
Neural Network Verification with
Branch-and-Bound for General Nonlinearities

Zhouxing Shi*1, Qirui Jin*2, Zico Kolter3, Suman Jana4,
Cho-Jui Hsieh1, and Huan Zhang5

*Equal contribution

1 University of California, Los Angeles
2 University of Michigan

3 Carnegie Mellon University
4 Columbia University

5 University of Illinois Urbana-Champaign
z.shi@ucla.edu, qiruijin@umich.edu, huan@huan-zhang.com

Abstract. Branch-and-bound (BaB) is among the most e!ective tech-
niques for neural network (NN) verification. However, existing works on
BaB for NN verification have mostly focused on NNs with piecewise linear
activations, especially ReLU networks. In this paper, we develop a general
framework, named GenBaB, to conduct BaB on general nonlinearities to
verify NNs with general architectures, based on linear bound propaga-
tion for NN verification. To decide which neuron to branch, we design a
new branching heuristic which leverages linear bounds as shortcuts to
e"ciently estimate the potential improvement after branching. To decide
nontrivial branching points for general nonlinear functions, we propose to
pre-optimize branching points, which can be e"ciently leveraged during
verification with a lookup table. We demonstrate the e!ectiveness of our
GenBaB on verifying a wide range of NNs, including NNs with activa-
tion functions such as Sigmoid, Tanh, Sine and GeLU, as well as NNs
involving multi-dimensional nonlinear operations such as multiplications
in LSTMs and Vision Transformers. Our framework also allows the verifi-
cation of general nonlinear computation graphs and enables verification
applications beyond simple NNs, particularly for AC Optimal Power
Flow (ACOPF). GenBaB is part of the latest ω,ε-CROWN6, the winner
of the 4th and the 5th International Verification of Neural Networks
Competition (VNN-COMP 2023 and 2024). Code for reproducing the
experiments is available at https://github.com/shizhouxing/GenBaB.

Keywords: Neural network verification · Branch-and-bound · Linear
relaxation.

1 Introduction

Neural network (NN) verification aims to formally verify whether a neural network
satisfies certain properties, such as safety or robustness properties, prior to its
6
https://github.com/Verified-Intelligence/alpha-beta-CROWN

https://github.com/shizhouxing/GenBaB
https://github.com/Verified-Intelligence/alpha-beta-CROWN

2 Z. Shi et al.

deployment in safety-critical applications. Existing NN verifiers typically compute
certified bounds for the output given a pre-defined input region and check the
desired properties on the output bounds. As computing exact bounds is NP-
complete [20], it becomes crucial to relax the bound computation to improve
the e!ciency. Bound propagation methods [10, 16, 36, 42, 45, 50] have been
commonly used, which relax nonlinearities in NNs into linear lower and upper
bounds which can be e!ciently propagated to finally bound the output of an
entire NN.

To obtain tighter verified bounds, Branch-and-Bound (BaB) has been widely
utilized [4, 5, 7, 11, 25, 43, 48] in state-of-the-art NN verifiers, where BaB it-
eratively branches the bounds of intermediate neurons, such that subproblems
of verification are created and tighter bounds can be computed for each sub-
problem. However, previous works mostly focused on ReLU networks due to the
simplicity of ReLU from its piecewise linear nature. Branching a ReLU neuron
only requires branching at 0, and it immediately becomes linear in either branch
around 0. Conversely, handling NNs with nonlinearities beyond ReLU introduces
additional complexity as the convenience of piecewise linearity diminishes. It is
important for verifying many models with non-ReLU nonlinearities, including:
NNs with non-ReLU activation functions; more complex NNs such as LSTMs [18]
and Transformers [40] which have nonlinearities including multiplication and
division beyond activation functions; applications such as AC Optimal Power
Flow (ACOPF) [14] where the verification problem is defined on a computational
graph consisting of a NN and also several nonlinear operators encoding the non-
linear constraints to be verified. Although some previous works have considered
BaB for NNs beyond ReLU networks, e.g., [16, 46] considered BaB on networks
with S-shaped activations such as Sigmoid, these works still often specialize in
specific and relatively simple types of nonlinearities. A more principled framework
for handling general nonlinearities is lacking, leaving ample room for further
advancements in verifying non-ReLU NNs.

In this paper, we propose GenBaB, a principled neural network verifica-
tion framework with BaB for general nonlinearities. To enable BaB for general
nonlinearities beyond ReLU, we first formulate a general BaB framework, and
we introduce general branching points, where we may branch at points other
than 0 for nonlinear functions, which is needed when the nonlinearity is not
piecewise linear around 0. We then propose a new branching heuristic named
“Bound Propagation with Shortcuts (BBPS)” for branching general nonlinearities,
which carefully leverages the linear bounds from bound propagation as shortcuts
to e!ciently and e"ectively estimate the bound improvement from branching
a neuron. Moreover, we propose to decide nontrivial branching points by pre-
optimizing branching points, according to the tightness of the resulted linear
relaxation, and we save the optimized branching points into a lookup table to be
e!ciently used when verifying an entire NN with di"erent data instances.

We demonstrate the e"ectiveness of our GenBaB on a variety of networks,
including feedforward networks with Sigmoid, Tanh, Sine, or GeLU activations,
as well as LSTMs and Vision Transformers (ViTs). These models involve various

Neural Network Verification with BaB for General Nonlinearities 3

nonlinearities including S-shaped activations, periodic trigonometric functions,
and also multiplication and division which are multi-dimensional nonlinear op-
erations beyond activation functions. We also enable verification on models for
the AC Optimal Power Flow (ACOPF) application [14]. GenBaB is generally
e"ective and outperforms existing baselines. The improvement from GenBaB is
particularly significant for models involving functions with stronger nonlinearity.
For example, on a 4→ 100 network with the Sine activation, GenBaB improves
the verification from 4% to 60% instances verified (NNs with the Sine activation
have been proposed for neural representations and neural rendering in Sitzmann
et al. [37]).

2 Background

The NN verification problem. Let f : Rd ↑ RK be a neural network taking
input x ↓ Rd and outputting f(x) ↓ RK . Suppose C is the input region to be
verified, and s : RK ↑ R is an output specification function, h : Rd ↔↑ R is the
function that combines the NN and the output specification as h(x) = s(f(x)). NN
verification can typically be formulated as verifying if h(x) > 0, ↗x ↓ C provably
holds. A commonly adopted special case is robustness verification given a small
input region, where f(x) is a K-way classifier and h(x) := mini →=c{fc(x)↘ fi(x)}
checks the worst-case margin between the ground-truth class c and any other
class i. The input region is often taken as a small ω↑-ball with radius ε around
a data point x0, i.e., C := {x | ≃x ↘ x0≃↑ ⇐ ε}. This is a succinct and useful
problem for provably verifying the robustness properties of a model and also for
benchmarking NN verifiers, although there are other NN verification problems
beyond robustness [3]. We mainly focus on this setting for its simplicity following
prior works.

Linear bound propagation. We develop our GenBaB based on linear
bound propagation [47, 50] for computing the verified bounds of each subproblem
during the BaB. Linear bound propagation can lower bound h(x) by propagating
linear bounds w.r.t. the output of one or more intermediate layers as h(x) ⇒∑

i Aix̂i + c (↗x ↓ C), where x̂i (i ⇐ n) is the output of intermediate layer i in
the network f(x) with n layers, Ai are the coe!cients w.r.t. layer i, and c is a
bias term. In the beginning, the linear bound is simply h(x) ⇒ I · h(x) + 0 which
is actually an equality. In the bound propagation, Aix̂i is recursively substituted
by the linear bound of x̂i w.r.t its input. For simplicity, suppose layer i ↘ 1 is
the input to layer i and x̂i = hi(x̂i↓1), where hi(·) is the computation for layer i.
And suppose we have the linear bounds of x̂i w.r.t its input x̂i↓1 as:

aix̂i↓1 + bi ⇐ x̂i = hi(x̂i↓1) ⇐ aix̂i↓1 + bi, (1)

with parameters ai,bi,ai,bi for the linear bounds, and “⇐” holds elementwise.
Then Aix̂i can be substituted and lower bounded by Aix̂i ⇒ Ai↓1x̂i↓1+

(
Ai,+bi+

Ai,↓bi

)
, where Ai↓1 = Ai,+ai +Ai,↓ai, (“+” and “-” in the subscripts denote

taking positive and negative elements, respectively). In this way, the linear bounds
are propagated from layer i to layer i↘ 1. Ultimately, the linear bounds can be

4 Z. Shi et al.

propagated to the input of the network x as h(x) ⇒ A0x+ c (A0 ↓ R1↔d), where
the input can be viewed as the 0-th layer. Depending on C, this linear bound can
be concretized into a lower bound without x. We focus on settings where C is an
ω↑-ball as mentioned above, and thereby we have:

↗≃x↘ x0≃↑ ⇐ ε, A0x+ c ⇒ A0x0 ↘ ε≃A0≃1 + c. (2)

To obtain Eq. (1), if hi is a linear operator, we simply have aix̂i↓1 + bi =
aix̂i↓1 + bi = hi(x̂i↓1) which is hi itself. Otherwise, linear relaxation is used,
which relaxes a nonlinearity and bound the nonlinearity by linear functions. An
intermediate bound on x̂i↓1 as li↓1 ⇐ x̂i↓1 ⇐ ui↓1 is usually required for the
relaxation, which can be obtained by treating the intermediate layer as the output
of a network and running additional bound propagation.

3 Method

3.1 Overall Framework

Notations. Although in Section 2, we considered a feedforward NN for simplicity,
linear bound propagation has been generalized to NNs with general architectures
and general computational graphs [47]. In our work, we also consider a general
computational graph h(x) for input region x ↓ C. Instead of a feedforward
network with n layers in Section 2, we consider a computational graph with
n nodes, where each node i computes some function hi(·) which may either
correspond to a linear layer in the NN or a nonlinearity. We use x̂i to denote the
output of node i, which may contain many neurons, and we use x̂i,j to denote
the output of the j-th neuron in node i. Intermediate bounds of node i may be
needed to relax and bound hi(·), and we use li,j ,ui,j to denote the intermediate
lower and upper bound respectively. We use l and u to denote all the intermediate
lower bounds and upper bounds, respectively, for the entire computational graph.

Overview of GenBaB. Figure 4 illustrates our GenBaB framework. Our Gen-
BaB is a general branch-and-bound framework to handle NNs with general
nonlinearities, for NN verification with linear bound propagation. Note that
our contributions focus on the branching part for general nonlinearities, while
bounding for individual subdomains during BaB follows existing linear bound
propagation which has supported general models [47].

We conduct an initial verification using linear bound propagation before
entering BaB. We proceed to BaB only if the initial verification is not su!cient
for a successful verification, and we aim to use BaB to enhance the verification
for such hard cases. In our BaB, we branch the intermediate bounds of neurons
connected to general nonlinearities. We maintain a dynamic pool of intermediate
bound domains, D = {(l(i),u(i))}mi=1, where each domain (l(i),u(i)) (1 ⇐ i ⇐ m)
denotes the intermediate bounds of a subproblem in the BaB, m = |D| is
the number of current domains, and initially we have D = {(l,u)} with the
intermediate bounds from the initial verification. Then in each iteration of BaB,

Neural Network Verification with BaB for General Nonlinearities 5

we pop a domain from D, and we select a neuron to branch and a branching
point between the intermediate bounds of the selected neuron. To support general
nonlinearities, we formulate a new and general branching framework in Section 3.2,
where we introduce general branching points, in contrast to branching ReLU at
0 only, and we also support more complicated networks architectures where a
nonlinearity can involve multiple input nodes or output nodes. To decide nontrivial
branching points, in Section 3.3, we propose to pre-optimize the branching points,
which aims to produce the tightest linear relaxation after taking the optimized
branching point. And in order to decide which neuron we choose to branch,
we propose a new branching heuristic in Section 3.4 to estimate the potential
improvement for each choice of a branched neuron, where we carefully leverage
linear bounds as an e!cient shortcut for a more precise estimation.

Each branching step generates new subdomains. For the new subdomains,
we update l,u for the branched neurons according to the branching points, and
the branching decision is also encoded into the bound propagation as additional
constraints by Lagrange multipliers following Wang et al. [43]. For each new
subdomain, given updated l,u, we use V (h, C, l,u) to denote a new verified bound
computed with new intermediate bounds l,u. Subdomains with V (h, C, l,u) > 0
are verified and discarded, otherwise they are added to D for further branching.
We repeat the process until no domain is left in D and the verification succeeds,
or when the timeout is reached and the verification fails. In the implementation,
our BaB is batched where many domains are handled in parallel on a GPU with
the batch size dynamically tuned to fit the GPU memory.

3.2 Branching for General Nonlinearities

As illustrated in Figure 1, branching for general nonlinearities on general compu-
tational graphs is more complicated, in contrast to BaB for ReLU networks. For
general nonlinearities, we need to consider branching at points other than 0. In
addition, unlike typical activation functions, some nonlinearities may take more
than one inputs and thereby have multiple input nodes that can be branched,
such as multiplication in LSTM (“ft+1⇑ ct” in Figure 1) or Transformers [18, 40].
On general computational graphs, a node can also be followed by multiple non-
linearities, as appeared in LSTMs (such as “ct” in Figure 1), and then branching
the intermediate bounds of this node can a"ect multiple nonlinearities.

To resolve these challenges, we propose a more general formulation for branch-
ing on general computational graphs with general nonlinearities. Each time, we
consider branching the intermediate bounds of a neuron j in a node i, namely
[li,j ,ui,j], if node i is the input of some nonlinearity. We consider branching
the concerned neuron into 2 branches with a nontrivial branching point pi,j , as
[li,j ,ui,j] ↑ [li,j ,pi,j], [pi,j ,ui,j]. Here we consider branching from the perspec-
tive of each node i which is the input to at least one nonlinearity and decide if
we branch the intermediate bounds [li,ui] of this node. This consideration allows
us to conveniently support nonlinearities with multiple input nodes or multiple
nonlinearities sharing an input node. On the contrary, if we consider branching
from the perspective of each nonlinearity, the considered nonlinearity may share

6 Z. Shi et al.

Part of a ReLU Network

! ReLU(!)

Branching !	

"!"# "!"#⊙ $!

$! Tanh($!)

Part of an LSTM

Branching #! 	

Fig. 1: Illustration of the more complicated nature of branching for general
nonlinearities (branching a ReLU activation v.s. branching for nonlinearities
in an LSTM). Notations for part of an LSTM follows PyTorch’s documenta-
tion (https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html).
Nodes in orange are being branched. For general nonlinearities, branching points
can be non-zero (0.86 in the LSTM example here), a nonlinearity can take mul-
tiple input nodes (ft+1 ⇑ ct here), and a node can also be followed by multiple
nonlinearities (ct is followed by a multiplication and also Tanh, and branching ct

a"ects both two nonlinearities).

some input node with another nonlinearity and thus other nonlinearities can also
be a"ected.

3.3 Where to Branch? New Considerations for General Nonlinear
Functions

The more complex nature of general nonlinear functions also brings flexibility on
choosing branching points, compared to the ReLU activation where only branching
at 0 is reasonable. A straightforward way is to branch in the middle between the
intermediate lower and upper bounds, as shown in Figure 2a. However, this can be
suboptimal for many nonlinear functions. Intuitively, as tighter linear relaxation
can often lead to tighter verified bounds [26, 48], we aim to choose a branching
point such that the linear relaxation for both sides after the branching can be
as tight as possible. Therefore, we propose to pre-optimize branching points for
each case of nonlinearity in the model, before actually running BaB on di"erent
data instances. We enumerate all pairs of possible intermediate bounds within a
certain range with a step size, where we set a small step size which defines the

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Neural Network Verification with BaB for General Nonlinearities 7

(a) Branching a Sine activa-
tion in the middle.

(b) Branching a Sine at
our pre-optimized branch-
ing point.

(c) The tightness loss de-
fined in Eq. (3) for di!erent
branching points.

Fig. 2: Illustration of branching the intermediate bounds of a neuron connected
to the Sine activation [37].

gap between the adjacent enumerated intermediate bounds. And we save the
optimized branching points into a lookup table. During verification, for each pair
of intermediate bounds we actually encounter, we e!ciently query the lookup
table and take the branching point for the closest intermediate bound pair in the
lookup table (if no valid branching point is obtained from the lookup table, we
try branching in the middle instead as a backup). An example of pre-optimized
branching points is shown in Figure 2b. We only need to pre-optimize branching
points once for each new model, and the produced lookup table can be used on an
arbitrary number of data instances, and thus the time cost of the pre-optimization
is negligible for the overall verification.

We now formulate the objective of the pre-optimization. For simplicity here,
we mainly assume that we have a unary nonlinear function q(x), although our
method supports functions with any number of inputs in practice. Suppose the
input intermediate bounds for q(x) is l ⇐ x ⇐ u, we aim to find a branching point
p = P (l, u) such that the overall tightness of the linear relaxation for input range
[l, p] and [p, u], respectively, is the best. Suppose the linear relaxation for input
range [l, p] is a1x+b1 ⇐ q(x) ⇐ a1x+b1, and similarly a2x+b2 ⇐ q(x) ⇐ a2x+b2

for input range [p, u]. Following previous works such as Shi et al. [33], we use
the integral of the gap between the lower linear relaxation and the upper linear
relaxation to measure the tightness (the linear relaxation is considered as tighter
when the gap is smaller). We define it as a tightness loss P (q(x), l, u, p) for
nonlinearity q(x) with input range [l, u] and branching point p:

P (q(x), l, u, p) =

∫ p

l

((
a1x+b1

)
↘
(
a1x+b1

))
dx+

∫ u

p

((
a2x+b2

)
↘
(
a2x+b2

))
dx ,

(3)
where the parameters for the linear relaxation (a1, a1, b1, b1, a2, a2, b2, b2) all
depend on p. We take the best branching point p (l < p < u) which minimizes
P (q(x), l, u, p). Figure 2c plots the tightness loss for the Sine activation. This
problem can be solved by gradient descent, or an enumeration over a number of
potential branching points if the nonlinear function only has one or two inputs.

8 Z. Shi et al.

Moreover, we also support a generalized version of Eq. (3) for nonlinear
functions with multiple inputs (such as multiplication involving two inputs),
where we use a multiple integral to measure the tightness for multi-dimensional
nonlinearities. And when a branched node has multiple nonlinear output nodes,
we take the sum for multiple nonlinearities as

∑
q↗Q P (q(x), l, u, p), where Q is

the set of output nonlinearities. As such, our pre-optimized branching points
support general computational graphs.

3.4 Which Neuron to Branch? A New Branching Heuristic
Since a NN usually contains many neurons where branching can potentially occur,
typically a branching heuristic is used to e!ciently decide a neuron to branch,
so that the time cost of each BaB iteration is moderate to allow more BaB
iterations within the time budget. The branching heuristic is essentially a scoring
function for estimating the new verified bound after branching at each neuron,
in order to choose a good neuron which potentially leads to a good improvement
after the branching. We propose a new branching heuristic to support general
nonlinearities.

Specifically, we design a function Ṽ (l,u, i, j, k,pi,j) which estimates the new
bound of the k-th (1⇐k⇐2) branch, after branching neuron j in node i using
branching points pi,j . We use B(l,u, i, j, k,pi,j) to denote the updated intermedi-
ate bounds after this branching, and essentially we aim to use Ṽ (l,u, i, j, k,pi,j) to
e!ciently estimate V (h, C, B(l,u, i, j, k,pi,j)) which is the actual verified bound
after the branching, but it is too costly to directly compute an actual verified
bound for each branching option.

Suppose we consider branching a neuron j in node i and we aim to estimate
V (·) for each branch k. In the linear bound propagation, when the bounds are
propagated to node i, we have:

h(x) ⇒ A(k)
i,j x̂i,j + c(k) ⇒ V (h, C, B(l, i, j, k,pi,j)), (4)

where we use A(k)
i,j and c(k) to denote the parameters in the linear bounds for

the k-th branch, and here c(k) a bias term accumulated on all the neurons. Since
we do not update the intermediate bounds except for the branched neurons
during BaB for e!ciency following Wang et al. [43], branching a neuron in node
i only a"ects the linear relaxation of nonlinear nodes immediately after node
i (i.e., output nodes of i). Therefore, A(k)

i,j and c(k) can be computed by only
propagating the linear bounds from the output nodes of i, using previously stored
linear bounds, rather than from the final output of h(x).

For a more e!cient estimation, instead of propagating the linear bounds
towards the input of the network step by step, we propose a new branching
heuristic named Bound Propagation with Shortcuts (BBPS), where we use a
shortcut to directly propagate the bounds to the input. Specifically, we save the
linear bounds of all the potentially branched intermediate nodes during the initial
verification. For every neuron j in intermediate node i, we record:

↗x ↓ C, Âijx+ ĉij ⇐ x̂ij ⇐ Âijx+ ĉij , (5)

Neural Network Verification with BaB for General Nonlinearities 9

where Âij , ĉij , Âij , ĉij are parameters for the linear bounds. These are obtained
when linear bound propagation is used for computing the intermediate bounds
[li,j ,ui,j] and the linear bounds are propagated to the input x. We then use Eq.
(5) to compute a lower bound for A(k)

i,j x̂i,j + c(k):

A(k)
i,j x̂i,j + c(k) ⇒ (A(k)

i,j,+Âij +A(k)
i,j,↓Âij)x+A(k)

i,j,+ĉij +A(k)
i,j,↓ĉij + c(k). (6)

The right-hand-side can be concretized by Eq. (2) to serve as an approximation
for V (·) after the branching. In this way, the linear bounds are directly propagated
from node i to input x and concretized using a shortcut. We thereby take the
concretized bound as Ṽ (l,u, i, j, k,pi,j) for our BBPS heuristic score.

This computation is e!cient, and it does not a"ect the time complexity of
BaB as the time complexity is mainly dominated by the bound computation after
each branching. Our branching heuristic is also generally formulated. We leverage
updates on the linear relaxation of any nonlinearity, and general branching
points and general number of inputs nodes are supported when we update the
linear relaxation. Node i can also have multiple nonlinear output nodes, as we
accumulate the linear bounds propagated from all the output nodes to produce
Eq. (4).

Comparison to branching heuristics in previous works. Existing branching heuris-
tics from previous works [4, 5, 7, 25] are more restrictive, as they mostly focused
on branching ReLU neurons with a fixed branching point (0 for ReLU) and
their heuristic is specifically formulated for ReLU, unlike our general formulation
above. Even if we directly generalize their branching heuristic to support general
nonlinearities, we also empirically find they are often not precise enough for
general nonlinearities due to their more aggressive approximation. In the existing
BaBSR heuristic originally for ReLU networks [4], they essentially propagate the
bounds only to the node before the branched one with an early stop, and they
then ignore the coe!cients (A(k)

i↓1,j for a feedforward NN) without propagating
further. In contrast, in our BBPS heuristic, we carefully utilize a shortcut to
propagate the bounds to the input as Eq. (6) rather than discard linear terms
early. Therefore, we expect our BBPS heuristic to be more precise and e"ective.

4 Experiments

4.1 Settings

Implementation and additional experimental details are provided in Appendix D.

Models and Data. We focus on verifying NNs with nonlinearities beyond ReLU,
and we experiment on models with various nonlinearities as shown in Table 1. We
mainly consider the commonly used ω↑ robustness verification specification on
image classification. We use the term instance to refer to a data example along
with the corresponding verification specification. We adopt some MNIST [24]

10 Z. Shi et al.

models with Sigmoid and Tanh activation functions from previous works [29, 35,
36], along with their data instances. Besides, to test our method on more models
with various nonlinearities using a consistent training setting for all the models,
we train many new models with various nonlinearities on CIFAR-10 [23] by PGD
adversarial training [27], using an ω↑ perturbation with ε = 1/255 in both training
and verification. The models we train on CIFAR-10 include models with Sigmoid,
Tanh, Sine, and GeLU activation functions, respectively, as well as LSTM [18] and
ViT [8]. We adopt PGD adversarial training, because NNs trained without robust
training are known to be highly vulnerable to tiny adversarial perturbations [13,
38] and formal verification is not possible unless ε is much smaller. For these
CIFAR-10 models, we first run vanilla CROWN [47, 49] (linear bound propagation
without optimized linear relaxation [26, 48] or BaB [43, 48]), to remove instances
which are too easy where vanilla CROWN already succeeds. We also remove
instances where PGD attack succeeds, as such instances are impossible to verify.
We only retain the first 100 instances if there are more instances left. We set a
timeout of 300 seconds for our BaB in all these experiments. In addition, we adopt
an NN verification benchmark for verifying properties in the Machine Learning for
AC Optimal Power Flow (ML4ACOPF) problem [14]7 which is beyond robustness
verification. In the Appendix, we have results on additional models: a ResNet
model [15] in Appendix C.3; models with larger ε = 2/255 and ε = 8/255 in
Appendix C.4; and a ReLU model in Appendix C.5, included for completeness.

Table 1: List of models with various non-
linearities in our experiments.

Model Nonlinearities in the model

Feedforward sigmoid, tanh, sin, GeLU
LSTM sigmoid, tanh, xy
ViT with ReLU ReLU, xy, x/y, x2,

⇓
x, exp(x)

ML4ACOPF ReLU, sigmoid, sin, xy, x2

Baselines. We compare our GenBaB
with the previous ϑ,ϖ-CROWN which
did not support BaB on non-ReLU
nonlinearities. We also compare with
several other baselines, including Deep-
Poly [36], PRIMA [29], VeriNet [16],
PROVER [31], DeepT [1], Wu et al.
[46], Wei et al. [44], on the models they
support, respectively. Among these
baselines, only VeriNet and Wu et al.
[46] support BaB on Sigmoid or Tanh
models, and none of the baseline supports BaB on general nonlinearities. While
the original BaBSR heuristic in Bunel et al. [4] only supported ReLU networks,
we also implemented a generalized version of BaBSR for nonlinearities beyond
ReLU for an empirical comparison in Table 3, based on the di"erence in treating
the linear term discussed in Section 3.4.

4.2 Main Results

Experiments on Sigmoid and Tanh networks for MNIST. We first experiment on
Sigmoid networks and Tanh networks for MNIST and show the results in Table 2.
7 Benchmark: https://github.com/AI4OPT/ml4acopf_benchmark.

https://github.com/AI4OPT/ml4acopf_benchmark

Neural Network Verification with BaB for General Nonlinearities 11

Table 2: Number of verified instances out of the first 100 test examples on MNIST
for several Sigmoid networks and Tanh networks along with their ε. The settings
are the same as those in PRIMA [29]. “L→W ” in the network names denote a
fully-connected NN with L layers and W hidden neurons in each layer. The upper
bounds in the last row are computed by PGD attack [27], as a sound verification
should not verify instances where PGD can successfully find counterexamples.

Method
Sigmoid Networks Tanh Networks

6→100 6→200 9→100 ConvSmall 6→100 6→200 9→100 ConvSmall
ε=0.015 ε=0.012 ε=0.015 ε=0.014 ε=0.006 ε=0.002 ε=0.006 ε=0.005

DeepPolyab 30 43 38 30 38 39 18 16
PRIMAa 53 73 56 51 61 68 52 30
VeriNetc 65 81 56 - 31 30 16 -
Marabou [46]? 65 75 96? 63 - - - -
Vanilla CROWNb 53 63 49 65 18 24 44 55
ϑ,ϖ-CROWN (w/o BaB) 62 81 62 84 65 72 58 69
GenBaB (ours) 71 83 62 92 65 78 59 75

Upper bound 93 99 92 97 94 97 96 98
aResults for DeepPoly and PRIMA are directly from Müller et al. [29].
bWhile DeepPoly and CROWN are thought to be equivalent on ReLU networks [29],
these two works adopt di!erent relaxation for Sigmoid and Tanh, which results in
di!erent results here.
cResults for VeriNet are obtained by running the tool (https://github.com/
vas-group-imperial/VeriNet) by ourselves. VeriNet depends on the FICO Xpress
commercial solver which requires a license for models that are relatively large. FICO
Xpress declined the request we submitted for an academic license due to the lack of a
course tutor. Thus, results on ConvSmall models are not available.
?We found that the result Wu et al. [46] reported on the Sigmoid 9→ 100 model exceeds
the upper bound by PGD attack (96 > 92), and thus the result tends to be not fully
valid (also reported in Zhou et al. [53]).

On 6 out of the 8 models, our GenBaB is able to verify more instances over
ϑ,ϖ-CROWN without BaB and also outperforms all the non-CROWN baselines.
We find that improving on Sigmoid 9→ 100 and Tanh 6→ 100 networks by BaB is
harder, as the initial bounds are typically too loose on the unverifiable instances
before BaB, possibly due to these models being trained without robustness
consideration.

Experiments on feedforward NNs with various activation functions for CIFAR-10.

In Table 3, we show results for models on CIFAR-10. On all the models, GenBaB
verifies much more instances compared to ϑ,ϖ-CROWN without BaB. We also
conduct ablation studies to investigate the e"ect of our BBPS heuristic and
branching points, with results shown in the last three rows of Table 3. Comparing
“Base BaB” and “ + BBPS”, on most of the models, we find that our BBPS
heuristic significantly improves over directly generalizing the BaBSR heuristic [4]
used in “Base BaB”. Comparing “+ BBPS” and “+ BBPS, + pre-optimized”, we
find that our pre-optimized branching points achieve a noticeable improvement on
many models over always branching in the middle. The results demonstrate the

https://github.com/vas-group-imperial/VeriNet
https://github.com/vas-group-imperial/VeriNet

12 Z. Shi et al.

Table 3: Number of verified instances out of 100 filtered instances on CIFAR-10
with ε = 1/255 for feedforward NNs with various activation functions. The last
three rows contain results for the ablation study, where “Base BaB” does not use
our BBPS heuristic or pre-optimized branching points, but it uses a generalized
BaBSR heuristic [4] and always branches intermediate bounds in the middle.
Method Sigmoid Networks Tanh Networks Sine Networks GeLU Networks

4→100 4→500 6→100 6→200 4→100 6→100 4→100 4→200 4→500 4→100 4→200 4→500

PRIMAa 0 0 0 0 0 0 - - - - - -
Vanilla CROWNb 0 0 0 0 0 0 0 0 0 0 0 0
ϑ,ϖ-CROWN w/o BaBc 28 16 43 39 25 6 4 2 4 44 33 27
GenBaB (ours) 58 24 64 50 49 10 60 35 22 82 65 39

Ablation Studies
Base BaB 34 19 44 41 34 8 9 8 7 64 54 39
+ BBPS 57 24 63 49 48 10 56 34 21 74 59 36
+ BBPS, + pre-optimized 58 24 64 50 49 10 60 35 22 82 65 39

aResults for PRIMA are obtained by running ERAN (https://github.com/eth-sri/
eran) which contains PRIMA. PRIMA does not support Sine or GeLU activations.
bWe have extended its support to GeLU, as discussed in Appendix B.3.
cWe have extended optimizable linear relaxation in ω,ε-CROWN to Sine and GeLU, as
discussed in Appendix B.

e"ectiveness of our GenBaB with our BBPS heuristic and pre-optimized branching
points. GenBaB also exhibits much better scalability, where we compare the
model size each method can handle w.r.t. a threshold on the number of verified
instances. For example, if our threshold is 20 verified instances, GenBaB can at
least scale to 4→ 500 (22 instances verified) while ϑ,ϖ-CROWN w/o BaB cannot
even scale to 4→ 100 (likely even much smaller, as only 4 instances are verified
for 4→ 100).

For PRIMA and vanilla CROWN, as we only use relatively hard instances
for verification here, these two methods are unable to verify any instance in this
experiment. For VeriNet, all the models here are too large without a license for
the FICO Xpress solver (an academic license was not available to us as mentioned
in Table 2); we have not obtained the code to run Wu et al. [46] on these models.
Thus, we do not include the results for VeriNet or Wu et al. [46].

Experiments on LSTMs. Next, we experiment on LSTMs containing more complex
nonlinearities, including both Sigmoid and Tanh activations, as well as multipli-
cation as sigmoid(x) tanh(y) and sigmoid(x)y. We compare with PROVER [31]
which is a specialized verifier for RNNs and it outperforms earlier works [21].
While there are other works on verifying RNN and LSTM, such as [9, 28, 30],
we have not obtained their code, and we also make orthogonal contributions
compared to them on improving the relaxation for RNN verification which can
also be combined with our BaB. We take the hardest model, an LSTM for
MNIST, from the main experiments of PROVER (other models can be verified by
PROVER on more than 90% instances and are thus omitted), where each 28→ 28
image is sliced into 7 frames for LSTM. We also have two LSTMs trained by

https://github.com/eth-sri/eran
https://github.com/eth-sri/eran

Neural Network Verification with BaB for General Nonlinearities 13

Table 4: Number of verified instances out of 100 instances on LSTMs and ViTs.
The MNIST model is from PROVER [31] with ε = 0.01, and the CIFAR-10
models are trained by ourselves with ε = 1/255. “LSTM-7-32” indicates an
LSTM with 7 input frames and 32 hidden neurons, similar for the other two
models. “ViT-L-H” stands for L layers and H heads. Some models have fewer
than 100 instances, after filtering out easy or impossible instances, as shown
in “upper bounds”. Results for PROVER are obtained by running the tool
(https://github.com/eth-sri/prover). Results for DeepT are obtained by
running the tool (https://github.com/eth-sri/DeepT). PROVER and DeepT
specialize in RNNs and ViTs, respectively.

Method MNIST Model CIFAR-10 Models
LSTM-7-32 LSTM-4-32 LSTM-4-64 ViT-1-3 ViT-1-6 ViT-2-3 ViT-2-6

PROVER 63 8 3 - - - -
DeepT - - - 0 1 0 1
ϑ,ϖ-CROWN w/o BaB 82 16 9 1 3 11 7
GenBaB (ours) 84 20 14 49 72 65 56

Upper bound 98 100 100 67 92 72 69

ourselves on CIFAR-10, where we linearly map each 32→ 32 image into 4 patches
as the input tokens, similar to ViTs with patches [8]. Table 4 shows the results.
ϑ,ϖ-CROWN without BaB can already outperform PROVER with specialized
relaxation for RNN and LSTM. Our GenBaB outperforms both PROVER and
ϑ,ϖ-CROWN without BaB.

Experiments on ViTs. We also experiment on ViTs which contain more other
nonlinearities, as shown in Table 1. For ViTs, we compare with DeepT [1] which
is specialized for verifying Transformers without BaB. We show the results in
Table 4, where our methods outperform DeepT, and our GenBaB e"ectively
improves the verification. Moreover, in Appendix C.2, we compare with Wei et al.
[44] which supports verifying attention networks but not the entire ViT, and
we experiment on models from Wei et al. [44] and find that our GenBaB also
outperforms Wei et al. [44].

Experiments on ML4ACOPF. Finally, we experiment on models for the Machine
Learning for AC Optimal Power Flow (ML4ACOPF) problem [14], and we
adopt the ML4ACOPF neural network verification benchmark, a standardized
benchmark in the 2023 International Verification of Neural Networks Competition
(VNN-COMP’23). The benchmark consists of a NN with power demands as inputs,
and the output of the NN gives an operation plan of electric power plants. Then,
the benchmark aims to check for a few nonlinear constraint violations of this plan,
such as power generation and balance constraints. These constraints, as part of
the computational graph to verify, involve many nonlinearities including Sine,
Sigmoid, multiplication, and square function. Our work is the first to support
this verification problem. Among the 23 benchmark instances, PGD attack finds
a counterexample on one instance, and our GenBaB verifies all the remaining 22

https://github.com/eth-sri/prover
https://github.com/eth-sri/DeepT

14 Z. Shi et al.

Fig. 3: Total number of verified instances against running time threshold on
feedforward networks for CIFAR-10 with various activation functions. “Base BaB”
means that in the most basic BaB setting, we use a generalized BaBSR heuristic
and always branch in the middle point of intermediate bounds. “Base + BBPS”
uses our BBPS heuristic. Our full GenBaB uses both BBPS and pre-optimized
branching points.

instances. Only 16 instances can be verified if BaB is disabled. This experiment
shows a more practical application of our work and further demonstrates the
e"ectiveness of our framework.

4.3 Time Cost

Table 5: Time cost of pre-optimizing the branching points for models with di"erent
nonlinearities. We only need to run pre-optimization once for each model. The
cost is thus negligible as we have many data instances to verify.

Model Sigmoid Tanh Sin GeLU LSTM ViT

Time cost (seconds) 49 55 112 82 761 746

In this section, we analyze the time cost of our method. Our GenBaB aims to
verify additional instances which cannot be verified without BaB, for models with
general nonlinearities. Average time is not a suitable metric here [43], because
di"erent methods verify di"erent numbers of instances, and a stronger verifier
which can verify more hard instances requiring more time cost will naturally
have a larger average time compared to a weak verifier which can only verify
the easiest instances quickly. Instead, we plot the number of verified instances
against di"erent time thresholds in Figure 3. Such plots, a.k.a. “cactus plots”, are
commonly adopted in previous works [3, 43]. The plots show that our GenBaB
enables the verification of more instances as more time budget is allowed for BaB.
While the baseline without BaB can verify some relatively easy instances within
a short running time (GenBaB can also verify these easy instances during the
initial verification with the same time cost if BaB is not needed), the baseline
cannot utilize the remaining time budget to verify more instances. Time cost for
LSTM and ViT models are shown in Appendix C.1. In Table 5, we also show the
time cost of pre-optimizing the branching points. Overall, the pre-optimization
can be done quickly. As explained in Section 3.3, this time cost is negligible for
the overall verification, as we only need to run the pre-optimization once for each

Neural Network Verification with BaB for General Nonlinearities 15

model and the produced lookup table of branching points can be used to verify
an arbitrary number of instances.

4.4 Comparison with BaB on ReLU for Models Containing ReLU

Table 6: Number of verified instances by GenBaB compared to BaB on ReLU
only, for certain models containing ReLU. For BaB on ReLU only, we show results
for two di"erent branching heuristic (FSB [7] and our BBPS).

Method ViT-1-3 ViT-1-6 ViT-2-3 ViT-2-6 ML4ACOPF

BaB on ReLU only (FSB) 47 70 63 55 18
BaB on ReLU only (BBPS) 47 70 63 55 21
GenBaB 49 72 65 56 22
Upper bound 67 92 72 69 22

Although our focus is on BaB on non-ReLU nonlinearities, some of the
relatively complicated models involved in our experiments still contain ReLU,
and thus we compare our GenBaB with BaB on ReLU only for these models.
Specifically, only ViT and ML4ACOPF models in our experiments contain ReLU,
although they also contain many other nonlinearities. We show results in Table 6.
The results demonstrate that our GenBaB which branches on general nonlineari-
ties outperforms BaB on ReLU only for the models containing ReLU. And many
other models with other nonlinearities do not even contain ReLU. Threfore, our
GenBaB is important for the BaB on models with general nonlinearities. We also
observe that when we only conduct BaB on ReLU for ML4ACOPF, our BBPS
heuristic also outperforms the FSB heuristic [7] which is the default branching
heuristic adopted by ϑ,ϖ-CROWN for ReLU (FSB is improved from BaBSR [4]
and enhanced with a filtering mechanism to compute actual verified bounds for
a shortlist of neurons), and our GenBaB which considers all the nonlinearities
can verify more instances (all the 22 possible instances are verified) compared to
BaB on ReLU only.

5 Related Work

Due to the NP-complete nature of the NN verification [20], linear bound propaga-
tion [36, 45, 50] has been proposed to relax nonlinearities in a NN network using
linear lower and upper bounds and then propagate the linear relationship between
di"erent layers, so that tractable output bounds can be e!ciently computed
for much larger NNs with various architectures [2, 21, 33, 47]. A limitation of
using linear bound propagation only is that the linear relaxation, which depends
on the output bounds of intermediate layers, can often have a limited tightness
as the intermediate bounds gradually become looser in later layers. Therefore,
branch-and-bound (BaB) has been an essential technique in state-of-the-art
verifiers [5, 7, 17, 22, 25, 32, 41, 43, 46, 48] leveraging linear relaxation, which
iteratively branches the intermediate bounds of selected neurons to enable tight

16 Z. Shi et al.

linear relaxation and compute tighter output bounds. However, most of the
existing works on the BaB for NN verification have focused on ReLU networks
with the piecewise-linear ReLU activation function, and they are not directly
applicable to NNs with nonlinearities beyond ReLU. Nevertheless, there are
several previous works on the BaB for verifying NNs with nonlinearities other
than ReLU. Henriksen and Lomuscio [16] conducted BaB on Sigmoid and Tanh
networks, but their framework depends on a commercial LP solver which has
been argued as less e"ective than recent NN verification methods using linear
bound propagation [43]. Besides, Wu et al. [46] studied verifying Sigmoid net-
works with counter-example-guided abstraction refinement. These works have
focused on S-shaped activations such as Sigmoid and Tanh, and there still lacks
a general framework supporting general nonlinearities beyond a particular type
of activation functions, which we address in this paper.

Orthogonal to our contributions on BaB for general nonlinearities, many works
studied the verification of NNs with various nonlinearities without considering
BaB, by improving the linear relaxation or extending the support of verification
to various architectures or specifications: Sigmoid and Tanh networks [2, 6, 50],
RNNs and LSTMs [9, 21, 28, 31, 39, 51], Transformers [1, 34, 44, 52], general
computational graphs [47], and specifications on activation patterns instead of
input [12]. Contributions along these lines may be combined with our work, as
our BaB is independent from the underlying linear relaxation adopted. Moreover,
some works improved the branching heuristic for verifying ReLU networks: Lu
and Mudigonda [25] proposed to use a Graph Neural Network for the branching
heuristic; De Palma et al. [7] proposed Filtered Smart Branching (FSB) which
filters initial candidates by a heuristic score and then uses a more accurate
bound computation to select an optimal neuron from a shortlist; Ferrari et al. [11]
considered the e"ect of a tighter multi-neuron relaxation in the branching heuristic.
These insights originally for ReLU networks may inspire future improvement of
the BaB for general nonlinearities.

6 Conclusion

To conclude, we propose a general BaB framework for NN verification involving
general nonlinearities in general computational graphs. We also propose a new
branching heuristic for deciding branched neurons and a pre-optimization proce-
dure for deciding branching points. Experiments on verifying NNs with various
nonlinearities demonstrate the e"ectiveness of our method.

Acknowledgments

This project is supported in part by NSF 2048280, 2331966, 2331967 and ONR
N00014-23-1-2300:P00001. Huan Zhang is supported in part by the AI2050
program at Schmidt Sciences (Grant #G-23-65921).

Bibliography

[1] Bonaert, G., Dimitrov, D.I., Baader, M., Vechev, M.: Fast and precise cer-
tification of transformers. In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation, pp. 466–481 (2021)

[2] Boopathy, A., Weng, T., Chen, P., Liu, S., Daniel, L.: Cnn-cert: An e!cient
framework for certifying robustness of convolutional neural networks. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 3240–3247
(2019), https://doi.org/10.1609/aaai.v33i01.33013240

[3] Brix, C., Bak, S., Liu, C., Johnson, T.T.: The fourth international verification
of neural networks competition (vnn-comp 2023): Summary and results.
arXiv preprint arXiv:2312.16760 (2023)

[4] Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine
Learning Research 21(2020) (2020)

[5] Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: Advances in Neural
Information Processing Systems, pp. 4795–4804 (2018)

[6] Choi, S.W., Ivashchenko, M., Nguyen, L.V., Tran, H.D.: Reachability analysis
of sigmoidal neural networks. ACM Transactions on Embedded Computing
Systems (2023)

[7] De Palma, A., Bunel, R., Desmaison, A., Dvijotham, K., Kohli, P., Torr, P.H.,
Kumar, M.P.: Improved branch and bound for neural network verification
via lagrangian decomposition. arXiv preprint arXiv:2104.06718 (2021)

[8] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., Houlsby, N.: An image is worth 16x16 words: Transformers for image
recognition at scale. In: International Conference on Learning Representa-
tions (2021)

[9] Du, T., Ji, S., Shen, L., Zhang, Y., Li, J., Shi, J., Fang, C., Yin, J., Beyah,
R., Wang, T.: Cert-rnn: Towards certifying the robustness of recurrent
neural networks. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, p. 516–534, CCS ’21 (2021), ISBN
9781450384544, https://doi.org/10.1145/3460120.3484538

[10] Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual
approach to scalable verification of deep networks. In: Proceedings of the
Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pp. 550–559 (2018)

[11] Ferrari, C., Mueller, M.N., Jovanovi#, N., Vechev, M.: Complete verification
via multi-neuron relaxation guided branch-and-bound. In: International
Conference on Learning Representations (2021)

https://doi.org/10.1609/aaai.v33i01.33013240
https://doi.org/10.1609/aaai.v33i01.33013240
https://doi.org/10.1145/3460120.3484538
https://doi.org/10.1145/3460120.3484538

18 Z. Shi et al.

[12] Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Towards reliable
neural specifications. In: International Conference on Machine Learning, pp.
11196–11212, PMLR (2023)

[13] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adver-
sarial examples. In: International Conference on Learning Representations
(2015)

[14] Guha, N., Wang, Z., Wytock, M., Majumdar, A.: Machine learning for ac
optimal power flow. arXiv preprint arXiv:1910.08842 (2019)

[15] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016), https://doi.org/10.1109/CVPR.2016.90

[16] Henriksen, P., Lomuscio, A.: E!cient neural network verification via adaptive
refinement and adversarial search. In: ECAI 2020, pp. 2513–2520, IOS Press
(2020)

[17] Henriksen, P., Lomuscio, A.: Deepsplit: An e!cient splitting method for
neural network verification via indirect e"ect analysis. In: IJCAI, pp. 2549–
2555 (2021)

[18] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computa-
tion 9(8), 1735–1780 (1997)

[19] Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy
compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC), pp. 1–10, IEEE (2016)

[20] Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex:
An e!cient smt solver for verifying deep neural networks. In: International
Conference on Computer Aided Verification, pp. 97–117 (2017)

[21] Ko, C., Lyu, Z., Weng, L., Daniel, L., Wong, N., Lin, D.: POPQORN: quan-
tifying robustness of recurrent neural networks. In: International Conference
on Machine Learning, Proceedings of Machine Learning Research, vol. 97,
pp. 3468–3477 (2019)

[22] Kouvaros, P., Lomuscio, A.: Towards scalable complete verification of relu
neural networks via dependency-based branching. In: IJCAI, pp. 2643–2650
(2021)

[23] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from
tiny images. Technical Report TR-2009 (2009)

[24] LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

[25] Lu, J., Mudigonda, P.: Neural network branching for neural network verifi-
cation. In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR 2020), Open Review (2020)

[26] Lyu, Z., Ko, C., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened CROWN:
tightened neural network robustness certificates. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, pp. 5037–5044 (2020)

[27] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep
learning models resistant to adversarial attacks. In: International Conference
on Learning Representations (2018)

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Neural Network Verification with BaB for General Nonlinearities 19

[28] Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: Di"rnn:
Di"erential verification of recurrent neural networks. In: Formal Modeling
and Analysis of Timed Systems: 19th International Conference, FORMATS
2021, Paris, France, August 24–26, 2021, Proceedings 19, pp. 117–134,
Springer (2021)

[29] Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima: gen-
eral and precise neural network certification via scalable convex hull approx-
imations. Proceedings of the ACM on Programming Languages 6(POPL),
1–33 (2022)

[30] Paulsen, B., Wang, C.: Linsyn: Synthesizing tight linear bounds for arbi-
trary neural network activation functions. In: Tools and Algorithms for
the Construction and Analysis of Systems: 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022,
Proceedings, Part I, pp. 357–376, Springer (2022)

[31] Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., Vechev, M.: Scal-
able polyhedral verification of recurrent neural networks. In: International
Conference on Computer Aided Verification, pp. 225–248 (2021)

[32] Shi, Z., Wang, Y., Zhang, H., Kolter, J.Z., Hsieh, C.J.: E!ciently computing
local lipschitz constants of neural networks via bound propagation. Advances
in Neural Information Processing Systems 35, 2350–2364 (2022)

[33] Shi, Z., Zhang, H., Chang, K., Huang, M., Hsieh, C.: Robustness verification
for transformers. In: International Conference on Learning Representations
(2020)

[34] Shi, Z., Zhang, H., Chang, K.W., Huang, M., Hsieh, C.J.: Robustness
verification for transformers. In: International Conference on Learning Rep-
resentations (2019)

[35] Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron
convex barrier for neural network certification. In: Advances in Neural
Information Processing Systems, pp. 15072–15083 (2019)

[36] Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certi-
fying neural networks. Proceedings of the ACM on Programming Languages
3(POPL), 41 (2019)

[37] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit
neural representations with periodic activation functions. Advances in Neural
Information Processing Systems 33, 7462–7473 (2020)

[38] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,
I.J., Fergus, R.: Intriguing properties of neural networks. In: International
Conference on Learning Representations (2014)

[39] Tran, H.D., Choi, S.W., Yang, X., Yamaguchi, T., Hoxha, B., Prokhorov,
D.: Verification of recurrent neural networks with star reachability. In:
Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control, pp. 1–13 (2023)

[40] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in
Neural Information Processing Systems 30: Annual Conference on Neural

20 Z. Shi et al.

Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 5998–6008 (2017)

[41] Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: E!cient formal safety
analysis of neural networks. In: Advances in Neural Information Processing
Systems, pp. 6369–6379 (2018)

[42] Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 1599–1614 (2018)

[43] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.:
Beta-crown: E!cient bound propagation with per-neuron split constraints
for neural network robustness verification. Advances in Neural Information
Processing Systems 34, 29909–29921 (2021)

[44] Wei, D., Wu, H., Wu, M., Chen, P.Y., Barrett, C., Farchi, E.: Convex
bounds on the softmax function with applications to robustness verification.
In: International Conference on Artificial Intelligence and Statistics, pp.
6853–6878, PMLR (2023)

[45] Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 80, pp. 5283–5292
(2018)

[46] Wu, H., Tagomori, T., Robey, A., Yang, F., Matni, N., Pappas, G., Hassani,
H., Pasareanu, C., Barrett, C.: Toward certified robustness against real-world
distribution shifts. arXiv preprint arXiv:2206.03669 (2022)

[47] Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang, M., Kailkhura,
B., Lin, X., Hsieh, C.: Automatic perturbation analysis for scalable certified
robustness and beyond. In: Advances in Neural Information Processing
Systems (2020)

[48] Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.: Fast
and complete: Enabling complete neural network verification with rapid
and massively parallel incomplete verifiers. In: International Conference on
Learning Representations (2021)

[49] Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B., Boning, D.S.,
Hsieh, C.: Towards stable and e!cient training of verifiably robust neural
networks. In: International Conference on Learning Representations (2020)

[50] Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: E!cient neural network
robustness certification with general activation functions. In: Advances in
Neural Information Processing Systems, pp. 4944–4953 (2018)

[51] Zhang, Y., Du, T., Ji, S., Tang, P., Guo, S.: Rnn-guard: Certified robustness
against multi-frame attacks for recurrent neural networks. arXiv preprint
arXiv:2304.07980 (2023)

[52] Zhang, Y., Shen, L., Guo, S., Ji, S.: Galileo: General linear relaxation frame-
work for tightening robustness certification of transformers. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 21797–21805
(2024)

[53] Zhou, X., Xu, H., Xu, A., Shi, Z., Hsieh, C.J., Zhang, H.: Testing neural
network verifiers: A soundness benchmark with hidden counterexamples.
arXiv preprint arXiv:2412.03154 (2024)

Neural Network Verification with BaB for General Nonlinearities 21

A Additional Illustration

Figure 4 illustrates our proposed framework.

Fig. 4: Illustration of our new GenBaB framework summarized in Section 3.1.

B Additional Optimizable Linear Relaxation

In this section, we derive new optimizable linear relaxation for nonlinearities
including multiplication, sine, and GeLU, which are not originally supported in
ϑ,ϖ-CROWN for optimizable linear relaxation.

B.1 Optimizable Linear Relaxation for Multiplication

For each elementary multiplication xy where x ↓ [x, x], y ↓ [y, y] are the inter-
mediate bounds for x and y, we aim to relax and bound xy as:

↗x ↓ [x, x], y ↓ [y, y], ax+ by + c ⇐ xy ⇐ ax+ by + c, (7)

where a, b, c, a, b, c are parameters in the linear bounds. Shi et al. [34] derived
optimal parameters that minimize the gap between the relaxed upper bound and
the relaxed lower bound:

argmin
a,b,c,a,b,c

∫

x↗[x,x]

∫

y↗[y,y]
(ax+ by + c)↘ (ax+ by + c)

s.t. Eq. (7) holds. (8)

22 Z. Shi et al.

However, the optimal parameters they found only guarantee that the linear
relaxation is optimal for this node, but not the final bounds after conducting a
bound propagation on the entire NN. Therefore, we aim to make these parameters
optimizable to tighten the final bounds as previous works did for ReLU networks
or S-shaped activations [26, 48].

We notice that Shi et al. [34] mentioned that there are two solutions for a, b, c
and a, b, c respectively that solves Eq. (8):






a1 = y

b1 = x

c1 = ↘xy

,






a1 = y

b1 = x

c1 = ↘xy

, (9)






a2 = y

b2 = x

c2 = ↘xy

,






a2 = y

b2 = x

c2 = ↘xy

. (10)

Therefore, to make the parameters optimizable, we introduce parameters ϑ and
ϑ, and we interpolate between Eq. (9) and Eq. (10) as:






a = ϑy + (1↘ ϑ)y

b = ϑx+ (1↘ ϑ)x

c = ↘ϑxy ↘ (1↘ ϑ)xy

s.t. 0 ⇐ ϑ ⇐ 1, (11)






a = ϑy + (1↘ ϑ)y

b = ϑx+ (1↘ ϑ)x

c = ↘ϑxy ↘ (1↘ ϑ)xy

s.t. 0 ⇐ ϑ ⇐ 1. (12)

It is easy to verify that interpolating between two sound linear relaxations
satisfying Eq. (7) still yields a sound linear relaxation. And ϑ and ϑ are part of
all the optimizable linear relaxation parameters ω mentioned in Section 2.

B.2 Optimizable Linear Relaxation for Sine

We also derive new optimized linear relaxation for periodic functions, in particular
sin(x). For sin(x) where x ↓ [x, x], we aim to relax and bound sin(x) as:

↗x ↓ [x, x], ax+ b ⇐ sin(x) ⇐ ax+ b, (13)

where a, b, a, b are parameters in the linear bounds. A non-optimizable linear
relaxation for sin already exists in ϑ,ϖ-CROWN and we adopt it as an initializa-
tion and focus on making it optimizable. At initialization, we first check the line
connecting (x, sin(x)) and (x, sin(x)), and this line is adopted as the lower bound
or the upper bound without further optimization, if it is a sound bounding line.

Otherwise, a tangent line is used as the bounding line with the tangent point
being optimized. Within [x, x], if sin(x) happens to be monotonic with at most

Neural Network Verification with BaB for General Nonlinearities 23

Fig. 5: Linear relaxation for a Sin activation in an input range [↘1.5, 1.5] where
the function is S-shaped.

only one inflection point, the tangent point can be optimized in a way similar to
bounding an S-shaped activation [26], as illustrated in Figure 5.

Otherwise, there are multiple extreme points within the input range. Initially,
we aim to find a tangent line that passes (x, sin(x)) as the bounding line. Since
x may be at di"erent cycles of the sin function, we project into the cycle with
range [↘0.5ϱ, 1.5ϱ], by taking x̃l = x↘ 2klϱ, where kl = ⇔x+0.5ω

2ω ↖. With a binary
search, we find a tangent point ϑl on the projected cycle that satisfies

sin↘(ϑl)(ϑl ↘ x̃l) + sin(x̃l) = sin(ϑl), (14)

which corresponds to a tangent point tl = ϑl + 2klϱ at the original cycle of
x, and for any tangent point within the range of [ϑl + 2klϱ, 1.5ϱ + 2klϱ], the
tangent line is a valid lower bound. Similarly, we also consider the tangent line
passing (x, sin(x)), and we take x̃l = x↘ 2klϱ, where kl = ⇔x↓1.5ω

2ω ↖, so that x̃l

is within range [1.5ϱ, 3.5ϱ]. We also conduct a binary search to find the tangent
point ϑl, which corresponds to to ϑl +2klϱ in the original cycle of x, and for any
tangent point within the range [1.5ϱ + 2klϱ,ϑl + 2klϱ], the tangent line is also
a valid lower bound. We make the tangent point optimizable with a parameter
ϑl (ϑl ⇐ ϑl ⇐ ϑl), which corresponds to a tangent line at tangent point tl as the
lower bound in Eq. (13) and Figure 6:

{
a = sin↘(tl)

b = sin(tl)↘ atl
, (15)

where

{
tl = ϑl + 2klϱ if ϑl ⇐ ϑl ⇐ 1.5ϱ

tl = ϑl + 2klϱ if 1.5ϱ < ϑl ⇐ ϑl

. (16)

In particular, when ϑl = 1.5ϱ, both ϑl + 2klϱ and ϑl + 2klϱ are tangent points
for the same tangent line.

The derivation for the upper bound is similar. We take x̃u = x↘ 2kuϱ, where
ku = ⇔x↓0.5ω

2ω ↖, so that x̃u is in range [0.5ϱ, 2.5ϱ]. And we take x̃u = x↘ 2kuϱ,

24 Z. Shi et al.

(a) The lower bound of Sin activation when
ωl = ωl.

(b) The lower bound of Sin activation when
ωl = 1.5ϑ.

(c) The lower bound of Sin activation when
ωl = ωl.

Fig. 6: Optimizing the lower bound of a Sin activation, where “Optimization range”
shows all the valid tangent points for the lower bound during the optimization.

where ku = ⇔x↓2.5ω
2ω ↖, so that x̃u is in range [2.5ϱ, 4.5ϱ]. Let ϑu be the tangent

point where the tangent line crosses x̃u, and ϑu be the tangent point where the
tangent line crosses x̃u, as found by a binary search. We define an optimizable
parameter ϑu (ϑu ⇐ ϑu ⇐ ϑu) which corresponds to a tangent line as the upper
bound:

{
a = sin↘(tu)

b = sin(tu)↘ atu

, (17)

where

{
tu = ϑu + 2kuϱ if ϑu ⇐ ϑu ⇐ 2.5ϱ

tu = ϑu + 2kuϱ if 2.5ϱ < ϑu ⇐ ϑu

. (18)

B.3 Optimizable Linear Relaxation for GeLU

For GeLU function where x ↓ [x, x] are the intermediate bounds for x, we aim to
relax and bound GeLU(x) as:

↗x ↓ [x, x], ax+ b ⇐ GeLU(x) ⇐ ax+ b, (19)

Neural Network Verification with BaB for General Nonlinearities 25

Fig. 7: Total number of verified instances against running time threshold on
LSTM and ViT.

where a, b, a, b are parameters in the linear bounds.
Given input range [x, x], if x ⇐ 0 or x ⇒ 0, the range contains only one

inflection point, the tangent point can be optimized in a way similar to bounding
an S-shaped activation [26]. In other cases, x < 0 and x > 0 holds. For the
upper bound, we use the line passing (x,GeLU(x)) and (x,GeLU(x)). For the
lower bound, we derive two sets of tangent lines that crosses (x,GeLU(x)) and
(x,GeLU(x)) with tangent points denoted as ϑ and ϑ respectively. We determine
ϑ,ϑ using a binary search that solves:

{
GeLU↘(ϑ)(ϑ↘ x) + GeLU(x) = GeLU(ϑ)

GeLU↘(ϑ)(ϑ↘ x) + GeLU(x) = GeLU(ϑ)
. (20)

Any tangent line with a tangent point ϑ (ϑ ⇐ ϑ ⇐ ϑ) is a valid lower bound,
which corresponds to the lower bound in Eq. (19) with:

{
a = GeLU↘(ϑ)

b = GeLU(ϑ)↘ ϑGeLU↘(ϑ)
s.t. ϑ ⇐ ϑ ⇐ ϑ. (21)

C Additional Results

C.1 Time Cost on LSTM and ViT

In Figure 7, we show the time cost on LSTM and ViT models, as discussed in
Section 4.3.

C.2 Experiments on Self-Attention Networks from [44]

To compare with Wei et al. [44] which only supports verifying single-layer self-
attention networks but not the entire ViT, we adopt pre-trained models from
Wei et al. [44] and run our verification methods under their settings, with 500
test images in MNIST using ε = 0.02. We show the results in Table 7, where our
methods also outperform Wei et al. [44] on all the models.

26 Z. Shi et al.

Table 7: Number of verified instances out of 500 instances in MNIST with ε = 0.02.
A-small, A-medium and A-big are three self-attention networks with di"erent
parameter sizes from Wei et al. [44].

Method A-small A-medium A-big

Wei et al. [44] 406 358 206
ϑ,ϖ-CROWN w/o BaB 444 388 176
GenBaB (ours) 450 455 232
Upper bound 463 479 482

C.3 Experiments on a ResNet Model

In this section, we demonstrate our method on a ResNet model [15]. The model
has the same size as the one used in Wang et al. [43], which has 2 residual blocks
with 6 convolutional layers and fully-connected layers in total. Since our focus
is on general nonlinearities, we use GeLU activation instead of ReLU. We train
the model on CIFAR-10 with PGD adversarial training using ε = 2/255. As the
results shown in Table 8, our GenBaB significantly improves the verification on
the ResNet model compared to ϑ,ϖ-CROWN without BaB.

Table 8: Number of verified instances on a ResNet model with the same archi-
tecture as the ResNet in Wang et al. [43], but the activation function is GeLU
instead of ReLU.

Method ResNet

ϑ,ϖ-CROWN w/o BaB 24
GenBaB (ours) 74

C.4 Experiments on Larger ε

In this section, we demonstrate GenBaB on larger ε. We consider ε = 2/255 and
ε = 8/255 for 4→ 100 feedforward networks with various activation functions on
CIFAR-10. As the results shown in Table 9, our GenBaB e"ectively improves the
verification on all these models.

C.5 Experiments on a ReLU Network

In this section, we study the e"ect of our BBPS heuristic on ReLU models. We
adopt settings in Müller et al. [29], Singh et al. [35, 36] and experiment on a
“ConvSmall” model with ReLU activation. The verification is evaluated on 1000
instances on CIFAR-10, following prior works. We show the results in Table 10,

Neural Network Verification with BaB for General Nonlinearities 27

Table 9: Number of verified instances on 4 → 100 feedforward networks with
various activation functions on CIFAR-10 when a larger ε = 2/255 or ε = 8/255
is used.

Method ε = 2/255 ε = 8/255
Sigmoid Tanh Sin GeLU Sigmoid Tanh Sin GeLU

ϑ,ϖ-CROWN w/o BaB 33 15 11 39 16 11 2 34
GenBaB (ours) 56 26 65 65 37 19 22 35

Table 10: Results on a “ConvSmall” model with ReLU activation [29, 35, 36]
on 1000 instances from CIFAR-10. Percentage of instances verified by various
methods are reported. For methods other than PRIMA, we use ϑ,ϖ-CROWN as
the underlying verifier but vary the branching heuristic. See explanation about
the backup score in Appendix C.5.

Method Verified

PRIMA 44.6%
BaBSR w/o backup score 45.6%
BaBSR w/ backup score 46.2%
Backup score only 45.0%
BBPS w/o backup score 46.0%
BBPS w/ backup score 46.2%

We find that on this ReLU network, our BBPS also works better than the BaBSR
heuristic, when there is no backup score (46.0% verified by BBPS v.s. 45.6%
verified by BaBSR). However, we find that recent works typically add a backup

score for BaBSR, which is another heuristic score that serves as a backup for
neurons with extremely small BaBSR scores. The backup score did not exist
in the original BaBSR heuristic [4] but it appeared in De Palma et al. [7] and
has also been adopted by works such as Wang et al. [43] when using BaBSR
for ReLU networks. This backup score basically uses the intercept of the linear
relaxation for the upper bound of a ReLU neuron that needs branching. Unlike
BaBSR or BBPS, the backup score does not aim to directly estimate the change
on the bounds computed by bound propagation, but aims to use the intercept
to reflect the reduction of the linear relaxation after the branching. When the
backup score is combined with BaBSR or BBPS for ReLU networks, the backup
score seems to dominate the performance, where both BaBSR and BBPS have
similar performance with the backup score added (46.2% verified), which hides
the underlying improvement of BBPS over BaBSR by providing a more precise
estimation. However, the backup score is specifically for ReLU, assuming that the
intercept of the linear relaxation can reflect the reduction of the linear relaxation,
which is not the case for general nonlinearities. We leave it for future work to
study the possibility of designing a backup score for general nonlinearities.

28 Z. Shi et al.

D Experimental Details

Implementation details. We implement our GenBaB algorithm based on ϑ,ϖ-
CROWN8 which originally did not support BaB for nonlinearities other than
ReLU. To pre-optimize the branching points, we enumerate the branching points
(p in Eq. (3)) with a step size instead of performing gradient descent, considering
that we only have up to two parameters for the branching points in our experi-
ments. For nonlinearities with a single input, we use a step size of 0.01, and for
nonlinearities with two inputs, we use a step size of 0.1. We pre-optimize the
branching points for intermediate bounds within the range of [↘5, 5]. For all the
experiments, each experiment is run using a single NVIDIA GTX 1080Ti GPU.

Details on training the models. To train our models on CIFAR-10, we use PGD
adversarial training [27]. We use 7 PGD steps during the training and the step
size is set to ε/4. For training the Sigmoid networks in Table 3, we use the SGD
optimizer with a learning rate of 5→ 10↓2 for 100 epochs; and for training the
Tanh networks, we use the SGD optimizer with a learning rate of 1→ 10↓2 for
100 epochs. For training the LSTMs in Table 4, we use the Adam optimizer with
a learning of 10↓3 for 30 epochs. And for training the ViTs, we use the Adam
optimizer with a learning of 5→ 10↓3 for 100 epochs. For Sine networks, we use
the SGD optimizer with a learning rate of 1→ 10↓3 for 100 epochs

Memory cost. Memory cost of our framework is highly manageable. To store
bounds for branched domains, note that the pool of domains with branched
intermediate bounds is stored on CPU memory (not GPU), and in each iteration
of BaB, only a batch of domains is loaded to GPU and handled in parallel on
GPU, the batch size can be configurable to fit the GPU memory (mentioned in
Section 3.1). For bound computation during BaB, as mentioned in Section 3.4,
since intermediate bounds are not re-computed during BaB, the space complexity
for each subproblem is the same as a regular NN forward pass.

For the lookup table for pre-optimized branching points, the memory cost
is also small: 4MB for 1D nonlinearities (tanh, sigmoid, sin, etc.) and 800MB
for 2D nonlinearities (multiplication). Although the memory cost of a lookup
table can become larger for higher-dimensional nonlinearities, the granularity
of lookup tables is configurable to reduce the memory requirement at the cost
of slightly less optimal branching points. For further scalability, future works
may compress the lookup table by an NN (such as Julian et al. [19]) for high
dimensional nonlinearities, and the validity of branching points predicted by NN
is easy to guarantee by clipping the prediction.

8
https://github.com/Verified-Intelligence/alpha-beta-CROWN

https://github.com/Verified-Intelligence/alpha-beta-CROWN

	Neural Network Verification with Branch-and-Bound for General Nonlinearities

