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Preface

The celebrated limit theorem of DeMoivre and Laplace concerns the convergence
of the law of simple random walk on the integers, properly rescaled, to Gauss law.
It serves as the starting point of many of probability theory’s most important devel-
opments. In 1963, Ulf Grenander published a little book [31] titled Probabilities on
Algebraic Structures, which, among other things, spelled out the natural problem of
extending basic limit theorems to the case when addition of numbers is replaced by
a more general group law. When taken literally, such extensions face several major
difficulties that are easy to explain.

The most natural extensions of simple random on the integers are random walks
on countable groups (in particular, finitely generated groups). On the one hand,
the classical limit theorems of probability theory are based on the fact that proper
rescaling allows us to approximate the real axis (or Euclidean space of dimension
d) by finer and finer embeddings of the integers (or the square lattice of dimension
d). On the other hand, it is relatively rare that a finitely generated group embeds
into a Lie group, and even rarer that such an embedding can be done at smaller
and smaller scales. Indeed, limits obtained through “rescaling” typically inherit
an invariance property under the considered rescaling and this applies to both the
underlying limit space and the limit stochastic process. Very few connected Lie
groups admit rescaling structures of any sort as only certain nilpotent groups do
(see, e.g., Theorem 2.1.2 in [36]).

Triangular arrays provide an ingenious way to state results that contain classical
limit theorems on abelian groups as special cases and circumvent the difficulties just
explained. The tread-off is that such results are not directly applicable to the study of
random walks on finitely generated groups unless one finds a way to “rescale” those
random walks into a proper triangular array, which bring us back to the previous
difficulties.

The most basic example of a non-abelian discrete random walk for which limit
theorems through rescaling have been obtained is simple random walk on the
Heisenberg group H3(Z) of 3 by 3 upper triangular matrices with diagonal entries
equal to 1. This group is generated by the four matrices
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0 10 0
o, si'=(01+1
1 00 1

because

101
S3=S1_1.S‘2_1S1S2= 010
001

The (lazy) simple random walk on this group (associated with the symmetric
generating set S = {e, sil 2i1} where e stands for the identity matrix) is driven
by the probability measure

w=sls.

If (§,~)‘1>O is an i.i.d. sequence of matrices distributed according to u, then, at time n,
the position of this random walk started at the identity is the matrix §1&; ... &,.

What makes it easy to state limit theorems in this case is the combination of the
following two facts:

1. The discrete Heisenberg group H3(Z) embeds as a subgroup of the real Heisen-

berg group H3(R);
2. The maps
Ixz 1tx 1%z
8:101y|l—= |01 ¢ty]), t>0
001 00 1

form a group of group automorphisms of Hj3 (R).

Sophisticated versions of the classical limit theorems for this example follow
functional limit theorem, local limit theorem, and Edgeworth expansions; see
[3, 14, 23, 38, 51, 53, 54] and the references therein. Some of these works treat
random walks of finite range or having finite moments of high order on finitely
generated nilpotent groups in much greater generality and involve the consideration
of more complicated scaling mechanisms.

This monograph is concerned with the extensions of these ideas in the context
of stable-like random walks. The simplest family of examples of such walks on the
Heisenberg group Hj3(Z) is obtained by considering the measures

Cu; . 3
ZZ PRI lk with & = (1, a2, a3) € (0, 2)".
1 1 ke Z(1+|k|) “
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In words, the walk associated with one of these measures on Hz3(Z) takes random
long-range steps along each of the one-dimensional subgroups of Hj3(Z) associated
with the matrices s1, 52, s3. In the direction of s;, these random long-range steps
are stable-like with index «; € (0,2). Obviously, the rescaling mechanism used
to study such a walk must be properly adapted to its structural parameters (i.e., to
a = (o1, az,@3)). One interesting phenomenon is that the limit group structure
supporting the corresponding limit process also depends on these parameters.
Namely, in this case, it is H3(R) when 1/o1 + 1 /a2 < 1/a3 and it is R3 otherwise.

The aim of the authors is to develop limit theorems for stable-like random walks
in the context of torsion-free finitely generated nilpotent groups, theorems that
naturally cover these examples and many others.
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Chapter 1 ®
Setting the Stage o

The aim of this work is to present limit theorems (of both functional and local types)
for certain long-jump random walks on nilpotent groups. Recall that a nilpotent
group is a group G with identity element e that has a central series of finite length,
that is, there is a finite sequence of normal subgroups so that

{e}=Ko< K1 <---<K, =G

with K;;1/K; contained in the center of G/K; for 0 <i < n — 1. See the Appendix
for a very brief introduction to nilpotent groups.

Before we explain our particular setup and the tools and techniques that we will
use, we attempt to put this research in perspective by discussing a small selection
of related results concerning random walks and limit theorems in finite-dimensional
vector spaces (i.e., the torsion-free abelian case) and applications of these classical
results to the simplest example of non-abelian nilpotent groups, the (discrete and
continuous) Heisenberg groups Hz(Z) C H3(R).

The “limit theorems” that concern us always have three key ingredients: The first
ingredient is a discrete random walk § = {S,;n = 1,2, ...} on a group G with
independent identically distributed (i.i.d. in short) increments distributed according
to a probability measure . The second ingredient is a method of renormalization
via some sort of “dilations” acting on the underlying space G. We remain vague
here on purpose. The third ingredient is a continuous time process that appears in
the limit, call it Z. Hopefully, Z has properties that make it relatively easy to study
although this entire story can also be viewed as a way to understand Z in terms of
the more elementary process S. The following fundamental questions arise:

1. What is the nature of those limiting processes Z that may appear through such a
scheme?

2. Given a limit process Z, what are all the one-step increment probability distribu-
tions u whose associated random walk converges to Z after renormalization?

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
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2 1 Setting the Stage

3. Given a one-step increment probability distribution, how to find a renormaliza-
tion procedure that leads to an interesting non-trivial limit process Z, if any
exists?

1.1 Review of Some Abelian Results

In this chapter, we discuss some aspects of these vaguely stated questions in the
context of finite-dimensional vector spaces where detailed answers to the first two
questions are well known and understood. The answer to the first question involves
the notions of infinitely divisible probability distribution and Lévy process and the
additional notion of operator stability which relates directly to the “normalization
procedure” that allows us to pass from S to Z. See, e.g., [26, Chapter 6], [36,
Section 1.6], and [48, Chapter 8]. The second question concerns the “domain of
operator-attraction” of the limit Z and falls outside the scope of our interest. The
third question is not easily answered in general (see [32]), but it plays an important
role in the results we develop in this work for nilpotent groups. Indeed, for the
particular class of examples we treat on nilpotent groups, a key step consists in
identifying appropriate renormalization procedures.

Recall that an R¢-valued random variable ¥ (or its probability distribution) is
said to be infinitely divisible if, for each integer n > 1, there are i.i.d. R9_valued
random variables {X1, ..., X,} such that ZZ: 1 X« has the same distribution as Y.
It is well known (see, e.g., [12, 39, 48, 57]) that the distribution of Y is infinitely
divisible if and only if it is the distribution at time 1 of a Lévy process Z = {Z;; t >
0} with Zy = 0. An infinitely divisible probability is uniquely characterized by the

Lévy exponent ¢ of its characteristic function ¢ (1) := —logE [ei rY ] , which takes
the following form. There are a symmetric non-negative definite constant matrix
A = (aij)1<i,j<d, a constant vector b = (b1, ..., bg), and a non-negative Borel

measure v on R? \ {0} satisfying fRd(l A 1zI2)v(dz) < oo so that

R4

d d
1 .
d(A) = 3 E aij)\i)\j‘FZ biki—i-/ (1 — e 4in z]l{mfl}) v(dz) (1.1)
i=1

i,j=1

forany A = (A1,..., q) € R?. The triplet (A, b, v) and the measure v are called
the Lévy triplet and the Lévy measure of the infinitely divisible distribution of Y,
respectively. They are uniquely determined by Y and vice versa. See, e.g., [36,
1.3.2]. The expression (1.1) is called the Lévy-Khintchine formula for the infinitely
divisible distribution of Y. We say the random variable Y has no Gaussian part if
A = 0. Clearly, if the distribution of Y is symmetric, that is, —Y has the same
distribution as Y, then b = 0 and the Lévy measure v is symmetric. We say that
an R9-valued random variable X is full if there is no non-zero A € RY so that
A - X is a constant, that is, if the distribution of X is not supported on a (d — 1)-
dimensional affine subspace of R?. An infinite divisible probability distribution
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having no Gaussian part is full if and only if its Lévy measure v is not supported on a
d — 1 dimensional linear subspace of RY: see [48, Proposition 3.1.20]. In this work,
we are interested in results involving limits that are symmetric with no Gaussian
part (symmetric random walks with jumps having heavy tails).

We start with the following elegant result. Let S = {S,,; n > 0} be a random walk
in Z4 with i.i.d. steps {&x; k > 1} having distribution p. That is,

P& = (1, -5 ) = w((rs -5 ja))  for (ji, ..., ja) € 27, (1.2)

and S, = &1+ -+ §&,.

Proposition 1.1 ([48, Corollary 8.2.12]) Let n be a full infinitely divisible
probability distribution on R? with no Gaussian part and Lévy measure v. Let
{Sp; n = 0} be a random walk in R? driven by a probability measure  as above.

There are linear operators A, : R? — R? and vectors b, € R? such that
A, Sy + by, converges in distribution to n if and only if

nuo A;l converges vaguely to v on R4 \ {0}. (1.3)

In this case, lim,_,  ||A,]| = 0. O

Here, 1 o A;l is the probability measure on R? defined by
o A;l(B) =u({x € RY: Apx € B}) forevery B € B(Rd).

Denote by C.(R\ {0}) the space of continuous functions on R¥ \ {0} with compact
support. Then (1.3) means that

lim n / fAx)pu(dx) = f f(x)v(dx) forany f € C.(RIN\{0), (1.4)
n—o0 Rd Rd

Note that from the Lévy-Khintchine formula (1.1), two infinitely divisible random
variables without Gaussian components and having the same Lévy measure v can
only differ by a constant vector.

If (1.3) holds, we say the Lévy measure v is operator-stable (see below) and the
measure u (or equivalently &1) belongs to the generalized domain of attraction of n
(or v, by abuse of language). The matrix A, is automatically invertible for all large
n. See [48, Lemma 3.3.25].

Remark 1.2 Suppose (1.3) holds with the Lévy measure v not supported in a (d —
1)-dimensional vector subspace and u being symmetric (that is, w(A) = u(—A)).

(i) The vector b, in Proposition 1.1 can be taken to be the zero vector in R4 and the
limiting distribution 7 is symmetric. This is because in this case, {S,; n € N}
has the same distribution as {—S,; n € N}, and so, {A,, S, — b,,; n € N} has the
same distribution as {—(A, S, + b,); n € N}. Consequently, {A,S, — b,;n €
N} also converges weakly. It then follows from the characterization of weak
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convergence that {A,S,;n € N} converges weakly to a symmetric random
variable 7.

(i) By [48, Theorem 8.1.5] and its proof, there is a sequence of invertible d x d
matrices (M,),>1 that keeps the distribution of » invariant (that is, M,n has
the same distribution as n for each n > 1) and a d x d-matrix E with real
entries such that ;f,, = M, A, satisfies

lim ApgA, ' =1F foralla > 0, (1.5)

n—oo

and X,, S, converges in distribution to  as n — oo. Here, [a] stands for the
largest integer not exceeding the real a.

Using the independent stationary increments property of random walks,
we can easily deduce from Proposition 1.1that both {A,S[,;;¢ > 0} and
{A;S[ns1; t = 0} converge in finite-dimensional distributions to the symmetric
Lévy process Z = {Z;; t > 0} with Z; having the same distribution as n; see
the proof of Proposition 1.3. Furthermore, Z has the following scaling property
by (1.5): for any A > O,

{Z5s; t = 0} has the same distribution as ZEz = {AEZ,; t > 0}.

See [48, Example 11.2.18] and [49, p.625]. For this reason, the Lévy process
Z is called an operator-stable process (or operator-Lévy motion) and its Lévy
measure, v, is also said to be operator-stable in the literature. If £ = oc_lld wd»
where 14 denotes the d x d identity matrix, ZE = alep, 4. Inthis case, Z
is an a-stable Lévy process on R?.

(iii) The matrices {A,;n € N} and the limiting Lévy measure v in (1.3) are
not unique. Suppose (1.3) holds. Then for any non-degenerate matrix M, we
clearly have that n o (M A,)~! converges vaguely to v o M~ on R? \ {0}.
Thus v depends not only on p but also on the “dilation structure” A,,.

O

Denote by D([0, 00); RY) the space of right continuous R?-valued functions
on [0, oo) having left limits. We refer the reader to [28] for the definition of -
topology on the Skorohod space ID([0, o0); RY).

Proposition 1.3 Suppose that the one-step distribution | of the random walk
{Sp;n=0,1,2,...}is symmetric and satisfies condition (1.3). Let n be an infinitely
divisible symmetric probability distribution with no Gaussian component and Lévy
measure v. Let Z = {Z;;t > 0} be the symmetric Lévy process on R? so that Z,
has distribution 1. Then {A,S[ns); t = 0} converges weakly in the Skorohod space
D([0, 00); RY) equipped with [ -topology to the Lévy process Z as n — oo. (]

Proof Let ;f,, = M,A, be defined as in Remark 1.2(ii), where (M,),>1 is a
sequence of invertible matrices that keeps the distribution of 7 invariant. We know
from [49, Theorem 4.1] that {A, S[;t > 0} converges weakly in the Skorohod
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space ([0, 00); RY) equipped with J;-topology to Z as n — oo. By [48,
Theorem 3.2.10], (M,),>1 is relatively compact in the spaces of invertible d x d-
matrices. Thus for any subsequence of (n),>1, there is a sub-subsequence (n'),>1
so that M,  converges to a non-degenerate d X d-matrix M that also keeps the
distribution of 7 and hence its Lévy measure v invariant. Note that A, = M, 111,,
and the Lévy process M1 Z is of the same distribution as that of Z. It follows that
{An Spns t = 0} converges weakly in the Skorohod space ID([0, 00); R%) equipped
with 1 -topology to Z as n’ — oo. Since this holds for any subsequence of (1),>1,
we conclude that {A,,S},; t > 0} converges weakly to Z as n — 0. |

The two propositions above and the accompanying remarks tell us that if we
expect that a given symmetric measure 4 on Z? drives a random walk whose
functional limit process Z = {Z;; t > 0} has no Gaussian part and Lévy measure v,
we should concentrate on finding the sequence of invertible matrices A, such that
(1.3) holds. Indeed, that property is necessary and sufficient for the desired limit
theorems to hold.

1.2 TIllustrative Examples on Nilpotent Matrix Groups

In this section, we describe some illustrative examples. Let us emphasize that,
although one can easily formulate versions of Proposition 1.1 in the context of
certain nilpotent groups, it is not known if such generalizations hold true. In a similar
vein, in R, a full operator-stable Lévy process always admits a smooth density,
whereas in the context of nilpotent group, it is not known if a full operator-stable
Lévy process always has a density. For details on how to formulate these questions
more precisely on nilpotent groups, see [36, Chapter 2].

Example 1.4 In this example, we consider a random walk on Z> with i.i.d. steps
{&k; & > 1} distributed according to the probability measure w concentrated along
the coordinate axes of Z> given by

K1 Lo o 4 K2
(1 Jig ) ier  2==00 T e

Ljjzip=0) for (i1, i, i3) € Z*\ {0}.

(i, iz, i3)) = Liy =is=0)

0
(14 liz])tHes

nlVe 0 0
We assume «; € (0,2),i =1,2,3. Let A, = 0 nl o . It is easy
0 0 nle
to check that

np o A;l converges vaguely to v on R \ {0},
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where

3
K.
v(dx) = Z ﬁdxl' ®je(1,2,304i} 8101 (dx;).

i |

Here 8oy is the Dirac measure concentrated at 0. Since  is symmetric, by Propo-
sition 1.1 and Remark 1.2(i), A, S, converges weakly to a random vector whose
distribution is symmetric infinite divisible with no Gaussian part and Lévy measure
v. By Proposition 1.3, {A, S}.:; ¢ = 0} converges weakly in the Skorohod space
D([0, oo); R?) equipped with J;-topology to the purely discontinuous symmetric
Lévy process Z = {Z;;t > 0} having v as its Lévy measure. Note that the
coordinate processes of Z = (Z (i))? are independent with Z) being a one-
dimensional symmetric «;-stable process, 1 < i < 3.

As pointed out earlier in Remark 1.2(iii), it is worth noting that the choice of A,
above is not unique even though it seems most natural in this example. To simplify
the discussion, assume that @y < ap < «a3. Let (eq, e, e3) be the canonical basis
of R3 used implicitly above. Construct a linear operator B, as follows. First, set
Bner = n~/%e;. Second, pick an arbitrary vector e, which is linearly independent
from e and belongs to the plane spanned by e; and e;, and set Bne/2 =nV “26/2.
Finally, pick an arbitrary non-zero vector ¢} that does not belong to the plane
spanned by e and e, and set B,es = n—l/es e5. Thenny o B, ! converges vaguely
to a Lévy measure v’ having essentially the same form as v but carried by the axes
associated with ey, ¢/, e/;. More precisely,

3

o
V'(dx) = Z Wd# ®jel1,2,30\(i} 80} (dx),
i=1 i

where (x], x5, x3) is the coordinate of x € R3 under the coordinate system
(e1, €5, €3). Note that the Lévy measure v’ is thus a linear transformation of v.

Example 1.5 (Random Walk on the Heisenberg Group H3(Z))
Recall that the discrete Heisenberg group Hj3(Z) is the family of upper triangle

1xz
matrices of the form | 0 1 y |, with x, y, z € Z, equipped with matrix multiplica-
001
tion; that is,
1x1 21 1 x2 22 ILxi+x2z1+z22+x1)2
Ol yi |- {01l y»|={0 1 Y1+

00 1 00 1 0 0 1
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1xz 1l —xxy—z
Fora = [01y],itsinverse a=!is [0 1 —y |. If we identify matrix a
001 00 1

with (x, y, z), then the discrete Heisenberg group Hl3(Z) can be identified with 73
equipped with the group multiplication

(x1, y1,21) - (x2, ¥2, 22) = (X1 + 22, y1 + ¥2, 21 + 22 + X1)2). (1.6)

We will use this realization of H3(Z). This is one of the simplest examples of a
non-abelian nilpotent group.

Lete; = (1,0,0), e2 = (0,1,0), and e3 = (0, 0, 1), which are generators of
H;3(Z). Note that for k € Z \ {0}, &¥ = (k,0,0), ¢4 = (0, k,0), and €5 = (0,0, k).
Let a; € (0, 2) be a constant, 1 < k < 3, and write & = (o1, a2, «3). Consider the
following probability measure on H3(Z) = Z3:

3
Ha(@) =) Y ﬁﬂ{e?}(é’)» g € H3(Z),

i=1 neZ

where «;,1 < j <3, are appropriate positive constants. Let (Sk = (5,51), & (2), é,?)))k X
>
be an i.i.d. sequence of random variables taking values in Hj3(Z) of distribution (4.

Then S, = So - & -...-&,, n > 1, defines a random walk on the Heisenberg
group H3(Z). Write S, as (X, Yu, Z,). By (1.6),

1 2 3 2
Xor1 = Xa &1 Yo = Va0 Zoyi = Zo+0) 4 X060 (1)
If we define Z, = Zo + Yoot 5(3), then
n n
Zn=Zn+ Y Xr&P =Zy+ )Xo (Ve — Yimy), n= L (1.8)
k=1 k=1
We know from Example 1.4 that

H (H_I/O”X[m], n=ley n_l/a32[nz],> gt > 0] — (X, Y1, Zy), t > 0}
(1.9)

weakly in the Skorohod space D([0, 00), R3) equipped with J,-topology as n —
00, where X, Y, and Z are symmetric -, az-, and «3-stable processes on R,
respectively, and they are independent. For simplicity, let

Xt=n"V Xy, Y=Y, and Z'i=n" YR Zp,,.
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Now, we can use the following key facts. Lévy processes are semimartingales, so
stochastic integrals such as Lévy area fo _dY; are well defined. Furthermore, [45,

Theorem 7.10] shows that {(X;‘, Yy, Zf, fo X?_dY;‘); t> 0} converges weakly
in the Skorohod space ID([0, co); R*) equipped with J;-topology as n — oo to

t
{()’(,,?,,Zl,/ }_(Sd)?s>; tzO}. (1.10)
0

Indeed, to prove (1.10), for any 8 > 0, let A5(r) = (1 — §/r)™. Define

=X Y hs(IAXIDAXY and V0 =¥ — ) hs(AYIDAYL

O<s<t O<s<t

2

One can define Z™ in a similar way. Observe that X8, Y3 and Z"8 are again
symmetric random walks but with i.i.d. step sizes

{(1 - hg(n_l/“fn_l/“fék(j))) n VgD g > 1} for j=1,2,3,

respectively. Let [i""s], [)7 .91 and [Z””S] genote thfi quadratic variation processes
of the square-integrable martingales X%, Y%, and Z"?, respectively. Note that

E ([X™?],) = [nt]E [(1 —hg(n_l/“lgl(l))) ( —1/a15<1>) }

[n'/18] 2 2/a 52 2
k n?s k
—2/ay -
= ciKin [nr] Z (1 + k)l+a + Z k2 (14 k)Ha
k=1 [n1/1 8141
/ey g12—a 2/a1 52
< ciein” M [nt] [n ] + 1
2 — a1 (1 + [nl/as])™
1/0”6 2—a 2/0{182
< ey ey (n ) n
2 —a ap(nl/a )
. 2C1K182_a1
ar2—ay)

where ¢; > 0 is a constant independent of n and §. In the same way, there is a
constant ¢ > 0, k = 2, 3, independent of n and § so that

2C2K252_a2

(2 — )

263/(352_0‘3

—n.,8
t and E ([Z ]t) < =)

E ([¥"°],) <

for all n > 1 and + > 0. So these three sequences of square-integrable
martingales {X"; n > 1}, {Y"; n > 1}, and {Z"; n > 1} have uniformly controlled
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variations in the sense of [45, Definition 7.5]. Thus by taking (}? 7,0) and (17", Zl)
for the vector- valued process H" and X" in [45, Theorem 7.10], we conclude
{(f 7 )7{’, zr, fo X md Y” > 0} converges weakly in the Skorohod space
D([0, 00); R4) equipped with J-topology to {()_(t, Y;, Zy, fé X,_dYy):t > 0}.
This proves the claim (1.10).

Using the almost sure Skorohod representation theorem, we can assume without

loss of generality that {()?;“, 17[1, zZ", fé )?g_dl?f); t > 0} converges a.s. in the

Skorohod space D([0, o0); ]R“) asn — oo to {()_(,, )_’t, Z,, fé )_(s_dfs); t> 0} .
Consequently, we have the following conclusions. The weak convergence below
(denoted by =) is in the Skorohod space ([0, 00); R?) equipped with -
topology.

() If 1/a3 < 1/a; + 1/an,
{ (n_l/“‘x[m], L (L n_l/“l_l/“zz[m]> = 0}
- - t - -
— {(Xt, Y,,/ XS_dYS>; t > 0} as n — 0o.
0
i) If 1/ = 1/a; + 1/a,
{(ﬂﬁl/mX[m], n V2 Y, nfl/O‘SZ[m]) 3t > 0}
- - - t —_ -
- H(X,, Y:, Z; +/ XS_dYS); t> O} asn — oo.
0
(i) If /a3 > 1/a1 + 1/ag,
{ (n_l/mX[nr], n %2 Yy, n_l/a3Z[nz]) it > 0}
Ei {()_(t, Y, Z,); t> 0} asn — 00.

O

Let us interpret the results above in group theoretical terms. In the treatment
above, we have taken the coordinate components of the measure u and considered
the one-dimensional random walks, X, Y, and Z, independently of one another.
We have then reconstructed the group law effect of the random walk on H3(Z) by
considering the Lévy area generated by the X and Y components. This is easy to
do in this case because the Z component commutes with anything else (it is in the
center of the group). Now, the renormalization process involves making somewhat
ad hoc choices of scaling.
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In the first two cases, (i) and (ii), we used the anisotropic dilations
8((x,y,2)) = (¢ oy, g7y ym(ertlien gy oy 5 g,

This one-parameter group of diffeomorphisms has the very special property of being
a one-parameter group of automorphisms of Hjz(R). That is,

(St((xv Y, Z) : (-x,’ y/a Z/)) = 8t((xv Y, Z)) : St(('x/ﬂ y,’ Z/))'

The consequence of this property is that the limit processes obtained above,
{(}_([, Y, fé }_(S_dl?s); t > O} in case (i) and [(X’,, Y, Z, + fot )_('s_dYS>; t > 0}
in case (ii), are symmetric Lévy processes on the real nilpotent group Hs(R)
which are operator-stable with respect to the one-parameter group of automorphisms
{8; : t > 0}. See [36, Chapter 2, Definition 2.3.13].

In the third case when 1/a 4+ 1/ < 1/a3, we used

8i((x,y,2)) = (¢t~ Vg, g=loe2y =l 50,

These diffeomorphisms are not automorphisms of Hj3(R), and it follows that using
them in rescaling the random walk driven by u on H3(Z) C Hj3(R) produces a non-
trivial change in the underlying group structure. This is visible in the nature of the

limiting process, {()_(,, Y,, Zt>; > O}, which is not a Lévy process on Hj3(R) but

a Lévy process on the abelian group R>.

Although it is certainly possible to push this approach further in specific
examples, there are serious difficulties in treating large classes of examples in this
way. For this reason, the approach presented in this monograph is quite different.
It does not involve explicitly the stochastic calculus involved in studying the Lévy
area and higher degree functionals of the same type that are known to appear when
expressing random walks on nilpotent groups in coordinates. The interested reader
might try the following two informal exercises before reading further.

Exercise 1.6 Pick a tuple of 10 elements (sq, ..., s19) in either 73 or H3(Z), s; =
(xi, i, zi), and a tuple of ten reals «; € (0, 2), 1 <i < 10. Consider the probability
measure

10
Ki
= —]1 n .
1(g) Z > T e Len @)
i=1 neZ
What to do to formulate a limit theorem? in Z3? in Hj (Z2)? O

Exercise 1.7 Repeat Exercise 1.6 with H3(Z) replaced by the group of four by four
upper-triangular matrices with diagonal entries equal to 1 (this group is nilpotent).
O
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As the reader will see, the approach developed in this work is amenable
to detailed computation in concrete cases. Using the theory developed in this
monograph, we will revisit Example 1.5 in Sect. 7.3.

We close this preliminary chapter by describing the organization of this mono-
graph. The next chapter provides an introduction to our main results while avoiding
most technical details. In particular, Sect. 2.3 describes special cases which we hope
the reader will find both interesting and informative, and Sect. 2.5 discusses prior
results. Section 3.1 introduces polynomial coordinate systems and the key notions of
group dilation and approximate group dilation relative to such a coordinate system.
Approximate group dilations lead to the definition of “limit group structures,” and
we present some basic properties of these limit group structures that are important
for our purpose. Chapter 4 introduces the vague convergence of a probability
measures under rescaling by an approximate group dilation and how the vague limit
and the limit group structure interact (see Proposition 4.7). Chapter 5 describes
our main technical results concerning functional limit theorem. It identifies a list
of strong hypotheses that allows us to state such a theorem. See Theorem 5.11.
Chapter 6 presents the corresponding local limit theorem, Theorem 6.1. Chapter 7
describes how to identify in concrete terms (in coordinates) and the limiting Lévy
process (on the associated limit group). They are then used together with the main
results of this monograph to give several examples on the weak convergence of
long-range random walks on various nilpotent groups. Chapter 8 describes the main
class of probability measures, SM, to which we want to apply the results obtained
in previous chapters. Chapter 9 shows how to choose appropriate coordinate
systems and dilations for measures in SM, whereas Chap. 10 demonstrates that the
hypotheses needed in Chaps. 5-6 are essentially satisfied by measures in SM.

Notation

We use := as a way of definition. For a, b € R, a A b := min{a, b}. We use 8y} to
denote the Dirac measure concentrated at xo € R and 1 4 for the indicator function
of a Borel measurable set A C R?. For an open subset D C RY, the space of
bounded continuous functions on D and the space of continuous functions on D
with compact support will be denoted by C;, (D) and C.(D), respectively.



Chapter 2 ®
Introduction Check for

2.1 Basic Question

The aim of this work is to prove limit theorems for a class of random walks on
nilpotent groups driven by probability measures allowing for long jumps in certain
directions. The class of probability measures we study can be described roughly
as follows. Let I" be a finitely generated nilpotent group with neutral element e.
Assume that we are given a finite family of subgroups of I', Hy, ..., Hg, each
equipped with a finite symmetric generating set S; and the associated word length
|~ la;,s; = |- 1i. Foreachi e {I,...,k}, fix ; € (0,2). On each H;, set
Vi(r) =#{g € H; : |g|; < r} and consider the probability measure on H;:

ci
(1 + gl Vi(lgl)’

wni(g) = g € H,.

Now, on I', consider the symmetric probability measure

k
n= Z)»i/xi,

i=1

where A;’s are positive constants with Z;‘:l Ai = 1. The class of measures we
will treat is slightly larger than what we just described. Two special cases of this
construction are particularly compelling. The first is the case when k = 1, H; =T,
S1 = S is a finite symmetric generating set for I', and u(g) = m.
This is reminiscent of a radially symmetric «-stable process. The second is the
case when each H; is an infinite cyclic subgroup in I', a case reminiscent of
more singular symmetric operator-stable process whose coordinate processes are
independent to each other. See [39, 48, 56] and [7, 8, 16, 40] for related works on
singular anisotropic kernels.
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In an earlier work [20], we proved that there are a positive constant yp = yo(®)
(which can be computed relatively easily from the data) and positive constants ¢ =
c(n), C = C(u) such that

nV < ,u(")(e) <Cn™M,

Here 1™ is the n-fold convolution power of the measure . One motivation for the
present work is to provide the more precise asymptotic

lim n"u™ (e) = a(w)
n— o0

with, hopefully, a description of the constant a(u). One classical approach to such
problem is to find a way to rescale the random walk on I so as to obtain some sort of
limit theorem proving convergence of the law of the rescaled random walk toward
the law of a limit process on an appropriate limit space. Typically, the limit space
and the limit process will have some self-similarity properties with respect to some
scaling structure. In the most classical cases, e.g., when u is a symmetric probability
measure on Z? which drives a symmetric random walk converging toward some
symmetric stable process on R¢, the limit space supporting the limit process and
its group law are always the same, (Rd , +), independently of w. In the present
context, one interesting new phenomenon is that the group structure of the limit
space supporting the limit process depends not only on the discrete group I" but also
on the measure (.

2.2 Description of the Basic Ingredients and Results

For simplicity, in this work, we restrict ourselves to random walks on torsion-free
finitely generated nilpotent groups, that is, finitely generated nilpotent groups whose
only element of finite order is the identity element. These countable groups are
both similar to and more complicated than the square lattice Z¢ in R, Let I" be
such a group. By a celebrated theorem of Malcev [47], the countable group I" can
be realized as a co-compact discrete subgroup of a simply connected nilpotent
Lie group G. Moreover, any simply connected nilpotent Lie group G can be
identified with the d-dimensional coordinate space R? equipped with an appropriate
group structure whose (multiplication) law is given, in coordinates, by polynomial
functions. This accounts for the similarity with the square lattice in dimension d.
Note however that the description of G as R? equipped with a polynomial product
is very far from being unique (and it may sometimes be difficult to recognize that
two such descriptions give the same group G up to isomorphism). One way to
understand the complexity of such structures is to attempt to give a list of all non-
isomorphic simply connected nilpotent Lie groups in a fixed dimension d. No such
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lists exist for relatively large d (we are not aware of such lists when d is greater than
8). See [13] and the references therein.

Once T is represented as a subset of R?, a probability measure x on I' can be
viewed as a weighted series of Dirac masses on R?. For such a measure j in a certain
relatively large class of “stable-like” probability measures on I', we are going to find
an adapted dilation structure (8/');~¢, expressed in coordinates over G = (R, )
by 8/ (u) = (tV/% u;)?, with carefully chosen exponents al' € (0,2), so that the
measure

e = 18,0 s ¢ 1 fR 9l i)

has a vague limit 1, (a non-negative Radon measure) on R? \ {0} as ¢ tends to co.
By construction, the limit p4 will satisfy the self-similar property

(e); = e foranys > 0.
At the same time, the rescaled group laws
Xy =81, (8/') - 8'M), xyeR! 1>0,
will have a limit as ¢ tends to infinity
Jim oy =,

which defines a group law e* on R?. Most of the time, we will drop the reference
to i and write e# = e, but it is an essential feature of this work that this limit
law actually depends on w via the choice of a proper dilation structure. It will
automatically have the self-similar property

xeoty= (Sf/t ((St”(x) ot Sf(y)) forevery x,y € R? and 1 > 0.

Of course, we are most interested in cases when this can be done in such a way that
the symmetric measure (i, is not supported on a proper, closed, connected subgroup
of G, = (Rd, o). In general, the limit measure u, defines a left-invariant jump
process on the group G, and the key results of this monograph are:

1. A “stable-like” limit theorem expressing the convergence of the rescaled long-
range jump random walk on I' associated with p to the left-invariant Lévy
process on the group (R?, e#) associated with i,

2. A characterization of the left-invariant Lévy process on the nilpotent group
(R?, o) associated with [te

3. A companion local limit theorem providing a proper statement of convergence
relating the densities of the distributions of these processes
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The reader should be warned that, given p, the choice of the appropriate dilation
structure (8/);¢ is not unique and that, consequently, we have made various abuse
of notation in the explanations given above.

The simplest instances of these results are the well-known convergence theorems
relating the “stable-like” random walk on Z associated with the probability measure
wx) =ca(1+xD71"% x € Z, a € (0,2), to the symmetric «-stable process on
R, and its rather rich and complex extension to higher dimensions which includes
both rotationally symmetric stable processes and some more singular operator stable
processes as illustrated in Chap. 1. See also [39, 48, 49]. We note that, in so far as
this monograph focusses on a particular class of probability measures, it only offers
a limited extension of these classical abelian theories to nilpotent groups.

2.3 Detailed Description of Some Special Cases

In this section, we spell out in an informal way how our results of this monograph
apply to a series of specific examples that are of particular interest. These cases all
illustrate our main result, Theorem 10.1, which follows from Theorems 5.11 and 6.1
and the discussions in Sects. 10.2-10.4.

2.3.1 Word Length Radial Stable Walks

On a finitely generated group I" equipped with a symmetric finite generating set S,
the word length |g|s is the minimal length & of a string (g1, ..., gk) of elements of
S such that g is equal to the product of that string, g = gj...gk. By Gromov’s
polynomial volume growth theorem [34], to say that I' has polynomial volume
growth is equivalent to the fact that there are an integer D (independent of ) and
constants 0 < ¢g < Cs < oo such that

csr? <#{geTl :|gls <r} <Csr? forallr > 1.

This is known to hold for any finitely generated nilpotent group; see Sect. A.4. In this
context, we call word length radial stable probability measure of index a € (0, 2)
the probability measure

c(l', S, )

= — el.
ws,a(g) T+ gD &

It is known (see [56, Section 5.1] and [50, Theorem 1.1] as well as the references
given therein) that there are constants 0 < a = a(I', §) < A = A([', §) < oo such
that the iterated convolutions of this measure satisfy
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L<M(H)(8)<L ganeN

(n +[gI§) 1P/ =TI (0 gl P/ o

So, one has a remarkably good control of the behavior of the associated random
walk. However, there are no existing limit theorems in the literature for such
walks, even if we assume that I" is a torsion-free nilpotent group (such groups
are basic examples of groups with polynomial volume growth). Our results provide
limit theorems (functional, and also local) for any random walk driven by a word
length radial stable probability measure g o, @ € (0, 2), on a torsion-free finitely
generated nilpotent group. We now briefly describe these results.

First, because we assume that I" is a finitely generated torsion-free nilpotent
group, there is a simply connected nilpotent Lie group G = (R, -) which contains
I' as a co-compact discrete subgroup. The Lie algebra, g, of this Lie group is
equipped with its central descending series

g1=9g2m=I[g9l2---2g9;=Igj-1,9]12---2{0},

and this series becomes trivial (i.e., constant equal to {0}) after finitely many steps.
Let j* be the smallest j such that gj4; = {0}. One can choose a direct sum
decomposition by vector subspaces, n;, | < i < j*, compatible with the central
descending series above, so that

]Rdzg:@i]:lni and gj=2ni’ 16{179]*}

i~
The linear invertible maps
S(x)=t'x ifxen, 1<i<j* >0,
form an approximate Lie dilation structure in the sense that

L. yle = lim &7 ([8,(x). 8: (D)

is a Lie bracket on R with the property that 8, ([x, yls) = [8;(x), 8;(¥)]e. Using
exponential coordinate (of the first kind) to represent G as (R?, -), the approximate
Lie dilations &;,¢ > 0, define approximate group dilations on G for which we
use the same notation. The limit group G, is the simply connected Lie group
associated with the Lie algebra (R4 [-, -1s) defined above. It follows from (A.1) of
the Appendix that the volume growth exponent D of the original group I is given
by D = Zl]; i dim(n;). Thus we have det(s;) = ¢ for every t > 0. In [52], Pansu
proves the fundamental results that there is a norm || - ||, on (R4, o), homogeneous
with respect to (8;)~0, such that the geometry of (T, | - |s) is well approximated at
large scale by that of (R4, || - |l.) in the sense that
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1gls
m =
gelg—oo [Iglle

Furthermore, one has

#Hegel :lgls <r}
m =
r—oo |{x e R? : ||x|lq < r}|

)

where |€2] is the Haar volume of 2 C G,. See also [15]. Haar measures on G
and G, are both Lebesgue measure dx on R?. When considering densities on these
groups, we mean densities with respect to dx.

The importance of these results for us is that they enable us to establish the
convergence of the measure ¢5; Ji1/e(Ls,a), vaguely on R? \ {0}, to the radial stable
jump measure (o, With density

c(, S, o)
Poa(x) T
This measure is the jump measure of a left-invariant (strong) Markov process
(X)i>0 on (R?, e) which is self-similar in the sense that (X$)s>0 equals
(&4 Jil/a (X7:))s>0 in distribution. In a proper global coordinate system, the
coordinates of this process can be expressed in terms of suitable stable processes
and their (possibly iterated) Lévy areas. The Lévy process X*® admits a continuous
convolution density with respect to the Lebesgue measure on R¢:

Pea(t,X), (t,x) € (0,00) x RY.
This density satisfies
Poa(t,x) = 7P p (1,81 (x)),  (t.x) € (0,00) x RY,

and

Aty <—A ) e (0.00) x RY

(0 + [xf@ o7 = Poett V= ey 7 0 ’ '
In this context, the results developed in this work establish two limit theorems for

the random walk (X, ),>0 on I driven by s . These limit theorems capture the fact

that, after proper rescaling in time and space, the limit of the random walk (X,),>0

is the Markov process (X?),~0. Namely, the functional limit theorem establishes the

convergence of (§; Jil/a (X[s11))s>0 to (X3)s>0 as ¢ tends to infinity. In particular, for

any continuous function ¢ with compact support on R?,

> oG e enkel () — /R @) Paals. x)dx

gel
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as ¢ tends to infinity. For any compact set K C R¢ and any functions g, : K —
I'n = 1,2, ..., such that the sequence of functions 81/”]/a ogn : K — R,
n =1,2,..., converges uniformly over K to the identity function, the local limit
theorem of this monograph establishes the uniform convergence to zero over K of

nP ) (80 (X)) = pea(l,x)

when n tends to infinity. In particular, this shows that, for any fixed g € I" (e.g.,
g =e),

Tim 1P/ () = poa(l,e).

2.3.2 Walks Taking Stable-Like Steps Along One-Parameter
Subgroups

Let I" be a torsion-free finitely generated nilpotent group embedded as a lattice of a
simply connected nilpotent Lie group G. One of the cases that motivates our study
can be described as follows: We are given a tuple S = (sy, ..., sx) of elements of I,
which, together with their inverses, generates I'. We are also given a tuple of reals
o= (ag,...,or) € (0, 2)" . Note that the letter S is used here in a slightly different
way than in the previous case. Now, set

k
1 Co;
_ _} : § : % (o).
/-’LS,Ol(g) k (1 + |m|)1+c{,' {‘Si }(g)

i=1 meZ

It was proved in [56] that, for any such probability measure, there exist 0 < a =
al,S,a) < A=A, S,a) <ooand yy = y(T, S, @) such that

an™ < u{) (e) < An~". @2.1)

In Chap. 8, we introduce the space of probability measures SM;(I"), see Defi-
nition 8.2, which contains all such measures. We then explain how to choose a
coordinate system of polynomial type, G = (R, .), and an approximate dilation
structure (8;);~0 with limit group G, = (Rd , ), which are adapted to the pair
(S, a), and such that, with u, := 161/;(us,e), the family of measures (||z||% A
1) s (dz) converges weakly on R? \ {0} to a measure (||z||% A Due(dz) ast — oo,
that is,
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: 2 _ 2
im [, SO m@ = [ (121 A1) e

—>0o0 Rd\{

for any f € Cp(R? \ {0}). Here Cp(R? \ {0}) denotes the space of bounded
continuous functions on R? \ {0}. The measure u, is supported on the union of
a finite number of one-parameter subgroups of G, and its support generates G,. It
can be interpreted as the Lévy measure of a convolution semigroup of probability
measures, associated with a left-invariant Lévy process on G,. The convolution
transition kernel of this semigroup admits a continuous density, p,(f, x), with
respect to the Lebesgue measure on (R?, ) and satisfies

Pe(t,x) =1 pg(1,81/:(x)) for(t,x) € (0, 00) x RY.

Note that the limit objects introduced here, e.g., G, and p,, all depend on S and
a, even so we did not capture that dependence in the notation used above. A
notable difference with the earlier description of the radial stable-like case is that,
in general, there are no particular canonical choices of the approximate dilation
structure (8;);~o and we have not made a canonical choice of coordinates either.
To a certain extent, the entire results and the associated limit objects depend on the
choices of coordinates and adapted dilation structure, while, of course, there are
great commonalities shared by all the limit objects obtained based on these different
choices. This, however, will not be deeply investigated here.

As in the case of radial stable walks, the results of this monograph establish the
convergence of the discrete time random walk driven by (s «, properly rescaled in
time and space, to the left-invariant Lévy process (X§)s~0 with convolution density
Pe(t, x) mentioned above. More precisely, the functional limit theorem establishes
the weak convergence of (81/;(X[s1))s>0 t0 (X3)s>0 as t tends to infinity. In
particular, for any continuous function ¢ with compact support on R¢,

> bGi(e)us, () — /R (@)Pals, x)dx

gel

as ¢ tends to infinity. The local limit theorem asserts that

lim_sup 8 (g0 (x)) — p.(l,x)‘ —0, (2.2)

)’l*)OOxe

where K is a compact in R? and g, : K — T is a sequence of functions such that
Sinogn: K — R4 converges uniformly over K to the identity function. Of course,
the non-negative real yy appearing in (2.1) and in (2.2) is the same in both equations.
It is also given by det(§;) = 179.
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2.3.3 Walks Associated with Measure in SM(T')

In Chap. 8, we introduce a particular set of “stable-like” measures on I, SM(T),
which interpolates between the radially symmetric measures considered above and
the convex combinations of one-dimensional measures described in the last section.
These measures were studied in our earlier work [20]. With any measure in SM(T")
we can associate in a natural way a (non-unique) polynomial coordinate system
G = R? and a family of dilations (§;);~0 which define a limit group structure
Ge = (R?, o). The approximate dilation structure (8;);~¢ is built so that the family
e = t81/:(n), t > 0, has well-defined limit points which are all Lévy measures
of (8;)¢=0-stable symmetric convolution semigroups of probability measures on
G, with continuous positive densities on G,. One of the key contributions of this
work is to describe explicitly how one can construct such an approximate dilation
structure based on a proper description of pw on I'. If it is the case that, with
we = t81/; (), the measure (||z||% A Dy (dz) converges weakly to a finite measure
(||Z||§ A Dte(dz) on R\ {0} as t — oo, then we obtain both a functional central
limit theorem and a local limit theorem. The results described in the previous two
paragraphs are, in fact, special cases of these more general theorems. The structure
of the Lévy measures of the limit Lévy processes on G, appearing in these limit
theorems is described at the end of the next section.

2.4 Symmetric Continuous Convolution Semigroup of
Probability Measures and Lévy Processes

For this very minimal vocabulary review, we follow [36]. Let G be a connected Lie
group. Recall that there is a one-to-one correspondence between symmetric con-
tinuous convolution semigroups of probability measures on G and symmetric Lévy
processes on G. Here (us)s~0 is @ symmetric continuous convolution semigroup of
probability measures on G if the map ¢ + p; is continuous, i; * (s = sys, S, >
0, o = 8¢, and w; () = s (qvﬁ) for any continuous function ¢ on G with compact
support, where qvb(y) = ¢(y~") for y € G. A symmetric Lévy process X on G
is a G-valued time-homogeneous cadlag Markov process (X;);>o with stationary
independent increments, started at e and such that X, ' = X, in distribution for
every ¢ > 0. In this setting, the notion of infinitesimal generator of X can be captured
in a more elementary way via the so-called generating functional (defined on smooth
compactly supported functions): if the infinitesimal generator of the symmetric Lévy
process X is L, the associated generating functional is simply ¢ — L¢(e). The
Lévy-Khinchin-Hunt formula provides a description of the generating functional of
a Lévy process. Under the symmetry condition, the generating functional has two
parts: a diffusion part and a jump part described by a symmetric measure v on G\ {e}
in the form ¢ — p.v. fG\{e}(qb () — ¢(e))v(dy) with
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/ min {1, ||y||§} w(dy) < oo. (2.3)
G\fe)

Here, || y||2 is the Riemannian distance between ¢ and y in some fixed left-invariant
metric on G, and

1 -
pv. [ G0 —s@nan =3 [ @m+e(y) - 2@,
G\{e} G\{e}
In this work, we are only interested in pure jump symmetric Lévy processes, that
is, generating functional of the form

¢ — Lp(e) =p.v. /G\{ }(¢(y) — ¢(e)v(dy),

where v is a symmetric measure on G \ {e} satisfying (2.3). Equivalently, the
infinitesimal generator is given on smooth compactly supported functions by

1
(=Lu,v) = 5/ / (u(xy) —u(x))(v(xy) —v(x))v(dy)dx.
G JG\fe}

This, of course, is also a description of the associated Dirichlet form (on a dense
subspace of its domain).

In this work, these objects come about through a limit procedure, which implies
that they have additional properties. First, the underlying Lie group is a simply
connected nilpotent Lie group which we call G,. Second, by construction, G,
carries a group of dilations, (8;)=0, 6; : G — G, 8; = 1d, 85 = 8 085 =
8s o &, s,t > 0, where &; is also a group isomorphism for every ¢ > 0, and
lim;—08;(x) = e for all x € G. In addition, the convolution semigroups and
associated Lévy processes of interest to us are self-similar with respect to such a
dilation structure, that is, (X;)y>0 equals (81/;(X/s))s>0, in distribution, for any
t > 0. Moreover, there is a linear basis ¢ = (e1, ..., &¢) of the Lie algebra of G, in
which the dilation 8, has the form 8;(g;) = t'/Pig;, Bi € (0,2), 1 <i < d. This last
condition, B; € (0,2), 1 <i <d, is related to the fact the processes in question are
pure jump operator-stable Lévy processes. See, e.g., [36, Theorem 2.3.17]. Finally,
when the original random walk is driven by a probability measure u in SM(T") (a
class of stable-like measures on I" described in Chap. 8), the Lévy measure

e = lim #81/,() = lim tpod;
11— o0 11— o0

of our limit process has a particular structure that it inherits from the fact that u €
SM(T"). Namely, there is a finite family of closed Lie subgroups of G,, call them
H,;,1 <i <k, which are each invariant under (6;);-0, and functions y; : H, ; —
(0, o0) satisfying y; (6:(x)) = ¥ (x), and ; xhH = Yi(x), x € H, j, such that
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Ue(dx) = Zvi dx), vi(g) = / ¢ (X)Vi(x)dp, ;x forl <i <m,
1 H, ;

where dp, ;x is the Haar measure on H,;; see Proposition 10.9. Each v; satis-
fies (2.3). The group G, is generated by the subgroups {H, ;, 1 <i < m}.

2.5 Prior Results

To put our results in perspective, we briefly review limit theorems (functional and/or
local) relating random walks on discrete groups to Lévy processes on a related Lie
group. Very few results of this type exist outside the setting of nilpotent groups (and
closely related groups such as groups of polynomial volume growth). The classical
(functional) limit theorems can be interpreted in two distinct ways:

(i) As providing approximation of a (continuous time) Lévy process by a discrete
time process. This can be motivated by the desire to actually construct the
limiting process, or to simulate it, or to understand it in more concrete terms.
In this case, one should read the limit theorem as follows: at each stage,
we take a greater number of smaller steps to approximate the behavior of a
continuous time process on a fixed bound time interval. A natural setup for this
interpretation is the triangular array setup.

(ii) As a result illuminating the long-term behavior of a discrete time process by
providing a continuous time scaling limit. In this case, at each stage we take a
greater number of identically distributed steps and approximate the probability
of larger and larger scale events for the discrete time process by the probability
of the same large-scale events for the limiting continuous time process, at a
large time. Whenever that limiting process is self-similar, the limit computation
can be rephrased as a computation within a fixed bounded time interval. There is
more rigidity in this viewpoint than in the first as we cannot choose the different
individual steps taken as one possibly can in a triangular array formulation of
the first viewpoint.

For random walks in R”, it is somewhat difficult to see the differences between
these two interpretations. The reason is that we have a relatively obvious way to
turn the identically distributed steps appearing in the second interpretations into
smaller and smaller steps appearing in the first interpretation. Indeed, we typically
assume that the limiting process is self-similar with respect to a dilation structure
that commute with addition and this dilation structure can be used to turn the fixed-
size steps of (ii) into the small-size steps of (i).

Both viewpoints are present in this work. Our main focus is on using (ii) to
study long-term behavior of a class of discrete long-range random walks on a
finitely generated torsion-free nilpotent group I'. One can then use (i) to better
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understand the limiting self-similar Lévy processes on the limit nilpotent group G,.
See Chap. 7.

2.5.1 Functional Type Limit Theorems

On a general Lie group, there are results stated in terms of triangular arrays that
go back to Wehn [61, 62]. Later, Stroock and Varadhan [59] rediscovered Wehn’s
results. These works concern the case when the limit Lévy process is a diffusion.
These triangular array results have been extended to cover the case when the limit
Lévy process may have jumps. An exposition of such results is found in [36] which
contains a very long list of references. They are also found in work by Kunita [41-
44]. These results must be understood as an extension of the first interpretation
of the classical limit theorem discussed above. From this viewpoint, the title of
the Stroock-Varadhan paper, Limit Theorems for Random Walks on Lie Groups,
is somewhat misleading. What the results of Wehn and Stroock-Varadhan do is to
provide discrete time step approximations of diffusions on Lie groups. They do
not, in general, help us understand the behavior of random walks on Lie groups.
That is because, on a general Lie group, there is no clear way to turn identically
distributed steps into small-size steps. There are, however, many ways to create
arrays of smaller and smaller size steps, not related to any identically distributed
model. The theorems described by Wehn, Stroock-Varadhan, Hazod and Siebert,
Kunita, and others thus provide functional limit theorems along the line of the first
interpretation. See the excellent discussion in [14].

There is one setting in which these triangular array limit theorems provide an
understanding of random walk (in the sense of a process taking repeated identically
distributed steps). This is, informally, when the limiting continuous time process is
self-similar with respect to a dilation structure that preserves the multiplication law
of the underlying group. Unfortunately, this is a rather rare occurrence as the only
connected groups admitting such dilation structures are simply connected nilpotent
Lie groups of a very special kind. Moreover, outside the case of diffusion limit,
whether or not a dilation structure exists that is suitable for a given random walk on
a given group depends, to a large extent, on the particular random walk in question.
In fact, given a driving measure u, constructing a proper dilation structure for p
(deciding if such exists) is a major problem, one that is completely ignored by the
triangular array formulation of limit theorems. This is illustrated by the results of
the present work.

Somewhat independently of the above circle of ideas, Crepel, Raugi, and others
obtained rather satisfying random walk limit theorems for general nilpotent groups
in the case the limit is a diffusion [23, 54, 55]. The proofs in these works can
be viewed as using two steps: the first step proves the result in the presence of
a canonical adapted dilation structure (that is, in the case of stratified nilpotent
groups), and the second step is closely related to one of the key ingredients we
will use here and involves the idea behind our definition of an approximate group
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dilation structure, a dilation structure that does not preserve the group structure of
the original underlying Lie group. In general, because of the second step, the original
group carrying the random walk has a group structure that is different from that of
the Lie group carrying the limit diffusion. This, clearly, takes us outside the realm
of Wehn-type results.

One key point in the results by Crépel and Raugi is that the structure of the group
carrying the limit diffusion depends only on the original group, not of the particular
(diffusive) random walk one wants to study. In general, this cannot be the case when
the random walk to be studied calls for a limit process that has jumps as we do here.
As we shall see, in this case, the limit structure depends on both the original group
and the particular probability measure that drive the given random walk. One thus
has to discover what this proper limit structure is for each studied random walk.

2.5.2 Local Limit Theorems

The first local limit theorem in the context of general nilpotent groups and groups of
polynomial volume growth is due to G. Alexopoulos [2—4]. See also the discussion
in [14]. It concerns centered random walks driven by a finitely supported measure.
For nilpotent groups, following a very different approach, and covering random
walks driven by measures that have a high enough finite moment (much higher than
2, in general), the strongest known results are due to R. Hough [38], which provides
an informative review of earlier results. We do not know of references treating cases
when the limit is not a diffusion process.



Chapter 3 )
Polynomial Coordinates o
and Approximate Dilations

3.1 Polynomial Coordinate Systems

Even though some related results can be stated in an intrinsic manner, in practice,
limit theorems are coordinate dependent. This applies to the results of this mono-
graph and, consequently, we discuss in some detail the notion of global coordinate
system for simply connected nilpotent Lie groups. A number of different choices
are possible for this purpose. In this chapter, we outline the basic characteristics of
the coordinate systems we will use. A given group G can be described via many
different such global polynomial coordinate charts, and it is often desirable to allow
for such a choice to be made by circumstances. This is discussed further in Chap. 9.

A simply connected nilpotent Lie group G can always be described by a global
coordinate chart R? — G, 0 — e, in which the group multiplication and inverse
map are given by polynomials

Xy =P, y) = (p1,y), .o pa@ ), 17 =00 = (@), ..., qa).
As P(x,0) = x and P(0, y) = y for any x, y € R, we have
pi(x,y) =xi +yi+pilx,y), 1=i=d, (3.1

where p;(x, y)’s are polynomials having no constant nor first-order terms. More-
over, for any compact K C R, there is a constant C k such that

Ix7" -yl = IPQM). »ll2 < Cillx — yll2 foreveryx.y e K (32)

because P(Q(x),x) = 0. Here || - |2 is the canonical Euclidean norm in R,
Similarly, for any compact K C RY, there is a constant C' such that for every
x,yek,
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lx—ylla=llx—x-" W= lx =P, x7 -y < Ckllx™ - yll. (3.3)

The last inequality is due to the fact that x — P (x, z) vanishes at z = 0.

We assume throughout that the Jacobian of the maps y — x-y, x € G, is 1 so that
the Lebesgue measure on R? is a Haar measure for our group G. This assumption
follows from the much more demanding assumption that (3.1) has the additional
property that

prx,y) =0 and pi(x,y) = pi()iL T for2<i<d. (34
In other words, the polynomial
pi(x,y) =pi(x,y) —xi — i

depends only on the first i — 1 coordinates of x and y and has no constant nor first-
order terms. Clearly, this triangular structure implies that the Jacobian of the map
y = x -y is 1. Moreover, for x = Ox) =(q1(x),...,q4(x)), we deduce from
P(Q(x),x) =0 that

qi(x)=—x; and ¢qi(x)=—x; +¢qi(x1,...,xi—1) for2 <i <d, 3.5

where g; (x1,...,xi—1), 2 < i < d, are polynomials having no constant nor first-
order terms.

Example 3.1 (Matrix Coordinates) The most commonly used coordinate system
(as Moliere’s Mr. Jourdain with prose, we may use it without realizing we do!) comes
from matrix groups. Indeed, the group G is often given as a subgroup of a group of
invertible matrices of a certain dimension, say N. In particular, a nilpotent group
is often given as a subgroup of the group of unipotent upper-triangular matrices.
The most obvious example is when G is the group of unipotent upper-triangular
matrices itself

1 x12x13... x1n5
0 1 x23...xnN

Uy = 00 1 ...x3n IxijGR,1§i<j§d
00 0 ... 1
This group has dimension d = (g] ) In the case N = 3, this is the Heisenberg group
Hiz (R) in its matrix form with

P(x,y) = (x1+y1, x2+y2, x3+y3+x1¥2), Q(x1, X2, X3) = (—X1, —X2, —X3+X1X2)
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and
P~ y) = (31 —x1, y2 — %2, y3 — x3 — x1(32 — x2)).

Example 3.2 (Exponential Coordinates of the First Kind) The second most
commonly encountered coordinate system is given by the canonical exponential map

exp:g—> G
between the Lie algebra g of the group G and G itself. We can think of g = R?
as the tangent space at e. Given a tangent vector x € RY, we first consider the
(unique) left-invariant vector field X on G such that X (¢) = x and the solution

Yy 110,11 > G of%yx (t) = X (yx (1)) with initial condition yx(0) = e and set

exp(x) = yx(1).
Using the fact that, for any two left-invariant vector fields X and Y, the well-defined

differential operator XY — Y X is a left-invariant vector field, we obtain the Lie
bracket (x,y) — [x,y] = (XY — Y X)(e). Moreover,

[x, y] = 859, (exp(rx) - exp(sy) - exp (=1x))[;==0 -
In the case of simply connected Lie group, the exponential map is a global invertible
diffeomorphism and the multiplication is given in the universal form by the famous

Campbell-Hausdorff formula

exp(x) - exp(y) = exp (Pey(x, y))

where
1 1
PCH(X,)’)=x+y+E[x,Y]‘i‘E([X,[x,)’]]‘i‘[yv[y,x]])‘l‘ (36)

In other words, in the exponential coordinate system, the group law is

1 1
Xy = Po(x.y) = x4y + Slr ]+ o @ eyl + D Dnxl) 4 -

This has the desirable polynomial form because iterated Lie brackets with more than
r entries are equal to 0 if r is the nilpotency class of G. In these coordinates, it is
always the case that

X = —X.

Applying this to the Heisenberg group, we obtain the often-used description of
H3(R) as R3 equipped with the product
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x-y=Pulx,y)= (X1 + Y1, X2+ ¥2, 3+ x3 + A (xpyr — x2y1)>
and
Peu(x7y) = <y1 —x1,y2 — X2, 3 — X3 + $(x2(y1 — x1) — x1 (32 — xz))) .

Example 3.3 (Exponential Coordinates of the Second Kind)

For a simply connected nilpotent Lie group G, exponential coordinate systems
of the second kind are typically associated with a filtration of the Lie algebra g by
subalgebras (respectively, ideals)

g=¢g1 D@D - DgeD{0}

with g; of dimension m j, and a linear basis (si)f such that the linear span of (&;)i> j
is a subalgebra (respectively, ideal) for all 1 < j < d := my, and (e?,')gl_m/+1 isa

basis of g . In such a situation, the maps from R? to G defined by
D(xq, ..., xq) =exp(xiey) - - -+ exp(xq€q)
and

W(xy, -+, xq) = exp(xqgeq) - -+ exp(xieq)

give two distinct global polynomial coordinate systems for G.

For example, the matrix coordinate system of the group of n x n upper-triangular
matrices with entries equal to 1 on the diagonal is an exponential coordinate system
of the second kind associated with the lower central series

g=91, giv1=1I[gi.9l, 1 <j=<n,

which, in this case, has last non-trivial member g,_1 corresponding to the upper-
right corner entry. Here, we can realize g as the algebra of the strictly upper-
triangular matrix. We then enumerate the entries (x,-)‘li, d = n(n — 1)/2, going
down along each upper-diagonal in order so that xq is the entry in the upper-right
corner, and consider the corresponding map V. For instance, in the 4 x 4 case,

1 x1 x4 x¢ 100 xq 1000 1x,00
01l xxs| (0100 010xs 0100
00 1x3)] (0010 0010 0010

0001 0001 0001 0001
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Each of the matrices on the right is the matrix exponential of the corresponding

strictly triangular matrix. Note that ® defined above leads to a different coordinate
system. ([l

These classical constructions concerning exponential coordinates of the first and
second kinds are explained in more detail in [22, Section 1.2]. See also [21, 30, 47].

3.2 Dilations, Approximate Dilations, and Limit Groups

3.2.1 Straight Dilations

Let G be a nilpotent simply connected Lie group given in a global polynomial

coordinate system G = (R?,.). Call straight dilations with exponents a =
(ai,...,aq) € Ri, the group of diffeomorphisms
¢r(x) = (txq, ..., t%xg), t>0.

Note that ¢5 0 ¢y = ¢y, 5, > 0, and ¢; = Id.

Definition 3.4 We say that (¢;);~0 as above is a straight group dilation structure if

Gi(x-y) =1 (x) - (y), t>0,x,y€G. (3.7

d

This, of course, is a very restrictive property and not every simply connected
nilpotent Lie group G admits such a structure. In the case of the Heisenberg group
in matrix form, for given a, b, ¢ > 0, set

1xz 1% t°z
o001y =[0 1 y], t>0, x,y,z€R.
001 00 1

These straight dilation structures are group dilation structures if and only ifa + b =
c.

Remark 3.5 More generally, without reference to any coordinate system, a group
of diffeomorphisms (¢¢);~0, ¢ : G — G, ¢1 = Id, satisfying (3.7) and such that
lim;0 ¢:(g) = e is called an expanding group dilation structure. See [36, 46].
By a theorem of Siebert [58], a connected locally compact group carrying such a
structure must be a simply connected nilpotent Lie group (and not every simply
connected nilpotent groups admit such a structure). U



32 3 Polynomial Coordinates and Approximate Dilations

Definition 3.6 Let R? be equipped with a straight dilation structure
@)i=0,  ¢1(0) = (“x)f, @ >0, l<i=<d.

A positive function N on R? is called homogeneous with respect to (¢;);~¢ if
N(¢:(x)) = tN(x). O

Example 3.7 The function x — N(x) = maxlsifd{|x,-|1/“i} is homogenous with
respect t0 (¢1)r=0, P:(x) = (t“"xl-)d, a; >0, 1 <i<d. Itisanormon (R, +)
(i.e., satisfies the triangle inequality) if a; > 1 forall 1 < i < d. If M is another
homogeneous function with respect to (¢;)i=0, such that the set x : M(x) <1 is
compact, then there are constants 0 < ¢ < C < oo suchthatcN <M <CN. U

3.2.2 Approximate Group Dilations and Limit Groups

Let G be a simply connected nilpotent Lie group given in a global polynomial chart
G = (R?, ) and equipped with a straight dilation (not necessarily a group dilation
structure) (¢;);~o. For each ¢+ > 0, we obtain a new group structure -, on R4 by
setting

Xy =Gud ) ¢ (y), xy R (3.8)
Moreover,
$r/0: R — RY, )
is a group isomorphism between G = (R?,-) and G, = (R?, -;). Additionally,
(¢¢)¢=0 is a group dilation structure if and only if -, = - for all r > 0.

Definition 3.8 (Approximate Group Dilation Structure) Let G be a simply
connected nilpotent Lie group described by a global polynomial chart (R?, -). Let
(¢1)i=0 be a straight dilation structure. We say that this dilation structure is an
approximate group dilation structure if, for any x, y € R?, the limits

Jim pre(@ (@)™ = a7t and lim Gry(¢(x) - di(y) =x ey

exist. O

Lemma 3.9 The pairing (x, y) — x e y yields a nilpotent Lie group Go = (R%, o)
and x:l is the inverse of x for the group law e, that is, x:] ex=2Xxe x:l = e,. For
the group (R?, e), the straight dilations {¢;; t > 0} form a group dilation structure,
i.e., satisfy (3.7). O
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Proof By construction, the maps P;(x,y) = ¢1/:(¢:(x) - ¢:(y)) and I;(x) =
@1/1(Pr (x)’]) are polynomial maps in x, y with coefficients equal to linear com-
binations of power functions of # with exponents in R. If the limits lim,_, o P;(x, y)
and lim,_, « I;(x) exist for all x and y, it means that only non-positive powers of ¢
occur and this implies that the families P; and /; are uniformly equicontinuous on
compact sets. A sequence of simple considerations then yields that

xe(yez)= tgrgo@/t(cbr(x) P (y) (7)) =(xey)ez

and

Note that this also implies

Jim gu/i (61007 @) =x7" ey, (3.9)

O

Lemma 3.10 Let (¢;)s~0 be a straight approximate group dilation structure on
(R4, ). For any compact K C R4, there is a constant Cx > 1 such that for any
x,y€e Kandt > 1,

Cily = xll2 = éuye (60~ 9e)) I = Clly = 11 (3.10)

and

A

Ci Ik e vla < lguye (4™ o)) 2 = CxlT oylla BAD)
Proof The function (t, x, y) — ¢1/: (¢:(x)~'¢:(»)) is a polynomial in

(‘x7y):(x17"‘?xd’yl7""yd)

with coefficients equal to linear combinations of powers of ¢ with exponents in
R. By (3.9), only non-positive powers of ¢ appear. The upper bound of (3.10)
follows from this and the fact that ¢y, (¢ (x)~" - ¢;(y)) vanishes when x = y
(see, e.g., (3.2)). For the lower bound of (3.10), following the proof of (3.3), note
that, by taking z = x, o y, where x,” !denotes the inverse of x for the group law .,
defined in (3.8), it is equivalent to

lx —x - zll2 < Ckllzll2
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forx € K and z € K] C K”, for some compact set K C R¢ independent of £ > 1.
This inequality follows because the polynomial x — x -, z (with coefficients using
only non-positive powers of ¢) vanishes at z = 0. The two-sided inequality (3.11)
follows from the same arguments applied to x, !e y instead of ¢; /1 (¢ @)L ().

O

Remark 3.11 When working in exponential coordinates, we have the extra struc-
ture of the Lie bracket [-, -] at our disposal, and we can replace the conditions in
Definition 3.8 by the condition that

tllrgo o1/t ([ (x), d: (V)] = [x, y]a

exists. Call this an approximate Lie dilation structure. Note that, in this case,

x ! = x:l = —x and ¢l(x)’1 = ¢>,(x’1) so that the inverse map condition is

automatically satisfied. (I

Remark 3.12 If (¢;);~0 is a group dilation structure (respectively, an approximate
group dilation structure), then so is (¢:a )0, for any a > 0. Moreover, in the case
of an approximate group dilation structure, this change does not affect the limit
structure. U

Remark 3.13 The basic idea behind Definition 3.8 is well known in two different
related contexts. It appears in the study of the large-scale geometry of groups
of polynomial volume growth, see, e.g., [15, Section 2.2], and in the work of
Alexopoulos on local limit theorems in the context of groups of polynomial volume
growth, see [4, Section 5.2]. In these works, there is a unique relevant structure at
infinity, and it follows that the “dilation structures” considered there are very special
examples of those defined here. Various forms of the same idea play an important
role in the local study of sub-elliptic second-order operators, but in that context the
limit is taken when the parameter ¢ goes to 0. See for instance [60, Chapter V]. [

The following lemma is not used explicitly but serves as an exercise in manipu-
lating the notion introduced above. See also Sect. 10.3.

Lemma 3.14 Let H be a subgroup of G = (RY, -) and (¢;);~0 be an approximate
group dilation structure with limit law e. Set

H, = {x e R : there exists (x%)$° C H so that klim o176 (xXk) = x} .
—00

Then H, is a subgroup of G4 = (R%, o).

Proof Let x,y € H, with witness sequences (x){°, (yx){° in H. Fix ¢ > 0. By
the continuity of e, there exists § > 0 such that ||x — x|l < dand ||y — y'|l2 < §
imply ||x @ y — x" @ ¥'||2 < &/2. By the definition of H,, there exists N > 0 such
that ||x — @1/x(xp)ll2 < 8 and ||y — ¢1/x (V)2 < 6 for all k > N. By the uniform
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convergence of ¢1/;(¢;(u) - ¢;(v)) to u e v on compact sets, there exists N’ such
that, forall k > N and k¥’ > N/,

o1k (xi) ® D17k (Vi) — D171 (i (D178 (Xk)) - D (D176 V) N2 < €/2.
Hence, for k > max{N, N},
lx @y — &1/k(Pr(P1/k(xk)) - Dr(D17(WINl2 < &,
and thus, [x e y — ¢1/c(xc - Yol < & Because x; - yx € H, this proves that

x oy =limg_ 0 17k (xk - Yk) € Ho. A similar proof applies to show that x_° e H,
forx € H,. m]

Example 3.15 Consider the Heisenberg group viewed as the group of matrices
lxz
H:R)={[01y]:(x .2 eR}
001

Here, the product of the matrices associated with (x,y,z) and (x',y’,7) is
associated with the triplet

x+x,y+y,z2+7 +xy).
The inverse of (x, y, 7) is
(o, 3,27 = (=x, =y, —z 4+ xy). (3.12)

This is isomorphic but different from the “exponential coordinate description”
discussed earlier where

(u, v, w) - (u’, v w') = (u +u,v+v, w+w + % (uv’ — u/v)) )
The map
q: (x,y,2) = qx,y,2) =W, v,w) = (x, ¥, 7 — %xy) (3.13)
provides the group isomorphism between these two descriptions.
Now, consider the group of diffeomorphisms (¢;);~0 (straight dilations in that

system) given in the (x, y, 7) matrix-coordinates by

¢i(x,y,2) = (tx, tby, t°z) for some fixed a, b, c > 0.
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These are group diffeomorphisms for all t > 0 if and only if c = a + b. They form
an approximate group dilation structure at infinity if and only if c > a + b. When
c>a-+b,

oy, e (X, v, )= (x+x,y+y.z+7)
and

(Y, 20 = (=x, =y, =) # (x, y, 207"

If we write down these same diffeomorphisms in the “exponential coordinate”
description (u, v, w), they are given by the maps

Vi, v,w) =g oy oqu, v, w) = (t“u, tPo, rCw + % (tc - t“+b> uv) .

In the (u, v, w) global coordinate chart, exp = log = id, and if we assume ¢ >
a + b, the straight dilations

8 (u, v, w) = (%, tPv, tw), t>0,
give both an approximate Lie dilation structure and an associated approximate
group dilation structure which are distinct from the ¢;/vy; approximate group
dilation structure even so they share the same differential at the identity. They lead
to isomorphic limit group structures. O

Example 3.16 Consider the group

I x12 x13 X14

0 1 x23 x24
= cxij€eR
G 00 1 x| €
00 0 1

and the straight dilation structures associated with any tuple

/aij, ij = @, j) € (12,13, 14, 23, 24, 34}

so that
1 x12 X13 X14 1 y12 y13 Y14
1 1 »
5, 0 1 xp3x4 || _ (O T y23yxu oy =y
00 1 xu 00 1 yu

00 0 1 00 0 1
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Such a (8;)¢=0 is a group dilation structure if and only if
Voge = 1/ag; +1/aje foralll <k < j <t <4,
that is,
1)+ 1/a1z = /a2 + 1/ao3, (2 1o =1/a3 + 1/a34
and
(3): 1oag =1/ + /a4, @) : 1og = 1/o13 + 1/az4.

The group (¢:):=0 is an approximate group dilation structure at infinity if and only

if
Voge = 1/agj +1/aje foralll <k < j < £ =<4 (3.14)

We now list all the possible Lie structures that appear as a limit of such an
approximate group dilation structure on G.

1. When equality holds in all of the inequalities (3.14), we have G4 = G.

2. When strict inequality holds in all of the inequalities (3.14), we have G, = R®
(abelian).

3. When equations (1) and (2) are equalities, then equations (3) and (4) become
equivalent. Assume a strict inequality holds in (3) and (4). Then the limit G4 is

1 x12 x13 1 x23 x24
01 xX23 | 01 X34 1> (x14) L Xij eR
00 1 00 1

Here multiplication for these triplets of matrices is matrix-coordinate by matrix-
coordinate. Note how the same X33 appears in the first and second matrix-
coordinates.

4. When strict inequality holds in both equations (1) and (2) and equality holds in
both (3) and (4), then the limit G, is

1 x12 x13 X14
01 0 x4

R
00 1 xy| ()| 30€
00 0 1

(this is the direct product of the five-dimensional Heisenberg group Hs(R) and a
copy of R).
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. When strict inequality holds in both equations (1) and (2) and equality holds in

(3) but not in (4) (respectively, (4) but not in (3)), then the limit G4 is

I x12 x14
01 x4]|, (X13) ) (x23) ) (X34) txij €R
00 1

(respectively, exchange the roles of pairs x12, x24 and x13, x34). This is the direct
product of a copy of H3(R) and R3.

. When strict inequality holds in (1) (respectively, (2)) and equality holds in (2)

(respectively, (1)), then strict inequality must hold in (3) (respectively, (4)). If
equality holds in (4) (respectively, (3)), the limit group is isomorphic to

10x13 x14
01 x23 x24
(e2) 50 X3
00 0 1

:x,-jeR

(respectively, exchange the roles of x12 and x34, the limit groups in both cases
are isomorphic).

. When strict inequality holds in (1) (respectively, (2)) and equality holds in (2)

(respectively, (1)) and strict inequality holds in each of (3) and (4), the limit
group is isomorphic to

1 x23 x24
01 x34 ,(xlz) ) (X13) ) (X14) xij € R
00 1

(respectively, replace the triplet (x23, X24, X34) With (X12, X13, X23) and the triplet
(x12, x13, X14) With (x34, X24, X14) ). This is the direct product of a copy of H3(R)
and R3).

d



Chapter 4 )
Vague Convergence and Change o
of Group Law

4.1 Vague Convergence Under Rescaling

We consider a rather general situation pertaining to the problem we want to study.
We are given the following data:

(a) A finitely generated torsion-free nilpotent group I' embedded as a co-compact
closed subgroup of a simply connected nilpotent Lie group G. It is useful for
our purpose to be more explicit and write G = (R?, -) where this coordinate
system is a polynomial coordinate system as explained earlier.

(b) A probability measure p on I'.

(c) An approximate group dilation structure (§;);~0 on G with Lie group limit
Ge = (R, o).

Definition 4.1 We say that the approximate group dilation structure (8;);~¢ is
admissible for w if the family of measures

pe = 181/:()  defined by p;(¢) := f/Rd ¢ (B1/¢(u))pu(du) (4.1)

converges vaguely to a Radon measure o on R? \ {0} as 1 — oco. Recall that, by
definition, this means that, for any continuous function ¢ with compact support in
R\ {0},

tl_i)rgoftﬁ(x)duz(X) = /¢(X)du.(x)-

Remark 4.2 Note the following identities:
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(A =18 (A) =1 Y LsaMuy) =1 Y Tax)u(sx)

yer xes T

and

/ P (x) =1 / $G7 du) =1 Y p0ux).

xeé,’ll"

Remark 4.3 The normalization by a factor of # in u, = #81,,() is less restrictive
than it may first appear because of Remark 3.12. If there is an approximate Lie
dilation structure (&;);~o (with limit law e) such that the measure p, = 93, 1(/L)
converges vaguely to 1, on R \ {0}, then the modified approximate Lie dilation
structure (8,1/a)r>0 gives the same limit law e and is admissible for w. In this sense,
the choice of the linear ¢ factor in the definition of @, amounts, more or less, to a
scaling normalization. O

Example 4.4 Fix o € (0, 2) and let u be the probability measure on Z C R with
k) = ca (1 + kD™,
Let 8;(x) = tY/%x. Then t8t_1(,u) converges vaguely on R\ {0} as t — oo to the
measure e with density cq|x|~%~" with respect to the Lebesgue measure on R. O
Example 4.5 Fix @ € (0,2) and B € (0, «). Let i be the probability measure on
77 given by
p(@, ) = e+l +1yD™*2  (ry) e Z? CR.

Let 8,((x,y)) = (t'/%x,t'/By). Then t8,_1(pL) converges vaguely on R? \ {(0, 0)}
ast — 00 to the measure [Le(dxdy) = fo(x)dx ® So(dy) supported on the x-axis
with fo(x) = ' |x|7%71, where ¢’ = ¢ [+ u) " 2du. O

Example 4.6 On the Heisenberg group H3(Z) viewed as the group of matrix
1 x1 x3

01 X2 ZX1,XQ,X3€Z . (4.2)
00 1

consider the measure

Co

w((x1, x2,x3)) = 4.3)

a+4’
<1 + x12 +x% + |x3 — x1x2/2|)
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(note that this is a symmetric measure). Consider an approximate Lie dilation
structure (8;)t=o of the form 8,((x,-)?) = (tl/Vixi)?. For this to be an approximate
Lie dilation structure, it must be that 1/y3 > 1/y1 + 1/y> which we assume. For the
measure tét_l(ut) to have a vague limit, it is necessary that 1/y; > 1/a, 1/yy >
1/a, and 1/y3 = 2/a. Note that the roles of x and y are the same so that we can
assume for the sake of the computations described below that 1/y; < 1/ys.

1. Assume that 1/y> > 1/yy > 1/a. Then 1/y3 > 2/« and it is not hard to see that
t&fl () converges vaguely to 0 as t — oo.

2. Assume y1 = y2 = y3/2 = «a. Then (8;)t>0 is a group dilation structure and
l5f1(u) converges vaguely as t — 00 to

cadxidxrdxs

a+4’
<\/x% + x% + [x3 — x1x2/2|>

3. Assume that 1/y1 = 1/y» = 1/a and 1/y3 > 2/a. Then tSI_I(M) = e AS
t — oo, where

c/

te(dx1dx2dx3) = ——————=dx1dxz ® So(dx3)
(Vii+2)

with ¢’ = 2¢ [°(1 + 5)~ /D ds.
4. Assume that 1)y, > 1/y; = 1/a. It follows that 1 [y > 1/y1 + 1/y» > 2/a. In
this case t8t_l(u) = e ast — 00, where

te(dx1dxadxz) = ¢'|x1] 7% dx) ® 8o(dxa) ® 8o(dx3)

with

0 S —(a+4
C’:ZC/ (/ (\/1+u2—|—v) (a+)dv>du.
0

—00

We provide details for the third case (the fourth case is similar). Let f be a
continuous function with compact support in R3 \ {0}. We want to show that

ca f 67 (X))

i [ 70od o = tim 1 3 —
xezZ3 (1 + x12 —i—x% + |x3 — x1x2/2|>

-/ %dmm ® bo(dxs)

,/xlz—i—x%)
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/
b 9 O
_ / @0
R2 (

a+2
2 2
,/xl +x2>

Recall that yy = y» = @ and 2y3 < o and write

Ca

f F87 (uldx)) =1 Y (67 (x)) —
xeZ3 (1 +\/x%+x%+ |x3 —x1x2/2|>

=t Y @ e

a+4
ze8;71(23) (1 + \/ﬂ/yu 23+t 4 |t /rszy — t1/71+1/}’zzlzz/2|>

— C
=y 1@ -
ze8; (2 (t‘/“ + \/z% + 25 4 [t/ 73=2lezy — Z1Z2/2|)

— 4 ca f((21,22,0))

o+4
2 Yaz R xi-az (t—l/“ + R+ B+l - Z1zz/2|)

—4/a ca(f (21, 22,17 1H2%23)) — f((21,22,0)))

+1t

a+4
2 DXL (t—l/“ +ya+5+s - ZlZZ/2|)

The first term is, essentially, a (multivariate, generalized) Riemann sum of a
uniformly continuous integrable function on R3 over the lattice (t~1/*7)* x t=%/%7,
and, consequently, it converges when t tends to infinity to

ca f(x1, x2,0) _ co f(z1,22,0)
\/Rs a+4dX1dX2dX3 = [l\%z Wd?ﬂd)@,
<\/x12 + x% + |x3 — x1x2/2|>

’o_ 0 du
where Coy = 2C0( f() W.
The second term goes to O when t tends to oo because f is uniformly continuous
and 1/y3 —2/a > 0: for any ¢ > 0, there is a T, such that for all t > T,

(1 22, 17 1/7372923)) — f((z21.22. 0)] < e.
This gives
calf((z1, 22, V73 F223)) — £((21, 22, 0))]
t_4/a o 1,<2, 3 1,42,

a+4
(t=Vez)2x1=2/az, <\/z% 4 z% +|z3 — Z1Z2/2|)
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<t > Co

a+4
(t=Vez)2 x1=2/e7 (\/Z% + Z% +|z3 — 2122/2|>

When t tends to infinity, the limit of the right-hand side is

Ca
e \ a+4dx1dx2dx3.
R.

<\/x12 + x22 + |x3 — xlxz/2|>

As ¢ > 0 is arbitrary, this proves that

lim ¢~
11— 00

40 Z ca(f (21, 22,1 23)) = f((z1, 22,0)))

atd T
@t~ Vez)2xt—2/ey, (t—l/a + Z% + Z% +lz3 — ZlZ2/2|>

as desired. O

4.2 Vague Convergence of Jump Measures and Kernels

Next, we relate the vague convergence of u; to , to the vague convergence of jump
kernels.

Proposition 4.7 Let ' C G be a discrete co-compact subgroup of the simply
connected nilpotent Lie group G = (R%,.). Let ¢(T", G) be the Haar volume of
G/ T (ie., of a fundamental domain for I in G). Let 1 be a probability measure on
I" and (6;)¢=0 be an approximate group dilation structure on G which is admissible
for u, and let 1, = t81;,(10). Suppose that i, converges vaguely on R\ {0} o a
Radon measure e as t tends to infinity. Then, for any continuous and compactly
supported function ¢ in R? x RY \ A, the positive Radon measure J;(dxdy) on
R? x R? \ A defined by

// o (x, y)Ji(dxdy) =
RY xR\ A

o Gydetry) Y. p G0 8()

x,y€81/1(I"), x#y

converges vaguely as t tends to infinity to the positive Radon measure J, defined on
R? x RY) \ A by

/ f 6 (¥, ) Ja(dxdy) = / / B (x. x o Vdxpa(dy),
RY xR\ A RY xR\ A
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where e is the limit law x e y = lim;_, o 8,_1(8, (x) - 8:(y)) for the approximate Lie
dilation structure (8;);0. O

Remark 4.8 Of course, in the group G, = (Rd , ®), We can write

/ f b(x.x o Ydxpa(dy) = / / B, Vdxpa(xy ! o dy)
R x R4\ A RI xR\ A

(the inverse operation is in (G, e)) so that
Jo(dxdy) = dxpe(x; ' 0 dy).

Remark 4.9 Note that the measure J,l (dx) defined by

f $(0) I} (dx) = (T, G) detGry) Y. $(x)

x€y);(I)

obviously converges to f ¢(x)dx as t tends to infinity. That is, the vague limit of
Jt1 (dx) is the Lebesgue (=Haar) measure on RY. O

Proof Observe that
X0y =0818(x) () (4.4)

is a group law which turns R? into a Lie group G, = (R?, -/) (this group is actually
isomorphic to G). For any fixed x € §1,,(I"), consider

oY gy sGN =t Y ¢ uG i y)

y€d1/ (M\{x} yedi/ (M\{x}

=t Z d(x, x -+ YIS (y)).

ye8y/ (M)\{x}

Now, write

/ / 6 (x, y)Jy(dxdy) — / / 6 (x, ) Ju(dxdy)
RY xRI\ A RY xRI\A

= // ¢ (x, y)Ji(dxdy) — Z / o (x, x @ y)t (3 (y))dx
R xRA\ A Rd

yedi/(M\e}

+ Z / ¢ (x, x @ y)ru(5;(y))dx — // ¢(x, y)Jo(dxdy)
R4 d

vediy(M)\{e} RI xRI\A

=1(@)+ L(@).
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To bound |11], write ¢; = ¢(I', G) det(81/,) and

nol=| Y wGon (e X stxan - [etxeyds

y€di/ (M\{e} xedy/ ()

Note that ¢ is continuous and compactly supported in RY x R \ A and x -; y
converges (uniformly on compact sets) to x e y. It follows that there is a compact
set K = Ky in R? \ {0} with the property that, for any & > 0, there is T such that,
forally e R andallr > T,

o Y #txn - [wxends| <elro.

xes7'T

Also, there exist Cx and T’ such that for all t > T/, tu(8;(K)) < Ck. It follows
that |11 (t)| < eCk. As for |I5(¢)], the fact that it converges to 0 is a consequence of
the vague convergence of 5, ! () to e on RY \ {0}. |

The jump kernel J; introduced above is defined on R? x R¢ \ A and acts on
functions of x, y € RY x R?\ A. It is useful to consider also a related discrete jump
kernel supported on

I x T\ A,

where I'; = §; ! (I") (by abuse of notation, we use the letter A to denote the diagonal
on R x R for any space R, e.g., R = R or R = I'}). Note that I'; is a co-compact
subgroup of the group G; = (R4, .,) defined at (4.4) and that &, provides a group
isomorphism from I'; onto I'. We equipped I'; with the rescaled counting measure

m,(A) = ¢(T, G) det (5;1) |Al, where |A| = #A (4.5)

for any finite subset A C I';. On I';, we consider the jump kernel measure j; defined
by

Jix, y) = (T, G)rdet@)p@(x) ™" - 8(y),  (x,y) €Ty xT\ A, (4.6)

We now assume that the probability measure w1 on I' is symmetric. Then j;(x, y)
is symmetric in (x, y) and it gives rise to an associated symmetric Dirichlet form in
L%(I;, m;) with domain ) := L2(I';, m;) defined by

1
80w v =5 D @) —u()EE) = vy, wveF .
x,yely

.7
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The infinitesimal generator of this Dirichlet form on L2(Ty, my) is

=t (f = f e 87 ) (48)

onl’.
Recall that I'; € R?. For each x € R4, let [x], € I, be the point closest to x in
the || - ||-norm (if there are more than two such points, we choose one arbitrary and

fix it). When needed, extend a function f on I'; to a function f on R? by setting
f(x) = f([x],) for each x € RY. We say a family of functions {f; : Iy — R};>1
converges uniformly to a function f on RY if f converges uniformly to f.

The following is an easy consequence of Proposition 4.7 that relates to j;. It is
stated for continuous limit, but it obviously holds as well for sequential limits based
on an arbitrary sequence f; tending to infinity.

Lemma 4.10 Ler {f; : Iy — R};=0 (resp. {g: : Ty — R};) be a family of
continuous functions that converges uniformly to a continuous function f (resp.
g) on RY. Then, under the assumptions of Proposition 4.7, for any open set U C
R? x R4\ {(x, y) : ||)c._1 e yll2 < n} withn > 0 whose closure is compact, it holds
that

lim > (fr (xX) = [ (& (x) — g (¥) i (x, y)

t—00
(x,y)exI'HNU

N //U(f @) = FON(EE) — g(1))a(dxdy).

O

Proof Set ¥ (x,y) := (fi(x) — fi()(g(x) — g (y)) and ¥ (x,y) := (f(x) —
S () (g(x) — g(y)). Then

3 vf,<x,y>jt<x,y>—f/l} ¥ (x, ) u(dxdy)

(x, )@ xTHNU

< Do Wl y) = Y )i(x, y)

(x, e xI'HNU

+ ‘/ U(I/f(x, nJi(dxdy) — ¥ (x, Y)J.(dxdy))‘ =11 + b.

By Proposition 4.7, sup, Z(x,v)e(F,xF,)ﬂU Ji(x,y) < oo. It follows that
lim; .o I = 0 because ¥; converges uniformly to . By the proof of Proposi-
tion 4.7 (and the fact that U is compact in RY x RY \ A), limg— oo I = 0. |



Chapter 5 ®
Weak Convergence of the Processes o

5.1 Assumption (A)

In this chapter and next, we prove limit theorems involving

(a) A finitely generated torsion-free nilpotent group I' embedded as a co-compact
lattice in a simply connected nilpotent Lie group G

(b) A symmetric probability measure p on I'

(c) A polynomial coordinate system for G = (R4, .) and straight dilation structure

s 020, 8 (@) =Pl B e©2), i=1...d 6D

which is an approximate group dilation structure for G with limit group G, =
(R’ o)

The key hypothesis we will make that links together the probability measure u,
the dilation structure (§;);~0, and the limit group G, is that

(A) The straight dilation structure (§;);~¢ is admissible for the probability measure
u, that is, the (positive) measure u; = 1381;,(u), t > 1, defined at (4.1)
converges vaguely to a non-trivial Radon measure 1, on R? \ {0} as ¢ tends
to infinity.

Remark 5.1

(i) The Radon measure (i, appeared in (A) is on R? \ {0} and is expressed under
the global coordinate system we use for the nilpotent group G and hence for
G,. It induces a Radon measure of G, through this global coordinate system.
By abusing the notations, we use the same notation e for the induced measure
on G,.
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(i) Under assumption (A), it follows from the definition of w, that pu, is a
symmetric measure on G, \ {e} and has the following scaling property:

0r(e) =riLe foreveryr > 0; (5.2)

that is, for any Borel measurable set A C R4 \ {0}, ne(A) = ,u.(A._l), where
A7l :i={x e R?: x7! € A}, and

{he (5;1(A)) = 1e(81/r(A)) = ri1a(A) forevery r > 0.

We are most interested in the case the limit measure o is not supported on
a proper, closed, connected subgroup of G,. In that case, the condition that the
exponents {8;, 1 < i < d} for the straight dilation structure {§;; + > 0} of (5.1)
are in (0, 2) means that the original measure p must have some sort of heavy tail
characteristics, i.e., 4 has to be “stable-like.”

5.2 Geometries on R? and G,

Fix B > max|<;<4{Bi}. By Hebisch and Sikora [37], there is anorm || - || on G, =
(R?, ) (this means that ||x e y|| < ||lx|| + ||yl forall x, y € R, [|x;!|| = ||x|| and
x|l = 0if and only if x = 0) such that

I18: )|l = ¢Y/|lull forevery r > Oand u = (u;)¢ € RY. (5.3)

This implies, of course, that there are constants ¢, C € (0, oco) such that

¢ max {Ju;|"/7} < fjull < C max {u;|"/F} - foru = ()i € RY. (5.4)
Y

1<i<d
Note that maxlsifd{|u,~|ﬂi//3} itself is a norm on (Rd, +) but not necessarily on

G. = (R?, ) (it may not be symmetric on G, and only satisfies the triangle
inequality up to a multiplicative constant in general). Set

B(r) = {x eRY: ||x| < r].
Obviously, we have
18: @)l = t'Pllulland  &,(B(r)) = B(rt'/P).
This means that the volume (the Lebesgue measure) of B(r) is

m(B(r)) = m(8,5(B(1))) = m(B(1)) det(8,5) = m(B(1))rF Xz VA1),
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Recall that R is also equipped with the Euclidean norm |[u||2 = 4/ Z‘ll lu;|?. Let
_ = min B and = max B;.
B 1555/3’ B+ lsisdﬁl
From the definition, it is clear that

cminf[[ullF/P= ullP/P+} < |lull, < C max{llu|P/P-, u|P/P+}. (5.5)

Similarly, for any u € R with ||u|| < Cir'/#, we have

B+/8 B-/8
o lluell2 < [l <c l[uell2 ' (5.6)
r ri/p r

We will need the following version of Lemma 3.10 with respect to the norm || - ||.

Lemma 5.2 For any compact K C RY, there is a constant Cy such that, for any
x,ye Kandt > 1,

18176 (8:0) ™" - 8:M)Il < Cilly — x[|1P~/P+
and
||51/;(8z(x)’] S = Cxllx" o y|f-/P+.

Proof In view of (3.1) and (3.5), the function (, x, y) — 81/; (8:(x)7'6;(y)) is a
polynomial in

(e, y) =15 e Xd Y15 -, Vd)
with coefficients equal to a linear combination of powers of ¢ with exponents in
R. By (3.9), only non-positive powers of ¢ appear. The desired inequality follows

from (5.5) because this polynomial function is equal to 0 when x = y. For the
second inequality, we first note from (5.5) again that for x, y € K,

181 (8:x) " - 8,1l < Cllx — ylI5-*

and then observe that [x — yll2 < Clllx; ! e y||f/P+. 0

5.3 Convergence of Volume

Recall that T', := 8,71 (T) = 8, ("),
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B(r)={x:||x|| <r} and Be(x,r)=xe B(r)= {y eRY: ||x._1 ey < r].

Recall also that m is the Lebesgue measure on RY and
m(A) = c(T', G) det (3,—1) #A

for any finite subset A of I';, where c¢(I', G) is given in Proposition 4.7 (see also
below).

Lemma 5.3 Forallx € R andr > 0,

lim m(Bo(x, 1) NTy) = m(Be(x, 7). (5.7

Proof Fix x € R? and r > 0. Recall that B,(x, ) = x e B(r) and
5 (x @ B(r)) = 8;(x) ® B(rt'/?y = B.(5,(x), rt'/#),
so that Be(x, r) N I'; is the finite set of all points y € R4 such that
2 =258;(y) € Bo(8:(x), rt'/PyNT.

Let dist, be a left-invariant Riemannian metric on the Lie group G = (R, ) and
take the Voronoi cell of e for the discrete subgroup I':

U= {x € RY : diste (x, ) = min diste (x, y)}
yell

so that

Rd:Uy~U

yel
and (y-U)N(y'-U) C yaU and thus m((y -U)N(y’-U)) = Oforany y # y' € T.
Note that this definition is based on the law - of the Lie group G = (R, ) and its
closed subgroup I', not on the rescaled limit law e. Since m(dU) = 0, by definition,
c(I', G) =m(U). Forany S C R4, we have
c,G)#zel'NS}<m(S-U).
In particular, for S = B4(6:(x), rtl/By = 8t (Be(x, 1)),

¢(T, G)y#{z € T N Bo(8(x), rt'/P)} < m(8:181/:1(8:(Ba(x, 7)) - 8:(81:(U)N]).
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Note that since I' is a co-compact closed subgroup of G, U is bounded and closed
and hence compact. Consequently, §1,,(U) converges uniformly to {e} as t — oo.
By the uniform convergence of the product -, to e on compact sets (e.g., see
Lemma 5.2), for any fixed ¢ > 0, there exists a constant 7 > 0 large enough
such that, for all t > T, the set [§1,,(8;(Be(x,7)) - 6;(81/:(U)))] is contained in an
¢ neighborhood for the norm || - || in the group (G, e) of the set By (x, 1) ® 51/ (U).
This means that, for 7 large enough,

81/1(8:(Bo(x, 7)) - 8;(81/1(U))) C Bo(x,7 + 2¢).
Hence,
det(81/,)c(T, G)#{z € T N Bo(8(x), rt'/P)} < det(81/)m(8;(Bo(x, r + 2¢)))

=m(Bo(x,1r + 2¢)).

Take the limsup in + — oo, note that m(Be(x, r + 2¢)) = c(r + 28)2111 /i and let
¢ tend to 0, to obtain

limsup m;(Be(x, ) NTy) < m(Be(x,r)).

—>00

To prove the complementing inequality, namely,

litmiogfmt(B.(x, r)NTy) > m(Be(x, 1)),

we use the same line of reasoning as above to see that, for any fixed ¢ > 0 and all ¢
large enough,

Bu(8:(x), (r — 2e)t'/P) U y - U.
y€Bu(8(x).riV/F)

From this, it follows that, for all ¢ large enough,
m(Bo(x, 7 — 2¢)) < det(81,,)c(T, G)#{z € T N Bo(8(x), rt'/P)}.

The desired lower bound follows. O

5.4 Further Hypotheses

Under the general circumstances described above, in order to obtain limit theorems
relating the random walk on I' driven by p to the continuous time left-invariant
jump process on G, associated with the jump measure J, of Proposition 4.7, we
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need several additional hypotheses which we now spell out in detail. One important
feature of the various hypotheses described in this section is that they do not involve
the precise limit behavior of u; as  tends to infinity. In a non-technical sense, they
are of a coarser, more robust nature. In Chap. 10, we will exhibit a large class of
“stable-like” measures on I, all of which satisfy these hypotheses thanks to the
results of [20, 56].

5.4.1 The Random Walk on T (Regularity)

A bounded function u on I is called p-harmonic in a subset U if it satisfies
uxpu=u inU.

Consider the following basic regularity assumption regarding p-harmonic functions.
Note that we consider that I is a subgroup of G = (R, -) and use the G,-norm || - |
to state this property.

(R1) There are constants C; and ¥ > 0 such that, for any bounded function u
defined on I" and p-harmonic in B(r) = {x € R? : [[x]] < r}, r > 0,and all
x,y € I'N B(r/2), we have

EESTAN
() = u(0)l = Crllulloo (=) - (5.8)

Remark 5.4 For any fixed a > 0, changing || - || to || - |* (including in the definition
of balls) amounts to changing « to x/a > 0. (]

5.4.2 Exit Time Estimates

We consider the following exit time hypotheses formulated in terms of the norm || - ||
and the scaling exponent § > 0 associated with it in (5.3). In particular, the balls
appearing in the definition below are the balls B(r) = {x € R x| <r},r >0,
even so the exit probability estimates below concern the random walk on I'.

(E1) There exists A > 1 such that the following holds: for any ¢ € (0, 1), there
exists y = y (A, €) > 0 such that for any r > 0, we have

P* (tpar < yrﬂ) <e forallx e T NB®).

(E2) There exists 0 < C < oo such that for any r > 0, we have
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E* [tp¢y] < CrP  forallx € I' N B(r).

Here, P* and E* refer to the random walk on I' starting from x driven by the
probability measure .

Remark 5.5 For our limit theorems to hold, the exponent 8 > 0 in (E1) and (E2)
needs to be the same exponent 8 in (5.3). Thus, in this context, conditions (E1)
and (E2) as well as condition (R1) are not only a condition on the measure u
(which determines the random walk X, on I' and hence its harmonic functions)
but also a condition on its comparability with the dilation structure (6;);-0, scaled
measure i, = t81/;(n), and norm || - || on R?. We expect the rescaled random
walks (81k(X[xs])):>0 to converge when k tends to infinity to a self-similar process
(Z1)1>0 satisfying 81/5(Zs;) = Z, forall s, t > 0. From the definition of || -|| at (5.3),
the expected exit time out of a ball of radius r for this process should scale as r”.
Moreover, the random walk exit time of the ball of radius r is

Tp(r) = infln : X, & B(r)} =rPinf{n/rf :8,,,6(X,5(,/,8)) & B(D}
and we expect that, as n tends to infinity,
inf {n/r? : 8178 (X8 nr8y) € B()} — inf{s : Zs € B(1)}

so that E¢ ['L’B(r)] should indeed behave as r?. O

5.4.3 Tails Properties for J; and J,

We now discuss two related sets of hypotheses that are more technical but essential
to obtain the desired results. They concern the limit jump measure J, and the
rescaled jump measures J; for large ¢+ > 0. These hypotheses will have a
natural flavor to anyone familiar with Lévy processes and Dirichlet forms. They
complement the vague convergence of J; to J on (R? x R%) \ A.

Set

Be(x,r) =x e B(r) = {y eRY: ||Jc._l ey < r}.
Concerning the limit measure (i, (equivalently, the limit symmetric Radon measure

Jo(dxdy) = dxue (x._l edy) on (R9 x Rd) \ A from Proposition 4.7), consider the
hypothesis that

R— o0

(Te) lim (/ ||ZII% He(dz) + H.(B(R)c)> =0.
B(1/R)

Note that condition (Te) is equivalent to
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f min{l, ||z||§} 1te(dz) < 00, (5.9)

which is (2.3) for v = ,.
Under this hypothesis, J, is the jump measure of a symmetric bilinear form

1
Eult, v) = + / / W) — u()WE) — v Luldr, dy)  (5.10)
2 R‘/de\A

on Lipc(Rd), which is the space of Lipschitz functions with compact support.
Moreover, this form is closable in L2(G.; dx) and its closure is a regular conserva-
tive Dirichlet form (&,, Fo)—see, e.g., [27, Example 1.2.4] and [33, Theorem 1.3].
Hence by Chen and Fukushima [19, Corollary 6.6.6],

Fo = {u € (F)toe N LA(Go: dx) : Eu, 1) < oo} . (5.11)

Recall that by Lemma 3.9, the straight dilation {§;, r > 0} is a group dilation
structure for the group (G,, ®). Denote by (L,, Dom(ZL,)) the infinitesimal gen-
erator of (E,, Fe) ON L2(G.; dx). Under the hypothesis (Te), we have C}%(Rd) N
L*(R?: m) c Dom(ZL,) and

Lof(x) = liH}) (f(xez) — f(x))ie(dz) for f € Dom(L,).
E=0zeGa:|zl1=¢
{z€Ga:llzll=¢€} (5.12)
For f € Dom(/L,) and r > 0, we have by (5.2) and (5.3) that for x € G,,
Lo(f 06p)(x) = lim (f(Br(x 2)) — f(87(x))) e (d2)
¢20JizeG: |1z 2}
= lim (f (G (x) #8,(2)) — f(r(x)))pe(dz)
£20J{zeGa:|w|=e)
= lim (f(Sr(x) @w) — f(8,(x))) (8 pte)(dw)
£>0J{zeGo:l|wl|ze)
=r lim (f(6r(x) @w) — f(8,(x)))te(dw)
£20 J{zeGa:w)=e)
=rLe f(3-(x)). (5.13)
In particular, we have for f € CCZ(Rd) andr > 0,
Lo(fod)(e) =rLyf(e). (5.14)

Remark 5.6 Under the hypothesis (Te), let X* be the symmetric Hunt process on
G, associated with the regular Dirichlet form (&E,, F,) on LZ(G., dx); see [19, 27].
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In view of (5.12), X* has stationary independent increment property; that is, for
any t > s > 0, (Xs'):] e X7 is independent of o (X};r < s) and has the same
distribution as (X(;):] e X} .. Thus X* can be refined to start from every point in
G.. Moreover, it follows from (5.13) that if X(') = ¢, then

{8,(X?); t > 0} has the same distribution as {X,; r > 0}. (5.15)
We know from Lemma 3.9 the straight dilations {¢;, ¢ > 0} form a group dilation
structure for the nilpotent group (G,, ®). Thus in the terminology of [42, p.170], the
Lévy process X* is stable with respect to the dilations {¢;, t > 0}. U

Remark 5.7 In the terminology of [29, p.31], the scaling property (5.14) says that
the generating functional f — L, f(e) is a kernel of order B+ = maxi<;<4 Bi.
Observe thatin [29], the exponents {d;, 1 < j < d} for the straight dilation structure
{6;,t > O} are our {1/8;, 1 < j < d} and the smallest d; there (which corresponds
to our B4, the largest of 8;) is normalized to be equal to 1; see Remark 3.12 for the
procedure of doing such a normalization. Note also that the norm | - | defined on [29,
(1.1)] is comparable to our norm || - ||. O

Regarding the scaled measure p; used to define the scaled jump kernel J;,
consider the property

R—00 -0

(TT)  lim limsup (/ I1zI13 12 (dz) + Mt(B(R)C)> =0.
B(1/R)

Remark 5.8 In conditions (Te) and (TT), it is crucial to use the norm || - || in the
integrant in order to measure the strength of small jumps allowed by theses jump
kernels in a classical fashion. In these two conditions, it is natural to use the norm
| - || in the definition of ball B(r) due to the scaling property of {5, : ¢+ > 0}, but we
may also use || - || if desired because of (5.5). O

Proposition 5.9 Condition (TT) implies the following analogous condition con-
cerning the jump kernel J;:

(TT'e) For any fixed compact set K C R,

lim lim sup // lx; ! o ylI3J:(dx, dy) =0, (5.16)
{(x.y)eK2:|x3 " oyll<n)

=0 t—o00

lim lim sup/ / Ji(dx,dy) = 0. 5.17)
xeK JyeBe(x,R)¢

R—0o0 t—o00

O

Proof Let K be a compact subset of R?. Without loss of generality, we assume K
is symmetric for the group law e, that is, x;! € K for every x € K. Let ry =
sup,cx lIx]l. Recall from (3.8) that forx, y € G, x -1 y := 81/,(8,(x)_1 -8: (). We
denote by x, ! the inverse of x under the group law -;.
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Observe that on K x K, by Lemma 3.10, the norms ||x~! -; y||» and ||x._l L Rap)
are uniformly comparable for r > rx > 1. Hence

lim hmsupff Ilx :1 ° y||%Jt(dx, dy)
=0 100 JJ{(x,y)ek2: ks oyl <n)

< Cg lim hmsup// Ix~" yI3Ji(dx, dy)
(v, e x =ty ylla<n)

=0 t—o00

< Cg hm lim sup ¢(G, I')det(81,)#{x € K Ndyr ()} ||z||%u,(dz)

n—>0 o0 B(n)

< Cxkm(B(rp)) lim_ lim / 12113 e (d2)

=0,
where we used Lemma 5.3 with m (B(rg)) denoting the Haar or Lebesgue measure
of the ball B(rp) which contains K. This gives (5.16).

For any ¢ > 0, by condition (TT"), there are Ry > 0 and 79 > 0 so that
i (B(Ry)) <& forallt > 1.

Note that

B(Ro + r9) C Be(x, Ry + 2r9) C B(Ry + 3r9) forevery x € K.

Since x; L, y converges uniformly to x, !¢ y on the compact set K x B(Rg + 3r0)
ast — oo, there is some 7y > 0 so that

x,_1 -+ Be(x, Ry + 2r9) D B(Rg) foreveryx € K andt > 1y.
In other words,
xt_l -t Be(x, Ry + 2rg)¢ C B(Rg)¢ foreveryx € K and t > .

Hence

hm lim sup/ / Ji(dx, dy)

R—00 t—o0o Jxek JyeB.(x,R)

= lim hmsup/ / Ji(dx, dy)
R—00 1—o00 Jxek Jx7 ' iyex, By (x,R)C

< lim sup/ / Ji(dx, dy)
t—00 JxeK Jxtyexy Ba(x, Ro+2r0)°
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< limsup c(G, I")det(81,)#{x € K N 81,1 (T} pr (B(Ro)*)

—>0o0

< m(B(ro))e,

where Lemma 5.3 is used in the last inequality. This shows that (5.17) holds. O

Remark 5.10 Recalling (5.9), one can check that conditions (A), (Te), and (TT")
combined are equivalent to the following condition:

(A’) The straight dilation structure (8;)s¢ is admissible for the probability measure
wu in the sense that the finite positive measure (||z||§ A 1) uy(dz) converges
weakly on R? \ {0} to a finite measure (||z||% A 1) e as t tends to infinity,
where w, is the measure defined at (4.1).

O

Note that Examples 4.4—4.6 satisfy any of these conditions (A), (Te), (TT),
(R1)—(R2), and (E1)—(E2).

5.5 Weak Convergence

Throughout this section, we generally assume that (A)—(R1)—(E1)-(E2), (Te), and
(TT) are all satisfied even so we will list exactly which properties are used for
different results stated in this section. In view of Proposition 5.9, condition (TT")
implies (TT o). This will be used without further comment in what follows.

Because of assumptions (A) and (Te), we can consider the (continuous time)
Markov semigroup of operators

{Po,s }SZO

corresponding to (&E,, Fo) at (5.10). Let {Uf; A > 0} and {P};x € G,} be the
resolvent, and probabilities corresponding to the regular Dirichlet form (&,, F) On
L%(G,; dx). Our goal is to prove that the continuous time conservative Markov
process associated with this regular Dirichlet form is the limit of the properly
rescaled discrete time random walk on I' driven by the probability measure w.
We let (X,),>0 denote this random walk. Assumptions (R1) and (E1)-(E2) are
assumptions regarding the behavior of this discrete time random walk on T".

Fix an arbitrary sequence of positive reals {7y} that goes to co. We write
&, F Oy for (&™), F Ty defined by (4.7) with Ty in place of ¢ there, which
corresponds to the rescaled discrete time process by

x® .= 51 (x ) .
( n 7 (X7in) ne(1/TNU{0}
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Note that this is just discrete time random walk on I'7; where time has been
rescaled linearly according to the scaling sequence 7. Let {P,f ;n € (1/T) NU{0}},
{U)‘; A > 0}, and {P};x € 'y} be the associated semigroup, resolvent, and
probabilities, respectively. For ¢ > 0, we write

vk . o—1 (k) pk . k
X = ‘STk X)) = X[Tkt]/Tk’ P = P[Tkt]/Tk (5.18)

and denote the corresponding probabilities by {I@’z; x € I'}). So, for x,y € I'y,
andn =m/T,, m € NU{0},

B (X0 = y) = k60" .00,

and forx,y e I', and ¢ > 0,
By (20 = y) = s 7,071 8,0, (5.19)

For a constant My > 0, let D([0, My], Rd) be the space of right continuous
functions on [0, Mo] having left limits and taking values in R? that is equipped with
the Skorohod . topology. Our goal is to prove the following theorem. Recall that
Bi € (0,2),1 <i <d, are the parameters in (5.1) for the straight dilation structure
{6;;¢t > 0}and B4+ = max{B; : 1 <i <d}.

Theorem 5.11 Referring to the setup and notation introduced above, assume that
(5.3), (A)—(R1)—(E1)—~(E2), (Te), and (TT') are all satisfied with the same exponent
B > 0. Then

(1) The symmetric Hunt process X°® associated with the regular Dirichlet form
(Ee, Fo) oOn LZ(G.;dx) is a Lévy process on G,. The Lévy process X;
has a bounded, strictly positive, jointly continuous transition density function
p(t,x,y) = p(t, x._l oY) with respect to dy that has the following properties:

(a) Let yp := Zf:l 1/B;. For every (t, x) € (0,00) X G,,
pt,x) =1t p(1, 81:(x)). (5.20)
In particular, there is a constant C1 > 0 so that p(t, x) < C1t~° for every

(t,x) € (0,00) X G,.
(b) Foreveryy € (0, B+ A 1), there is a constant Co > 0 so that

Ip(1,x) — p(1, )| < Callx; P e y|lY forx,y € G. (5.21)

(c) Foreverya € (0, By), there is a constant C3 > 0 so that for every (t, x) €
(0, 00) x G,
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t("/f3+
} (5.22)

p(t,x) < min {Clt”’, C3—e—

[l ]|+

(ii) For any bounded continuous function f on R, Issk f converges uniformly on

compacts to P, f. Furthermore, for each My > 0, for every x € RY, }P’Lxl"
converges weakly to P} on the space D([0, Mo], RY).

O

Remark 5.12 Note that under its conditions, Theorem 5.11 in particular implies
that the Lévy process X* is always non-degenerate in the sense that it has a strictly
positive convolution density kernel p(z, x) with respect to the Haar measure dx
on G,. Consequently, the support of its Lévy measure u, generates the whole
group G,. (I

5.6 Proof of Theorem 5.11

In this section, we prove Theorem 5.11. The main part of the argument is based on
Section 4 of [9]. Similar arguments for discrete setting (including a diffusion term
in the limit) are given in [11, Theorem 5.5].

Recall that X,(Ik) = kal (X1n), 1 € T,:]N U {0}. We first state a lemma that is an
easy consequence of rescaling, and assumptions (R1)-(E1)—(E2), and Lemma 5.2
(with ¢; = §;). For xg € I'yy, let

BTk (x0,7) =Xxo Tk B(r).

Note that this is different from B, (xg, ¥) = xo e B(r) which we have used earlier.
Also, y € Br; (xo, r) if and only if 81,7, (87, (xo)™H 1, ¥y € B(r) (ie., we have to
take the inverse of xq in (I'y, -;) with t = Ty).

Lemma 5.13

(i) Assume (E1). Then, there exists A > 1 such that the following holds: for any
e € (0, 1), there exists y := y(A, &) > 0 such that for all k > 1, xo € I',
r € (0,1), and x € By, (xo,7) NI'7,

Pr (fBrk(xo,Ar)(X(k)) = yrﬁ) <e.

(ii) Under (E2), there exists ¢1 > 0 such that the following holds for all k > 1,
xo € 'y, andr € (0,1) and all x € By, (xo,r) NIy,

E; [TBTk(xo,r)(X(k))] <cprb.



60 5 Weak Convergence of the Processes

(iii) Under (R1), there exists k € (0, 00) such that, for any compact set K C RY,
there is ¢2, xk > 0 for which, foranyk > 1, xo € K NI'r, andr € (0, 1), if hy
is bounded in I't, and harmonic with respect to X ® in a ball B, (xo,r)NI'7,
then, for x,y € By, (xo,r/2) N K NIy,

||x:1 o y||P-/P+ K
[hi(x) — hi(Y)| < c2,k <+ 17kl oo

Proof In view of the scaling property (5.3) of the norm || - || on G,, properties (i)
and (ii) are just reformulation of conditions (E1) and (E2), respectively, under the
approximate dilation 87, .

(iii) follows from condition (R1) under the approximate dilation 7, and Lemma
5.2. O

Recall that for A > 0, the resolvent U k* is given by
URf () = G = Tr(P = 1) f (87! 0)

00 n

1 B

= G+0Y) <—1> P s (%l (x)) for x € 'y, = 87,(I),
=\ 1421

where P is the transition matrix for the random walk {X,},, on T.
The following proposition is based on [18, Proposition 2.4] (see also [9,
Proposition 3.3]). We outline the proof for the reader’s convenience.

Proposition 5.14 Under (R1) and (E2), for any compact set K, there exist C) x €
(0,00) and y € (0, (B A k)/2] such that the following holds for any bounded
function f on 't forany k > 1 and any x,y € K N I'y, with ||x._1 eyl <1,

\UEfF ) = UEFO)] < Cokllxy o Y1711 f lloo- (5.23)
In particular, we have

limsup sup |ULf(x) — UL f(»)|=0. (5.24)
§—>0g>1 x,yeKNIy,:

lxseyll<s

Proof Recall the notation By, (z,7) = z -, B(r). Letx,y € K NI'y, and letr €
(0, 1]be such that ||x; 'ey|| < r.By Lemma 5.2,y € By (x, p) and p = CxrP-/P+.
Set Tt := By, (x.2p) (X ()). Tn what follows the constant Cx depends only on K and
can change from line to line. By the strong Markov property,
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n
Ubf0 =T+ 0T | Y () P67 o)
neNU{0} 1+)‘Tk ¢
nel0, 7k 1]
1 Trka k
+E[(——=)  Ubrx®)]
Nt gar! e (X
1 n
=@+ 0 B Y (o) Per o]
neNU(0} 1+)\Tk f
nef0, 7k 11
1 t,{{Tk X ©
LR (<—) —1)UA x®y | £ B [UA (x¢ )]
"[ Y ] Xy A

=h+hb+1

and similarly when x is replaced by y. Because of Lemma 5.13(ii) and the fact that
IPflloo < I flloo, we have

T;
L] < —*

< 7B []1 710 < crf I f e, whete £ := BB /B+.

Note that

_ 1 _
1UE flloo < Tk + 1) ————11flloo = 27" [ fllco-
RSy

Using this and applying 1 —e™* <s,s > 0, withs = r,ka log(1 —i—)LTk*l), we have
1) < B[] Tietog 1 + 2T IUE Flog
< B [ ] 1017507 W e < @7 f
Similar statements also hold when x is replaced by y. So,

|ULfx) = U F ()]

B (vt raxD] - [uprx®]|. 629

<carfl flloo +

Butz — Ej [Ukkf(Xi];))] is bounded in 'y, and harmonic in Bz, (x, 2p) NI'7,. By
Lemma 5.13(iii), for y € By, (x, p), the second term in (5.25) is bounded by

Cr (Ix, " o y|IF=/P+ /) rP=IBY | UL £l .
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So using ”U]?f”oo < A7 flleo again, for y € Bo(x, p) N T'7;,, we have

—1 o y[B-/B+\©
|ULf () = UL F ()] < Ck (rﬁﬂ/ﬁ+ +a7! (%) ) £ lloo-

(5.26)

Now choose r such that r = ||)c._1 e y||'/2 (then ||)c._l e y| =r% <r <1).For this
choice of r, we obtain

UL () = UL f ()]
= Cie (a5 o y P28 4 27 et oy BP0 ) | g

< Cx(L+2"H)x7 o yII” I flloos

wherey:min{%,% € (0, (BAK)/2]. =

The first part of the next proposition is based on [18, Proposition 2.8] (see also

[10, Proposition 6.2] and [5, Section 6]). In the following, m denotes the Lebesgue
measure on R?.

Proposition 5.15 Assume (A)—(R1)—-(E1)—(E2). For every subsequence {k;}, there
exist a sub-subsequence {kjy)} and a conservative m-symmetric Hunt process

(}?, P x e Rd), which is a Lévy process on (G ,, @), such that for every Xkjqy = X
A Xk (1) . ~ ’

ijfz) converges weakly in D([0, 00), R4 to P*. Moreover, the resolvents of the
conservative Hunt process X map bounded functions on R? into bounded local
Hélder continuous functions on R and so for each t > 0, X, has a transition

density function p(t,x,y) = p(t, e, x:] e y) with respect to dy. (]

Proof For simplicity, denote the subsequence {k;} by {k}. Let To > O be an arbitrary
constant and x; € I'. For any stopping time 7 of X® that is bounded by Ty and
any positive constant §; — 0, it follows from Proposition 5.13(i) and the strong
Markov property of X® that for any & > 0,

timsup Py (11810 (X)) 4 XX, 11 > )
k— o0

®
<limsupE}* |:]P’k T (TBk(X(()k)’g) < Sk):| =0.

k— 00

Thus by Aldous [1], the probability laws {I@’Z" .k > 1} are tight on D([0, Tp), RY).
Under conditions (R1)—-(E1)—(E2), the proof of the first part of this proposition (on
weak convergence) is then similar to that of [18, Proposition 2.8], modulo modifying
the arguments for continuous time processes there to discrete time processes, SO we
omit this part of the proof. Since X (5 has stationary independent increments on Iy,
so does X on (G,, o).
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That the resolvents of X maps bounded functions on R? into bounded Holder
continuous functions on R? follows s readily from Proposition 5.14. For A > 0,
denote by U U the A-resolvent of X. For any Borel measurable set A C R4
having m(A) = 0, by the m-symmetry and conservativeness of X, we have
./Rd ﬁl(x, A)m(dx) =2"'m(A) = 0 for every A > 0. As 17)‘()6, A) is continuous
in x € R?, we conclude that U*(x, A) = 0 for every x € R? . By Fukushima
et al. [27, Theorem 4.2.4], this implies that the law of X; under P* is absolutely
continuous with respect to m for each > 0 and x € R<. Denote its density by
p(t, x, y). By the Lévy property of X°®, we have p(t, x, y) = p(t, e, x‘l ey). O

Proof of Theorem 5.11 In view of Proposition 5.15, it suffices to show that the
Dirichlet form in Lz(G., dx) of the conservative m-symmetric process X in
Proposition 5.15 is (E,, o) and establish (i). As in the proof of Proposition 5.14,
we know that any subsequence {k;} has a further subsequence {k,} such that U ,?J [ f
converges uniformly on compacts whenever A > 0 and f is bounded and continuous
on R,

Now suppose we have a subsequence {k’} such that Ukk, f on 'y, are equi-
continuous and converge uniformly on compacts whenever A > 0 and f is bounded
and continuous with compact support on R?. Fix A > 0 and such an £, and let
H € Cp(R?) be the limit of U,?,f. We will show that H € ¥, and

Eo(H, g) = (f.8) —A{H. g) (5.27)

whenever g is a Lipschitz function on RY with compact support, where (E,, Fs)
is the Dirichlet form of (5.10) and (-, -) is the L?-inner product with respect to the
Lebesgue measure m on R?. This will prove that H is the A-resolvent of f with
respect to (E,, Fo) in LZ(R"; dx), thatis, H = U)‘f. ‘We can then conclude that the
full sequence U ,ﬁ\ f converges to U* f whenever f is bounded and continuous with
compact support. The assertions about the convergence of Ptk and PP; then follow
by Proposition 5.15.

So we need to prove H satisfies (5.27). We drop the primes for legibility. We
know

ENWULL UL = LU oy gy = MUE L UE D ey ng e (528)
where for t > 0, m; is the measure on I'; defined by (4.5). Since
WU Flli2g gy < D2y s
we have by the Cauchy-Schwarz inequality that

<c<oo.
Tgyomp) —

S?SWWﬁWﬂS%M”W@
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Set Bo(r) = {x : ||x|l2 < r}. Since U,?f converges uniformly to H on B>(1/n)
for every n € (0, 1), it follows from Lemma 4.10 that

/ [D (H(y) — H(x))*Jo(dx, dy)

< lim sup Z (U;?‘f(x) — U,i‘f(y))zjk(x, y)

k=00 (. y)ep xTr)nD,

<limsup&X (UL £, UL f) < ¢ < o0,
k— 00

where Dy, := {(x, y) € Bale,n™ ) x Ba(e, n™1) 1 < ||lx; ! @ yll2 < n~!}. Letting
n — 0, we have

/f (H(y) — H(x))*Jo(dx, dy) < ¢ < o0.
R4 xR\ A

Since H € Cp(R?), the above in particular implies that H € (F,)10c. Note that
by Fatou’s lemma, H € L2(]Rd; dx) as it is the pointwise limit of U ,g‘ f. Thus we
conclude from (5.11) that

HeF, with E(H, H) < . (5.29)

Fix a Lipschitz function g on R¢ with compact support, and choose ro > 0 large
enough so that the support of g is contained in the L?-ball B;(e, ro). Then, setting

Hopor =g oyl = 7'},

) (U £ ) = ULFENEO) = gD je. )|

el xTn)NH,, 1

1/2
= (X W r» = Uk )i, )

(x,y)

x ( > (e(») — g(0)) i(x, y))l/2

(e xTn)NH,,, 1

The first factor is (S(k) u ,? LU ,? f )72, while the second factor is bounded by

12
Vg [ [ avan)”
B lxe oylla=n~"

which, in view of (5.17) in (TT'e), will be small if 7 is small. Similarly, setting
H<p = {||lx;" e y|l2 < n}, it holds that

2(e,r0)
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Y W) = UEFOE) — g)ik(x. )|

(. )er, xI)NH<,

1/2
= (YW ro) = UL F o). y))

(x,)

< ( > (2(y) — g i (x, y))” 2

(x,y)e(l"rk XFTk)mHgn

The first factor is as before, while the second is bounded by

1 2 1/2
I huip( L e yBdx )
Ba(e,ro) Jllxe "eylla<n

where

. lg(x) — g(y)|
lgllLip ;== sup ————— <0
x,yeRd lxe  ®yl2

In view of (5.16) in (TT ), the second factor will be small if n is small. Similarly,
using (5.29) (i.e., (Te)), we have

‘ // 1 (H(y) — H(x))(g(y) — g(x)) Jo(dx, dy)
llxs oyll2g(m.n=h

will be small if n is taken small enough, due to Remark 5.8.
Note that U, ,? f are equi-continuous and converge to H uniformly on compacts,
and g is a compactly supported function. For n > 0, we have by Lemma 4.10,

> (UL FO) = UL f () (8() — ()i (x, ¥)

. YECT, D )N{llxs  eyll2e(m,n=1))
- /f 1 (H(y) — Hx))(g(y) — g(x))Jo(dx, dy).
llxe oyllaem.n=")
It follows that
Jim EOW S, @) = Eu(H, 2. (5.30)
— 00
Butas k — oo,

VWL L. ) = (£ 8) 12y myy = MUCF 8) 120y gy = (f-8) = M{H. g).
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Combining this with (5.30) proves (5.27). This proves that X has the same
distribution as the Lévy process X°® associated with the regular Dirichlet form
(Ee, Fo) On LZ(G.; m), which in particular establishes part (ii) of the theorem by
Proposition 5.15.

We next show part (i) of the theorem. By Proposition 5.15, X} has a transition
density function p(t, x;! e y) with respect to the Lebesgue measure dy on G,. By
Remark 5.7, the generating functional f + Lf(e) is a kernel of order B4. Thus
by Glowacki [29, Theorem 2.2], p(t, x) is square-integrable for every # > 0 and so
¢ = plt,e) = fRd p(t/2, x)*dx < oo. By the Cauchy-Schwarz inequality, for any
x € G,,

Pt x) = plt, e, x) = / p/2,0,p(/2, 2,20z
R
< 1p(t/2. e M 1p(E/2 - D)l < cr.

That is, p(¢, x) is bounded on G, for every t > 0. Property (5.20) follows from
the self-similarity property (5.15) of X*®, and Holder regularity (5.21) follows from
[29, Corollary 3.12]. The joint continuity of p(¢, x, y) = p(¢, x:l ey)in (¢,x,y)
follows from the scaling property (5.20) and the Holder continuity of p(¢, x) in x.
Note that p(t,e) = fG. p(t/2,y)*dy > 0 and lim;_, 81/;(x) = e uniformly on
every compact subset of G,. Thus by (5.20), for any n > 1, there is some #,, > 0
so that p(t,x) > 0 for every (¢, x) € (0,¢,] x B(0,n). It then follows from the
Chapman-Kolmogorov equation that p(z, x) > 0 for every (¢, x) € (0, 00) x G,.
For any @ € (0, f+), by Glowacki [29, Theorem 5.1], there is a constant C3 so
that p(z, x) < C3t*/P+ /x4t forevery t > Oand x € G,. Together with (5.20), it
gives the estimate (5.22). This establishes part (i) of the theorem and thus completes
the proof of the theorem. O



Chapter 6 )
Local Limit Theorem Chock or

6.1 Assumption (R2)

In this chapter, we discuss the local limit theorem for (Xr(sz)" )neN ujo) based on [24,
k

Theorem 1] and [17, Theorem 4.5] (cf. [6, Section 4] for the case the limit heat
kernel is Gaussian).

For this purpose, we introduce an additional hypothesis (R2), which reads as
follows. Let 1 be the n-th convolution power of the probability measure i on
I". This is the law at time n of the random walk driven by u, started at the identity
element on I'.

(R2) There are positive constants C» > 0 and 8 > 0 such that, for all n,m € N
andx,y erl,

G m Iyll?

(n+m) _ ., < 6.1
I (xy) — (x)|_V(n1//3) T parll K (6.1)

where V(r) :=f{g e T : gl <r}.

For our local limit theorem to hold, the exponent 8 > 0 in (R2) should be
the same as those in (5.3) and in (E1)—(E2). We start with verifying the needed
convergence of the volume of appropriate balls.
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68 6 Local Limit Theorem
6.2 Statement and Proof of the LLT

Given an arbitrary sequence of positive reals Ty tending to infinity and # > 0, let
/1" be the probability distribution of (X¥),~0, i.c.,

) =P (X0 = x) = W"Mep (), x e Ty

Recall that for each x € R?, [x]; € I'7, is the point closest to x in the || - [|-norm.
We know from Theorem 5.11 that the Lévy process X *® corresponding to (E,, )
has a jointly continuous convolution kernel

(1, x) > po(t,x) =1 " py(1,81/:(x))

with7 > 0, x € R4,

Theorem 6.1 (Local Limit Theorem) Assume (5.3), (A)—(R1)—(R2)—~(E1)—(E2),
(Te), and (TT') with the same exponent B > 0. Then, for any Uy > Uy > 0 and
r>1,

lim  sup  sup |det@r)uf™ 6r ([x16) — pa(r, x)| = 0.
k=00 | R | x| <r 1€lU1,Un]

Proof We adopt the notations in [24]. Let E = R? with dp(x, y) = llxs e y]|, and
Gk = B;kl(r) C R? = E with the same distance dg« (x, y) = [|x; ! o y||. (Note that
dgk (-, -) is a graph distance on G* in [24]. However, the proof of [24, Theorem 1]
works for any distance on G¥.) Then, conditions (a) and (b) in [24, Assumption 1]
hold with (k) = 1. Let v = m and v¥ = mr,. Then by (5.7), (¢c) in [24, Assumption
1] holds with B(k) = det(7,). Set

gk)=p" @) and g () = pot,-).

It suffices to prove that the conclusion of [24, Theorem 1] holds for qtk (x). We now
check that (d) in [24, Assumption 1] holds. Let Uy > O be a fixed constant. By
Theorem 5.11, for every bounded and continuous function f on R ¢ € 0, Upl,
and x € R?, we have

Jim (BT X)) - / F@a(x 2y dz| =0, 62)
—00 R

We need to prove that this convergence is uniform in ¢ over any compact time
interval in (0, co). This would easily follow if we could prove the equi-uniform
continuity of the function 7 > EF¥[ £ (X ,(k))] on compact time intervals. However,
because we are dealing with what is essentially a discrete time process, these
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functions are not even continuous. Nevertheless, condition (R2) says that, for all
non-negative integers n and m and all x, z € I" (inverse and multiplication are in I"),
we have

=1, ,8/2 1
lx™" - zll ) 6.3)

(n+m)  _ () <C m ) )
| (@ =" = 2<n+1+ e VB

It follows that, for 0 < s < ¢,

W (37, (01 - 87,0) — O @ (x0T -7, ()|

[Te(t — )]+ 1 1 - t—s+ T 1
[Tis]+1  V([Tes]7F) — 2 V([ Tes178)

2

For any fixed time interval [Uy, Uz], 0 < U; < Up, this is a version of “equi-
uniform continuity,” call it “equi-uniform continuity modulo Tk_l.” Together with
the fact that t + [py f(2)g:(x;! ® 2) dz is uniformly continuous for ¢ € [U}, U]
and (6.2), this equi-uniform continuity modulo Tk_l yields

lim  sup  [EVH[ (R - / f@aq G ez)dz| = 0. (6.4)
k=00 te[Uy,U,] RY
By the joint continuity of g;(x), we have f qi(x, e 2)dz = 0 for every
9B (xq,r)

x,xo € E and r > 0. Hence, (6.4) yields that

lim  sup =0,

k=00 1e[uy,Us]

[Tk (4 () .
Py k(X[Tkt]/Tk € B(xo,r)) — /B(xo , qr(x, ez)dz

and (d) in [24, Assumption 1] is satisfied with y (k) = Tj.
On the other hand, by (6.3) again, we have for x, z € B(2r) N 5;}(1 I
det(87)1q(7,11(2) — 4{7,1 (0| = det(@7) |V (87, (2)) — w D (87, (x))]

<, 1878 @IP det(3)
- N V(T 7P)

< Callx7t o ]| P-BI@BO 12y 712,

For the last inequality, we have used Lemma 5.2 and the fact that V(t'/#) =
det(§;) < t¥ fory = Z'f 1/B; > 0. Hence it holds that for any 0 < U; < Ua,
r>0,86e(,r],andk > 1,
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§B-BICB)

k k
sup sup  det(87)1q[7,11 () — 47O < Ca—=75—-
x,y€Bp (0.0). te[U),Us] ¢ i) [Zif] U11/2+y
de(z,x)SE

Taking lims_, ¢ lim sup,_, ,,, we obtain [24, Assumption 2]. Therefore, the desired
assertion follows from [24, Theorem 1]. |



Chapter 7 ®
Symmetric Lévy Processes on Nilpotent Qe
Groups

7.1 The Problem of Identifying the Limit Process

Theorem 5.11 gives the functional central limit theorem for a class of random walks
on finitely generated torsion-free nilpotent groups driven by probability measures
W, which are the distributions of the one-step increments of the random walks.
However, the limit symmetric Lévy process X*® is characterized in an abstract way
by a non-local pure jump Dirichlet form (&,, F,) On Lz(G.; dx) of the form (5.10)
with J,(dx,dy) = a’x,u.(x:1 e dy). A natural question is whether we can use
Theorem 5.11 to give explicit limit theorems in concrete examples as those studied
in Examples 1.4 and 1.5. This amounts to ask whether we can explicitly identify
or describe the Lévy process X°® in concrete cases. These are the questions we
are going to address in this chapter and the answer is affirmative. In fact, we will
do this in a more general context for any symmetric Lévy measure o, on any
simply connected nilpotent group G,; that is, (G,, ®) does not need to be the limit
group obtained from a simply connected nilpotent group G through an approximate
group dilation structure {¢;; ¢ > 0} on G, and u, does not need to be the weak
limit of wu, = t81/,(u) of some symmetric probability measure © on a discrete
subgroup I of G as in condition (A). This is achieved in Theorem 7.3. Then we use
this concrete description to illustrate our convergence theorem, Theorem 5.11, by
revisiting Example 1.5 and presenting several more examples through this approach,
without using the limit results for operator-stable processes on R¢, Propositions 1.1
and 1.3, from the literature.
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7.2 Symmetric Lévy Processes and Their Approximations

Let N be any simply connected nilpotent group. As mentioned in Sect. 3.1, there
is a global polynomial coordinate system on N satisfying (3.4)—(3.5). Unless
mentioned otherwise, this is the default coordinate system we use on N in this
section. Through this global system ® : RY — N with ®(0) = ¢, N can be
identified with R? and dx is a Haar measure for N. The coordinate system also
induces a function on N: |lo|l2 := |® ' (0)|, for ¢ € N, where |®~(0)]2
is the Euclidean norm of ®~ (o) € R?. As we already see from Sect. 3.1, there
are many choices of the global coordinate systems for N. One of the commonly
used coordinate systems is the exponential map. However, sometimes it is more
convenient or more natural to use other coordinate systems, for example, matrix
coordinates in the Heisenberg group case. Thus with this in mind, we do not fix a
particular choice of the polynomial coordinate systems, except for the assumption
that (3.4)—(3.5).

Let v be any non-zero symmetric Lévy measure on N; that is, v is a non-negative
Borel measure on N satisfying 0 < fN(l A ||x||§)v(dx) < ooand v(A) = v(A™))
forany A C N\ {e},where A~ = {x e N : x~1 € A}. Note that we do not impose
any additional conditions on v. Define

E(u,v) = %//N i (u(xz) —ulx)(v(xz) —v(x))dxv(dz), (7.1)

and ¥ is the closure of Lip.(N), which is the space of Lipschitz functions on N

with compact support, with respect to the norm \/ Ew,u)+ [, N u(x)?dx. Here xz

is the group multiplication of two elements x, z € N. Let X be the symmetric Hunt
process associated with the regular Dirichlet form (8, ) on L2(N; dx); cf. [19, 27].
Note that in this section, as mentioned above, we do not assume the Lévy measure
v on N generates N.

Lemma 7.1 The Hunt process X is a Lévy process on N. U

Proof For each fixed 0 € N\{e}, the process Y = {Y/,t > 0}, with Y7 = o X;
for any ¢ > 0, is a symmetric Hunt process on N as dx is a left Haar measure on N
and its transition semigroup

PP =E [fODIYS =x] =E [f@XDIXo =05 = (P S @),
where f,(n) := f(on). Thus
N P
tlgl(l) ;(f =P’ 1, rev.ax

— lim / o(o™'%) = (P fy )0~ 0) fo (0 2)dx
t=01 JN
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1
— lim L / (s ) — (Pofo )Y fir (9)dy
t—=01 JN
1
-2 / / (fo(x2) — fr(0)2v(d2)dx
NxN\A

1
=3 / / (F(x2) = FNPu(d)dx = (S, f).
NxN\A

This shows that Y is a symmetric Hunt process associated with the Dirichlet form
(&, F) on L*(N;dx) and so it has the same distribution as X. In other words,
{oX;;t > 0} with X9 = x € N has the same distribution as {X;; ¢t > 0} starting
from o x. This combined with the Markov property of X shows that X is a symmetric
Lévy process on N. O

We next investigate how the Lévy process X is determined by v in a more
explicit way; that is, given a symmetric Lévy measure v on N, how to construct
or approximate its corresponding symmetric Lévy process X in a concrete way. We
will show in Theorem 7.3 that X can be approximated by a sequence of random
walks on N whose one-step increments are from the small increments of a common
Lévy process Z on R? through the identification of the global coordinate system ®.
The key is to identify the Lévy measure and the drift of the Lévy process Z on R9.
Our approach uses Hunt’s characterization for Lévy processes on Lie groups and
Kunita’s triangular array type limit result for random walks on Lie groups, which
we recall in Theorem 7.2.

We identify each element o € N with its global coordinate

dD_l(o) =:x=(x1,...,Xq) € RY.
Foreach 1 < j < d, let X; be the left-invariant vector field in the Lie algebra g of

the group N at e determined by the coordinate function x; +— Xj; that is, for any
C? function f(x) on N = R,

af (x)
X = .
@phe =3,
These vector fields (X7, ..., Xyz) form a natural base of g at e. On the other hand,

it is well known that the simply connected nilpotent group N admits an exponential
map of the first kind from its Lie algebra g = R to N which is surjective. Under its
exponential coordinates exp: g — N (of the first kind), x V= —x. Let {xl, R xd}
be the exponential coordinate of o € N with respect to the base {X|, ..., X4}; that
is, exp(Y_9_; x/X;) = 0. Note that x/ (0 ™!) = —x/(0’) and X;x/ = §;;. Let | - |
be the norm on N defined by
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J 1/2
. j 2
ol = | > &/ (o) (72)
Jj=1
in terms of the exponential coordinates of 0 € N. Note that the norm | - || is
symmetric on the group N in the sense that |0 ~!|| = ||o|| forany o € N.

Denote by C the space of real-valued functions on N that are continuous and have
limit at infinity, let and C? be the space of C? functions f on N so that f, Xj f and
XiX | f areallinC. Let ¥y € C?be such that ¥ > 0on G\{e}, ¥ (n) = Zf}:l x/ (n)?
near e, and lim,_, o, ¥ () > 0. Note that in view of (3.2)—(3.3),

v =< 1A lnl* =<1 Alnl3 forneN.

We recall the following triangular array type limit result on N from [43], which
in fact holds for any Lie group.

Theorem 7.2 (Theorem 3 of [43]) In the above setting, suppose the following
hold:

(i) Foreachn > 1,k — S,E") =&n1 - &n i is a discrete time random walk on the
Lie group N, where {&, i; k > 1} are i.i.d. N-valued random variables having
distribution v,.

(i) As n — 00, the measure nv, converges vaguely to a measure v on N \ {e}

satisfying fN\{E} Y (x)v(dx) < oo.
(iii) Fore > 0, let

d
Usi={neN:nl<e}=1neN:) xIm’ <&
j=1

be an e-neighborhood of e in N. For each ¢ > 0,
; i J _. @
lim n x'(mx! (Mvn(dn) =: a;;" exists.
n—oo  Ju. J

Clearly, (ai(;)) is symmetric and non-negative definite, which decreases to (a;j)
ase — Q.
(iv) Foreache > 0, lim,_ o n ng x(Mv,(dn) =: b® e R exists. Here x(n) =

o, ... x4().

Take ¢ > 0 so that 0U, has zero v-measure. Define

b=b8+/ *(v(dn),
Ue
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whose value is independent of the choice of €. Then for each T > 0, {Z,(") =

S[(,';t)]; t € [0, T} converges weakly in the Skorokhod space D([0, T]; N) asn — o0

to a Lévy process Z = {Z;;t € [0, T]} on N, whose generator is characterized by

1 d d
LI =5 Y ayXiX;fO) + ) biXi f(n)

i,j=1 i=1
d .
+ fN @) = ) = 3o @)X o) (1.3)
¢ i=1

forany f € C%. O

Characterization (7.3), originally due to G. A. Hunt, is the Lévy-Khintchine
formula for Lévy processes on Lie groups. Let {¢;(c), - - - , ¢4(c')} be C? functions
on N such that under exponential coordinates for 0 = exp(Zj{=1 x/ X i) €N,
@;j(0) is an odd increasing function of x/ with pjlo) = x/ forx/ e (-1, 1). Since
N is also identified with R? through the global coordinate system & satisfying (3.5)
mentioned above, sometimes we also write ¢;(x) for ¢;(o) through this global
coordinate system ®. Since v is a symmetric measure on N and ¢ (o) = —¢; (c™hH
for any o € N, we have forevery 1 < j < d and every r > 0,

/ pj(o)v(do) =0. (7.4)
{oeN:|o]|>r}

Through the identification of N with R under the global coordinate system @,
the Lévy measure v can also be viewed as a Lévy measure on the Euclidean space
R?. More precisely, let b be the Radon measure on R? \ {0} defined by

5(A) := v(®(A)) forany A € BRY\ {0}). (7.5)

Note that v satisfies fRd(l A IIZII%)T)(dz) < oo and thus is a Lévy measure on RY.
However, we point out that even though v is a symmetric Lévy measure on N, v
may not be a symmetric measure on R?; see Examples 7.8 and 7.9(i). It is not hard
to see or guess that the Lévy process Z on R¢ that will be used to approximate the
Lévy process X on N should have Lévy measure v, and however in general it also
needs a proper drift correction term. For this, define for 1 < j <d,

bj = f (zj — ¢;(2))v(dz) — f 9j (v (dz), (7.6)
{zeN:|zll2=1}

{zeN:|zll2>1}

where (z1,...,z4) = ® '(z) is the coordinates of z € N under the global
coordinate system &. Recall that the coordinates of z € N under the exponential
coordinate system are denoted by (z!, ..., z%). Observe that the integral in (7.6) is
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well defined and is finite because

o0;

1| = Xigi@lecg = K]y =By

and so

lzj — ;@) =lz; — 2/ @)| <cllzll3 for |z]2 < 1.

In view of (7.4), we can rewrite (7.6) as

b; = lim zj v(dz). (7.7)

r=0J{zeN:|zll2<1 and ||z]|=r}

Since the Lévy measure v is symmetric on N, we have from (7.7) that

J —zf @+ E D))
{zeN: lizlla<1 and |lz7l2<1}

+ / zjv(dz). (7.8)
{zeN:||zll2<1 and ||z~ 1|]2>1}

Here z~! denotes the group inverse of z € N, and (z™!) j is the j-th coordinate
of the element z~! € N under the original global coordinate system ®. Note that
both integrals in (7.8) are absolutely convergent. This is because under the global
coordinate system @, we know from (3.5) that

T = 240,021, -2 a1, - s 2a-1)),

where for2 < j <d, q;(z1,---,zj—1) is polynomial having no constant and first-
order terms. Thus on any compact set K C N, there is a constant Cg > 0 so that

lz+2z" ') < CK||z||% forevery z € K, (7.9)

and {z € N : |lzl]l2 < 1 and |z7!|» < 1} is an open neighborhood of ¢ € N. Since
f N\{e}(l A ||z||%)v(dz) < 00, both integrals in (7.8) are absolutely convergent. In

general, the constant vector b= by, ..., by) may not be zero. However, if ® is the
exponential coordinate system, then b j =0forevery 1 < j <das 7l = —z for
every z € N and ||z]l2 = ||z

Let Z := {Z; : t > 0} be the Lévy process on the Euclidean space R? with Lévy

triplet (O, b, V), see (1.1), where b= (151, el Ed). In other words,

t

t
Z = bt +f L{jz1,<132 (N(ds, dz) — dsv(dz)) +/ L{jz,>1)2N(ds, dz),
0 0
(7.10)
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where N(ds, dz) is the Poisson random measure on [0, 00) x R with intensity
measure dsv(dz).

Recall that ® : RY — N is the global polynomial coordinate system for the
simply connected nilpotent group N. Most of the time, we identify x € R¢ with
o = ®(x) € N and use the notations interchangeably. In the next theorem and its
proof, to be absolutely clear, we explicitly use the notation @ (x) for emphasis when
x € R is viewed as an element in the group N.

Theorem 7.3 Let Z be the Lévy process on R? with Zy = 0, Lévy measure v
of (1.5), and drift b of (7.8). For each T > 0, the random walk

Z" = D(Z1jn) Y(Zoyn — Zijn) - ®(Zineiyn — Ziini1—1)/n) (7.11)

on N converges weakly in the Skorokhod space D([0, T]; N) as n — 00 to the left-
invariant Hunt process {(Yo)_1 Y;; t € [0, T]} on N. The Hunt process Y has the
same distribution as the symmetric Lévy process X on N having Lévy measure v
determined by the Dirichlet form (&, F) of (7.1) on L2(N; dx). U

Proof By Ito’s formula, for any f € C2(R%),
f(Z)~ f(Zo) = fo b Vf(Zy)ds
+ /0 t f{ ey T Gom 9 = [(Z) (N(ds, d) — dsv(da)
+ / t / (F(Zs—+2) — f(Zy-)N(ds, d2)
0 JHlzll>1}

t
+/ / (f(Zs +2) = f(Zs) = Vf(Zs) - 2) v(d2)ds.
0 J{lizll2<1)

Thus
Ef(Z)— f(0)

t t
=E/ 13-Vf(zs)ds+Ef f (f(Zs— +2) — f(Zs_) N(ds, dz)
0 0 Jlzl>1}
t
+E f / (f(Z+2) = [(Ze) =V (Zy) - 2) D(d2)ds
0 Jizlh<1}
t t
=E/ B-Vf(ZS)ds—l—E/ / (f(Zs—+2) — f(Zs-) v(dz)ds
0 0 J{lzll2>1}

t
+E f / (F(Zs +2) = f(Zs) = VF(Zs) - 2) 3(d2)ds
0 Hlzll2<1}
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t
=E /0 /Rd (f(Zs_ +2)— f(Zs_) = VF(Z) - 9(®(2))) v(dz)ds, (7.12)

where ¢(0) := (p1(0),...,¢q4(0)) for o € N, and the last equality is due to the

definition of b.

For fy € C? on N with fo(e) =0and X fo(e) =0for 1 < j < d, the function
fi= foodis Cl% on R4 with £(0) = 0 and V f(0) = 0. Applying (7.4) and (7.12)
to this f, we have by the dominated convergence theorem that

o1 1 _
lim ~E fo(®(Z) = lim 1B 7 Z) = [ f@p@ = [ oo,
t—0t t—0t R4\ {0} N\{e}
(7.13)
If we denote the law of ®(Z;) on N by V;, then the above in particular implies that
t‘l'ﬁt converges vaguely tovon N \ {e} ast — 0.

Since ¢; is an odd function on N, taking fo = ¢; in (7.13) in particular yields
that

1
lim -E¢;(®(Z;)) =0 foreveryl <j <d. (7.14)
t—0t

On the other hand, since v is a symmetric measure on N and ¢ is an odd R¥-valued
function on N, we have from (7.12) that for any f € Cg(Rd ),

E f(Z) — f(0)

t
=" / / (f @427 = F(Z) + VS (Z) - 9@ () P(d2)ds
0 JRd

and so

1 t
BfE-10 =38 [ [ (1@ +0+ 1@+ =20 @0) @i

(7.15)
Note that by (7.9),

/Rd 1f(2)+ f&H = 2£(0)| 5(dz) < oo.

It follows from (7.15) and the dominated convergence theorem that for any f €
Cp(RY),

1

1
lim SELF(Z)~ SOl =5 [ (f@+ fH-200)50. @16
t—01t 2 R4\ {0}
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For ¢ € (0, 1), define
d .
Us={oceN:|ol <8}={06N:Zx‘(0)2<82},
i=1
where |o| is the symmetric norm of ¢ € N as defined by (7.2) and
(x](cr), xd (o)) is the exponential coordinates of & € N. By the Lipschitz
equivalents (3.2)—(3.3) between ® and the exponential coordinates, there is a
constant Ag > 1 so that
i 127 @) < lloll < 2ol @7 (@)]l2 fora € N with o] < 1.
Consequently,

U, C {a €N : ||<I>_1(0)||2 < koel for every ¢ € (0, 1).

Fore € (0,1), let f: € CZ(R?) so that fi(z) = |z||3 for |z]2 < Aoe, fe(z) =0
for [|zll2 = 2406, 0 < fe(2) < 2)»%82, and |Df;| + |D?f;| < C for some constant
C > 0 independent of ¢. Then we have by (7.16) and the Taylor expansion that

. 1
lim sup ?E []l@(z,)eus} P (Z;) ||2]

t—0
) A3 2
< limsup —E [1{|\Z,||25A08}||Zt”2]
t—0 I
)»2
< limsup ~2 (B f.(Z;) — fe(Zo))
t—0 t
=13 / fe(2)9(d2)
]Rd
< 321D fu s / 2112 5(d). (7.17)
{llzll2<2xp¢}

which tends to 0 as ¢ — 0.
For ¢ € (0, 1) so that dU, has zero v-measure, it follows from (7.13) that

1
lim —/ @j(2)vi(dz) =/ ¢j(2)v(dz) = 0. (7.18)
t—0t Ug Uc

€

This together with (7.14) shows that

1
lim —/ @j(o)v(do) =0. (7.19)
=01 Jy,
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Properties (7.13), (7.17), and (7.18)—(7.19) show that the conditions of Theo-
rems 7.2 are all satisfied for the sequence of random walks on N whose one-step
increment distributions are v, := 7} /n forn € N with (a;;) = 0 and b = 0. Thus
foreach T > 0, the random walk

Z" = D(Z1jn) Y(Zoyn — Zijn) - P (Zintiyn — Ziint1—1)/n)

converges weakly in the Skorokhod space D([0, T]; G) as n — oo to a symmetric
Lévy process Y = {Y;;t € [0, T]} on N with Lévy measure v in the following
sense: Denote by (£, D(L)) the infinitesimal generator of Y. Then C?c D(L) and
for any f € C?,

d
(f2 = Fl@) =Y 9;@Xif(©@))v(da).

j=1

Lfo)= /

N\{e}

We next show that Y has the same distribution as the Lévy process X on N
defined through the Dirichlet form (&, ) of (7.1) on L2(N; dx). Denote by LY the
L?-generator of the symmetric Lévy process X. It is easy to check by definition (cf.
(19, 27]) that C*  D(£L’) and

£27(0) = pv. / (f(02) — f(o)) v(dz)
N\{e}

d
N /N\{ } (f(az) —flo) = Z%(z)z\’if(o)) v(dz)

i=1

By the uniqueness of infinitesimal generator characterization of Lévy processes on
N (see, e.g., [43, Theorem 1] due to Hunt), we conclude that the Lévy processes X
and Y have the same law. This completes the proof of the theorem. O

Remark 7.4 When @ is the exponential coordinate system of the first kind for N,
Theorem 7.3 follows from Theorem 4.2 and the proof of Theorem 4.1 of [42]. The
main point of Theorem 7.3 is that it is valid for any global coordinate system & of
N, not just the exponential coordinate system of the first kind. This is important in
applications as many times it is more natural or convenient to work in other global
coordinate systems such as the matrix coordinate system for Heisenberg groups. In
theory, one could translate the global coordinate system into exponential coordinate
system, apply Kunita’s result in exponential coordinate system, and then translate
the results back to the original global coordinate system. But this is not always easy
to carry out and it needs to be performed on a case by case basis. The interested
reader may try the following two exercises.
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Exercise 7.5 Let N be the continuous Heisenberg group H3(R) and v be a Lévy

measure on H;3(R) whose expression under the matrix coordinate (x, y, z) is given

by
v(dx,dy,dz) =

T dx ® 8o(dy) ® do(dz) + T—375~80(dx) ® dy ® do(dz)

| |1+oz | |l+a
for some positive constants ¢; € (0,2) and x; > 0,7 = 1, 2. What is the expression
of v in the exponential coordinates (x!, x2, x3) of the first kind for Hj3(R)? The
group isomorphism between the matrix coordinate system and the exponential
coordinate system on H3(RR) is given in (3.13). U

Exercise 7.6 Repeat Exercise 7.5 with the Lévy measure v on N being replaced in
the matrix coordinate system by

_ K1
v(dx,dy,d7) = ———5——dx @ dy ® do(dz
(@ . d2) = e X ® 4 @ doldd)
+ 2 So(dx) ® dy ® d
I S X z
(P + 227 g
for some positive constants §; € (0, 1) and x; > 0,i =1, 2. O

7.3 Examples

To illustrate the main results of this work, in this section, we first revisit Example 1.5
of random walks on the Heisenberg group H3(Z). Here, we will not use the limit
results for operator-stable processes from the literature; that is, we will not use
Propositions 1.1 and 1.3. We will use instead Theorems 5.11 and 7.3 developed
in this monograph. We will then present some more examples.

Example 1.5 (Revisited) We use the matrix coordinate system & on the discrete
Heisenberg group Hj3(Z), through which it is identified with Z3. Denote by ey, e3,
and e3 the elements in H3(Z) that has matrix coordinates (1,0, 0), (0, 1, 0), and
(0, 0, 1), respectively. Recall that p, is the probability measure on H3(Z) = z3
given by

Ha(g) = ZZW {ef 1(8), g € Ha(2),

i=1nez

where 0 < oj < 2and «;, 1 < j < 3, are positive constants. The measure iy is
in SM on Hj3(Z) and the matrix coordinate system @ is an exponential coordinate
system of the second kind described in Sect. 9.5. The dilation structures {4;; t > 0}
considered below in this example are straight approximate group dilations of (9.3)
adapted to the measure iy. So by Chap. 10 below, the conditions (R1)—(R2), (E1)—
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(E2), (Te), and (TT") are automatically satisfied for p, and these {5;; ¢ > 0}. For
simplicity, we write u for uy. Let {§ = (E(]) 5,52), 5153)); k > 1} be a sequence of
i.i.d. random variables taking values in H3(Z) of distribution . Then

Sy =2S0-£1-...-&, n=012,...

defines a random walk on the Heisenberg group H3(Z). Write S, as (X, Yy, Z,).

(1) If1/az < 1/ay + 1/a2, we consider a straight dilation structure {5;; t > 0} in
matrix coordinates:

8,(x,v,2) = (tl/oqx, tl/(xzy, l(l/a1)+(l/ot2)z) )

In this case, {§;; t > 0} is a straight group dilation structure for the limit group
(G, ®), and (G,, ®) is the continuous Heisenberg group Hj3(R). It is easy to
check that 81/, (1) converges vaguely on R3\{0} to ji4(dx, dy, dz) ast — oo,
where

Re(dx,dy,dz) =

———dx®0d0(dy)®8p(dz)+——50(dx)®dy®5o(dz).

|x |1+ 1 ly |1+a
The measure (i, defines a Lévy measure u, on the continuous Heisenberg
group (G,, ¢) through the matrix coordinate system; see Remark 5.1(i). In
other words, fi, is the pull-back measure of 1, under the matrix coordinate
system. When there is no danger of confusions, we simply use the same
notation i, for ite. Thus by Theorem 5.11, for any T > 0, the rescaled random
walk on H3(Z) in matrix coordinates

{ (n_l/a'X[m], n=lery ., n_l/a‘_l/azz[m]> ;1 €0, T]}

converges weakly in the Skorohod space D([0, T']; R toa Lévy process X*
on (G,, ) with Lévy measure p, as n — o0o. We next identify the Lévy
process X*® in the matrix coordinate system of (G,, ) by using Theorem 7.3.
By (3.12) and (3.13), in matrix coordinates (x, y, z) for o € G,,

ool = (cxo—y —z+xy) and ol = /32 + 2 + 2+ dxy).
(7.20)

So o + O’._l = (0,0, xy) On the support of u,, since xy = 0, we have
loll =lloll2and o + 0, = (0,0, 0), that is, 0_1 —o. Hence denoting the
matrix coordinates for o € G, by (01, 02, 03) € R, it follows from (7.8) that
forevery 1 <i <3,

bj = 5/ (0 + (@7 )i) atdor) = 0.
{oeGallola=1}
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(ii)

Let )_g be a symmetric «1-stable process on R with Lévy measure « |z|_(1+°“)
and Y be a symmetric op-stable process on R with Lévy measure fc2|z|_(1+0‘2)
independent of X. Then

X° = (X,Y,0)

is a driftless Lévy process on R3 with Lévy measure ji, corresponding
to (7.10). By Theorem 7.3, X°® is the weak limit on ([0, T]; G,) =
D([0, T1; R3) of

X =@ (X3,,) 0 @ (X3, = X3y ) o0 @ (Xiuym = Xunriyn)

Note that in matrix coordinate system on G,,

[n1]
X" = (X[m]/m Yinti/n, Zx(k—l)/n (Ye/n — Y(k—l)/n)) . 1=0,
k=1

which converges weakly in the Skorohod space ID([0, T']; R?) equipped with
J1-topology to {()_(,, 17,, fot )_(S_d)_’s); t € [0,T]}; see, e.g., [45, Theo-
rem 7.19]. This shows that {X?; ¢ € [0, T']} under the matrix coordinate system
of (G, ®) has the same distribution as {(X;, ¥;, fé X,_dY,);t € [0, T1}.

If 1/a3 = 1/a1 + 1 /a2, we consider a straight dilation structure {§;; ¢ > 0} in
matrix coordinates:

at(xa Y, Z) = (l‘l/mx, tl/azy’ tl/a3z) .

As mentioned in (i), {6;; ¢ > 0} is a straight group dilation structure and the
limiting group structure (G,, @) is the continuous Heisenberg group H3(R). It
is easy to check in this case that #81/,(u) converges vaguely on R3\ {0} to
fe(dx,dy,dz) ast — oo, where

He(dx, dy, dz)

= ——dx ®8y(dy) ® dp(dz) +

B |l+a ———30(dx) ® dy ® 80(dz)

| |1+a

+ ———380(dx) ® So(dy) ® dz.

| |l+oz

The above measure /i, is the expression of a symmetric Lévy measure 11, under
the matrix coordinate system on the continuous Heisenberg group (G,, e). By
Theorem 5.11, for any 7' > 0, the rescaled random walk on Hj3(Z) in matrix
coordinates
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{ (n_l/“'x[m], n ey, n_l/a3Z[nz]) ;1€ [0, T]}

converges weakly in the Skorohod space ID([0, T]; R?) to a symmetric Lévy
process X*® on G, with Lévy measure (i, as n — 00.

To identify the Lévy process X*® on (G,, @) in matrix coordinates (x, y, z) of
o € G,, note that by (7.20), since xy = 0 on the support of i, [lo]| = [lo]2
and 6! = —o. Thus we have by (7.8) that

1

BjZE/ (oi—l—(a._l),»)u.(do)zo forevery 1 <i <3.
{oeGa:llola=1}

Let X, Y, and Z be independent one-dimensional symmetric «-, oep-, and o3-
stable processes with Lévy measure k;|z| =11, 1 <i < 3. Then

X°=X,Y,2)

is a driftless Lévy process on R3 with Lévy measure u, corresponding
to (7.10). By Theorem 7.3, X*® is the weak limit on D([0, T]; G,) =
D([0, T1; R?) of

Xt.’n = (Xi)/n> L (Xg/n - T/n) .e---0d (antj/n - X?[nt]—l)/n) .

In this case, in matrix coordinates,

[nt]
XP" = (X[m]/n, Yinrl/ns Zintl/n + ZX(kfl)/n (Yk/n - Y(kl)/n)) ,
k=1

which converges weakly in the Skorohod space D([0, T]; R?) equipped with
J1-topology to {()_(t, Y., Z, + fot )_(S_dfv);t e [0, T1]}. This shows that
{X?;t € [0,T]} in the matrix coordinate system of (G,, e) has the same
distribution as {(X,, ¥;, Z; + [y X,—d¥,); ¢ € [0, T1}.

If 1/az > 1/ + 1 /a2, we consider a straight dilation structure {§;; ¢ > 0} in
matrix coordinates:

8i(x,y,2) = (tl/“‘x, iy, tl/"“z).
In this case, we see from Example 3.15 that the limit group structure (G,, ®)
is just the additive R3. It is easy to check that £8; /1(u) converges vaguely on

R3 \ {0} to we(dx,dy,dz) ast — oo, where

fLe(dx, dy, dz)
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= ——dx ®8y(dy) ® dp(dz) +

B |]+a i %0(dx)d ® dy ® 8o(dz)

| |l+0t

| |l+oz ———38p(dx) ® §p(dy) ® dz.

Note that the matrix coordinate system on R> is the identity map, so the
induced Lévy measure i, on the abelian group (G,, e) is just ji, itself. By
Theorem 5.11, for any 7T > 0, the rescaled random walk on Hj3(Z) in matrix
coordinates

{ (n_l/a'X[m], n Yy, n_l/a3Z[m]> ;1 €0, T]}

converges weakly in the Skorohod space D([0, T]; R3) to a symmetric Lévy
process X*® on G, with Lévy measure (1, as n — 00. Since (G,, o) is (R, +),
we conclude directly that X* has the same distribution as X° = (X,Y, Z),
where X, Y, and Z are independent one-dimensional symmetric «1-, oz, and
a3-stable processes with Lévy measure «;|z|™ (It+ai) 1 < <3,

We next present a few more examples.
Example 7.7 Letu = %(m + 1») be the probability measure on H3(Z) = Z> with

cl
(1 + |x| + [zhFr

2
(1 + |yl + |z))>He’

pi(x,y,z) = and pu2(x,y,z) =

where 0 < a1, a2 < 2,and ¢; > 0, j = 1, 2, are positive constants. The measure

is again in SMon H3(Z). Let {& = (Sk(l), 5(2), 5153)); k > 1} be a sequence of i.i.d.
random variables taking values in Hj3(Z) of distribution w. Then

Sp=S0-& -...-&, n=012,...

defines a random walk on the Heisenberg group H3(Z). Write S, as (X, Yy, Z,).
We consider a straight dilation structure {§;; ¢t > 0} in matrix coordinates:

8i(x, y,2) = (tV/x, (Vory flentl/eyy

This dilation structure {§;; ¢ > 0} is a straight group dilation of (9.3) adapted to
the measure p, so the limiting group (G,, @) is the continuous Heisenberg group
Hj3(R). Since the matrix coordinate system ® is an exponential coordinate system
of the second kind described in Sect. 9.5, by Chap. 10 below, the conditions (R1)-
(R2), (E1)—(E2), (Te), and (TT") are automatically satisfied for u and {;; ¢t > 0}.
It is easy to check (cf. Example 4.5) that #61,, (1) converges vaguely on R\ {0} to
He(dx,dy,dz) ast — oo, where
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fe(dx,dy,dz) = ———dx @ So(dy) ® So(dz) + ———380(dx) ® dy ® 8p(dz).

|x |1+Dt | |l+a
Here k; = ¢; [p(1 + |u)~?T)dy for i = 1,2. The measure fi, induces a
Lévy measure e on (G,, @) via the matrix coordinate system ®. In part (i) of
Example 1.5 (revisited), we have already identified the symmetric Lévy process X*
on the continuous Heisenberg group (G,, ®). Thus it follows from Theorem 5.11
that, for any T > 0, the rescaled random walk on H3(Z) in matrix coordinates

{ (n_l/o” Xine)s 072 Y, n_l/“'_l/“zz[m]) ;1€ [0, T]]

converges weakly in the Skorohod space D([0, T]; R3) to {(X,, ¥;, fé X,_dYy):t €
[O T1} on the continuous Heisenberg group Hj3(R) in matrix coordinates, where
X and Y are independent one-dimensional symmetric a1- and a»-stable processes,
respectively.

Example 7.8 Let i be the probability measure on Hj3(Z) = 73 with

Cc

(14 /x4 )2 + ]z —xyDHe

nx,y,z) =

where 0 < o < 2 and ¢ > 0 are positive constants.
The measure  is again in SM on H3(Z). Let {& = (", &%, £>); k > 1) be
a sequence of i.i.d. random variables taking values in H3(Z) of distribution . Then

Sp=S0-& -...-&, n=012,...

defines a random walk on the Heisenberg group H3(Z). Write S, as (X, Yy, Z,).
Consider the dilation

8i((x, y, 2)) = (¢ x, 111y, P1*2),

This dilation structure {5;; ¢ > 0} is a straight group dilation of (9.3) adapted to
the measure u so the limiting group structure (G,, ®) is the continuous Heisenberg
group H3(R). By Chap. 10 below, the conditions (R1)-(R2), (E1)-(E2), (Te) and
(TT) are automatically satisfied for p and {4;, ¢ > 0}. It is easy to check in this case
that 781/, (1) converges vaguely on R3 \ {0} to 1e(dx,dy,dz) ast — oo, where

c

ﬂ.(dx) = d
A2+ y2 + [z — xyHte

xdydz.

The measure fi,, though itself is not symmetric on R?, induces a symmetric Lévy
measure [ty On (G,, @) via the matrix coordinate system ®. Thus by Theorem 5.11,
for any T > 0, the rescaled random walk on Hj3(Z) in matrix coordinates
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{ (n_l/ax[m], Y, n_z/az[m]) it € [0, T]}

converges weakly in the Skorohod space ([0, T]; R?) to a purely discontinuous
symmetric Lévy process X*® on (G,, @) with Lévy measure 1, as n — 0o. We next
identify the Lévy process X*® in the matrix coordinate system of (G,, ®) by using
Theorem 7.3.

Recall that for o = (x, y, ) € Hz(R),

cr._l =(—x,—y,—z+xy) and o +0’._1 = (0,0, xy).

Since [|o |2, lloJ |2, and ji, are invariant under the transformations (x, y, z) —
(=x,y,—z)and (x,y,2) — (x,—y, —z), we have by (7.8) that Ej = 0 for every
1 < j < 3.Let X° = (X,Y,Z) be the Lévy process on R> with Lévy triplet
(0,0, fie). Note that the Lévy process X° is not symmetric on R3 as its Lévy
measure ji, is not symmetric on R?. We conclude from Theorem 7.3 with the same
calculation as that in part (ii) of Example 1.5 (revisited) that, in matrix coordinate
o,

t
X* = (Xt,i,,2,+f XS_dYS> fort > 0.
0

Example 7.9 Consider the group Us(Z) of 4 by 4 upper-triangular matrices with
diagonal entries equal to 1 given in Example 3.16. That is,

1 x1 x4 x¢
01 xp x5
00 1 x3
00 01

F=U4(Z)= 1x; €7

In matrix coordinates, U (R) is R® with multiplication ()c,-)?(y,')6 = (zi)? given by

Xi + yi fori =1,2,3,
o= X4+ ys+x1y2 fori =4,
l X5+ ys +x2y3 fori =35,

X6+ Y6 + x1y5 + x4y3  fori = 6.

This matrix coordinate system ® is an exponential coordinate system of the second
kind described in Sect. 9.5; see Example 3.3.

We consider two cases.

(i) Let st = 3 (i1 + p2) be the probability measure on U(Z) = Z° with
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1
w1 ((x)$) = 1(0.0.0) (X3, X5, X6) (7.21)
1+ x% + x% + |x4 — x1x2])4H
and
e
12((x)%) = (7.22)

10,0,0)(x1, X2, X4),
(14 /x3 + x2 + x2)3te

where 0 < o1, @2 < 2 and c1, ¢y are appropriate positive normalizing constants.

The measure w is in SM on U4 (Z). Let {& = (Slil), ,((2),523), ]((4),51((5),%']((6));]{ >
1} be a sequence of i.i.d. random variables taking values in U4(Z) of distribution u.
Then

Spi=80-&-...-&, n=0,1,2,...
defines a random walk on Uy (Z). Write S, as
1 2 3 4 5 6
(Xfl ) XD X3 x@ xO) x( >) .
Consider the dilation
51((%‘)?) — (tl/ﬂllxl’ tl/“'xz, tl/“2x3, t2/“‘x4, tl/al+l/a2x5’ t2/a1+l/a2x6)_

As noted in Example 3.16, this is a group dilation structure, so the limit group
(G, ) is Us(R). It is in fact the straight group dilation of (9.3) adapted to the
measure u Thus by Chap. 10 below, the conditions (R1)-(R2), (E1)—(E2), (Te),
and (TT) are automatically satisfied for u and {;, ¢ > 0}.

The measure u; = t8,(i) has vague limit (i, as t — 00 given by

C1

2 (xf + x5 + xa — x132]

e(dx) = dx1dxadxs ® 8(0,0,0)(dx3, dxs, dxg)

)(4+a1 )/2
C/
2
—=  dx3®346 dxy,dxy, dxs, dxs, dxg).
PN (0,0,0,0,0)(dX1, dx2, dx4, dxs, dXe)
Note that though the measure i, is not symmetric on R®, it induces a symmetric
Lévy measure (o on (G,, @) through the matrix coordinate system &. B
By a similar reasoning as in the previous example, one can check that the drift b
defined by (7.8) is the zero vector in RE. Let

X° — (5((1)’ X0 x® @ o 0)
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be the Lévy process on R® with Lévy triplet (0, 0, ft,). Note that ()_( M x@ x (4))

a dxdx dx)
2(x12+x§+|x4*x1x2\)(4+a|>/2 1R
and X ) is a one-dimensional symmetric a»-stable process with Lévy measure

TR Il S vay dx3 independent of (XM, X@_ X)) Thus we have by Theorem 5.11, for

any T > 0, the rescaled random walk {81/, (S[us)); t € [0, T1) on U4(Z) converges
weakly in the Skorohod space D([0, T']; R% to a purely discontinuous symmetric
Lévy process X*® on (G,, ) with Lévy measure e as n — 00.

We next identify the Lévy process X*® in the matrix coordinate system of (G,, ®)
by using Theorem 7.3, through the fact that X*® is the weak limit of

is a Lévy process on R? with Lévy triplet (0,0,

X. M= cD(Xl/n) <I)(X;/n - (lJ/n)' oo cD(anl]/n - X?[nt]—l)/n)'

When a1 < oz, (G,, @) is Us(R). By a similar reasoning as in previous examples,
we conclude from Theorem 7.3 that in matrix coordinates, the symmetric Lévy
process X? on Us(R) has the following six coordinates:

t t
XM x2, xP, x@ +/ xPax®, / xPax®,
0 0

and

t t
[xox@axe s [[(x0+ [ x0ax@)axg.
0 0 [0,r)

Note that Lévy processes are semimartingales, so the above stochastic integrals are
all well defined.

(ii) Now let u = %(m + w2 + wu3) be the probability measure on U4(Z) =
with w1 and w, given by (7.21) and (7.22) with o1 = o3 € (0, 2), and

c3
3+a3
<1 —i—,/x‘% +x52 +x§>
for some a3 € (0, 1 /2). This measure p is in SM on Us(Z). Let

{Sk — (5(1) 5(2) §(3)’$]§4)’ 5(5) 5(6)) k> 1}

be a sequence of i.i.d. random variables taking values in U4(Z) of distribution 1.
Then

13 ((x)9) =

10,0,0)(x1, X2, x3)

Sp=S0-&-...-&, n=012,...

defines a random walk on U4(Z).
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Consider the dilation
8:((x)%) = (fl/a‘m, 1%y, 11y @ xy, 11/ s, tl/a‘+1/a3X6>,

which is a straight group approximate dilation of (9.3) adapted to the measure p. As
noted in Example 3.16 (the fourth bullet case), this is an approximate group dilation
structure for Us(Z) and the group law e of the limit group (G,, e) is the direct
product of the five-dimensional Heisenberg group Hs(R) and a copy of R, that is,

xS e ()5
= (x1+ y1, %2 + 2, X3 + ¥3, X4 + ya, x5 + ¥5, X6 + Y6 + X1y5 + x4y3). 0O

Clearly, (G,, o) is different from Us(R). Since the measure w is in SM on
U4(Z), the conditions (R1)-(R2), (E1)—(E2), (Te), and (TT") are automatically
satisfied for p and {§;, t > 0} by Chap. 10 below.

The measure u; = t§,() has vague limit (i, as t — 00 given by

_ K1
He(dx) =de1dx2 ® 8(0,0,0,0)(dx3, dx4, dxs, dx6)
[ TX
K2
+ IX3IT“‘dx3 ® 6(0,0,0,0,0)(dx1, dx2, dx4, dxs, dxe)

K3
+ ded)% ® 8(0,0,0,0)(dx1, dx2, dx3, dxe).
It induces a symmetric Lévy measure We ON (G, @) through the matrix coordinate
system ®. It is easy to see that the drift 5 defined by (7.8) is the zero vector in R®
and the Lévy process X° on R? with Lévy triplet (0, 0, i) is

xe = (X020, 29, %90, 0).

where ()_( 0 x (2)) is a two-dimensional isotropic o/ -stable process, X® is an inde-
pendent one-dimensional «-stable process, and ()_( ® x (5)) is a two-dimensional
isotropic a3-stable process that is independent of (X, X® x®) 1In a similar
way as in previous examples, we can conclude from Theorems 5.11 and 7.3 that for
any T > 0, the rescaled random walk {81/,,(S[m]); t €10, T]} on U4 (Z) converges
weakly in the Skorohod space D([0, T']; R®) to a purely discontinuous symmetric
Lévy process X* on (G,, ¢) with Lévy measure (o as n — 00, which in the matrix
coordinate system is given by

t
(x50, 20, %0, [ xpaxg +

t
xPaxg).
0 0
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Example 7.10 In Example 7.9, now consider the probability measure p = %(u 1+
2 + u3) on Us(Z) = Z5, where

c1
11 ((x)9) = 37a; L0,0,0)(¥2, X3, X5),
<1 + /X7 +x3 +x§|>
2
2 ((x)9) = AT )i+ 1(0,0,0,0,0) (X1, X3, X4, X5, X6),
and
3
13 ((xi)9) = 3ras L0.0.0)(X1, X2, x4),

<1 +,/x§+x52+x§>

where 0 < o1,02,03 < 2 and cy, 2, c3 are appropriate positive normalizing
constants.
The measure w is in SM on Uy (Z). Let

{o= (676260606760 k2 1]

be a sequence of i.i.d. random variables taking values in U4(Z) of distribution u.
Then

Sp=380-8-...- &, n=0,1,2,...

defines a random walk on Uy (Z).
Consider the dilation

8:((x)9)

— (ll/al)Cl, t]/OlZXZ’ ll/a3x3, tl/a1+l/a2)€'4, tl/a2+]/a3x5’ tl/ot1+l/012+1/ol3x6> .

As noted in Example 3.16, this is a group dilation structure, so the limiting group
G, is U4(R). It is in fact a straight group dilation of (9.3) adapted to the measure .

Since measure u is in SM on Uy (Z), the conditions (R1)—(R2), (E1)—(E2), (Te),
and (TT") are again automatically satisfied for u and {;, > 0} by Chap. 10 below.
The measure p; = t8,() has vague limit ji, as t — 00 given by

K1

[Le(dx) =de1 ® 8(0,0,0.0,0)(dx2, dx3, dx4, X5, dxe)

K2

T e

d)C2 ® 8(0,0,0’0’0) (dxl, dX3, d)C4, dX5, dx6) (7.23)
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K3

T e

dx3 ® 8(0,0,0,0,0)(dx1, dx2, dxg, dxs, dxe).

It induces a symmetric Lévy measure /1o 0n (G, @) through the matrix coordinate
system ®. It is easy to see that the drift b defined by (7.8) is the zero vector in R®
and the Lévy process X° on R? with Lévy triplet (0, 0, fi,) is

X° = (;‘(}”, x® %20, 0, 0) ,

where X @ are one-dimensional symmetric «;-stable processes with Lévy measure
kilz| ' "%dz for 1 < i < 3, independent to each other. In a similar way as in
the previous examples, we can conclude from Theorems 5.11 and 7.3 that for any
T > 0, the rescaled random walk {81/,,(S[n,]); t €0, T]} on U4(Z) converges
weakly in the Skorohod space D([0, T]; R% to a purely discontinuous symmetric
Lévy process X*® on (G,, @) with Lévy measure u, as n — 00, which in the matrix
coordinate system is given by

t t
x0, x@, X,(3),/ X§1_)dX§2),/ XPax®,
0 0

and

t t
[ x0x2axe + [ ( / xy)dxgm)dx;z).
0 0 [0,r)

In the above, if we replace . by

/ A0\ 2
wa((xi)7) = 37a; L0.0,0)(X1, X4, X6),
<1 +,/x§ +x§ +x§)
the measure p is again an SM measure on Us(Z) and pu, = t5;(i) converges

vaguely to the same [, of (7.23) as t — o0. Thus for any 7 > 0, the rescaled
random walk {81/, (Stur)); t € [0, T']) on Us(Z) converges weakly in the Skorohod
space ID([0, T']; R%) to the same purely discontinuous symmetric Lévy process on
Us(R).

Remark 7.11 Since condition (R2) is satisfied, the local limit theorem, Theo-
rem 6.1, holds as well for all the examples in this section. O



Chapter 8 ®
Measures in SM(T') and Their e
Geometries

8.1 Probability Measures in SM and SM;

Consider a subgroup H C I'. Because I" is nilpotent, H is automatically finitely
generated and we equip H with a finite symmetric generating set S and the
associated word length |-|s. Let « € (0, 2). Let SM%, (I") be the set of all symmetric
probability measures v on I which are supported on H and satisfy

1
= ]l )
) = T el Vas(gls) H

where Vy s is the volume growth function of the pair (H, S) and the notation v < u
indicates that there are constants 0 < ¢ < C < oo, which may depend on v and u,
so that

cu(g) <v(g) <Cu(g) foreverygerl.

Note that since H is a subgroup of the finitely generated nilpotent group, its volume
growth is polynomial and there is an integer dy such that Vg s(k) =< k9, k =
1,2, .... Note also that the set SM‘}‘{(F) does not depend on the choice of the
generating S for H. These symmetric probability measures are the basic building
blocks of the set SM(T") which we now define.

Definition 8.1 (SM(I")) The set SM(T") is the set of all finite convex combina-
tions p of probability measures belonging to the union

U U SME(I)

a€(0,2) H:subgroup of T
such that the support of u generates I'.
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Definition 8.2 (SM;(I")) The subset SM;(I") of SM(T") is the set of all finite
convex combinations p of probability measures in

U Usmg,m

ae(0,2) hell

such that the support of u generates I'. That is, u € SM;(T) if it is the finite
convex combinations of stable-like symmetric probability measures supported on a
finite collection of cyclic subgroups of I', (h;), 1 < i < k, with the property that
{hiﬂ, 1 <i <k} generates I'. O

Definition 8.3 (SM“(I'), « € (0,2)) For each @ € (0, 2), the subset SM*(T") of
SM(T) is the set of all finite convex combinations p of probability measures in

U SME(T)

H:subgroup of T

such that the support of © generates I. U

So, any probability measure p in SM(T") is the form
k
n= ZPiMH,-,ai, (8.1)

where o; € (0,2), pi > 0, Z, 1 Pi = 1, each H; is a subgroup of I, and py, ¢
is a probability measure in SM (F ). In addition, I' = (Hj, ..., Hy). The typical
measures in SM;(I") have the more explicit form

PiCq;
n(g) = ZZUHmI)H“ tsmy(8),

1 meZ

where o; € (0,2), p; > 0, Y pi = 1, the finite set {s*' : 1 < i < k}

is a generating set of I, and ¢! There are more measures

1
= 2mez (e
in SM;(I") because the individual component of the convex combination above
does not have to be exactly ) W sl 11(g), and they only have to be

=<-comparable to such a measure.

Example 8.4 On the Heisenberg group H3(Z) viewed as the group of matrix (4.2),
consider the measures

Ca

na((x1, x2, x3)) =

440y
(1 +JxF +x3 + |x3 — x1x2/2|>
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(this is u from Example 4.6) and

Col]lH[ ((.X] » X2, -x3))

9 ] == 1’27 3’
A+ pitea '

wi((x1, x2, x3)) =

where H; = {(x1,x2,x3) : x; = 0if j # i}, with a1, a2, 03,04 € (0,2).
The measure p = JTZ?:l i is a good example of a measure in SM(H3(Z)).

This is because the expression \/ x12 + x% + |x3 — x1x2/2| is constant under taking

inverse and is comparable to the word length on H3(Z) (e.g., on the natural minimal
symmetric generating set). O

Example 8.5 On the Heisenberg group H3(Z) viewed as the group of matrix (4.2),
fori =1,2, 0, € (0,2), and Hy = {(x1,0,x3) : x1,x3 € Z}, Hy = {(0, x2, x3) :
X2, x3 € Z}, consider the measures

Co,

i

(1 + /%7 +x§>

The measure & = %(,ul +2) is another good example of a measure in SM(Hz(Z)).
The measure in Example 4.6 is also in SM(Hs3(Z)). [l

i ((x1, X2, x3)) = a2 LH; (X1, X2, X3).

8.2 Weight Systems on I' Associated with Measures in
SM()

Let u € SM(T") be given by (8.1). From the data defining u, we extract a long
generating tuple

Y = (o1,...00)

by listing one representative of {s, s~!} for each s € S;, 1 < i < k, with repetition
when the same s, s ! belongs to more than one set §;. Thus, we can think of each o
as carrying a label that tells us from which S; it comes. Using this label we give each
oj € X the positive weight w(o;) = 1/a; if o; comes from ;. Now, consider X
as a finite alphabet and consider the set of all finite length formal commutators over
Y UX~!, where £ 7! is the set of formal inverse letters. We can proceed inductively.
Elements of X UX ™! are length 1 commutators. After formal commutators of length
at most n have been defined, the formal commutators of length at most n + 1 are all
the formal expressions of the form [z, 8], where t and 6 are commutators of length
s and t with s +¢ < n + 1. Recall that each formal commutator =1 of length 1 has
a weight w(o*!) = 1/a; if ¢ comes originally from S;. Extend the weight function
w to all formal commutators by setting w([t, 8]) = w(r) + w(H).
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A priori, there are countably many formal commutators but because I' is nilpotent
and we will ultimately consider only the formal commutators that are not trivial
when evaluated in I', we only have to deal with finitely many formal commutators,
whose lengths are at most the nilpotent class of I". We now use weighted formal
commutators to define a non-increasing sequence of subgroups of I'. Recall that by
convention and abuse of notation, each letter o in X is also a group element in I'.
The following definition is essentially from [56] where further details can be found.
See Definition 1.4 and Proposition 1.5 in [56].

Definition 8.6 For any s > 0, let FSE’"’ be the subgroup of I' generated by the
elements in I' of all the formal commutators over the alphabet ¥ with weight at

least s. By construction F,E’w CTEYifs <t Also, [TZY, FtE’w] c FXEJ;}”. O

Definition 8.7 There is a greatest ¢ such that th ¥ = T, call it w;. By induction,
having defined w;, define w; to be the largest # € (w;, oo] such that oY =
F,E " forall w; < s < r. This defines a finite strictly increasing sequence

W <w2 < <Wj <KWjqgl < - < Wj 4] =X

such that
Xw zw Tw _ pXw . . Tw __ .
Lyn Gl It =Ty fors € (wj—1, wjl, and '™ = {e} fors > wyj,.

By construction [T, FE}’,“’] C Fg}fl. Call A,; the abelian group

Ay, = FE}“’/FZ’“’ 1<j<js

Wit1?
J+ 0
Definition 8.8 Set yo(Z, w) = Z{* wjRank(Ay);), where Rank(A) denotes the
torsion-free rank of the finitely generated abelian group A. (]

That the construction described above and the definition of the positive real
10(X, w) is relevant to the study of random walks driven by measures in SM(T") is
apparent from the following theorem from [20, 56].

Theorem 8.9 ([20, 56]) Let I be a finitely generated nilpotent group. For any
probability measure w in SM(T') with associated data (X, w) as above, there are
constants c(u) and C () such that, for all n,

C(M)n_VO(E'W) < ,u(")(e) < C(M)n_VO(E'w),
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8.3 Quasi-Norms on I' Associated with Elements of SM(T')

The previous section associates with any measure . € SM(I") a weight system built
on the £-tuple of group elements ¥ = (o7q, ..., o¢) obtained by listing consecutively
with possible repetitions all the elements of the sets S;, 1 <i < k, and the attached
weight w(o) = 1/«; if o comes from S;. Recall that in this construction, we view
Y as an abstract alphabet. This data allows us to construct a quasi-norm on the
countable group I' based on the writing of any element g of I as a word over the
alphabet ¥ U X!, For any finite word w € Un (2 U shm get

deg, (w) = number of times the letters o and o ! are used in w.

The following definition is from [20, 56].

Definition 8.10 Given I', ¥ = (o1,...,0¢) and weight w as above, for each
element g € T, set

m=0

”N2w=m%mgum&@m”M®pweum(2u24y2g=wmr}
[eAS]

By convention, |le||x,, = 0. *

Remark 8.11 When w(o) = wo for all 0 € Z, the quasi-norm || - ||z, satisfies

1
Zlglz <llgly’, <lglz foreveryg €T,

where | - |5 denotes the usual word length of the finite symmetric generating set
Tuzlcr. O

Remark 8.12 It may be worth noting that, in general, it is hard to compute or
estimate ||g||x,,, for a given g € I'. The reference [56] gives many results in this
direction and these results will be useful in the sequel. This is related to the use of
coordinate systems in so far as the question of estimating g € I" becomes a precise
question only when g is given in terms of some parameter set, i.e., some sort of
(possibly partial) coordinate system, see [56, Theorem 2.10]. To help the reader
understand this comment, we suggest the following question: given a fixed g € T,
what is the behavior of ||¢g" ||x.w as a function of m? See [56, Proposition 2.17 ].



Chapter 9 ®
Adapted Approximate Group Dilations Qe

9.1 Searching for Adapted Dilations

The goal of this chapter is to associate with each probability measure u in SM(T")
an adapted approximate dilation structure. This includes making the choice of an
appropriate polynomial coordinate system for the simply connected nilpotent Lie
group G = (R?,.) in which I embeds as a co-compact discrete subgroup. The
given measure u determines uniquely certain features of the appropriate coordinate
systems and associated approximate group dilations but not all. Among the features
that are determined uniquely (in this case, up to an arbitrary multiplicative positive
constant) is a vector of non-decreasing weight values b;, 1 < j < d, so that, in the
chosen coordinate system u = (u,-)‘f € R4 for G, the appropriate approximate dila-
tion structure is of the form 8, (u) = (¢ u,-)‘f. Among the exponential coordinates
of the first and the second kind, the group structure G, = (Rd, o) defined by

ueu' = lim 81//(8;(u) -8 "))
11— 00

(understood up to isomorphisms) depends only on I" and p and not on the particular
choice of a coordinate system. An interesting question is if this remains true beyond
these exponential coordinate systems.

In the next sections, we describe two key constructions: the construction of
adapted exponential coordinates of the first kind and that of adapted coordinate
of the second kind. The essential difference between the two constructions is that,
in the discussion of exponential coordinates of the first kind, we assume that the
simply connected nilpotent Lie group G in which I" sits as a co-compact subgroup
is already given to us together with its Lie algebra and canonical exponential map.
All we need to construct is an adapted linear basis of this Lie algebra based on the
nature of the measure w. In the case of exponential coordinates of the second kind,
we start from scratch with only the finitely generated torsion-free nilpotent group
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I' carrying the measure u and, following Malcev and Hall, we construct a “discrete
coordinate system” for I', which is adapted to p and, in turn, “generates” for us
the simply connected Lie group G and its adapted exponential coordinates of the
second kind. It is only a posteriori (and with some work) that one can check that
certain features of these two constructions are identical.

9.2 Exponential Coordinates of the First Kind

This section focuses on the situation when the torsion-free finitely generated group
I" is given to us as a co-compact discrete subgroup of a simply connected nilpotent
Lie group G with Lie algebra g = (R9,[-,-]) and the group G is given in the
(canonical) exponential coordinates of the first kind. This identifies the group G
with (R9, -) where the product - is given by the famous Campbell-Hausdorff formula
(3.6).

In the next definition, we are given a probability measure 4 € SM(I") and the
associated data X, w as in Sect. 8.2 and we transfer the weight system to the Lie
algebra g. Observe that the tuple (use the same ordering as for X)

Yg=(cicg:exp(si) =0; € L) =(S1,.-.,6¢)

must be an algebraically generating set for g in that this set together with all iterated
brackets of its elements generates g linearly. Indeed, because the exponential map
is a global diffeomorphism between g and G, if X4 did not generate g, I" would be
contained in a proper, closed, connected Lie subgroup of G. This would contradict
the fact that I is co-compact in G.

We now trivially transfer the weight function w : ¥ — (0, co) to a function
defined on X4 by setting w9(¢) = w(o) if o = exp(s). This leads to the definition
of a weight system w? on the formal (Lie) commutators of the ¢’s in a way that is
formally analogous to what we did on I".

Definition 9.1 Let gsz’w be the Lie sub-algebra of g over R. generated by the
evaluation in g of all formal commutators of the ¢ € X5 whose weight is at least s.
By construction,

th’w C gf’w ifs <t

and
Tow _X,w z,w
o5, o] < i

Definition 9.2 There is a greatest ¢ such that g,)E W= g, call it w?. By induction,
having defined w?, there is a greatest € (w]g., o0] such that gs):’w = gt):’w for all
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s € (w?, t]. Call it w?H. Let ;2 be the largest integer j such that wjgi < 00 so that

w?g+ | = and gigw = {0}. This defines a finite strictly decreasing sequence of
Jx .g
Jx +1

sub-Lie algebras
= Z’w ... E'w
g=g,0 229, 21{0}

Jx

with the property that

X,w 2w . .g
5 g ) == 1, ey Jxoo
lg 8,0 ] G0 0 J J
Definition 9.3 (Adapted Direct Sum Decomposition) We say that a direct sum
decomposition of g,

9
— .
g =7 nj,
is adapted to (=, w) if, forall j € {1,..., j},
2w *
gwf.’ = @sz nyg.
J
Remark 9.4 To construct an adapted direct sum decomposition, start from the top
and set n 8= giéw. By descending induction, having constructed n;, ..., n 8 80
* g *
Jx

w

W il . . Tw o =W .
that g5 = e, pick a linear complement of g, inside g, and call it
J J

-1
nj_1. [l

Definition 9.5 (Approximate Lie Dilation Structure (First Kind)) Given a
direct sum decomposition that is adapted to (X, w), consider the group of invertible
linear maps

8;:g—>g, t>0,
defined by
§(v) = tm?v forallven;,1<j< j,,g.
Lete = (51-)‘11 be a linear basis of R? adapted to the direct sum g = @{gn j» let

u= (ui)f be the corresponding coordinate system, and let

b,’Zm? if8l'€‘ﬂj
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so that
8 (u) = (t"uy)f.

We shall see below in Proposition 9.12 and Corollary 9.13 that the important
g
quantity yo(X, w) is given in terms of the sequences (bi)f and (m?){* by

d Jx
Yo(S,w) =Y b = ng dim(n ).
1 1

Proposition 9.6 The maps (8;);~0 defined above form an approximate Lie dilation
structure on g. In any exponential coordinate system of the first kind adapted to

the direct sum decomposition g = 69'1" 1, (8:)1>0 is a straight approximate group
dilation structure on G.

Proof By linearity, it suffices to prove that for any v; € nj;,,i =1, 2,
87118 (wD), 8 ()]

g
has a limit when ¢ tends to inﬁnity By construction, 8¢ (v;) = i v; and [vy, v2] €

gzgw = @¢>nn¢ where wy > w |+ w , namely,

Q

[vi, v2] = Zfz, feeny.

(=N
It follows that
-1 jg w? +w9 —w?
87 (8 (), 8 wp)l) = Y TR
(=N

The limit of this expression when ¢ tends to infinity exists because wg + u)g <

wy < wy forallK>NIwa>w +w thehmitisOIwazu) +u) the
limit is fy. O

9.3 Building Adapted Exponential Coordinates of the Second
Kind from I' and u

In this section, we start with the given discrete torsion-free nilpotent group I'
(described, perhaps, by generators and relations or as a subgroup of a bigger group)
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and we explain how to construct the Lie group G using well-known ideas related to
exponential coordinate systems of the second kind. This is done in [35, 47] and we
refer the reader to the treatment in [21, Theorem 4.9, Section 4.3].

9.3.1 Hall-Malcev Coordinates

Theorem 4.9 of [21] asserts that, for any finitely generated torsion-free nilpotent
group I', any descending central series (this means that I';/ ;4 is central in
I'/Tj41 foreach 1 <i <n)

Fr=riolh>---I g ={e}

with I'; / I'; 11 infinite cyclic, and any sequence of elements t; € G such that I'; =
(T'i+1, ), each element y € I' can be written uniquely

y=1""15% TV up,up, ..., Uy € 7.
| u’ ul
Moreover, forany k € Zandany y' =1,' - 7,7 - --- - 1,,",
k g1(uk) _gr(u,k) gn(uk)
y o -L'] . 1'2 ..... -L'n"
and
A ! ’
vy = Tlfl(u,u) . Tzfz(u,u) ..... 7_,”fn(u,u)’
where u = (u1, ..., up), u’ = (), ..., uy),and fi, g;, 1 <i < n are polynomials

with rational coefficients in their respective variables.

Furthermore [21, Theorems 4.11-4.12 ], by interpreting these coordinates in R”
instead of Z", one obtains a simply connected nilpotent Lie group of which I' is a
discrete co-compact subgroup.

For our present purpose, the task is to produce a descending central series

r=riohh>---oI > Ihis ={el
with I'; / T'; 41 infinite cyclic, which is adapted to the measure w. Using the sequence
FZ W 1< j < jyisagood first guess. If each quotient A,,, = ' w/FZ W is free
abehan (i.e., has no torsion), then we can produce a descendmg central serles

F=Ti>y>- >y = (el

which refines the sequence Ffjtw, 1 < j < j« and has I';/ T'; 41 infinite cyclic. In
addition, we can find a sequence of elements t; € I', each of which is a commutator
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of the elements in X, such that I'; = (I'; 11, ;) and such that
w(t;) = w; if and only if FE}TI S5T; D FE}w‘

The problem we face is that it is NOT always the case that the groups A,,; are
torsion-free (even in the simplest of all cases when I' = Z!).

9.3.2 Modified Weight System on T

Given a measure £ € SM(I") as in (8.1), we defined in Sect. 8.2 a generating set
Y = (o1, ...,0¢) and a weight system w on formal commutators which generates
the descending central sequence of subgroups FE/’,“}, 1 <j < js.

Consider the finite set of all formal commutators over the alphabet ¥ which are
not trivial in I and organize that finite set as a long tuple X, = (c1,...,cp). Let
2. = (cy,...,cy) be the evaluation of X, in I'.

Let us introduce a (modified) weight function, w, on X by setting, for each ¢
appearing in the tuple X ,

w(g):max[wjzflm eN, " eri}w,lfjfj*}.

For commutators whose evaluation in I is trivial, we can set w(c) = oo. Following
[56, Section 2.2], we set

core(X, w) = {o; : w(o;) = w(oj), 1 <i <}

The function w is no less than w and has the property that if ¢ = [c1, c2] is
nontrivial in I", then

w(c) > w(cy) + w(cy).

It follows that the induced weight of a formal commutator ¢ over the alphabet X

whose evaluation in I' is not trivial is actually equal to the w weight of the same
commutator view as an element of X . Moreover, core(X,,,, W) = X

Definition 9.7 For any s > 0, let I'{"™" be the subgroup of I" generated by the values
in I' of all the formal commutators over the alphabet ¥ with w-weight at least s. By
construction 'y C I'e™ if s < 1. Also, [Ty, Ty € Ty, O

Definition 9.8 There is a greatest ¢ such that I';"" = T, call it w;. By induction,
having defined w;, define w; ; to be the largest 7 € (w;, 0o] such that I';™ = I'¢™
forall w; <s <t. This defines a finite strictly increasing sequence

0<g1<Q2<~-~<gl/<wj+l<~--<wj;0m+1:oo
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such that

ijﬂ C ij’ rem = ij fors € (wjfl,wj], " = {e} fors > W jeom.

By construction [I", '] C I‘;j“?ﬂ. Call A" the abelian group
—J —J —J
Ay =T/ T e 157 <"

The following lemma follows immediately from the construction outlined above.

Lemma 9.9 The groups Ai], 1 < j < jo are free abelian and each is

generated by a finite subset of the commutators ¢ € %,,,. Consequently, there exists
a descending central series

F=pohp- Ty T = e}
refining the descending central series

F=ry>lys >y, -0=Ty =

&j;wn E}jﬂnm +1

and a sequence v = ¢, 1 < j <d, in X, such that T';/ T'j1 is an infinite cyclic,
i =(t,liq1), 1 <i <d, and
Iy = (it wm) =z w)).

J

Because of this lemma, it is clear that [21, Theorems 4.9, 4.11, and 4.12] apply and
provide a set of coordinates of the second kind

Fr={y=¢"-5%% T urug, .. ug € 7}

for I', as well as an embedding of I' as a co-compact discrete subgroup a simply
connected Lie group G
G:{g:tf1~r§c ~~~~~ r:;", xl,xz,...,xdeR}

={g = exp(x11) - exp(x282) - -« - - exp(xqla), X1,x2,...,%q € R},

where {; = logt; € g.

Definition 9.10 (Approximate Group Dilation Structure (Second Kind)) In the
exponential coordinate system of the second kind (x,-)‘f introduced above, consider
the group of straight dilations

§ RESRY >0, x> 8(x) = (tﬂixi)‘f.
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Proposition 9.11 The maps (6;):~o defined above form an approximate group
dilation structure on G = (R4, ). O

By the same token, we obtain an associated coordinate system of the first kind

d
(V1> + -+ Ya) = exp (Zmﬁ) ;
1

which is compatible with the weight w9 introduced earlier and such that b; =
w9(¢) = w(ri), 1 < i < d. The straight dilation groups we introduced in these
two distinct coordinate systems have the same exponents b; in their respective
coordinate systems. Viewed as maps from G to G, they are clearly different in
general even so we use the same notation §; in both cases; see Example 3.15 for such
an example where the matrix coordinate system is an exponential coordinate system
of the second kind. This is because there are really no good reasons to consider
both coordinate systems at the same time, except to understand that these parallel
constructions yield compatible results at the end.

9.4 Relations Among the Filtrations Associated with w, w9,
and w

Although there are great similitudes in the construction of the (discrete group)
filtrations ngtw, 1 < j < jx and L7 1 < j < jem, of the group T, and the

(Lie algebra) filtration gi’gw, 1<j< j,? of g, there are also differences.

J
We start with a comparison of the coordinates of the first and the second kind
in this context. It is not hard to see that the definitions of the sequences w?, 1 <

j < jf,and w;, 1 < i < jo and the above remark concerning the relations
between group and Lie algebra commutators, imply that these sequences of weights
are actually equal, that is,

=jgmand wi=w; 1<j<jl 9.1)
For relation between the weights w and w9, see Proposition 9.12.

More generally, each (discrete group) formal commutator T on the alphabet X =
(o1, ..., 0¢) corresponds in an obvious formal way to a formal Lie commutator 6 on
the alphabet ¢ = (¢1, ..., ¢¢) in such a way that the Campbell-Hausdorff formula
provides a formal equality

T =exp(§) = exp(d + Ry), 9.2)
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where R; is a formal series of Lie commutators with w?-weights strictly larger than
w(t) = w9(h). The concrete meaning of this formal identity in the present context
is that it is an equality when evaluated over any pair I' C G, where G is a simply
connected nilpotent Lie group with algebra g, with the formal series R, reducing to
a finite sum. Obviously, the evaluation 6 of € in g belongs to gfj;ff‘,). It follows that

the evaluation ¢ = 6 + R, of ¢ in g also belongs to 95&%9)-

9.4.1 Two Choices of Exponential Coordinate of the First Kind

From the discussion above, it becomes clear that there are at least two very natural
exponential coordinate systems of the first kind associated with the sequence (f,-)‘f
of elements of I" given by Lemma 9.9.

Choice 1: Lie Commutators

Each 7; is a commutator built on X = (ai)f. Let 6; be the Lie commutator over

8 = (g,-)f that corresponds formally to 7;. Here o; = exp(s;) as before and the

last sentence means that 8 = [¢, ¢'] if T = [0, 0'] with o = exp(c), o’ = exp(s’).

By (9.2), w(t;) = w?(6;), and the final subsequence of (Oi)’f corresponding to those
g

i such that w(t;) > Wi =w; is a linear basis of gigw. In particular,
: j

n=1¢0€g:¢= Z zi0i, zi € R ¢, lfjfjf

inw(t)=w]
provides an adapted direct sum decomposition of g in the sense of Definition 9.3.

Choice 2: Logarithms of Group Commutators
Each 7; can be written uniquely as 7; = exp({;), where ¢; and 6; are related via (9.2).
It follows that the final subsequence of (¢;)| corresponding to those i such that

w(ti) > w? = w; is (also) a linear basis of gigw. In particular,
j

w,={ceg:¢= Y zuti,ueRy, 1<j<jf
iw(r)=w?
provides an adapted direct sum decomposition of g in the sense of Definition 9.3.

From the description of these two related coordinate systems, it follows that, for
each j € {I,..., jo" = 723, the group I'sm is a co-compact discrete subgroup of
—J
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the Lie group exp(gigw) (recall that w; = w? ). Note that, by definition, any two

J
exponential coordinate systems are always related by a linear change of basis in g.
In the present case, these linear changes of coordinates have an 0bv10us trlangular
form with unit diagonal and they respect the increasing filtration g g J<j<jl

The following proposition records the relations between the ob]ects related to the
original weight system w on I' and those related to the Lie algebra weight w?. The
proof follows classical arguments developed in [47], see also [30, Appendix] and
[21, 56]. It is omitted.

Proposition 9.12 The finite sequence of weight values w?, 1 <j < jj%, is a
subsequence of the increasing finite sequence of weight values wj, 1 < j < jy,
andw?? =wj,. Ifwig_l <w; < wigforsome 1 <i <j<j then

l"E Y C exp (gz’gw)

1o,

and the quotient

exp( z, w)/
is compact. If j € {1, ..., ji} is such that the value w; does not appear in (wg)]*

then

S w . . .
Fw,+1 / Fw is a finite abelian group.

The following is an immediate corollary.

Corollary 9.13 yo(S, w) = X w;Rank(FE"/TE" ) = Y F w? dim(). O

wj+l)

9.4.2 An Associated Exponential Coordinate System of the
Second Kind

By the Hall-Malcev construction reviewed in Sect.9.3, the sequence (1:,-)‘11 of
elements of I' given by Lemma 9.9 and the sequence of their logarithm ({i)f in
g give us an exponential coordinate system of the second kind in which an element
g of the group G is written

g=[]expGic), y=00f eRE
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Recall that we also have exponential coordinates (x)‘f € R4 of the first kind such
that

g = exp (Z xig“,-) .

By using the Campbell-Hausdorf formula, we obtain a polynomial map

d
x = M(y) = (M;(y)){ suchthat g =]Jexp(yi&i) =exp (Z xiCi)
1

and this map has a specific triangular structure which can be described as follows.
For a multi-index of length ¢, I = (i1, ...,ig) € {1,...,d}7, setw, = Y 1 wi .
We say that a polynomial p in the coordinate (yi)f has weight at most w if it can be
written as a linear combination of y/ = y; |-+ Yi, with w; < w. Then the map M
has the form

M;(y) = yi + m;(y),

where m; is a polynomial of weight at most w; with no linear terms.
Let us use the notation

5 :RU > RY uw= )| = &) = "u){, bi=w,, t>0,

and note that we can use these dilations in the x coordinate system as well as in the
y coordinate system discussed above. We find that

81710 M 0 8:(y) = yi + 1 2m;i(8,(y)).

Because m; has weight at most b;, this expression has a limit when # tends to infinity
which is of the form

yi +m(y),

where m?° is a linear combination of terms of weight exactly b;. This defines a
polynomial map

M>®:RY - RY,

which is a group isomorphism between the limit groups G! (obtained by using
the approximate group dilations §; in the exponential coordinates of the first kind)
and the group G2 (obtained by using the approximate group dilations §; in the
exponential coordinates of the second kind).
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9.5 More Choices of Coordinate Systems

There are many more possible choices of exponential coordinates of the first and
the second kind that suit our needs. The key structure that must be preserved for our
purpose is the filtration g;"w, 1 < j < j&, of the Lie algebra g which is canonically
associated with (X, w). After that, a number of choices have to be made, the first of

g
which is the choice of the direct sum g = EB‘;-;ln j so that

Zow _
g;" = ®izjn;.

One then needs to pick an adapted linear basis & = (8,’)011. Any such choice gives
both an exponential coordinate system of the first kind

d
g =exp (insi) , X = (x,-)? € Rd,
1

and an exponential coordinate system of the second kind

d
g= l_[exp (yigi), y= ()’i)? eRY.

i=1

Each of these choices of coordinates, call it (uq, ..., uq) € R4, comes with its own
straight approximate group dilations

8 R RY, u=up)d— 8,) = (t"u){, bi=w;, t>0. (9.3)

Everything that has been said above for the special case ¢; = ¢; applies as well to
these other choices (including the properties of the maps M and M°°). The choice
& = ¢ is justified mostly by the fact that, in that coordinate system, the discrete
group I is represented as a set as Z¢ C R?. This is not the case in most other
coordinate systems. If one remains in the class of exponential coordinate systems
of the first kind, moving from one such system to another is captured by a linear
change of coordinate in R¢ = g. If one moves from a system of the first kind to one
of the second kind or between systems of the second kind, the maps capturing the
changes of coordinates are polynomial maps with a special structure reflecting the
preservation of the filtration gj.:’w, 1 < j < jB, of the Lie algebra g (the best way to
think of a change of coordinates involving at least one system of the second kind is
to pass through the associated system of the first kind: this step is described by the
map M above).
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9.6 Comparison of the Quasi-Norms on I', G, and G,

Consider the exponential coordinate systems of the first and the second kind
associated with a basis & = (ai)‘f adapted to the filtration g/;’w of the Lie algebra
g as considered in the preceding section. It comes with a family of approximate
dilations given by (9.3). On R, consider the usual Euclidean norm || - ||> and the
quasi-norm

Ny(2) = max {|z|"%), b = w; = w?,
1<i<d

and note that, for all z € R?, N, (8;(z)) = 1N, (z). The structure of the change
of coordinate map M between exponential coordinates of the first (x = (xi)‘f ) and
second (y = (yi)f) kind shows that there are constants 0 < ¢ < C < oo such that

if g = exp(X_4 xi&) = [1¢ exp(yi&;), then
cNy(x) < Nw(y) < CNy(x).

Lemma 9.14 Referring to the above setup and notation, there is a constant C,
such that for any R > 1 and any §; € g with Ny (&) < R, i = 1,2, we have
exp(&1) exp(£2) = exp(¢) with Ny (§) = C«R. U
Proof This follows from the Campbell-Hausdorff formula because of the properties
of the direct sum decomposition along the subspaces n; and its relation to the weight
system w. Note that this is not correct in general for small R. This reflects the fact
that the coordinate system and the quasi-norm N,, have been chosen to capture the
large-scale geometry of the situation. |

The following proposition is one of the important keys to the results presented in
this monograph. It relates the geometry of the discrete group I' equipped with the
quasi-norm || - ||, (Definition 8.10) to the geometry of Ny, in the above coordinate
systems.

Proposition 9.15 There are constants c, C € (0, 00) such that, for any

d
y = exp (in&‘,') with x = (xi)‘f € ]Rd,
1

cNy(x) < ”y”E,w < CNy(x).

Similarly, there are constants c, C € (0, 00) such that, for any

d
y =[]exp ien) with y = (v e R?,
1

cNy(y) < ”y”Z,w =< CNw(y)~
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Thanks to earlier considerations, it suffices to prove the first set of inequalities which
refers to exponential coordinates of the first kind.

Proof (Proof of cNy(¢) < |y lx.w) To simplify the notation, set Ny, = N. In [56],
it is proved that there exists a finite tuple (iy,...,1y),i; € {1,...,£},1 < j < gq,
such that any y € I" with ||y ||s,,» = R can be written as

q
y=[To7/. Izl <R (9.4)
1
Since o; = exp(g;), aix = exp(xg;) forany i € {1, ..., ¢}. Because ¢; has weight
w¥(c;) = w(o;), by construction, there is a k; with wﬁ’,kl_ > w(o;) such that ¢; €
gkwig. In particular,

J?
Siy= Y & Eemw,
k=k;

and
il
exp(z;Gi;) = exp Z Zjék
k=k; .
J
with

. g
lzj&ll2 < max {llgill2} x |z;] < C'R™“ < C'R™
1<i<t ‘

because R > 1 and w,g > w(oj;) forall k > k;;. Thatis, N(z;&) < C"R.
Because formula (9.4) gives any y as a product of at most ¢ elements exp(z;Gi;)
with N(z;6i;) < C’R, it follows that any y = exp(}_] xi&;) € I satisfies

N@) < C"C'R=c"c? My ls .

O

Proof (Proof of ||y lls.w < CN(¢)) The proof is by induction on the dimension n of
g. If the dimension is 0, there is nothing to prove. Assume that for all cases when the
dimension of g is less than m, there exists a constant C such that ||y || ; < CN(?)
forally e T ¢ (R",) = G. Consider I, &, w,G = (R"*!, ). Letg € T
be a non-trivial element of the highest weight wj, which is a commutator of
the elements o; forming the tuple ¥ (this includes the elements of ¥ which are
considered commutators of length 1). Let @ > 1 be the length of this commutator
and oj, ..., 0;, be the list of o; used to write g as a commutator of length a with
the property that wj, = Y | w(o;,). The element ¢ must commute with all elements
in I and it is of the form g = exp(#), where 6 is the Lie commutator over X9
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associated with the writing of g as a commutator over ¥. Formally, let us use
the notation c¢g(x1, ..., x;) to express the formal group commutator in question
evaluated at the group elements x1, ..., x, so that ¢ = eg(0j,...,0;,). Let ¢4
be the corresponding formal Lie commutator so that 6 = ¢4(&;,, ..., ¢1,). For any
a-tuple of reals 1, . . ., #;, we also have

cG (en;,-, e, ...,et‘l{”a) =exp(t] ... 1aCq(&iys -, Giy))-

Let ® = {exp(sf) : s € R} be the central one-parameter subgroup of G
associated with 6 and consider the simply connected nilpotent group G=G /© and
its discrete subgroup I which is the i image of I" by the projection map 7 : G — G.
The subgroup Tis generated by the tuple T = ((o1), ..., m(o¢)). The dimension
of g is m — 1. We can choose it to be the orthogonal complement of 6 in g so that
d is the orthogonal projection onto g.

For any y = exp(¢) € I' with N(¢) = R, we have N(Z’) < N(@) = R
Moreover, applying the induction hypothesm we can write 7 = exp({) = n(y) € r
as a word over the alphabet $ U S with

IPlg.5 < CNQ@).

Using this word representing of 7 (y), replacing each 6; by o; to obtain a word over
the alphabet £ U !, and evaluating in G give us an element € I and an element
¢ € g such that

y=exp),
n(y)=vy, dn()=¢,
y = yexp(t0) for some real 1 < CRYi.

The estimate on ¢ is from [56, Theorem 2.10] (together with an application of the
Campbell-Hausdorff formula in our special system of coordinates). By construction,
exp(t0) € I', and [56, Theorem 2.10] implies that

Il exp(td) 5.0 < CR = CN(Z).
It follows that
1Y lgw < C(17s.0l + CN©)) < C'(C + OON(©).

O

The following proposition captures the fact that N,, is almost a quasi-norm (a
quasi-norm at large scale) on G = (R4, .) and is a quasi-norm on G, = (R4, o).
The first fact follows from the adapted triangular nature of multiplication in the
type of coordinate system considered here. The second fact then follows from the
homogeneity of N, together with the fact that (5;);~0 is a group dilation structure
on G,.



114 9 Adapted Approximate Group Dilations

Proposition 9.16 For any exponential coordinate system of the first or second kind
adapted to the filtration gf’w, 1 < j < j2 wehave, forany z,7 € R,

Ny(z-7') < C(Ny(2) + Ny(@) + 1),

where the group law - refers to the multiplication in G = (R%, .). Moreover; in the
same linear basis for RY, we have

Ny(zeZ) < C(Ny(2) + Ny(2)),

where o is the group law on G, = (RY, e) associated with the approximate group
dilation §,(z) = (t%z;)?). O



Chapter 10 ®
The Main Results for Random Walks Qe
Driven by Measures in SM(T")

10.1 The Limit Theorems for SM(T')

In this chapter we state our main results concerning measures in SM(I"). They
are direct applications of Theorems 5.11 and 6.1. We state these results in adapted
coordinate systems. Namely, given u € SM(I") and the simply connected Lie group
G containing I as a co-compact discrete subgroup, we choose to write G = (R?, -)
using one of the polynomial coordinate systems described in Sect. 9.5 above. This
coordinate system is adapted to the filtration (g;:’w) j of the Lie algebra g, itself
built from the data describing the measure u as an element of SM(I"). In particular,
in this coordinate system, we have an approximate group dilation structure given
by (9.3) which defines a limit group structure G, = (R, o). The law o = o,
defining this limit structure depends on .

Below, we show that for any measure u € SM(T), there are a suitable
approximate group dilation structure (8;);~0 given by (9.3) and a norm || - || on
I" so that assumptions (5.3), (R1)-(R2)—(E1)—(E2), and (TT) are all satisfied with
the common constant 8 > 0. This is in contrast to condition (A) which may or
may not be satisfied. Recall that condition (A) is the requirement that the measure
we = t81/;(u), t > 1, defined by (4.1) converges vaguely on R4 \ {0} to a
measure [, as ¢ tends to infinity. Because the dilations (8;);-0 have been carefully
constructed from p, the family (u;);~0 is always tight, and if (A) is satisfied, then
(Te) is satisfied and the support of the limit u, generates G; see the subsection
below for the proofs.

Recall that {PP{; x € G,} is the family of probability measures induced by the
limit symmetric Lévy process X* on ([0, My], RY).

Fix an arbitrary increasing sequence of reals T} that tends to infinity, e.g., Ty = k,
and recall the notation )A(f, t >0, ﬁ,k, t > 0, and IP’,EXJ", x € G associated with
the space-time rescaled discrete random walk, see (5.18). In this notation, [x] is
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the closest point of x (any one of, if there is more than one such point) on I'7; in the
norm || - ||, and

PY (XK =y) = WU (S, (x) 7 - 87,(3), x,y €Ty,

Hence, applying Theorems 5.11 and 6.1, we obtain the following theorem.

Theorem 10.1 Let u € SM(T). Referring to the above setup and notation, assume
that condition (A) holds true, that is, the measure p; = t81/;(u), t > 1, defined at
(4.1) converges vaguely on R4 \ {0} to a Radon measure o on R4 \ {0} as t tends
to infinity.

(i) For any bounded continuous function f on RY, ﬁvk f converges uniformly on
compacts to P, s f. Furthermore, for each My > 0 and for every x € RY,
]f”,[cx]" converges weakly to P} on the space D([0, My], RY) equipped with J1-

topology.
(ii) Forany Uy, > Uy > Oandr > 1,

lim  sup sup  |det(87) " (87, (1)) — pelt, x)| = 0.
k=00 \ cRrd: x| <r t€lUL,Us]

10.2 The Hypotheses (R1)-(R2) and (E1)—(E2) When
n € SMT)

Using the constructions described in the previous two chapters and the results
from [20], we can now show that any probability measure in SM(I") satisfies the
hypotheses (R1)-(R2)-(E1)-(E2) in the context of properly chosen exponential
coordinates of the first or second kind. Let us assume that we are given u €
SM(T") and the associated data X, w as in Sect. 8.2 and quasi-norm || - ||z as
in Definition 8.10. We assume that I" is given as a co-compact subgroup of a
simply connected Lie group G and that an adapted global exponential coordinate
system of the first or second kind has been chosen as explained in Sect.9.6 so
that ' € G = (RY, -). Moreover, (R?, -) is equipped with a straight approximate
dilation group structure

G0 8:(2) = (¥ z)?

with the group limit (R?, e). Here the basis for R? can also be identified as

in Sect.9.6 with a linear basis of g which is compatible with the direct sum
]

decomposition g = 69{; n; in Definition 9.3. Each subspace n; is associated with a

weight value w; = w ;> 2 and for any index i such that the corresponding basis

elementisinn;, b; = m?.
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We pick
O<b=min{h; : 1 <i <d}=(max{p; : 1 <i < d})_l, Bi :=1/b;

and set |y|r = ||y||% - BY construction, this is a norm on I, that is, |y - y'|r <

lylr +1y/|r forall y, ¥’ € T'. We also let || - || be a norm on (R%, e) (i.e., satisfying
the triangle inequality ||g o g’|| < llgll + ||g’|| for all g, g’ € G,) that is equivalent
to

Ny(2)? = max{|z;|”’% : 1 <i <d} forzeR?

and satisfies the homogeneity condition (5.3) with § = max;<;j<4 fi = 1/b. By
Hebisch and Sikora [37], such a norm always exists. Recall that B(r) = {x € G :
lx|| < r)and Be(x,7) = x @ B(r).

By Proposition 9.15, we have a tight comparison between the discrete object
| - |r and the continuous homogeneous norm || - || on G, = (R, o), namely, there
are constants 0 < ¢, C < oo such that, forany y € I' C R,

clyl =lyir = Clivl. (10.1)

Recall that condition (R1) reads

(R1) There are constants C| and « such that, for any bounded function u defined
on I" and p-harmonic in B(r) := {x € R : x|l < r}, we have

-1 K
u(y) = u@)| < Cilulloo (”xr—y”) for x, y € B(r/2).

For any u € SM(T"), [20, Corollary 6.10] together with Remark 5.4 gives the
following I version of this property:

(RI'1) There are constants C and « such that, for any bounded function u defined
on I' and p-harmonic in Br(r) := {x € I" : |x|r < r}, we have

-1, K
lu(y) —u@)| < Crllulloo (w) forx,y € Br(r/2).

To pass from this I" version (RI'1) to the desired (R1), we use the key norm
comparison (10.1) and a simple covering argument to adjust the permitted range
of x and y from one statement to the other.
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Similarly, recall that condition (R2) reads.

(R2) There are positive constants C, > 0 and 8 > 0 such that, for all n,m € N
andx,yerl,

Ci m Iyl?
(n+m) _ ) < 10.2
Wy —u Wl < o | A 102

where V(r) :=fifg € I' : lIgll = r}.

The fact that (R2) holds true for any probability u in SM(I") follows straight-
forwardly from [20, Theorem 5.5 (3)-(4)] (see also [20, Proposition A.3]), together
with (10.1). Regarding related recent results concerning the regularity of stable-like
transition kernels in the abelian case, see [16].

Regarding the exit time conditions (E1)-(E2), which are expressed using the
norm |-|| on R¥, for any measure i € SM(T"), they follow from (10.1) together with
[20, Theorem 5.5(5)] (for (E1)) and [20, Lemma 6.6] (for (E2)), with the exponent
B > 0 being in the same as those in (R2). (In these results of [20], 8 = 1/wy
there, where 0 < w, := min{w(s); s € X}, which is our b; see Example 2.9 and
Proposition 2.11(c) there.)

10.3 Condition (TT)

Verifying condition (TT") for any measure 1 in SM(I") requires some work. Any
© € SM(T) is a finite convex combination of probability measures of a certain type
and it suffices to prove (TT") for any such building block, v. By definition, any such
probability measure v has the following property: there is a subgroup H of I" with
finite, symmetric generating set S, word length | - |s and volume growth exponent
dp, and an exponent « € (0, 2), such that

(1+ |x|s)~@ % ifx € H,

10.3
0 otherwise. ( )

v(x) < {

Note that the discrete subgroup H is contained as a co-compact discrete subgroup
in a unique, closed, connected Lie subgroup L = Ly of G. As in Sect. 10.2, we
assume we have made the choice of an adapted coordinate system for G and of an
appropriate approximate dilation structure (;)s~0.

Recall that G is described by a polynomial global coordinate chart G = (R?, -) in
which the Lebesgue measure is a Haar measure for G. Let m < d be the dimension
of L. This closed Lie subgroup can be described parametrically as an embedded
sub-manifold of R? given by a polynomial map iz = i from R” into RY:

v==W1,...,0) ER" = ig®) = (1), ...,iq(v)) € R (10.4)
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with a polynomial inverse on its image. Assume further that this map 7 is also a
group isomorphism on its image, that is,

L=MR" ) and i) - -i(w)=i(v-gw).

In fact, we can use this formula to define -y on R™. However, it will be convenient
to assume that L = (R™, -) is an exponential coordinate system of the first kind for
L.

The Lie group L is, of course, nilpotent and simply connected, and we assume
that the global coordinate system (R, -) is an exponential coordinate system of the
first kind compatible with the lower central series of L:

Li=LD>Ly=[L,L]1D>---DLj=[L,Lj1]D---DL; D Lyy41 ={0},

where rg is the smallest j such that L;;; = {0}. Namely, there is a strictly
increasing rg-tuple of integers k;j, 1 < j < rg, ki = 1, ky;; = m such that

Li=A@O,...,0,v;, -, vm) : Vkj, ..., vm € R}.
In this coordinate system for L, the straight dilation
v W) =Pyt pi=jif kj <i<kjp1—1 (10.5)

forms an approximate group dilation structure with limit L, = (R, %), a stratified
nilpotent Lie group of homogeneous dimension dy with

rH
dy =Y jlkjy1 — k).
Jj=1

According to Pansu’s theorem, see [52] and [15], the word length | - |g has the
property that there is a norm | - |, on L, such that |y,H ()|« = t|v|s forallt > 0
and v € R™, and

lim  |v|s/|v]« = 1. (10.6)
veH, v—>0o0
Moreover,
1 .
vle = max{|v;|'/7 : v = (vi, ..., V).
1

This implies that for any v € R with ||v||2 < 1 and r € (0, 1] such that ||y{/’rv||2 =
1, we have

vl < r. (10.7)
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Moreover, for any v € H, if we define ¢, by ||7/17tu v|l2 = 1, then we have
[vls < ty. (10.8)

By construction, because the probability measure v is one of the building blocks
of u, the approximate dilation structure (§;);~¢ has the property that

lim 8" oig oy, (v) =: p(v) (10.9)

t—00

exists forallv e R™ =i ;11 (L). This limit is uniform on compact sets and the map p
is a continuous map (in fact a smooth map) from R™ to R?. In the following lemma,
we consider any approximate dilation structure (8;);~¢ such that the limit in (10.9)
exists.

Lemma 10.2 (The Map p is a Group Homomorphism) Assume that (§;)¢=0 is
an approximate dilation structure on G = (R?, ), that v is a probability measure on
H satisfying (10.3), and that the limit p at (10.9) exists for all v € R™ = il;l(L).
If we equip R™ with the limit group structure L, = (R™, %) associated with the
dilations (ylH )t=0, the map p is a continuous group homomorphism from L, to G

(it is typically neither injective nor onto) Let L = p(L ) € G,. Forany x € L}

andu € L, §p«(x) = p(yl u). Define yt *on L} by y, ‘(x) = p()/t u). This is a
group of group diffeomorphisms on LY. Namely,
Lx Lk

L* L* L*
vyt =y ad v ey =y eyt (), st>0,xyelLl

Moreover, for any s > 0, 85 o yslf;‘; =Idon L}. (]

Proof We can approximate p(u) e p(v) by 81/; (6;(p(u)) - 8;(p(v))) with ¢ large
enough. Note that

8176 (Bi(pw)) - 8:(p(v))) = 8171 0 iy o v, (y{jtw CAMORG (v))) :

Since, for large s, we can approximate y; /g(ys () - y(v)) by u * v and the
convergence of 81/, o iy o ytll'l/a to p is uniform on compact sets, it follows that
p is a continuous group homomorphism from L, to G,. The remaining statements
are straightforward. O

Lemma 10.3 There is a constant C such that, for any z € H, ||z| < C|z|a/ﬂ. O

Proof For the proof, we realize H has a subgroup of L = R™ via iy. Lett =
t. = |z[§ so that there is a constant C such that 7’ = )/tlfl /o (2) has Euclidean norm
IZ’ll2 < Cyin L = R™. Because p is continuous, it follows that there is a constant
C’ such that || p(z")|| < C». Hence, for all z with |z|g large enough,
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181/ 0 i o ya (@) < 2Cs.

Now, 8171 0 iy o 1, (2) = 811 0 in(2) and |81/ 0 in ()|l = t~/P|ligg (2)||. This
gives, with a small abuse of notation (identifying H in L with H inT" C G via iy
lzll = lin @1 < 2C21215""), 0

Lemma 10.4 Let v be a probability measure on H as in (10.3) and let (8;);=0 be an
approximate dilation structure on G = (R? ,j satisfying (10.9). Let v; = t81;,(v)
and let J; be the associated jump kernel from Proposition 4.7 with v in place of
there. The following properties hold:

lim limsup/ Izl13v: (dz) = 0, (10.10)
=0 t—o0 JB(®)
Jim Timsup 1, (B(R)* ) =0. (10.11)

R—00 100

O

To prove this lemma, note that, for any f > 0, f f(2)ius(dz) is dominated by a
constant times

1
CY IO

ze€81;,(I).6,(zx)eH

The two functions f of interest here are

f@ =1 <@zl and  f(z) = Lpryc(2).

The results will follow from the facts that p has the form (10.3) and that §; is
compatible with V:I/a in the sense that (10.9) holds true.

Proof (Proof of (10.11)) Note that

1, (r)(2)
TSP SR
H
z€81/: (D), 8:(zx)eH (I +18:(2)ls)

1 ¢ 1 1/8y¢ (2
_fz 51 (Bo(R))< (2) — Y Bu(RiV/#)e (2)

- (1 + (I + [zlg)ectdn ~ (14 [z]s)etn

<y Lelgzerpnya)® (@)

o+d
Lo (1 [elg)e T

The last inequality makes use of Lemma 10.3 and ¢ = (1/C)%/#. Now, using a
decomposition by the dyadic annulus in H, {x € H : 2k < g < 2Kt s
elementary to verify that, for all R, r > 1, the last sum is bounded
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1 - —ap—
t Z W X[(E(Rﬁt)l/a) =g “R ﬁ
\z|s>§<€ngt>l/‘1

This yields limg—, o sup, = it (B(R)?) = 0. =

Proof (Proof of (10.10)) Using a simple comparison between ||z|| and ||z]2 on a
compact neighborhood of the origin, it suffices to consider

Ly 2
J(n,t) =t 3 (2= @ 1zll5

a+dy
2€81/:(),8, () H (I +18:(@1s)

and show lim,_.olimsup,_, ., J(n,t) = 0. In order to use the dilation structure
v, we represent H as a discrete set in R” which injects into R? via the map
i i R™ — RY. Recall that §; J1oig © yf/a (z)) = p(z) uniformly on compact sets

so that, when IIyt'T_i1 1 (@)]l2 < n and t large enough, we have
. 2
||31/z(lH(Z))||2
=181/1 0ir o ¥ e @I < 21p 2 @13 < 2C11YE 1 @13

because || p(v)|l2 < Ci||v||2 for any v € R™ with ||v||% < n. Also, by (10.7)—(10.8),
IIJ/tfll/azllz < Cpt71/?|z| 5. Hence we obtain

L o< B1/¢ G @181/ (G ()3 < 2C1C2 min{n?, 172/ (2|3}
and

min{n?, =2/% [}
J(n,t) < Cst
D=6 ZH (1 + [zl

2

2
Ui 1-2/a Izl
< Cst E — + C3t E
(1 + |z]s)atdn (A + |z]s)e+d
|zl g>ntl/e lz|s<ntl/e

<cC, (tn2(nt1/a)—a + t1—2/a(nt1/a)2—a> —2C4n> ",

This proves that lim,, ¢ limsup,_, o, J (1, t) = 0 as desired. O
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10.4 Condition (Te) Holds Automatically for Measures in
SM(T)

The careful reader will have notice that the title of this section needs additional
context because, for a measure p in SM(I") (and a coordinate system as discussed
above), we do have an associated approximate group dilation structure (&;);~0 and
a limit group structure G, = (Rd, e), but, in general, the family of measures u;, =
t81/¢(1t) does not converge vaguely on R? \ {0}, and thus, (Te) does not make
immediate sense. There is, however, a simple way to correctly interpret the title of
this section.

Lemma 10.5 For any u € SM(T") and associated approximate group dilation
structure (8;)¢=0 in a coordinate system as above and any vague sub-limit |14 of the
family {i+}r=0 as t tends to infinity, condition (Te) holds true. O

To prove this lemma, it suffices to prove the similar statement for each component
v of the measure u. So, we assume (10.3). Lemma 10.2 shows that any vague sub-
limit v, of v; is supported on L} and is bounded from above and below by multiples
of the measure vy (f) = me F(p)y)du for f € C.(RY \ {0}), where p :
R™ — R4 is defined by (10.9) and ¢ : R™ \ {0} — [0, o0) is given by ¥ (u) =
—a—dyg .
|1+ . We claim that

lim IzlI3vy (dz) =0, (10.12)
1=0 Jiz: |1zl <n)
lim vy (B(R)") = 0. (10.13)
R—00

Proof (Proof of (10.12) and (10.13)) By Lemma 10.2, §;,(p(y)) = p(ytlf/ay). It
follows that

vy (B(R)) = /R Lare (POIY )y = /R L Gae (PO ()
= [ 150 p a0 1y
_ Rinbla /R Ly (PONY (i )y
R—o0

— & [ Laorpopwody o

For the last step, note that p is continuous so that 1(1)c(p(y)) is equal to 0 in a
neighborhood of 0 in R™ and thus me 1y (p(Y)NY¥ (y)dy < 0.
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Similarly, consider I () = f{Z:”Z”q} ||z||%v¢ (dz) and write

1(n) = fR Ly (@) p@) 39 (w)du = fR Ly @y-s (P@D P 139 (w)du
= fR Lpay (P @)1 P@) 139 (0)du
= yuble fR Ly (PO PWhra @DIZY (7, ()
=0’ fR Lpay(Pa)) 18, ()39 (w)du
< /(&) /R Ly (Pl p@) 3w w)du,

where B+ = max{f;} < 2. This integral is finite because 113(1)(p(u))||p(u)||% <

Cllu ||% J(1+|u ||%) and, using “polar coordinates” adapted to the dilation structure
(v/M)i=0 on Hy = R™, %),

leel13 b e
—21ﬁ(u)du <1+ r dr
R 1+ lully 0

because ||u||y < rif ||y1’7ru||2 =1landr <1 (see (10.7)—(10.8)). |

10.5 Sufficient Condition for (A) When u € SM(T)

In this section, we explain why Theorem 10.1 applies to a large class of examples
in SM(I") that includes the two main examples described in Sect.2.3. To give
sufficient conditions for a measure in SM(I") to satisfy condition (A), we proceed
component by component and follow the basic setup of Sect. 10.3. Namely, we give
sufficient conditions on a measure v satisfying (10.3) for the family v, = #81,,(v) to
have a vague limit v, on R \ {0}. Recall that v is supported on a discrete subgroup
H contained as a co-compact closed subgroup in a closed Lie subgroup L of G. The
groups G and H both have a global coordinate system G = R? and L = R™. See
Sect. 10.3. We consider the following additional conditions:

(SA1) There exists an everywhere defined measurable non-negative function ¢ on
R™ such that v(ig (v)) = ¢(v), where iy is the polynomial map from R™
to R? defined by (10.4). For v € R™, v # 0, we set

o/ () ="y (M v). (10.14)
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(SA2) There exists a continuous function ¢ : R \ {0} — [0, co) such that

forany v e R" \ {0}, ¢/ (v) — ¥ ()] < n®)P (v), (10.15)

where lim;_, » 7(t) = 0 and & is locally bounded on R \ {0}.

Remark 10.6 By the construction, the function y» must satisfy
Y () < ol forv e R™\ {0},
and
Yy, ) =177/ @)  forveR™\ {0} and ¢ > 0.

Remark 10.7 Regarding hypothesis (SA1), two typical examples are:

(1) The function ¢ is a continuous function on R” and u is defined in terms of ¢.
For instance, this covers Example 4.6.

(i) The function ¢ may not be continuous but satisfies ¢ (xy) = ¢ (x) forallx € H
and y € Qp, where Qg is a relatively compact connected fundamental domain
for the action of H on Ly = R™ (that is, Qg is a relatively compact connected
subset of Ly sothat Ly = UpcghQpg).

In this second case, we can define the function ¢ in terms of p using the formula
¢(xy) = u(x)forx € Hand y € Qp. O

Example 10.8 Consider the case when p(h) = c(1+ |h|g)’°"d” 14 (h). Following
Remark 10.7(ii) above, we can extend this function defined on H to a function ¢
defined on Ly = R™ by setting ¢ to be constant on the translates of a precompact
fundamental domain. For x € Ly, let X € H be the representative of x so that
i 'x € Qy, ¥ € H. Then,

o () = ™V + ig(v)|s) "%,

and, setting ¥ (v) = Pansu’s theorem (see [15, 52]) gives

JR
a+dp
U]y

¢
iy = ¥ (v).

lim ¢/ (v) =
—>00 |v | %
Furthermore,

—1/a
6 ) =y ()| < CW'
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Proposition 10.9 Under assumptions (SA1)-(SA2), the measure

ve=18"w) s w(f) =t ) FGET @) for f e Co(RY\ {0)

xeH

converges vaguely on R? \ {0} to a symmetric Radon measure vo on R? \ {0} given
by

va(f) = /Hé g odu, [ € Ca®\ (o)),

where p : R" — R4 is defined by (10.9) and ¥ : R \ {0} — [0, o) by (10.15).00

Proof This follows by a sequence of algebraic manipulation and approximations as
follows. We use the notations introduced above and drop the superscript H (if there
is one), in particular, d = dy, o, y; = y,H, o, ¢ = ¢,H, v, i =ig : R" —» R4,
and the norm | - |, on L. For any f € C, (R4 \ {0}), we have the scaled down copy
of H in R"

v(f) =1y fET W@ =t Y f6 W))W

xeH uei~1(H)

—d/a Z f(a;l o1 o Y/ (u))d:(u)

UEY,—1/a (i~1(H))

=l Y FE i oy )y ()

UEY,—1/a (i~1(H))

e S f6 o o e ) (@) — Y(w))

UEY,~1/a (i~1(H))

=y @)Y W

u€y,—1/q (i~1(H)

e S (67 0 o v ) — f(paO)Y ()

UEY,—1/a (i~ (H))

+e Y F(p) (W) — )

ey, 1/ (i~ (H))

el N (F 6T i o ) = F(p))) (¢ () — Y (u))

ey, 1/q (i~\(H))

=Xi(f, )+ Za(f. 1) + Z3(f, ) + Za(f, 1).
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Now, the multivariate Riemann sum X (f, ¢) of the continuous function f o p x
satisfies lim; o0 21(f, 1) = me f(p(u))¥ (u)du because, for any large real R,

i(fyr) =174 > F @)y )

UEY, ~1/a (i~ (H)):lulv <R

+ /e > Fp@)¥ ).

U€y,~1/a (=1(H));lulx>R

The first term tends to f‘ WL <R f(puw))y(u), whereas the second term is bounded

by CR™* because ¥ (1) < |u|;°‘7d”. Similarly, f|u|*>R Y (u)du < CR™ and this
proves the stated limit for X1 (f, ¢). Using our various hypotheses regarding 1, the
limits for X, (f, 1), 23(f, t), and Z4(f, t) are easily seen to be equal to 0. |

10.6 The Illustrative Case of Measures in SM;(I')

The simplest case illustrating the previous section is related to the treatment of
measures in SM; (I") when the building blocks have the form

v(g) =co Y (14 kD™ L (g)

keZ

forsome o0 € I' C G, thatis, H = (o) C I' C G. Here, of course, dg = 1. We
use exponential coordinates of the first kind. Recall that the element o € H is of
the form o = exp(¢) = ¢ forsome ¢ = (¢1, ..., {q) € g = R?. This is because the
exponential map is the identity in our setup. Define the function ¢ : V — [0, 00)
by ¢(x) = co(1 + |s)7 if x = s¢ and ¢(x) = 0 otherwise so that v(f) =
Zye{ak:kez} FMP(y). Set ¢y (x) = ca(t_l/“ + |s|)_°‘_l if x = s¢ and O otherwise
so that ¢ (11/%sz) = t=171/%¢, (s7). We also set ¥/ (s¢) = cols| =%~ for s # 0 and
Y(y)=0ify ¢ {s¢ : s € R} so that, for each s # 0,

' — @V 4 spte
(=1 ||y e s | e

— 0 ast— oo.

D1 (z8) — Y (s¢) = ¢q

Assume, in addition, that we are given an approximate dilation structure §; which
can be expressed as §;(x) = (t"'xy,...,1t"4xy) in the basis of R?. We want to
understand the limit of 7§, '(v) which is given on a continuous function f with
compact support in V \ {0} by

7w =1 D pGONSG)

y=8;"(k¢):keZ
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=t Y TSN )

y=5"'(k¢):keZ

LD DR IO VACA A )

y=t=VekrkeZ

Now we need to consider different cases depending on how &, acts on ¢. Indeed,
8,_1 (tV/esry = (¢V/oe—wi {,-)f. In order to have a vague limit, we need to assume that,

foreveryi € {1, ...,d} suchthat {; # 0, w; > 1/«. If that is the case, then

G ifw; =1/,

R D _ o(roond 00 _ —
tl_l)rgoé, (t7%(s8)) = s(5;7)]  with g; _p(g)_{o otherwise.

Under this assumption (i.e., the approximate dilation structure (§;);~0 is admissible
for w), we write

87t =7V YT g6 )

y=t—Vekr:keZ

e Y faVkp@))

= Ca Ta iyt
y=t—V/ks kel t k1)
fea Y [f @k * @))) = £ kp )]
’ y=t—Veks kel (t_l/a|k|)1+°‘

A S A iy = e (A (oM A G ZO B A Gl FOV B

y=t—1/k¢ kel

Because f is a compactly supported continuous function in V \ {0}, the second and
third sums tend to 0, while the first sum tends to

/R cals| 1 f (sp(¢))ds = /];@ W (s5) f (sp(£))ds.



Appendix A
Nilpotent Groups

A.1 Definition of Nilpotent Groups

In Chap. 1, we gave the classical definition of a nilpotent group and we recall it here.

Definition A.1 A nilpotent group is a group G with identity element e which has a
central series of finite length, that is, there is a finite sequence of normal subgroups
so that

fe}=Ko<K1<---<K, =G

with K;y1/K; contained in the center of G/K; for 0 <i < n — 1. See, for example,
[21, Definition 2.3]. [l

An alternative definition of nilpotent group uses commutators. For two elements
x and y of a group G, the commutator of x and y is [x, y] := x~'y~!xy. For two
subsets A and B of G, [A, B] denotes the group generated by all commutators [a, b]
fora € Aand b € B. See [21, Lemma 1.4] for a collection of commutator identities.
The lower central series of a group G is defined inductively by setting G; = G and
Gi+1 =[G, G;] fori > 1. It is a non-increasing sequence of subgroups of G. A
group is nilpotent if and only if its lower central series terminates, that is, there is an
integer r > 1 such that G; = {e}, for alli > r + 1. The smallest such r is called the

nilpotent class of the group G.

Example A.2 In the Heisenberg group of 3 by 3 upper-triangular matrices with
diagonal entries equal to 1, any commutator of length 3, [M1, [M>, M3]], is the
identity and there are elements that do not commute. Hence the Heisenberg group is
nilpotent of class 2. This applies to either the discrete Heisenberg group Hj3(Z) with
integer matrix entries or the real Heisenberg group H3(R) with real matrix entries.

O
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130 A Nilpotent Groups
A.2 Definition of Nilpotent Lie Groups and Lie Algebras

We refer the reader to [22, Sections 1.1 and 1.2] for a short introduction to
nilpotent Lie algebra and connected nilpotent Lie groups. In the case of a Lie
algebra (g, [-, -]), the bracket [-, -] is the key structural operation and the descending
lower central series is defined inductively by g1 = ¢ and g;+1 = [g,g;] for
i > 1. The Lie algebra is said to be nilpotent if there is an integer » > 0 so
that g,+1 = {0}. The smallest such r is the nilpotent class of g. A connected
Lie group is nilpotent according to Definition A.1 if and only if its Lie algebra is
nilpotent. Any simply connected nilpotent Lie group of topological dimension d can
be identified via the exponential map with R equipped with a group law given in
coordinate by polynomial functions. See, e.g., [22, Theorem 1.2.1]. The Campbell-
Baker-Hausdorff formula (e.g., [22, Page 11]) expresses the group product in this
coordinate system.

A.3 Embeddings into Lie Groups

Consider the following two natural questions. When can one embed a finitely
generated torsion-free nilpotent group I' as a co-compact subgroup into a nilpotent
Lie group G? Which connected simply connected nilpotent Lie group contains a
co-compact finitely generated subgroup?

The first question is answered by constructions due to Malcev and P. Hall which
provide such embeddings for any finitely generated torsion-free nilpotent group.
This is the subject of [21, Chapter 4]. This result is used in this monograph, both
as a black box, to embed I as a co-compact subgroup into a nilpotent Lie group G,
and, more concretely, when we construct coordinate systems.

The answer to the second question is negative (there are connected simply
connected nilpotent Lie groups that do not admit co-compact discrete subgroups).
See, e.g., [22, Theorem 5.1.8 and Example 5.1.13]. This result is not needed for the
purpose of this monograph.

A.4 Volume Growth

A finitely generated group I' is naturally equipped with the family of all word
distances. A word distance is associated with a finite symmetric generating set S
(symmetric means that g_l € Sif g € S). The length |g|s of an element g is the
least number m of elements in S that allow to write g as a product g = o1 ...0p
using elements o; from S. By convention, |e|s = 0. The associated left-invariant
distance is ds(g, h) = | g_lhl s. Given two finite symmetric generating sets S and
T, there are positive constants a = a(S, T) and A = A(S, T) such that
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algls < Iglr < Algls forallg e T.
The volume growth of I" with respect to S is
Vs(t) =#{g eI :[gls =1},

the number of points in any closed balls of radius m in (I, dg(-, -)). If S and T are
two generating sets as above, then there are positive constants b = b(S, T) and
B = B(S, T) such that

bVs(bt) < Vr(m) < BVg(Bt) forallt > 0.

In the case of a finitely generated nilpotent group I" of nilpotent class 7, the behavior
of the volume growth function Vg can be understood in terms of the lower central
series 'y = I', T4 = [I', [';] for i > 1 as follows. The quotient groups I'; / [y
are finitely generated abelian groups. As any such group, the quotient I'; / ['; 41 is
the product of a finite abelian group and Z% for some integer £; = rank(I';/ T'j;1)
which is called the torsion-free rank of this abelian group. Set

D=D®T) = erank(Fi/FiH). (A.1)
j=I

Then there are constants ¢ = C(S) and C = C(S) such that
cQ+nP <vs(r) <CcA+nP foralls > 0. (A.2)

See, e.g., [25, Theorem VII.C.26] for references and comments on this result.

If the nilpotent I' above is a discrete co-compact subgroup of a connected Lie
group G, then, for any fixed left-invariant Riemannian metric on G, the Haar
measure |B(r)| of the ball of radius  around the identity element e satisfies

car? <|Br)| < Cir? forallr > 1,

where D = D(I") is as in (A.1). The positive constants ¢; and C; depend on the
choice of the Riemannian metric.

Example A.3 The Heisenberg group Hj3(Z) is a co-compact subgroup of Hjz(R).
The elements of H3(Z) with at most one non-zero non-diagonal entry in the top-
right corner are the center of H3(Z) and the commutator subgroup [H3(Z), H3(Z)].
It follows that the parameter D = D(Hj3(Z)) is equal to 2 + 1 x 2 = 4.
Any left-invariant Riemannian metric on Hj3(R) has large-scale volume growth
of type r*.
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