F26)  6la(A;pn1,B; &5 T) + Al Ase

1 < 3Xal|Asll + 2¢(t + 1)C3 + 2¢s), 1)\5
Case 1. If \o || Agll1 < 2¢(t +1)¢% + 2csp,1)\ﬁ. Then, we have
AallAsge

1 <8c{(t+1)C% + sm)\%},

and hence

s, 1 log(d M
\Arh:\ASH1+rAsCulgc{@H)cz% p.1 o6 )} AL

Mryn log(d)’
with some constant ¢ > 0 when Ao < A\g < tt\l/fﬂ Additionally, by (F.26) and on the
event ﬂl N &p, we have

sp,1 log(d) }2 M~y log(d)
M~yn log(d) My’

with some constant ¢ > 0. As (x = o(1) and s, 1 = o(M~yy/log(d)), when N is large
enough, we have

JAR <ef(t+ 1><%+sp,m%}+c{<t+1><%+

sp.1log(d)
< P,
Al _c{<t+1>cN+ LD

with some constant ¢ > 0.
Case 2. If Ao [|Asl1 > 2¢(t + 1)CX + 2¢5p1\5. Then, (F26) implies that [|Ag |1 <
4||As, ||1- Hence,

(F.27) Al =As]+ || Age

1 <5[[Asl1 <5¢/5alAsll2 < 5y/sallAlf2.

Besides, on the event ,11 N &, and together with (F.26), we also have

> ~y .~ , log(d)
A2<c{5€aA, B0 7 +A2}
A < (A;pna1. B ) Mon (PANI

log(d) log(d)
<c{alash+ P A} < c{oalal + A jal;

Meanwhile, by (F.27), we also have ||A||2 > |A[|?/(25s5). Since sg = o( M~y /log(d))
and A\, =< +/log(d)/(M~n), we have

log(d
A1 <csg ]\5(),

TN

with some constant ¢ > 0 when NV is large enough. Together with (F.27), we also have

8&10 d
PNEEp L

YN
with some constant ¢ > 0.
Lastly, combining the results in Lemmas F.3, F4, E.5, E8, F.10, Theorem 4.1 and under
Assumptions 4, we have the event £,NE; NEN 5’1 N 82 N 5 N .A1 N A3 N &1L NEy occurs with
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probability at least 1 — 21 exp(—t) — 2¢; exp(—coM~yn) — 2/t — o(1). Combining Cases 1
and 2 above, we conclude that

|a—a*|i=0, <(Sa +3p,1)\/;4g—,(y]\3+cj%[m) ,

~ o~ & log(d
&-a=0, (\/( VR )+cN).

APPENDIX G: PROOF OF THE PROPERTIES OF THE SEMI-PARAMETRIC BRSS
ESTIMATOR

Recall that M = N/2. For each k € {1,2} and ¥’ = 3 — k, we have

’ F ’
Blopmss =M 1Y {XTal) 4 L (v —X7a")) 5,
€Ty /\(N,)I(Xl)ﬂ-(k)(xl)

where j?(N)l (X;) = (XTB 1t log(ﬁN)l)). In this section, we consider the case that k =1,
the case for k = 2 will follow analogously Here, we have

(G-l) é\l(é})’-BRSS -1 Z wN 1 + A1 + A2 + A?)a
i€Zy

where

s ~x I'; ~ %
Una(Zi) =XT & + = (Y Xia*) -0y,
’ (X’L

- Li 75?0 _ &
M Z{"}/l Xi (Xl)}XZ( )7
r

\Q

i€,

1

S }X?(a@)—a*),
'611{ ’YN(XZ')

€1

1 ) AN [

with %(\})(-) = %(1)(~)g’9§\1[)1(-) and Yy (+) :== 7*(-)pjy 1 (+). Based on the constructions of ,8(1)
and &? and by the Karush-Kuhn-Tucker (KKT) conditions, we have

(G.2) Ay =M1

%
Ag =M -1
%

(G.3) MY { } Xil| < Ags
i€l 7}\} (X ) 0o
I exp(—X;
(G4) j;f) Py (V; = XTa®)Xy|| <o
i, PN, 17T D(X;) -

G.1. The regular and asymptotically linear (RAL) expansion for BALSP_BRSS under a
correctly specified OR model.



60

LEMMA G.1. Let m(-) = m*(+). Let Assumptions 1, 2, 3, 4, 5, and 6 hold. Suppose that

sa = o(v/Nn/log(d)), sp1 = o(Nyn/{log(d)log"*(N)}), Nyn > log(N)log(d), and
(v = o({log(d) /(M~yn)}*). Then, with some A\g = Ao < \/1og(d) /(NN ), as N, d — oo,

§I,SP-BRSS — 01 = -1 Z wN 1(Z;) + Op ((NVN)71/2> .
i€

PROOF OF LEMMA G.1. We first note that py 1 < 7y through Lemma F.4. By Theorems
4.1and 4.2,as N,d — oo,

30 _ g |, = log(d) , 2 | Nn
(G5 By1 = Bpilli=0y (Spvlm T log(d) |’

Go) (80 - ﬁ;JHz:op( SP’”‘MHN),

N"}/N
- - log(d) - ~ sg log(d)
@ _g*|l, = . & @) _ &*llo = a
(G7) Ha (84 Hl Op <Sa N N ) ’ ”O’, o ”2 Op ( N’YN '

Based on the representation (G.1), it suffices to show that
A1+ Ar+Az=0, ((N’YN>_1/2> :

By construction, note that both 7(Y) () and 13(]\1,)1 (+) are constructed based on training samples
S := (R;, Ti,X;),.pw - Hence, under Assumption 1,

1".

E (1)(A3‘8):E (1)[ IZ{ ! }€Z|S =0.
Dy Dy * )

i€y ](V ( Z) ’YN(X’L)

It follows that
r 2

-1 ¢ .

o (4519) =g [ Z{ W) ﬁv(x»}e’ °

1€1y

2
_ 1 1
P {’%”(xi) ) }

1€1y

2
9 _ 1
<cM~™ E T { X %ﬁv(Xz)}

€T,y

with some constant ¢ > 0 under Assumption 6. On the event &; and under Assump-
tions 4 and 5, we have 1/7(0(X;) < ¢!, 1/7%(X;) > ¢!, and pn(Xi) =1+
pg,ll exp(— XT,B* 1)< PN, 1{1 + exp(CxCg)} for all i € Z; almost surely. Hence,
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2 2
=) 1 21+ exp(CxCp) [ - :
<22 { S T {FOX) —mXo}
Bh(x)  Pha(X s

Let Ag) = ﬁ -B,1 +10g(A( ))el and AI()% :pN 1/pN 1 foreach j € {1,2}. By Lemma
F.3 and the fact that 1 — u~! <log(u) <wu — 1 for all u > 0, we have j)(N)l = Op(yn) and
{log(AgDY” < (A} =17+ (1 -1/

2 2

~7) ~(7)
b PN,1 b PN,1 _
(G.8) S e\ B + NIT =0, ((nyN) 1).
PN p]\]71

Together with (G.5) and (G.6), we have
(G.9)

; log( N sp,11og(d
HA(E)HFOp( D) 1 o 'VN) PN ( “,fv”wv).

g
By Taylor’s theorem, for each i € Z;, with some v; € (0, 1),

2

1 1 —2 T g% T A1) 2
— — =py1exp(—2X; 3 1) qexp(—X; Ag’) —1
ﬁ(J\lf)l(Xz) Py (Xi) o P { p }

=p7v?1exp(—?X'fB;,l)exp(—zviX?AE;’)(fo(l))?

= pi exp{—2(1 —v)XT 8, — 20, X7 B 1Al 2 (xT Ay

< i exp(2lIXi oo 1B 1111 + 201X oo | 851 1) (XT AG))2 max{1, (Al 72}
< i exp(18Cx Cg) (XT AGY)? max{1, (AL)) 72,

conditional on the event that || ﬂ i ||1 < 8Cg, which occurs with probability approaching one.
Further conditional on the event 54’ we have

2

F.

—2 7
s { )

(1

b,

(G.10) < cmax{1,(AN]) 2} Myn) 2 Y Ti(XTAG)? + (M) "1¢d,

1€7y

with some constant ¢ > 0. By Lemma F.3, max{1, ( ) 2} = 0,(1). By part (b) of Lemma
E.6 and (G.9),

(Myn) ™) T XTA
1€,
2 2
0, (sp,llog (4)10g(N)  s,,1log(d)

G.11
(@10 (Nyn)? Nvyn

+ (v log(N) + C12v> = op(1),
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as long as s,1 = o(Nvyn/{log(d)log/2(N)}) and (x = o(log™*/4(N)). Together with
(G.10), we have

2
I
(MAyn) M2 Z { (X,) CAE(X) }

1€y

(G.12)

0 3p7110g (d)log(N) N sp.1log(d)
(Nyw)? Nyn

and hence E ) (A%|S) =0, ((Nyn)™!). By LemmaE.1,

+ b log(V) +<%V> — (1),

Az =0, ((NVN)_1/2) :

Now, as for A1 and Ay, we have
-1 Tia@ _ 5*
A+ No=M Z{ W(l)(Xz)}Xl (a® — a*)

€1y
la® —a |,

1’\
Mt Z {1 - } X;
i€l 5](\})()(1) o

(@) ~ ~ (u) sglog(d (uz)
Dapla® &y Do, (D) W, (v ),

where (i) holds by (G.3); (ii) holds by (G.7) and Ag =< +/log(d)/(N~n); (iii) holds if s5 =
o(vNyn/log(d)). L

G.2. The RAL expansion for HA,,SP_BRSS under a possibly misspecified OR model.

LEMMA G.2. Let Assumptions 1, 2, 3, 4, 5, and 6 hold. Let s, 1 = o(/N~yn/log(d)),
sa + sp1 = o(Nyn/{log(d)log"*(N)}), sa\/5p1 = o(Nyn/1og**(d)), Nyn > log(d v
N)log(N) and (y = o((Nyn)~Y?2). Then, with some \g < Ao < \/log(d)/(Nvn), as
N,d— oo,

é\l,SP-BRSS IZ@Z}Nl +0p ((N’YN)_I/2) .

€L

PROOF OF LEMMA G.2. Define Z; := Y;(1) — X &(®) and let £ be an independent copy
of £;. Now we consider the following representation:

(G-13) /0\1(512 BRSS 01 M~ Z ¢N 1 + AQ + A4 + A57
i€y

where Aj is defined as in (G.2) and

T T,
Y D () )
r; r,
A5:_ 12 . - % - gz
= ﬂ(l) 13(]\1/)1 (X4) Piv1(Xa)
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It suffices to show that
Ay + Ay + As =0, ((NVN)*1/2> .

By Theorems 4.1 and 4.3, for each j € {1,2}, (G.9) hold, and

o log(d) Noyn
() _ - B g 2
(G.14) la? = a1 =0y <(Sa+s’”’l)m tow log<d>)’

() ~x Sa + sp1)log(d
@15 & -a =0, W ET R cN) |
YN
For the term Ao, since a? is independent of DE\}), we have
r T
D(l)(AQ) IEX,F |:{1 — W)()} X:| (&(2) — a*) =0,
N

by the construction of 3; ;. For any function f(-) and constant r > 0, denote || f(-)||px,r :=
{Ex|f(X)|"}!/. Then, with r > 0 satisfying 1/r +1/q =1,

Epo (A3) = M~'Exr (Hl Ry jxrae 2)

<M 'Exrp ([1 + W}‘V(FX)}J {XT(&(Q) _ a*)}2>

. {1 +fy;[2 exp(—QXTﬁ*’l)}ny(X) ~(2) 2
— M 'Exr < 1+ {W*(X)}Qp {XT(a 2 _& )}
< M1 n {1 —i-f)/;[Q eXp(QCXCb)}’)/N(X HXT(&(Q) B &*) 2
B c? Px,2r
P,q
& log(d
o0, (o { L saln® 1)

under Assumptions 2 and 3 together with (G.15). By Lemma E.1,

N log(d )
(G.16) Ay = Op ((N,YN)—I/Q\/(S +}9\If;:;]3[ Og( ) +<N> =0, ((N,YN) 1/2) ’

as long as sg + sp.1 = o(Nyn/log(d)) and (x = o(1).
Now we consider the term Ay4. Condition on the event £ N &:. By the Cauchy-Schwarz
inequality, under Assumptions 4 and 5, we have

1 -1 1 ?
A4 <M Z {pN 1 Z F {ﬂ-(l) 7.(.>»<()(2) }

1€Zy 1€Ty

<oy MY TEM YT {%(1)(Xi) - ﬂ*(Xi)}

1€Ty €L,

< cGR(Maw) ™ Y TiE,
€1,

2
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with some constant ¢ > 0. Denote Px ry as the joint distribution of (X,I',Y") and let
Ex r,y(-) be the corresponding expectation. Note that

Epy { Myw)™ DT } =95 Exry (TE)

1€,
2
By [ {z - XT@0 - @)} | 0,0+ 162 - &) = 0,(0)

under Assumptions 1, 2, 3, and 6, together with the fact that ||&®) — &*||2 = 0,(1). By
Lemma E.1, (M~n) ™' Y,c7, T'i€? = Op(1). Hence, as long as { = o((Nyn)~1/?),

A4 =0p(¢n) =05 (N)2).
Lastly, we control the term A5. By Taylor’s theorem, there exists some v € (0, 1) such that

I exp( XT,B 1){exp(XTA( )—1}&

-1 § =A51+A
1 5,1 5,2,
PYATO(Xy)

where
T, exp XT,B(l))XTA( )=
A(l) /ﬂ:(l)(Xi)

Asp =M1 Z

i€Z,

T NS, (12~
Ao 1z:Fexp X,B +vX; Ay (XTAL)%E,
52~ 0 - )

i€, PyaT (

with A(l) = 31(,11) 1+ 10g(A(1))e1 and Aéi = p]\})l/pN 1. Define &3 := {0.46py ;1 <

;5(1\],)1 < 1.54pn.1, ||ﬂp 1||1 <8Cp,Vj € {1,2},sup;c7 |X;| < Cx}. By Lemmas F.3 and 4.1,
&3 occurs w1th probability approaching one. Further condition on the event &s. Then,

exp(— XTB + ’UXTA( )) < exp(9CxCg). It follows that with some constant ¢ > 0,
(G.17) |As | < e(Myn)™' ) T XTA 2z

€1y
Define 5 := {||a'® — a*|| < 1}. Then, P (Eg) =1 —o(1). On the event £ and condi-

tional on Dﬁ), we have

1]l = lle = X" (@ = &)y, < llelly, + X" (@® — a2
(G.18) <o.+ol|la? —a||y <o +o,
Note that under Assumption 1,
Exry(8]|X,I=1)=Exry(Y -X"a?||X,R=1,T=1)
Doy (1Y (1) - XT&® ]| X, 7 =1} D By ) (21 X),

where (i) holds since R 1L Y | (T,X) and Y = Y (T); (ii) holds since T" 1L Y (1) | X.
In the above, Ex ry(:), Ex 7y, and Ex Y (1) denote the expectations with respect to
the joint distribution of (X,I',Y), (X,7,Y), and (X,Y (1)), respectively. Choose some

s < \/Nvyn/{log(d)log(N)}, then \/slog V/(Nvyn) + s2y/log(N)log(d)/(Nyn) =
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[log(d)/{N~ynlog(N 1/4 + 1/4/log(d)log(N ) since Ny > log(d)log(N). By
part (e) of Lemma E. 6 and (G.9), we have
HA Hl slog(d log log
As0=0 A 1
52=0p ( 5 N’YN + | H2{ +o(1)}

_0 sp.1log(d) N CENn Y [ log®/4(d)log!/4(N) Lo
P\ N log(d) (Nyy)3/4 N
+0, <{S”}V1?YgN(d> + g%} {1 +0(1)}>

o [Sralos (@) log H(N) | s log(d)
- (Nyw)7/A (Nyw)*/2

(619) =0, ((NVan)712),

since 5,1 = o(v/N7n/log(d)), (n = o((Nyn)~2), and Nyy > log(d vV N)log(N).

Now, we control the term Aj ;. Define Ag ).— &® — &*. We consider the following
representation:

spalog(d) | .
+ (N Nyy + 2=
CNINN Nyx §

5 5
A5’1 :A5’1,1 + Z Agi,k — ZA?{]{, where
k=2 k=2

T'; exp( XTﬁ b (NS
Asyq:=M"" g 1) , and for each j € {1,2},
- | 7@ (X,)
i€l 7

o Z I, XTA( )8Z {exp(XTﬁ(]}) B eXp(—XZ’TIB*J) } 7

~(7)
PN PN,

1
A gi=MtY

T'; exp( XTﬁ*l)XTA(1)~{ 1 1 }
1€T;

PN,1

Tyexp(~X7 85 )XTADe;

=My
5,1,4 ,
1€Z; PN (X )

I exp XTIB* 1)XTA(1)XTA( )

=M
515 leZI pN,17F (X)

Pexp(-XT8; ) XTAPXTAY
—Exr —
pnaT(X)

By (G.4), (G.9), and \o < y/log(d)/(N~n), we have
I exp XT,8(2 )

Aspp < || M Z g X HAS)Hl
1€, pN 171' )(Xl

o0
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Sp,1 log(d 2 _ —-1/2
OP < N’YN =0p ((NPVN) ) )

since 5,1 = o(v/Nyn/log(d)) and ¢ = o(Nyn)~'/?). For each j € {1,2}, by Taylor’s
theorem, with some v; € (0,1),

D exp[=XT {0,801 + (1 - v;)8; XT AR XT Az,

(]/g\%)l)”apl Vi (])( )

On the event £, with some constant ¢ > 0

| i o
AL ol < e(Myy) Tt Yo TIXT AL XTAD |
1€Z;

o(Myn)™" ) Tl XTA IE] + 2 e(Myn) > T XTA )2|E|
1€T; 1€T;

=0p ((NVN)_W) ,

using part (e) of Lemma E.6 as in (G.19). On the event &3, we have |XTA | <

| log(A}(ﬂN 11X oo (18 i |+ 185 111) <log(0.467! v 1.54) +9Cx Cg for all i € Z. Hence,
by the Cauchy-Schwarz inequality, with some constant ¢ > 0,

. X 2
AV 2 < e(Man) LY (M) LY Ty {%U)(Xi) - W*(Xz‘)}

i€T; i€T;
< R (MAn)™t Y iE
1€T;
< 2eCR (Man) ™" Y Tigd +2eCh (M) ™ Y T{XT (@® — a)}2.
1€Z; 1€T;
Since (Mn) 'E(Y ez, Tie}) = Yy E{7n(X)e?} = O(1), by Lemma E. 1,
(Myn) ™) Tyl =
1€T;

Additionally, by part (b) of Lemma E.6, together with (G.14) and (G.15),

(Myn) ™) T X (@® —a))?

1€T;
_ _ 21002
—0, <(S°‘ +]8\f;;])vlog(d) 1 et Sp’l()Nlji )gd) L&) 4 3+ chtog(V ))
= Op(l)a

since s = O(Nyn /{log(d) log'/?(N)}), sp,1 = o(v/Nyn/log(d)), (v = o(log™/*(IV)),
and N~y > log(d)log(N). Hence,

As513=0,CNn)=0p ((NW’N)_UQ) '

LetV; =T} exp(—XiTB;l)Xiei/ﬂ*(Xi). By the construction of 3; ;, we have E(V;)=0.
In addition, sup;<;<q || Vi(j) |y, < c and sup;<j<y4 E{V;(5)}? < cyn with some constant
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¢ > 0. By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022),

B log(d log(N)log(d log(d)
(Mprva)” E;V _Op< N’YN Ny =0 Ny )’
oo

since Nyy > log(NV). Together with (G.9), we have

|As14] < ||{(Mpna)~ ZV ||A oo

1€Z;
J oo

log(d
~0n (B k) —an ()

since 5,1 = o(v/Nvn/log(d)) and ¢y = o((Nyxn)~'/?). Lastly, denote 5 = s, + sz. By
part (c) of Lemma E.6, (G.9), (G.14), and (G.15) with s < 5 + (% N/ log(d),

Aéji . { slog(d) n slog(d) log(N)}

- NN Nryn

1
[PNSUHENCIE

1 2
slaz  s|ag3

0, | 1A 21 a8 1>

B slog(d) slog(d)log(N) o
—{ N'YN +CN+M+CNIOg(N)}

offyrat o Hye o)

=0p ((NVN)_1/2> )

since Ny > log(d) log(NV), 5 = o( Ny /{log(d) log"*(N)}), sp,1 = o(v/N7n/ log(d)),
Sav/Sp1 =0o(Nvn/ 10g3/2(d)) and (v = o((Nvx)~/?). To sum up, we conclude that

5 5

A5—A511+Z —ZAé?i’k—}—AaQ:op ((NVN)_I/Q) .
k= k=2

n

LEMMA G.3. Let Assumptions 1, 2, 3, 4, 5, and 6 hold. Let s = o(Nyn/log(d)), sp,1 =
o(v/Nyn/log(d)), sgsp1 = o(Nyn/{log(d)}?), (v = o(1//Nvn), and Ny > log(d v
N)log(N). Then, with some A\g < Aq < \/10g(d)/(Nyn), as N,d — oo,

él,sp.BRss 1Z¢N1 +0p ((N’)’N)fl/2> .

i€l
PROOF OF LEMMA G.3. Based on the representation (G.1), it suffices to show that
A1+ As+ Az =0, ((N’yN)_l/2> .
As in the proof of Lemma G.2, we have (G.9), (G.14), and (G.15) hold.
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For the term Ay, same as in Lemma G.2, (G.16) holds when sg + s, 1 = o(Nyn/log(d))
and (= o(1).
As for A1, we have

2
’Al‘ < M- IZ {~(1P — N*];;(l)} M_IZFi {X;T(&(Z) —a*)}Q.

i, \TN (X) N i€y

Denote 5 := sg + sp,1, then

(M) 3Ty {XT ~*)}2] —'E [WN(X){XT(E)?(?) _a*)}j

i€y
2 slog(d)
=0
Py ,2r P ( Ny + %

under Assumptions 2 and 3, together with (G.15) and part (c) of Lemma E.2. By Lemma E.1,
~n )2 slog(d) o
(G.20) (M r{xf@®-a} -o < +¢%).
EDY &) -0, (1) g

1€y
Together with (G.12), it follows that

2 2 S
A?=0, ({ 1108 (1og(N) 5,1 log(d) (i log(NV) +C]2v} {Slog(d) +C12v}>

EDE\})

< (Xl | X7 (@2 - &)

(Nvyn)? Nyyn Nyyn

=0p ((N’YN)_I) )

since sgsp1 = o(Nyy/{log(d)}?), sp1 = o(v/Nyn/log(d)), (nv = o(1/v/Nvyn), and
Ny > log(d Vv N)log(N). Hence, A; = O((N~yy)~/?). Lastly, we consider the term
As. Observe that

Ag :A371 + A372, where

1 1
A371 =M -1 Z - Eq
€1y i pN 1( ) pNvl(Xi)
Z Ly exp(—X] 35 1 ){exp(— XiTAS)) —1}e;
= pnaT(X;) ’
1 1
_M 1 { — }&.
> s L)~ )

By Taylor’s theorem, with some v € (0, 1),

Liexp(~X78;,)e XTI AY

|Azq| < |M!
g; PN (Xz)
F XT * (1) * . XTA(I) 2
12 eXp {/Bpl+v(ﬂ pl)}]sl( 7 B )
€Ly pJIV 11]1/7\7\7 17 (X )

I'; exp( XTB eiX
pNaTH X)

M7

1€y

HA I
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exp(9CxCp)

G.21 X BN e (XTAY))?
( ) + 0.466MpN,1 ZEXI: z|5l’( 1= ) )

when 7(X;) > ¢, HBz(vll)Hl < 8Cpg, and ]’5(]\1,)1 > 0.46pn,1, which occurs with probability
approaching one as shown in Lemma F.3, Theorem 4.1, and under Assumption 4. Since
Y =Y(T) and note that R 1L Y | (7,X) and T 1L Y(1) | X under Assumption 1, we
have E(le] | X, T =1) =E(|Y — XTa*| | X,R=T =1) = E{|]Y (1) - XTa*| | X,T =
1} E(le| | X). Choose some s < /N~y /{log(d)log(N)}, then \/slog /(N’YN) +

s2y/log(N)log(d) /(Nyy) = [log(d)/{N~nlog(N)}"/*+1/1/log(d) log(N) = o(1) since

N N > log(d) log(INV). Since ¢; is a sub-Gaussian random variable, similarly as in (G 19),
by part (e) of Lemma E.6 and (G.9), we have

(MAn) ™) T XTA )2 el
i€Zy

| Ag) ||% slog(d log log 1)
=0 + 1AL 1241 + 0(1
p s N,YN H B ||2{ O( )}

_o [ [#p1los(@ L N log®/4(d) log/4(N) L1
=0y Ny log(d) (N )3/4 VNN
+0p ({W +<}"v} {1+ 0(1)})

0 5;2;,110g7/4(d) 10821/4(N) 5;2),1 log(d) + N+ sp1log(d) +ed
? (Nyn)7/4 (N )3/2 Ny

(G.22)
= 0p ((NVN)_1/2> ;

since 5,1 = o(v/Nyn/log(d)), ¢ = o((Nyn)~'/?), and Ny > log(d VvV N)log(N).
Additionally, let V := I'exp(— XT,B* 1)eX/m*(X). By the construction of 3; |, we have

E(V) = 0 € R?. Note that SUpP;<j<q ||V( )|y, < exp(CxCg)Cxoc/c and with r > 1 sat-
isfy 1/r+1/¢=1,

sup E{V?(j)} < ¢ ?exp(2CxCg) Ok E{yn(X)e?}
1<j<d

< ¢ 2exp(20x Cp) Cx|lyn (X[l g €1 2r = O (7).
By Theorem 3.4 of Kuchibhotla and Chakrabortty (2022),
> | o (e ETet0)
ieT, TN TN
Together with (G.9), it follows that
. Z T exp( XT,B* )X
p 1T (X)

€Ty

([ o )

T exp( XT,B DeX
pPNaT X)

HA“)Hl
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( (Nyy)~ /2
since sp1 = o(v/N7yn/log(d)), (v = o(1/v/N7n), and Ny > log(d) log(N). Together
with (G.21) and (G.22), Ago((Nyy)~/2). L

G.3. Asymptotic normality of the influence function (IF).

LEMMA G.4. Let either m(-) = m*(-) or yn(-) =5 () hold. Let Assumptions 1, 2, 3,
4,5, and 6 hold. Then, E{{}y {(Z)} =0, X}, = Var{y)y (Z)} = O(vy'), and

NS O () = 0p (V) ™12).
1€1

Furthermore, let Assumption 7 hold. Then, i}‘v 1 < 'y]?,l, and we have the following asymp-
totic normality: as N,d — oo,

(G.23) x/ﬁ( ; ) { N G (Z }i/\/(o,n.
i€
PROOF OF LEMMA G.4. Notice that, under Assumption 1,
B (2)) = E [ (X) + =z — 700}~
-<[(33- o]

as long as either m(-) = m*(-) or yv(-) =5 (+). Besides, with r > 0 satisfies 1/r+1/¢ =1,

DY = (DT o - sy o g [T =01
(X ] o< 2|0} ”E[ FhX))? }

=2E(X"a*)? + 2E [yn (X){1 + vy exp(-XT 85 1)}%?]
<2E(XTa*)? + 2{1 + 75" exp(CxCa) Iy () lpgllelf 2 = O(VNY),

under Assumptions 2, 3, 6, and 5. By Lemma E.1,

NS O () = 0p (V) ™2).

1€

Sha =E |m"(X) +

Now, we construct a lower bound for f]*N 1 under an additional Assumption 7.
Case 1. Suppose m(-) = m*(-). Then,

i}‘v,l—E{mWX)—el}uE{ re? ]HE{PE{W(X)—&}]

ERE)E (X
@) i X 2 v (X)e v (X)e?
= EAm(X) — 6} *E[{ <X>}2]2E[m< >}2}

(i) (312)

> exp(—CxC) VN E{yn(X)e?} > cminexp(—CxCa)vy'
where (i) holds since E(¢ | X,'=1)=E(e | X, R=T=1)=E(c | X, T =1) =
E(e | X) =0 and E(I'e? | X) = yn(X)E(e? | X) under Assumption 1; (ii) holds since
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(I8 (X)} 72 =1+ 73" exp(=2XT B} 1) > 73 exp(=2XT ;1) > 7" exp(—Cx Cg); (i)
holds under Assumption 7 and note that E{yy(X)} = x. Therefore,

(Sha1) " =00mw).

Case 2. Suppose yn (-) =75 (). Then,

~, . > .

Ni=E [{m (X)— 61} + X + 2{m*(X) — 91}5}

[ )y 4 o2 g Lo X)) L [ (X))
_E[{ (X) =0 e+ }ZE[ 2 }

—~

1)
> (eyn) texp(—=CxCg)E(e?) > (cyn) ! exp(—Cx Cg)cmin,

where (i) holds since {1—yn (X)}/yn(X) = 1/{m*(X)p}(X)} -1 = {( exp(—XT 85 ,)+
1}/7%(X) =1 > (cyn) ~Lexp(—CxCg) under Assumptions 4 and 5 as 1/7*(X) > 1. There-
fore, we also have

~ N1
(Zxa)  =O00w).
To sum up, as long as either m(-) = m*(-) or yy(-) =7 (-) holds, we have
(G.24) S =N
Additionally, with » > 0 satisfying 1/r 4+ 1/q =1,

- Te
(e c=|m*"(X) =01 + ——
1531 () 2+ Hm< )=+ =

< 17 (Vg + 161] + ‘

g
P,24c :ﬁV (X) P,24c

(@) c
< [[XT ||y o, o +102] + {7 + (evn) L exp(CxCp) } [E{yw (X)[ef>+e}]/*+

= HXTQ*HP,Q—‘rC +[E(X o)

e+ (evw) L exp(Cx Cp) HIvw (X)) e

P,r(2+c)
(i) 0(7]1\[/(2%)_1),

where (i) holds since E(|Te|*T¢ | X) = E(T|e|*™¢ | X) = yn(X)E(|e[**¢ | X) and 1/73(X) =
{1+95 exp(—XT8; 1)} /7 (X) < ¢ 4 (eyn) ! exp(CxCp)s (ii) holds by part (c) of
Lemma E.2 and under Assumption 3. Hence,

(G.25) NP PR () = 0 (V) ™72) =o(1).

It follows that, for any § > 0 as N, d — oo,

~ 2
YW'E [{wfv,l(Z)} L. 1(Z)I>6\/JW} = o(1).
By Proposition 2.27 (Lindeberg-Feller theorem) of Van der Vaart (2000), (G.23) holds. ™
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G.4. Asymptotic variance estimation.

LEMMA G.5. Let the assumptions of Lemma G.4 hold. Let N~y > log(d)log(N),
5= sp1 + sa = o(Nyn/{log(d) log'*(N)}), and (v = o({log(d)/(M~yx)}'/*). Then,
with some \g < Ao < /log(d)/(N~yn), as N,d — oo,

(G.26) i1,sp-131<ss = i*N,l{l +op(1)}-
PROOF OF LEMMA G.5. For each i < N, define g; := n*(X;)g(X] 85, + log(yn)),
gz.(k) =70 (X;)g(XT By1 + log(n 1)), where g(-) is the logistic function and
—(k .
Qﬁgv,)l(z )= XTOt + (Y — XT )/gz 6 sp-prss-

Define £5 := {18V, <8Cz} N {[IB? |1 <8Cg}. By Theorem 4.1, Pp,, (E5)=1—o0(1).
Condition on the event £ 3N E-. Then, foreach i < N,

G27)  1/g" = {1+ 53} exp(—XT B,1)} /7 (Xi) < {1+ exp(8CxCp)pn'y } e
Observe that

where
AP =1 -Ty/g")XT (@ —a®), AY):=Ti(1/3" - 1/g)ei
Note that
2 2
_ ~ (k _ _(k _(k — \ 12
NS @R =N IS - oryg 1) X (@ - o)

k=11€Z, k=11€1,

(i) N )

<Ny {Xf(@-a")}

=1

(G.28)

+c {1+exp(80XC’5 le} IZF {XT (a—a* }2.

where (i) holds by (G.27). By part (a) of Lemma E.6 choosing s = 5 + (% Nvyn/log(d) =
o(N/log(d)), together with (G.14) and (G.15),

N o $*log(d) _ ¢hn | slog(d)
N 1;{)(?(@—04 )}2:0,,( N +101;(d)+ N CN>—op()

as long as § = o(N~yn/log(d)), (v = o(1), and N~y > log(d)log(N). Additionally, by
part (b) of Lemma E.6, together with (G.14) and (G.15), we also have

N
(Nyw) ™'Y TifX] (@ — a*))?
i=1

B 5%1log?(d)log(N) slog(d) B
=0, (TR L g + T 1 ) —oy0),
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if 5 = o(Nw/{log(d) log'/*(N)}) and (i = o(log™/*(N)).
By Lemma F.3 and note that py1 < vy, we have py 1 = Op(yn) and ', = Op(7y')-
Now, by (G.28), we obtain

2
NS (A = 0,(03Y).

k=11i€Z;

Besides, under Assumption 1, we have for each k € {1, 2},

{ LY (Al RuTz;X)ZGDE\f)}:E(&aX)M1ZFi(1/g§k)—1/gi)2.

1€ 1€Ls
Repeat the same procedure as in the proof of Lemma G.1, we also have
(k
(M)~ D Ti1/g = 1/90)> = 0,(1).
1€L

Under Assumption 6, it follows that

{ LY (Al RZ,T,,X)W}:%(%—VU.

ZEIk
By Lemma E.1, for each k € {1,2},

It follows that

k=11i€Z,
Therefore,
SSRGS 3 S S ) S
k=1i€1, k=11€Z; k=1icT,
:OP<7;[1)-

In addition, by (G.24), (G.25), and Lemma D.3 of Zhang, Chakrabortty and Bradic (2023),
we have

N
*2{%,@»}2 = S {1+ 0,1} = 0,3,

Now, we note that

2 N
N S @Y - N (G}
=1

k=11€Zs

2
<N S @) - @)}

k=11i€Z;

NS Gz V{300 (Z) — G (2 >}‘

k=11€Z;
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<N 122{ ¢N1( )}2

k=1 ’LEIk

+2 N—li{J},l(Zz)}Q N- 122{ — 1 (Z )}2
i=1

k=1 ZEZ}C

= 0p(1") + Op(rn D) op(7n" ) = 073" = 0, (Eiv.1).

Therefore,
|2 sprss — Sl
: k) -~/ 2
<IN Y @0y - N Y {dha (2}
k=1i€T, i=1
- Z {QPN 1 } N4

= 0p(Eh1) + S 10p(1) = 0p(Ei)

and (G.26) follows. ]

G.5. Proofs of Theorems 4.4 and 4.5.

PROOF OF THEOREM 4.4. Theorem 4.4 follows directly from Lemmas G.1, G.2, G.3,
G.4, and G.5. [

PROOF OF THEOREM 4.5. Theorem 4.5 follows directly from Lemmas G.2, G.3, G.4,
and G.5. [
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