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Preface 

The celebrated limit theorem of DeMoivre and Laplace concerns the convergence 
of the law of simple random walk on the integers, properly rescaled, to Gauss law. 
It serves as the starting point of many of probability theory’s most important devel-
opments. In 1963, Ulf Grenander published a little book [31] titled Probabilities on 
Algebraic Structures, which, among other things, spelled out the natural problem of 
extending basic limit theorems to the case when addition of numbers is replaced by 
a more general group law. When taken literally, such extensions face several major 
difficulties that are easy to explain. 

The most natural extensions of simple random on the integers are random walks 
on countable groups (in particular, finitely generated groups). On the one hand, 
the classical limit theorems of probability theory are based on the fact that proper 
rescaling allows us to approximate the real axis (or Euclidean space of dimension 
d) by finer and finer embeddings of the integers (or the square lattice of dimension 
d). On the other hand, it is relatively rare that a finitely generated group embeds 
into a Lie group, and even rarer that such an embedding can be done at smaller 
and smaller scales. Indeed, limits obtained through “rescaling” typically inherit 
an invariance property under the considered rescaling and this applies to both the 
underlying limit space and the limit stochastic process. Very few connected Lie 
groups admit rescaling structures of any sort as only certain nilpotent groups do 
(see, e.g., Theorem 2.1.2 in [36]). 

Triangular arrays provide an ingenious way to state results that contain classical 
limit theorems on abelian groups as special cases and circumvent the difficulties just 
explained. The tread-off is that such results are not directly applicable to the study of 
random walks on finitely generated groups unless one finds a way to “rescale” those 
random walks into a proper triangular array, which bring us back to the previous 
difficulties. 

The most basic example of a non-abelian discrete random walk for which limit 
theorems through rescaling have been obtained is simple random walk on the 
Heisenberg group .H3(Z) of 3 by 3 upper triangular matrices with diagonal entries 
equal to 1. This group is generated by the four matrices

v
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The (lazy) simple random walk on this group (associated with the symmetric 
generating set .S = {e, s±1

1 , s±1
2 } where e stands for the identity matrix) is driven 

by the probability measure 

. μ = 1

5
1S.

If .(ξi)
∞
1 is an i.i.d. sequence of matrices distributed according to . μ, then, at time n, 

the position of this random walk started at the identity is the matrix .ξ1ξ2 . . . ξn. 
What makes it easy to state limit theorems in this case is the combination of the 

following two facts: 

1. The discrete Heisenberg group .H3(Z) embeds as a subgroup of the real Heisen-
berg group .H3(R); 

2. The maps 
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form a group of group automorphisms of .H3(R). 

Sophisticated versions of the classical limit theorems for this example follow 
functional limit theorem, local limit theorem, and Edgeworth expansions; see 
[3, 14, 23, 38, 51, 53, 54] and the references therein. Some of these works treat 
random walks of finite range or having finite moments of high order on finitely 
generated nilpotent groups in much greater generality and involve the consideration 
of more complicated scaling mechanisms. 

This monograph is concerned with the extensions of these ideas in the context 
of stable-like random walks. The simplest family of examples of such walks on the 
Heisenberg group .H3(Z) is obtained by considering the measures 

.μα = 1

3

3Σ
1=1

Σ
k∈Z

cαi

(1 + |k|)1+αi
1sk

i
with α = (α1, α2, α3) ∈ (0, 2)3.



Preface vii

In words, the walk associated with one of these measures on .H3(Z) takes random 
long-range steps along each of the one-dimensional subgroups of .H3(Z) associated 
with the matrices .s1, s2, s3. In the direction of . si , these random long-range steps 
are stable-like with index .αi ∈ (0, 2). Obviously, the rescaling mechanism used 
to study such a walk must be properly adapted to its structural parameters (i.e., to 
.α = (α1, α2, α3)). One interesting phenomenon is that the limit group structure 
supporting the corresponding limit process also depends on these parameters. 
Namely, in this case, it is .H3(R) when .1/α1 + 1/α2 ≤ 1/α3 and it is . R3 otherwise. 

The aim of the authors is to develop limit theorems for stable-like random walks 
in the context of torsion-free finitely generated nilpotent groups, theorems that 
naturally cover these examples and many others. 
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Chapter 1 
Setting the Stage 

The aim of this work is to present limit theorems (of both functional and local types) 
for certain long-jump random walks on nilpotent groups. Recall that a nilpotent 
group is a group G with identity element e that has a central series of finite length, 
that is, there is a finite sequence of normal subgroups so that 

. {e} = K0 ◁ K1 ◁ · · · ◁ Kn = G

with .Ki+1/Ki contained in the center of .G/Ki for .0 ≤ i ≤ n−1. See the Appendix 
for a very brief introduction to nilpotent groups. 

Before we explain our particular setup and the tools and techniques that we will 
use, we attempt to put this research in perspective by discussing a small selection 
of related results concerning random walks and limit theorems in finite-dimensional 
vector spaces (i.e., the torsion-free abelian case) and applications of these classical 
results to the simplest example of non-abelian nilpotent groups, the (discrete and 
continuous) Heisenberg groups .H3(Z) ⊆ H3(R). 

The “limit theorems” that concern us always have three key ingredients: The first 
ingredient is a discrete random walk .S = {Sn; n = 1, 2, . . .} on a group G with 
independent identically distributed (i.i.d. in short) increments distributed according 
to a probability measure . μ. The second ingredient is a method of renormalization 
via some sort of “dilations” acting on the underlying space G. We remain vague 
here on purpose. The third ingredient is a continuous time process that appears in 
the limit, call it Z. Hopefully, Z has properties that make it relatively easy to study 
although this entire story can also be viewed as a way to understand Z in terms of 
the more elementary process S. The following fundamental questions arise: 

1. What is the nature of those limiting processes Z that may appear through such a 
scheme? 

2. Given a limit process Z, what are all the one-step increment probability distribu-
tions . μ whose associated random walk converges to Z after renormalization? 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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2 1 Setting the Stage

3. Given a one-step increment probability distribution, how to find a renormaliza-
tion procedure that leads to an interesting non-trivial limit process Z, if any  
exists? 

1.1 Review of Some Abelian Results 

In this chapter, we discuss some aspects of these vaguely stated questions in the 
context of finite-dimensional vector spaces where detailed answers to the first two 
questions are well known and understood. The answer to the first question involves 
the notions of infinitely divisible probability distribution and Lévy process and the 
additional notion of operator stability which relates directly to the “normalization 
procedure” that allows us to pass from S to Z. See, e.g., [26, Chapter 6], [36, 
Section 1.6], and [48, Chapter 8]. The second question concerns the “domain of 
operator-attraction” of the limit Z and falls outside the scope of our interest. The 
third question is not easily answered in general (see [32]), but it plays an important 
role in the results we develop in this work for nilpotent groups. Indeed, for the 
particular class of examples we treat on nilpotent groups, a key step consists in 
identifying appropriate renormalization procedures. 

Recall that an .Rd -valued random variable Y (or its probability distribution) is 
said to be infinitely divisible if, for each integer .n ≥ 1, there are i.i.d. .Rd -valued 
random variables .{X1, . . . , Xn} such that .Σn

k=1 Xk has the same distribution as Y . 
It is well known (see, e.g., [12, 39, 48, 57]) that the distribution of Y is infinitely 
divisible if and only if it is the distribution at time 1 of a Lévy process . Z = {Zt ; t ≥
0} with .Z0 = 0. An infinitely divisible probability is uniquely characterized by the 
Lévy exponent . φ of its characteristic function .φ(λ) := − logE

┌
eiλ·Y ┐

,which takes 
the following form. There are a symmetric non-negative definite constant matrix 
.A = (aij )1≤i,j≤d , a constant vector .b = (b1, . . . , bd), and a non-negative Borel 
measure . ν on .R

d \ {0} satisfying .
∫
Rd (1 ∧ |z|2)ν(dz) < ∞ so that 

.φ(λ) = 1

2

dΣ
i,j=1

aijλiλj +
dΣ

i=1

biλi +
∫
Rd

⎛ 
1 − eiλ·z + iλ · z1{|z|≤1}

⎞
ν(dz) (1.1) 

for any .λ = (λ1, . . . , λd) ∈ R
d . The triplet .(A, b, ν) and the measure . ν are called 

the Lévy triplet and the Lévy measure of the infinitely divisible distribution of Y , 
respectively. They are uniquely determined by Y and vice versa. See, e.g., [36, 
1.3.2]. The expression (1.1) is called the Lévy-Khintchine formula for the infinitely 
divisible distribution of Y . We say the random variable Y has no Gaussian part if 
.A = 0. Clearly, if the distribution of Y is symmetric, that is, .−Y has the same 
distribution as Y , then .b = 0 and the Lévy measure . ν is symmetric. We say that 
an .Rd -valued random variable X is full if there is no non-zero .λ ∈ R

d so that 
.λ · X is a constant, that is, if the distribution of X is not supported on a .(d − 1)-
dimensional affine subspace of . Rd . An infinite divisible probability distribution
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having no Gaussian part is full if and only if its Lévy measure . ν is not supported on a 
.d − 1 dimensional linear subspace of . Rd ; see  [48, Proposition 3.1.20]. In this work, 
we are interested in results involving limits that are symmetric with no Gaussian 
part (symmetric random walks with jumps having heavy tails). 

We start with the following elegant result. Let .S = {Sn; n ≥ 0} be a random walk 
in . Zd with i.i.d. steps .{ξk; k ≥ 1} having distribution . μ. That is, 

.P(ξk = (j1, . . . , jd)) = μ((j1, . . . , jd)) for (j1, . . . , jd) ∈ Z
d , (1.2) 

and . Sn = ξ1 + · · · + ξn.

Proposition 1.1 ([48, Corollary 8.2.12]) Let . η be a full infinitely divisible 
probability distribution on . Rd with no Gaussian part and Lévy measure . ν. Let 
.{Sn; n ≥ 0} be a random walk in . Rd driven by a probability measure . μ as above. 

There are linear operators .An : R
d → R

d and vectors .bn ∈ R
d such that 

.AnSn + bn converges in distribution to . η if and only if 

.nμ ◦ A−1
n converges vaguely to ν on R

d \ {0}. (1.3) 

In this case, .limn→∞ ‖An‖ = 0.. □
Here, .μ ◦ A−1

n is the probability measure on . Rd defined by 

. μ ◦ A−1
n (B) = μ({x ∈ R

d : Anx ∈ B}) for every B ∈ B(Rd).

Denote by .Cc(R
d \ {0}) the space of continuous functions on .R

d \ {0} with compact 
support. Then (1.3) means that 

. lim
n→∞ n

∫
Rd

f (Anx)μ(dx) =
∫
Rd

f (x)ν(dx) for any f ∈ Cc(R
d \ {0}), (1.4) 

Note that from the Lévy-Khintchine formula (1.1), two infinitely divisible random 
variables without Gaussian components and having the same Lévy measure . ν can 
only differ by a constant vector. 

If (1.3) holds, we say the Lévy measure . ν is operator-stable (see below) and the 
measure . μ (or equivalently . ξ1) belongs to the generalized domain of attraction of . η

(or . ν, by abuse of language). The matrix . An is automatically invertible for all large 
n. See [48, Lemma 3.3.25]. 

Remark 1.2 Suppose (1.3) holds with the Lévy measure . ν not supported in a .(d −
1)-dimensional vector subspace and . μ being symmetric (that is, .μ(A) = μ(−A)). 

(i) The vector . bn in Proposition 1.1 can be taken to be the zero vector in . Rd and the 
limiting distribution . η is symmetric. This is because in this case, . {Sn; n ∈ N}
has the same distribution as .{−Sn; n ∈ N}, and so, .{AnSn − bn; n ∈ N} has the 
same distribution as .{−(AnSn + bn); n ∈ N}. Consequently, . {AnSn − bn; n ∈
N} also converges weakly. It then follows from the characterization of weak



4 1 Setting the Stage

convergence that .{AnSn; n ∈ N} converges weakly to a symmetric random 
variable . η. 

(ii) By [48, Theorem 8.1.5] and its proof, there is a sequence of invertible . d × d

matrices .(Mn)n≥1 that keeps the distribution of . η invariant (that is, .Mnη has 
the same distribution as . η for each .n ≥ 1) and a .d × d-matrix E with real 
entries such that .~An := MnAn satisfies 

. lim
n→∞

~A[λn] ~A−1
n = λE for all λ > 0, (1.5) 

and .~AnSn converges in distribution to . η as .n → ∞. Here, . [a] stands for the 
largest integer not exceeding the real a. 

Using the independent stationary increments property of random walks, 
we can easily deduce from Proposition 1.1that both .{AnS[nt]; t ≥ 0} and 
.{~AnS[nt]; t ≥ 0} converge in finite-dimensional distributions to the symmetric 
Lévy process .Z = {Zt ; t ≥ 0} with . Z1 having the same distribution as . η; see  
the proof of Proposition 1.3. Furthermore, Z has the following scaling property 
by (1.5): for any .λ > 0, 

. {Zλt ; t ≥ 0} has the same distribution as λEZ = {λEZt ; t ≥ 0}.

See [48, Example 11.2.18] and [49, p.625]. For this reason, the Lévy process 
Z is called an operator-stable process (or operator-Lévy motion) and its Lévy 
measure, . ν, is also said to be operator-stable in the literature. If .E = α−1Id×d , 
where .Id×d denotes the .d × d identity matrix, .λE = λ1/αId×d . In this case, Z 
is an .α-stable Lévy process on . Rd . 

(iii) The matrices .{An; n ∈ N} and the limiting Lévy measure . ν in (1.3) are 
not unique. Suppose (1.3) holds. Then for any non-degenerate matrix M , we  
clearly have that .nμ ◦ (MAn)

−1 converges vaguely to .ν ◦ M−1 on .Rd \ {0}. 
Thus . ν depends not only on . μ but also on the “dilation structure” . An. 

. □
Denote by .D([0,∞);Rd) the space of right continuous .Rd -valued functions 

on .[0,∞) having left limits. We refer the reader to [28] for the definition of .J1-
topology on the Skorohod space .D([0,∞);Rd). 

Proposition 1.3 Suppose that the one-step distribution . μ of the random walk 
.{Sn; n = 0, 1, 2, . . .} is symmetric and satisfies condition (1.3). Let . η be an infinitely 
divisible symmetric probability distribution with no Gaussian component and Lévy 
measure . ν. Let .Z = {Zt ; t ≥ 0} be the symmetric Lévy process on . Rd so that . Z1
has distribution . η. Then .{AnS[nt]; t ≥ 0} converges weakly in the Skorohod space 
.D([0,∞);Rd) equipped with .J1-topology to the Lévy process Z as .n → ∞.. □
Proof Let .~An = MnAn be defined as in Remark 1.2(ii), where .(Mn)n≥1 is a 
sequence of invertible matrices that keeps the distribution of . η invariant. We know 
from [49, Theorem 4.1] that .{~AnS[nt]; t ≥ 0} converges weakly in the Skorohod
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space .D([0,∞);Rd) equipped with .J1-topology to Z as .n → ∞. By [48, 
Theorem 3.2.10], .(Mn)n≥1 is relatively compact in the spaces of invertible .d × d-
matrices. Thus for any subsequence of .(n)n≥1, there is a sub-subsequence . (n')n'≥1
so that .Mn' converges to a non-degenerate .d × d-matrix M that also keeps the 
distribution of . η and hence its Lévy measure . ν invariant. Note that . An = M−1

n
~An

and the Lévy process .M−1Z is of the same distribution as that of Z. It follows that 
.{An'S[n't]; t ≥ 0} converges weakly in the Skorohod space .D([0,∞);Rd) equipped 
with .J1-topology to . Z as .n' → ∞. Since this holds for any subsequence of .(n)n≥1, 
we conclude that .{AnS[nt]; t ≥ 0} converges weakly to Z as .n → ∞. ⨅⨆

The two propositions above and the accompanying remarks tell us that if we 
expect that a given symmetric measure . μ on . Zd drives a random walk whose 
functional limit process .Z = {Zt ; t ≥ 0} has no Gaussian part and Lévy measure . ν, 
we should concentrate on finding the sequence of invertible matrices . An such that 
(1.3) holds. Indeed, that property is necessary and sufficient for the desired limit 
theorems to hold. 

1.2 Illustrative Examples on Nilpotent Matrix Groups 

In this section, we describe some illustrative examples. Let us emphasize that, 
although one can easily formulate versions of Proposition 1.1 in the context of 
certain nilpotent groups, it is not known if such generalizations hold true. In a similar 
vein, in . Rd , a full operator-stable Lévy process always admits a smooth density, 
whereas in the context of nilpotent group, it is not known if a full operator-stable 
Lévy process always has a density. For details on how to formulate these questions 
more precisely on nilpotent groups, see [36, Chapter 2]. 

Example 1.4 In this example, we consider a random walk on . Z3 with i.i.d. steps 
.{ξk; k ≥ 1} distributed according to the probability measure . μ concentrated along 
the coordinate axes of . Z3 given by 

. μ((i1, i2, i3)) = κ1

(1 + |i1|)1+α1
1{i2=i3=0} + κ2

(1 + |i2|)1+α2
1{i1=i3=0}

+ κ3

(1 + |i3|)1+α3
1{i1=i2=0} for (i1, i2, i3) ∈ Z

3 \ {0}.

We assume .αi ∈ (0, 2), .i = 1, 2, 3. Let  .An =
⎛
⎝

n−1/α1 0 0
0 n−1/α2 0
0 0 n−1/α3

⎞
⎠. It is easy 

to check that 

.nμ ◦ A−1
n converges vaguely to ν on R

3 \ {0},
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where 

. ν(dx) =
3Σ

i=1

κi

|xi |1+αi
dxi ⊗j∈{1,2,3}\{i} δ{0}(dxj ).

Here .δ{0} is the Dirac measure concentrated at 0. Since . μ is symmetric, by Propo-
sition 1.1 and Remark 1.2(i), .AnSn converges weakly to a random vector whose 
distribution is symmetric infinite divisible with no Gaussian part and Lévy measure 
. ν. By Proposition 1.3, .{AnS[nt]; t ≥ 0} converges weakly in the Skorohod space 
.D([0,∞);R3) equipped with .J1-topology to the purely discontinuous symmetric 
Lévy process .Z = {Zt ; t ≥ 0} having . ν as its Lévy measure. Note that the 
coordinate processes of .Z = (Z(i))31 are independent with .Z(i) being a one-
dimensional symmetric .αi-stable process, .1 ≤ i ≤ 3. 

As pointed out earlier in Remark 1.2(iii), it is worth noting that the choice of . An

above is not unique even though it seems most natural in this example. To simplify 
the discussion, assume that .α1 < α2 < α3. Let  .(e1, e2, e3) be the canonical basis 
of . R3 used implicitly above. Construct a linear operator . Bn as follows. First, set 
.Bne1 = n−1/α1e1. Second, pick an arbitrary vector . e'

2 which is linearly independent 
from . e1 and belongs to the plane spanned by . e1 and . e2, and set .Bne

'
2 = n−1/α2e'

2. 
Finally, pick an arbitrary non-zero vector . e'

3 that does not belong to the plane 
spanned by . e1 and . e2, and set .Bne

'
3 = n−1/α3e'

3. Then .nμ ◦ B−1
n converges vaguely 

to a Lévy measure . ν' having essentially the same form as . ν but carried by the axes 
associated with .e1, e

'
2, e

'
3. More precisely, 

. ν'(dx) =
3Σ

i=1

ci

|x'
i |1+αi

dx'
i ⊗j∈{1,2,3}\{i} δ{0}(dx'

j ),

where .(x'
1, x

'
2, x

'
3) is the coordinate of .x ∈ R

3 under the coordinate system 
.(e1, e

'
2, e

'
3). Note that the Lévy measure . ν' is thus a linear transformation of . ν. 

Example 1.5 (Random Walk on the Heisenberg Group .H3(Z)) 
Recall that the discrete Heisenberg group .H3(Z) is the family of upper triangle 

matrices of the form .

⎛
⎝
1 x z

0 1 y

0 0 1

⎞
⎠, with .x, y, z ∈ Z, equipped with matrix multiplica-

tion; that is, 

.

⎛
⎝
1 x1 z1

0 1 y1

0 0 1

⎞
⎠ ·

⎛
⎝
1 x2 z2

0 1 y2

0 0 1

⎞
⎠ =

⎛
⎝
1 x1 + x2 z1 + z2 + x1y2

0 1 y1 + y2

0 0 1

⎞
⎠ .
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For .a =
⎛
⎝
1 x z

0 1 y

0 0 1

⎞
⎠, its inverse .a−1 is .

⎛
⎝
1 −x xy − z

0 1 −y

0 0 1

⎞
⎠. If we identify matrix a 

with .(x, y, z), then the discrete Heisenberg group .H3(Z) can be identified with . Z3

equipped with the group multiplication 

.(x1, y1, z1) · (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + x1y2). (1.6) 

We will use this realization of .H3(Z). This is one of the simplest examples of a 
non-abelian nilpotent group. 

Let .e1 = (1, 0, 0), .e2 = (0, 1, 0), and .e3 = (0, 0, 1), which are generators of 
.H3(Z). Note that for .k ∈ Z \ {0}, .ek

1 = (k, 0, 0), .ek
2 = (0, k, 0), and .ek

3 = (0, 0, k). 
Let .αk ∈ (0, 2) be a constant, .1 ≤ k ≤ 3, and write .α = (α1, α2, α3). Consider the 
following probability measure on .H3(Z) = Z

3: 

. μα(g) =
3Σ

i=1

Σ
n∈Z

κi

(1 + |n|)1+αi
1{en

i }(g), g ∈ H3(Z),

where . κj , .1≤j ≤3, are appropriate positive constants. Let . 
⎛ 
ξk =(ξ

(1)
k , ξ

(2)
k , ξ

(3)
k )

⎞
k≥1

be an i.i.d. sequence of random variables taking values in .H3(Z) of distribution . μα . 
Then .Sn = S0 · ξ1 · . . . · ξn, n ≥ 1, defines a random walk on the Heisenberg 
group .H3(Z). Write . Sn as .(Xn, Yn, Zn). By  (1.6), 

.Xn+1 = Xn+ξ
(1)
n+1, Yn+1 = Yn+ξ

(2)
n+1, Zn+1 = Zn+ξ

(3)
n+1+Xnξ

(2)
n+1. (1.7) 

If we define .Ẑn = Z0 + Σn
k=1 ξ

(3)
k , then 

.Zn = Ẑn +
nΣ

k=1

Xk−1ξ
(2)
k = Ẑn +

nΣ
k=1

Xk−1(Yk − Yk−1), n ≥ 1. (1.8) 

We know from Example 1.4 that 

. 

{ ⎛ 
n−1/α1X[nt], n−1/α2Y[nt], n−1/α3Ẑ[nt],

⎞
; t ≥ 0

}
=⇒ {(X̄t , Ȳt , Z̄t ), t ≥ 0}

(1.9) 

weakly in the Skorohod space .D([0,∞),R3) equipped with .J1-topology as . n →
∞, where . X̄, . Ȳ , and . Z̄ are symmetric .α1-, .α2-, and .α3-stable processes on . R, 
respectively, and they are independent. For simplicity, let 

.~Xn
t := n−1/α1X[nt], ~Yn

t := n−1/α2Y[nt] and ~Zn
t := n−1/α2Ẑ[nt].
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Now, we can use the following key facts. Lévy processes are semimartingales, so 
stochastic integrals such as Lévy area .

∫ t

0 X̄s−dȲs are well defined. Furthermore, [45, 

Theorem 7.10] shows that .
{⎛ ~Xn

t , ~Yn
t , ~Zn

t ,
∫ t

0
~Xn

s−d~Yn
s

⎞
; t ≥ 0

}
converges weakly 

in the Skorohod space .D([0,∞);R4) equipped with .J1-topology as .n → ∞ to 

.

{⎛
X̄t , Ȳt , Z̄t ,

∫ t

0
X̄s−dȲs

⎞
; t ≥ 0

}
. (1.10) 

Indeed, to prove (1.10), for any .δ > 0, let .hδ(r) = (1 − δ/r)+. Define 

. ~Xn,δ
t = ~Xn

t −
Σ
0<s≤t

hδ(|Δ~Xn
s |)Δ~Xn

s and ~Yn,δ
t = ~Yn

t −
Σ
0<s≤t

hδ(|Δ~Yn
s |)Δ~Yn

s .

One can define .~Zn,δ in a similar way. Observe that .~Xn,δ , .~Yn,δ , and .~Zn,δ are again 
symmetric random walks but with i.i.d. step sizes 

. 

{⎛ 
1 − hδ(n

−1/αj n−1/αj ξ
(j)
k )

⎞
n−1/αj ξ

(j)
k ; k ≥ 1

}
for j = 1, 2, 3,

respectively. Let .[~Xn,δ], .[~Yn,δ], and .[~Zn,δ] denote the quadratic variation processes 
of the square-integrable martingales .~Xn,δ , .~Yn,δ , and .~Zn,δ , respectively. Note that 

. E
(┌~Xn,δ

┐
t

) = [nt]E
┌⎛ 

1 − hδ(n
−1/α1ξ

(1)
1 )

⎞2 ⎛ 
n−1/α1ξ

(1)
1

⎞2┐

≤ c1κ1n
−2/α1 [nt]

⎛
⎝

[n1/α1 δ]Σ
k=1

k2

(1 + k)1+α1
+

∞Σ

[n1/α1 δ]+1

n2/α1δ2

k2

k2

(1 + k)1+α1

⎞
⎠

≤ c1κ1n
−2/α1 [nt]

⎛ [n1/α1δ]2−α1

2 − α1
+ n2/α1δ2

α1(1 + [n1/α1δ])α1
⎞

≤ c1κ1n
1−2/α1 t

⎛
(n1/α1δ)2−α1

2 − α1
+ n2/α1δ2

α1(n1/α1δ)α1

⎞

= 2c1κ1δ2−α1

α1(2 − α1)
t,

where .c1 > 0 is a constant independent of n and . δ. In the same way, there is a 
constant .ck > 0, .k = 2, 3, independent of n and . δ so that 

. E
(┌~Yn,δ

┐
t

) ≤ 2c2κ2δ2−α2

α2(2 − α2)
t and E

(┌~Zn,δ
┐
t

) ≤ 2c3κ3δ2−α3

α3(2 − α3)
t

for all .n ≥ 1 and .t > 0. So these three sequences of square-integrable 
martingales .{~Xn; n ≥ 1}, .{~Yn; n ≥ 1}, and .{~Zn; n ≥ 1} have uniformly controlled
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variations in the sense of [45, Definition 7.5]. Thus by taking .(~Xn
t , 0) and . (~Yn, ~Zn)

for the vector-valued process .Hn and .Xn in [45, Theorem 7.10], we conclude 
.{(~Xn

t , ~Yn
t , ~Zn

t ,
∫ t

0
~Xn

s−d~Yn
s ); t ≥ 0} converges weakly in the Skorohod space 

.D([0,∞);R4) equipped with .J1-topology to .{(X̄t , Ȳt , Z̄t ,
∫ t

0 X̄s−dȲs); t ≥ 0}. 
This proves the claim (1.10). 

Using the almost sure Skorohod representation theorem, we can assume without 

loss of generality that .
{⎛ ~Xn

t , ~Yn
t , ~Zn,

∫ t

0
~Xn

s−d~Yn
s

⎞
; t ≥ 0

}
converges a.s. in the 

Skorohod space .D([0,∞);R4) as .n → ∞ to . 
{⎛ 

X̄t , Ȳt , Z̄t ,
∫ t

0 X̄s−dȲs

⎞
; t ≥ 0

}
.

Consequently, we have the following conclusions. The weak convergence below 
(denoted by . =⇒) is in the Skorohod space .D([0,∞);R3) equipped with .J1-
topology. 

(i) If .1/α3 < 1/α1 + 1/α2, 

. 

{ ⎛ 
n−1/α1X[nt], n−1/α2Y[nt], n−1/α1−1/α2Z[nt]

⎞
; t ≥ 0

}

=⇒
{⎛ 

X̄t , Ȳt ,

∫ t

0
X̄s−dȲs

⎞
; t ≥ 0

}
as n → ∞.

(ii) If .1/α3 = 1/α1 + 1/α2, 

. 

{ ⎛ 
n−1/α1X[nt], n−1/α2Y[nt], n−1/α3Z[nt]

⎞
; t ≥ 0

}

=⇒
{⎛ 

X̄t , Ȳt , Z̄t +
∫ t

0
X̄s−dȲs

⎞
; t ≥ 0

}
as n → ∞.

(iii) If .1/α3 > 1/α1 + 1/α2, 

. 

{ ⎛ 
n−1/α1X[nt], n−1/α2Y[nt], n−1/α3Z[nt]

⎞
; t ≥ 0

}

=⇒
{⎛ 

X̄t , Ȳt , Z̄t

⎞
; t ≥ 0

}
as n → ∞.

. □
Let us interpret the results above in group theoretical terms. In the treatment 

above, we have taken the coordinate components of the measure . μ and considered 
the one-dimensional random walks, X, Y , and Z, independently of one another. 
We have then reconstructed the group law effect of the random walk on .H3(Z) by 
considering the Lévy area generated by the X and Y components. This is easy to 
do in this case because the Z component commutes with anything else (it is in the 
center of the group). Now, the renormalization process involves making somewhat 
ad hoc choices of scaling.
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In the first two cases, (i) and (ii), we used the anisotropic dilations 

. δt ((x, y, z)) = (t−1/α1x, t−1/α2y, t−(1/α1+1/α2)z), t > 0.

This one-parameter group of diffeomorphisms has the very special property of being 
a one-parameter group of automorphisms of .H3(R). That is, 

. δt ((x, y, z) · (x', y', z')) = δt ((x, y, z)) · δt ((x
', y', z')).

The consequence of this property is that the limit processes obtained above, 

.

{⎛ 
X̄t , Ȳt ,

∫ t

0 X̄s−dȲs

⎞
; t ≥ 0

}
in case (i) and . 

{⎛ 
X̄t , Ȳt , Z̄t + ∫ t

0 X̄s−dȲs

⎞
; t ≥ 0

}

in case (ii), are symmetric Lévy processes on the real nilpotent group . H3(R)

which are operator-stable with respect to the one-parameter group of automorphisms 
.{δt : t > 0}. See [36, Chapter 2, Definition 2.3.13]. 

In the third case when .1/α + 1/α2 < 1/α3, we used  

. δt ((x, y, z)) = (t−1/α1x, t−1/α2y, t−1/α3z), t > 0.

These diffeomorphisms are not automorphisms of .H3(R), and it follows that using 
them in rescaling the random walk driven by . μ on .H3(Z) ⊂ H3(R) produces a non-
trivial change in the underlying group structure. This is visible in the nature of the 

limiting process, .
{⎛ 

X̄t , Ȳt , Z̄t

⎞
; t ≥ 0

}
, which is not a Lévy process on .H3(R) but 

a Lévy process on the abelian group . R3. 
Although it is certainly possible to push this approach further in specific 

examples, there are serious difficulties in treating large classes of examples in this 
way. For this reason, the approach presented in this monograph is quite different. 
It does not involve explicitly the stochastic calculus involved in studying the Lévy 
area and higher degree functionals of the same type that are known to appear when 
expressing random walks on nilpotent groups in coordinates. The interested reader 
might try the following two informal exercises before reading further. 

Exercise 1.6 Pick a tuple of 10 elements .(s1, . . . , s10) in either . Z3 or .H3(Z), . si =
(xi, yi, zi), and a tuple of ten reals .αi ∈ (0, 2), .1 ≤ i ≤ 10. Consider the probability 
measure 

. μ(g) =
10Σ
i=1

Σ
n∈Z

κi

(1 + |n|)1+αi
1{sn

i }(g).

What to do to formulate a limit theorem? in . Z3? in .H3(Z)?. □
Exercise 1.7 Repeat Exercise 1.6 with .H3(Z) replaced by the group of four by four 
upper-triangular matrices with diagonal entries equal to 1 (this group is nilpotent). 
. □
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As the reader will see, the approach developed in this work is amenable 
to detailed computation in concrete cases. Using the theory developed in this 
monograph, we will revisit Example 1.5 in Sect. 7.3. 

We close this preliminary chapter by describing the organization of this mono-
graph. The next chapter provides an introduction to our main results while avoiding 
most technical details. In particular, Sect. 2.3 describes special cases which we hope 
the reader will find both interesting and informative, and Sect. 2.5 discusses prior 
results. Section 3.1 introduces polynomial coordinate systems and the key notions of 
group dilation and approximate group dilation relative to such a coordinate system. 
Approximate group dilations lead to the definition of “limit group structures,” and 
we present some basic properties of these limit group structures that are important 
for our purpose. Chapter 4 introduces the vague convergence of a probability 
measures under rescaling by an approximate group dilation and how the vague limit 
and the limit group structure interact (see Proposition 4.7). Chapter 5 describes 
our main technical results concerning functional limit theorem. It identifies a list 
of strong hypotheses that allows us to state such a theorem. See Theorem 5.11. 
Chapter 6 presents the corresponding local limit theorem, Theorem 6.1. Chapter 7 
describes how to identify in concrete terms (in coordinates) and the limiting Lévy 
process (on the associated limit group). They are then used together with the main 
results of this monograph to give several examples on the weak convergence of 
long-range random walks on various nilpotent groups. Chapter 8 describes the main 
class of probability measures, .SM, to which we want to apply the results obtained 
in previous chapters. Chapter 9 shows how to choose appropriate coordinate 
systems and dilations for measures in .SM, whereas Chap. 10 demonstrates that the 
hypotheses needed in Chaps. 5–6 are essentially satisfied by measures in .SM. 

Notation 

We use . := as a way of definition. For .a, b ∈ R, .a ∧ b := min{a, b}. We use .δ{x0} to 
denote the Dirac measure concentrated at .x0 ∈ R

d and . 1A for the indicator function 
of a Borel measurable set .A ⊂ R

d . For an open subset .D ⊂ R
d , the space of 

bounded continuous functions on D and the space of continuous functions on D 
with compact support will be denoted by .Cb(D) and .Cc(D), respectively.



Chapter 2 
Introduction 

2.1 Basic Question 

The aim of this work is to prove limit theorems for a class of random walks on 
nilpotent groups driven by probability measures allowing for long jumps in certain 
directions. The class of probability measures we study can be described roughly 
as follows. Let . ┌ be a finitely generated nilpotent group with neutral element e. 
Assume that we are given a finite family of subgroups of . ┌, .H1, . . . , Hk , each 
equipped with a finite symmetric generating set . Si and the associated word length 
.| · |Hi,Si

= | · |i . For each .i ∈ {1, . . . , k}, fix  .αi ∈ (0, 2). On each . Hi , set  
.Vi(r) = #{g ∈ Hi : |g|i ≤ r} and consider the probability measure on . Hi : 

. μi(g) = ci

(1 + |g|i )αi Vi(|g|i ) , g ∈ Hi.

Now, on . ┌, consider the symmetric probability measure 

. μ =
kΣ

i=1

λiμi,

where . λi’s are positive constants with .
Σk

i=1 λi = 1. The class of measures we 
will treat is slightly larger than what we just described. Two special cases of this 
construction are particularly compelling. The first is the case when .k = 1, .H1 = ┌, 
.S1 = S is a finite symmetric generating set for . ┌, and .μ(g) = c┌

(1+|g|S)αV┌(|g|S)
. 

This is reminiscent of a radially symmetric .α-stable process. The second is the 
case when each . Hi is an infinite cyclic subgroup in . ┌, a case reminiscent of 
more singular symmetric operator-stable process whose coordinate processes are 
independent to each other. See [39, 48, 56] and [7, 8, 16, 40] for related works on 
singular anisotropic kernels. 
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14 2 Introduction

In an earlier work [20], we proved that there are a positive constant . γ0 = γ0(μ)

(which can be computed relatively easily from the data) and positive constants . c =
c(μ), C = C(μ) such that 

. cn−γ0 ≤ μ(n)(e) ≤ Cn−γ0 .

Here .μ(n) is the n-fold convolution power of the measure . μ. One motivation for the 
present work is to provide the more precise asymptotic 

. lim
n→∞ nγ0μ(n)(e) = a(μ)

with, hopefully, a description of the constant .a(μ). One classical approach to such 
problem is to find a way to rescale the random walk on . ┌ so as to obtain some sort of 
limit theorem proving convergence of the law of the rescaled random walk toward 
the law of a limit process on an appropriate limit space. Typically, the limit space 
and the limit process will have some self-similarity properties with respect to some 
scaling structure. In the most classical cases, e.g., when . μ is a symmetric probability 
measure on . Zd which drives a symmetric random walk converging toward some 
symmetric stable process on . Rd , the limit space supporting the limit process and 
its group law are always the same, .(Rd ,+), independently of . μ. In the present 
context, one interesting new phenomenon is that the group structure of the limit 
space supporting the limit process depends not only on the discrete group . ┌ but also 
on the measure . μ. 

2.2 Description of the Basic Ingredients and Results 

For simplicity, in this work, we restrict ourselves to random walks on torsion-free 
finitely generated nilpotent groups, that is, finitely generated nilpotent groups whose 
only element of finite order is the identity element. These countable groups are 
both similar to and more complicated than the square lattice . Zd in . Rd . Let  . ┌ be 
such a group. By a celebrated theorem of Malcev [47], the countable group . ┌ can 
be realized as a co-compact discrete subgroup of a simply connected nilpotent 
Lie group G. Moreover, any simply connected nilpotent Lie group G can be 
identified with the d-dimensional coordinate space . Rd equipped with an appropriate 
group structure whose (multiplication) law is given, in coordinates, by polynomial 
functions. This accounts for the similarity with the square lattice in dimension d. 
Note however that the description of G as . Rd equipped with a polynomial product 
is very far from being unique (and it may sometimes be difficult to recognize that 
two such descriptions give the same group G up to isomorphism). One way to 
understand the complexity of such structures is to attempt to give a list of all non-
isomorphic simply connected nilpotent Lie groups in a fixed dimension d. No such
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lists exist for relatively large d (we are not aware of such lists when d is greater than 
8). See [13] and the references therein. 

Once . ┌ is represented as a subset of . Rd , a probability measure . μ on . ┌ can be 
viewed as a weighted series of Dirac masses on . Rd . For such a measure . μ in a certain 
relatively large class of “stable-like” probability measures on . ┌, we are going to find 
an adapted dilation structure .(δμ

t )t>0, expressed in coordinates over . G = (Rd , ·)
by .δμ

t (u) = (t1/α
μ
i ui)

d
1 , with carefully chosen exponents .α

μ
i ∈ (0, 2), so that the 

measure 

. μt = tδ
μ
1/t (μ) : φ |→ t

∫
Rd

φ(δ
μ
1/t (u))μ(du)

has a vague limit . μ• (a non-negative Radon measure) on .Rd \ {0} as t tends to . ∞. 
By construction, the limit . μ• will satisfy the self-similar property 

. (μ•)t = μ• for any t > 0.

At the same time, the rescaled group laws 

. x ·t y = δ
μ
1/t

(
δ
μ
t (x) · δ

μ
t (y)

)
, x, y ∈ R

d , t > 0,

will have a limit as t tends to infinity 

. lim
t→∞ x ·t y = x •μ y,

which defines a group law . •μ on . Rd . Most of the time, we will drop the reference 
to . μ and write .•μ = •, but it is an essential feature of this work that this limit 
law actually depends on . μ via the choice of a proper dilation structure. It will 
automatically have the self-similar property 

. x •μ y = δ
μ
1/t

(
δ
μ
t (x) •μ δ

μ
t (y)

)
for every x, y ∈ R

d and t > 0.

Of course, we are most interested in cases when this can be done in such a way that 
the symmetric measure . μ• is not supported on a proper, closed, connected subgroup 
of .G• = (Rd , •μ). In general, the limit measure . μ• defines a left-invariant jump 
process on the group . G• and the key results of this monograph are: 

1. A “stable-like” limit theorem expressing the convergence of the rescaled long-
range jump random walk on . ┌ associated with . μ to the left-invariant Lévy 
process on the group .(Rd , •μ) associated with . μ•

2. A characterization of the left-invariant Lévy process on the nilpotent group 
.(Rd , •μ) associated with . μ•

3. A companion local limit theorem providing a proper statement of convergence 
relating the densities of the distributions of these processes
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The reader should be warned that, given . μ, the choice of the appropriate dilation 
structure .(δ

μ
t )t>0 is not unique and that, consequently, we have made various abuse 

of notation in the explanations given above. 
The simplest instances of these results are the well-known convergence theorems 

relating the “stable-like” random walk on . Z associated with the probability measure 
.μ(x) = cα(1 + |x|)−1−α, x ∈ Z, .α ∈ (0, 2), to the symmetric .α-stable process on 
. R, and its rather rich and complex extension to higher dimensions which includes 
both rotationally symmetric stable processes and some more singular operator stable 
processes as illustrated in Chap. 1. See also [39, 48, 49]. We note that, in so far as 
this monograph focusses on a particular class of probability measures, it only offers 
a limited extension of these classical abelian theories to nilpotent groups. 

2.3 Detailed Description of Some Special Cases 

In this section, we spell out in an informal way how our results of this monograph 
apply to a series of specific examples that are of particular interest. These cases all 
illustrate our main result, Theorem 10.1, which follows from Theorems 5.11 and 6.1 
and the discussions in Sects. 10.2–10.4. 

2.3.1 Word Length Radial Stable Walks 

On a finitely generated group . ┌ equipped with a symmetric finite generating set S, 
the word length .|g|S is the minimal length k of a string .(g1, . . . , gk) of elements of 
S such that g is equal to the product of that string, .g = g1 . . . gk . By Gromov’s  
polynomial volume growth theorem [34], to say that . ┌ has polynomial volume 
growth is equivalent to the fact that there are an integer D (independent of S) and 
constants .0 < cS ≤ CS < ∞ such that 

. cSrD ≤ #{g ∈ ┌ : |g|S ≤ r} ≤ CSrD for all r ≥ 1.

This is known to hold for any finitely generated nilpotent group; see Sect. A.4. In this  
context, we call word length radial stable probability measure of index . α ∈ (0, 2)
the probability measure 

. μS,α(g) = c(┌, S, α)

(1 + |g|S)α+D
, g ∈ ┌.

It is known (see [56, Section 5.1] and [50, Theorem 1.1] as well as the references 
given therein) that there are constants .0 < a = a(┌, S) ≤ A = A(┌, S) < ∞ such 
that the iterated convolutions of this measure satisfy
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. 
an

(n + |g|αS)1+D/α
≤ μ

(n)
S,α(g) ≤ An

(n + |g|αS)1+D/α
, g ∈ ┌, n ∈ N.

So, one has a remarkably good control of the behavior of the associated random 
walk. However, there are no existing limit theorems in the literature for such 
walks, even if we assume that . ┌ is a torsion-free nilpotent group (such groups 
are basic examples of groups with polynomial volume growth). Our results provide 
limit theorems (functional, and also local) for any random walk driven by a word 
length radial stable probability measure .μS,α , .α ∈ (0, 2), on a torsion-free finitely 
generated nilpotent group. We now briefly describe these results. 

First, because we assume that . ┌ is a finitely generated torsion-free nilpotent 
group, there is a simply connected nilpotent Lie group .G = (Rd , ·) which contains 
. ┌ as a co-compact discrete subgroup. The Lie algebra, . g, of this Lie group is 
equipped with its central descending series 

. g1 = g ⊇ g2 = [g, g] ⊇ · · · ⊇ gj = [gj−1, g] ⊇ · · · ⊇ {0},

and this series becomes trivial (i.e., constant equal to . {0}) after finitely many steps. 
Let . j∗ be the smallest j such that .gj+1 = {0}. One can choose a direct sum 
decomposition by vector subspaces, . ni , .1 ≤ i ≤ j∗, compatible with the central 
descending series above, so that 

. R
d = g = ⊕j∗

i=1ni and gj =
Σ
i≥j

ni , j ∈ {1, . . . , j∗}.

The linear invertible maps 

. δt (x) = t ix if x ∈ ni , 1 ≤ i ≤ j∗, t > 0,

form an approximate Lie dilation structure in the sense that 

. [x, y]• = lim
t→∞ δ−1

t ([δt (x), δt (y)])

is a Lie bracket on . Rd with the property that .δt ([x, y]•) = [δt (x), δt (y)]•. Using  
exponential coordinate (of the first kind) to represent G as .(Rd , ·), the approximate 
Lie dilations .δt , t > 0, define approximate group dilations on G for which we 
use the same notation. The limit group .G• is the simply connected Lie group 
associated with the Lie algebra .(Rd , [·, ·]•) defined above. It follows from (A.1) of 
the Appendix that the volume growth exponent D of the original group . ┌ is given 
by .D = Σj∗

i=1 i dim(ni ). Thus we have .det(δt ) = tD for every .t > 0. In [52], Pansu 
proves the fundamental results that there is a norm .‖ · ‖• on .(Rd , •), homogeneous 
with respect to .(δt )t>0, such that the geometry of .(┌, | · |S) is well approximated at 
large scale by that of .(Rd , ‖ · ‖•) in the sense that
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. lim
g∈┌,g→∞

|g|S
‖g‖•

= 1.

Furthermore, one has 

. lim
r→∞

#{g ∈ ┌ : |g|S ≤ r}
|{x ∈ Rd : ‖x‖• ≤ r}| = 1,

where .|Ω| is the Haar volume of .Ω ⊂ G•. See also [15]. Haar measures on G 
and . G• are both Lebesgue measure dx on . Rd . When considering densities on these 
groups, we mean densities with respect to dx. 

The importance of these results for us is that they enable us to establish the 
convergence of the measure .tδ1/t1/α (μS,α), vaguely on .R

d \ {0}, to the radial stable 
jump measure .μ•,α with density 

. φ•,α(x) = c(┌, S, α)

‖x‖α+D•
.

This measure is the jump measure of a left-invariant (strong) Markov process 
.(X•

t )t>0 on .(Rd , •) which is self-similar in the sense that .(X•
s )s>0 equals 

.(δ1/t1/α (X•
ts ))s>0 in distribution. In a proper global coordinate system, the 

coordinates of this process can be expressed in terms of suitable stable processes 
and their (possibly iterated) Lévy areas. The Lévy process . X• admits a continuous 
convolution density with respect to the Lebesgue measure on . Rd : 

. p•,α(t, x), (t, x) ∈ (0,∞) × R
d .

This density satisfies 

. p•,α(t, x) = t−D/αp•,α(1, δ1/t1/α (x)), (t, x) ∈ (0,∞) × R
d ,

and 

. 
at

(t + ‖x‖α• )1+D/α
≤ p•,α(t, x) ≤ At

(t + ‖x‖α• )1+D/α
, (t, x) ∈ (0,∞) × R

d .

In this context, the results developed in this work establish two limit theorems for 
the random walk .(Xn)n≥0 on . ┌ driven by .μS,α . These limit theorems capture the fact 
that, after proper rescaling in time and space, the limit of the random walk . (Xn)n≥0
is the Markov process .(X•

s )s>0. Namely, the functional limit theorem establishes the 
convergence of .(δ1/t1/α (X[st]))s>0 to .(X•

s )s>0 as t tends to infinity. In particular, for 
any continuous function . φ with compact support on . Rd , 

.

Σ
g∈┌

φ(δt1/α (g))μ
[(ts])
S,α (g) →

∫
Rd

φ(x)p•,α(s, x)dx
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as t tends to infinity. For any compact set .K ⊂ R
d and any functions . gn : K →

┌, .n = 1, 2, . . . , such that the sequence of functions .δ1/n1/α ◦ gn : K → R
d , 

.n = 1, 2, . . . , converges uniformly over K to the identity function, the local limit 
theorem of this monograph establishes the uniform convergence to zero over K of 

. nD/αμ
(n)
S,α(gn(x)) − p•,α(1, x)

when n tends to infinity. In particular, this shows that, for any fixed .g ∈ ┌ (e.g., 
.g = e), 

. lim
n→∞ nD/αμ(n)(g) = p•,α(1, e).

2.3.2 Walks Taking Stable-Like Steps Along One-Parameter 
Subgroups 

Let . ┌ be a torsion-free finitely generated nilpotent group embedded as a lattice of a 
simply connected nilpotent Lie group G. One of the cases that motivates our study 
can be described as follows: We are given a tuple .S = (s1, . . . , sk) of elements of . ┌, 
which, together with their inverses, generates . ┌. We are also given a tuple of reals 
.α = (α1, . . . , αk) ∈ (0, 2)k . Note that the letter S is used here in a slightly different 
way than in the previous case. Now, set 

. μS,α(g) = 1

k

kΣ
i=1

Σ
m∈Z

cαi

(1 + |m|)1+αi
1{sm

i }(g).

It was proved in [56] that, for any such probability measure, there exist . 0 < a =
a(┌, S,α) ≤ A = A(┌, S,α) < ∞ and .γ0 = γ0(┌, S,α) such that 

.an−γ0 ≤ μ
(n)
S,α(e) ≤ An−γ0 . (2.1) 

In Chap. 8, we introduce the space of probability measures .SM1(┌), see Defi-
nition 8.2, which contains all such measures. We then explain how to choose a 
coordinate system of polynomial type, .G = (Rd , ·), and an approximate dilation 
structure .(δt )t>0 with limit group .G• = (Rd , •), which are adapted to the pair 
.(S,α), and such that, with .μt := tδ1/t (μS,α), the family of measures . (‖z‖22 ∧
1)μt (dz) converges weakly on .R

d \ {0} to a measure .(‖z‖22 ∧ 1)μ•(dz) as .t → ∞, 
that is,
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. lim
t→∞

∫
Rd\{0}

f (z)
⎛
‖z‖22 ∧ 1

⎞
μt(dz) =

∫
Rd\{0}

f (z)
⎛
‖z‖22 ∧ 1

⎞
μ•(dz)

for any .f ∈ Cb(R
d \ {0}). Here  .Cb(R

d \ {0}) denotes the space of bounded 
continuous functions on .Rd \ {0}. The measure . μ• is supported on the union of 
a finite number of one-parameter subgroups of . G• and its support generates . G•. It  
can be interpreted as the Lévy measure of a convolution semigroup of probability 
measures, associated with a left-invariant Lévy process on . G•. The convolution 
transition kernel of this semigroup admits a continuous density, .p•(t, x), with 
respect to the Lebesgue measure on .(Rd , •) and satisfies 

. p•(t, x) = t−γ0p•(1, δ1/t (x)) for (t, x) ∈ (0,∞) × R
d .

Note that the limit objects introduced here, e.g., . G• and . p•, all depend on S and 
. α, even so we did not capture that dependence in the notation used above. A 
notable difference with the earlier description of the radial stable-like case is that, 
in general, there are no particular canonical choices of the approximate dilation 
structure .(δt )t>0 and we have not made a canonical choice of coordinates either. 
To a certain extent, the entire results and the associated limit objects depend on the 
choices of coordinates and adapted dilation structure, while, of course, there are 
great commonalities shared by all the limit objects obtained based on these different 
choices. This, however, will not be deeply investigated here. 

As in the case of radial stable walks, the results of this monograph establish the 
convergence of the discrete time random walk driven by .μS,α , properly rescaled in 
time and space, to the left-invariant Lévy process .(X•

s )s>0 with convolution density 
.p•(t, x) mentioned above. More precisely, the functional limit theorem establishes 
the weak convergence of .(δ1/t (X[st]))s>0 to .(X•

s )s>0 as t tends to infinity. In 
particular, for any continuous function . φ with compact support on . Rd , 

. 
Σ
g∈┌

φ(δt (g))μ
[(ts])
S,α (g) →

∫
Rd

φ(x)p•(s, x)dx

as t tends to infinity. The local limit theorem asserts that 

. lim
n→∞ sup

x∈K

|||nγ0μ
(n)
S,α(gn(x)) − p•(1, x)

||| = 0, (2.2) 

where K is a compact in . Rd and .gn : K → ┌ is a sequence of functions such that 
.δ1/n ◦gn : K → R

d converges uniformly over K to the identity function. Of course, 
the non-negative real . γ0 appearing in (2.1) and in (2.2) is the same in both equations. 
It is also given by .det(δt ) = tγ0 .
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2.3.3 Walks Associated with Measure in SM(┌) 

In Chap. 8, we introduce a particular set of “stable-like” measures on . ┌, .SM(┌), 
which interpolates between the radially symmetric measures considered above and 
the convex combinations of one-dimensional measures described in the last section. 
These measures were studied in our earlier work [20]. With any measure in . SM(┌)

we can associate in a natural way a (non-unique) polynomial coordinate system 
.G = R

d and a family of dilations .(δt )t>0 which define a limit group structure 
.G• = (Rd , •). The approximate dilation structure .(δt )t>0 is built so that the family 
.μt = tδ1/t (μ), .t > 0, has well-defined limit points which are all Lévy measures 
of .(δt )t>0-stable symmetric convolution semigroups of probability measures on 
. G• with continuous positive densities on . G•. One of the key contributions of this 
work is to describe explicitly how one can construct such an approximate dilation 
structure based on a proper description of . μ on . ┌. If it is the case that, with 
.μt := tδ1/t (μ), the measure .(‖z‖22 ∧ 1)μt (dz) converges weakly to a finite measure 
.(‖z‖22 ∧ 1)μ•(dz) on .Rd \ {0} as .t → ∞, then we obtain both a functional central 
limit theorem and a local limit theorem. The results described in the previous two 
paragraphs are, in fact, special cases of these more general theorems. The structure 
of the Lévy measures of the limit Lévy processes on . G• appearing in these limit 
theorems is described at the end of the next section. 

2.4 Symmetric Continuous Convolution Semigroup of 
Probability Measures and Lévy Processes 

For this very minimal vocabulary review, we follow [36]. Let G be a connected Lie 
group. Recall that there is a one-to-one correspondence between symmetric con-
tinuous convolution semigroups of probability measures on G and symmetric Lévy 
processes on G. Here  .(μt )t>0 is a symmetric continuous convolution semigroup of 
probability measures on G if the map .t |→ μt is continuous, . μt ∗ μs = μt+s , s, t >

0, .μ0 = δe, and .μt(φ) = μt(φ̌) for any continuous function . φ on G with compact 
support, where .φ̌(y) := φ(y−1) for .y ∈ G. A symmetric Lévy process X on G 
is a G-valued time-homogeneous càdlàg Markov process .(Xt )t≥0 with stationary 
independent increments, started at e and such that .X−1

t = Xt in distribution for 
every .t > 0. In this setting, the notion of infinitesimal generator of X can be captured 
in a more elementary way via the so-called generating functional (defined on smooth 
compactly supported functions): if the infinitesimal generator of the symmetric Lévy 
process X is . L, the associated generating functional is simply .φ |→ Lφ(e). The  
Lévy-Khinchin-Hunt formula provides a description of the generating functional of 
a Lévy process. Under the symmetry condition, the generating functional has two 
parts: a diffusion part and a jump part described by a symmetric measure . ν on . G\{e}
in the form .φ |→ p.v.

∫
G\{e}(φ(y) − φ(e))ν(dy) with
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.

∫
G\{e}

min
{
1, ‖y‖22

}
ν(dy) < ∞. (2.3) 

Here, .‖y‖2 is the Riemannian distance between e and y in some fixed left-invariant 
metric on G, and 

. p.v.
∫

G\{e}
(φ(y) − φ(e))ν(dy) := 1

2

∫
G\{e}

(φ(y) + φ
⎛
y−1

⎞
− 2φ(e))ν(dy).

In this work, we are only interested in pure jump symmetric Lévy processes, that 
is, generating functional of the form 

. φ |→ Lφ(e) = p.v.
∫

G\{e}
(φ(y) − φ(e))ν(dy),

where . ν is a symmetric measure on .G \ {e} satisfying (2.3). Equivalently, the 
infinitesimal generator is given on smooth compactly supported functions by 

. 〈−Lu, v〉 = 1

2

∫
G

∫
G\{e}

(u(xy) − u(x))(v(xy) − v(x))ν(dy)dx.

This, of course, is also a description of the associated Dirichlet form (on a dense 
subspace of its domain). 

In this work, these objects come about through a limit procedure, which implies 
that they have additional properties. First, the underlying Lie group is a simply 
connected nilpotent Lie group which we call . G•. Second, by construction, . G•
carries a group of dilations, .(δt )t>0, .δt : G → G, .δ1 = Id, . δts = δt ◦ δs =
δs ◦ δt , .s, t > 0, where . δt is also a group isomorphism for every .t > 0, and 
.limt→0 δt (x) = e for all .x ∈ G. In addition, the convolution semigroups and 
associated Lévy processes of interest to us are self-similar with respect to such a 
dilation structure, that is, .(Xs)s>0 equals .(δ1/t (Xts))s>0, in distribution, for any 
.t > 0. Moreover, there is a linear basis .ε = (ε1, . . . , εd) of the Lie algebra of . G• in 
which the dilation . δt has the form .δt (εi) = t1/βi εi , .βi ∈ (0, 2), .1 ≤ i ≤ d. This last 
condition, .βi ∈ (0, 2), .1 ≤ i ≤ d, is related to the fact the processes in question are 
pure jump operator-stable Lévy processes. See, e.g., [36, Theorem 2.3.17]. Finally, 
when the original random walk is driven by a probability measure . μ in .SM(┌) (a 
class of stable-like measures on . ┌ described in Chap. 8), the Lévy measure 

. μ• = lim
t→∞ tδ1/t (μ) = lim

t→∞ tμ ◦ δt

of our limit process has a particular structure that it inherits from the fact that . μ ∈
SM(┌). Namely, there is a finite family of closed Lie subgroups of . G•, call them 
.H•,i , .1 ≤ i ≤ k, which are each invariant under .(δt )t>0, and functions . ψi : H•,i →
(0,∞) satisfying .tψi(δt (x)) = ψi(x), and .ψi(x

−1) = ψi(x), .x ∈ H•,i , such that
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. μ•(dx) =
mΣ
1

νi(dx), νi(φ) =
∫

H•,i

φ(x)ψi(x)dH•,i
x for 1 ≤ i ≤ m,

where .dH•,i
x is the Haar measure on .H•,i ; see Proposition 10.9. Each . νi satis-

fies (2.3). The group . G• is generated by the subgroups .{H•,i , 1 ≤ i ≤ m}. 

2.5 Prior Results 

To put our results in perspective, we briefly review limit theorems (functional and/or 
local) relating random walks on discrete groups to Lévy processes on a related Lie 
group. Very few results of this type exist outside the setting of nilpotent groups (and 
closely related groups such as groups of polynomial volume growth). The classical 
(functional) limit theorems can be interpreted in two distinct ways: 

(i) As providing approximation of a (continuous time) Lévy process by a discrete 
time process. This can be motivated by the desire to actually construct the 
limiting process, or to simulate it, or to understand it in more concrete terms. 
In this case, one should read the limit theorem as follows: at each stage, 
we take a greater number of smaller steps to approximate the behavior of a 
continuous time process on a fixed bound time interval. A natural setup for this 
interpretation is the triangular array setup. 

(ii) As a result illuminating the long-term behavior of a discrete time process by 
providing a continuous time scaling limit. In this case, at each stage we take a 
greater number of identically distributed steps and approximate the probability 
of larger and larger scale events for the discrete time process by the probability 
of the same large-scale events for the limiting continuous time process, at a 
large time. Whenever that limiting process is self-similar, the limit computation 
can be rephrased as a computation within a fixed bounded time interval. There is 
more rigidity in this viewpoint than in the first as we cannot choose the different 
individual steps taken as one possibly can in a triangular array formulation of 
the first viewpoint. 

For random walks in . Rn, it is somewhat difficult to see the differences between 
these two interpretations. The reason is that we have a relatively obvious way to 
turn the identically distributed steps appearing in the second interpretations into 
smaller and smaller steps appearing in the first interpretation. Indeed, we typically 
assume that the limiting process is self-similar with respect to a dilation structure 
that commute with addition and this dilation structure can be used to turn the fixed-
size steps of (ii) into the small-size steps of (i). 

Both viewpoints are present in this work. Our main focus is on using (ii) to 
study long-term behavior of a class of discrete long-range random walks on a 
finitely generated torsion-free nilpotent group . ┌. One can then use (i) to better
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understand the limiting self-similar Lévy processes on the limit nilpotent group . G•. 
See Chap. 7. 

2.5.1 Functional Type Limit Theorems 

On a general Lie group, there are results stated in terms of triangular arrays that 
go back to Wehn [61, 62]. Later, Stroock and Varadhan [59] rediscovered Wehn’s 
results. These works concern the case when the limit Lévy process is a diffusion. 
These triangular array results have been extended to cover the case when the limit 
Lévy process may have jumps. An exposition of such results is found in [36] which 
contains a very long list of references. They are also found in work by Kunita [41– 
44]. These results must be understood as an extension of the first interpretation 
of the classical limit theorem discussed above. From this viewpoint, the title of 
the Stroock-Varadhan paper, Limit Theorems for Random Walks on Lie Groups, 
is somewhat misleading. What the results of Wehn and Stroock-Varadhan do is to 
provide discrete time step approximations of diffusions on Lie groups. They do 
not, in general, help us understand the behavior of random walks on Lie groups. 
That is because, on a general Lie group, there is no clear way to turn identically 
distributed steps into small-size steps. There are, however, many ways to create 
arrays of smaller and smaller size steps, not related to any identically distributed 
model. The theorems described by Wehn, Stroock-Varadhan, Hazod and Siebert, 
Kunita, and others thus provide functional limit theorems along the line of the first 
interpretation. See the excellent discussion in [14]. 

There is one setting in which these triangular array limit theorems provide an 
understanding of random walk (in the sense of a process taking repeated identically 
distributed steps). This is, informally, when the limiting continuous time process is 
self-similar with respect to a dilation structure that preserves the multiplication law 
of the underlying group. Unfortunately, this is a rather rare occurrence as the only 
connected groups admitting such dilation structures are simply connected nilpotent 
Lie groups of a very special kind. Moreover, outside the case of diffusion limit, 
whether or not a dilation structure exists that is suitable for a given random walk on 
a given group depends, to a large extent, on the particular random walk in question. 
In fact, given a driving measure . μ, constructing a proper dilation structure for . μ
(deciding if such exists) is a major problem, one that is completely ignored by the 
triangular array formulation of limit theorems. This is illustrated by the results of 
the present work. 

Somewhat independently of the above circle of ideas, Crepel, Raugi, and others 
obtained rather satisfying random walk limit theorems for general nilpotent groups 
in the case the limit is a diffusion [23, 54, 55]. The proofs in these works can 
be viewed as using two steps: the first step proves the result in the presence of 
a canonical adapted dilation structure (that is, in the case of stratified nilpotent 
groups), and the second step is closely related to one of the key ingredients we 
will use here and involves the idea behind our definition of an approximate group
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dilation structure, a dilation structure that does not preserve the group structure of 
the original underlying Lie group. In general, because of the second step, the original 
group carrying the random walk has a group structure that is different from that of 
the Lie group carrying the limit diffusion. This, clearly, takes us outside the realm 
of Wehn-type results. 

One key point in the results by Crépel and Raugi is that the structure of the group 
carrying the limit diffusion depends only on the original group, not of the particular 
(diffusive) random walk one wants to study. In general, this cannot be the case when 
the random walk to be studied calls for a limit process that has jumps as we do here. 
As we shall see, in this case, the limit structure depends on both the original group 
and the particular probability measure that drive the given random walk. One thus 
has to discover what this proper limit structure is for each studied random walk. 

2.5.2 Local Limit Theorems 

The first local limit theorem in the context of general nilpotent groups and groups of 
polynomial volume growth is due to G. Alexopoulos [2–4]. See also the discussion 
in [14]. It concerns centered random walks driven by a finitely supported measure. 
For nilpotent groups, following a very different approach, and covering random 
walks driven by measures that have a high enough finite moment (much higher than 
2, in general), the strongest known results are due to R. Hough [38], which provides 
an informative review of earlier results. We do not know of references treating cases 
when the limit is not a diffusion process.



Chapter 3 
Polynomial Coordinates 
and Approximate Dilations 

3.1 Polynomial Coordinate Systems 

Even though some related results can be stated in an intrinsic manner, in practice, 
limit theorems are coordinate dependent. This applies to the results of this mono-
graph and, consequently, we discuss in some detail the notion of global coordinate 
system for simply connected nilpotent Lie groups. A number of different choices 
are possible for this purpose. In this chapter, we outline the basic characteristics of 
the coordinate systems we will use. A given group G can be described via many 
different such global polynomial coordinate charts, and it is often desirable to allow 
for such a choice to be made by circumstances. This is discussed further in Chap. 9. 

A simply connected nilpotent Lie group G can always be described by a global 
coordinate chart .Rd → G, .0 → e, in which the group multiplication and inverse 
map are given by polynomials 

. x·y = P(x, y) = (p1(x, y), . . . , pd(x, y)) , x−1 = Q(x) = (q1(x), . . . , qd(x)) .

As .P(x, 0) = x and .P(0, y) = y for any .x, y ∈ R
d , we have  

.pi(x, y) = xi + yi + p̄i(x, y), 1 ≤ i ≤ d, (3.1) 

where .p̄i(x, y)’s are polynomials having no constant nor first-order terms. More-
over, for any compact .K ⊂ R

d , there is a constant .CK such that 

.‖x−1 · y‖2 := ‖P(Q(x), y)‖2 ≤ CK‖x − y‖2 for every x, y ∈ K (3.2) 

because .P(Q(x), x) = 0. Here .‖ · ‖2 is the canonical Euclidean norm in . Rd . 
Similarly, for any compact .K ⊂ R

d , there is a constant .C'
K such that for every 

.x, y ∈ K , 
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.‖x −y‖2 = ‖x −x · (x−1 ·y)‖2 = ‖x −P(x, x−1 ·y)‖2 ≤ C'
K‖x−1 ·y‖2. (3.3) 

The last inequality is due to the fact that .x − P(x, z) vanishes at .z = 0. 
We assume throughout that the Jacobian of the maps .y |→ x ·y, .x ∈ G, is 1 so that 

the Lebesgue measure on .Rd is a Haar measure for our group G. This assumption 
follows from the much more demanding assumption that (3.1) has the additional 
property that 

.p̄1(x, y) = 0 and p̄i(x, y) = p̄i((xj )
i−1
1 , (yj )

i−1
1 ) for 2 ≤ i ≤ d. (3.4) 

In other words, the polynomial 

. p̄i(x, y) = pi(x, y) − xi − yi

depends only on the first .i − 1 coordinates of x and y and has no constant nor first-
order terms. Clearly, this triangular structure implies that the Jacobian of the map 
.y |→ x · y is 1. Moreover, for .x−1 = Q(x) = (q1(x), . . . , qd(x)), we deduce from 
.P(Q(x), x) = 0 that 

.q1(x) = −x1 and qi(x) = −xi + q̄i (x1, . . . , xi−1) for 2 ≤ i ≤ d, (3.5) 

where .q̄i (x1, . . . , xi−1), .2 ≤ i ≤ d, are polynomials having no constant nor first-
order terms. 

Example 3.1 (Matrix Coordinates) The most commonly used coordinate system 
(as Moli. ̀ere’s Mr. Jourdain with prose, we may use it without realizing we do!) comes 
from matrix groups. Indeed, the group G is often given as a subgroup of a group of 
invertible matrices of a certain dimension, say N . In particular, a nilpotent group 
is often given as a subgroup of the group of unipotent upper-triangular matrices. 
The most obvious example is when G is the group of unipotent upper-triangular 
matrices itself 

. UN =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1 x12 x13 . . . x1N

0 1 x23 . . . x2N

0 0 1 . . . x3N

...
...

...
...

...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

: xij ∈ R, 1 ≤ i < j ≤ d

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

This group has dimension .d = (
N
2

)
. In the case .N = 3, this is the Heisenberg group 

.H3(R) in its matrix form with 

.P(x, y) = (x1+y1, x2+y2, x3+y3+x1y2),Q(x1, x2, x3) = (−x1,−x2,−x3+x1x2)
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and 

. P(x−1, y) = (y1 − x1, y2 − x2, y3 − x3 − x1(y2 − x2)).

Example 3.2 (Exponential Coordinates of the First Kind) The second most 
commonly encountered coordinate system is given by the canonical exponential map 

. exp : g → G

between the Lie algebra . g of the group G and G itself. We can think of . g = R
d

as the tangent space at e. Given a tangent vector .x ∈ R
d , we first consider the 

(unique) left-invariant vector field X on G such that .X(e) = x and the solution 
.γx : [0, 1] → G of . d

dt
γx(t) = X(γx(t)) with initial condition .γx(0) = e and set 

. exp(x) = γx(1).

Using the fact that, for any two left-invariant vector fields X and Y , the well-defined 
differential operator .XY − YX is a left-invariant vector field, we obtain the Lie 
bracket .(x, y) |→ [x, y] = (XY − YX)(e). Moreover, 

. [x, y] = ∂s∂t (exp(tx) · exp(sy) · exp (−tx))|s=t=0 .

In the case of simply connected Lie group, the exponential map is a global invertible 
diffeomorphism and the multiplication is given in the universal form by the famous 
Campbell-Hausdorff formula 

. exp(x) · exp(y) = exp (PCH(x, y)) ,

where 

.PCH(x, y) = x + y + 1

2
[x, y] + 1

12
([x, [x, y]] + [y, [y, x]]) + · · · . (3.6) 

In other words, in the exponential coordinate system, the group law is 

. x · y = PCH(x, y) = x + y + 1

2
[x, y] + 1

12
([x, [x, y]] + [y, [y, x]]) + · · · .

This has the desirable polynomial form because iterated Lie brackets with more than 
r entries are equal to 0 if r is the nilpotency class of G. In these coordinates, it is 
always the case that 

. x−1 = −x.

Applying this to the Heisenberg group, we obtain the often-used description of 
.H3(R) as . R3 equipped with the product
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. x · y = PCH(x, y) =
⎛
x1 + y1, x2 + y2, y3 + x3 + 1

2 (x1y2 − x2y1)
⎞

and 

. PCH(x
−1, y) =

⎛
y1 − x1, y2 − x2, y3 − x3 + 1

2 (x2(y1 − x1) − x1(y2 − x2))
⎞

.

Example 3.3 (Exponential Coordinates of the Second Kind) 
For a simply connected nilpotent Lie group G, exponential coordinate systems 

of the second kind are typically associated with a filtration of the Lie algebra . g by 
subalgebras (respectively, ideals) 

. g = g1 ⊃ g2 ⊃ · · · ⊃ gℓ ⊃ {0}

with . gj of dimension . mj , and a linear basis .(εi)
d
1 such that the linear span of . (εi)i≥j

is a subalgebra (respectively, ideal) for all .1 ≤ j ≤ d := m1, and .(εi)
d
d−mj +1 is a 

basis of . gj . In such a situation, the maps from . Rd to G defined by 

. Ф(x1, . . . , xd) = exp(x1ε1) · · · · · exp(xdεd)

and 

. Ψ(x1, · · · , xd) = exp(xdεd) · · · · · exp(x1ε1)

give two distinct global polynomial coordinate systems for G. 
For example, the matrix coordinate system of the group of .n×n upper-triangular 

matrices with entries equal to 1 on the diagonal is an exponential coordinate system 
of the second kind associated with the lower central series 

. g = g1, gi+1 = [gi , g], 1 ≤ j ≤ n,

which, in this case, has last non-trivial member .gn−1 corresponding to the upper-
right corner entry. Here, we can realize . g as the algebra of the strictly upper-
triangular matrix. We then enumerate the entries .(xi)

d
1 , .d = n(n − 1)/2, going 

down along each upper-diagonal in order so that . xd is the entry in the upper-right 
corner, and consider the corresponding map . Ψ. For instance, in the .4 × 4 case, 

.

⎛
⎜⎜⎝

1 x1 x4 x6

0 1 x2 x5

0 0 1 x3

0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 x6

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 x5

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ · · ·

⎛
⎜⎜⎝

1 x1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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Each of the matrices on the right is the matrix exponential of the corresponding 
strictly triangular matrix. Note that . Ф defined above leads to a different coordinate 
system. . □
These classical constructions concerning exponential coordinates of the first and 
second kinds are explained in more detail in [22, Section 1.2]. See also [21, 30, 47]. 

3.2 Dilations, Approximate Dilations, and Limit Groups 

3.2.1 Straight Dilations 

Let G be a nilpotent simply connected Lie group given in a global polynomial 
coordinate system .G = (Rd , ·). Call  straight dilations with exponents . a =
(a1, . . . , ad) ∈ R

d+, the group of diffeomorphisms 

. φt (x) = (ta1x1, . . . , t
ad xd), t > 0.

Note that .φs ◦ φt = φst , .s, t > 0, and .φ1 = Id. 

Definition 3.4 We say that .(φt )t>0 as above is a straight group dilation structure if 

.φt (x · y) = φt (x) · φt (y), t > 0, x, y ∈ G. (3.7) 

. □
This, of course, is a very restrictive property and not every simply connected 
nilpotent Lie group G admits such a structure. In the case of the Heisenberg group 
in matrix form, for given .a, b, c ≥ 0, set  

. φt

⎛
⎝

⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠

⎞
⎠ =

⎛
⎝

1 tax tcz

0 1 tby

0 0 1

⎞
⎠ , t > 0, x, y, z ∈ R.

These straight dilation structures are group dilation structures if and only if . a + b =
c. 

Remark 3.5 More generally, without reference to any coordinate system, a group 
of diffeomorphisms .(φt )t>0, .φt : G → G, .φ1 = Id, satisfying (3.7) and such that 
.limt→0 φt (g) = e is called an expanding group dilation structure. See [36, 46]. 
By a theorem of Siebert [58], a connected locally compact group carrying such a 
structure must be a simply connected nilpotent Lie group (and not every simply 
connected nilpotent groups admit such a structure).. □
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Definition 3.6 Let . Rd be equipped with a straight dilation structure 

. (φt )t>0, φt (x) = (tai xi)
d
1 , ai > 0, 1 ≤ i ≤ d.

A positive function N on .Rd is called homogeneous with respect to .(φt )t>0 if 
.N(φt (x)) = tN(x).. □
Example 3.7 The function .x |→ N(x) = max1≤i≤d{|xi |1/ai } is homogenous with 
respect to .(φt )t>0, .φt (x) = (tai xi)

d
1 , .ai > 0, 1 ≤ i ≤ d. It is a norm on . (Rd ,+)

(i.e., satisfies the triangle inequality) if .ai ≥ 1 for all .1 ≤ i ≤ d. If  M is another 
homogeneous function with respect to .(φt )t>0, such that the set .x : M(x) ≤ 1 is 
compact, then there are constants .0 < c ≤ C < ∞ such that .cN ≤ M ≤ CN .. □

3.2.2 Approximate Group Dilations and Limit Groups 

Let G be a simply connected nilpotent Lie group given in a global polynomial chart 
.G = (Rd , ·) and equipped with a straight dilation (not necessarily a group dilation 
structure) .(φt )t>0. For each .t > 0, we obtain a new group structure . ·t on .Rd by 
setting 

.x ·t y = φ1/t (φt (x) · φt (y)), x, y ∈ R
d . (3.8) 

Moreover, 

. φ1/t : (Rd , ·) → (Rd , ·t )

is a group isomorphism between .G = (Rd , ·) and .Gt = (Rd , ·t ). Additionally, 
.(φt )t>0 is a group dilation structure if and only if .·t = · for all .t > 0. 

Definition 3.8 (Approximate Group Dilation Structure) Let G be a simply 
connected nilpotent Lie group described by a global polynomial chart . (Rd , ·). Let  
.(φt )t>0 be a straight dilation structure. We say that this dilation structure is an 
approximate group dilation structure if, for any .x, y ∈ R

d , the limits 

. lim
t→∞ φ1/t (φt (x)−1) = x−1• and lim

t→∞ φ1/t (φt (x) · φt (y)) = x • y

exist.. □
Lemma 3.9 The pairing .(x, y) |→ x • y yields a nilpotent Lie group . G• = (Rd , •)

and .x−1• is the inverse of x for the group law . •, that is, .x−1• • x = x • x−1• = e•. For  
the group .(Rd , •), the straight dilations .{φt ; t > 0} form a group dilation structure, 
i.e., satisfy (3.7).. □



3.2 Dilations, Approximate Dilations, and Limit Groups 33

Proof By construction, the maps .Pt (x, y) = φ1/t (φt (x) · φt (y)) and . It (x) =
φ1/t (φt (x)−1) are polynomial maps in .x, y with coefficients equal to linear com-
binations of power functions of t with exponents in . R. If the limits . limt→∞ Pt(x, y)

and .limt→∞ It (x) exist for all x and y, it means that only non-positive powers of t 
occur and this implies that the families . Pt and . It are uniformly equicontinuous on 
compact sets. A sequence of simple considerations then yields that 

. x • (y • z) = lim
t→∞ φ1/t (φt (x) · φt (y) · φt (z)) = (x • y) • z

and 

. x−1• • x = x • x−1• = e• = 0.

Note that this also implies 

. lim
t→∞ φ1/t

⎛
φt (x)−1 · φt (y)

⎞
= x−1• • y. (3.9) 

⨅⨆
Lemma 3.10 Let .(φt )t>0 be a straight approximate group dilation structure on 
.(Rd , ·). For any compact .K ⊂ R

d , there is a constant .CK ≥ 1 such that for any 
.x, y ∈ K and .t ≥ 1, 

.C−1
K ‖y − x‖2 ≤ ‖φ1/t

⎛
φt (x)−1 · φt (y)

⎞
‖2 ≤ CK‖y − x‖2 (3.10) 

and 

.C−1
K |x−1• • y‖2 ≤ ‖φ1/t

⎛
φt (x)−1 · φt (y)

⎞
‖2 ≤ CK‖x−1• • y‖2. (3.11) 

Proof The function .(t, x, y) |→ φ1/t

(
φt (x)−1φt (y)

)
is a polynomial in 

. (x, y) = (x1, . . . , xd, y1, . . . , yd)

with coefficients equal to linear combinations of powers of t with exponents in 
. R. By (3.9), only non-positive powers of t appear. The upper bound of (3.10) 
follows from this and the fact that .φ1/t

(
φt (x)−1 · φt (y)

)
vanishes when . x = y

(see, e.g., (3.2)). For the lower bound of (3.10), following the proof of (3.3), note 
that, by taking .z = x−1

t .t y, where .x−1
t denotes the inverse of x for the group law . .t

defined in (3.8), it is equivalent to 

.‖x − x ·t z‖2 ≤ CK‖z‖2
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for .x ∈ K and .z ∈ K '
t ⊂ K '', for some compact set .K '' ⊂ R

d independent of .t ≥ 1. 
This inequality follows because the polynomial .x − x ·t z (with coefficients using 
only non-positive powers of t) vanishes at .z = 0. The two-sided inequality (3.11) 
follows from the same arguments applied to .x−1• •y instead of .φ1/t (φt (x)−1.φt (y)). 

⨅⨆
Remark 3.11 When working in exponential coordinates, we have the extra struc-
ture of the Lie bracket .[·, ·] at our disposal, and we can replace the conditions in 
Definition 3.8 by the condition that 

. lim
t→∞ φ1/t ([φt (x), φt (y)]) = [x, y]•

exists. Call this an approximate Lie dilation structure. Note that, in this case, 
.x−1 = x−1• = −x and .φt (x)−1 = φt (x

−1) so that the inverse map condition is 
automatically satisfied.. □
Remark 3.12 If .(φt )t>0 is a group dilation structure (respectively, an approximate 
group dilation structure), then so is .(φta )t>0, for any .a > 0. Moreover, in the case 
of an approximate group dilation structure, this change does not affect the limit 
structure.. □
Remark 3.13 The basic idea behind Definition 3.8 is well known in two different 
related contexts. It appears in the study of the large-scale geometry of groups 
of polynomial volume growth, see, e.g., [15, Section 2.2], and in the work of 
Alexopoulos on local limit theorems in the context of groups of polynomial volume 
growth, see [4, Section 5.2]. In these works, there is a unique relevant structure at 
infinity, and it follows that the “dilation structures” considered there are very special 
examples of those defined here. Various forms of the same idea play an important 
role in the local study of sub-elliptic second-order operators, but in that context the 
limit is taken when the parameter t goes to 0. See for instance [60, Chapter V].. □

The following lemma is not used explicitly but serves as an exercise in manipu-
lating the notion introduced above. See also Sect. 10.3. 

Lemma 3.14 Let H be a subgroup of .G = (Rd , ·) and .(φt )t>0 be an approximate 
group dilation structure with limit law . •. Set 

. H• =
⎧
x ∈ R

d : there exists (xk)
∞
1 ⊂ H so that lim

k→∞ φ1/k(xk) = x

⎫
.

Then . H• is a subgroup of .G• = (Rd , •). 

Proof Let .x, y ∈ H• with witness sequences .(xk)
∞
1 , .(yk)

∞
1 in H . Fix . ε > 0. By  

the continuity of . •, there exists .δ > 0 such that .‖x − x'‖2 < δ and . ‖y − y'‖2 ≤ δ

imply .‖x • y − x' • y'‖2 < ε/2. By the definition of . H•, there exists .N > 0 such 
that .‖x − φ1/k(xk)‖2 < δ and .‖y − φ1/k(yk)‖2 < δ for all .k ≥ N . By the uniform
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convergence of .φ1/t (φt (u) · φt (v)) to .u • v on compact sets, there exists . N ' such 
that, for all .k ≥ N and .k' ≥ N ', 

. ‖φ1/k(xk) • φ1/k(yk) − φ1/k'(φk'(φ1/k(xk)) · φk'(φ1/k(yk)))‖2 < ε/2.

Hence, for .k ≥ max{N,N '}, 

. ‖x • y − φ1/k(φk(φ1/k(xk)) · φk(φ1/k(y)))‖2 < ε,

and thus, .‖x • y − φ1/k(xk · yk)‖2 < ε. Because .xk · yk ∈ H , this proves that 
.x • y = limk→∞ φ1/k(xk · yk) ∈ H•. A similar proof applies to show that . x−1• ∈ H•
for .x ∈ H•. ⨅⨆
Example 3.15 Consider the Heisenberg group viewed as the group of matrices 

. H3(R) =
⎧⎨
⎩

⎛
⎝

1 x z

0 1 y

0 0 1

⎞
⎠ : (x, y, z) ∈ R

3

⎫⎬
⎭ .

Here, the product of the matrices associated with .(x, y, z) and .(x', y', z') is 
associated with the triplet 

. (x + x', y + y', z + z' + xy').

The inverse of .(x, y, z) is 

.(x, y, z)−1 = (−x,−y,−z + xy). (3.12) 

This is isomorphic but different from the “exponential coordinate description” 
discussed earlier where 

. (u, v,w) · (
u', v', w') =

⎛
u + u', v + v', w + w' + 1

2

(
uv' − u'v

)⎞
.

The map 

.q : (x, y, z) → q(x, y, z) = (u, v,w) =
⎛
x, y, z − 1

2xy
⎞

(3.13) 

provides the group isomorphism between these two descriptions. 
Now, consider the group of diffeomorphisms .(φt )t>0 (straight dilations in that 

system) given in the .(x, y, z) matrix-coordinates by 

.φt (x, y, z) = (tax, tby, tcz) for some fixed a, b, c > 0.
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These are group diffeomorphisms for all .t > 0 if and only if .c = a + b. They form 
an approximate group dilation structure at infinity if and only if .c ≥ a + b. When 
.c > a + b, 

. (x, y, z) • (
x', y', z') = (

x + x', y + y', z + z')

and 

. (x, y, z)−1• = (−x,−y,−z) /= (x, y, z)−1.

If we write down these same diffeomorphisms in the “exponential coordinate” 
description .(u, v,w), they are given by the maps 

. ψt(u, v,w) = q−1 ◦ φt ◦ q(u, v,w) =
⎛
tau, tbv, tcw + 1

2

⎛
tc − ta+b

⎞
uv

⎞
.

In the .(u, v,w) global coordinate chart, .exp = log = id, and if we assume . c ≥
a + b, the straight dilations 

. δt (u, v,w) = (tau, tbv, tcw), t > 0,

give both an approximate Lie dilation structure and an associated approximate 
group dilation structure which are distinct from the .φt/ψt approximate group 
dilation structure even so they share the same differential at the identity. They lead 
to isomorphic limit group structures.. □

Example 3.16 Consider the group 

. G =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1

⎞
⎟⎟⎠ : xij ∈ R

⎫⎪⎪⎬
⎪⎪⎭

and the straight dilation structures associated with any tuple 

. 1/αij , ij = (i, j) ∈ {12, 13, 14, 23, 24, 34}

so that 

.δt

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 y12 y13 y14

0 1 y23 y24

0 0 1 y34

0 0 0 1

⎞
⎟⎟⎠ , yij = t1/αij xij .
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Such a .(δt )t>0 is a group dilation structure if and only if 

. 1/αkℓ = 1/αkj + 1/αjℓ for all 1 ≤ k < j < ℓ ≤ 4,

that is, 

. (1) : 1/α13 = 1/α12 + 1/α23, (2) : 1/α24 = 1/α23 + 1/α34

and 

. (3) : 1/α14 = 1/α12 + 1/α24, (4) : 1/α14 = 1/α13 + 1/α34.

The group .(φt )t>0 is an approximate group dilation structure at infinity if and only 
if 

.1/αkℓ ≥ 1/αkj + 1/αjℓ for all 1 ≤ k < j < ℓ ≤ 4. (3.14) 

We now list all the possible Lie structures that appear as a limit of such an 
approximate group dilation structure on G. 

1. When equality holds in all of the inequalities (3.14), we have .G• = G. 
2. When strict inequality holds in all of the inequalities (3.14), we have . G• = R

6

(abelian). 
3. When equations (1) and (2) are equalities, then equations (3) and (4) become 

equivalent. Assume a strict inequality holds in (3) and (4). Then the limit . G• is 

. 

⎧⎨
⎩

⎛
⎝

⎛
⎝

1 x12 x13

0 1 x23

0 0 1

⎞
⎠ ,

⎛
⎝

1 x23 x24

0 1 x34

0 0 1

⎞
⎠ ,

(
x14

)
⎞
⎠ : xij ∈ R

⎫⎬
⎭ .

Here multiplication for these triplets of matrices is matrix-coordinate by matrix-
coordinate. Note how the same .x23 appears in the first and second matrix-
coordinates. 

4. When strict inequality holds in both equations (1) and (2) and equality holds in 
both (3) and (4), then the limit . G• is 

. 

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 x12 x13 x14

0 1 0 x24

0 0 1 x34

0 0 0 1

⎞
⎟⎟⎠ ,

(
x23

)
⎞
⎟⎟⎠ : xij ∈ R

⎫⎪⎪⎬
⎪⎪⎭

(this is the direct product of the five-dimensional Heisenberg group .H5(R) and a 
copy of . R).
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5. When strict inequality holds in both equations (1) and (2) and equality holds in 
(3) but not in (4) (respectively, (4) but not in (3)), then the limit . G• is 

. 

⎧⎨
⎩

⎛
⎝

⎛
⎝

1 x12 x14

0 1 x24

0 0 1

⎞
⎠ ,

(
x13

)
,
(
x23

)
,
(
x34

)
⎞
⎠ : xij ∈ R

⎫⎬
⎭

(respectively, exchange the roles of pairs .x12, x24 and .x13, x34). This is the direct 
product of a copy of .H3(R) and . R3. 

6. When strict inequality holds in (1) (respectively, (2)) and equality holds in (2) 
(respectively, (1)), then strict inequality must hold in (3) (respectively, (4)). If 
equality holds in (4) (respectively, (3)), the limit group is isomorphic to 

. 

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

(
x12

)
,

⎛
⎜⎜⎝

1 0 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ : xij ∈ R

⎫⎪⎪⎬
⎪⎪⎭

(respectively, exchange the roles of .x12 and . x34, the limit groups in both cases 
are isomorphic). 

7. When strict inequality holds in (1) (respectively, (2)) and equality holds in (2) 
(respectively, (1)) and strict inequality holds in each of (3) and (4), the limit 
group is isomorphic to 

. 

⎧⎨
⎩

⎛
⎝

⎛
⎝

1 x23 x24

0 1 x34

0 0 1

⎞
⎠ ,

(
x12

)
,
(
x13

)
,
(
x14

)
⎞
⎠ : xij ∈ R

⎫⎬
⎭

(respectively, replace the triplet .(x23, x24, x34) with .(x12, x13, x23) and the triplet 
.(x12, x13, x14) with .(x34, x24, x14)). This is the direct product of a copy of . H3(R)

and . R3). 

. □



Chapter 4 
Vague Convergence and Change 
of Group Law 

4.1 Vague Convergence Under Rescaling 

We consider a rather general situation pertaining to the problem we want to study. 
We are given the following data: 

(a) A finitely generated torsion-free nilpotent group . ┌ embedded as a co-compact 
closed subgroup of a simply connected nilpotent Lie group G. It is useful for 
our purpose to be more explicit and write .G = (Rd , ·) where this coordinate 
system is a polynomial coordinate system as explained earlier. 

(b) A probability measure . μ on . ┌. 
(c) An approximate group dilation structure .(δt )t>0 on G with Lie group limit 

.G• = (Rd , •). 

Definition 4.1 We say that the approximate group dilation structure .(δt )t>0 is 
admissible for . μ if the family of measures 

.μt = tδ1/t (μ) defined by μt(φ) := t

∫
Rd

φ(δ1/t (u))μ(du) (4.1) 

converges vaguely to a Radon measure . μ• on .Rd \ {0} as .t → ∞. Recall that, by 
definition, this means that, for any continuous function . φ with compact support in 
.R

d \ {0}, 

. lim
t→∞

∫
φ(x)dμt (x) =

∫
φ(x)dμ•(x).

Remark 4.2 Note the following identities: 
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. μt(A) = tμ(δt (A)) = t
Σ
y∈┌

1δtA(y)μ(y) = t
Σ

x∈δ−1
t ┌

1A(x)μ(δtx)

and 

. 

∫
φ(x)dμt (x) = t

∫
φ(δ−1

t y)dμ(y) = t
Σ

x∈δ−1
t ┌

φ(x)μ(δtx).

Remark 4.3 The normalization by a factor of t in .μt = tδ1/t (μ) is less restrictive 
than it may first appear because of Remark 3.12. If there is an approximate Lie 
dilation structure .(δt )t>0 (with limit law . •) such that the measure . μt = taδ−1

t (μ)

converges vaguely to . μ• on .Rd \ {0}, then the modified approximate Lie dilation 
structure .(δt1/a )t>0 gives the same limit law . • and is admissible for . μ. In this sense, 
the choice of the linear t factor in the definition of . μt amounts, more or less, to a 
scaling normalization.. □
Example 4.4 Fix .α ∈ (0, 2) and let . μ be the probability measure on .Z ⊂ R with 

. μ(k) = cα(1 + |k|)−α−1.

Let .δt (x) = t1/αx. Then .tδ−1
t (μ) converges vaguely on .R \ {0} as .t → ∞ to the 

measure . μ• with density .cα|x|−α−1 with respect to the Lebesgue measure on . R.. □
Example 4.5 Fix .α ∈ (0, 2) and .β ∈ (0, α). Let . μ be the probability measure on 
. Z2 given by 

. μ((x, y)) = c(1 + |x| + |y|)−α−2, (x, y) ∈ Z
2 ⊂ R

2.

Let .δt ((x, y)) = (t1/αx, t1/βy). Then .tδ−1
t (μ) converges vaguely on . R2 \ {(0, 0)}

as .t → ∞ to the measure .μ•(dxdy) = f•(x)dx ⊗ δ0(dy) supported on the x-axis 
with .f•(x) = c'|x|−α−1, where .c' = c

∫
R
(1 + u)−α−2du.. □

Example 4.6 On the Heisenberg group .H3(Z) viewed as the group of matrix 

.

⎧⎨
⎩

⎛
⎝
1 x1 x3

0 1 x2

0 0 1

⎞
⎠ : x1, x2, x3 ∈ Z

⎫⎬
⎭ , (4.2) 

consider the measure 

.μ((x1, x2, x3)) = cα⎛
1 +

/
x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4

, (4.3)
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(note that this is a symmetric measure). Consider an approximate Lie dilation 
structure .(δt )t>0 of the form .δt ((xi)

3
1) = (t1/γi xi)

3
1. For this to be an approximate 

Lie dilation structure, it must be that .1/γ3 ≥ 1/γ1 +1/γ2 which we assume. For the 
measure .tδ−1

t (μt ) to have a vague limit, it is necessary that . 1/γ1 ≥ 1/α, 1/γ2 ≥
1/α, and .1/γ3 ≥ 2/α. Note that the roles of x and y are the same so that we can 
assume for the sake of the computations described below that .1/γ1 ≤ 1/γ2. 

1. Assume that .1/γ2 ≥ 1/γ1 > 1/α. Then .1/γ3 > 2/α and it is not hard to see that 
.tδ−1

t (μ) converges vaguely to 0 as .t → ∞. 
2. Assume .γ1 = γ2 = γ3/2 = α. Then .(δt )t>0 is a group dilation structure and 

.tδ−1
t (μ) converges vaguely as .t → ∞ to 

. μ•((dx1, dx2, dx3)) = cαdx1dx2dx3⎛/
x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4 .

3. Assume that .1/γ1 = 1/γ2 = 1/α and .1/γ3 > 2/α. Then .tδ−1
t (μ) ⇒ μ• as 

.t → ∞, where 

. μ•(dx1dx2dx3) = c'
⎛/

x2
1 + x2

2

⎞α+2 dx1dx2 ⊗ δ0(dx3)

with .c' = 2c
∫ ∞
0 (1 + s)−(2+α/2)ds. 

4. Assume that .1/γ2 > 1/γ1 = 1/α. It follows that .1/γ3 ≥ 1/γ1 + 1/γ2 > 2/α. In  
this case .tδ−1

t (μ) ⇒ μ• as .t → ∞, where 

. μ•(dx1dx2dx3) = c'|x1|−α+1dx1 ⊗ δ0(dx2) ⊗ δ0(dx3)

with 

. c' = 2c
∫ ∞

−∞

⎛∫ ∞

0

⎛√
1 + u2 + v

⎞−(α+4)
dv

⎞
du.

We provide details for the third case (the fourth case is similar). Let f be a 
continuous function with compact support in .R

3 \ {0}. We want to show that 

. lim
t→∞

∫
f (x)dμt (x) = lim

t→∞ t
Σ

x∈Z3

cαf (δ−1
t (x))⎛

1 +
/

x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4

=
∫
R3

c'f (x)⎛/
x2
1 + x2

2

⎞α+2
dx1dx2 ⊗ δ0(dx3)
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=
∫
R2 

c'f (x1, x2, 0)⎛/
x2 
1 + x2 

2

⎞α+2 dx1dx2. 

Recall that .γ1 = γ2 = α and .2γ3 < α and write 

. 

∫
f (x)tδ−1

t (μ(dx)) = t
Σ

x∈Z3

f (δ−1
t (x))

cα⎛
1 +

/
x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4

= t
Σ

z∈δ−1
t (Z3)

f (z)
cα⎛

1 +
/

t2/γ1z21 + t2/γ2z22 + |t1/γ3z3 − t1/γ1+1/γ2z1z2/2|
⎞α+4

= t−4/α
Σ

z∈δ−1
t (Z3)

f (z)
cα⎛

t−1/α +
/

z21 + z22 + |t1/γ3−2/αz3 − z1z2/2|
⎞α+4

= t−4/α
Σ

z∈(t−1/αZ)2×t−2/αZ

cαf ((z1, z2, 0))⎛
t−1/α +

/
z21 + z22 + |z3 − z1z2/2|

⎞α+4

+ t−4/α
Σ

z∈(t−1/αZ)2×t−2/αZ

cα(f ((z1, z2, t
−1/γ3+2/αz3)) − f ((z1, z2, 0)))⎛

t−1/α +
/

z21 + z22 + |z3 − z1z2/2|
⎞α+4 .

The first term is, essentially, a (multivariate, generalized) Riemann sum of a 
uniformly continuous integrable function on . R3 over the lattice . (t−1/α

Z)2 × t−2/α
Z

and, consequently, it converges when t tends to infinity to 

. 

∫
R3

cαf (x1, x2, 0)⎛/
x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4

dx1dx2dx3 =
∫
R2

c'
αf (z1, z2, 0)

(z21 + z22)
(α+2)/2

dx1dx2,

where . c'
α = 2cα

∫ ∞
0

du

(1+u)(α+4)/2 .

The second term goes to 0 when t tends to . ∞ because f is uniformly continuous 
and .1/γ3 − 2/α > 0: for any .ε > 0, there is a . Tε such that for all .t > Tε, 

. |((z1, z2, t−1/γ3+2/αz3)) − f ((z1, z2, 0))| < ε.

This gives 

.t−4/α
Σ

(t−1/αZ)2×t−2/αZ

cα|f ((z1, z2, t
−1/γ3+2/αz3)) − f ((z1, z2, 0))|⎛/

z21 + z22 + |z3 − z1z2/2|
⎞α+4
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≤ εt−4/α
Σ

(t−1/αZ)2×t−2/αZ 

cα⎛/
z2 1 + z2 2 + |z3 − z1z2/2|

⎞α+4 . 

When t tends to infinity, the limit of the right-hand side is 

. ε

∫
R3

cα⎛/
x2
1 + x2

2 + |x3 − x1x2/2|
⎞α+4

dx1dx2dx3.

As .ε > 0 is arbitrary, this proves that 

. lim
t→∞ t−4/α

Σ

(t−1/αZ)2×t−2/αZ

cα(f ((z1, z2, t
1/γ3z3)) − f ((z1, z2, 0)))⎛

t−1/α +
/

z21 + z22 + |z3 − z1z2/2|
⎞α+4 = 0

as desired.. □

4.2 Vague Convergence of Jump Measures and Kernels 

Next, we relate the vague convergence of . μt to . μ• to the vague convergence of jump 
kernels. 

Proposition 4.7 Let .┌ ⊂ G be a discrete co-compact subgroup of the simply 
connected nilpotent Lie group .G = (Rd , ·). Let .c(┌,G) be the Haar volume of 
.G/┌ (i.e., of a fundamental domain for . ┌ in G). Let . μ be a probability measure on 
. ┌ and .(δt )t>0 be an approximate group dilation structure on G which is admissible 
for . μ, and let .μt := tδ1/t (μ). Suppose that . μt converges vaguely on .Rd \ {0} to a 
Radon measure . μ• as t tends to infinity. Then, for any continuous and compactly 
supported function . φ in .Rd × R

d \ Δ, the positive Radon measure .Jt (dxdy) on 
.R

d × R
d \ Δ defined by 

. 

∫∫
Rd×Rd\Δ

φ(x, y)Jt (dxdy) =

c(┌,G)t det(δ1/t )
Σ

x,y∈δ1/t (┌), x /=y

φ(x, y)μ(δt (x)−1 · δt (y))

converges vaguely as t tends to infinity to the positive Radon measure . J• defined on 
.(Rd × R

d) \ Δ by 

.

∫∫
Rd×Rd\Δ

φ(x, y)J•(dxdy) =
∫∫

Rd×Rd\Δ
φ(x, x • y)dxμ•(dy),
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where . • is the limit law .x • y = limt→∞ δ−1
t (δt (x) · δt (y)) for the approximate Lie 

dilation structure .(δt )t>0.. □
Remark 4.8 Of course, in the group .G• = (Rd , •), we can write 

. 

∫∫
Rd×Rd\Δ

φ(x, x • y)dxμ•(dy) =
∫∫

Rd×Rd\Δ
φ(x, y)dxμ•(x−1• • dy)

(the inverse operation is in .(G, •)) so that 

. J•(dxdy) = dxμ•(x−1• • dy).

Remark 4.9 Note that the measure .J 1
t (dx) defined by 

. 

∫
φ(x)J 1

t (dx) = c(┌,G) det(δ1/t )
Σ

x∈δ1/t (┌)

φ(x)

obviously converges to .
∫

φ(x)dx as t tends to infinity. That is, the vague limit of 
.J 1

t (dx) is the Lebesgue (. =Haar) measure on . Rd .. □
Proof Observe that 

.x ·t y = δ−1
t (δt (x) · δt (y)) (4.4) 

is a group law which turns . Rd into a Lie group .Gt = (Rd , ·t ) (this group is actually 
isomorphic to G). For any fixed .x ∈ δ1/t (┌), consider 

. t
Σ

y∈δ1/t (┌)\{x}
φ(x, y)μ(δt (x)−1 · δt (y)) = t

Σ
y∈δ1/t (┌)\{x}

φ(x, y)μ(δt (x
−1 ·t y))

= t
Σ

y∈δ1/t (┌)\{x}
φ(x, x ·t y)μ(δt (y)).

Now, write 

.

∫∫
Rd×Rd\Δ

φ(x, y)Jt (dxdy) −
∫∫

Rd×Rd\Δ
φ(x, y)J•(dxdy)

=
∫∫

Rd×Rd\Δ
φ(x, y)Jt (dxdy) −

Σ
y∈δ1/t (┌)\{e}

∫
Rd

φ(x, x • y)tμ(δt (y))dx

+
Σ

y∈δ1/t (┌)\{e}

∫
Rd

φ(x, x • y)tμ(δt (y))dx −
∫∫

Rd×Rd\Δ
φ(x, y)J•(dxdy)

= I1(t) + I2(t).
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To bound . |I1|, write .ct = c(┌,G) det(δ1/t ) and 

. |I1(t)| =
||||||

Σ
y∈δ1/t (┌)\{e}

tμ(δt (y))

⎛
⎝ct

Σ
x∈δ1/t (┌)

φ(x, x ·t y) −
∫

φ(x, x • y)dx

⎞
⎠

||||||
.

Note that . φ is continuous and compactly supported in .Rd × R
d \ Δ and . x ·t y

converges (uniformly on compact sets) to .x • y. It follows that there is a compact 
set .K = Kφ in .Rd \ {0} with the property that, for any .ε > 0, there is T such that, 
for all .y ∈ R

d and all .t > T , 

. 

|||||||
ct

Σ

x∈δ−1
t ┌

φ(x, x ·t y) −
∫

φ(x, x • y)dx

|||||||
≤ ε1K(y).

Also, there exist .CK and . T ' such that for all .t > T ', .tμ(δt (K)) ≤ CK . It follows 
that .|I1(t)| ≤ εCK . As for .|I2(t)|, the fact that it converges to 0 is a consequence of 
the vague convergence of .tδ−1

t (μ) to . μ• on .R
d \ {0}. ⨅⨆

The jump kernel . Jt introduced above is defined on .Rd × R
d \ Δ and acts on 

functions of .x, y ∈ R
d ×R

d \Δ. It is useful to consider also a related discrete jump 
kernel supported on 

. ┌t × ┌t \ Δ,

where .┌t = δ−1
t (┌) (by abuse of notation, we use the letter . Δ to denote the diagonal 

on .R × R for any space R, e.g., .R = R or .R = ┌t ). Note that . ┌t is a co-compact 
subgroup of the group .Gt = (Rd , ·t ) defined at (4.4) and that . δt provides a group 
isomorphism from . ┌t onto . ┌. We equipped . ┌t with the rescaled counting measure 

.mt(A) = c(┌,G) det
⎛
δ−1
t

⎞
|A|, where |A| = #A (4.5) 

for any finite subset .A ⊂ ┌t . On . ┌t , we consider the jump kernel measure . jt defined 
by 

.jt (x, y) = c(┌,G)t det(δ1/t )μ(δt (x)−1 · δt (y)), (x, y) ∈ ┌t × ┌t \ Δ. (4.6) 

We now assume that the probability measure . μ on . ┌ is symmetric. Then . jt (x, y)

is symmetric in .(x, y) and it gives rise to an associated symmetric Dirichlet form in 
.L2(┌t ,mt ) with domain .F(t) := L2(┌t ,mt ) defined by 

. E(t)(u, v) = 1

2

Σ
x,y∈┌t

(u(x) − u(y))(v(x) − v(y))jt (x, y), u, v ∈ F (t).

(4.7)
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The infinitesimal generator of this Dirichlet form on .L2(┌t ,mt ) is 

.f |→ −t
⎛
f − f ∗┌t δ−1

t (μ)
⎞

(4.8) 

on . ┌t . 
Recall that .┌t ⊂ R

d . For each .x ∈ R
d , let  .[x]t ∈ ┌t be the point closest to x in 

the .‖ · ‖-norm (if there are more than two such points, we choose one arbitrary and 
fix it). When needed, extend a function . f on . ┌t to a function . f̃ on . Rd by setting 
.f (x) = f ([x]t ) for each .x ∈ R

d . We say a family of functions . {ft : ┌t → R}t≥1
converges uniformly to a function f on . Rd if . f̃ converges uniformly to f . 

The following is an easy consequence of Proposition 4.7 that relates to . jt . It is  
stated for continuous limit, but it obviously holds as well for sequential limits based 
on an arbitrary sequence . tk tending to infinity. 

Lemma 4.10 Let .{ft : ┌t → R}t>0 (resp. .{gt : ┌t → R}t ) be a family of 
continuous functions that converges uniformly to a continuous function f (resp. 
g) on . Rd . Then, under the assumptions of Proposition 4.7, for any open set . U ⊂
R

d ×R
d \ {(x, y) : ‖x−1• • y‖2 ≤ η} with .η > 0 whose closure is compact, it holds 

that 

. lim
t→∞

Σ
(x,y)∈(┌t×┌t )∩U

(ft (x) − ft (y))(gt (x) − gt (y))jt (x, y)

=
∫∫

U

(f (x) − f (y))(g(x) − g(y))J•(dxdy).

. □
Proof Set .ψt(x, y) := (ft (x) − ft (y))(gt (x) − gt (y)) and . ψ(x, y) := (f (x) −
f (y))(g(x) − g(y)). Then 

. 

||||||
Σ

(x,y)∈(┌t×┌t )∩U

ψt (x, y)jt (x, y) −
∫∫

U

ψ(x, y)J•(dxdy)

||||||

≤
||||||

Σ
(x,y)∈(┌t×┌t )∩U

(ψt (x, y) − ψ(x, y))jt (x, y)

||||||

+
||||
∫∫

U

(ψ(x, y)Jt (dxdy) − ψ(x, y)J•(dxdy))

|||| =: I1 + I2.

By Proposition 4.7, .supt≥1
Σ

(x,y)∈(┌t×┌t )∩U jt (x, y) < ∞. It follows that 
.limt→∞ I1 = 0 because . ψt converges uniformly to . ψ . By the proof of Proposi-
tion 4.7 (and the fact that U is compact in .R

d × R
d \ Δ), .limk→∞ I2 = 0. ⨅⨆



Chapter 5 
Weak Convergence of the Processes 

5.1 Assumption (A) 

In this chapter and next, we prove limit theorems involving 

(a) A finitely generated torsion-free nilpotent group . ┌ embedded as a co-compact 
lattice in a simply connected nilpotent Lie group G 

(b) A symmetric probability measure . μ on . ┌
(c) A polynomial coordinate system for .G = (Rd , ·) and straight dilation structure 

.δt , t > 0, δt

⎛
(ui)

d
1

⎞
= (t1/βi ui)

d
1 , βi ∈ (0, 2), i = 1, . . . , d, (5.1) 

which is an approximate group dilation structure for G with limit group . G• =
(Rd , •)

The key hypothesis we will make that links together the probability measure . μ, 
the dilation structure .(δt )t>0, and the limit group . G• is that 

(A) The straight dilation structure .(δt )t>0 is admissible for the probability measure 
. μ, that is, the (positive) measure .μt = tδ1/t (μ), .t ≥ 1, defined at (4.1) 
converges vaguely to a non-trivial Radon measure . μ• on .Rd \ {0} as t tends 
to infinity. 

Remark 5.1 

(i) The Radon measure . μ• appeared in (A) is on .Rd \ {0} and is expressed under 
the global coordinate system we use for the nilpotent group G and hence for 
. G•. It induces a Radon measure of .G• through this global coordinate system. 
By abusing the notations, we use the same notation . μ• for the induced measure 
on . G•. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Z.-Q. Chen et al., Limit Theorems for Some Long Range Random Walks on Torsion 
Free Nilpotent Groups, SpringerBriefs in Mathematics, 
https://doi.org/10.1007/978-3-031-43332-0_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43332-0protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5
https://doi.org/10.1007/978-3-031-43332-0_5


48 5 Weak Convergence of the Processes

(ii) Under assumption (A), it follows from the definition of .μt that .μ• is a 
symmetric measure on .G• \ {e} and has the following scaling property: 

.δr (μ•) = rμ• for every r > 0; (5.2) 

that is, for any Borel measurable set .A ⊂ R
d \ {0}, .μ•(A) = μ•(A−1• ), where 

.A−1• := {x ∈ R
d : x−1• ∈ A}, and 

. μ•
⎛
δ−1
r (A)

⎞
= μ•(δ1/r (A)) = rμ•(A) for every r > 0.

We are most interested in the case the limit measure .μ• is not supported on 
a proper, closed, connected subgroup of . G•. In that case, the condition that the 
exponents .{βi, 1 ≤ i ≤ d} for the straight dilation structure .{δt ; t ≥ 0} of (5.1) 
are in .(0, 2) means that the original measure . μ must have some sort of heavy tail 
characteristics, i.e., . μ has to be “stable-like.” 

5.2 Geometries on Rd and G• 

Fix .β ≥ max1≤i≤d{βi}. By Hebisch and Sikora [37], there is a norm .‖ · ‖ on . G• =
(Rd , •) (this means that .‖x • y‖ ≤ ‖x‖ + ‖y‖ for all .x, y ∈ R

d , .‖x−1• ‖ = ‖x‖ and 
.‖x‖ = 0 if and only if .x = 0) such that 

.‖δt (u)‖ = t1/β‖u‖ for every t > 0 and u = (ui)
d
1 ∈ R

d . (5.3) 

This implies, of course, that there are constants .c, C ∈ (0,∞) such that 

.c max
1≤i≤d

{|ui |βi/β} ≤ ‖u‖ ≤ C max
1≤i≤d

{|ui |βi/β} for u = (ui)
d
1 ∈ R

d . (5.4) 

Note that .max1≤i≤d{|ui |βi/β} itself is a norm on .(Rd ,+) but not necessarily on 
.G• = (Rd , •) (it may not be symmetric on .G• and only satisfies the triangle 
inequality up to a multiplicative constant in general). Set 

. B(r) =
⎨
x ∈ R

d : ‖x‖ < r
}

.

Obviously, we have 

. ‖δt (u)‖ = t1/β‖u‖ and δt (B(r)) = B(rt1/β).

This means that the volume (the Lebesgue measure) of .B(r) is 

.m(B(r)) = m(δrβ (B(1))) = m(B(1)) det(δrβ ) = m(B(1))rβ(
Σd

i=1 1/βi ).
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Recall that . Rd is also equipped with the Euclidean norm .‖u‖2 =
/Σd

1 |ui |2. Let 

. β− = min
1≤i≤d

βi and β+ = max
1≤i≤d

βi .

From the definition, it is clear that 

.c min{‖u‖β/β− , ‖u‖β/β+} ≤ ‖u‖2 ≤ C max{‖u‖β/β− , ‖u‖β/β+}. (5.5) 

Similarly, for any .u ∈ R
d with .‖u‖ ≤ C1r

1/β , we have  

.c2

⎛‖u‖2

r

⎞β+/β

≤ ‖u‖
r1/β

≤ C2

⎛‖u‖2

r

⎞β−/β

. (5.6) 

We will need the following version of Lemma 3.10 with respect to the norm .‖ · ‖. 

Lemma 5.2 For any compact .K ⊂ R
d , there is a constant .CK such that, for any 

.x, y ∈ K and .t ≥ 1, 

. ‖δ1/t

(
δt (x)−1 · δt (y)

)‖ ≤ CK‖y − x‖β−/β+

and 

. ‖δ1/t

(
δt (x)−1 · δt (y)

)‖ ≤ CK‖x−1• • y‖β−/β+ .

Proof In view of (3.1) and (3.5), the function .(t, x, y) |→ δ1/t

(
δt (x)−1δt (y)

)
is a 

polynomial in 

. (x, y) = (x1, . . . , xd, y1, . . . , yd)

with coefficients equal to a linear combination of powers of t with exponents in 
. R. By (3.9), only non-positive powers of t appear. The desired inequality follows 
from (5.5) because this polynomial function is equal to 0 when . x = y. For the  
second inequality, we first note from (5.5) again that for .x, y ∈ K , 

. ‖δ1/t

(
δt (x)−1 · δt (y)

)‖ ≤ CK‖x − y‖β−/β

2

and then observe that .‖x − y‖2 ≤ C'
K‖x−1• • y‖β/β+ . ⨅⨆

5.3 Convergence of Volume 

Recall that .┌t := δ−1
t (┌) = δ1/t (┌),
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. B(r) = {x : ‖x‖ < r} and B•(x, r) = x • B(r) =
⎨
y ∈ R

d : ‖x−1• • y‖ < r
}

.

Recall also that m is the Lebesgue measure on . Rd and 

. mt(A) = c(┌,G) det
⎛
δ−1
t

⎞
#A

for any finite subset A of . ┌t , where .c(┌,G) is given in Proposition 4.7 (see also 
below). 

Lemma 5.3 For all .x ∈ R
d and .r ≥ 0, 

. lim
t→∞ mt(B•(x, r) ∩ ┌t) = m(B•(x, r)). (5.7) 

Proof Fix .x ∈ R
d and .r ≥ 0. Recall that .B•(x, r) = x • B(r) and 

. δt (x • B(r)) = δt (x) • B(rt1/β) = B•(δt (x), rt1/β),

so that .B•(x, r) ∩ ┌t is the finite set of all points .y ∈ R
d such that 

. z = δt (y) ∈ B•(δt (x), rt1/β) ∩ ┌.

Let .dist• be a left-invariant Riemannian metric on the Lie group .G = (Rd , ·) and 
take the Voronoi cell of e for the discrete subgroup . ┌: 

. U =
⎧
x ∈ R

d : dist•(x, e) = min
γ∈┌

dist•(x, γ )

⎫

so that 

. R
d =

| |
γ∈┌

γ · U

and .(γ ·U)∩(γ ' ·U) ⊂ γ ∂U and thus .m((γ ·U)∩(γ ' ·U)) = 0 for any .γ /= γ ' ∈ ┌. 
Note that this definition is based on the law . · of the Lie group .G = (Rd , ·) and its 
closed subgroup . ┌, not on the rescaled limit law . •. Since .m(∂U) = 0, by definition, 
.c(┌,G) = m(U). For any .S ⊂ R

d , we have  

. c(┌,G)#{z ∈ ┌ ∩ S} ≤ m(S · U).

In particular, for .S = B•(δt (x), rt1/β) = δt (B•(x, r)), 

.c(┌,G)#{z ∈ ┌ ∩ B•(δ(x), rt1/β)} ≤ m(δt [δ1/t (δt (B•(x, r)) · δt (δ1/t (U)))]).
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Note that since . ┌ is a co-compact closed subgroup of G, U is bounded and closed 
and hence compact. Consequently, .δ1/t (U) converges uniformly to . {e} as .t → ∞. 
By the uniform convergence of the product . ·t to . • on compact sets (e.g., see 
Lemma 5.2), for any fixed .ε > 0, there exists a constant .T > 0 large enough 
such that, for all . t > T , the set .[δ1/t (δt (B•(x, r)) · δt (δ1/t (U)))] is contained in an 
. ε neighborhood for the norm .‖ · ‖ in the group .(G, •) of the set .B•(x, r) • δ1/t (U). 
This means that, for t large enough, 

. δ1/t (δt (B•(x, r)) · δt (δ1/t (U))) ⊂ B•(x, r + 2ε).

Hence, 

. det(δ1/t )c(┌,G)#{z ∈ ┌ ∩ B•(δ(x), rt1/β)} ≤ det(δ1/t )m(δt (B•(x, r + 2ε)))

= m(B•(x, r + 2ε)).

Take the limsup in .t → ∞, note that .m(B•(x, r + 2ε)) = c(r + 2ε)
Σd

1 β/βi , and let 
. ε tend to 0, to obtain 

. lim sup
t→∞

mt(B•(x, r) ∩ ┌t) ≤ m(B•(x, r)).

To prove the complementing inequality, namely, 

. lim inf
t→∞ mt(B•(x, r) ∩ ┌t) ≥ m(B•(x, r)),

we use the same line of reasoning as above to see that, for any fixed .ε > 0 and all t 
large enough, 

. B•(δt (x), (r − 2ε)t1/β) ⊂
| |

γ∈B•(δt (x),rt1/β )

γ · U.

From this, it follows that, for all t large enough, 

. m(B•(x, r − 2ε)) ≤ det(δ1/t )c(┌,G)#{z ∈ ┌ ∩ B•(δ(x), rt1/β)}.

The desired lower bound follows. ⨅⨆

5.4 Further Hypotheses 

Under the general circumstances described above, in order to obtain limit theorems 
relating the random walk on . ┌ driven by . μ to the continuous time left-invariant 
jump process on .G• associated with the jump measure . J• of Proposition 4.7, we
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need several additional hypotheses which we now spell out in detail. One important 
feature of the various hypotheses described in this section is that they do not involve 
the precise limit behavior of . μt as t tends to infinity. In a non-technical sense, they 
are of a coarser, more robust nature. In Chap. 10, we will exhibit a large class of 
“stable-like” measures on . ┌, all of which satisfy these hypotheses thanks to the 
results of [20, 56]. 

5.4.1 The Random Walk on � (Regularity) 

A bounded function u on . ┌ is called .μ-harmonic in a subset U if it satisfies 

. u ∗ μ = u in U.

Consider the following basic regularity assumption regarding .μ-harmonic functions. 
Note that we consider that . ┌ is a subgroup of .G = (Rd , ·) and use the .G•-norm . ‖ ·‖
to state this property. 

(R1) There are constants .C1 and .κ > 0 such that, for any bounded function u 
defined on . ┌ and .μ-harmonic in .B(r) = {x ∈ R

d : ‖x‖ < r}, .r > 0, and all 
.x, y ∈ ┌ ∩ B(r/2), we have  

.|u(y) − u(x)| ≤ C1‖u‖∞
⎛‖x−1 · y‖

r

⎞κ

. (5.8) 

Remark 5.4 For any fixed .a > 0, changing .‖·‖ to .‖·‖a (including in the definition 
of balls) amounts to changing . κ to .κ/a > 0.. □

5.4.2 Exit Time Estimates 

We consider the following exit time hypotheses formulated in terms of the norm . ‖·‖
and the scaling exponent .β > 0 associated with it in (5.3). In particular, the balls 
appearing in the definition below are the balls .B(r) = {x ∈ R

d : ‖x‖ < r}, .r ≥ 0, 
even so the exit probability estimates below concern the random walk on . ┌. 

(E1) There exists .A > 1 such that the following holds: for any .ε ∈ (0, 1), there 
exists .γ = γ (A, ε) > 0 such that for any . r > 0, we have  

. P
x
(
τB(Ar) ≤ γ rβ

) ≤ ε for all x ∈ ┌ ∩ B(r).

(E2) There exists .0 < C < ∞ such that for any . r > 0, we have
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. E
x
┌
τB(r)

┐ ≤ Crβ for all x ∈ ┌ ∩ B(r).

Here, .Px and .Ex refer to the random walk on . ┌ starting from x driven by the 
probability measure . μ. 

Remark 5.5 For our limit theorems to hold, the exponent .β > 0 in (E1) and (E2) 
needs to be the same exponent . β in (5.3). Thus, in this context, conditions (E1) 
and (E2) as well as condition (R1) are not only a condition on the measure . μ
(which determines the random walk .Xn on . ┌ and hence its harmonic functions) 
but also a condition on its comparability with the dilation structure .(δt )t>0, scaled 
measure .μt = tδ1/t (μ), and norm .‖ · ‖ on . Rd . We expect the rescaled random 
walks .(δ1/k(X[kt]))t>0 to converge when k tends to infinity to a self-similar process 
.(Zt )t>0 satisfying .δ1/s(Zst ) = Zt for all .s, t > 0. From the definition of .‖·‖ at (5.3), 
the expected exit time out of a ball of radius r for this process should scale as . rβ . 
Moreover, the random walk exit time of the ball of radius r is 

. τB(r) = inf{n : Xn /∈ B(r)} = rβ inf
{
n/rβ : δ1/rβ (Xrβ(n/rβ)) /∈ B(1)

}

and we expect that, as n tends to infinity, 

. inf
{
n/rβ : δ1/rβ (Xrβ(n/rβ)) /∈ B(1)

} → inf{s : Zs ∈ B(1)}

so that .Ee
┌
τB(r)

┐
should indeed behave as . rβ .. □

5.4.3 Tails Properties for Jt and J• 

We now discuss two related sets of hypotheses that are more technical but essential 
to obtain the desired results. They concern the limit jump measure . J• and the 
rescaled jump measures . Jt for large .t > 0. These hypotheses will have a 
natural flavor to anyone familiar with Lévy processes and Dirichlet forms. They 
complement the vague convergence of . Jt to J on .(Rd × R

d) \ Δ. 
Set 

. B•(x, r) = x • B(r) =
⎨
y ∈ R

d : ‖x−1• • y‖ < r
}

.

Concerning the limit measure . μ• (equivalently, the limit symmetric Radon measure 
.J•(dxdy) = dxμ•(x−1• • dy) on .(Rd ×R

d) \Δ from Proposition 4.7), consider the 
hypothesis that 

(T. •) . lim
R→∞

⎛∫
B(1/R)

‖z‖2
2 μ•(dz) + μ•(B(R)c)

⎞
= 0. 

Note that condition (T. •) is equivalent to
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.

∫
G•

min
⎨

1, ‖z‖2
2

}
μ•(dz) < ∞, (5.9) 

which is (2.3) for .ν = μ•. 
Under this hypothesis, . J• is the jump measure of a symmetric bilinear form 

.E•(u, v) := 1

2

∫∫
Rd×Rd\Δ

(u(x) − u(y))(v(x) − v(y))J•(dx, dy) (5.10) 

on .Lipc(R
d), which is the space of Lipschitz functions with compact support. 

Moreover, this form is closable in .L2(G•; dx) and its closure is a regular conserva-
tive Dirichlet form .(E•,F•)—see, e.g., [27, Example 1.2.4] and [33, Theorem 1.3]. 
Hence by Chen and Fukushima [19, Corollary 6.6.6], 

.F• =
⎨
u ∈ (F•)loc ∩ L2(G•; dx) : E•(u, u) < ∞

}
. (5.11) 

Recall that by Lemma 3.9, the straight dilation .{δt , t > 0} is a group dilation 
structure for the group .(G•, •). Denote by .(L•, Dom(L•)) the infinitesimal gen-
erator of .(E•,F•) on .L2(G•; dx). Under the hypothesis (T. •), we have . C2

b(Rd) ∩
L2(Rd ;m) ⊂ Dom(L•) and 

. L•f (x) = lim
ε→0

∫
{z∈G•:‖z‖≥ε}

(f (x • z) − f (x))μ•(dz) for f ∈ Dom(L•).

(5.12) 
For .f ∈ Dom(L•) and . r > 0, we have by  (5.2) and (5.3) that for .x ∈ G•, 

. L•(f ◦ δr )(x) = lim
ε→0

∫
{z∈G•:‖z‖≥ε}

(f (δr (x • z)) − f (δr(x)))μ•(dz)

= lim
ε→0

∫
{z∈G•:‖w‖≥ε}

(f (δr (x) • δr (z)) − f (δr(x)))μ•(dz)

= lim
ε→0

∫
{z∈G•:‖w‖≥ε}

(f (δr (x) • w) − f (δr(x)))(δrμ•)(dw)

= r lim
ε→0

∫
{z∈G•:‖w‖≥ε}

(f (δr (x) • w) − f (δr(x)))μ•(dw)

= rL•f (δr(x)). (5.13) 

In particular, we have for .f ∈ C2
c (Rd) and .r > 0, 

.L•(f ◦ δr )(e) = rL•f (e). (5.14) 

Remark 5.6 Under the hypothesis (T. •), let . X• be the symmetric Hunt process on 
. G• associated with the regular Dirichlet form .(E•,F•) on .L2(G•, dx); see [19, 27].
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In view of (5.12), .X• has stationary independent increment property; that is, for 
any .t > s ≥ 0, .(X•

s )
−1• • X•

t is independent of .σ(X•
r ; r ≤ s) and has the same 

distribution as .(X•
0)

−1• • X•
t−s . Thus .X• can be refined to start from every point in 

. G•. Moreover, it follows from (5.13) that if .X•
0 = e, then 

.{δr (X
•
t ); t ≥ 0} has the same distribution as {X•

rt ; t ≥ 0}. (5.15) 

We know from Lemma 3.9 the straight dilations .{φt , t > 0} form a group dilation 
structure for the nilpotent group .(G•, •). Thus in the terminology of [42, p.170], the 
Lévy process . X• is stable with respect to the dilations .{φt , t > 0}.. □
Remark 5.7 In the terminology of [29, p.31], the scaling property (5.14) says that 
the generating functional .f → L•f (e) is a kernel of order .β+ = max1≤i≤d βi . 
Observe that in [29], the exponents .{dj , 1 ≤ j ≤ d} for the straight dilation structure 
.{δt , t > 0} are our .{1/βj , 1 ≤ j ≤ d} and the smallest . dj there (which corresponds 
to our . β+, the largest of . βj ) is normalized to be equal to 1; see Remark 3.12 for the 
procedure of doing such a normalization. Note also that the norm . | · | defined on [29, 
(1.1)] is comparable to our norm .‖ · ‖.. □

Regarding the scaled measure . μt used to define the scaled jump kernel . Jt , 
consider the property 

(T. ┌) . lim
R→∞ lim sup

t→∞

⎛∫
B(1/R)

‖z‖2
2 μt(dz) + μt(B(R)c)

⎞
= 0. 

Remark 5.8 In conditions (T. •) and (T. ┌), it is crucial to use the norm .‖ · ‖2 in the 
integrant in order to measure the strength of small jumps allowed by theses jump 
kernels in a classical fashion. In these two conditions, it is natural to use the norm 
.‖ · ‖ in the definition of ball .B(r) due to the scaling property of .{δt : t > 0}, but we  
may also use .‖ · ‖2 if desired because of (5.5).. □
Proposition 5.9 Condition (T. ┌) implies the following analogous condition con-
cerning the jump kernel . Jt : 

(T. ┌•) For any fixed compact set .K ⊂ R
d , 

.lim
η→0

lim sup
t→∞

∫∫
{(x,y)∈K2:‖x−1• •y‖≤η}

‖x−1• • y‖2
2Jt (dx, dy) = 0, . (5.16) 

lim 
R→∞ lim sup 

t→∞

∫
x∈K

∫
y∈B•(x,R)c 

Jt (dx, dy) = 0. (5.17) 

. □
Proof Let K be a compact subset of . Rd . Without loss of generality, we assume K 
is symmetric for the group law . •, that is, .x−1• ∈ K for every . x ∈ K . Let . r0 =
supx∈K ‖x‖. Recall from (3.8) that for .x, y ∈ G, .x ·t y := δ1/t (δt (x)−1 · δt (y)). We  
denote by .x−1

t the inverse of x under the group law . ·t .
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Observe that on .K × K , by Lemma 3.10, the norms .‖x−1 ·t y‖2 and . ‖x−1• • y‖2
are uniformly comparable for .t ≥ tK ≥ 1. Hence 

. lim
η→0

lim sup
t→∞

∫∫
{(x,y)∈K2:‖x−1• •y‖2≤η}

‖x−1• • y‖2
2Jt (dx, dy)

≤ CK lim
η→0

lim sup
t→∞

∫∫
{(x,y)∈K2:‖x−1·t y‖2≤η}

‖x−1 ·t y‖2
2Jt (dx, dy)

≤ CK lim
η→0

lim sup
t→∞

c(G,┌)det(δ1/t )#{x ∈ K ∩ δ1/┌(┌)}
∫

B(η)

‖z‖2
2 μt(dz)

≤ CKm(B(r0)) lim
η→0

lim
t→∞

∫
B(η)

‖z‖2
2 μt(dz)

= 0,

where we used Lemma  5.3 with .m(B(r0)) denoting the Haar or Lebesgue measure 
of the ball .B(r0) which contains K . This gives (5.16). 

For any .ε > 0, by condition (T. ┌), there are .R0 > 0 and .t0 > 0 so that 

. μt(B(R0)
c) < ε for all t ≥ t0.

Note that 

. B(R0 + r0) ⊂ B•(x, R0 + 2r0) ⊂ B(R0 + 3r0) for every x ∈ K.

Since .x−1
t ·t y converges uniformly to .x−1• • y on the compact set . K × B(R0 + 3r0)

as .t → ∞, there is some .t0 > 0 so that 

. x−1
t ·t B•(x, R0 + 2r0) ⊃ B(R0) for every x ∈ K and t ≥ t0.

In other words, 

. x−1
t ·t B•(x, R0 + 2r0)

c ⊂ B(R0)
c for every x ∈ K and t ≥ t0.

Hence 

. lim
R→∞ lim sup

t→∞

∫
x∈K

∫
y∈B•(x,R)c

Jt (dx, dy)

= lim
R→∞ lim sup

t→∞

∫
x∈K

∫
x−1
t ·t y∈x−1

t B•(x,R)c
Jt (dx, dy)

≤ lim sup
t→∞

∫
x∈K

∫
x−1
t ·t y∈x−1

t ·t B•(x,R0+2r0)
c

Jt (dx, dy)
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≤ lim sup 
t→∞ 

c(G,┌)det(δ1/t )#{x ∈ K ∩ δ1/┌(┌)} μt(B(R0)
c ) 

≤ m(B(r0))ε, 

where Lemma 5.3 is used in the last inequality. This shows that (5.17) holds. ⨅⨆
Remark 5.10 Recalling (5.9), one can check that conditions (A), (T. •), and (T. ┌) 
combined are equivalent to the following condition: 

(A. ') The straight dilation structure .(δt )t>0 is admissible for the probability measure 
. μ in the sense that the finite positive measure .(‖z‖2

2 ∧ 1) μt (dz) converges 
weakly on .Rd \ {0} to a finite measure .(‖z‖2

2 ∧ 1) μ• as t tends to infinity, 
where . μt is the measure defined at (4.1). 

. □
Note that Examples 4.4–4.6 satisfy any of these conditions (A), (T. •), (T. ┌), 

(R1)–(R2), and (E1)–(E2). 

5.5 Weak Convergence 

Throughout this section, we generally assume that (A)–(R1)–(E1)–(E2), (T. •), and 
(T. ┌) are all satisfied even so we will list exactly which properties are used for 
different results stated in this section. In view of Proposition 5.9, condition (T. ┌) 
implies (T. ┌•). This will be used without further comment in what follows. 

Because of assumptions (A) and (T. •), we can consider the (continuous time) 
Markov semigroup of operators 

. {P•,s}s≥0

corresponding to .(E•,F•) at (5.10). Let .{Uλ• ; λ > 0} and .{Px•; x ∈ G•} be the 
resolvent, and probabilities corresponding to the regular Dirichlet form .(E•,F•) on 
.L2(G•; dx). Our goal is to prove that the continuous time conservative Markov 
process associated with this regular Dirichlet form is the limit of the properly 
rescaled discrete time random walk on . ┌ driven by the probability measure . μ. 
We let .(Xn)n≥0 denote this random walk. Assumptions (R1) and (E1)–(E2) are 
assumptions regarding the behavior of this discrete time random walk on . ┌. 

Fix an arbitrary sequence of positive reals .{Tk} that goes to . ∞. We write 
.(E(k),F (k)) for .(E(Tk),F (Tk)) defined by (4.7) with . Tk in place of t there, which 
corresponds to the rescaled discrete time process by 

.

⎛
X(k)

n := δ−1
Tk

(XTkn)
⎞

n∈(1/Tk)N∪{0} .
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Note that this is just discrete time random walk on .┌Tk
where time has been 

rescaled linearly according to the scaling sequence . Tk . Let .{P k
n ; n ∈ (1/Tk)N∪{0}}, 

.{Uλ
k ; λ > 0}, and .{Px

k ; x ∈ ┌Tk
} be the associated semigroup, resolvent, and 

probabilities, respectively. For .t ≥ 0, we write 

.X̂
(k)
t := δ−1

Tk
(X[Tkt]) = X

(k)
[Tkt]/Tk

, P̂ k
t := P k

[Tkt]/Tk
(5.18) 

and denote the corresponding probabilities by .{P̂x
k ; x ∈ ┌Tk

}. So, for .x, y ∈ ┌Tk
, 

and .n = m/Tk, m ∈ N ∪ {0}, 

. P
x
k

⎛
X(k)

n = y
⎞

= μ(m)(δTk
(x)−1 · δTk

(y)),

and for .x, y ∈ ┌Tk
and .t > 0, 

.P̂
x
k

⎛
X̂

(k)
t = y

⎞
= μ([tTk])(δTk

(x)−1 · δTk
(y)). (5.19) 

For a constant . M0 > 0, let .D([0,M0],Rd) be the space of right continuous 
functions on .[0,M0] having left limits and taking values in . Rd that is equipped with 
the Skorohod . J1 topology. Our goal is to prove the following theorem. Recall that 
.βi ∈ (0, 2), .1 ≤ i ≤ d, are the parameters in (5.1) for the straight dilation structure 
.{δt ; t > 0} and .β+ = max{βi : 1 ≤ i ≤ d}. 
Theorem 5.11 Referring to the setup and notation introduced above, assume that 
(5.3), (A)–(R1)–(E1)–(E2), (T. •), and (T. ┌) are all satisfied with the same exponent 
.β > 0. Then 

(i) The symmetric Hunt process . X• associated with the regular Dirichlet form 
.(E•,F•) on .L2(G•; dx) is a Lévy process on . G•. The Lévy process . X•

t

has a bounded, strictly positive, jointly continuous transition density function 
.p(t, x, y) = p(t, x−1• •y)with respect to dy that has the following properties: 

(a) Let .γ0 := Σd
i=1 1/βi . For every .(t, x) ∈ (0,∞) × G•, 

.p(t, x) = t−γ0p(1, δ1/t (x)). (5.20) 

In particular, there is a constant .C1 > 0 so that .p(t, x) ≤ C1t
−γ0 for every 

.(t, x) ∈ (0,∞) × G•. 
(b) For every .γ ∈ (0, β+ ∧ 1), there is a constant .C2 > 0 so that 

.|p(1, x) − p(1, y)| ≤ C2‖x−1• • y‖γ for x, y ∈ G•. (5.21) 

(c) For every .α ∈ (0, β+), there is a constant .C3 > 0 so that for every . (t, x) ∈
(0,∞) × G•,
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.p(t, x) ≤ min

⎧
C1t

−γ0 , C3
tα/β+

‖x‖d+α

⎫
. (5.22) 

(ii) For any bounded continuous function f on . Rd , .P̂ k
s f converges uniformly on 

compacts to .P•,sf . Furthermore, for each .M0 > 0, for every .x ∈ R
d , . ̂P[x]k

k

converges weakly to . Px• on the space .D([0,M0],Rd). 

. □
Remark 5.12 Note that under its conditions, Theorem 5.11 in particular implies 
that the Lévy process . X• is always non-degenerate in the sense that it has a strictly 
positive convolution density kernel .p(t, x) with respect to the Haar measure dx 
on . G•. Consequently, the support of its Lévy measure .μ• generates the whole 
group . G•.. □

5.6 Proof of Theorem 5.11 

In this section, we prove Theorem 5.11. The main part of the argument is based on 
Section 4 of [9]. Similar arguments for discrete setting (including a diffusion term 
in the limit) are given in [11, Theorem 5.5]. 

Recall that .X(k)
n = δ−1

Tk
(XTkn), .n ∈ T −1

k N ∪ {0}. We first state a lemma that is an 
easy consequence of rescaling, and assumptions (R1)–(E1)–(E2), and Lemma 5.2 
(with .φt = δt ). For .x0 ∈ ┌Tk

, let  

. BTk
(x0, r) = x0 ·Tk

B(r).

Note that this is different from .B•(x0, r) = x0 • B(r) which we have used earlier.  
Also, .y ∈ BTk

(x0, r) if and only if .δ1/Tk
(δTk

(x0)
−1) ·Tk

y ∈ B(r) (i.e., we have to 
take the inverse of . x0 in .(┌t , ·t ) with .t = Tk). 

Lemma 5.13 

(i) Assume (E1). Then, there exists .A > 1 such that the following holds: for any 
.ε ∈ (0, 1), there exists .γ := γ (A, ε) > 0 such that for all .k ≥ 1, .x0 ∈ ┌Tk

, 
.r ∈ (0, 1), and .x ∈ BTk

(x0, r) ∩ ┌Tk
, 

. P
x
k

⎛
τBTk

(x0,Ar)(X
(k)) ≤ γ rβ

⎞
≤ ε.

(ii) Under (E2), there exists .c1 > 0 such that the following holds for all .k ≥ 1, 
.x0 ∈ ┌Tk

, and .r ∈ (0, 1) and all .x ∈ BTk
(x0, r) ∩ ┌Tk

, 

.E
x
k

[
τBTk

(x0,r)(X
(k))

]
≤ c1r

β.
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(iii) Under (R1), there exists .κ ∈ (0,∞) such that, for any compact set .K ⊂ R
d , 

there is .c2,K > 0 for which, for any .k ≥ 1, .x0 ∈ K ∩ ┌Tk
, and .r ∈ (0, 1), if . hk

is bounded in .┌Tk
and harmonic with respect to .X(k) in a ball .BTk

(x0, r)∩┌Tk
, 

then, for .x, y ∈ BTk
(x0, r/2) ∩ K ∩ ┌Tk

, 

. |hk(x) − hk(y)| ≤ c2,K

⎛‖x−1• • y‖β−/β+

r

⎞κ

‖hk‖∞.

Proof In view of the scaling property (5.3) of the norm .‖ · ‖ on . G•, properties (i) 
and (ii) are just reformulation of conditions (E1) and (E2), respectively, under the 
approximate dilation . δTk

. 
(iii) follows from condition (R1) under the approximate dilation . δTk

and Lemma 
5.2. ⨅⨆

Recall that for .λ > 0, the resolvent .Uλ
k is given by 

. Uλ
k f (x) = (λI − Tk(P − I ))−1f

⎛
δ−1
Tk

(x)
⎞

= (Tk + λ)−1
∞∑

n=0

(
1

1 + λT −1
k

)n

P nf
⎛
δ−1
Tk

(x)
⎞

for x ∈ ┌Tk
= δTk

(┌),

where P is the transition matrix for the random walk .{Xn}n on . ┌. 
The following proposition is based on [18, Proposition 2.4] (see also [9, 

Proposition 3.3]). We outline the proof for the reader’s convenience. 

Proposition 5.14 Under (R1) and (E2), for any compact set K , there exist . Cλ,K ∈
(0,∞) and .γ ∈ (0, (β ∧ κ)/2] such that the following holds for any bounded 
function f on .┌Tk

for any .k ≥ 1 and any .x, y ∈ K ∩ ┌Tk
with .‖x−1• • y‖ ≤ 1, 

.
∣∣Uλ

k f (x) − Uλ
k f (y)

∣∣ ≤ Cλ,K‖x−1• • y‖γ ‖f ‖∞. (5.23) 

In particular, we have 

. lim
δ→0

sup
k≥1

sup
x,y∈K∩┌Tk

:
‖x−1• •y‖<δ

∣∣Uλ
k f (x) − Uλ

k f (y)
∣∣ = 0. (5.24) 

Proof Recall the notation .BTk
(z, r) = z ·Tk

B(r). Let .x, y ∈ K ∩ ┌Tk
and let . r ∈

(0, 1] be such that .‖x−1• •y‖ ≤ r . By Lemma 5.2, .y ∈ BTk
(x, ρ) and .ρ = CKrβ−/β+ . 

Set .τ k
r := τBTk

(x,2ρ)(X
(k)). In what follows the constant .CK depends only on K and 

can change from line to line. By the strong Markov property,
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. Uλ
k f (x) = (Tk + λ)−1

E
x
k

⎡
⎢⎢⎣

∑
n∈N∪{0}

n∈[0,τk
r Tk ]

⎛ 1

1 + λT −1
k

⎞n

P nf (δ−1
Tk

(x))

⎤
⎥⎥⎦

+ E
x
k

[⎛ 1

1 + λT −1
k

⎞τk
r Tk

Uλ
k f (X

(k)

τk
r

)
]

= (Tk + λ)−1
E

x
k

[ ∑
n∈N∪{0}

n∈[0,τk
r Tk ]

⎛ 1

1 + λT −1
k

⎞n

P nf (δ−1
Tk

(x))
]

+ E
x
k

[⎛⎛ 1

1 + λT −1
k

⎞τk
r Tk − 1

⎞
Uλ

k f (X
(k)

τk
r

)

]
+ E

x
k

[
Uλ

k f (X
(k)

τk
r

)
]

=: I1 + I2 + I3

and similarly when x is replaced by y. Because of Lemma 5.13(ii) and the fact that 
.‖Pf ‖∞ ≤ ‖f ‖∞, we have  

. |I1| ≤ Tk

Tk + λ
E

x
k

[
τ k
r

]
‖f ‖∞ ≤ c1r

ζ ‖f ‖∞, where ζ := ββ−/β+.

Note that 

. ‖Uλ
k f ‖∞ ≤ (Tk + λ)−1 1

1 − 1
1+λT −1

k

‖f ‖∞ = λ−1‖f ‖∞.

Using this and applying .1 − e−s ≤ s, .s ≥ 0, with .s = τ k
r Tk log(1 +λT −1

k ), we have  

. |I2| ≤ E
x
k

[
τ k
r

]
Tk log(1 + λT −1

k )‖Uλ
k f ‖∞

≤ E
x
k

[
τ k
r

]
TkλT −1

k λ−1‖f ‖∞ ≤ c1r
ζ ‖f ‖∞.

Similar statements also hold when x is replaced by y. So, 

. 
∣∣Uλ

k f (x) − Uλ
k f (y)

∣∣

≤ c1r
ζ ‖f ‖∞ +

∣∣∣Ex
k

[
Uλ

k f (X
(k)

τk
r

)
]

− E
y
k

[
Uλ

k f (X
(k)

τk
r

)
]∣∣∣ . (5.25) 

But .z → E
z
k

[
Uλ

k f (X
(k)

τk
r

)
]

is bounded in .┌Tk
and harmonic in .BTk

(x, 2ρ) ∩ ┌Tk
. By  

Lemma 5.13(iii), for .y ∈ BTk
(x, ρ), the second term in (5.25) is bounded by 

.CK(‖x−1• • y‖β−/β+/rβ−/β+)κ‖Uλ
k f ‖∞.
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So using .‖Uλ
k f ‖∞ ≤ λ−1‖f ‖∞ again, for .y ∈ B•(x, ρ) ∩ ┌Tk

, we have  

. 
∣∣Uλ

k f (x) − Uλ
k f (y)

∣∣ ≤ CK

(
rββ−/β+ + λ−1

⎛‖x−1• • y‖β−/β+

rβ−/β+

⎞κ
)

‖f ‖∞.

(5.26) 

Now choose r such that .r = ‖x−1• • y‖1/2 (then .‖x−1• • y‖ = r2 ≤ r ≤ 1). For this 
choice of r , we obtain 

. 
∣∣Uλ

k f (x) − Uλ
k f (y)

∣∣

≤ CK

⎛
‖x−1• • y‖ββ−/(2β+) + λ−1‖x−1• • y‖κβ−/(2β+)

⎞
‖f ‖∞

≤ CK(1 + λ−1)‖x−1• • y‖γ ‖f ‖∞,

where . γ = min
⎨

ββ−
2β+ ,

κβ−
2β+

}
∈ (0, (β ∧ κ)/2]. ⨅⨆

The first part of the next proposition is based on [18, Proposition 2.8] (see also 
[10, Proposition 6.2] and [5, Section 6]). In the following, m denotes the Lebesgue 
measure on . Rd . 

Proposition 5.15 Assume (A)–(R1)–(E1)–(E2). For every subsequence .{kj }, there 
exist a sub-subsequence .{kj (l)} and a conservative m-symmetric Hunt process 
.(X̃, P̃x, x ∈ R

d), which is a Lévy process on .(G•, •), such that for every .xkj(l)
→ x, 

.P̂
xkj (l)

kj (l)
converges weakly in .D([0,∞),Rd) to . ̃Px . Moreover, the resolvents of the 

conservative Hunt process . ̃X map bounded functions on . Rd into bounded local 
Hölder continuous functions on . Rd and so for each .t > 0, . ̃Xt has a transition 
density function .p(t, x, y) = p(t, e, x−1• • y) with respect to dy.. □
Proof For simplicity, denote the subsequence .{kj } by . {k}. Let .T0 > 0 be an arbitrary 
constant and .xk ∈ ┌k . For any stopping time . ηk of .X(k) that is bounded by . T0 and 
any positive constant .δk → 0, it follows from Proposition 5.13(i) and the strong 
Markov property of .X(k) that for any .ε > 0, 

. lim sup
k→∞

P
xk

k

⎛
‖δ1/k(δk((X

(k)
ηk

)−1)) ·k X
(k)
ηk+δk

‖ > ε
⎞

≤ lim sup
k→∞

E
xk

k

[
P

X
(k)
ηk

k (τ
Bk(X

(k)
0 ,ε)

< δk)

]
= 0.

Thus by Aldous [1], the probability laws .{P̂xk

k ; k ≥ 1} are tight on .D([0, T0),R
d). 

Under conditions (R1)–(E1)–(E2), the proof of the first part of this proposition (on 
weak convergence) is then similar to that of [18, Proposition 2.8], modulo modifying 
the arguments for continuous time processes there to discrete time processes, so we 
omit this part of the proof. Since .X(k) has stationary independent increments on . ┌k , 
so does . ̃X on .(G•, •).
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That the resolvents of . ̃X maps bounded functions on .Rd into bounded Hölder 
continuous functions on .Rd follows readily from Proposition 5.14. For .λ > 0, 
denote by .Ũλ the .λ-resolvent of . ̃X. For any Borel measurable set . A ⊂ R

d

having .m(A) = 0, by the m-symmetry and conservativeness of . ̃X, we have  
.
∫
Rd Ũλ(x,A)m(dx) = λ−1m(A) = 0 for every . λ > 0. As .Ũλ(x,A) is continuous 

in .x ∈ R
d , we conclude that .Ũλ(x,A) = 0 for every .x ∈ R

d . By Fukushima 
et al. [27, Theorem 4.2.4], this implies that the law of . Xt under . ̃Px is absolutely 
continuous with respect to m for each .t > 0 and .x ∈ R

d . Denote its density by 
.p(t, x, y). By the Lévy property of . X•, we have .p(t, x, y) = p(t, e, x−1• • y). ⨅⨆
Proof of Theorem 5.11 In view of Proposition 5.15, it suffices to show that the 
Dirichlet form in .L2(G•; dx) of the conservative m-symmetric process . ̃X in 
Proposition 5.15 is .(E•,F•) and establish (i). As in the proof of Proposition 5.14, 
we know that any subsequence .{kj } has a further subsequence .{kjl

} such that . Uλ
kjl

f

converges uniformly on compacts whenever .λ > 0 and f is bounded and continuous 
on . Rd . 

Now suppose we have a subsequence .{k'} such that .Uλ
k'f on .┌Tk' are equi-

continuous and converge uniformly on compacts whenever .λ > 0 and f is bounded 
and continuous with compact support on . Rd . Fix .λ > 0 and such an f , and let 
.H ∈ Cb(R

d) be the limit of .Uλ
k'f . We will show that .H ∈ F• and 

.E•(H, g) = <f, g> − λ<H, g> (5.27) 

whenever g is a Lipschitz function on .Rd with compact support, where . (E•,F•)
is the Dirichlet form of (5.10) and .<·, ·> is the .L2-inner product with respect to the 
Lebesgue measure . m on . Rd . This will prove that H is the .λ-resolvent of f with 
respect to .(E•,F•) in .L2(Rd ; dx), that is, .H = Uλf . We can then conclude that the 
full sequence .Uλ

k f converges to .Uλf whenever f is bounded and continuous with 
compact support. The assertions about the convergence of .P k

t and . Px
k then follow 

by Proposition 5.15. 
So we need to prove H satisfies (5.27). We drop the primes for legibility. We 

know 

.E(k)(Uλ
k f,Uλ

k f ) = <f,Uλ
k f >L2(┌Tk

,mTk
) − λ<Uλ

k f,Uλ
k f >L2(┌Tk

,mTk
), (5.28) 

where for .t > 0, . mt is the measure on . ┌t defined by (4.5). Since 

. ‖Uλ
k f ‖L2(┌Tk

,mTk
) ≤ (1/λ)‖f ‖L2(┌Tk

,mTk
),

we have by the Cauchy-Schwarz inequality that 

. sup
k

E(k)(Uλ
k f,Uλ

k f ) ≤ sup
k

λ−1‖f ‖2
L2(┌Tk

,mTk
)
≤ c < ∞.
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Set .B2(r) = {x : ‖x‖2 < r}. Since .Uλ
k f converges uniformly to H on . B2(1/η)

for every .η ∈ (0, 1), it follows from Lemma 4.10 that 

. 

∫∫
Dη

(H(y) − H(x))2J•(dx, dy)

≤ lim sup
k→∞

∑
(x,y)∈(┌Tk

×┌Tk
)∩Dη

(
Uλ

k f (x) − Uλ
k f (y)

)2
jk(x, y)

≤ lim sup
k→∞

E(k)
(
Uλ

k f,Uλ
k f

) ≤ c < ∞,

where .Dη := {(x, y) ∈ B2(e, η
−1) × B2(e, η

−1) : η < ‖x−1• • y‖2 ≤ η−1}. Letting 
. η → 0, we have  

. 

∫∫
Rd×Rd\Δ

(H(y) − H(x))2J•(dx, dy) ≤ c < ∞.

Since .H ∈ Cb(R
d), the above in particular implies that .H ∈ (F•)loc. Note that 

by Fatou’s lemma, .H ∈ L2(Rd ; dx) as it is the pointwise limit of .Uλ
k f . Thus we 

conclude from (5.11) that 

.H ∈ F• with E•(H,H) < ∞. (5.29) 

Fix a Lipschitz function g on . Rd with compact support, and choose .r0 > 0 large 
enough so that the support of g is contained in the .L2-ball .B2(e, r0). Then, setting 
.H≥η−1 := {‖x−1• • y‖2 ≥ η−1}, 

. 

∣∣∣
∑

(x,y)∈(┌Tk
×┌Tk

)∩H≥η−1

(Uλ
k f (y) − Uλ

k f (x))(g(y) − g(x))jk(x, y)

∣∣∣

≤
⎛ ∑

(x,y)

(Uλ
k f (y) − Uλ

k f (x))2jk(x, y)
⎞1/2

×
⎛ ∑

(x,y)∈(┌Tk
×┌Tk

)∩H≥η−1

(g(y) − g(x))2jk(x, y)
⎞1/2

.

The first factor is .(E(k)(Uλ
k f,Uλ

k f ))1/2, while the second factor is bounded by 

. 
√

2 ‖g‖∞
⎛ ∫

B2(e,r0)

∫
‖x−1• •y‖2≥η−1

Jk(dx, dy)
⎞1/2

,

which, in view of (5.17) in (T. ┌•), will be small if . η is small. Similarly, setting 
.H≤η := {‖x−1• • y‖2 ≤ η}, it holds that
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. 

∣∣∣
∑

(x,y)∈(┌Tk
×┌Tk

)∩H≤η

(Uλ
k f (y) − Uλ

k f (x))(g(y) − g(x))jk(x, y)

∣∣∣

≤
⎛ ∑

(x,y)

(Uλ
k f (y) − Uλ

k f (x))2jk(x, y)
⎞1/2

×
⎛ ∑

(x,y)∈(┌Tk
×┌Tk

)∩H≤η

(g(y) − g(x))2jk(x, y)
⎞1/2

.

The first factor is as before, while the second is bounded by 

. ‖g‖Lip

⎛ ∫
B2(e,r0)

∫
‖x−1• •y‖2≤η

‖x−1• • y‖2
2Jk(dx, dy)

⎞1/2
,

where 

. ‖g‖Lip := sup
x,y∈Rd

|g(x) − g(y)|
‖x−1• • y‖2

< ∞.

In view of (5.16) in (T. ┌•), the second factor will be small if . η is small. Similarly, 
using (5.29) (i.e., (T. •)), we have 

. 

∣∣∣
∫∫

‖x−1• •y‖2 /∈(η,η−1)

(H(y) − H(x))(g(y) − g(x))J•(dx, dy)

∣∣∣

will be small if . η is taken small enough, due to Remark 5.8. 
Note that .Uλ

k f are equi-continuous and converge to H uniformly on compacts, 
and g is a compactly supported function. For . η > 0, we have by Lemma  4.10, 

. 
∑

(x,y)∈(┌Tk
×┌Tk

)∩{‖x−1• •y‖2∈(η,η−1)}

(
Uλ

k f (y) − Uλ
k f (x)

)
(g(y) − g(x))jk(x, y)

→
∫∫

‖x−1• •y‖2∈(η,η−1)

(H(y) − H(x))(g(y) − g(x))J•(dx, dy).

It follows that 

. lim
k→∞E

(k)(Uλ
k f, g) = E•(H, g). (5.30) 

But as .k → ∞, 

.E(k)(Uλ
k f, g) = <f, g>L2(┌Tk

,mTk
) − λ<Uλ

k f, g>L2(┌Tk
,mTk

) → <f, g> − λ<H, g>.
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Combining this with (5.30) proves (5.27). This proves that . ̃X has the same 
distribution as the Lévy process .X• associated with the regular Dirichlet form 
.(E•,F•) on .L2(G•;m), which in particular establishes part (ii) of the theorem by 
Proposition 5.15. 

We next show part (i) of the theorem. By Proposition 5.15, .X•
t has a transition 

density function .p(t, x−1• • y) with respect to the Lebesgue measure dy on . G•. By  
Remark 5.7, the generating functional .f |→ Lf (e) is a kernel of order . β+. Thus 
by Głowacki [29, Theorem 2.2], .p(t, x) is square-integrable for every .t > 0 and so 
.ct := p(t, e) = ∫

Rd p(t/2, x)2dx < ∞. By the Cauchy-Schwarz inequality, for any 
.x ∈ G•, 

. p(t, x) = p(t, e, x) =
∫
Rd

p(t/2, e, z)p(t/2, z, x)dz

≤ ‖p(t/2, e, ·)‖2 ‖p(t/2, ·, x)‖2 ≤ ct .

That is, .p(t, x) is bounded on .G• for every .t > 0. Property (5.20) follows from 
the self-similarity property (5.15) of . X•, and Hölder regularity (5.21) follows from 
[29, Corollary 3.12]. The joint continuity of .p(t, x, y) = p(t, x−1• • y) in . (t, x, y)

follows from the scaling property (5.20) and the Hölder continuity of .p(t, x) in x. 
Note that .p(t, e) = ∫

G• p(t/2, y)2dy > 0 and .limt→∞ δ1/t (x) = e uniformly on 
every compact subset of . G•. Thus by (5.20), for any .n ≥ 1, there is some . tn > 0
so that .p(t, x) > 0 for every .(t, x) ∈ (0, tn] × B(0, n). It then follows from the 
Chapman-Kolmogorov equation that .p(t, x) > 0 for every .(t, x) ∈ (0,∞) × G•. 

For any .α ∈ (0, β+), by Głowacki [29, Theorem 5.1], there is a constant . C3 so 
that .p(t, x) ≤ C3t

α/β+/‖x‖d+α for every .t > 0 and .x ∈ G•. Together with (5.20), it  
gives the estimate (5.22). This establishes part (i) of the theorem and thus completes 
the proof of the theorem. ⨅⨆



Chapter 6 
Local Limit Theorem 

6.1 Assumption (R2) 

In this chapter, we discuss the local limit theorem for .(X
(k)

nT −1
k

)n∈N ∪{0} based on [24, 

Theorem 1] and [17, Theorem 4.5] (cf. [6, Section 4] for the case the limit heat 
kernel is Gaussian). 

For this purpose, we introduce an additional hypothesis (R2), which reads as 
follows. Let .μ(n) be the n-th convolution power of the probability measure . μ on 
. �. This is the law at time n of the random walk driven by . μ, started at the identity 
element on . �. 

(R2) There are positive constants .C2 > 0 and .β > 0 such that, for all . n,m ∈ N

and .x, y ∈ �, 

.|μ(n+m)(xy) − μ(n)(x)| ≤ C2

V (n1/β)

⎛
⎝ m

n + 1
+

√
‖y‖β

n + 1

⎞
⎠ , (6.1) 

where .V (r) := �{g ∈ � : ‖g‖ < r}. 
For our local limit theorem to hold, the exponent .β > 0 in (R2) should be 

the same as those in  (5.3) and in (E1)–(E2). We start with verifying the needed 
convergence of the volume of appropriate balls. 
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6.2 Statement and Proof of the LLT 

Given an arbitrary sequence of positive reals . Tk tending to infinity and . t > 0, let  
.μ̂

(t)
k . be the probability distribution of .(X̂(k)

t )t>0, i.e., 

. μ̂
(t)
k (x) = P

e
(
X̂

(k)
t = x

)
= μ[tTk](δTk

(x)), x ∈ �Tk
.

Recall that for each .x ∈ R
d , .[x]k ∈ �Tk

is the point closest to x in the .‖ · ‖-norm. 
We know from Theorem 5.11 that the Lévy process . X• corresponding to . (E•,F•)

has a jointly continuous convolution kernel 

. (t, x) �→ p•(t, x) = t−γ0p•(1, δ1/t (x))

with .t > 0, .x ∈ R
d . 

Theorem 6.1 (Local Limit Theorem) Assume (5.3), (A)–(R1)–(R2)–(E1)–(E2), 
(T. •), and (T. �) with the same exponent .β > 0. Then, for any .U2 > U1 > 0 and 
.r > 1, 

. lim
k→∞ sup

x∈Rd :‖x‖≤r

sup
t∈[U1,U2]

∣∣∣det(δTk
)μ

([tTk])
k (δTk

([x]k)) − p•(t, x)

∣∣∣ = 0.

Proof We adopt the notations in [24]. Let .E = R
d with .dE(x, y) = ‖x−1• • y‖, and 

.Gk = δ−1
Tk

(�) ⊂ R
d = E with the same distance .dGk (x, y) = ‖x−1• • y‖. (Note that 

.dGk (·, ·) is a graph distance on .Gk in [24]. However, the proof of [24, Theorem 1] 
works for any distance on . Gk .) Then, conditions (a) and (b) in [24, Assumption 1] 
hold with .α(k) = 1. Let .ν = m and .νk = mTk

. Then by (5.7), (c) in [24, Assumption 
1] holds with .β(k) = det(δTk

). Set 

. qk
t (x) = μ̂

(t)
k (x) and qt (·) = p•(t, ·).

It suffices to prove that the conclusion of [24, Theorem 1] holds for . qk
t (x). We now  

check that (d) in [24, Assumption 1] holds. Let .U0 > 0 be a fixed constant. By 
Theorem 5.11, for every bounded and continuous function f on . Rd , .t ∈ (0, U0], 
and . x ∈ R

d , we have  

. lim
k→∞

∣∣∣∣Ê[x]k
k

[
f (X̂

(k)
t )

] −
∫
Rd

f (z)qt (x
−1• • z) dz

∣∣∣∣ = 0. (6.2) 

We need to prove that this convergence is uniform in t over any compact time 
interval in .(0,∞). This would easily follow if we could prove the equi-uniform 
continuity of the function .t �→ Ê

[x]k
k

[
f (X̂

(k)
t )

]
on compact time intervals. However, 

because we are dealing with what is essentially a discrete time process, these



6.2 Statement and Proof of the LLT 69

functions are not even continuous. Nevertheless, condition (R2) says that, for all 
non-negative integers n and m and all .x, z ∈ � (inverse and multiplication are in . �), 
we have 

.|μ(n+m)(z) − μ(n)(x)| ≤ C2

(
m

n + 1
+ ‖x−1 · z‖β/2

√
n + 1

)
.

1

V (n1/β)
. (6.3) 

It follows that, for .0 < s < t , 

. 

∣∣∣μ([tTk])([δTk
([x]k)]−1 · δTk

(y)) − μ([sTk])([δTk
([x]k)]−1 · δTk

(y))

∣∣∣

≤ C2
[Tk(t − s)] + 1

[Tks] + 1

1

V ([Tks]1/β)
≤ C2

t − s + T −1
k

s

1

V ([Tks]1/β)
.

For any fixed time interval .[U1, U2], .0 < U1 < U2, this is a version of “equi-
uniform continuity,” call it “equi-uniform continuity modulo .T −1

k .” Together with 
the fact that .t �→ ∫

Rd f (z)qt (x
−1• • z) dz is uniformly continuous for . t ∈ [U1, U2]

and (6.2), this equi-uniform continuity modulo .T −1
k yields 

. lim
k→∞ sup

t∈[U1,U2]

∣∣∣∣Ê[x]k
k

[
f (X̂

(k)
t )

] −
∫
Rd

f (z)qt (x
−1• • z) dz

∣∣∣∣ = 0. (6.4) 

By the joint continuity of . qt (x), we have .

∫
∂B(x0,r)

qt (x
−1• • z) dz = 0 for every 

.x, x0 ∈ E and .r > 0. Hence, (6.4) yields that 

. lim
k→∞ sup

t∈[U1,U2]

∣∣∣∣P[x]k
k

(
X

(k)
[Tkt]/Tk

∈ B(x0, r)
) −

∫
B(x0,r)

qt (x
−1• • z) dz

∣∣∣∣ = 0,

and (d) in [24, Assumption 1] is satisfied with .γ (k) = Tk . 
On the other hand, by (6.3) again, we have for . x, z ∈ B(2r) ∩ δ−1

Tk
(�)

. det(δTk
)|qk

[Tkt](z) − qk
[Tkt](x)| = det(δTk

)|μ([Tkt])(δTk
(z)) − μ([Tkt])(δTk

(x))|

≤ C2
‖δTk

(x)−1 · δTk
(z)‖β/2

√
Tkt

det(δTk
)

V ((Tkt)1/β)

≤ C3‖x−1• • z‖β−β/(2β+)t−1/2−γ T
−1/2
k .

For the last inequality, we have used Lemma 5.2 and the fact that . V (t1/β) �
det(δt ) � tγ for .γ = ∑d

1 1/βi > 0. Hence it holds that for any .0 < U1 < U2, 
.r > 0, .δ ∈ (0, r], and .k ≥ 1,
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. sup
x,y∈B

Gk (0,r),

d
Gk (z,x)≤δ

sup
t∈[U1,U2]

det(δTk
)|qk

[Tkt](z) − qk
[Tkt](x)| ≤ C4

δβ−β/(2β+)

U
1/2+γ

1

.

Taking .limδ→0 lim supk→∞, we obtain [24, Assumption 2]. Therefore, the desired 
assertion follows from [24, Theorem 1]. ��



Chapter 7 
Symmetric Lévy Processes on Nilpotent 
Groups 

7.1 The Problem of Identifying the Limit Process 

Theorem 5.11 gives the functional central limit theorem for a class of random walks 
on finitely generated torsion-free nilpotent groups driven by probability measures 
. μ, which are the distributions of the one-step increments of the random walks. 
However, the limit symmetric Lévy process . X• is characterized in an abstract way 
by a non-local pure jump Dirichlet form .(E•,F•) on .L2(G•; dx) of the form (5.10) 
with .J•(dx, dy) = dxμ•(x−1• • dy). A natural question is whether we can use 
Theorem 5.11 to give explicit limit theorems in concrete examples as those studied 
in Examples 1.4 and 1.5. This amounts to ask whether we can explicitly identify 
or describe the Lévy process . X• in concrete cases. These are the questions we 
are going to address in this chapter and the answer is affirmative. In fact, we will 
do this in a more general context for any symmetric Lévy measure . μ• on any 
simply connected nilpotent group . G•; that is, .(G•, •) does not need to be the limit 
group obtained from a simply connected nilpotent group G through an approximate 
group dilation structure .{φt ; t > 0} on G, and . μ• does not need to be the weak 
limit of .μt = tδ1/t (μ) of some symmetric probability measure . μ on a discrete 
subgroup . � of G as in condition (A). This is achieved in Theorem 7.3. Then we use 
this concrete description to illustrate our convergence theorem, Theorem 5.11, by  
revisiting Example 1.5 and presenting several more examples through this approach, 
without using the limit results for operator-stable processes on . Rd , Propositions 1.1 
and 1.3, from the literature. 
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7.2 Symmetric Lévy Processes and Their Approximations 

Let N be any simply connected nilpotent group. As mentioned in Sect. 3.1, there 
is a global polynomial coordinate system on N satisfying (3.4)–(3.5). Unless 
mentioned otherwise, this is the default coordinate system we use on N in this 
section. Through this global system .� : R

d → N with .�(0) = e, N can be 
identified with . Rd and dx is a Haar measure for N . The coordinate system also 
induces a function on N : .‖σ‖2 := ‖�−1(σ )‖2 for .σ ∈ N , where . ‖�−1(σ )‖2
is the Euclidean norm of .�−1(σ ) ∈ R

d . As we already see from Sect. 3.1, there 
are many choices of the global coordinate systems for N . One of the commonly 
used coordinate systems is the exponential map. However, sometimes it is more 
convenient or more natural to use other coordinate systems, for example, matrix 
coordinates in the Heisenberg group case. Thus with this in mind, we do not fix a 
particular choice of the polynomial coordinate systems, except for the assumption 
that (3.4)–(3.5). 

Let . ν be any non-zero symmetric Lévy measure on N ; that is, . ν is a non-negative 
Borel measure on N satisfying .0 <

∫
N

(1 ∧ ‖x‖22)ν(dx) < ∞ and . ν(A) = ν(A−1)

for any .A ⊂ N \ {e}, where .A−1 = {x ∈ N : x−1 ∈ A}. Note that we do not impose 
any additional conditions on . ν. Define 

.E(u, v) := 1

2

∫∫
N×N\�

(u(xz) − u(x))(v(xz) − v(x))dxν(dz), (7.1) 

and . F is the closure of .Lipc(N), which is the space of Lipschitz functions on N 
with compact support, with respect to the norm .

√
E(u, u) + ∫

N
u(x)2dx. Here  xz 

is the group multiplication of two elements .x, z ∈ N . Let  X be the symmetric Hunt 
process associated with the regular Dirichlet form .(E,F ) on .L2(N; dx); cf. [19, 27]. 
Note that in this section, as mentioned above, we do not assume the Lévy measure 
. ν on N generates N . 

Lemma 7.1 The Hunt process X is a Lévy process on N .. □
Proof For each fixed .σ ∈ N\{e}, the process .Yσ = {Yσ

t , t ≥ 0}, with . Yσ
t = σXt

for any .t > 0, is a symmetric Hunt process on N as dx is a left Haar measure on N 
and its transition semigroup 

. P σ
t f (x) = E

[
f (Y σ

t )|Yσ
0 = x

] = E

[
f (σXt)|X0 = σ−1x

]
= (Ptfσ )(σ−1x),

where .fσ (η) := f (ση). Thus 

. lim
t→0

1

t
(f − P σ

t f, f )L2(N;dx)

= lim
t→0

1

t

∫
N

(fσ (σ−1x) − (Ptfσ )(σ−1x))fσ (σ−1x)dx
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= lim 
t→0 

1 

t

∫
N 

(fσ (y) − (Ptfσ )(y))fσ (y)dy 

= 
1 

2

∫∫
N×N\�

(fσ (xz) − fσ (x))2ν(dz)dx 

= 
1 

2

∫∫
N×N\�

(f (xz) − f (x))2ν(dz)dx = E(f, f ). 

This shows that . Yσ is a symmetric Hunt process associated with the Dirichlet form 
.(E,F) on .L2(N; dx) and so it has the same distribution as X. In other words, 
.{σXt ; t ≥ 0} with .X0 = x ∈ N has the same distribution as .{Xt ; t ≥ 0} starting 
from . σx. This combined with theMarkov property of X shows that X is a symmetric 
Lévy process on N . 	


We next investigate how the Lévy process X is determined by . ν in a more  
explicit way; that is, given a symmetric Lévy measure . ν on N , how to construct 
or approximate its corresponding symmetric Lévy process X in a concrete way. We 
will show in Theorem 7.3 that X can be approximated by a sequence of random 
walks on N whose one-step increments are from the small increments of a common 
Lévy process Z on . Rd through the identification of the global coordinate system . �. 
The key is to identify the Lévy measure and the drift of the Lévy process Z on . Rd . 
Our approach uses Hunt’s characterization for Lévy processes on Lie groups and 
Kunita’s triangular array type limit result for random walks on Lie groups, which 
we recall in Theorem 7.2. 

We identify each element .σ ∈ N with its global coordinate 

. �−1(σ ) =: x = (x1, . . . , xd) ∈ R
d .

For each .1 ≤ j ≤ d, let  . Xj be the left-invariant vector field in the Lie algebra . g of 
the group N at e determined by the coordinate function .xj �→ Xj ; that is, for any 
. C2 function .f (x) on .N = R

d , 

. (Xj f )(e) = ∂f (x)

∂xj

∣∣∣
x=0

.

These vector fields .(X1, . . . ,Xd) form a natural base of . g at e. On the other hand, 
it is well known that the simply connected nilpotent group N admits an exponential 
map of the first kind from its Lie algebra .g = R

d to N which is surjective. Under its 
exponential coordinates exp: .g → N (of the first kind), .x−1 = −x. Let . {x1, . . . , xd}
be the exponential coordinate of .σ ∈ N with respect to the base .{X1, . . . ,Xd}; that 
is, .exp(

∑d
j=1 xjXj ) = σ . Note that .xj (σ−1) = −xj (σ ) and .Xix

j = δij . Let  . ‖ · ‖
be the norm on N defined by
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.‖σ‖ :=
⎛
⎝

d∑
j=1

(xj (σ ))2

⎞
⎠

1/2

(7.2) 

in terms of the exponential coordinates of .σ ∈ N . Note that the norm .‖ · ‖ is 
symmetric on the group N in the sense that .‖σ−1‖ = ‖σ‖ for any .σ ∈ N . 

Denote by . C the space of real-valued functions on N that are continuous and have 
limit at infinity, let and . C2 be the space of . C2 functions f on N so that .f,Xkf and 
.XkXj f are all in . C. Let .ψ ∈ C2 be such that .ψ > 0 on .G\{e}, . ψ(η) 
 ∑d

j=1 xj (η)2

near e, and .limη→∞ ψ(η) > 0. Note that in view of (3.2)–(3.3), 

. ψ(η) 
 1 ∧ ‖η‖2 
 1 ∧ ‖η‖22 for η ∈ N.

We recall the following triangular array type limit result on N from [43], which 
in fact holds for any Lie group. 

Theorem 7.2 (Theorem 3 of [43]) In the above setting, suppose the following 
hold: 

(i) For each .n ≥ 1, .k �→ S
(n)
k = ξn,1 · · · ξn,k is a discrete time random walk on the 

Lie group N , where .{ξn,k; k ≥ 1} are i.i.d. N -valued random variables having 
distribution . νn. 

(ii) As .n → ∞, the measure .nνn converges vaguely to a measure . ν on . N \ {e}
satisfying .

∫
N\{e} ψ(x)ν(dx) < ∞. 

(iii) For . ε > 0, let  

. Uε := {η ∈ N : ‖η‖ < ε} =
⎧⎨
⎩η ∈ N :

d∑
j=1

xj (η)2 < ε2

⎫⎬
⎭

be an .ε-neighborhood of e in N . For each .ε > 0, 

. lim
n→∞ n

∫
Uε

xi(η)xj (η)νn(dη) =: a
(ε)
ij exists.

Clearly, .(a(ε)
ij ) is symmetric and non-negative definite, which decreases to . (aij )

as .ε → 0. 
(iv) For each .ε > 0, .limn→∞ n

∫
Uε

x(η)νn(dη) =: b(ε) ∈ R
d exists. Here . x(η) =

(x1(η), . . . , xd(η)). 

Take .ε > 0 so that .∂Uε has zero .ν-measure. Define 

.b = bε +
∫

Uc
ε

x(η)ν(dη),
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whose value is independent of the choice of . ε. Then for each .T > 0, . {Z(n)
t :=

S
(n)
[nt]; t ∈ [0, T ]} converges weakly in the Skorokhod space .D([0, T ];N) as . n → ∞

to a Lévy process .Z = {Zt ; t ∈ [0, T ]} on N , whose generator is characterized by 

. Lf (η) = 1

2

d∑
i,j=1

aijXiXj f (η) +
d∑

i=1

biXif (η)

+
∫

N\{e}
(f (ησ) − f (η) −

d∑
i=1

xi(σ )Xif (τ ))ν(dσ ) (7.3) 

for any .f ∈ C2.. □
Characterization (7.3), originally due to G. A. Hunt, is the Lévy-Khintchine 

formula for Lévy processes on Lie groups. Let .{ϕ1(σ ), · · · , ϕd(σ )} be . C2 functions 
on N such that under exponential coordinates for .σ = exp(

∑d
j=1 xjXj ) ∈ N , 

.ϕj (σ ) is an odd increasing function of . xj with .ϕj (σ ) = xj for .xj ∈ (−1, 1). Since 
N is also identified with . Rd through the global coordinate system . � satisfying (3.5) 
mentioned above, sometimes we also write .ϕj (x) for .ϕj (σ ) through this global 
coordinate system . �. Since . ν is a symmetric measure on N and . ϕj (σ ) = −ϕj (σ

−1)

for any .σ ∈ N , we have for  every .1 ≤ j ≤ d and every .r > 0, 

.

∫
{σ∈N :‖σ‖>r}

ϕj (σ )ν(dσ) = 0. (7.4) 

Through the identification of N with . Rd under the global coordinate system . �, 
the Lévy measure . ν can also be viewed as a Lévy measure on the Euclidean space 
. Rd . More precisely, let . ̄ν be the Radon measure on .R

d \ {0} defined by 

.ν̄(A) := ν(�(A)) for any A ∈ B(Rd \ {0}). (7.5) 

Note that . ̄ν satisfies .
∫
Rd (1 ∧ ‖z‖22)ν̄(dz) < ∞ and thus is a Lévy measure on . Rd . 

However, we point out that even though . ν is a symmetric Lévy measure on N , . ̄ν
may not be a symmetric measure on . Rd ; see Examples 7.8 and 7.9(i). It is not hard 
to see or guess that the Lévy process Z on . Rd that will be used to approximate the 
Lévy process X on N should have Lévy measure . ̄ν, and however in general it also 
needs a proper drift correction term. For this, define for .1 ≤ j ≤ d, 

.b̄j =
∫

{z∈N :‖z‖2≤1}
(zj − ϕj (z))ν(dz) −

∫
{z∈N :‖z‖2>1}

ϕj (z)ν(dz), (7.6) 

where .(z1, . . . , zd) = �−1(z) is the coordinates of .z ∈ N under the global 
coordinate system . �. Recall that the coordinates of .z ∈ N under the exponential 
coordinate system are denoted by .(z1, . . . , zd). Observe that the integral in (7.6) is



76 7 Symmetric Lévy Processes on Nilpotent Groups

well defined and is finite because 

. 
∂ϕj

∂zi

∣∣∣
z=0

= Xiϕj (z)
∣∣
z=0 = Xiz

j
∣∣
z=0 = δij

and so 

. |zj − ϕj (z)| = |zj − zj (z)| ≤ c‖z‖22 for ‖z‖2 ≤ 1.

In view of (7.4), we can rewrite (7.6) as 

.b̄j = lim
r→0

∫
{z∈N :‖z‖2≤1 and ‖z‖≥r}

zj ν(dz). (7.7) 

Since the Lévy measure . ν is symmetric on N , we have from  (7.7) that 

. b̄j =1

2

∫
{z∈N : ‖z‖2≤1 and ‖z−1‖2≤1}

(zj + (z−1)j )ν(dz)

+
∫

{z∈N :‖z‖2≤1 and ‖z−1‖2>1}
zj ν(dz). (7.8) 

Here .z−1 denotes the group inverse of .z ∈ N , and .(z−1)j is the j -th coordinate 
of the element .z−1 ∈ N under the original global coordinate system . �. Note that 
both integrals in (7.8) are absolutely convergent. This is because under the global 
coordinate system . �, we know from (3.5) that 

. z−1 = −z + (0, q̄2(z1), . . . , q̄d (z1, . . . , zd−1)),

where for .2 ≤ j ≤ d, .q̄j (z1, · · · , zj−1) is polynomial having no constant and first-
order terms. Thus on any compact set .K ⊂ N , there is a constant .CK > 0 so that 

.‖z + z−1‖2 ≤ CK‖z‖22 for every z ∈ K, (7.9) 

and .{z ∈ N : ‖z‖2 < 1 and ‖z−1‖2 < 1} is an open neighborhood of .e ∈ N . Since 
.
∫
N\{e}(1 ∧ ‖z‖22)ν(dz) < ∞, both integrals in (7.8) are absolutely convergent. In 

general, the constant vector .b̄ := (b1, . . . , b̄d ) may not be zero. However, if . � is the 
exponential coordinate system, then .b̄j = 0 for every .1 ≤ j ≤ d as .z−1 = −z for 
every .z ∈ N and .‖z‖2 = ‖z‖. 

Let .Z := {Zt : t ≥ 0} be the Lévy process on the Euclidean space . Rd with Lévy 
triplet .(0, b̄, ν̄), see  (1.1), where .b̄ = (b̄1, · · · , b̄d ). In other words, 

. Zt = b̄t +
∫ t

0
1{‖z‖2≤1}z (N(ds, dz) − dsν̄(dz)) +

∫ t

0
1{‖z‖2>1}zN(ds, dz),

(7.10)
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where .N(ds, dz) is the Poisson random measure on .[0,∞) × R
d with intensity 

measure .dsν̄(dz). 
Recall that .� : R

d → N is the global polynomial coordinate system for the 
simply connected nilpotent group N . Most of the time, we identify .x ∈ R

d with 
.σ := �(x) ∈ N and use the notations interchangeably. In the next theorem and its 
proof, to be absolutely clear, we explicitly use the notation .�(x) for emphasis when 
.x ∈ R

d is viewed as an element in the group N . 

Theorem 7.3 Let Z be the Lévy process on .Rd with .Z0 = 0, Lévy measure . ̄ν
of (7.5), and drift . b̄ of (7.8). For each .T > 0, the random walk 

.Z
(n)
t := �(Z1/n)�(Z2/n − Z1/n) · · · �(Z[nt]/n − Z([nt]−1)/n) (7.11) 

on N converges weakly in the Skorokhod space .D([0, T ];N) as .n → ∞ to the left-
invariant Hunt process .{(Y0)−1Yt ; t ∈ [0, T ]} on N . The Hunt process Y has the 
same distribution as the symmetric Lévy process X on N having Lévy measure . ν
determined by the Dirichlet form .(E,F) of (7.1) on .L2(N; dx).. □
Proof By Ito’s formula, for any .f ∈ C2

b(Rd), 

. f (Zt ) − f (Z0) =
∫ t

0
b̄ · ∇f (Zs)ds

+
∫ t

0

∫
{‖z‖2≤1}

(f (Zs− + z) − f (Zs−)) (N(ds, dz) − dsν̄(dz))

+
∫ t

0

∫
{‖z‖2>1}

(f (Zs− + z) − f (Zs−))N(ds, dz)

+
∫ t

0

∫
{‖z‖2≤1}

(f (Zs + z) − f (Zs) − ∇f (Zs) · z) ν̄(dz)ds.

Thus 

.E f (Zt ) − f (0)

= E

∫ t

0
b̄ · ∇f (Zs)ds + E

∫ t

0

∫
{‖z‖2>1}

(f (Zs− + z) − f (Zs−)N(ds, dz)

+ E

∫ t

0

∫
{‖z‖2≤1}

(f (Zs + z) − f (Zs) − ∇f (Zs) · z) ν̄(dz)ds

= E

∫ t

0
b̄ · ∇f (Zs)ds + E

∫ t

0

∫
{‖z‖2>1}

(f (Zs− + z) − f (Zs−) ν̄(dz)ds

+ E

∫ t

0

∫
{‖z‖2≤1}

(f (Zs + z) − f (Zs) − ∇f (Zs) · z) ν̄(dz)ds
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= E
∫ t 

0

∫
Rd 

(f (Zs− + z) − f (Zs−) − ∇f (Zs) · ϕ(�(z))) ν̄(dz)ds, (7.12) 

where .ϕ(σ) := (ϕ1(σ ), . . . , ϕd(σ )) for .σ ∈ N , and the last equality is due to the 
definition of . b̄. 

For .f0 ∈ C2 on N with .f0(e) = 0 and .Xjf0(e) = 0 for .1 ≤ j ≤ d, the function 
.f := f0 ◦ � is . C2

b on . Rd with .f (0) = 0 and .∇f (0) = 0. Applying (7.4) and (7.12) 
to this f , we have by the dominated convergence theorem that 

. lim
t→0

1

t
E f0(�(Zt )) = lim

t→0

1

t
E f (Zt ) =

∫
Rd\{0}

f (z)ν̄(z) =
∫

N\{e}
f0(σ )ν(dσ).

(7.13) 

If we denote the law of .�(Zt) on N by . ̃νt , then the above in particular implies that 
.t−1ν̃t converges vaguely to . ν on .N \ {e} as .t → 0. 

Since . ϕj is an odd function on N , taking .f0 = ϕj in (7.13) in particular yields 
that 

. lim
t→0

1

t
Eϕj (�(Zt )) = 0 for every 1 ≤ j ≤ d. (7.14) 

On the other hand, since . ν is a symmetric measure on N and . ϕ is an odd .R
d -valued 

function on N , we have from (7.12) that for any .f ∈ C2
b(Rd), 

. E f (Zt ) − f (0)

= E

∫ t

0

∫
Rd

(
f (Zs− + z−1) − f (Zs−) + ∇f (Zs) · ϕ(�(z))

)
ν̄(dz)ds

and so 

. E f (Zt )−f (0) = 1

2
E

∫ t

0

∫
Rd

(
f (Zs + z) + f (Zs− + z−1) − 2f (Zs−)

)
ν̄(dz)ds.

(7.15) 
Note that by (7.9), 

. 

∫
Rd

|f (z) + f (z−1) − 2f (0)| ν̄(dz) < ∞.

It follows from (7.15) and the dominated convergence theorem that for any . f ∈
C2

b(Rd), 

. lim
t→0

1

t
E [f (Zt ) − f (0)] = 1

2

∫
Rd\{0}

(
f (z) + f (z−1) − 2f (0)

)
ν̄(z). (7.16)
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For .ε ∈ (0, 1), define 

. Uε = {σ ∈ N : ‖σ‖ < ε} =
{

σ ∈ N :
d∑

i=1

xi(σ )2 < ε2

}
,

where .‖σ‖ is the symmetric norm of .σ ∈ N as defined by (7.2) and 
.(x1(σ ), . . . xd(σ )) is the exponential coordinates of .σ ∈ N . By the Lipschitz 
equivalents (3.2)–(3.3) between . � and the exponential coordinates, there is a 
constant .λ0 ≥ 1 so that 

. λ−1
0 ‖�−1(σ )‖2 ≤ ‖σ‖ ≤ λ0‖�−1(σ )‖2 for σ ∈ N with ‖σ‖ ≤ 1.

Consequently, 

. Uε ⊂
{
σ ∈ N : ‖�−1(σ )‖2 < λ0ε

}
for every ε ∈ (0, 1).

For .ε ∈ (0, 1), let  .fε ∈ C2
c (Rd) so that .fε(z) = ‖z‖22 for .|z‖2 < λ0ε, . fε(z) = 0

for .‖z‖2 ≥ 2λ0ε, .0 ≤ fε(z) ≤ 2λ20ε
2, and .|Dfε| + |D2fε| ≤ C for some constant 

.C > 0 independent of . ε. Then we have by (7.16) and the Taylor expansion that 

. lim sup
t→0

1

t
E

[
1{�(Zt )∈Uε}‖�(Zt)‖2

]

≤ lim sup
t→0

λ20

t
E

[
1{‖Zt‖2≤λ0ε}‖Zt‖22

]

≤ lim sup
t→0

λ20

t
(E fε(Zt ) − fε(Z0))

= λ20

∫
Rd

fε(z)ν̄(dz)

≤ λ20‖D2fε‖∞
∫

{‖z‖2≤2λ0ε}
‖z‖22 ν̄(dz), (7.17) 

which tends to 0 as .ε → 0. 
For .ε ∈ (0, 1) so that .∂Uε has zero .ν-measure, it follows from (7.13) that 

. lim
t→0

1

t

∫
Uc

ε

ϕj (z)νt (dz) =
∫

Uc
ε

ϕj (z)ν(dz) = 0. (7.18) 

This together with (7.14) shows that 

. lim
t→0

1

t

∫
Uε

ϕj (σ )νt (dσ ) = 0. (7.19)
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Properties (7.13), (7.17), and (7.18)–(7.19) show that the conditions of Theo-
rems 7.2 are all satisfied for the sequence of random walks on N whose one-step 
increment distributions are .νn := ν̃1/n for .n ∈ N with .(aij ) = 0 and .b = 0. Thus 
for each .T > 0, the random walk 

. Z
(n)
t := �(Z1/n)�(Z2/n − Z1/n) · · · �(Z[nt]/n − Z([nt]−1)/n)

converges weakly in the Skorokhod space .D([0, T ];G) as .n → ∞ to a symmetric 
Lévy process .Y = {Yt ; t ∈ [0, T ]} on N with Lévy measure . ν in the following 
sense: Denote by .(L,D(L)) the infinitesimal generator of Y . Then .C2 ⊂ D(L) and 
for any .f ∈ C2, 

. Lf (σ) =
∫

N\{e}

(
f (σz) − f (σ) −

d∑
j=1

ϕj (z)Xif (σ )
)
ν(dz).

We next show that Y has the same distribution as the Lévy process X on N 
defined through the Dirichlet form .(E,F) of (7.1) on .L2(N; dx). Denote by . L0 the 
.L2-generator of the symmetric Lévy process X. It is easy to check by definition (cf. 
[19, 27]) that .C2 ⊂ D(L0) and 

. L0f (σ) = p.v.
∫

N\{e}
(f (σz) − f (σ)) ν(dz)

=
∫

N\{e}

(
f (σz) − f (σ) −

d∑
i=1

ϕj (z)Xif (σ )

)
ν(dz)

= Lf (σ).

By the uniqueness of infinitesimal generator characterization of Lévy processes on 
N (see, e.g., [43, Theorem 1] due to Hunt), we conclude that the Lévy processes X 
and Y have the same law. This completes the proof of the theorem. 	

Remark 7.4 When . � is the exponential coordinate system of the first kind for N , 
Theorem 7.3 follows from Theorem 4.2 and the proof of Theorem 4.1 of [42]. The 
main point of Theorem 7.3 is that it is valid for any global coordinate system . � of 
N , not just the exponential coordinate system of the first kind. This is important in 
applications as many times it is more natural or convenient to work in other global 
coordinate systems such as the matrix coordinate system for Heisenberg groups. In 
theory, one could translate the global coordinate system into exponential coordinate 
system, apply Kunita’s result in exponential coordinate system, and then translate 
the results back to the original global coordinate system. But this is not always easy 
to carry out and it needs to be performed on a case by case basis. The interested 
reader may try the following two exercises.
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Exercise 7.5 Let N be the continuous Heisenberg group .H3(R) and . ν be a Lévy 
measure on .H3(R) whose expression under the matrix coordinate .(x, y, z) is given 
by 

. ̄ν(dx, dy, dz) = κ1

|x|1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) + κ2

|y|1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz)

for some positive constants .αi ∈ (0, 2) and .κi > 0, .i = 1, 2. What is the expression 
of . ν in the exponential coordinates .(x1, x2, x3) of the first kind for .H3(R)? The  
group isomorphism between the matrix coordinate system and the exponential 
coordinate system on .H3(R) is given in (3.13).. □
Exercise 7.6 Repeat Exercise 7.5 with the Lévy measure . ν on N being replaced in 
the matrix coordinate system by 

. ̄ν(dx, dy, dz) = κ1

(|x|2 + |y|2)1+β1
dx ⊗ dy ⊗ δ0(dz)

+ κ2

(|y|2 + |z|2)1+β2
δ0(dx) ⊗ dy ⊗ dz

for some positive constants .βi ∈ (0, 1) and .κi > 0, .i = 1, 2.. □

7.3 Examples 

To illustrate the main results of this work, in this section, we first revisit Example 1.5 
of random walks on the Heisenberg group .H3(Z). Here, we will not use the limit 
results for operator-stable processes from the literature; that is, we will not use 
Propositions 1.1 and 1.3. We will use instead Theorems 5.11 and 7.3 developed 
in this monograph. We will then present some more examples. 
Example 1.5 (Revisited) We use the matrix coordinate system . � on the discrete 
Heisenberg group .H3(Z), through which it is identified with . Z3. Denote by .e1, e2, 
and . e3 the elements in .H3(Z) that has matrix coordinates .(1, 0, 0), .(0, 1, 0), and 
.(0, 0, 1), respectively. Recall that . μα is the probability measure on . H3(Z) = Z

3

given by 

. μα(g) =
3∑

i=1

∑
n∈Z

κi

(1 + |n|)1+αi
1{en

i }(g), g ∈ H3(Z),

where .0 < αj < 2 and . κj , .1 ≤ j ≤ 3, are positive constants. The measure . μα is 
in .SM on .H3(Z) and the matrix coordinate system . � is an exponential coordinate 
system of the second kind described in Sect. 9.5. The dilation structures . {δt ; t > 0}
considered below in this example are straight approximate group dilations of (9.3) 
adapted to the measure . μα . So by Chap. 10 below, the conditions (R1)–(R2), (E1)–
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(E2), (T. •), and (T. �) are automatically satisfied for . μα and these .{δt ; t > 0}. For  
simplicity, we write . μ for . μα . Let  .{ξk = (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ); k ≥ 1} be a sequence of 

i.i.d. random variables taking values in .H3(Z) of distribution . μ. Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on the Heisenberg group .H3(Z). Write . Sn as .(Xn, Yn, Zn). 

(i) If .1/α3 < 1/α1 + 1/α2, we consider a straight dilation structure .{δt ; t > 0} in 
matrix coordinates: 

. δt (x, y, z) =
(
t1/α1x, t1/α2y, t(1/α1)+(1/α2)z

)
.

In this case, .{δt ; t > 0} is a straight group dilation structure for the limit group 
.(G•, •), and .(G•, •) is the continuous Heisenberg group .H3(R). It is easy to  
check that .tδ1/t (μ) converges vaguely on .R

3\{0} to .μ̄•(dx, dy, dz) as .t → ∞, 
where 

. μ̄•(dx, dy, dz) = κ1

|x|1+α1
dx⊗δ0(dy)⊗δ0(dz)+ κ2

|y|1+α2
δ0(dx)⊗dy⊗δ0(dz).

The measure . μ̄• defines a Lévy measure . μ• on the continuous Heisenberg 
group .(G•, •) through the matrix coordinate system; see Remark 5.1(i). In 
other words, . μ̄• is the pull-back measure of . μ• under the matrix coordinate 
system. When there is no danger of confusions, we simply use the same 
notation . μ• for . μ̄•. Thus by Theorem 5.11, for any .T > 0, the rescaled random 
walk on .H3(Z) in matrix coordinates 

. 

{ (
n−1/α1X[nt], n−1/α2Y[nt], n−1/α1−1/α2Z[nt]

)
; t ∈ [0, T ]

}

converges weakly in the Skorohod space .D([0, T ];R3) to a Lévy process . X•
on .(G•, •) with Lévy measure . μ• as .n → ∞. We next identify the Lévy 
process . X• in the matrix coordinate system of .(G•, •) by using Theorem 7.3. 
By (3.12) and (3.13), in matrix coordinates .(x, y, z) for .σ ∈ G•, 

. σ−1• = (−x,−y,−z + xy) and ‖σ‖ =
√

x2 + y2 + (z + 1
2xy)2.

(7.20) 

So .σ + σ−1• = (0, 0, xy). On the support of . μ•, since .xy = 0, we have  
.‖σ‖ = ‖σ‖2 and .σ + σ−1• = (0, 0, 0), that is, .σ−1• = −σ . Hence denoting the 
matrix coordinates for .σ ∈ G• by .(σ1, σ2, σ3) ∈ R

d , it follows  from  (7.8) that 
for every .1 ≤ i ≤ 3, 

.b̄j = 1

2

∫
{σ∈G•:‖σ‖2≤1}

(
σi + (σ−1• )i

)
μ•(dσ ) = 0.
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Let . X̄ be a symmetric .α1-stable process on . R with Lévy measure . κ1|z|−(1+α1)

and . Ȳ be a symmetric .α2-stable process on . R with Lévy measure . κ2|z|−(1+α2)

independent of X. Then 

. X◦ = (X̄, Ȳ , 0)

is a driftless Lévy process on .R3 with Lévy measure . μ̄• corresponding 
to (7.10). By Theorem 7.3, .X• is the weak limit on . D([0, T ];G•) =
D([0, T ];R3) of 

. X
•,n
t := �

(
X◦
1/n

)
• �

(
X◦
2/n − X◦

1/n

)
. • · · · • �

(
X◦[nt]/n − X◦

([nt]−1)/n

)
.

Note that in matrix coordinate system on . G•, 

. X
•,n
t =

(
X̄[nt]/n, Ȳ[nt]/n,

[nt]∑
k=1

X̄(k−1)/n

(
Ȳk/n − Ȳ(k−1)/n

))
, t ≥ 0,

which converges weakly in the Skorohod space .D([0, T ];R3) equipped with 
.J1-topology to .{(X̄t , Ȳt ,

∫ t

0 X̄s−dȲs); t ∈ [0, T ]}; see, e.g., [45, Theo-
rem 7.19]. This shows that .{X•

t ; t ∈ [0, T ]} under the matrix coordinate system 
of .(G•, •) has the same distribution as .{(X̄t , Ȳt ,

∫ t

0 X̄s−dȲs); t ∈ [0, T ]}. 
(ii) If .1/α3 = 1/α1 + 1/α2, we consider a straight dilation structure .{δt ; t > 0} in 

matrix coordinates: 

. δt (x, y, z) =
(
t1/α1x, t1/α2y, t1/α3z

)
.

As mentioned in (i), .{δt ; t > 0} is a straight group dilation structure and the 
limiting group structure .(G•, •) is the continuous Heisenberg group .H3(R). It  
is easy to check in this case that .tδ1/t (μ) converges vaguely on .R3 \ {0} to 
.μ̄•(dx, dy, dz) as .t → ∞, where 

. μ•(dx, dy, dz)

= κ1

|x|1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) + κ2

|y|1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz)

+ κ3

|z|1+α3
δ0(dx) ⊗ δ0(dy) ⊗ dz.

The above measure . μ̄• is the expression of a symmetric Lévy measure . μ• under 
the matrix coordinate system on the continuous Heisenberg group .(G•, •). By  
Theorem 5.11, for any .T > 0, the rescaled random walk on .H3(Z) in matrix 
coordinates
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. 

{ (
n−1/α1X[nt], n−1/α2Y[nt], n−1/α3Z[nt]

)
; t ∈ [0, T ]

}

converges weakly in the Skorohod space .D([0, T ];R3) to a symmetric Lévy 
process . X• on . G• with Lévy measure . μ• as .n → ∞. 
To identify the Lévy process . X• on .(G•, •) in matrix coordinates .(x, y, z) of 
.σ ∈ G•, note that by (7.20), since .xy = 0 on the support of . μ•, . ‖σ‖ = ‖σ‖2
and .σ−1• = −σ . Thus we have by (7.8) that 

. b̄j = 1

2

∫
{σ∈G•:‖σ‖2≤1}

(
σi + (σ−1• )i

)
μ•(dσ ) = 0 for every 1 ≤ i ≤ 3.

Let . X̄, . Ȳ , and . Z̄ be independent one-dimensional symmetric .α1-, .α2-, and .α3-
stable processes with Lévy measure .κi |z|−(1+αi), .1 ≤ i ≤ 3. Then 

. X◦ = (X̄, Ȳ , Z̄)

is a driftless Lévy process on .R3 with Lévy measure . μ• corresponding 
to (7.10). By Theorem 7.3, .X• is the weak limit on . D([0, T ];G•) =
D([0, T ];R3) of 

. X
•,n
t := �

(
X◦
1/n

)
• �

(
X◦
2/n − X◦

1/n

)
. • · · · • �

(
X◦[nt]/n − X◦

([nt]−1)/n

)
.

In this case, in matrix coordinates, 

. X
•,n
t =

(
X̄[nt]/n, Ȳ[nt]/n, Z̄[nt]/n +

[nt]∑
k=1

X̄(k−1)/n

(
Ȳk/n − Ȳ(k−1)/n

))
,

which converges weakly in the Skorohod space .D([0, T ];R3) equipped with 
.J1-topology to .{(X̄t , Ȳt , Z̄t + ∫ t

0 X̄s−dȲs); t ∈ [0, T ]}. This shows that 
.{X•

t ; t ∈ [0, T ]} in the matrix coordinate system of .(G•, •) has the same 
distribution as .{(X̄t , Ȳt , Z̄t + ∫ t

0 X̄s−dȲs); t ∈ [0, T ]}. 
(iii) If .1/α3 > 1/α1 + 1/α2, we consider a straight dilation structure .{δt ; t > 0} in 

matrix coordinates: 

. δt (x, y, z) =
(
t1/α1x, t1/α2y, t1/α3z

)
.

In this case, we see from Example 3.15 that the limit group structure . (G•, •)

is just the additive . R3. It is easy to check that .tδ1/t (μ) converges vaguely on 
.R

3 \ {0} to .μ•(dx, dy, dz) as .t → ∞, where 

.μ̄•(dx, dy, dz)
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= κ1 

|x|1+α1 
dx ⊗ δ0(dy) ⊗ δ0(dz) + κ2 

|y|1+α2 
δ0(dx)d ⊗ dy ⊗ δ0(dz) 

+ 
κ3 

|z|1+α3 
δ0(dx) ⊗ δ0(dy) ⊗ dz. 

Note that the matrix coordinate system on . R3 is the identity map, so the 
induced Lévy measure . μ• on the abelian group .(G•, •) is just . μ̄• itself. By 
Theorem 5.11, for any .T > 0, the rescaled random walk on .H3(Z) in matrix 
coordinates 

. 

{ (
n−1/α1X[nt], n−1/α2Y[nt], n−1/α3Z[nt]

)
; t ∈ [0, T ]

}

converges weakly in the Skorohod space .D([0, T ];R3) to a symmetric Lévy 
process . X• on . G• with Lévy measure . μ• as .n → ∞. Since .(G•, •) is .(R3,+), 
we conclude directly that . X• has the same distribution as .X◦ = (X̄, Ȳ , Z̄), 
where . X̄, . Ȳ , and . Z̄ are independent one-dimensional symmetric .α1-, .α2-, and 
.α3-stable processes with Lévy measure .κi |z|−(1+αi), .1 ≤ i ≤ 3. 

We next present a few more examples. 

Example 7.7 Let .μ = 1
2 (μ1+μ2) be the probability measure on .H3(Z) = Z

3 with 

. μ1(x, y, z) = c1

(1 + |x| + |z|)2+α1
and μ2(x, y, z) = c2

(1 + |y| + |z|)2+α2
,

where .0 < α1, α2 < 2, and .cj > 0, .j = 1, 2, are positive constants. The measure . μ

is again in .SM on .H3(Z). Let .{ξk = (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ); k ≥ 1} be a sequence of i.i.d. 

random variables taking values in .H3(Z) of distribution . μ. Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on the Heisenberg group .H3(Z). Write . Sn as .(Xn, Yn, Zn). 
We consider a straight dilation structure .{δt ; t > 0} in matrix coordinates: 

. δt (x, y, z) = (t1/α1x, t1/α2y, t1/α1+1/α2z).

This dilation structure .{δt ; t > 0} is a straight group dilation of (9.3) adapted to 
the measure . μ, so the limiting group .(G•, •) is the continuous Heisenberg group 
.H3(R). Since the matrix coordinate system . � is an exponential coordinate system 
of the second kind described in Sect. 9.5, by Chap. 10 below, the conditions (R1)– 
(R2), (E1)–(E2), (T. •), and (T. �) are automatically satisfied for . μ and .{δt ; t > 0}. 
It is easy to check (cf. Example 4.5) that .tδ1/t (μ) converges vaguely on .R

3 \ {0} to 
.μ̄•(dx, dy, dz) as .t → ∞, where
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. μ̄•(dx, dy, dz) = κ1

|x|1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) + κ2

|y|1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz).

Here .κi = ci

∫
R
(1 + |u|)−(2+αi)du for .i = 1, 2. The measure . μ̄• induces a 

Lévy measure . μ• on .(G•, •) via the matrix coordinate system . �. In part (i) of 
Example 1.5 (revisited), we have already identified the symmetric Lévy process . X•
on the continuous Heisenberg group .(G•, •). Thus it follows from Theorem 5.11 
that, for any .T > 0, the rescaled random walk on .H3(Z) in matrix coordinates 

. 

{ (
n−1/α1X[nt], n−1/α2Y[nt], n−1/α1−1/α2Z[nt]

)
; t ∈ [0, T ]

}

converges weakly in the Skorohod space .D([0, T ];R3) to . {(X̄t , Ȳt ,
∫ t

0 X̄s−dȲs); t ∈
[0, T ]} on the continuous Heisenberg group .H3(R) in matrix coordinates, where 
. X̄ and . Ȳ are independent one-dimensional symmetric .α1- and .α2-stable processes, 
respectively. 

Example 7.8 Let . μ be the probability measure on .H3(Z) = Z
3 with 

. μ(x, y, z) = c

(1 + √
x2 + y2 + |z − xy|)4+α

,

where .0 < α < 2 and .c > 0 are positive constants. 
The measure . μ is again in .SM on .H3(Z). Let .{ξk = (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ); k ≥ 1} be 

a sequence of i.i.d. random variables taking values in .H3(Z) of distribution . μ. Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on the Heisenberg group .H3(Z). Write . Sn as .(Xn, Yn, Zn). 
Consider the dilation 

. δt ((x, y, z)) = (t1/αx, t1/αy, t2/αz).

This dilation structure .{δt ; t > 0} is a straight group dilation of (9.3) adapted to 
the measure . μ so the limiting group structure .(G•, •) is the continuous Heisenberg 
group .H3(R). By Chap. 10 below, the conditions (R1)–(R2), (E1)–(E2), (T. •) and 
(T. �) are automatically satisfied for . μ and .{δt , t > 0}. It is easy to check in this case 
that .tδ1/t (μ) converges vaguely on .R

3 \ {0} to .μ̄•(dx, dy, dz) as .t → ∞, where 

. μ̄•(dx) = c

(
√

x2 + y2 + |z − xy|)4+α
dxdydz.

The measure . μ̄•, though itself is not symmetric on . R3, induces a symmetric Lévy 
measure . μ• on .(G•, •) via the matrix coordinate system . �. Thus by Theorem 5.11, 
for any .T > 0, the rescaled random walk on .H3(Z) in matrix coordinates
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. 

{ (
n−1/αX[nt], n−1/αY[nt], n−2/αZ[nt]

)
; t ∈ [0, T ]

}

converges weakly in the Skorohod space .D([0, T ];R3) to a purely discontinuous 
symmetric Lévy process . X• on .(G•, •) with Lévy measure . μ• as .n → ∞. We next  
identify the Lévy process . X• in the matrix coordinate system of .(G•, •) by using 
Theorem 7.3. 

Recall that for .σ = (x, y, z) ∈ H3(R), 

. σ−1• = (−x,−y,−z + xy) and σ + σ−1• = (0, 0, xy).

Since .‖σ‖2, .‖σ−1• ‖2, and . μ̄• are invariant under the transformations . (x, y, z) �→
(−x, y,−z) and .(x, y, z) �→ (x,−y,−z), we have by  (7.8) that .b̄j = 0 for every 
.1 ≤ j ≤ 3. Let  .X◦ = (X̄, Ȳ , Z̄) be the Lévy process on . R3 with Lévy triplet 
.(0, 0, μ̄•). Note that the Lévy process . X◦ is not symmetric on . R3 as its Lévy 
measure . μ̄• is not symmetric on . R3. We conclude from Theorem 7.3 with the same 
calculation as that in part (ii) of Example 1.5 (revisited) that, in matrix coordinate 
. �, 

. X•
t =

(
X̄t , Ȳt , Z̄t +

∫ t

0
X̄s−dȲs

)
for t ≥ 0.

Example 7.9 Consider the group .U4(Z) of 4 by 4 upper-triangular matrices with 
diagonal entries equal to 1 given in Example 3.16. That is, 

. � = U4(Z) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 x1 x4 x6

0 1 x2 x5

0 0 1 x3

0 0 0 1

⎞
⎟⎟⎠ : xi ∈ Z

⎫⎪⎪⎬
⎪⎪⎭

.

In matrix coordinates, .U4(R) is . R6 with multiplication .(xi)
6
1(yi)

6
1 = (zi)

6
1 given by 

. zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi + yi for i = 1, 2, 3,

x4 + y4 + x1y2 for i = 4,

x5 + y5 + x2y3 for i = 5,

x6 + y6 + x1y5 + x4y3 for i = 6.

This matrix coordinate system . � is an exponential coordinate system of the second 
kind described in Sect. 9.5; see Example 3.3. 

We consider two cases. 
(i) Let .μ = 1

2 (μ1 + μ2) be the probability measure on .U4(Z) = Z
6 with
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.μ1((xi)
6
1) = c1

(1 +
√

x2
1 + x2

2 + |x4 − x1x2|)4+α1

1(0,0,0)(x3, x5, x6) (7.21) 

and 

.μ2((xi)
6
1) = c2

(1 +
√

x2
3 + x2

5 + x2
6)

3+α2

1(0,0,0)(x1, x2, x4), (7.22) 

where .0 < α1, α2 < 2 and .c1, c2 are appropriate positive normalizing constants. 
The measure . μ is in .SM on .U4(Z). Let  . {ξk = (ξ

(1)
k ,ξ

(2)
k ,ξ

(3)
k ,ξ

(4)
k ,ξ

(5)
k ,ξ

(6)
k );k ≥

1} be a sequence of i.i.d. random variables taking values in .U4(Z) of distribution . μ. 
Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on .U4(Z). Write . Sn as 

. 

(
X(1)

n , X(2)
n , X(3)

n , X(4)
n , X(5)

n , X(6)
n

)
.

Consider the dilation 

. δt ((xi)
6
1) = (t1/α1x1, t

1/α1x2, t
1/α2x3, t

2/α1x4, t
1/α1+1/α2x5, t

2/α1+1/α2x6).

As noted in Example 3.16, this is a group dilation structure, so the limit group 
.(G•, •) is .U4(R). It is in fact the straight group dilation of (9.3) adapted to the 
measure . μ Thus by Chap. 10 below, the conditions (R1)–(R2), (E1)–(E2), (T. •), 
and (T. �) are automatically satisfied for . μ and .{δt , t > 0}. 

The measure .μt = tδt (μ) has vague limit . μ̄• as .t → ∞ given by 

. μ̄•(dx) = c1

2
(
x2
1 + x2

2 + |x4 − x1x2|
)(4+α1)/2

dx1dx2dx4 ⊗ δ(0,0,0)(dx3, dx5, dx6)

+ c′
2

2|x3|1+α2
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6).

Note that though the measure . μ̄• is not symmetric on . R6, it induces a symmetric 
Lévy measure . μ• on .(G•, •) through the matrix coordinate system . �. 

By a similar reasoning as in the previous example, one can check that the drift . b̄
defined by (7.8) is the zero vector in . R6. Let  

.X◦ =
(
X̄(1), X̄(2), X̄(3), X̄(4), 0, 0

)
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be the Lévy process on . R6 with Lévy triplet .(0, 0, μ̄•). Note that . (X̄(1), X̄(2), X̄(4))

is a Lévy process on . R3 with Lévy triplet . 
(
0,0, c1

2
(
x21+x22+|x4−x1x2|

)(4+α1)/2 dx1dx2dx4

)

and .X̄(3) is a one-dimensional symmetric .α2-stable process with Lévy measure 

.
c′
2

2|x3|1+α2
dx3 independent of .(X̄(1), X̄(2), X̄(4)). Thus we have by Theorem 5.11, for  

any .T > 0, the rescaled random walk .{δ1/n(S[nt]); t ∈ [0, T ]) on .U4(Z) converges 
weakly in the Skorohod space .D([0, T ];R6) to a purely discontinuous symmetric 
Lévy process . X• on .(G•, •) with Lévy measure . μ• as .n → ∞. 

We next identify the Lévy process . X• in the matrix coordinate system of . (G•, •)

by using Theorem 7.3, through the fact that . X• is the weak limit of 

. X
•,n
t := �(X◦

1/n) • �(X◦
2/n − X◦

1/n). • · · · • �(X◦[nt]/n − X◦
([nt]−1)/n).

When .α1 ≤ α2, .(G•, •) is .U4(R). By a similar reasoning as in previous examples, 
we conclude from Theorem 7.3 that in matrix coordinates, the symmetric Lévy 
process . X•

t on .U4(R) has the following six coordinates: 

. X̄
(1)
t , X̄

(2)
t , X̄

(3)
t , X̄(4) +

∫ t

0
X̄

(1)
s−dX̄(2)

s ,

∫ t

0
X̄

(2)
s−dX̄(3)

s ,

and 

. 

∫ t

0
X̄(1)

s− X̄(2)
s− dX̄(3)

s +
∫ t

0

(
X̄(4)

r− +
∫

[0,r)
X̄

(1)
s−dX̄(2)

s

)
dX̄(3)

r .

Note that Lévy processes are semimartingales, so the above stochastic integrals are 
all well defined. 

(ii) Now let .μ = 1
3 (μ1 + μ2 + μ3) be the probability measure on . U4(Z) = Z

6

with . μ1 and . μ2 given by (7.21) and (7.22) with .α1 = α2 ∈ (0, 2), and 

. μ3((xi)
6
1) = c3(

1 +
√

x2
4 + x2

5 + x2
6

)3+α3
1(0,0,0)(x1, x2, x3)

for some .α3 ∈ (0, α1/2). This measure . μ is in .SM on .U4(Z). Let  

. 

{
ξk =

(
ξ

(1)
k , ξ

(2)
k , ξ

(3)
k , ξ

(4)
k , ξ

(5)
k , ξ

(6)
k

)
; k ≥ 1

}

be a sequence of i.i.d. random variables taking values in .U4(Z) of distribution . μ. 
Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on .U4(Z).
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Consider the dilation 

. δt ((xi)
6
1) =

(
t1/α1x1, t1/α1x2, t1/α1x3, t1/α3x4, t1/α3x5, t1/α1+1/α3x6

)
,

which is a straight group approximate dilation of (9.3) adapted to the measure . μ. As  
noted in Example 3.16 (the fourth bullet case), this is an approximate group dilation 
structure for .U4(Z) and the group law . • of the limit group .(G•, •) is the direct 
product of the five-dimensional Heisenberg group .H5(R) and a copy of . R, that is, 

. (xi)
6
1 • (yi)

6
1

= (x1 + y1, x2 + y2, x3 + y3, x4 + y4, x5 + y5, x6 + y6 + x1y5 + x4y3). □

Clearly, .(G•, •) is different from .U4(R). Since the measure . μ is in .SM on 
.U4(Z), the conditions (R1)–(R2), (E1)–(E2), (T. •), and (T. �) are automatically 
satisfied for . μ and .{δt , t > 0} by Chap. 10 below. 

The measure .μt = tδt (μ) has vague limit . μ̄• as .t → ∞ given by 

. μ̄•(dx) = κ1

(x2
1 + x2

2)
(2+α1)/2

dx1dx2 ⊗ δ(0,0,0,0)(dx3, dx4, dx5, dx6)

+ κ2

|x3|1+α1
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6)

+ κ3

(x2
4 + x2

5)
(2+α3)/2

dx4dx5 ⊗ δ(0,0,0,0)(dx1, dx2, dx3, dx6).

It induces a symmetric Lévy measure . μ• on .(G•, •) through the matrix coordinate 
system . �. It is easy to see that the drift . b̄ defined by (7.8) is the zero vector in . R6

and the Lévy process . X◦ on . Rd with Lévy triplet .(0, 0, μ̄•) is 

. X◦
t =

(
X̄

(1)
t , X̄

(2)
t , X̄

(3)
t , X̄

(4)
t , X̄

(5)
t , 0

)
,

where .(X̄(1), X̄(2)) is a two-dimensional isotropic .α1-stable process, .X̄(3) is an inde-
pendent one-dimensional .α1-stable process, and .(X̄(4), X̄(5)) is a two-dimensional 
isotropic .α3-stable process that is independent of .(X̄(1), X(2), X(3)). In a similar 
way as in previous examples, we can conclude from Theorems 5.11 and 7.3 that for 
any .T > 0, the rescaled random walk .

{
δ1/n(S[nt]); t ∈ [0, T ]} on .U4(Z) converges 

weakly in the Skorohod space .D([0, T ];R6) to a purely discontinuous symmetric 
Lévy process . X• on .(G•, •) with Lévy measure . μ• as .n → ∞, which in the matrix 
coordinate system is given by 

.

(
X̄

(1)
t , X̄

(2)
t , X̄

(3)
t , X̄

(4)
t , X̄

(5)
t ,

∫ t

0
X̄(1)

s− dX̄(5)
s +

∫ t

0
X̄

(4)
s−dX̄(3)

s

)
.
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Example 7.10 In Example 7.9, now consider the probability measure . μ = 1
3 (μ1 +

μ2 + μ3) on .U4(Z) = Z
6, where 

. μ1((xi)
6
1) = c1(

1 +
√

x2
1 + x2

4 + x2
6 |
)3+α1

1(0,0,0)(x2, x3, x5),

. μ2((xi)
6
1) = c2

(1 + |x2|)1+α2
1(0,0,0,0,0)(x1, x3, x4, x5, x6),

and 

. μ3((xi)
6
1) = c3(

1 +
√

x2
3 + x2

5 + x2
6

)3+α3
1(0,0,0)(x1, x2, x4),

where .0 < α1, α2, α3 < 2 and .c1, c2, c3 are appropriate positive normalizing 
constants. 

The measure . μ is in .SM on .U4(Z). Let  

. 

{
ξk =

(
ξ

(1)
k , ξ

(2)
k , ξ

(3)
k , ξ

(4)
k , ξ

(5)
k , ξ

(6)
k

)
; k ≥ 1

}

be a sequence of i.i.d. random variables taking values in .U4(Z) of distribution . μ. 
Then 

. Sn = S0 · ξ1 · . . . · ξn, n = 0, 1, 2, . . .

defines a random walk on .U4(Z). 
Consider the dilation 

. δt ((xi)
6
1)

=
(
t1/α1x1, t

1/α2x2, t
1/α3x3, t

1/α1+1/α2x4, t
1/α2+1/α3x5, t

1/α1+1/α2+1/α3x6

)
.

As noted in Example 3.16, this is a group dilation structure, so the limiting group 
. G• is .U4(R). It is in fact a straight group dilation of (9.3) adapted to the measure . μ. 

Since measure . μ is in .SM on .U4(Z), the conditions (R1)–(R2), (E1)–(E2), (T. •), 
and (T. �) are again automatically satisfied for . μ and .{δt , t > 0} by Chap. 10 below. 
The measure .μt = tδt (μ) has vague limit . μ̄• as .t → ∞ given by 

. μ̄•(dx) = κ1

|x1|1+α1
dx1 ⊗ δ(0,0,0,0,0)(dx2, dx3, dx4, x5, dx6)

+ κ2

|x2|1+α2
dx2 ⊗ δ(0,0,0,0,0)(dx1, dx3, dx4, dx5, dx6) (7.23)
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+ κ3 

|x3|1+α3 
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6). 

It induces a symmetric Lévy measure . μ• on .(G•, •) through the matrix coordinate 
system . �. It is easy to see that the drift . b̄ defined by (7.8) is the zero vector in . R6

and the Lévy process . X◦ on . Rd with Lévy triplet .(0, 0, μ̄•) is 

. X◦
t =

(
X̄

(1)
t , X̄

(2)
t , X̄

(3)
t , 0, 0, 0

)
,

where .X̄(i) are one-dimensional symmetric .αi-stable processes with Lévy measure 
.κi |z|−1−αi dz for .1 ≤ i ≤ 3, independent to each other. In a similar way as in 
the previous examples, we can conclude from Theorems 5.11 and 7.3 that for any 
.T > 0, the rescaled random walk .

{
δ1/n(S[nt]); t ∈ [0, T ]} on .U4(Z) converges 

weakly in the Skorohod space .D([0, T ];R6) to a purely discontinuous symmetric 
Lévy process . X• on .(G•, •) with Lévy measure . μ• as .n → ∞, which in the matrix 
coordinate system is given by 

. X̄
(1)
t , X̄

(2)
t , X̄

(3)
t ,

∫ t

0
X̄

(1)
s−dX̄(2)

s ,

∫ t

0
X̄

(2)
s−dX̄(3)

s ,

and 

. 

∫ t

0
X̄

(1)
s−X̄

(2)
s−dX̄(3)

s +
∫ t

0

(∫
[0,r)

X̄
(1)
s−dX̄(2)

s

)
dX̄(3)

r .

In the above, if we replace . μ2 by 

. μ′
2((xi)

6
1) = c2(

1 +
√

x2
2 + x2

3 + x2
5

)3+α2
1(0,0,0)(x1, x4, x6),

the measure . μ is again an .SM measure on .U4(Z) and .μt = tδt (μ) converges 
vaguely to the same . μ̄• of (7.23) as .t → ∞. Thus for any .T > 0, the rescaled 
random walk .{δ1/n(S[nt]); t ∈ [0, T ]) on .U4(Z) converges weakly in the Skorohod 
space .D([0, T ];R6) to the same purely discontinuous symmetric Lévy process on 
.U4(R). 

Remark 7.11 Since condition (R2) is satisfied, the local limit theorem, Theo-
rem 6.1, holds as well for all the examples in this section.. □



Chapter 8 
Measures in .SM(�) and Their 
Geometries 

8.1 Probability Measures in SM and SM1 

Consider a subgroup .H ⊂ �. Because . � is nilpotent, H is automatically finitely 
generated and we equip H with a finite symmetric generating set S and the 
associated word length . |·|S . Let .α ∈ (0, 2). Let .SMα

H (�) be the set of all symmetric 
probability measures . ν on . � which are supported on H and satisfy 

. ν(g) � 1

(1 + |g|S)αVH,S(|g|S)
1H (g),

where .VH,S is the volume growth function of the pair .(H, S) and the notation . ν � μ

indicates that there are constants .0 < c ≤ C < ∞, which may depend on . ν and . μ, 
so that 

. cμ(g) ≤ ν(g) ≤ Cμ(g) for every g ∈ �.

Note that since H is a subgroup of the finitely generated nilpotent group, its volume 
growth is polynomial and there is an integer . dH such that .VH,S(k) � kdH , . k =
1, 2, . . . . Note also that the set .SMα

H (�) does not depend on the choice of the 
generating S for H . These symmetric probability measures are the basic building 
blocks of the set .SM(�) which we now define. 

Definition 8.1 (.SM(�)) The set .SM(�) is the set of all finite convex combina-
tions . μ of probability measures belonging to the union 

. 
⋃

α∈(0,2)

⋃
H : subgroup of �

SMα
H (�)

such that the support of . μ generates . �. 
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Definition 8.2 (.SM1(�)) The subset .SM1(�) of .SM(�) is the set of all finite 
convex combinations . μ of probability measures in 

. 
⋃

α∈(0,2)

⋃
h∈�

SMα〈h〉(�)

such that the support of . μ generates . �. That is, .μ ∈ SM1(�) if it is the finite 
convex combinations of stable-like symmetric probability measures supported on a 
finite collection of cyclic subgroups of . �, . 〈hi〉, .1 ≤ i ≤ k, with the property that 
.{h±1

i , 1 ≤ i ≤ k} generates . �.. □
Definition 8.3 (.SMα(�), .α ∈ (0, 2)) For each .α ∈ (0, 2), the subset .SMα(�) of 
.SM(�) is the set of all finite convex combinations . μ of probability measures in 

. 
⋃

H : subgroup of �

SMα
H (�)

such that the support of . μ generates . �.. □
So, any probability measure . μ in .SM(�) is the form 

.μ =
k∑

i=1

piμHi,αi
, (8.1) 

where .αi ∈ (0, 2), .pi > 0, .
∑k

i=1 pi = 1, each . Hi is a subgroup of . �, and . μHi,αi

is a probability measure in .SMαi

Hi
(�). In addition, .� = 〈H1, . . . , Hk〉. The typical 

measures in .SM1(�) have the more explicit form 

. μ(g) =
k∑
1

∑
m∈Z

picαi

(1 + |m|)1+αi
1{sm

i }(g),

where .αi ∈ (0, 2), .pi > 0, .
∑k

1 pi = 1, the finite set . {s±1
i : 1 ≤ i ≤ k}

is a generating set of . �, and .c−1
α = ∑

m∈Z 1
(1+|m|)1+α . There are more measures 

in .SM1(�) because the individual component of the convex combination above 
does not have to be exactly .

∑
m∈Z

cαi

(1+|m|)1+αi
1{sm

i }(g), and they only have to be 

.�-comparable to such a measure. 

Example 8.4 On the Heisenberg group .H3(Z) viewed as the group of matrix (4.2), 
consider the measures 

.μ4((x1, x2, x3)) = cα(
1 +

√
x2
1 + x2

2 + |x3 − x1x2/2|
)4+α4
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(this is . μ from Example 4.6) and 

. μi((x1, x2, x3)) = cα1Hi
((x1, x2, x3))

(1 + |xi |)1+αi
, i = 1, 2, 3,

where .Hi = {(x1, x2, x3) : xj = 0 if j 	= i}, with .α1, α2, α3, α4 ∈ (0, 2). 
The measure .μ = 1

4

∑4
i=1 μi is a good example of a measure in .SM(H3(Z)). 

This is because the expression .
√

x2
1 + x2

2 + |x3 − x1x2/2| is constant under taking 
inverse and is comparable to the word length on .H3(Z) (e.g., on the natural minimal 
symmetric generating set).. □
Example 8.5 On the Heisenberg group .H3(Z) viewed as the group of matrix (4.2), 
for .i = 1, 2, .αi ∈ (0, 2), and .H1 = {(x1, 0, x3) : x1, x3 ∈ Z}, . H2 = {(0, x2, x3) :
x2, x3 ∈ Z}, consider the measures 

. μi((x1, x2, x3)) = cαi(
1 +

√
x2
i + x2

3

)αi+2
1Hi

(x1, x2, x3).

The measure .μ = 1
2 (μ1+μ2) is another good example of a measure in .SM(H3(Z)). 

The measure in Example 4.6 is also in .SM(H3(Z)).. □

8.2 Weight Systems on � Associated with Measures in 
SM(�) 

Let .μ ∈ SM(�) be given by (8.1). From the data defining . μ, we extract a long 
generating tuple 

. � = (σ1, . . . σ�)

by listing one representative of .{s, s−1} for each .s ∈ Si , .1 ≤ i ≤ k, with repetition 
when the same .s, s−1 belongs to more than one set . Si . Thus, we can think of each . σj

as carrying a label that tells us from which . Si it comes. Using this label we give each 
.σj ∈ � the positive weight .w(σj ) = 1/αi if . σj comes from . Si . Now, consider . �
as a finite alphabet and consider the set of all finite length formal commutators over 
.�∪�−1, where .�−1 is the set of formal inverse letters. We can proceed inductively. 
Elements of .�∪�−1 are length 1 commutators. After formal commutators of length 
at most n have been defined, the formal commutators of length at most .n + 1 are all 
the formal expressions of the form .[τ, θ ], where . τ and . θ are commutators of length 
s and t with .s + t ≤ n + 1. Recall that each formal commutator .σ±1 of length 1 has 
a weight .w(σ±1) = 1/αi if . σ comes originally from . Si . Extend the weight function 
w to all formal commutators by setting .w([τ, θ ]) = w(τ) + w(θ).
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A priori, there are countably many formal commutators but because . � is nilpotent 
and we will ultimately consider only the formal commutators that are not trivial 
when evaluated in . �, we only have to deal with finitely many formal commutators, 
whose lengths are at most the nilpotent class of . �. We now use weighted formal 
commutators to define a non-increasing sequence of subgroups of . �. Recall that by 
convention and abuse of notation, each letter . σ in . � is also a group element in . �. 
The following definition is essentially from [56] where further details can be found. 
See Definition 1.4 and Proposition 1.5 in [56]. 

Definition 8.6 For any .s ≥ 0, let  .��,w
s be the subgroup of . � generated by the 

elements in . � of all the formal commutators over the alphabet . � with weight at 
least s. By construction .�

�,w
t ⊆ �

�,w
s if .s ≤ t . Also, .[��,w

s , �
�,w
t ] ⊆ �

�,w
s+t .. □

Definition 8.7 There is a greatest t such that .��,w
t = �, call it . w1. By induction, 

having defined . wj , define .wj+1 to be the largest .t ∈ (wj ,∞] such that . ��,w
s =

�
�,w
t for all .wj < s ≤ t . This defines a finite strictly increasing sequence 

. w1 < w2 < · · · < wj < wj+1 < · · · < wj∗+1 = ∞

such that 

. ��,w
wj+1

� ��,w
wj

, ��,w
s = ��,w

wj
for s ∈ (wj−1, wj ], and ��,w

s = {e} for s > wj∗ .

By construction .
[
�,��,w

wj

] ⊂ ��,w
wj+1

. Call .Awj
the abelian group 

. Awj
= ��,w

wj
/��,w

wj+1
, 1 ≤ j ≤ j∗.

. □
Definition 8.8 Set .γ0(�,w) = ∑j∗

1 wjRank(Awj
), where .Rank(A) denotes the 

torsion-free rank of the finitely generated abelian group A.. □
That the construction described above and the definition of the positive real 

.γ0(�,w) is relevant to the study of random walks driven by measures in .SM(�) is 
apparent from the following theorem from [20, 56]. 

Theorem 8.9 ([20, 56]) Let . � be a finitely generated nilpotent group. For any 
probability measure . μ in .SM(�) with associated data .(�,w) as above, there are 
constants .c(μ) and .C(μ) such that, for all n, 

.c(μ)n−γ0(�,w) ≤ μ(n)(e) ≤ C(μ)n−γ0(�,w).
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8.3 Quasi-Norms on � Associated with Elements of SM(�) 

The previous section associates with any measure .μ ∈ SM(�) a weight system built 
on the .�-tuple of group elements .� = (σ1, . . . , σ�) obtained by listing consecutively 
with possible repetitions all the elements of the sets . Si , .1 ≤ i ≤ k, and the attached 
weight .w(σ) = 1/αi if . σ comes from . Si . Recall that in this construction, we view 
. � as an abstract alphabet. This data allows us to construct a quasi-norm on the 
countable group . � based on the writing of any element g of . � as a word over the 
alphabet .� ∪ �−1. For any finite word .ω ∈ ∪∞

m=0(� ∪ �−1)m, set  

. degσ (ω) = number of times the letters σ and σ−1 are used in ω.

The following definition is from [20, 56]. 

Definition 8.10 Given . �, .� = (σ1, . . . , σ�) and weight w as above, for each 
element .g ∈ �, set  

. ‖g‖�,w = inf

{
max
σ∈�

{(degσ (ω))1/w(σ)} : ω ∈ ∪∞
m=0(� ∪ �−1)m, g = ω in �

}
.

By convention, .‖e‖�,w = 0. *  

Remark 8.11 When .w(σ) = w0 for all .σ ∈ �, the quasi-norm .‖ · ‖�,w satisfies 

. 
1

�
|g|� ≤ ‖g‖w0

�,w ≤ |g|� for every g ∈ �,

where .| · |� denotes the usual word length of the finite symmetric generating set 
.� ∪ �−1 ⊂ �. . □
Remark 8.12 It may be worth noting that, in general, it is hard to compute or 
estimate .‖g‖�,w for a given .g ∈ �. The reference [56] gives many results in this 
direction and these results will be useful in the sequel. This is related to the use of 
coordinate systems in so far as the question of estimating .g ∈ � becomes a precise 
question only when g is given in terms of some parameter set, i.e., some sort of 
(possibly partial) coordinate system, see [56, Theorem 2.10]. To help the reader 
understand this comment, we suggest the following question: given a fixed .g ∈ �, 
what is the behavior of .‖gm‖�,w as a function of m? See [56, Proposition 2.17 ].



Chapter 9 
Adapted Approximate Group Dilations 

9.1 Searching for Adapted Dilations 

The goal of this chapter is to associate with each probability measure . μ in . SM(�)

an adapted approximate dilation structure. This includes making the choice of an 
appropriate polynomial coordinate system for the simply connected nilpotent Lie 
group .G = (Rd , ·) in which . � embeds as a co-compact discrete subgroup. The 
given measure . μ determines uniquely certain features of the appropriate coordinate 
systems and associated approximate group dilations but not all. Among the features 
that are determined uniquely (in this case, up to an arbitrary multiplicative positive 
constant) is a vector of non-decreasing weight values . bj , .1 ≤ j ≤ d, so that, in the 
chosen coordinate system .u = (ui)

d
1 ∈ R

d for G, the appropriate approximate dila-
tion structure is of the form .δt (u) = (tbi ui)

d
1 . Among the exponential coordinates 

of the first and the second kind, the group structure .G• = (Rd , •) defined by 

. u • u′ = lim
t→∞ δ1/t (δt (u) · δt (u

′))

(understood up to isomorphisms) depends only on . � and . μ and not on the particular 
choice of a coordinate system. An interesting question is if this remains true beyond 
these exponential coordinate systems. 

In the next sections, we describe two key constructions: the construction of 
adapted exponential coordinates of the first kind and that of adapted coordinate 
of the second kind. The essential difference between the two constructions is that, 
in the discussion of exponential coordinates of the first kind, we assume that the 
simply connected nilpotent Lie group G in which . � sits as a co-compact subgroup 
is already given to us together with its Lie algebra and canonical exponential map. 
All we need to construct is an adapted linear basis of this Lie algebra based on the 
nature of the measure . μ. In the case of exponential coordinates of the second kind, 
we start from scratch with only the finitely generated torsion-free nilpotent group 
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. � carrying the measure . μ and, following Malcev and Hall, we construct a “discrete 
coordinate system” for . �, which is adapted to . μ and, in turn, “generates” for us 
the simply connected Lie group G and its adapted exponential coordinates of the 
second kind. It is only a posteriori (and with some work) that one can check that 
certain features of these two constructions are identical. 

9.2 Exponential Coordinates of the First Kind 

This section focuses on the situation when the torsion-free finitely generated group 
. � is given to us as a co-compact discrete subgroup of a simply connected nilpotent 
Lie group G with Lie algebra .g = (Rd , [·, ·]) and the group G is given in the 
(canonical) exponential coordinates of the first kind. This identifies the group G 
with .(Rd , ·)where the product . · is given by the famous Campbell-Hausdorff formula 
(3.6). 

In the next definition, we are given a probability measure .μ ∈ SM(�) and the 
associated data .�,w as in Sect. 8.2 and we transfer the weight system to the Lie 
algebra . g. Observe that the tuple (use the same ordering as for . �) 

. �g = (ςi ∈ g : exp(ςi) = σi ∈ �) = (ς1, . . . , ς�)

must be an algebraically generating set for . g in that this set together with all iterated 
brackets of its elements generates . g linearly. Indeed, because the exponential map 
is a global diffeomorphism between . g and G, if  . �g did not generate . g, . � would be 
contained in a proper, closed, connected Lie subgroup of G. This would contradict 
the fact that . � is co-compact in G. 

We now trivially transfer the weight function .w : � → (0,∞) to a function 
defined on . �g by setting .wg(ς) = w(σ) if .σ = exp(ς). This leads to the definition 
of a weight system . wg on the formal (Lie) commutators of the . ς ’s in a way that is 
formally analogous to what we did on . �. 

Definition 9.1 Let .g�,w
s be the Lie sub-algebra of . g over . R. generated by the 

evaluation in . g of all formal commutators of the .ς ∈ �g whose weight is at least s. 
By construction, 

. g
�,w
t ⊆ g�,w

s if s ≤ t

and 

. 

[
g�,w
s , g

�,w
t

]
⊆ g

�,w
s+t .

Definition 9.2 There is a greatest t such that .g�,w
t = g, call it . wg

1 . By induction, 

having defined . wg

j , there is a greatest .t ∈ (w
g

j ,∞] such that .g�,w
s = g

�,w
t for all
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.s ∈ (w
g

j , t]. Call it  .wg

j+1. Let  . j
g
� be the largest integer j such that .wg

j < ∞ so that 

.w
g

j
g
� +1

= ∞ and .g�,w

w
g

j
g
� +1

= {0}. This defines a finite strictly decreasing sequence of 
sub-Lie algebras 

. g = g
�,w

w
g

1
⊃ · · · ⊃ g

�,w

w
g

j
g
�

⊃ {0}

with the property that 

. [g, g�,w

w
g

j

] ⊆ g
�,w

w
g

j+1
, j = 1, . . . , jg� .

Definition 9.3 (Adapted Direct Sum Decomposition) We say that a direct sum 
decomposition of . g, 

. g = ⊕j
g
�

1 nj ,

is adapted to .(�,w) if, for all .j ∈ {1, . . . , jg� }, 

. g
�,w

w
g

j

= ⊕j
g
�

�=jn�.

Remark 9.4 To construct an adapted direct sum decomposition, start from the top 
and set .nj

g
�

= g
�,w

w
g

j
g
�

. By descending induction, having constructed .nj , . . . , nj
g
�
so 

that .g�,w

w
g

j

= ⊕j
g
�

�=jn�, pick a linear complement of .g�,w

w
g

j

inside .g�,w

w
g

j−1
and call it 

.nj−1.. �
Definition 9.5 (Approximate Lie Dilation Structure (First Kind)) Given a 
direct sum decomposition that is adapted to .(�,w), consider the group of invertible 
linear maps 

. δt : g → g, t > 0,

defined by 

. δt (v) = t
w

g

j v for all v ∈ nj , 1 ≤ j ≤ j
g
� .

Let .ε = (εi)
d
1 be a linear basis of . Rd adapted to the direct sum .g = ⊕j

g
�

1 nj , let  
.u = (ui)

d
1 be the corresponding coordinate system, and let 

.bi = w
g

j if εi ∈ nj
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so that 

. δt (u) = (tbi ui)
d
1 .

We shall see below in Proposition 9.12 and Corollary 9.13 that the important 

quantity .γ0(�,w) is given in terms of the sequences .(bi)
d
1 and .(w

g

j )
j
g
�

1 by 

. γ0(�,w) =
d∑
1

bi =
j
g
�∑
1

w
g

j dim(nj ).

Proposition 9.6 The maps .(δt )t>0 defined above form an approximate Lie dilation 
structure on . g. In any exponential coordinate system of the first kind adapted to 

the direct sum decomposition .g = ⊕j
g
�

1 nj , .(δt )t>0 is a straight approximate group 
dilation structure on G. 

Proof By linearity, it suffices to prove that for any .vi ∈ nji
, .i = 1, 2, 

. δ−1
t ([δt (v1), δt (v2)])

has a limit when t tends to infinity. By construction, .δt (vi) = t
w
g

ji vi and . [v1, v2] ∈
g
�,w

w
g

N

= ⊕�≥Nn� where .w
g

N ≥ w
g

j1
+ w

g

j2
, namely, 

. [v1, v2] =
j
g
�∑

�=N

f�, f� ∈ n�.

It follows that 

. δ−1
t ([δt (v1), δt (v2)]) =

j
g
�∑

�=N

t
w
g

i1
+w

g

i2
−w

g

� f�.

The limit of this expression when t tends to infinity exists because . wg

i1
+ w

g

i2
≤

w
g

N ≤ w
g

� for all .� ≥ N . If .w
g

N > w
g

i1
+ w

g

i2
, the limit is 0. If .w

g

N = w
g

i1
+ w

g

i2
, the  

limit is . fN . ��

9.3 Building Adapted Exponential Coordinates of the Second 
Kind from � and μ 

In this section, we start with the given discrete torsion-free nilpotent group . �
(described, perhaps, by generators and relations or as a subgroup of a bigger group)
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and we explain how to construct the Lie group G using well-known ideas related to 
exponential coordinate systems of the second kind. This is done in [35, 47] and we 
refer the reader to the treatment in [21, Theorem 4.9, Section 4.3]. 

9.3.1 Hall-Malcev Coordinates 

Theorem 4.9 of [21] asserts that, for any finitely generated torsion-free nilpotent 
group . �, any descending central series (this means that .�i/�i+1 is central in 
.�/�i+1 for each .1 ≤ i ≤ n) 

. � = �1 � �2 � · · · � �n � �n+1 = {e}

with .�i/�i+1 infinite cyclic, and any sequence of elements .τi ∈ G such that . �i =
〈�i+1, τi〉, each element .γ ∈ � can be written uniquely 

. γ = τ
u1
1 · τ

u2
2 · · · · · τun

n , u1, u2, . . . , un ∈ Z.

Moreover, for any .k ∈ Z and any .γ ′ = τ
u′
1

1 · τ
u′
2

2 · · · · · τ
u′

n
n , 

. γ k = τ
g1(u,k)

1 · τ
g2(u,k)

2 · · · · · τgn(u,k)
n

and 

. γ · γ ′ = τ
f1(u,u′)
1 · τ

f2(u,u′)
2 · · · · · τ

fn(u,u′)
n ,

where .u = (u1, . . . , un), .u′ = (u′
1, . . . , u

′
n), and .fi, gi , .1 ≤ i ≤ n are polynomials 

with rational coefficients in their respective variables. 
Furthermore [21, Theorems 4.11-4.12 ], by interpreting these coordinates in . Rn

instead of . Zn, one obtains a simply connected nilpotent Lie group of which . � is a 
discrete co-compact subgroup. 

For our present purpose, the task is to produce a descending central series 

. � = �1 � �2 � · · · � �n � �n+1 = {e}

with .�i/�i+1 infinite cyclic, which is adapted to the measure . μ. Using the sequence 
.��,w

wj
, .1 ≤ j ≤ j∗ is a good first guess. If each quotient .Awj

= ��,w
wj

/��,w
wj+1

is free 
abelian (i.e., has no torsion), then we can produce a descending central series 

. � = �1 � �2 � · · · � �n � �n+1 = {e},

which refines the sequence .��,w
wj

, .1 ≤ j ≤ j∗, and has .�i/�i+1 infinite cyclic. In 
addition, we can find a sequence of elements .τi ∈ �, each of which is a commutator
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of the elements in . �, such that .�i = 〈�i+1, τi〉 and such that 

. w(τi) = wj if and only if ��,w
wj+1

⊃ �i ⊇ ��,w
wj

.

The problem we face is that it is NOT always the case that the groups .Awj
are 

torsion-free (even in the simplest of all cases when .� = Z!). 

9.3.2 Modified Weight System on �

Given a measure .μ ∈ SM(�) as in (8.1), we defined in Sect. 8.2 a generating set 
.� = (σ1, . . . , σ�) and a weight system w on formal commutators which generates 
the descending central sequence of subgroups .��,w

wj
, .1 ≤ j ≤ j∗. 

Consider the finite set of all formal commutators over the alphabet . � which are 
not trivial in . � and organize that finite set as a long tuple .�com = (c1, . . . , cL). Let  
.�com = (c1, . . . , cL) be the evaluation of .�com in . �. 

Let us introduce a (modified) weight function, . w, on  .�com by setting, for each . c
appearing in the tuple .�com, 

. w(c) = max
{
wj : ∃ m ∈ N, cm ∈ ��,w

wj
, 1 ≤ j ≤ j∗

}
.

For commutators whose evaluation in . � is trivial, we can set .w(c) = ∞. Following 
[56, Section 2.2], we set 

. core(�,w) = {σi : w(σi) = w(σi), 1 ≤ i ≤ �}.

The function . w is no less than w and has the property that if .c = [c1, c2] is 
nontrivial in . �, then 

. w(c) ≥ w(c1) + w(c2).

It follows that the induced weight of a formal commutator . c over the alphabet . �com

whose evaluation in . � is not trivial is actually equal to the . w weight of the same 
commutator view as an element of .�com. Moreover, . core(�com, w) = �com.

Definition 9.7 For any .s ≥ 0, let .�com
s be the subgroup of . � generated by the values 

in . � of all the formal commutators over the alphabet . � with .w-weight at least s. By  
construction .�com

t ⊆ �com
s if .s ≤ t . Also, .[�com

s , �com
t ] ⊆ �com

s+t .. �

Definition 9.8 There is a greatest t such that .�com
t = �, call it . w1. By induction, 

having defined . wj , define .wj+1 to be the largest .t ∈ (wj ,∞] such that . �com
t = �com

s

for all .wj < s ≤ t . This defines a finite strictly increasing sequence 

.0 < w1 < w2 < · · · < wj < wj+1 < · · · < wj com∗ +1 = ∞
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such that 

. �com
wj+1

⊂ �com
wj

, �com
s = �com

wj
for s ∈ (wj−1, wj ], �com

s = {e} for s > wj com∗ .

By construction .[�,�com
wj

] ⊂ �com
wj+1

. Call .Acom
wj

the abelian group 

. Acom
wj

= �com
wj

/�com
wj+1

, 1 ≤ j ≤ j com∗ .

The following lemma follows immediately from the construction outlined above. 

Lemma 9.9 The groups .Acom
wj

, 1 ≤ j ≤ j com∗ , are free abelian and each is 
generated by a finite subset of the commutators .c ∈ �com. Consequently, there exists 
a descending central series 

. � = �1 � �2 � · · · � �d � �d+1 = {e}

refining the descending central series 

. � = �com
w1

� �com
w2

� · · · � �com
wjcom∗

� � = �com
wjcom∗ +1

= {e}

and a sequence .τi = c�i
, .1 ≤ j ≤ d, in .�com such that .�i/�i+1 is an infinite cyclic, 

.�i = 〈τi, �i+1〉, .1 ≤ i ≤ d, and 

. �com
wj

= 〈τi : w(τi) ≥ wj 〉.

Because of this lemma, it is clear that [21, Theorems 4.9, 4.11, and 4.12] apply and 
provide a set of coordinates of the second kind 

. � = {γ = τ
u1
1 · τ

u2
2 · · · · · τud

d , u1, u2, . . . , ud ∈ Z
}

for . �, as well as an embedding of . � as a co-compact discrete subgroup a simply 
connected Lie group G 

. G = {g = τ
x1
1 · τ

x2
2 · · · · · τ

xd

d , x1, x2, . . . , xd ∈ R
}

={g = exp(x1ζ1) · exp(x2ζ2) · · · · · exp(xdζd), x1, x2, . . . , xd ∈ R},

where .ζi = log τi ∈ g. 

Definition 9.10 (Approximate Group Dilation Structure (Second Kind)) In the 
exponential coordinate system of the second kind .(xi)

d
1 introduced above, consider 

the group of straight dilations 

.δt : Rd → R
d , t > 0, x �→ δt (x) = (twi xi)

d
1 .
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Proposition 9.11 The maps .(δt )t>0 defined above form an approximate group 
dilation structure on .G = (Rd , ·).. �

By the same token, we obtain an associated coordinate system of the first kind 

. (y1, . . . , yd) �→ exp

(
d∑
1

yiζi

)
,

which is compatible with the weight .wg introduced earlier and such that . bi =
wg(ζi) = w(τi), .1 ≤ i ≤ d. The straight dilation groups we introduced in these 
two distinct coordinate systems have the same exponents . bi in their respective 
coordinate systems. Viewed as maps from G to G, they are clearly different in 
general even so we use the same notation . δt in both cases; see Example 3.15 for such 
an example where the matrix coordinate system is an exponential coordinate system 
of the second kind. This is because there are really no good reasons to consider 
both coordinate systems at the same time, except to understand that these parallel 
constructions yield compatible results at the end. 

9.4 Relations Among the Filtrations Associated with w, wg, 
and w 

Although there are great similitudes in the construction of the (discrete group) 
filtrations .��,w

wj
, .1 ≤ j ≤ j∗, and . �com

wj
, .1 ≤ j ≤ j com∗ , of the group . �, and the 

(Lie algebra) filtration .g
�,w

w
g

j

, .1 ≤ j ≤ j
g
� of . g, there are also differences. 

We start with a comparison of the coordinates of the first and the second kind 
in this context. It is not hard to see that the definitions of the sequences . wg

j , . 1 ≤
j ≤ j

g
� , and . wi , .1 ≤ i ≤ j com∗ , and the above remark concerning the relations 

between group and Lie algebra commutators, imply that these sequences of weights 
are actually equal, that is, 

.j
g
� = j com∗ and w

g

j = wj , 1 ≤ j ≤ j
g
� . (9.1) 

For relation between the weights w and . wg, see Proposition 9.12. 
More generally, each (discrete group) formal commutator . τ on the alphabet . � =

(σ1, . . . , σ�) corresponds in an obvious formal way to a formal Lie commutator . θ on 
the alphabet .�g = (ζ1, . . . , ζ�) in such a way that the Campbell-Hausdorff formula 
provides a formal equality 

.τ = exp(ζ ) = exp(θ + Rτ ), (9.2)
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where . Rτ is a formal series of Lie commutators with .wg-weights strictly larger than 
.w(τ ) = wg(θ). The concrete meaning of this formal identity in the present context 
is that it is an equality when evaluated over any pair .� ⊂ G, where G is a simply 
connected nilpotent Lie group with algebra . g, with the formal series . Rσ reducing to 
a finite sum. Obviously, the evaluation . θ of . θ in . g belongs to .g�,w

wg(θ)
. It follows  that  

the evaluation .ζ = θ + Rσ of . ζ in . g also belongs to .g
�,w
wg(θ)

. 

9.4.1 Two Choices of Exponential Coordinate of the First Kind 

From the discussion above, it becomes clear that there are at least two very natural 
exponential coordinate systems of the first kind associated with the sequence . (τi)

d
1

of elements of . � given by Lemma 9.9. 

Choice 1: Lie Commutators 
Each . τi is a commutator built on .� = (σi)

�
1. Let  . θi be the Lie commutator over 

.�g = (ςi)
�
1 that corresponds formally to . τi . Here  .σi = exp(ςi) as before and the 

last sentence means that .θ = [ς, ς ′] if .τ = [σ, σ ′] with .σ = exp(ς), σ ′ = exp(ς ′). 
By (9.2), .w(τi) = wg(θi), and the final subsequence of .(θi)

n
1 corresponding to those 

i such that .w(τi) ≥ w
g

j = wj is a linear basis of .g
�,w

w
g

j

. In particular, 

. nj =

⎧⎪⎨
⎪⎩

ζ ∈ g : ζ =
∑

i:w(τi )=w
g

j

ziθi , zi ∈ R

⎫⎪⎬
⎪⎭

, 1 ≤ j ≤ j
g
�

provides an adapted direct sum decomposition of . g in the sense of Definition 9.3. 

Choice 2: Logarithms of Group Commutators 
Each . τi can be written uniquely as .τi = exp(ζi), where . ζi and . θi are related via (9.2). 
It follows that the final subsequence of .(ζi)

n
1 corresponding to those i such that 

.w(τi) ≥ w
g

j = wj is (also) a linear basis of .g
�,w

w
g

j

. In particular, 

. n′
j =

⎧⎪⎨
⎪⎩

ζ ∈ g : ζ =
∑

i:w(τi )=w
g

j

ziζi , zi ∈ R

⎫⎪⎬
⎪⎭

, 1 ≤ j ≤ j
g
�

provides an adapted direct sum decomposition of . g in the sense of Definition 9.3. 

From the description of these two related coordinate systems, it follows that, for 
each .j ∈ {1, . . . , j com∗ = j

g
� }, the group .�com

wj
is a co-compact discrete subgroup of
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the Lie group .exp(g�,w

w
g

j

) (recall that .wj = w
g

j ). Note that, by definition, any two 

exponential coordinate systems are always related by a linear change of basis in . g. 
In the present case, these linear changes of coordinates have an obvious triangular 
form with unit diagonal and they respect the increasing filtration .g

�,w

w
g

j

, .1 ≤ j ≤ j
g
� . 

The following proposition records the relations between the objects related to the 
original weight system w on . � and those related to the Lie algebra weight . wg. The  
proof follows classical arguments developed in [47],  see also [30, Appendix] and 
[21, 56]. It is omitted. 

Proposition 9.12 The finite sequence of weight values . wg

j , .1 ≤ j ≤ j
g

j�
, is a  

subsequence of the increasing finite sequence of weight values . wj , .1 ≤ j ≤ j∗, 
and .w

g

j
g
�

= wj∗ . If .w
g

i−1 < wj ≤ w
g

i for some .1 ≤ i ≤ j ≤ j∗, then 

. ��,w
wj

⊂ exp

(
g
�,w

w
g

i

)

and the quotient 

. exp

(
g
�,w

w
g

i

)
/��,w

wj

is compact. If .j ∈ {1, . . . , j∗} is such that the value . wj does not appear in .(wg

i )
j
g
�

1 , 
then 

. ��,w
wj+1

/��,w
wj

is a finite abelian group.

The following is an immediate corollary. 

Corollary 9.13 .γ0(�,w) =∑j∗
1 wjRank

(
��,w

wj
/��,w

wj+1

) =∑j
g
�

1 w
g

j dim(nj ).. �

9.4.2 An Associated Exponential Coordinate System of the 
Second Kind 

By the Hall-Malcev construction reviewed in Sect. 9.3, the sequence .(τi)
d
1 of 

elements of . � given by Lemma 9.9 and the sequence of their logarithm .(ζi)
d
1 in 

. g give us an exponential coordinate system of the second kind in which an element 
g of the group G is written 

.g =
d∏
1

exp(yiζi), y = (yi)
d
1 ∈ R

d .
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Recall that we also have exponential coordinates .(x)d1 ∈ R
d of the first kind such 

that 

. g = exp
(∑

xiζi

)
.

By using the Campbell-Hausdorf formula, we obtain a polynomial map 

. x = M(y) = (Mi(y))d1 such that g =
d∏
1

exp(yiζi) = exp
(∑

xiζi

)

and this map has a specific triangular structure which can be described as follows. 
For a multi-index of length q, .I = (i1, . . . , iq) ∈ {1, . . . , d}q , set  .wI = ∑q

1 wij . 
We say that a polynomial p in the coordinate .(yi)

d
1 has weight at most w if it can be 

written as a linear combination of .yI = yi1 . . . yiq with .wI ≤ w. Then the map M 
has the form 

. Mi(y) = yi + mi(y),

where . mi is a polynomial of weight at most . wi with no linear terms. 
Let us use the notation 

. δt : Rd → R
d , u = (ui)

d
1 �→ δt (u) = (tbi ui)

d
1 , bi = wi, t > 0,

and note that we can use these dilations in the x coordinate system as well as in the 
y coordinate system discussed above. We find that 

. δ1/t ◦ M ◦ δt (y) = yi + t−bi mi(δt (y)).

Because . mi has weight at most . bi , this expression has a limit when t tends to infinity 
which is of the form 

. yi + m∞
i (y),

where .m∞
i is a linear combination of terms of weight exactly . bi . This defines a 

polynomial map 

. M∞ : Rd → R
d ,

which is a group isomorphism between the limit groups . G1• (obtained by using 
the approximate group dilations . δt in the exponential coordinates of the first kind) 
and the group . G2• (obtained by using the approximate group dilations . δt in the 
exponential coordinates of the second kind).
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9.5 More Choices of Coordinate Systems 

There are many more possible choices of exponential coordinates of the first and 
the second kind that suit our needs. The key structure that must be preserved for our 
purpose is the filtration .g

�,w
j , .1 ≤ j ≤ j

g
� , of the Lie algebra . g which is canonically 

associated with .(�,w). After that, a number of choices have to be made, the first of 

which is the choice of the direct sum .g = ⊕j
g
�

j=1nj so that 

. g
�,w
j = ⊕i≥jnj .

One then needs to pick an adapted linear basis .ε = (εi)
d
1 . Any such choice gives 

both an exponential coordinate system of the first kind 

. g = exp

(
d∑
1

xiεi

)
, x = (xi)

d
1 ∈ R

d ,

and an exponential coordinate system of the second kind 

. g =
d∏

i=1

exp (yiεi) , y = (yi)
d
1 ∈ R

d .

Each of these choices of coordinates, call it .(u1, . . . , ud) ∈ R
d , comes with its own 

straight approximate group dilations 

.δt : Rd → R
d , u = (ui)

d
1 �→ δt (u) = (tbi ui)

d
1 , bi = wi, t > 0. (9.3) 

Everything that has been said above for the special case .εi = ζi applies as well to 
these other choices (including the properties of the maps M and .M∞). The choice 
.ε = ζ is justified mostly by the fact that, in that coordinate system, the discrete 
group . � is represented as a set as .Zd ⊂ R

d . This is not the case in most other 
coordinate systems. If one remains in the class of exponential coordinate systems 
of the first kind, moving from one such system to another is captured by a linear 
change of coordinate in .R

d = g. If one moves from a system of the first kind to one 
of the second kind or between systems of the second kind, the maps capturing the 
changes of coordinates are polynomial maps with a special structure reflecting the 
preservation of the filtration .g

�,w
j , .1 ≤ j ≤ j

g
� , of the Lie algebra . g (the best way to 

think of a change of coordinates involving at least one system of the second kind is 
to pass through the associated system of the first kind: this step is described by the 
map M above).
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9.6 Comparison of the Quasi-Norms on �, G, and  G• 

Consider the exponential coordinate systems of the first and the second kind 
associated with a basis .ε = (εi)

d
1 adapted to the filtration .g�,w

j of the Lie algebra 
. g as considered in the preceding section. It comes with a family of approximate 
dilations given by (9.3). On  . Rd , consider the usual Euclidean norm .‖ · ‖2 and the 
quasi-norm 

. Nw(z) = max
1≤i≤d

{|zi |1/bi }, bi = wi = w
g

i ,

and note that, for all .z ∈ R
d , .Nw(δt (z)) = tNw(z). The structure of the change 

of coordinate map M between exponential coordinates of the first (.x = (xi)
d
1) and 

second (.y = (yi)
d
1) kind shows that there are constants .0 < c ≤ C < ∞ such that 

if .g = exp(
∑d

1 xiζi) =∏d
1 exp(yiζi), then 

. cNw(x) ≤ Nw(y) ≤ CNw(x).

Lemma 9.14 Referring to the above setup and notation, there is a constant . C∗
such that for any .R ≥ 1 and any .ζi ∈ g with .Nw(ζi) ≤ R, i = 1, 2, we have 
.exp(ζ1) exp(ζ2) = exp(ζ ) with .Nw(ζ ) ≤ C∗R.. �
Proof This follows from the Campbell-Hausdorff formula because of the properties 
of the direct sum decomposition along the subspaces . nj and its relation to the weight 
system . w. Note that this is not correct in general for small R. This reflects the fact 
that the coordinate system and the quasi-norm . Nw have been chosen to capture the 
large-scale geometry of the situation. ��

The following proposition is one of the important keys to the results presented in 
this monograph. It relates the geometry of the discrete group . � equipped with the 
quasi-norm .‖ ·‖�,w (Definition 8.10) to the geometry of . Nw in the above coordinate 
systems. 

Proposition 9.15 There are constants .c, C ∈ (0,∞) such that, for any 

. γ = exp

(
d∑
1

xiεi

)
with x = (xi)

d
1 ∈ R

d ,

. cNw(x) ≤ ‖γ ‖�,w ≤ CNw(x).

Similarly, there are constants .c, C ∈ (0,∞) such that, for any 

. γ =
d∏
1

exp (yiεi) with y = (yi)
d
1 ∈ R

d ,

.cNw(y) ≤ ‖γ ‖�,w ≤ CNw(y).
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Thanks to earlier considerations, it suffices to prove the first set of inequalities which 
refers to exponential coordinates of the first kind. 

Proof (Proof of .cNw(ζ ) ≤ ‖γ ‖�,w) To simplify the notation, set .Nw = N . In [56], 
it is proved that there exists a finite tuple .(i1, . . . , iq), .ij ∈ {1, . . . , �}, .1 ≤ j ≤ q, 
such that any .γ ∈ � with .‖γ ‖�,w = R can be written as 

.γ =
q∏
1

σ
zj

ij
, |zj | ≤ CR

w(σij
)
. (9.4) 

Since .σi = exp(ςi), .σx
i = exp(xςi) for any .i ∈ {1, . . . , �}. Because . ςi has weight 

.wg(ςi) = w(σi), by construction, there is a . ki with .w
g
wki

≥ w(σi) such that . ςi ∈
gwg

ki
. In particular, 

. ςij =
j
g
�∑

k=kij

ξk, ξk ∈ nk,

and 

. exp(zj ςij ) = exp

⎛
⎜⎝

j
g
�∑

k=kij

zj ξk

⎞
⎟⎠

with 

. ‖zj ξk‖2 ≤ max
1≤i≤�

{‖ςi‖2} × |zj | ≤ C′Rw(σij
) ≤ C′Rw

g

k

because .R ≥ 1 and .w
g

k ≥ w(σij ) for all .k ≥ kij . That is, . N(zj ξk) ≤ C′′R.

Because formula (9.4) gives any . γ as a product of at most q elements . exp(zjςij )

with .N(zjςij ) ≤ C′R, it follows that any .γ = exp(
∑n

1 xiεi) ∈ � satisfies 

. N(x) ≤ C′′Cq−1∗ R = C′′Cq−1∗ ‖γ ‖�,w.

��
Proof (Proof of .‖γ ‖�,w ≤ CN(ζ )) The proof is by induction on the dimension n of 
. g. If the dimension is 0, there is nothing to prove. Assume that for all cases when the 
dimension of . g is less than m, there exists a constant . ̃C such that . ‖γ̃ ‖�̃,w̃ ≤ C̃N(ζ̃ )

for all .γ̃ ∈ �̃ ⊂ (Rm, ·) = G̃. Consider .�,�,w,G = (Rm+1, ·). Let  . g ∈ �

be a non-trivial element of the highest weight .wj∗ which is a commutator of 
the elements . σi forming the tuple . � (this includes the elements of . � which are 
considered commutators of length 1). Let .a ≥ 1 be the length of this commutator 
and .σi1 , . . . , σia be the list of . σi used to write g as a commutator of length a with 
the property that .wj∗ =∑a

1 w(σia ). The element g must commute with all elements 
in . � and it is of the form .g = exp(θ), where . θ is the Lie commutator over .�g
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associated with the writing of g as a commutator over . �. Formally, let us use 
the notation .cG(x1, . . . , xa) to express the formal group commutator in question 
evaluated at the group elements .x1, . . . , xa so that .g = cG(σi1 , . . . , σia ). Let  . cg
be the corresponding formal Lie commutator so that .θ = cg(ζi1 , . . . , ζ1a ). For any 
a-tuple of reals .t1, . . . , ta , we also have  

. cG

(
et1ζi1 , . . . , . . . , etaζia

)
= exp(t1 . . . tacg(ζi1 , . . . , ζia )).

Let .� = {exp(sθ) : s ∈ R} be the central one-parameter subgroup of G 
associated with . θ and consider the simply connected nilpotent group .G̃ = G/� and 
its discrete subgroup . ̃� which is the image of . � by the projection map .π : G → G̃. 
The subgroup . ̃� is generated by the tuple .�̃ = (π(σ1), . . . , π(σ�)). The dimension 
of . ̃g is .m − 1. We can choose it to be the orthogonal complement of . θ in . g so that 
. dπ is the orthogonal projection onto . ̃g. 

For any .γ = exp(ζ ) ∈ � with .N(ζ) = R, we have  . N(ζ̃ ) ≤ N(ζ) = R.

Moreover, applying the induction hypothesis, we can write . γ̃ = exp(ζ̃ ) = π(γ ) ∈ �̃

as a word over the alphabet .�̃ ∪ �̃−1 with 

. ‖γ̃ ‖�̃,w̃ ≤ C̃N(ζ̃ ).

Using this word representing of .π(γ ), replacing each . σ̃i by . σi to obtain a word over 
the alphabet .�∪�−1, and evaluating in G give us an element .γ̄ ∈ � and an element 
.ζ̄ ∈ g such that 

. 

⎧⎨
⎩

γ̄ = exp(ζ̄ ),

π(γ̄ ) = γ̃ , dπ(ζ̄ ) = ζ̃ ,

γ = γ̄ exp(tθ) for some real t ≤ CRwj∗ .

The estimate on t is from [56, Theorem 2.10] (together with an application of the 
Campbell-Hausdorff formula in our special system of coordinates). By construction, 
.exp(tθ) ∈ �, and [56, Theorem 2.10] implies that 

. ‖ exp(tθ)‖�,w ≤ CR = CN(ζ ).

It follows that 

. ‖γ ‖�,w ≤ C′(|γ̄�,w| + CN(ζ )) ≤ C′(C̃ + C)N(ζ ).

��
The following proposition captures the fact that .Nw is almost a quasi-norm (a 

quasi-norm at large scale) on .G = (Rd , ·) and is a quasi-norm on .G• = (Rd , •). 
The first fact follows from the adapted triangular nature of multiplication in the 
type of coordinate system considered here. The second fact then follows from the 
homogeneity of . Nw together with the fact that .(δt )t>0 is a group dilation structure 
on . G•.
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Proposition 9.16 For any exponential coordinate system of the first or second kind 
adapted to the filtration .g

�,w
j , .1 ≤ j ≤ j

g
� , we have, for any .z, z′ ∈ R

d , 

. Nw(z · z′) ≤ C(Nw(z) + Nw(z′) + 1),

where the group law . · refers to the multiplication in .G = (Rd , ·). Moreover, in the 
same linear basis for . Rd , we have 

. Nw(z • z′) ≤ C(Nw(z) + Nw(z′)),

where . • is the group law on .G• = (Rd , •) associated with the approximate group 
dilation .δt (z) = (tbi zi)

d
1).. �



Chapter 10 
The Main Results for Random Walks 
Driven by Measures in . SM(�)

10.1 The Limit Theorems for SM(�) 

In this chapter we state our main results concerning measures in .SM(�). They  
are direct applications of Theorems 5.11 and 6.1. We state these results in adapted 
coordinate systems. Namely, given .μ ∈ SM(�) and the simply connected Lie group 
G containing . � as a co-compact discrete subgroup, we choose to write . G = (Rd , ·)
using one of the polynomial coordinate systems described in Sect. 9.5 above. This 
coordinate system is adapted to the filtration .(g�,w

j )j of the Lie algebra . g, itself 
built from the data describing the measure . μ as an element of .SM(�). In particular, 
in this coordinate system, we have an approximate group dilation structure given 
by (9.3) which defines a limit group structure .G• = (Rd , •). The  law  . • = •μ

defining this limit structure depends on . μ. 
Below, we show that for any measure .μ ∈ SM(�), there are a suitable 

approximate group dilation structure .(δt )t>0 given by (9.3) and a norm .‖ · ‖ on 
. � so that assumptions (5.3), (R1)–(R2)–(E1)–(E2), and (T. �) are all satisfied with 
the common constant .β > 0. This is in contrast to condition (A) which may or 
may not be satisfied. Recall that condition (A) is the requirement that the measure 
.μt = tδ1/t (μ), .t ≥ 1, defined by (4.1) converges vaguely on .Rd \ {0} to a 
measure . μ• as t tends to infinity. Because the dilations .(δt )t>0 have been carefully 
constructed from . μ, the family .(μt )t>0 is always tight, and if (A) is satisfied, then 
(T. •) is satisfied and the support of the limit . μ• generates G; see the subsection 
below for the proofs. 

Recall that .{Px•; x ∈ G•} is the family of probability measures induced by the 
limit symmetric Lévy process . X• on .D([0,M0],Rd). 

Fix an arbitrary increasing sequence of reals . Tk that tends to infinity, e.g., .Tk = k, 
and recall the notation .X̂k

t , t > 0, .P̂ k
t , t > 0, and .P[x]k

k , x ∈ G associated with 
the space-time rescaled discrete random walk, see (5.18). In this notation, .[x]k is 
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the closest point of x (any one of, if there is more than one such point) on .�Tk
in the 

norm .‖ · ‖, and 

. P
x
k (X̂

k
t = y) = μ([tTk])((δTk

(x))−1 · δTk
(y)), x, y ∈ �Tk

.

Hence, applying Theorems 5.11 and 6.1, we obtain the following theorem. 

Theorem 10.1 Let .μ ∈ SM(�). Referring to the above setup and notation, assume 
that condition (A) holds true, that is, the measure .μt = tδ1/t (μ), .t ≥ 1, defined at 
(4.1) converges vaguely on .Rd \ {0} to a Radon measure . μ• on .Rd \ {0} as t tends 
to infinity. 

(i) For any bounded continuous function f on . Rd , .P̂ k
s f converges uniformly on 

compacts to .P•,sf . Furthermore, for each .M0 > 0 and for every .x ∈ R
d , 

.P̂
[x]k
k converges weakly to . Px• on the space .D([0,M0],Rd) equipped with .J1-

topology. 
(ii) For any .U2 > U1 > 0 and .r > 1, 

. lim
k→∞ sup

x∈Rd :‖x‖≤r

sup
t∈[U1,U2]

∣∣∣det(δTk
)μ

([tTk])
k (δTk

([x]k)) − p•(t, x)

∣∣∣ = 0.

10.2 The Hypotheses (R1)–(R2) and (E1)–(E2) When 
μ ∈ SM(�) 

Using the constructions described in the previous two chapters and the results 
from [20], we can now show that any probability measure in .SM(�) satisfies the 
hypotheses (R1)–(R2)–(E1)–(E2) in the context of properly chosen exponential 
coordinates of the first or second kind. Let us assume that we are given . μ ∈
SM(�) and the associated data .�,w as in Sect. 8.2 and quasi-norm .‖ · ‖�,w as 
in Definition 8.10. We assume that . � is given as a co-compact subgroup of a 
simply connected Lie group G and that an adapted global exponential coordinate 
system of the first or second kind has been chosen as explained in Sect. 9.6 so 
that .� ⊂ G = (Rd , ·). Moreover, .(Rd , ·) is equipped with a straight approximate 
dilation group structure 

. (δt )t>0 : δt (z) = (tbi zi)
d
1

with the group limit .(Rd , •). Here the basis for .Rd can also be identified as 
in Sect. 9.6 with a linear basis of . g which is compatible with the direct sum 

decomposition .g = ⊕j
g
�

1 nj in Definition 9.3. Each subspace . nj is associated with a 
weight value .wj = w

g

j > 2 and for any index i such that the corresponding basis 
element is in . nj , .bi = w

g

j .
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We pick 

. 0 < b = min{bi : 1 ≤ i ≤ d} = (max{βi : 1 ≤ i ≤ d})−1, βi := 1/bi

and set .|γ |� = ‖γ ‖b
�,w. By construction, this is a norm on . �, that is, . |γ · γ ′|� ≤

|γ |� + |γ ′|� for all .γ, γ ′ ∈ �. We also let .‖ · ‖ be a norm on .(Rd , •) (i.e., satisfying 
the triangle inequality .‖g • g′‖ ≤ ‖g‖ + ‖g′‖ for all .g, g′ ∈ G•) that is equivalent 
to 

. Nw(z)b = max{|zi |b/bi : 1 ≤ i ≤ d} for z ∈ R
d

and satisfies the homogeneity condition (5.3) with .β = max1≤i≤d βi = 1/b. By  
Hebisch and Sikora [37], such a norm always exists. Recall that . B(r) = {x ∈ G :
‖x‖ < r) and .B•(x, r) = x • B(r). 

By Proposition 9.15, we have a tight comparison between the discrete object 
.| · |� and the continuous homogeneous norm .‖ · ‖ on .G• = (Rd , •), namely, there 
are constants .0 < c,C < ∞ such that, for any .γ ∈ � ⊂ R

d , 

.c‖γ ‖ ≤ |γ |� ≤ C‖γ ‖. (10.1) 

Recall that condition (R1) reads 

(R1) There are constants . C1 and . κ such that, for any bounded function u defined 
on . � and .μ-harmonic in .B(r) := {x ∈ R

d : ‖x‖ < r}, we have  

. |u(y) − u(x)| ≤ C1‖u‖∞
(‖x−1 · y‖

r

)κ

for x, y ∈ B(r/2).

For any .μ ∈ SM(�), [20, Corollary 6.10] together with Remark 5.4 gives the 
following . � version of this property: 

(R. �1) There are constants . C1 and . κ such that, for any bounded function u defined 
on . � and .μ-harmonic in .B�(r) := {x ∈ � : |x|� < r}, we have  

. |u(y) − u(x)| ≤ C1‖u‖∞
( |x−1 · y|�

r

)κ

for x, y ∈ B�(r/2).

To pass from this . � version (R. �1) to the desired (R1), we use the key norm 
comparison (10.1) and a simple covering argument to adjust the permitted range 
of x and y from one statement to the other.
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Similarly, recall that condition (R2) reads. 

(R2) There are positive constants .C2 > 0 and .β > 0 such that, for all . n,m ∈ N

and .x, y ∈ �, 

.|μ(n+m)(xy) − μ(n)(x)| ≤ C1

V (n1/β)

⎛
⎝ m

n + 1
+

√
‖y‖β

n + 1

⎞
⎠ , (10.2) 

where .V (r) := 	{g ∈ � : ‖g‖ ≤ r}. 
The fact that (R2) holds true for any probability . μ in .SM(�) follows straight-

forwardly from [20, Theorem 5.5 (3)-(4)] (see also [20, Proposition A.3]), together 
with (10.1). Regarding related recent results concerning the regularity of stable-like 
transition kernels in the abelian case, see [16]. 

Regarding the exit time conditions (E1)–(E2), which are expressed using the 
norm . ‖·‖ on . Rd , for any measure .μ ∈ SM(�), they follow from (10.1) together with 
[20, Theorem 5.5(5)] (for (E1)) and [20, Lemma 6.6] (for (E2)), with the exponent 
.β > 0 being in the same as those in (R2). (In these results of [20], . β = 1/w∗
there, where .0 < w∗ := min{w(s); s ∈ �}, which is our b; see Example 2.9 and 
Proposition 2.11(c) there.) 

10.3 Condition (T�) 

Verifying condition (T. �) for any measure . μ in .SM(�) requires some work. Any 
.μ ∈ SM(�) is a finite convex combination of probability measures of a certain type 
and it suffices to prove (T. �) for any such building block, . ν. By definition, any such 
probability measure . ν has the following property: there is a subgroup H of . � with 
finite, symmetric generating set S, word length .| · |S and volume growth exponent 
. dH , and an exponent .α ∈ (0, 2), such that 

.ν(x) �
{

(1 + |x|S)−α−dH if x ∈ H,

0 otherwise.
(10.3) 

Note that the discrete subgroup H is contained as a co-compact discrete subgroup 
in a unique, closed, connected Lie subgroup .L = LH of G. As in Sect. 10.2, we  
assume we have made the choice of an adapted coordinate system for G and of an 
appropriate approximate dilation structure .(δt )t>0. 

Recall that G is described by a polynomial global coordinate chart .G = (Rd , ·) in 
which the Lebesgue measure is a Haar measure for G. Let .m ≤ d be the dimension 
of L. This closed Lie subgroup can be described parametrically as an embedded 
sub-manifold of . Rd given by a polynomial map .iH = i from . Rm into . Rd : 

.v = (v1, . . . , vm) ∈ R
m 
→ iH (v) = (i1(v), . . . , id (v)) ∈ R

d (10.4)
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with a polynomial inverse on its image. Assume further that this map i is also a 
group isomorphism on its image, that is, 

. L = (Rm, ·H ) and i(v) · i(w) = i(v ·H w).

In fact, we can use this formula to define . ·H on . Rm. However, it will be convenient 
to assume that .L = (Rm, ·) is an exponential coordinate system of the first kind for 
L. 

The Lie group L is, of course, nilpotent and simply connected, and we assume 
that the global coordinate system .(Rm, ·) is an exponential coordinate system of the 
first kind compatible with the lower central series of L: 

. L1 = L ⊃ L2 = [L,L] ⊃ · · · ⊃ Lj = [L,Lj−1] ⊃ · · · ⊃ Lt ⊃ LrH +1 = {0},

where . rH is the smallest j such that .Lj+1 = {0}. Namely, there is a strictly 
increasing .rH -tuple of integers . kj , .1 ≤ j ≤ rH , .k1 = 1, krH = m such that 

. Lj = {(0, . . . , 0, vkj
, · · · , vm) : vkj

, . . . , vm ∈ R}.

In this coordinate system for L, the straight dilation 

.γ H
t (v) = (tpi vi)

m
1 , pi = j if kj ≤ i ≤ kj+1 − 1 (10.5) 

forms an approximate group dilation structure with limit .L∗ = (Rm, ∗), a stratified 
nilpotent Lie group of homogeneous dimension . dH with 

. dH =
rH∑
j=1

j (kj+1 − kj ).

According to Pansu’s theorem, see [52] and [15], the word length .| · |S has the 
property that there is a norm .| · |∗ on . L∗ such that .|γ H

t (v)|∗ = t |v|∗ for all . t > 0
and .v ∈ R

m, and 

. lim
v∈H, v→∞ |v|S/|v|∗ = 1. (10.6) 

Moreover, 

. |v|∗ � max
i

{|vi |1/pi : v = (v1, . . . , vm)}.

This implies that for any .v ∈ R
m with .‖v‖2 ≤ 1 and .r ∈ (0, 1] such that . ‖γ H

1/rv‖2 =
1, we have  

.‖v‖2 ≤ r. (10.7)
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Moreover, for any .v ∈ H , if we define . tv by .‖γ H
1/tv

v‖2 = 1, then we have 

.|v|S � tv. (10.8) 

By construction, because the probability measure . ν is one of the building blocks 
of . μ, the approximate dilation structure .(δt )t>0 has the property that 

. lim
t→∞ δ−1

t ◦ iH ◦ γ H
t1/α

(v) =: p(v) (10.9) 

exists for all .v ∈ R
m = i−1

H (L). This limit is uniform on compact sets and the map p 
is a continuous map (in fact a smooth map) from . Rm to . Rd . In the following lemma, 
we consider any approximate dilation structure .(δt )t>0 such that the limit in (10.9) 
exists. 

Lemma 10.2 (The Map p is a Group Homomorphism) Assume that .(δt )t>0 is 
an approximate dilation structure on .G = (Rd , )̇, that . ν is a probability measure on 
H satisfying (10.3), and that the limit p at (10.9) exists for all .v ∈ R

m = i−1
H (L). 

If we equip .Rm with the limit group structure .L∗ = (Rm, ∗) associated with the 
dilations .(γ H

t )t>0, the  map  p is a continuous group homomorphism from . L∗ to . G•
(it is typically neither injective nor onto). Let .L∗• = p(L∗) ⊆ G•. For any . x ∈ L∗•
and .u ∈ L, .δtα (x) = p(γ H

t u). Define .γ
L∗•
t on . L∗• by .γ

L∗•
t (x) = p(γ H

t u). This is a 
group of group diffeomorphisms on . L∗•. Namely, 

. γ
L∗•
s ◦ γ

L∗•
t = γ

L∗•
st and γ

L∗•
t (x • y) = γ

L∗•
t (x) • γ

L∗•
t (y), s, t > 0, x, y ∈ L∗•.

Moreover, for any .s > 0, .δ1/s ◦ γ
L∗•
s1/α

= Id on .L∗•.. □
Proof We can approximate .p(u) • p(v) by .δ1/t (δt (p(u)) · δt (p(v))) with t large 
enough. Note that 

. δ1/t (δt (p(u)) · δt (p(v))) = δ1/t ◦ iH ◦ γ H
t1/α

(
γ H
1/t1/α

(γ H
t1/α

(u) · γ H
t1/α

(v))
)

.

Since, for large s, we can approximate .γ H
1/s(γ

H
s (u) · γ H

s (v)) by .u ∗ v and the 

convergence of .δ1/t ◦ iH ◦ γ H
t1/α

to p is uniform on compact sets, it follows that 
p is a continuous group homomorphism from . L∗ to . G•. The remaining statements 
are straightforward. ��
Lemma 10.3 There is a constant C such that, for any .z ∈ H , .‖z‖ ≤ C|z|α/β

S .. □
Proof For the proof, we realize H has a subgroup of .L = R

m via . iH . Let  . t =
tz = |z|αS so that there is a constant C such that .z′ = γ H

t−1/α (z) has Euclidean norm 
.‖z′‖2 ≤ C1 in .L = R

m. Because p is continuous, it follows that there is a constant 
. C′ such that .‖p(z′)‖ ≤ C2. Hence, for all z with .|z|S large enough,
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. ‖δ1/t ◦ iH ◦ γ H
t1/α

(z′)‖ ≤ 2C2.

Now, .δ1/t ◦ iH ◦ γ H
t1/α

(z′) = δ1/t ◦ iH (z) and .‖δ1/t ◦ iH (z)‖ = t−1/β‖iH (z)‖. This  
gives, with a small abuse of notation (identifying H in L with H in .� ⊂ G via . iH
.‖z‖ = ‖iH (z)‖ ≤ 2C2|z|α/β

S ). ��
Lemma 10.4 Let . ν be a probability measure on H as in (10.3) and let .(δt )t>0 be an 
approximate dilation structure on .G = (Rd , )̇ satisfying (10.9). Let . νt = tδ1/t (ν)

and let . Jt be the associated jump kernel from Proposition 4.7 with . ν in place of . μ
there. The following properties hold: 

. lim
η→0

lim sup
t→∞

∫
B(η)

‖z‖22νt (dz) = 0, . (10.10) 

lim 
R→∞ lim sup 

t→∞ 
μt(B(R)c ) = 0. (10.11) 

. □
To prove this lemma, note that, for any .f ≥ 0, .

∫
f (z)μt (dz) is dominated by a 

constant times 

. t
∑

z∈δ1/t (�),δt (z)∈H

f (z)
1

(1 + |δt (z)|S)α+d
.

The two functions f of interest here are 

. f (z) = 1{‖·‖2≤η}(z)‖z‖2 and f (z) = 1B(R)c (z).

The results will follow from the facts that . μ has the form (10.3) and that . δt is 
compatible with .γ H

t1/α
in the sense that (10.9) holds true. 

Proof (Proof of (10.11)) Note that 

. μt(B(R)c) ≤ t
∑

z∈δ1/t (�), δt (z)∈H

1B•(R)c (z)

(1 + |δt (z)|S)α+dH

= t
∑
z∈H

1δt (B•(R))c (z)

(1 + |z|S)α+dH
= t

∑
z∈H

1B•(Rt1/β )c (z)

(1 + |z|S)α+dH

≤ t
∑
z∈H

1|z|S≥ε(Rβ t)1/α )
c(z)

(1 + |z|S)α+dH
.

The last inequality makes use of Lemma 10.3 and .ε = (1/C)α/β . Now, using  a  
decomposition by the dyadic annulus in H , .{x ∈ H : 2k ≤ | · |S < 2k+1}, it is  
elementary to verify that, for all .R, t > 1, the last sum is bounded
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. t
∑
z∈H

|z|S>ε(Rβ t)1/α

1

(1 + |z|S)α+dH
� t (ε(Rβt)1/α)−α � ε−αR−β.

This yields .limR→∞ supt≥1 μt(B(R)c) = 0. ��
Proof (Proof of (10.10)) Using a simple comparison between .‖z‖ and .‖z‖2 on a 
compact neighborhood of the origin, it suffices to consider 

. J (η, t) = t
∑

z∈δ1/t (�),δt (z)∈H

1{‖·‖2≤η}(z)‖z‖22
(1 + |δt (z)|S)α+dH

and show .limη→0 lim supt→∞ J (η, t) = 0. In order to use the dilation structure 
. γ H

t , we represent H as a discrete set in .Rm which injects into . Rd via the map 
.iH : Rm → R

d . Recall that .δ1/t ◦ iH ◦ γ H
t1/α

(z)) → p(z) uniformly on compact sets 

so that, when .‖γ H
t−1/α (z))‖2 ≤ η and t large enough, we have 

. ‖δ1/t (iH (z))‖22
= ‖δ1/t ◦ iH ◦ γ H

t1/α
(γ H

t−1/α (z))‖22 ≤ 2‖p(γ H
t−1/α (z)‖22 ≤ 2C1‖γ H

t−1/α (z)‖22
because .‖p(v)‖2 ≤ C1‖v‖2 for any .v ∈ R

m with .‖v‖22 ≤ η. Also, by (10.7)–(10.8), 
.‖γ H

t−1/α z‖2 ≤ C2t
−1/α|z|S. Hence we obtain 

. 1{‖·‖2≤η}(δ1/t (iH (z)))‖δ1/t (iH (z))‖22 ≤ 2C1C2 min{η2, t−2/α|z|2S}

and 

. J (η, t) ≤ C3t
∑
z∈H

min{η2, t−2/α|z|2S}
(1 + |z|S)α+dH

≤ C3t
∑

|z|S>ηt1/α

η2

(1 + |z|S)α+dH
+ C3t

1−2/α
∑

|z|S≤ηt1/α

|z|2S
(1 + |z|S)α+d

≤ C4

(
tη2(ηt1/α)−α + t1−2/α(ηt1/α)2−α

)
= 2C4η

2−α.

This proves that .limη→0 lim supt→∞ J (η, t) = 0 as desired. ��
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10.4 Condition (T•) Holds Automatically for Measures in 
SM(�) 

The careful reader will have notice that the title of this section needs additional 
context because, for a measure . μ in .SM(�) (and a coordinate system as discussed 
above), we do have an associated approximate group dilation structure .(δt )t>0 and 
a limit group structure .G• = (Rd , •), but, in general, the family of measures . μt =
tδ1/t (μ) does not converge vaguely on .Rd \ {0}, and thus, (T. •) does not make 
immediate sense. There is, however, a simple way to correctly interpret the title of 
this section. 

Lemma 10.5 For any .μ ∈ SM(�) and associated approximate group dilation 
structure .(δt )t>0 in a coordinate system as above and any vague sub-limit . μ• of the 
family .{μt }t>0 as t tends to infinity, condition (T. •) holds true.. □

To prove this lemma, it suffices to prove the similar statement for each component 
. ν of the measure . μ. So, we assume (10.3). Lemma 10.2 shows that any vague sub-
limit . ν• of . νt is supported on . L∗• and is bounded from above and below by multiples 
of the measure .νψ(f ) = ∫

Rm f (p(u))ψ(u)du for .f ∈ Cc(R
d \ {0}), where . p :

R
m → R

d is defined by (10.9) and .ψ : Rm \ {0} → [0,∞) is given by . ψ(u) =
|u|−α−dH∗ . We claim that 

. lim
η→0

∫
{z:‖z‖≤η}

‖z‖22νψ(dz) = 0, . (10.12) 

lim 
R→∞ 

νψ(B(R)c ) = 0. (10.13) 

Proof (Proof of (10.12) and (10.13)) By Lemma 10.2, .δt (p(y)) = p(γ H
t1/α

y). It 
follows that 

. νψ(B(R)c) =
∫
Rm

1B(R)c (p(y))ψ(y)dy =
∫
Rm

1B(1)c (δ1/Rβ (p(y)))ψ(y)dy

=
∫
Rm

1B(1)c (p(γ H
1/Rβ/α (y)))ψ(y)dy

= RdH β/α

∫
Rm

1B(1)c (p(y))ψ(γ H
Rβ/α (y))dy

= R−β

∫
Rm

1B(1)c (p(y))ψ(y)dy
R→∞−→ 0.

For the last step, note that p is continuous so that .1B(1)c (p(y)) is equal to 0 in a 
neighborhood of 0 in . Rm and thus .

∫
Rm 1B(1)c (p(y))ψ(y)dy < ∞.
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Similarly, consider .I (η) = ∫
{z:‖z‖≤η} ‖z‖22νψ(dz) and write 

. I (η) =
∫
Rm

1B(η)(p(u))‖p(u)‖22ψ(u)du =
∫
Rm

1B(1)(δη−β (p(u)))‖p(u)‖22ψ(u)du

=
∫
Rm

1B(1)(p(γ H
η−β/α (u)))‖p(u)‖22ψ(u)du

= ηdH β/α

∫
Rm

1B(1)(p(u))‖p(γ H
ηβ/α (u))‖22ψ(γ H

ηβ/α (u))du

= η−β

∫
Rm

1B(1)(p(u))‖δηβ (p(u))‖22ψ(u)du

≤ η
β
(

2
β+ −1

) ∫
Rm

1B(1)(p(u))‖p(u)‖22ψ(u)du,

where .β+ = max{βi} < 2. This integral is finite because . 1B(1)(p(u))‖p(u)‖22 ≤
C‖u‖22/(1 + ‖u‖22) and, using “polar coordinates” adapted to the dilation structure 
.(γ H

t )t>0 on .H∗ = (Rm, ∗), 

. 

∫
Rm

‖u‖22
1 + ‖u‖22

ψ(u)du ≤ 1 +
∫ 1

0
r−1+2−αdr

because .‖u‖2 ≤ r if .‖γ H
1/ru‖2 = 1 and .r ≤ 1 (see (10.7)–(10.8)). ��

10.5 Sufficient Condition for (A) When μ ∈ SM(�) 

In this section, we explain why Theorem 10.1 applies to a large class of examples 
in .SM(�) that includes the two main examples described in Sect. 2.3. To give  
sufficient conditions for a measure in .SM(�) to satisfy condition (A), we proceed 
component by component and follow the basic setup of Sect. 10.3. Namely, we give 
sufficient conditions on a measure . ν satisfying (10.3) for the family .νt = tδ1/t (ν) to 
have a vague limit . ν• on .R

d \ {0}. Recall that . ν is supported on a discrete subgroup 
H contained as a co-compact closed subgroup in a closed Lie subgroup L of G. The  
groups G and H both have a global coordinate system .G = R

d and .L = R
m. See 

Sect. 10.3. We consider the following additional conditions: 

(SA1) There exists an everywhere defined measurable non-negative function . φ on 
. Rm such that .ν(iH (v)) = φ(v), where . iH is the polynomial map from . Rm

to . Rd defined by (10.4). For .v ∈ R
m, v �= 0, we set  

.φH
t (v) = t1+dH /αφ(γ H

t1/α
v). (10.14)
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(SA2) There exists a continuous function .ψ : Rm \ {0} → [0,∞) such that 

.for any v ∈ R
m \ {0}, |φH

t (v) − ψ(v)| ≤ η(t)ψ̄(v), (10.15) 

where .limt→∞ η(t) = 0 and . ψ̄ is locally bounded on .R
m \ {0}. 

Remark 10.6 By the construction, the function . ψ must satisfy 

. ψ(v) � |v|−(α+dH )∗ for v ∈ R
m \ {0},

and 

. ψ(γ H
t1/α

(v)) = t−1−dH /αψ(v) for v ∈ R
m \ {0} and t > 0.

Remark 10.7 Regarding hypothesis (SA1), two typical examples are: 

(i) The function . φ is a continuous function on . Rm and . μ is defined in terms of . φ. 
For instance, this covers Example 4.6. 

(ii) The function . φ may not be continuous but satisfies .φ(xy) = φ(x) for all . x ∈ H

and .y ∈ �H , where .�H is a relatively compact connected fundamental domain 
for the action of H on .LH = R

m (that is, .�H is a relatively compact connected 
subset of .LH so that .LH = ∪h∈H h�H ). 

In this second case, we can define the function . φ in terms of . μ using the formula 
.φ(xy) = μ(x) for .x ∈ H and .y ∈ �H .. □
Example 10.8 Consider the case when .μ(h) = c(1+|h|S)−α−dH 1H (h). Following 
Remark 10.7(ii) above, we can extend this function defined on H to a function . φ
defined on .LH = R

m by setting . φ to be constant on the translates of a precompact 
fundamental domain. For .x ∈ LH , let  .x̃ ∈ H be the representative of x so that 
.x̃−1x ∈ �H , x̃ ∈ H . Then, 

. φH
t (v) = c(t−1/α + |ĩH (v)|S)−α−dH ,

and, setting .ψ(v) = c

|v|α+dH∗
, Pansu’s theorem (see [15, 52]) gives 

. lim
t→∞ φH

t (v) = c

|v|α+dH∗
= ψ(v).

Furthermore, 

.|φH
t (v) − ψ(v)| ≤ C

t−1/α

|v|α+dH +1∗
.
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Proposition 10.9 Under assumptions (SA1)-(SA2), the measure 

. νt = tδ−1
t (ν) : νt (f ) := t

∑
x∈H

f (δ−1
t (x))ν(x) for f ∈ Cc(R

d \ {0})

converges vaguely on .R
d \ {0} to a symmetric Radon measure . ν• on .R

d \ {0} given 
by 

. ν•(f ) =
∫
Rm

f (p(u))ψ(u)du, f ∈ Cc(R
d \ {0}),

where .p : Rm → R
d is defined by (10.9) and .ψ : Rm \ {0} → [0,∞) by (10.15).. □

Proof This follows by a sequence of algebraic manipulation and approximations as 
follows. We use the notations introduced above and drop the superscript H (if there 
is one), in particular, .d = dH , . α, .γt = γ H

t , . φ, .φt = φH
t , .ψ, .i = iH : Rm → R

d , 
and the norm .| · |∗ on . L∗. For any .f ∈ Cc(R

d \ {0}), we have the scaled down copy 
of H in . Rm

.νt (f ) = t
∑
x∈H

f (δ−1
t (x))ν(x) = t

∑

u∈i−1(H)

f (δ−1
t (i(u)))φ(u)

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))φt (u)

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))(φt (u) − ψ(u))

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (p(u))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

(f (δ−1
t ◦ i ◦ γt1/α (u)) − f (p(u)))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (p(u))(φt (u) − ψ(u))

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

(f (δ−1
t ◦ i ◦ γt1/α (u)) − f (p(u)))(φt (u) − ψ(u))

= �1(f, t) + �2(f, t) + �3(f, t) + �4(f, t).
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Now, the multivariate Riemann sum .�1(f, t) of the continuous function . f ◦ p × ψ

satisfies .limt→∞ �1(f, t) = ∫
Rm f (p(u))ψ(u)du because, for any large real R, 

. �1(f, t) = t−d/α
∑

u∈γ
t−1/α (i−1(H));|u|∗≤R

f (p(u))ψ(u)

+ t−dH /α
∑

u∈γ
t−1/α (i−1(H));|u|∗>R

f (p(u))ψ(u).

The first term tends to .
∫
|u|∗≤R

f (p(u))ψ(u), whereas the second term is bounded 

by .CR−α because .ψ(u) � |u|−α−dH∗ . Similarly, .
∫
|u|∗>R

ψ(u)du ≤ CR−α and this 
proves the stated limit for .�1(f, t). Using our various hypotheses regarding . μ, the  
limits for .�2(f, t), �3(f, t), and .�4(f, t) are easily seen to be equal to 0. ��

10.6 The Illustrative Case of Measures in SM1(�) 

The simplest case illustrating the previous section is related to the treatment of 
measures in .SM1(�) when the building blocks have the form 

. ν(g) = cα

∑
k∈Z

(1 + |k|)−α−11σk (g)

for some .σ ∈ � ⊂ G, that is, .H = 〈σ 〉 ⊂ � ⊂ G. Here, of course, .dH = 1. We  
use exponential coordinates of the first kind. Recall that the element .σ ∈ H is of 
the form .σ = exp(ζ ) = ζ for some .ζ = (ζ1, . . . , ζd) ∈ g = R

d . This is because the 
exponential map is the identity in our setup. Define the function . φ : V → [0,∞)

by .φ(x) = cα(1 + |s|)−α−1 if .x = sζ and .φ(x) = 0 otherwise so that . ν(f ) =∑
y∈{σk :k∈Z} f (y)φ(y). Set .φt (x) = cα(t−1/α +|s|)−α−1 if .x = sζ and 0 otherwise 

so that .φ(t1/αsζ ) = t−1−1/αφt (sζ ). We also set .ψ(sζ ) = cα|s|−α−1 for .s �= 0 and 
.ψ(y) = 0 if .y /∈ {sζ : s ∈ R} so that, for each .s �= 0, 

. φt (zζ ) − ψ(sζ ) = cα

|s|1+α − (t−1/α + |s|)1+α

(t−1/α + |s|)1+α|s|1+α
→ 0 as t → ∞.

Assume, in addition, that we are given an approximate dilation structure . δt which 
can be expressed as .δt (x) = (tw1x1, . . . , t

wd xd) in the basis of . Rd . We want to 
understand the limit of .tδ−1

t (ν) which is given on a continuous function f with 
compact support in .V \ {0} by 

.tδ−1
t (ν)(f ) = t

∑

y=δ−1
t (kζ ):k∈Z

φ(δt (y))f (y)
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= t
∑

y=δ−1 
t (kζ ):k∈Z 

φ(t1/α t−1/α δt (y))f (y) 

= t−1/α
∑

y=t−1/αkζ :k∈Z 

φt (y)f (δ−1 
t (t1/α y)). 

Now we need to consider different cases depending on how .δ−1
t acts on . ζ . Indeed, 

.δ−1
t (t1/αsζ ) = (t1/α−wi ζi)

d
1 . In order to have a vague limit, we need to assume that, 

for every .i ∈ {1, . . . , d} such that .ζi �= 0, .wi ≥ 1/α. If that is the case, then 

. lim
t→∞ δ−1

t (t1/α(sζ )) = s(ζ∞
i )d1 with ζ∞

i = p(ζ ) =
{

ζi if wi = 1/α,

0 otherwise.

Under this assumption (i.e., the approximate dilation structure .(δt )t>0 is admissible 
for . μ), we write 

. tδ−1
t (ν)(f ) = t−1/α

∑

y=t−1/αkζ :k∈Z
φt (y)f (δ−1

t (t1/αy))

= cαt−1/α
∑

y=t−1/αkζ :k∈Z

f (t−1/αkp(ζ ))

(t−1/α|k|)1+α

+ cαt−1/α
∑

y=t−1/αkζ :k∈Z

[f (t−1/αkδ−1
t (t1/α(ζ ))) − f (t−1/αkp(ζ ))]

(t−1/α|k|)1+α

+ t−1/α
∑

y=t−1/αkζ :k∈Z
[f (t−1/αkδ−1

t (t1/α(ζ )))(φt (t
−1/αkζ ) − ψ(t−1/αkζ ))].

Because f is a compactly supported continuous function in .V \ {0}, the second and 
third sums tend to 0, while the first sum tends to 

.

∫
R

cα|s|−α−1f (sp(ζ ))ds =
∫
R

ψ(sζ )f (sp(ζ ))ds.



Appendix A 
Nilpotent Groups 

A.1 Definition of Nilpotent Groups 

In Chap. 1, we gave the classical definition of a nilpotent group and we recall it here. 

Definition A.1 A nilpotent group is a group G with identity element e which has a 
central series of finite length, that is, there is a finite sequence of normal subgroups 
so that 

. {e} = K0 � K1 � · · · � Kn = G

with .Ki+1/Ki contained in the center of .G/Ki for .0 ≤ i ≤ n− 1. See, for example, 
[21, Definition 2.3].. �

An alternative definition of nilpotent group uses commutators. For two elements 
x and y of a group G, the commutator of x and y is .[x, y] := x−1y−1xy. For two  
subsets A and B of G, .[A,B] denotes the group generated by all commutators . [a, b]
for .a ∈ A and .b ∈ B. See [21, Lemma 1.4] for a collection of commutator identities. 
The lower central series of a group G is defined inductively by setting .G1 = G and 
.Gi+1 = [G,Gi] for .i ≥ 1. It is a non-increasing sequence of subgroups of G. A  
group is nilpotent if and only if its lower central series terminates, that is, there is an 
integer .r ≥ 1 such that .Gi = {e}, for all .i ≥ r + 1. The smallest such r is called the 
nilpotent class of the group G. 

Example A.2 In the Heisenberg group of 3 by 3 upper-triangular matrices with 
diagonal entries equal to 1, any commutator of length 3, .[M1, [M2,M3]], is the  
identity and there are elements that do not commute. Hence the Heisenberg group is 
nilpotent of class 2. This applies to either the discrete Heisenberg group .H3(Z) with 
integer matrix entries or the real Heisenberg group .H3(R) with real matrix entries. 
. �
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A.2 Definition of Nilpotent Lie Groups and Lie Algebras 

We refer the reader to [22, Sections 1.1 and 1.2] for a short introduction to 
nilpotent Lie algebra and connected nilpotent Lie groups. In the case of a Lie 
algebra .(g, [·, ·]), the bracket .[·, ·] is the key structural operation and the descending 
lower central series is defined inductively by .g1 = g and .gi+1 = [g, gi] for 
.i ≥ 1. The Lie algebra is said to be nilpotent if there is an integer .r ≥ 0 so 
that .gr+1 = {0}. The smallest such r is the nilpotent class of . g. A connected 
Lie group is nilpotent according to Definition A.1 if and only if its Lie algebra is 
nilpotent. Any simply connected nilpotent Lie group of topological dimension d can 
be identified via the exponential map with .Rd equipped with a group law given in 
coordinate by polynomial functions. See, e.g., [22, Theorem 1.2.1]. The Campbell-
Baker-Hausdorff formula (e.g., [22, Page 11]) expresses the group product in this 
coordinate system. 

A.3 Embeddings into Lie Groups 

Consider the following two natural questions. When can one embed a finitely 
generated torsion-free nilpotent group . � as a co-compact subgroup into a nilpotent 
Lie group G? Which connected simply connected nilpotent Lie group contains a 
co-compact finitely generated subgroup? 

The first question is answered by constructions due to Malcev and P. Hall which 
provide such embeddings for any finitely generated torsion-free nilpotent group. 
This is the subject of [21, Chapter 4]. This result is used in this monograph, both 
as a black box, to embed . � as a co-compact subgroup into a nilpotent Lie group G, 
and, more concretely, when we construct coordinate systems. 

The answer to the second question is negative (there are connected simply 
connected nilpotent Lie groups that do not admit co-compact discrete subgroups). 
See, e.g., [22, Theorem 5.1.8 and Example 5.1.13]. This result is not needed for the 
purpose of this monograph. 

A.4 Volume Growth 

A finitely generated group . � is naturally equipped with the family of all word 
distances. A word distance is associated with a finite symmetric generating set S 
(symmetric means that .g−1 ∈ S if .g ∈ S). The length .|g|S of an element g is the 
least number m of elements in S that allow to write g as a product . g = σ1 . . . σm

using elements . σi from S. By convention, .|e|S = 0. The associated left-invariant 
distance is .dS(g, h) = |g−1h|S . Given two finite symmetric generating sets S and 
T , there are positive constants .a = a(S, T ) and .A = A(S, T ) such that
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. a|g|s ≤ |g|T ≤ A|g|S for all g ∈ �.

The volume growth of . � with respect to S is 

. VS(t) = #{g ∈ � : |g|S ≤ t},

the number of points in any closed balls of radius m in .(�, dS(·, ·)). If  S and T are 
two generating sets as above, then there are positive constants .b = b(S, T ) and 
.B = B(S, T ) such that 

. bVS(bt) ≤ VT (m) ≤ BVS(Bt) for all t > 0.

In the case of a finitely generated nilpotent group . � of nilpotent class r , the behavior 
of the volume growth function . VS can be understood in terms of the lower central 
series .�1 = �, .�i+1 = [�,�i] for .i ≥ 1 as follows. The quotient groups . �i/�i+1
are finitely generated abelian groups. As any such group, the quotient .�i/�i+1 is 
the product of a finite abelian group and .Z�i for some integer . �i = rank(�i/�i+1)

which is called the torsion-free rank of this abelian group. Set 

.D = D(�) =
r∑

j=1

j rank(�i/�i+1). (A.1) 

Then there are constants .c = C(S) and .C = C(S) such that 

.c(1 + t)D ≤ VS(t) ≤ C(1 + t)D for all t ≥ 0. (A.2) 

See, e.g., [25, Theorem VII.C.26] for references and comments on this result. 
If the nilpotent . � above is a discrete co-compact subgroup of a connected Lie 

group G, then, for any fixed left-invariant Riemannian metric on G, the Haar 
measure .|B(r)| of the ball of radius r around the identity element e satisfies 

. c1r
D ≤ |B(r)| ≤ C1r

D for all r ≥ 1,

where .D = D(�) is as in (A.1). The positive constants . c1 and . C1 depend on the 
choice of the Riemannian metric. 

Example A.3 The Heisenberg group .H3(Z) is a co-compact subgroup of .H3(R). 
The elements of .H3(Z) with at most one non-zero non-diagonal entry in the top-
right corner are the center of .H3(Z) and the commutator subgroup .[H3(Z),H3(Z)]. 
It follows that the parameter .D = D(H3(Z)) is equal to .2 + 1 × 2 = 4. 
Any left-invariant Riemannian metric on .H3(R) has large-scale volume growth 
of type . r4.
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